1 | /* hash - hashing table processing.
|
---|
2 |
|
---|
3 | Copyright (C) 1998-2004, 2006-2007, 2009-2021 Free Software Foundation, Inc.
|
---|
4 |
|
---|
5 | Written by Jim Meyering, 1992.
|
---|
6 |
|
---|
7 | This file is free software: you can redistribute it and/or modify
|
---|
8 | it under the terms of the GNU Lesser General Public License as
|
---|
9 | published by the Free Software Foundation; either version 2.1 of the
|
---|
10 | License, or (at your option) any later version.
|
---|
11 |
|
---|
12 | This file is distributed in the hope that it will be useful,
|
---|
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | GNU Lesser General Public License for more details.
|
---|
16 |
|
---|
17 | You should have received a copy of the GNU Lesser General Public License
|
---|
18 | along with this program. If not, see <https://www.gnu.org/licenses/>. */
|
---|
19 |
|
---|
20 | /* A generic hash table package. */
|
---|
21 |
|
---|
22 | /* Define USE_OBSTACK to 1 if you want the allocator to use obstacks instead
|
---|
23 | of malloc. If you change USE_OBSTACK, you have to recompile! */
|
---|
24 |
|
---|
25 | #include <config.h>
|
---|
26 |
|
---|
27 | #include "hash.h"
|
---|
28 |
|
---|
29 | #include "bitrotate.h"
|
---|
30 | #include "xalloc-oversized.h"
|
---|
31 |
|
---|
32 | #include <stdint.h>
|
---|
33 | #include <stdio.h>
|
---|
34 | #include <stdlib.h>
|
---|
35 |
|
---|
36 | #if USE_OBSTACK
|
---|
37 | # include "obstack.h"
|
---|
38 | # ifndef obstack_chunk_alloc
|
---|
39 | # define obstack_chunk_alloc malloc
|
---|
40 | # endif
|
---|
41 | # ifndef obstack_chunk_free
|
---|
42 | # define obstack_chunk_free free
|
---|
43 | # endif
|
---|
44 | #endif
|
---|
45 |
|
---|
46 | struct hash_entry
|
---|
47 | {
|
---|
48 | void *data;
|
---|
49 | struct hash_entry *next;
|
---|
50 | };
|
---|
51 |
|
---|
52 | struct hash_table
|
---|
53 | {
|
---|
54 | /* The array of buckets starts at BUCKET and extends to BUCKET_LIMIT-1,
|
---|
55 | for a possibility of N_BUCKETS. Among those, N_BUCKETS_USED buckets
|
---|
56 | are not empty, there are N_ENTRIES active entries in the table. */
|
---|
57 | struct hash_entry *bucket;
|
---|
58 | struct hash_entry const *bucket_limit;
|
---|
59 | size_t n_buckets;
|
---|
60 | size_t n_buckets_used;
|
---|
61 | size_t n_entries;
|
---|
62 |
|
---|
63 | /* Tuning arguments, kept in a physically separate structure. */
|
---|
64 | const Hash_tuning *tuning;
|
---|
65 |
|
---|
66 | /* Three functions are given to 'hash_initialize', see the documentation
|
---|
67 | block for this function. In a word, HASHER randomizes a user entry
|
---|
68 | into a number up from 0 up to some maximum minus 1; COMPARATOR returns
|
---|
69 | true if two user entries compare equally; and DATA_FREER is the cleanup
|
---|
70 | function for a user entry. */
|
---|
71 | Hash_hasher hasher;
|
---|
72 | Hash_comparator comparator;
|
---|
73 | Hash_data_freer data_freer;
|
---|
74 |
|
---|
75 | /* A linked list of freed struct hash_entry structs. */
|
---|
76 | struct hash_entry *free_entry_list;
|
---|
77 |
|
---|
78 | #if USE_OBSTACK
|
---|
79 | /* Whenever obstacks are used, it is possible to allocate all overflowed
|
---|
80 | entries into a single stack, so they all can be freed in a single
|
---|
81 | operation. It is not clear if the speedup is worth the trouble. */
|
---|
82 | struct obstack entry_stack;
|
---|
83 | #endif
|
---|
84 | };
|
---|
85 |
|
---|
86 | /* A hash table contains many internal entries, each holding a pointer to
|
---|
87 | some user-provided data (also called a user entry). An entry indistinctly
|
---|
88 | refers to both the internal entry and its associated user entry. A user
|
---|
89 | entry contents may be hashed by a randomization function (the hashing
|
---|
90 | function, or just "hasher" for short) into a number (or "slot") between 0
|
---|
91 | and the current table size. At each slot position in the hash table,
|
---|
92 | starts a linked chain of entries for which the user data all hash to this
|
---|
93 | slot. A bucket is the collection of all entries hashing to the same slot.
|
---|
94 |
|
---|
95 | A good "hasher" function will distribute entries rather evenly in buckets.
|
---|
96 | In the ideal case, the length of each bucket is roughly the number of
|
---|
97 | entries divided by the table size. Finding the slot for a data is usually
|
---|
98 | done in constant time by the "hasher", and the later finding of a precise
|
---|
99 | entry is linear in time with the size of the bucket. Consequently, a
|
---|
100 | larger hash table size (that is, a larger number of buckets) is prone to
|
---|
101 | yielding shorter chains, *given* the "hasher" function behaves properly.
|
---|
102 |
|
---|
103 | Long buckets slow down the lookup algorithm. One might use big hash table
|
---|
104 | sizes in hope to reduce the average length of buckets, but this might
|
---|
105 | become inordinate, as unused slots in the hash table take some space. The
|
---|
106 | best bet is to make sure you are using a good "hasher" function (beware
|
---|
107 | that those are not that easy to write! :-), and to use a table size
|
---|
108 | larger than the actual number of entries. */
|
---|
109 |
|
---|
110 | /* If an insertion makes the ratio of nonempty buckets to table size larger
|
---|
111 | than the growth threshold (a number between 0.0 and 1.0), then increase
|
---|
112 | the table size by multiplying by the growth factor (a number greater than
|
---|
113 | 1.0). The growth threshold defaults to 0.8, and the growth factor
|
---|
114 | defaults to 1.414, meaning that the table will have doubled its size
|
---|
115 | every second time 80% of the buckets get used. */
|
---|
116 | #define DEFAULT_GROWTH_THRESHOLD 0.8f
|
---|
117 | #define DEFAULT_GROWTH_FACTOR 1.414f
|
---|
118 |
|
---|
119 | /* If a deletion empties a bucket and causes the ratio of used buckets to
|
---|
120 | table size to become smaller than the shrink threshold (a number between
|
---|
121 | 0.0 and 1.0), then shrink the table by multiplying by the shrink factor (a
|
---|
122 | number greater than the shrink threshold but smaller than 1.0). The shrink
|
---|
123 | threshold and factor default to 0.0 and 1.0, meaning that the table never
|
---|
124 | shrinks. */
|
---|
125 | #define DEFAULT_SHRINK_THRESHOLD 0.0f
|
---|
126 | #define DEFAULT_SHRINK_FACTOR 1.0f
|
---|
127 |
|
---|
128 | /* Use this to initialize or reset a TUNING structure to
|
---|
129 | some sensible values. */
|
---|
130 | static const Hash_tuning default_tuning =
|
---|
131 | {
|
---|
132 | DEFAULT_SHRINK_THRESHOLD,
|
---|
133 | DEFAULT_SHRINK_FACTOR,
|
---|
134 | DEFAULT_GROWTH_THRESHOLD,
|
---|
135 | DEFAULT_GROWTH_FACTOR,
|
---|
136 | false
|
---|
137 | };
|
---|
138 |
|
---|
139 | /* Information and lookup. */
|
---|
140 |
|
---|
141 | size_t
|
---|
142 | hash_get_n_buckets (const Hash_table *table)
|
---|
143 | {
|
---|
144 | return table->n_buckets;
|
---|
145 | }
|
---|
146 |
|
---|
147 | size_t
|
---|
148 | hash_get_n_buckets_used (const Hash_table *table)
|
---|
149 | {
|
---|
150 | return table->n_buckets_used;
|
---|
151 | }
|
---|
152 |
|
---|
153 | size_t
|
---|
154 | hash_get_n_entries (const Hash_table *table)
|
---|
155 | {
|
---|
156 | return table->n_entries;
|
---|
157 | }
|
---|
158 |
|
---|
159 | size_t
|
---|
160 | hash_get_max_bucket_length (const Hash_table *table)
|
---|
161 | {
|
---|
162 | struct hash_entry const *bucket;
|
---|
163 | size_t max_bucket_length = 0;
|
---|
164 |
|
---|
165 | for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
|
---|
166 | {
|
---|
167 | if (bucket->data)
|
---|
168 | {
|
---|
169 | struct hash_entry const *cursor = bucket;
|
---|
170 | size_t bucket_length = 1;
|
---|
171 |
|
---|
172 | while (cursor = cursor->next, cursor)
|
---|
173 | bucket_length++;
|
---|
174 |
|
---|
175 | if (bucket_length > max_bucket_length)
|
---|
176 | max_bucket_length = bucket_length;
|
---|
177 | }
|
---|
178 | }
|
---|
179 |
|
---|
180 | return max_bucket_length;
|
---|
181 | }
|
---|
182 |
|
---|
183 | bool
|
---|
184 | hash_table_ok (const Hash_table *table)
|
---|
185 | {
|
---|
186 | struct hash_entry const *bucket;
|
---|
187 | size_t n_buckets_used = 0;
|
---|
188 | size_t n_entries = 0;
|
---|
189 |
|
---|
190 | for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
|
---|
191 | {
|
---|
192 | if (bucket->data)
|
---|
193 | {
|
---|
194 | struct hash_entry const *cursor = bucket;
|
---|
195 |
|
---|
196 | /* Count bucket head. */
|
---|
197 | n_buckets_used++;
|
---|
198 | n_entries++;
|
---|
199 |
|
---|
200 | /* Count bucket overflow. */
|
---|
201 | while (cursor = cursor->next, cursor)
|
---|
202 | n_entries++;
|
---|
203 | }
|
---|
204 | }
|
---|
205 |
|
---|
206 | if (n_buckets_used == table->n_buckets_used && n_entries == table->n_entries)
|
---|
207 | return true;
|
---|
208 |
|
---|
209 | return false;
|
---|
210 | }
|
---|
211 |
|
---|
212 | void
|
---|
213 | hash_print_statistics (const Hash_table *table, FILE *stream)
|
---|
214 | {
|
---|
215 | size_t n_entries = hash_get_n_entries (table);
|
---|
216 | size_t n_buckets = hash_get_n_buckets (table);
|
---|
217 | size_t n_buckets_used = hash_get_n_buckets_used (table);
|
---|
218 | size_t max_bucket_length = hash_get_max_bucket_length (table);
|
---|
219 |
|
---|
220 | fprintf (stream, "# entries: %lu\n", (unsigned long int) n_entries);
|
---|
221 | fprintf (stream, "# buckets: %lu\n", (unsigned long int) n_buckets);
|
---|
222 | fprintf (stream, "# buckets used: %lu (%.2f%%)\n",
|
---|
223 | (unsigned long int) n_buckets_used,
|
---|
224 | (100.0 * n_buckets_used) / n_buckets);
|
---|
225 | fprintf (stream, "max bucket length: %lu\n",
|
---|
226 | (unsigned long int) max_bucket_length);
|
---|
227 | }
|
---|
228 |
|
---|
229 | /* Hash KEY and return a pointer to the selected bucket.
|
---|
230 | If TABLE->hasher misbehaves, abort. */
|
---|
231 | static struct hash_entry *
|
---|
232 | safe_hasher (const Hash_table *table, const void *key)
|
---|
233 | {
|
---|
234 | size_t n = table->hasher (key, table->n_buckets);
|
---|
235 | if (! (n < table->n_buckets))
|
---|
236 | abort ();
|
---|
237 | return table->bucket + n;
|
---|
238 | }
|
---|
239 |
|
---|
240 | void *
|
---|
241 | hash_lookup (const Hash_table *table, const void *entry)
|
---|
242 | {
|
---|
243 | struct hash_entry const *bucket = safe_hasher (table, entry);
|
---|
244 | struct hash_entry const *cursor;
|
---|
245 |
|
---|
246 | if (bucket->data == NULL)
|
---|
247 | return NULL;
|
---|
248 |
|
---|
249 | for (cursor = bucket; cursor; cursor = cursor->next)
|
---|
250 | if (entry == cursor->data || table->comparator (entry, cursor->data))
|
---|
251 | return cursor->data;
|
---|
252 |
|
---|
253 | return NULL;
|
---|
254 | }
|
---|
255 |
|
---|
256 | /* Walking. */
|
---|
257 |
|
---|
258 | void *
|
---|
259 | hash_get_first (const Hash_table *table)
|
---|
260 | {
|
---|
261 | struct hash_entry const *bucket;
|
---|
262 |
|
---|
263 | if (table->n_entries == 0)
|
---|
264 | return NULL;
|
---|
265 |
|
---|
266 | for (bucket = table->bucket; ; bucket++)
|
---|
267 | if (! (bucket < table->bucket_limit))
|
---|
268 | abort ();
|
---|
269 | else if (bucket->data)
|
---|
270 | return bucket->data;
|
---|
271 | }
|
---|
272 |
|
---|
273 | void *
|
---|
274 | hash_get_next (const Hash_table *table, const void *entry)
|
---|
275 | {
|
---|
276 | struct hash_entry const *bucket = safe_hasher (table, entry);
|
---|
277 | struct hash_entry const *cursor;
|
---|
278 |
|
---|
279 | /* Find next entry in the same bucket. */
|
---|
280 | cursor = bucket;
|
---|
281 | do
|
---|
282 | {
|
---|
283 | if (cursor->data == entry && cursor->next)
|
---|
284 | return cursor->next->data;
|
---|
285 | cursor = cursor->next;
|
---|
286 | }
|
---|
287 | while (cursor != NULL);
|
---|
288 |
|
---|
289 | /* Find first entry in any subsequent bucket. */
|
---|
290 | while (++bucket < table->bucket_limit)
|
---|
291 | if (bucket->data)
|
---|
292 | return bucket->data;
|
---|
293 |
|
---|
294 | /* None found. */
|
---|
295 | return NULL;
|
---|
296 | }
|
---|
297 |
|
---|
298 | size_t
|
---|
299 | hash_get_entries (const Hash_table *table, void **buffer,
|
---|
300 | size_t buffer_size)
|
---|
301 | {
|
---|
302 | size_t counter = 0;
|
---|
303 | struct hash_entry const *bucket;
|
---|
304 | struct hash_entry const *cursor;
|
---|
305 |
|
---|
306 | for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
|
---|
307 | {
|
---|
308 | if (bucket->data)
|
---|
309 | {
|
---|
310 | for (cursor = bucket; cursor; cursor = cursor->next)
|
---|
311 | {
|
---|
312 | if (counter >= buffer_size)
|
---|
313 | return counter;
|
---|
314 | buffer[counter++] = cursor->data;
|
---|
315 | }
|
---|
316 | }
|
---|
317 | }
|
---|
318 |
|
---|
319 | return counter;
|
---|
320 | }
|
---|
321 |
|
---|
322 | size_t
|
---|
323 | hash_do_for_each (const Hash_table *table, Hash_processor processor,
|
---|
324 | void *processor_data)
|
---|
325 | {
|
---|
326 | size_t counter = 0;
|
---|
327 | struct hash_entry const *bucket;
|
---|
328 | struct hash_entry const *cursor;
|
---|
329 |
|
---|
330 | for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
|
---|
331 | {
|
---|
332 | if (bucket->data)
|
---|
333 | {
|
---|
334 | for (cursor = bucket; cursor; cursor = cursor->next)
|
---|
335 | {
|
---|
336 | if (! processor (cursor->data, processor_data))
|
---|
337 | return counter;
|
---|
338 | counter++;
|
---|
339 | }
|
---|
340 | }
|
---|
341 | }
|
---|
342 |
|
---|
343 | return counter;
|
---|
344 | }
|
---|
345 |
|
---|
346 | /* Allocation and clean-up. */
|
---|
347 |
|
---|
348 | #if USE_DIFF_HASH
|
---|
349 |
|
---|
350 | /* About hashings, Paul Eggert writes to me (FP), on 1994-01-01: "Please see
|
---|
351 | B. J. McKenzie, R. Harries & T. Bell, Selecting a hashing algorithm,
|
---|
352 | Software--practice & experience 20, 2 (Feb 1990), 209-224. Good hash
|
---|
353 | algorithms tend to be domain-specific, so what's good for [diffutils'] io.c
|
---|
354 | may not be good for your application." */
|
---|
355 |
|
---|
356 | size_t
|
---|
357 | hash_string (const char *string, size_t n_buckets)
|
---|
358 | {
|
---|
359 | # define HASH_ONE_CHAR(Value, Byte) \
|
---|
360 | ((Byte) + rotl_sz (Value, 7))
|
---|
361 |
|
---|
362 | size_t value = 0;
|
---|
363 | unsigned char ch;
|
---|
364 |
|
---|
365 | for (; (ch = *string); string++)
|
---|
366 | value = HASH_ONE_CHAR (value, ch);
|
---|
367 | return value % n_buckets;
|
---|
368 |
|
---|
369 | # undef HASH_ONE_CHAR
|
---|
370 | }
|
---|
371 |
|
---|
372 | #else /* not USE_DIFF_HASH */
|
---|
373 |
|
---|
374 | /* This one comes from 'recode', and performs a bit better than the above as
|
---|
375 | per a few experiments. It is inspired from a hashing routine found in the
|
---|
376 | very old Cyber 'snoop', itself written in typical Greg Mansfield style.
|
---|
377 | (By the way, what happened to this excellent man? Is he still alive?) */
|
---|
378 |
|
---|
379 | size_t
|
---|
380 | hash_string (const char *string, size_t n_buckets)
|
---|
381 | {
|
---|
382 | size_t value = 0;
|
---|
383 | unsigned char ch;
|
---|
384 |
|
---|
385 | for (; (ch = *string); string++)
|
---|
386 | value = (value * 31 + ch) % n_buckets;
|
---|
387 | return value;
|
---|
388 | }
|
---|
389 |
|
---|
390 | #endif /* not USE_DIFF_HASH */
|
---|
391 |
|
---|
392 | /* Return true if CANDIDATE is a prime number. CANDIDATE should be an odd
|
---|
393 | number at least equal to 11. */
|
---|
394 |
|
---|
395 | static bool _GL_ATTRIBUTE_CONST
|
---|
396 | is_prime (size_t candidate)
|
---|
397 | {
|
---|
398 | size_t divisor = 3;
|
---|
399 | size_t square = divisor * divisor;
|
---|
400 |
|
---|
401 | while (square < candidate && (candidate % divisor))
|
---|
402 | {
|
---|
403 | divisor++;
|
---|
404 | square += 4 * divisor;
|
---|
405 | divisor++;
|
---|
406 | }
|
---|
407 |
|
---|
408 | return (candidate % divisor ? true : false);
|
---|
409 | }
|
---|
410 |
|
---|
411 | /* Round a given CANDIDATE number up to the nearest prime, and return that
|
---|
412 | prime. Primes lower than 10 are merely skipped. */
|
---|
413 |
|
---|
414 | static size_t _GL_ATTRIBUTE_CONST
|
---|
415 | next_prime (size_t candidate)
|
---|
416 | {
|
---|
417 | /* Skip small primes. */
|
---|
418 | if (candidate < 10)
|
---|
419 | candidate = 10;
|
---|
420 |
|
---|
421 | /* Make it definitely odd. */
|
---|
422 | candidate |= 1;
|
---|
423 |
|
---|
424 | while (SIZE_MAX != candidate && !is_prime (candidate))
|
---|
425 | candidate += 2;
|
---|
426 |
|
---|
427 | return candidate;
|
---|
428 | }
|
---|
429 |
|
---|
430 | void
|
---|
431 | hash_reset_tuning (Hash_tuning *tuning)
|
---|
432 | {
|
---|
433 | *tuning = default_tuning;
|
---|
434 | }
|
---|
435 |
|
---|
436 | /* If the user passes a NULL hasher, we hash the raw pointer. */
|
---|
437 | static size_t
|
---|
438 | raw_hasher (const void *data, size_t n)
|
---|
439 | {
|
---|
440 | /* When hashing unique pointers, it is often the case that they were
|
---|
441 | generated by malloc and thus have the property that the low-order
|
---|
442 | bits are 0. As this tends to give poorer performance with small
|
---|
443 | tables, we rotate the pointer value before performing division,
|
---|
444 | in an attempt to improve hash quality. */
|
---|
445 | size_t val = rotr_sz ((size_t) data, 3);
|
---|
446 | return val % n;
|
---|
447 | }
|
---|
448 |
|
---|
449 | /* If the user passes a NULL comparator, we use pointer comparison. */
|
---|
450 | static bool
|
---|
451 | raw_comparator (const void *a, const void *b)
|
---|
452 | {
|
---|
453 | return a == b;
|
---|
454 | }
|
---|
455 |
|
---|
456 |
|
---|
457 | /* For the given hash TABLE, check the user supplied tuning structure for
|
---|
458 | reasonable values, and return true if there is no gross error with it.
|
---|
459 | Otherwise, definitively reset the TUNING field to some acceptable default
|
---|
460 | in the hash table (that is, the user loses the right of further modifying
|
---|
461 | tuning arguments), and return false. */
|
---|
462 |
|
---|
463 | static bool
|
---|
464 | check_tuning (Hash_table *table)
|
---|
465 | {
|
---|
466 | const Hash_tuning *tuning = table->tuning;
|
---|
467 | float epsilon;
|
---|
468 | if (tuning == &default_tuning)
|
---|
469 | return true;
|
---|
470 |
|
---|
471 | /* Be a bit stricter than mathematics would require, so that
|
---|
472 | rounding errors in size calculations do not cause allocations to
|
---|
473 | fail to grow or shrink as they should. The smallest allocation
|
---|
474 | is 11 (due to next_prime's algorithm), so an epsilon of 0.1
|
---|
475 | should be good enough. */
|
---|
476 | epsilon = 0.1f;
|
---|
477 |
|
---|
478 | if (epsilon < tuning->growth_threshold
|
---|
479 | && tuning->growth_threshold < 1 - epsilon
|
---|
480 | && 1 + epsilon < tuning->growth_factor
|
---|
481 | && 0 <= tuning->shrink_threshold
|
---|
482 | && tuning->shrink_threshold + epsilon < tuning->shrink_factor
|
---|
483 | && tuning->shrink_factor <= 1
|
---|
484 | && tuning->shrink_threshold + epsilon < tuning->growth_threshold)
|
---|
485 | return true;
|
---|
486 |
|
---|
487 | table->tuning = &default_tuning;
|
---|
488 | return false;
|
---|
489 | }
|
---|
490 |
|
---|
491 | /* Compute the size of the bucket array for the given CANDIDATE and
|
---|
492 | TUNING, or return 0 if there is no possible way to allocate that
|
---|
493 | many entries. */
|
---|
494 |
|
---|
495 | static size_t _GL_ATTRIBUTE_PURE
|
---|
496 | compute_bucket_size (size_t candidate, const Hash_tuning *tuning)
|
---|
497 | {
|
---|
498 | if (!tuning->is_n_buckets)
|
---|
499 | {
|
---|
500 | float new_candidate = candidate / tuning->growth_threshold;
|
---|
501 | if ((float) SIZE_MAX <= new_candidate)
|
---|
502 | return 0;
|
---|
503 | candidate = new_candidate;
|
---|
504 | }
|
---|
505 | candidate = next_prime (candidate);
|
---|
506 | if (xalloc_oversized (candidate, sizeof (struct hash_entry *)))
|
---|
507 | return 0;
|
---|
508 | return candidate;
|
---|
509 | }
|
---|
510 |
|
---|
511 | Hash_table *
|
---|
512 | hash_initialize (size_t candidate, const Hash_tuning *tuning,
|
---|
513 | Hash_hasher hasher, Hash_comparator comparator,
|
---|
514 | Hash_data_freer data_freer)
|
---|
515 | {
|
---|
516 | Hash_table *table;
|
---|
517 |
|
---|
518 | if (hasher == NULL)
|
---|
519 | hasher = raw_hasher;
|
---|
520 | if (comparator == NULL)
|
---|
521 | comparator = raw_comparator;
|
---|
522 |
|
---|
523 | table = malloc (sizeof *table);
|
---|
524 | if (table == NULL)
|
---|
525 | return NULL;
|
---|
526 |
|
---|
527 | if (!tuning)
|
---|
528 | tuning = &default_tuning;
|
---|
529 | table->tuning = tuning;
|
---|
530 | if (!check_tuning (table))
|
---|
531 | {
|
---|
532 | /* Fail if the tuning options are invalid. This is the only occasion
|
---|
533 | when the user gets some feedback about it. Once the table is created,
|
---|
534 | if the user provides invalid tuning options, we silently revert to
|
---|
535 | using the defaults, and ignore further request to change the tuning
|
---|
536 | options. */
|
---|
537 | goto fail;
|
---|
538 | }
|
---|
539 |
|
---|
540 | table->n_buckets = compute_bucket_size (candidate, tuning);
|
---|
541 | if (!table->n_buckets)
|
---|
542 | goto fail;
|
---|
543 |
|
---|
544 | table->bucket = calloc (table->n_buckets, sizeof *table->bucket);
|
---|
545 | if (table->bucket == NULL)
|
---|
546 | goto fail;
|
---|
547 | table->bucket_limit = table->bucket + table->n_buckets;
|
---|
548 | table->n_buckets_used = 0;
|
---|
549 | table->n_entries = 0;
|
---|
550 |
|
---|
551 | table->hasher = hasher;
|
---|
552 | table->comparator = comparator;
|
---|
553 | table->data_freer = data_freer;
|
---|
554 |
|
---|
555 | table->free_entry_list = NULL;
|
---|
556 | #if USE_OBSTACK
|
---|
557 | obstack_init (&table->entry_stack);
|
---|
558 | #endif
|
---|
559 | return table;
|
---|
560 |
|
---|
561 | fail:
|
---|
562 | free (table);
|
---|
563 | return NULL;
|
---|
564 | }
|
---|
565 |
|
---|
566 | void
|
---|
567 | hash_clear (Hash_table *table)
|
---|
568 | {
|
---|
569 | struct hash_entry *bucket;
|
---|
570 |
|
---|
571 | for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
|
---|
572 | {
|
---|
573 | if (bucket->data)
|
---|
574 | {
|
---|
575 | struct hash_entry *cursor;
|
---|
576 | struct hash_entry *next;
|
---|
577 |
|
---|
578 | /* Free the bucket overflow. */
|
---|
579 | for (cursor = bucket->next; cursor; cursor = next)
|
---|
580 | {
|
---|
581 | if (table->data_freer)
|
---|
582 | table->data_freer (cursor->data);
|
---|
583 | cursor->data = NULL;
|
---|
584 |
|
---|
585 | next = cursor->next;
|
---|
586 | /* Relinking is done one entry at a time, as it is to be expected
|
---|
587 | that overflows are either rare or short. */
|
---|
588 | cursor->next = table->free_entry_list;
|
---|
589 | table->free_entry_list = cursor;
|
---|
590 | }
|
---|
591 |
|
---|
592 | /* Free the bucket head. */
|
---|
593 | if (table->data_freer)
|
---|
594 | table->data_freer (bucket->data);
|
---|
595 | bucket->data = NULL;
|
---|
596 | bucket->next = NULL;
|
---|
597 | }
|
---|
598 | }
|
---|
599 |
|
---|
600 | table->n_buckets_used = 0;
|
---|
601 | table->n_entries = 0;
|
---|
602 | }
|
---|
603 |
|
---|
604 | void
|
---|
605 | hash_free (Hash_table *table)
|
---|
606 | {
|
---|
607 | struct hash_entry *bucket;
|
---|
608 | struct hash_entry *cursor;
|
---|
609 | struct hash_entry *next;
|
---|
610 |
|
---|
611 | /* Call the user data_freer function. */
|
---|
612 | if (table->data_freer && table->n_entries)
|
---|
613 | {
|
---|
614 | for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
|
---|
615 | {
|
---|
616 | if (bucket->data)
|
---|
617 | {
|
---|
618 | for (cursor = bucket; cursor; cursor = cursor->next)
|
---|
619 | table->data_freer (cursor->data);
|
---|
620 | }
|
---|
621 | }
|
---|
622 | }
|
---|
623 |
|
---|
624 | #if USE_OBSTACK
|
---|
625 |
|
---|
626 | obstack_free (&table->entry_stack, NULL);
|
---|
627 |
|
---|
628 | #else
|
---|
629 |
|
---|
630 | /* Free all bucket overflowed entries. */
|
---|
631 | for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
|
---|
632 | {
|
---|
633 | for (cursor = bucket->next; cursor; cursor = next)
|
---|
634 | {
|
---|
635 | next = cursor->next;
|
---|
636 | free (cursor);
|
---|
637 | }
|
---|
638 | }
|
---|
639 |
|
---|
640 | /* Also reclaim the internal list of previously freed entries. */
|
---|
641 | for (cursor = table->free_entry_list; cursor; cursor = next)
|
---|
642 | {
|
---|
643 | next = cursor->next;
|
---|
644 | free (cursor);
|
---|
645 | }
|
---|
646 |
|
---|
647 | #endif
|
---|
648 |
|
---|
649 | /* Free the remainder of the hash table structure. */
|
---|
650 | free (table->bucket);
|
---|
651 | free (table);
|
---|
652 | }
|
---|
653 |
|
---|
654 | /* Insertion and deletion. */
|
---|
655 |
|
---|
656 | /* Get a new hash entry for a bucket overflow, possibly by recycling a
|
---|
657 | previously freed one. If this is not possible, allocate a new one. */
|
---|
658 |
|
---|
659 | static struct hash_entry *
|
---|
660 | allocate_entry (Hash_table *table)
|
---|
661 | {
|
---|
662 | struct hash_entry *new;
|
---|
663 |
|
---|
664 | if (table->free_entry_list)
|
---|
665 | {
|
---|
666 | new = table->free_entry_list;
|
---|
667 | table->free_entry_list = new->next;
|
---|
668 | }
|
---|
669 | else
|
---|
670 | {
|
---|
671 | #if USE_OBSTACK
|
---|
672 | new = obstack_alloc (&table->entry_stack, sizeof *new);
|
---|
673 | #else
|
---|
674 | new = malloc (sizeof *new);
|
---|
675 | #endif
|
---|
676 | }
|
---|
677 |
|
---|
678 | return new;
|
---|
679 | }
|
---|
680 |
|
---|
681 | /* Free a hash entry which was part of some bucket overflow,
|
---|
682 | saving it for later recycling. */
|
---|
683 |
|
---|
684 | static void
|
---|
685 | free_entry (Hash_table *table, struct hash_entry *entry)
|
---|
686 | {
|
---|
687 | entry->data = NULL;
|
---|
688 | entry->next = table->free_entry_list;
|
---|
689 | table->free_entry_list = entry;
|
---|
690 | }
|
---|
691 |
|
---|
692 | /* This private function is used to help with insertion and deletion. When
|
---|
693 | ENTRY matches an entry in the table, return a pointer to the corresponding
|
---|
694 | user data and set *BUCKET_HEAD to the head of the selected bucket.
|
---|
695 | Otherwise, return NULL. When DELETE is true and ENTRY matches an entry in
|
---|
696 | the table, unlink the matching entry. */
|
---|
697 |
|
---|
698 | static void *
|
---|
699 | hash_find_entry (Hash_table *table, const void *entry,
|
---|
700 | struct hash_entry **bucket_head, bool delete)
|
---|
701 | {
|
---|
702 | struct hash_entry *bucket = safe_hasher (table, entry);
|
---|
703 | struct hash_entry *cursor;
|
---|
704 |
|
---|
705 | *bucket_head = bucket;
|
---|
706 |
|
---|
707 | /* Test for empty bucket. */
|
---|
708 | if (bucket->data == NULL)
|
---|
709 | return NULL;
|
---|
710 |
|
---|
711 | /* See if the entry is the first in the bucket. */
|
---|
712 | if (entry == bucket->data || table->comparator (entry, bucket->data))
|
---|
713 | {
|
---|
714 | void *data = bucket->data;
|
---|
715 |
|
---|
716 | if (delete)
|
---|
717 | {
|
---|
718 | if (bucket->next)
|
---|
719 | {
|
---|
720 | struct hash_entry *next = bucket->next;
|
---|
721 |
|
---|
722 | /* Bump the first overflow entry into the bucket head, then save
|
---|
723 | the previous first overflow entry for later recycling. */
|
---|
724 | *bucket = *next;
|
---|
725 | free_entry (table, next);
|
---|
726 | }
|
---|
727 | else
|
---|
728 | {
|
---|
729 | bucket->data = NULL;
|
---|
730 | }
|
---|
731 | }
|
---|
732 |
|
---|
733 | return data;
|
---|
734 | }
|
---|
735 |
|
---|
736 | /* Scan the bucket overflow. */
|
---|
737 | for (cursor = bucket; cursor->next; cursor = cursor->next)
|
---|
738 | {
|
---|
739 | if (entry == cursor->next->data
|
---|
740 | || table->comparator (entry, cursor->next->data))
|
---|
741 | {
|
---|
742 | void *data = cursor->next->data;
|
---|
743 |
|
---|
744 | if (delete)
|
---|
745 | {
|
---|
746 | struct hash_entry *next = cursor->next;
|
---|
747 |
|
---|
748 | /* Unlink the entry to delete, then save the freed entry for later
|
---|
749 | recycling. */
|
---|
750 | cursor->next = next->next;
|
---|
751 | free_entry (table, next);
|
---|
752 | }
|
---|
753 |
|
---|
754 | return data;
|
---|
755 | }
|
---|
756 | }
|
---|
757 |
|
---|
758 | /* No entry found. */
|
---|
759 | return NULL;
|
---|
760 | }
|
---|
761 |
|
---|
762 | /* Internal helper, to move entries from SRC to DST. Both tables must
|
---|
763 | share the same free entry list. If SAFE, only move overflow
|
---|
764 | entries, saving bucket heads for later, so that no allocations will
|
---|
765 | occur. Return false if the free entry list is exhausted and an
|
---|
766 | allocation fails. */
|
---|
767 |
|
---|
768 | static bool
|
---|
769 | transfer_entries (Hash_table *dst, Hash_table *src, bool safe)
|
---|
770 | {
|
---|
771 | struct hash_entry *bucket;
|
---|
772 | struct hash_entry *cursor;
|
---|
773 | struct hash_entry *next;
|
---|
774 | for (bucket = src->bucket; bucket < src->bucket_limit; bucket++)
|
---|
775 | if (bucket->data)
|
---|
776 | {
|
---|
777 | void *data;
|
---|
778 | struct hash_entry *new_bucket;
|
---|
779 |
|
---|
780 | /* Within each bucket, transfer overflow entries first and
|
---|
781 | then the bucket head, to minimize memory pressure. After
|
---|
782 | all, the only time we might allocate is when moving the
|
---|
783 | bucket head, but moving overflow entries first may create
|
---|
784 | free entries that can be recycled by the time we finally
|
---|
785 | get to the bucket head. */
|
---|
786 | for (cursor = bucket->next; cursor; cursor = next)
|
---|
787 | {
|
---|
788 | data = cursor->data;
|
---|
789 | new_bucket = safe_hasher (dst, data);
|
---|
790 |
|
---|
791 | next = cursor->next;
|
---|
792 |
|
---|
793 | if (new_bucket->data)
|
---|
794 | {
|
---|
795 | /* Merely relink an existing entry, when moving from a
|
---|
796 | bucket overflow into a bucket overflow. */
|
---|
797 | cursor->next = new_bucket->next;
|
---|
798 | new_bucket->next = cursor;
|
---|
799 | }
|
---|
800 | else
|
---|
801 | {
|
---|
802 | /* Free an existing entry, when moving from a bucket
|
---|
803 | overflow into a bucket header. */
|
---|
804 | new_bucket->data = data;
|
---|
805 | dst->n_buckets_used++;
|
---|
806 | free_entry (dst, cursor);
|
---|
807 | }
|
---|
808 | }
|
---|
809 | /* Now move the bucket head. Be sure that if we fail due to
|
---|
810 | allocation failure that the src table is in a consistent
|
---|
811 | state. */
|
---|
812 | data = bucket->data;
|
---|
813 | bucket->next = NULL;
|
---|
814 | if (safe)
|
---|
815 | continue;
|
---|
816 | new_bucket = safe_hasher (dst, data);
|
---|
817 |
|
---|
818 | if (new_bucket->data)
|
---|
819 | {
|
---|
820 | /* Allocate or recycle an entry, when moving from a bucket
|
---|
821 | header into a bucket overflow. */
|
---|
822 | struct hash_entry *new_entry = allocate_entry (dst);
|
---|
823 |
|
---|
824 | if (new_entry == NULL)
|
---|
825 | return false;
|
---|
826 |
|
---|
827 | new_entry->data = data;
|
---|
828 | new_entry->next = new_bucket->next;
|
---|
829 | new_bucket->next = new_entry;
|
---|
830 | }
|
---|
831 | else
|
---|
832 | {
|
---|
833 | /* Move from one bucket header to another. */
|
---|
834 | new_bucket->data = data;
|
---|
835 | dst->n_buckets_used++;
|
---|
836 | }
|
---|
837 | bucket->data = NULL;
|
---|
838 | src->n_buckets_used--;
|
---|
839 | }
|
---|
840 | return true;
|
---|
841 | }
|
---|
842 |
|
---|
843 | bool
|
---|
844 | hash_rehash (Hash_table *table, size_t candidate)
|
---|
845 | {
|
---|
846 | Hash_table storage;
|
---|
847 | Hash_table *new_table;
|
---|
848 | size_t new_size = compute_bucket_size (candidate, table->tuning);
|
---|
849 |
|
---|
850 | if (!new_size)
|
---|
851 | return false;
|
---|
852 | if (new_size == table->n_buckets)
|
---|
853 | return true;
|
---|
854 | new_table = &storage;
|
---|
855 | new_table->bucket = calloc (new_size, sizeof *new_table->bucket);
|
---|
856 | if (new_table->bucket == NULL)
|
---|
857 | return false;
|
---|
858 | new_table->n_buckets = new_size;
|
---|
859 | new_table->bucket_limit = new_table->bucket + new_size;
|
---|
860 | new_table->n_buckets_used = 0;
|
---|
861 | new_table->n_entries = 0;
|
---|
862 | new_table->tuning = table->tuning;
|
---|
863 | new_table->hasher = table->hasher;
|
---|
864 | new_table->comparator = table->comparator;
|
---|
865 | new_table->data_freer = table->data_freer;
|
---|
866 |
|
---|
867 | /* In order for the transfer to successfully complete, we need
|
---|
868 | additional overflow entries when distinct buckets in the old
|
---|
869 | table collide into a common bucket in the new table. The worst
|
---|
870 | case possible is a hasher that gives a good spread with the old
|
---|
871 | size, but returns a constant with the new size; if we were to
|
---|
872 | guarantee table->n_buckets_used-1 free entries in advance, then
|
---|
873 | the transfer would be guaranteed to not allocate memory.
|
---|
874 | However, for large tables, a guarantee of no further allocation
|
---|
875 | introduces a lot of extra memory pressure, all for an unlikely
|
---|
876 | corner case (most rehashes reduce, rather than increase, the
|
---|
877 | number of overflow entries needed). So, we instead ensure that
|
---|
878 | the transfer process can be reversed if we hit a memory
|
---|
879 | allocation failure mid-transfer. */
|
---|
880 |
|
---|
881 | /* Merely reuse the extra old space into the new table. */
|
---|
882 | #if USE_OBSTACK
|
---|
883 | new_table->entry_stack = table->entry_stack;
|
---|
884 | #endif
|
---|
885 | new_table->free_entry_list = table->free_entry_list;
|
---|
886 |
|
---|
887 | if (transfer_entries (new_table, table, false))
|
---|
888 | {
|
---|
889 | /* Entries transferred successfully; tie up the loose ends. */
|
---|
890 | free (table->bucket);
|
---|
891 | table->bucket = new_table->bucket;
|
---|
892 | table->bucket_limit = new_table->bucket_limit;
|
---|
893 | table->n_buckets = new_table->n_buckets;
|
---|
894 | table->n_buckets_used = new_table->n_buckets_used;
|
---|
895 | table->free_entry_list = new_table->free_entry_list;
|
---|
896 | /* table->n_entries and table->entry_stack already hold their value. */
|
---|
897 | return true;
|
---|
898 | }
|
---|
899 |
|
---|
900 | /* We've allocated new_table->bucket (and possibly some entries),
|
---|
901 | exhausted the free list, and moved some but not all entries into
|
---|
902 | new_table. We must undo the partial move before returning
|
---|
903 | failure. The only way to get into this situation is if new_table
|
---|
904 | uses fewer buckets than the old table, so we will reclaim some
|
---|
905 | free entries as overflows in the new table are put back into
|
---|
906 | distinct buckets in the old table.
|
---|
907 |
|
---|
908 | There are some pathological cases where a single pass through the
|
---|
909 | table requires more intermediate overflow entries than using two
|
---|
910 | passes. Two passes give worse cache performance and takes
|
---|
911 | longer, but at this point, we're already out of memory, so slow
|
---|
912 | and safe is better than failure. */
|
---|
913 | table->free_entry_list = new_table->free_entry_list;
|
---|
914 | if (! (transfer_entries (table, new_table, true)
|
---|
915 | && transfer_entries (table, new_table, false)))
|
---|
916 | abort ();
|
---|
917 | /* table->n_entries already holds its value. */
|
---|
918 | free (new_table->bucket);
|
---|
919 | return false;
|
---|
920 | }
|
---|
921 |
|
---|
922 | int
|
---|
923 | hash_insert_if_absent (Hash_table *table, void const *entry,
|
---|
924 | void const **matched_ent)
|
---|
925 | {
|
---|
926 | void *data;
|
---|
927 | struct hash_entry *bucket;
|
---|
928 |
|
---|
929 | /* The caller cannot insert a NULL entry, since hash_lookup returns NULL
|
---|
930 | to indicate "not found", and hash_find_entry uses "bucket->data == NULL"
|
---|
931 | to indicate an empty bucket. */
|
---|
932 | if (! entry)
|
---|
933 | abort ();
|
---|
934 |
|
---|
935 | /* If there's a matching entry already in the table, return that. */
|
---|
936 | if ((data = hash_find_entry (table, entry, &bucket, false)) != NULL)
|
---|
937 | {
|
---|
938 | if (matched_ent)
|
---|
939 | *matched_ent = data;
|
---|
940 | return 0;
|
---|
941 | }
|
---|
942 |
|
---|
943 | /* If the growth threshold of the buckets in use has been reached, increase
|
---|
944 | the table size and rehash. There's no point in checking the number of
|
---|
945 | entries: if the hashing function is ill-conditioned, rehashing is not
|
---|
946 | likely to improve it. */
|
---|
947 |
|
---|
948 | if (table->n_buckets_used
|
---|
949 | > table->tuning->growth_threshold * table->n_buckets)
|
---|
950 | {
|
---|
951 | /* Check more fully, before starting real work. If tuning arguments
|
---|
952 | became invalid, the second check will rely on proper defaults. */
|
---|
953 | check_tuning (table);
|
---|
954 | if (table->n_buckets_used
|
---|
955 | > table->tuning->growth_threshold * table->n_buckets)
|
---|
956 | {
|
---|
957 | const Hash_tuning *tuning = table->tuning;
|
---|
958 | float candidate =
|
---|
959 | (tuning->is_n_buckets
|
---|
960 | ? (table->n_buckets * tuning->growth_factor)
|
---|
961 | : (table->n_buckets * tuning->growth_factor
|
---|
962 | * tuning->growth_threshold));
|
---|
963 |
|
---|
964 | if ((float) SIZE_MAX <= candidate)
|
---|
965 | return -1;
|
---|
966 |
|
---|
967 | /* If the rehash fails, arrange to return NULL. */
|
---|
968 | if (!hash_rehash (table, candidate))
|
---|
969 | return -1;
|
---|
970 |
|
---|
971 | /* Update the bucket we are interested in. */
|
---|
972 | if (hash_find_entry (table, entry, &bucket, false) != NULL)
|
---|
973 | abort ();
|
---|
974 | }
|
---|
975 | }
|
---|
976 |
|
---|
977 | /* ENTRY is not matched, it should be inserted. */
|
---|
978 |
|
---|
979 | if (bucket->data)
|
---|
980 | {
|
---|
981 | struct hash_entry *new_entry = allocate_entry (table);
|
---|
982 |
|
---|
983 | if (new_entry == NULL)
|
---|
984 | return -1;
|
---|
985 |
|
---|
986 | /* Add ENTRY in the overflow of the bucket. */
|
---|
987 |
|
---|
988 | new_entry->data = (void *) entry;
|
---|
989 | new_entry->next = bucket->next;
|
---|
990 | bucket->next = new_entry;
|
---|
991 | table->n_entries++;
|
---|
992 | return 1;
|
---|
993 | }
|
---|
994 |
|
---|
995 | /* Add ENTRY right in the bucket head. */
|
---|
996 |
|
---|
997 | bucket->data = (void *) entry;
|
---|
998 | table->n_entries++;
|
---|
999 | table->n_buckets_used++;
|
---|
1000 |
|
---|
1001 | return 1;
|
---|
1002 | }
|
---|
1003 |
|
---|
1004 | void *
|
---|
1005 | hash_insert (Hash_table *table, void const *entry)
|
---|
1006 | {
|
---|
1007 | void const *matched_ent;
|
---|
1008 | int err = hash_insert_if_absent (table, entry, &matched_ent);
|
---|
1009 | return (err == -1
|
---|
1010 | ? NULL
|
---|
1011 | : (void *) (err == 0 ? matched_ent : entry));
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 | void *
|
---|
1015 | hash_remove (Hash_table *table, const void *entry)
|
---|
1016 | {
|
---|
1017 | void *data;
|
---|
1018 | struct hash_entry *bucket;
|
---|
1019 |
|
---|
1020 | data = hash_find_entry (table, entry, &bucket, true);
|
---|
1021 | if (!data)
|
---|
1022 | return NULL;
|
---|
1023 |
|
---|
1024 | table->n_entries--;
|
---|
1025 | if (!bucket->data)
|
---|
1026 | {
|
---|
1027 | table->n_buckets_used--;
|
---|
1028 |
|
---|
1029 | /* If the shrink threshold of the buckets in use has been reached,
|
---|
1030 | rehash into a smaller table. */
|
---|
1031 |
|
---|
1032 | if (table->n_buckets_used
|
---|
1033 | < table->tuning->shrink_threshold * table->n_buckets)
|
---|
1034 | {
|
---|
1035 | /* Check more fully, before starting real work. If tuning arguments
|
---|
1036 | became invalid, the second check will rely on proper defaults. */
|
---|
1037 | check_tuning (table);
|
---|
1038 | if (table->n_buckets_used
|
---|
1039 | < table->tuning->shrink_threshold * table->n_buckets)
|
---|
1040 | {
|
---|
1041 | const Hash_tuning *tuning = table->tuning;
|
---|
1042 | size_t candidate =
|
---|
1043 | (tuning->is_n_buckets
|
---|
1044 | ? table->n_buckets * tuning->shrink_factor
|
---|
1045 | : (table->n_buckets * tuning->shrink_factor
|
---|
1046 | * tuning->growth_threshold));
|
---|
1047 |
|
---|
1048 | if (!hash_rehash (table, candidate))
|
---|
1049 | {
|
---|
1050 | /* Failure to allocate memory in an attempt to
|
---|
1051 | shrink the table is not fatal. But since memory
|
---|
1052 | is low, we can at least be kind and free any
|
---|
1053 | spare entries, rather than keeping them tied up
|
---|
1054 | in the free entry list. */
|
---|
1055 | #if ! USE_OBSTACK
|
---|
1056 | struct hash_entry *cursor = table->free_entry_list;
|
---|
1057 | struct hash_entry *next;
|
---|
1058 | while (cursor)
|
---|
1059 | {
|
---|
1060 | next = cursor->next;
|
---|
1061 | free (cursor);
|
---|
1062 | cursor = next;
|
---|
1063 | }
|
---|
1064 | table->free_entry_list = NULL;
|
---|
1065 | #endif
|
---|
1066 | }
|
---|
1067 | }
|
---|
1068 | }
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 | return data;
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 | void *
|
---|
1075 | hash_delete (Hash_table *table, const void *entry)
|
---|
1076 | {
|
---|
1077 | return hash_remove (table, entry);
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 | /* Testing. */
|
---|
1081 |
|
---|
1082 | #if TESTING
|
---|
1083 |
|
---|
1084 | void
|
---|
1085 | hash_print (const Hash_table *table)
|
---|
1086 | {
|
---|
1087 | struct hash_entry *bucket = (struct hash_entry *) table->bucket;
|
---|
1088 |
|
---|
1089 | for ( ; bucket < table->bucket_limit; bucket++)
|
---|
1090 | {
|
---|
1091 | struct hash_entry *cursor;
|
---|
1092 |
|
---|
1093 | if (bucket)
|
---|
1094 | printf ("%lu:\n", (unsigned long int) (bucket - table->bucket));
|
---|
1095 |
|
---|
1096 | for (cursor = bucket; cursor; cursor = cursor->next)
|
---|
1097 | {
|
---|
1098 | char const *s = cursor->data;
|
---|
1099 | /* FIXME */
|
---|
1100 | if (s)
|
---|
1101 | printf (" %s\n", s);
|
---|
1102 | }
|
---|
1103 | }
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 | #endif /* TESTING */
|
---|