/* Miscellaneous generic support functions for GNU Make.
Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
Foundation, Inc.
This file is part of GNU Make.
GNU Make is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later
version.
GNU Make is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see . */
#include "make.h"
#include "dep.h"
#include "debug.h"
#if defined (CONFIG_WITH_VALUE_LENGTH) || defined (CONFIG_WITH_ALLOC_CACHES)
# include
#endif
#ifdef CONFIG_WITH_PRINT_STATS_SWITCH
# ifdef __APPLE__
# include
# endif
#endif
/* All bcopy calls in this file can be replaced by memcpy and save a tick or two. */
#ifdef CONFIG_WITH_OPTIMIZATION_HACKS
# undef bcopy
# if defined(__GNUC__) && defined(CONFIG_WITH_OPTIMIZATION_HACKS)
# define bcopy(src, dst, size) __builtin_memcpy ((dst), (src), (size))
# else
# define bcopy(src, dst, size) memcpy ((dst), (src), (size))
# endif
#endif
/* Variadic functions. We go through contortions to allow proper function
prototypes for both ANSI and pre-ANSI C compilers, and also for those
which support stdarg.h vs. varargs.h, and finally those which have
vfprintf(), etc. and those who have _doprnt... or nothing.
This fancy stuff all came from GNU fileutils, except for the VA_PRINTF and
VA_END macros used here since we have multiple print functions. */
#if USE_VARIADIC
# if HAVE_STDARG_H
# include
# define VA_START(args, lastarg) va_start(args, lastarg)
# else
# include
# define VA_START(args, lastarg) va_start(args)
# endif
# if HAVE_VPRINTF
# define VA_PRINTF(fp, lastarg, args) vfprintf((fp), (lastarg), (args))
# else
# define VA_PRINTF(fp, lastarg, args) _doprnt((lastarg), (args), (fp))
# endif
# define VA_END(args) va_end(args)
#else
/* We can't use any variadic interface! */
# define va_alist a1, a2, a3, a4, a5, a6, a7, a8
# define va_dcl char *a1, *a2, *a3, *a4, *a5, *a6, *a7, *a8;
# define VA_START(args, lastarg)
# define VA_PRINTF(fp, lastarg, args) fprintf((fp), (lastarg), va_alist)
# define VA_END(args)
#endif
/* Compare strings *S1 and *S2.
Return negative if the first is less, positive if it is greater,
zero if they are equal. */
int
alpha_compare (const void *v1, const void *v2)
{
const char *s1 = *((char **)v1);
const char *s2 = *((char **)v2);
if (*s1 != *s2)
return *s1 - *s2;
return strcmp (s1, s2);
}
/* Discard each backslash-newline combination from LINE.
Backslash-backslash-newline combinations become backslash-newlines.
This is done by copying the text at LINE into itself. */
#ifndef CONFIG_WITH_VALUE_LENGTH
void
collapse_continuations (char *line)
#else
char *
collapse_continuations (char *line, unsigned int linelen)
#endif
{
register char *in, *out, *p;
register int backslash;
register unsigned int bs_write;
#ifndef CONFIG_WITH_VALUE_LENGTH
in = strchr (line, '\n');
if (in == 0)
return;
#else
assert (strlen (line) == linelen);
in = memchr (line, '\n', linelen);
if (in == 0)
return line + linelen;
if (in == line || in[-1] != '\\')
{
do
{
unsigned int off_in = in - line;
if (off_in == linelen)
return in;
in = memchr (in + 1, '\n', linelen - off_in - 1);
if (in == 0)
return line + linelen;
}
while (in[-1] != '\\');
}
#endif
out = in;
while (out > line && out[-1] == '\\')
--out;
while (*in != '\0')
{
/* BS_WRITE gets the number of quoted backslashes at
the end just before IN, and BACKSLASH gets nonzero
if the next character is quoted. */
backslash = 0;
bs_write = 0;
for (p = in - 1; p >= line && *p == '\\'; --p)
{
if (backslash)
++bs_write;
backslash = !backslash;
/* It should be impossible to go back this far without exiting,
but if we do, we can't get the right answer. */
if (in == out - 1)
abort ();
}
/* Output the appropriate number of backslashes. */
while (bs_write-- > 0)
*out++ = '\\';
/* Skip the newline. */
++in;
/* If the newline is quoted, discard following whitespace
and any preceding whitespace; leave just one space. */
if (backslash)
{
in = next_token (in);
while (out > line && isblank ((unsigned char)out[-1]))
--out;
*out++ = ' ';
}
else
/* If the newline isn't quoted, put it in the output. */
*out++ = '\n';
/* Now copy the following line to the output.
Stop when we find backslashes followed by a newline. */
while (*in != '\0')
if (*in == '\\')
{
p = in + 1;
while (*p == '\\')
++p;
if (*p == '\n')
{
in = p;
break;
}
while (in < p)
*out++ = *in++;
}
else
*out++ = *in++;
}
*out = '\0';
#ifdef CONFIG_WITH_VALUE_LENGTH
assert (strchr (line, '\0') == out);
return out;
#endif
}
/* Print N spaces (used in debug for target-depth). */
void
print_spaces (unsigned int n)
{
while (n-- > 0)
putchar (' ');
}
/* Return a string whose contents concatenate those of s1, s2, s3.
This string lives in static, re-used memory. */
char *
concat (const char *s1, const char *s2, const char *s3)
{
unsigned int len1, len2, len3;
static unsigned int rlen = 0;
static char *result = NULL;
len1 = (s1 && *s1 != '\0') ? strlen (s1) : 0;
len2 = (s2 && *s2 != '\0') ? strlen (s2) : 0;
len3 = (s3 && *s3 != '\0') ? strlen (s3) : 0;
if (len1 + len2 + len3 + 1 > rlen)
result = xrealloc (result, (rlen = len1 + len2 + len3 + 10));
if (len1)
memcpy (result, s1, len1);
if (len2)
memcpy (result + len1, s2, len2);
if (len3)
memcpy (result + len1 + len2, s3, len3);
result[len1+len2+len3] = '\0';
return result;
}
/* Print a message on stdout. */
void
#if HAVE_ANSI_COMPILER && USE_VARIADIC && HAVE_STDARG_H
message (int prefix, const char *fmt, ...)
#else
message (prefix, fmt, va_alist)
int prefix;
const char *fmt;
va_dcl
#endif
{
#if USE_VARIADIC
va_list args;
#endif
log_working_directory (1);
if (fmt != 0)
{
if (prefix)
{
if (makelevel == 0)
printf ("%s: ", program);
else
printf ("%s[%u]: ", program, makelevel);
}
VA_START (args, fmt);
VA_PRINTF (stdout, fmt, args);
VA_END (args);
putchar ('\n');
}
fflush (stdout);
}
/* Print an error message. */
void
#if HAVE_ANSI_COMPILER && USE_VARIADIC && HAVE_STDARG_H
error (const struct floc *flocp, const char *fmt, ...)
#else
error (flocp, fmt, va_alist)
const struct floc *flocp;
const char *fmt;
va_dcl
#endif
{
#if USE_VARIADIC
va_list args;
#endif
log_working_directory (1);
if (flocp && flocp->filenm)
fprintf (stderr, "%s:%lu: ", flocp->filenm, flocp->lineno);
else if (makelevel == 0)
fprintf (stderr, "%s: ", program);
else
fprintf (stderr, "%s[%u]: ", program, makelevel);
VA_START(args, fmt);
VA_PRINTF (stderr, fmt, args);
VA_END (args);
putc ('\n', stderr);
fflush (stderr);
}
/* Print an error message and exit. */
void
#if HAVE_ANSI_COMPILER && USE_VARIADIC && HAVE_STDARG_H
fatal (const struct floc *flocp, const char *fmt, ...)
#else
fatal (flocp, fmt, va_alist)
const struct floc *flocp;
const char *fmt;
va_dcl
#endif
{
#if USE_VARIADIC
va_list args;
#endif
log_working_directory (1);
if (flocp && flocp->filenm)
fprintf (stderr, "%s:%lu: *** ", flocp->filenm, flocp->lineno);
else if (makelevel == 0)
fprintf (stderr, "%s: *** ", program);
else
fprintf (stderr, "%s[%u]: *** ", program, makelevel);
VA_START(args, fmt);
VA_PRINTF (stderr, fmt, args);
VA_END (args);
fputs (_(". Stop.\n"), stderr);
die (2);
}
#ifndef HAVE_STRERROR
#undef strerror
char *
strerror (int errnum)
{
extern int errno, sys_nerr;
#ifndef __DECC
extern char *sys_errlist[];
#endif
static char buf[] = "Unknown error 12345678901234567890";
if (errno < sys_nerr)
return sys_errlist[errnum];
sprintf (buf, _("Unknown error %d"), errnum);
return buf;
}
#endif
/* Print an error message from errno. */
void
perror_with_name (const char *str, const char *name)
{
error (NILF, _("%s%s: %s"), str, name, strerror (errno));
}
/* Print an error message from errno and exit. */
void
pfatal_with_name (const char *name)
{
fatal (NILF, _("%s: %s"), name, strerror (errno));
/* NOTREACHED */
}
/* Like malloc but get fatal error if memory is exhausted. */
/* Don't bother if we're using dmalloc; it provides these for us. */
#if !defined(HAVE_DMALLOC_H) && !defined(ELECTRIC_HEAP) /* bird */
#undef xmalloc
#undef xrealloc
#undef xstrdup
void *
xmalloc (unsigned int size)
{
/* Make sure we don't allocate 0, for pre-ANSI libraries. */
void *result = malloc (size ? size : 1);
if (result == 0)
fatal (NILF, _("virtual memory exhausted"));
#ifdef CONFIG_WITH_MAKE_STATS
make_stats_allocations++;
if (make_expensive_statistics)
make_stats_allocated += SIZE_OF_HEAP_BLOCK (result);
else
make_stats_allocated += size;
#endif
return result;
}
void *
xrealloc (void *ptr, unsigned int size)
{
void *result;
#ifdef CONFIG_WITH_MAKE_STATS
if (make_expensive_statistics && ptr != NULL)
make_stats_allocated -= SIZE_OF_HEAP_BLOCK (ptr);
if (ptr)
make_stats_reallocations++;
else
make_stats_allocations++;
#endif
/* Some older implementations of realloc() don't conform to ANSI. */
if (! size)
size = 1;
result = ptr ? realloc (ptr, size) : malloc (size);
if (result == 0)
fatal (NILF, _("virtual memory exhausted"));
#ifdef CONFIG_WITH_MAKE_STATS
if (make_expensive_statistics)
make_stats_allocated += SIZE_OF_HEAP_BLOCK (result);
else
make_stats_allocated += size;
#endif
return result;
}
char *
xstrdup (const char *ptr)
{
char *result;
#ifdef HAVE_STRDUP
result = strdup (ptr);
#else
result = malloc (strlen (ptr) + 1);
#endif
if (result == 0)
fatal (NILF, _("virtual memory exhausted"));
#ifdef CONFIG_WITH_MAKE_STATS
make_stats_allocations++;
if (make_expensive_statistics)
make_stats_allocated += SIZE_OF_HEAP_BLOCK (result);
else
make_stats_allocated += strlen (ptr) + 1;
#endif
#ifdef HAVE_STRDUP
return result;
#else
return strcpy (result, ptr);
#endif
}
#endif /* HAVE_DMALLOC_H */
char *
savestring (const char *str, unsigned int length)
{
char *out = xmalloc (length + 1);
if (length > 0)
memcpy (out, str, length);
out[length] = '\0';
return out;
}
#ifndef CONFIG_WITH_OPTIMIZATION_HACKS /* This is really a reimplemntation of
memchr, only slower. It's been replaced by a macro in the header file. */
/* Limited INDEX:
Search through the string STRING, which ends at LIMIT, for the character C.
Returns a pointer to the first occurrence, or nil if none is found.
Like INDEX except that the string searched ends where specified
instead of at the first null. */
char *
lindex (const char *s, const char *limit, int c)
{
while (s < limit)
if (*s++ == c)
return (char *)(s - 1);
return 0;
}
#endif /* CONFIG_WITH_OPTIMIZATION_HACKS */
/* Return the address of the first whitespace or null in the string S. */
char *
end_of_token (const char *s)
{
#ifdef KMK
for (;;)
{
unsigned char ch0, ch1, ch2, ch3;
ch0 = *s;
if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch0)))
return (char *)s;
ch1 = s[1];
if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch1)))
return (char *)s + 1;
ch2 = s[2];
if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch2)))
return (char *)s + 2;
ch3 = s[3];
if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch3)))
return (char *)s + 3;
s += 4;
}
#else
while (*s != '\0' && !isblank ((unsigned char)*s))
++s;
return (char *)s;
#endif
}
#ifdef WINDOWS32
/*
* Same as end_of_token, but take into account a stop character
*/
char *
end_of_token_w32 (const char *s, char stopchar)
{
const char *p = s;
int backslash = 0;
while (*p != '\0' && *p != stopchar
&& (backslash || !isblank ((unsigned char)*p)))
{
if (*p++ == '\\')
{
backslash = !backslash;
while (*p == '\\')
{
backslash = !backslash;
++p;
}
}
else
backslash = 0;
}
return (char *)p;
}
#endif
/* Return the address of the first nonwhitespace or null in the string S. */
char *
next_token (const char *s)
{
#ifdef KMK
for (;;)
{
unsigned char ch0, ch1, ch2, ch3;
ch0 = *s;
if (MY_PREDICT_FALSE(!MY_IS_BLANK(ch0)))
return (char *)s;
ch1 = s[1];
if (MY_PREDICT_TRUE(!MY_IS_BLANK(ch1)))
return (char *)s + 1;
ch2 = s[2];
if (MY_PREDICT_FALSE(!MY_IS_BLANK(ch2)))
return (char *)s + 2;
ch3 = s[3];
if (MY_PREDICT_TRUE(!MY_IS_BLANK(ch3)))
return (char *)s + 3;
s += 4;
}
#else /* !KMK */
while (isblank ((unsigned char)*s))
++s;
return (char *)s;
#endif /* !KMK */
}
/* Find the next token in PTR; return the address of it, and store the length
of the token into *LENGTHPTR if LENGTHPTR is not nil. Set *PTR to the end
of the token, so this function can be called repeatedly in a loop. */
char *
find_next_token (const char **ptr, unsigned int *lengthptr)
{
#ifdef KMK
const char *p = *ptr;
const char *e;
/* skip blanks */
# if 0 /* a moderate version */
for (;; p++)
{
unsigned char ch = *p;
if (!MY_IS_BLANK(ch))
{
if (!ch)
return NULL;
break;
}
}
# else /* (too) big unroll */
for (;; p += 4)
{
unsigned char ch0, ch1, ch2, ch3;
ch0 = *p;
if (MY_PREDICT_FALSE(!MY_IS_BLANK(ch0)))
{
if (!ch0)
return NULL;
break;
}
ch1 = p[1];
if (MY_PREDICT_TRUE(!MY_IS_BLANK(ch1)))
{
if (!ch1)
return NULL;
p += 1;
break;
}
ch2 = p[2];
if (MY_PREDICT_FALSE(!MY_IS_BLANK(ch2)))
{
if (!ch2)
return NULL;
p += 2;
break;
}
ch3 = p[3];
if (MY_PREDICT_TRUE(!MY_IS_BLANK(ch3)))
{
if (!ch3)
return NULL;
p += 3;
break;
}
}
# endif
/* skip ahead until EOS or blanks. */
# if 0 /* a moderate version */
for (e = p + 1; ; e++)
{
unsigned char ch = *e;
if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch)))
break;
}
# else /* (too) big unroll */
for (e = p + 1; ; e += 4)
{
unsigned char ch0, ch1, ch2, ch3;
ch0 = *e;
if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch0)))
break;
ch1 = e[1];
if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch1)))
{
e += 1;
break;
}
ch2 = e[2];
if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch2)))
{
e += 2;
break;
}
ch3 = e[3];
if (MY_PREDICT_FALSE(MY_IS_BLANK_OR_EOS(ch3)))
{
e += 3;
break;
}
}
# endif
*ptr = e;
if (lengthptr != 0)
*lengthptr = e - p;
return (char *)p;
#else
const char *p = next_token (*ptr);
if (*p == '\0')
return 0;
*ptr = end_of_token (p);
if (lengthptr != 0)
*lengthptr = *ptr - p;
return (char *)p;
#endif
}
/* Allocate a new `struct dep' with all fields initialized to 0. */
struct dep *
alloc_dep ()
{
#ifndef CONFIG_WITH_ALLOC_CACHES
struct dep *d = xmalloc (sizeof (struct dep));
memset (d, '\0', sizeof (struct dep));
return d;
#else
return (struct dep *) alloccache_calloc (&dep_cache);
#endif
}
/* Free `struct dep' along with `name' and `stem'. */
void
free_dep (struct dep *d)
{
#ifndef CONFIG_WITH_ALLOC_CACHES
free (d);
#else
alloccache_free (&dep_cache, d);
#endif
}
/* Copy a chain of `struct dep', making a new chain
with the same contents as the old one. */
struct dep *
copy_dep_chain (const struct dep *d)
{
struct dep *firstnew = 0;
struct dep *lastnew = 0;
while (d != 0)
{
#ifndef CONFIG_WITH_ALLOC_CACHES
struct dep *c = xmalloc (sizeof (struct dep));
#else
struct dep *c = (struct dep *) alloccache_alloc (&dep_cache);
#endif
memcpy (c, d, sizeof (struct dep));
c->next = 0;
if (firstnew == 0)
firstnew = lastnew = c;
else
lastnew = lastnew->next = c;
d = d->next;
}
return firstnew;
}
/* Free a chain of 'struct dep'. */
void
free_dep_chain (struct dep *d)
{
while (d != 0)
{
struct dep *df = d;
d = d->next;
#ifndef CONFIG_WITH_ALLOC_CACHES
free_dep (df);
#else
alloccache_free (&dep_cache, df);
#endif
}
}
/* Free a chain of struct nameseq.
For struct dep chains use free_dep_chain. */
void
free_ns_chain (struct nameseq *ns)
{
while (ns != 0)
{
struct nameseq *t = ns;
ns = ns->next;
#ifndef CONFIG_WITH_ALLOC_CACHES
free (t);
#else
alloccache_free (&nameseq_cache, t);
#endif
}
}
#if !HAVE_STRCASECMP && !HAVE_STRICMP && !HAVE_STRCMPI
/* If we don't have strcasecmp() (from POSIX), or anything that can substitute
for it, define our own version. */
int
strcasecmp (const char *s1, const char *s2)
{
while (1)
{
int c1 = (int) *(s1++);
int c2 = (int) *(s2++);
if (isalpha (c1))
c1 = tolower (c1);
if (isalpha (c2))
c2 = tolower (c2);
if (c1 != '\0' && c1 == c2)
continue;
return (c1 - c2);
}
}
#endif
#ifdef GETLOADAVG_PRIVILEGED
#ifdef POSIX
/* Hopefully if a system says it's POSIX.1 and has the setuid and setgid
functions, they work as POSIX.1 says. Some systems (Alpha OSF/1 1.2,
for example) which claim to be POSIX.1 also have the BSD setreuid and
setregid functions, but they don't work as in BSD and only the POSIX.1
way works. */
#undef HAVE_SETREUID
#undef HAVE_SETREGID
#else /* Not POSIX. */
/* Some POSIX.1 systems have the seteuid and setegid functions. In a
POSIX-like system, they are the best thing to use. However, some
non-POSIX systems have them too but they do not work in the POSIX style
and we must use setreuid and setregid instead. */
#undef HAVE_SETEUID
#undef HAVE_SETEGID
#endif /* POSIX. */
#ifndef HAVE_UNISTD_H
extern int getuid (), getgid (), geteuid (), getegid ();
extern int setuid (), setgid ();
#ifdef HAVE_SETEUID
extern int seteuid ();
#else
#ifdef HAVE_SETREUID
extern int setreuid ();
#endif /* Have setreuid. */
#endif /* Have seteuid. */
#ifdef HAVE_SETEGID
extern int setegid ();
#else
#ifdef HAVE_SETREGID
extern int setregid ();
#endif /* Have setregid. */
#endif /* Have setegid. */
#endif /* No . */
/* Keep track of the user and group IDs for user- and make- access. */
static int user_uid = -1, user_gid = -1, make_uid = -1, make_gid = -1;
#define access_inited (user_uid != -1)
static enum { make, user } current_access;
/* Under -d, write a message describing the current IDs. */
static void
log_access (const char *flavor)
{
if (! ISDB (DB_JOBS))
return;
/* All the other debugging messages go to stdout,
but we write this one to stderr because it might be
run in a child fork whose stdout is piped. */
fprintf (stderr, _("%s: user %lu (real %lu), group %lu (real %lu)\n"),
flavor, (unsigned long) geteuid (), (unsigned long) getuid (),
(unsigned long) getegid (), (unsigned long) getgid ());
fflush (stderr);
}
static void
init_access (void)
{
#ifndef VMS
user_uid = getuid ();
user_gid = getgid ();
make_uid = geteuid ();
make_gid = getegid ();
/* Do these ever fail? */
if (user_uid == -1 || user_gid == -1 || make_uid == -1 || make_gid == -1)
pfatal_with_name ("get{e}[gu]id");
log_access (_("Initialized access"));
current_access = make;
#endif
}
#endif /* GETLOADAVG_PRIVILEGED */
/* Give the process appropriate permissions for access to
user data (i.e., to stat files, or to spawn a child process). */
void
user_access (void)
{
#ifdef GETLOADAVG_PRIVILEGED
if (!access_inited)
init_access ();
if (current_access == user)
return;
/* We are in "make access" mode. This means that the effective user and
group IDs are those of make (if it was installed setuid or setgid).
We now want to set the effective user and group IDs to the real IDs,
which are the IDs of the process that exec'd make. */
#ifdef HAVE_SETEUID
/* Modern systems have the seteuid/setegid calls which set only the
effective IDs, which is ideal. */
if (seteuid (user_uid) < 0)
pfatal_with_name ("user_access: seteuid");
#else /* Not HAVE_SETEUID. */
#ifndef HAVE_SETREUID
/* System V has only the setuid/setgid calls to set user/group IDs.
There is an effective ID, which can be set by setuid/setgid.
It can be set (unless you are root) only to either what it already is
(returned by geteuid/getegid, now in make_uid/make_gid),
the real ID (return by getuid/getgid, now in user_uid/user_gid),
or the saved set ID (what the effective ID was before this set-ID
executable (make) was exec'd). */
if (setuid (user_uid) < 0)
pfatal_with_name ("user_access: setuid");
#else /* HAVE_SETREUID. */
/* In 4BSD, the setreuid/setregid calls set both the real and effective IDs.
They may be set to themselves or each other. So you have two alternatives
at any one time. If you use setuid/setgid, the effective will be set to
the real, leaving only one alternative. Using setreuid/setregid, however,
you can toggle between your two alternatives by swapping the values in a
single setreuid or setregid call. */
if (setreuid (make_uid, user_uid) < 0)
pfatal_with_name ("user_access: setreuid");
#endif /* Not HAVE_SETREUID. */
#endif /* HAVE_SETEUID. */
#ifdef HAVE_SETEGID
if (setegid (user_gid) < 0)
pfatal_with_name ("user_access: setegid");
#else
#ifndef HAVE_SETREGID
if (setgid (user_gid) < 0)
pfatal_with_name ("user_access: setgid");
#else
if (setregid (make_gid, user_gid) < 0)
pfatal_with_name ("user_access: setregid");
#endif
#endif
current_access = user;
log_access (_("User access"));
#endif /* GETLOADAVG_PRIVILEGED */
}
/* Give the process appropriate permissions for access to
make data (i.e., the load average). */
void
make_access (void)
{
#ifdef GETLOADAVG_PRIVILEGED
if (!access_inited)
init_access ();
if (current_access == make)
return;
/* See comments in user_access, above. */
#ifdef HAVE_SETEUID
if (seteuid (make_uid) < 0)
pfatal_with_name ("make_access: seteuid");
#else
#ifndef HAVE_SETREUID
if (setuid (make_uid) < 0)
pfatal_with_name ("make_access: setuid");
#else
if (setreuid (user_uid, make_uid) < 0)
pfatal_with_name ("make_access: setreuid");
#endif
#endif
#ifdef HAVE_SETEGID
if (setegid (make_gid) < 0)
pfatal_with_name ("make_access: setegid");
#else
#ifndef HAVE_SETREGID
if (setgid (make_gid) < 0)
pfatal_with_name ("make_access: setgid");
#else
if (setregid (user_gid, make_gid) < 0)
pfatal_with_name ("make_access: setregid");
#endif
#endif
current_access = make;
log_access (_("Make access"));
#endif /* GETLOADAVG_PRIVILEGED */
}
/* Give the process appropriate permissions for a child process.
This is like user_access, but you can't get back to make_access. */
void
child_access (void)
{
#ifdef GETLOADAVG_PRIVILEGED
if (!access_inited)
abort ();
/* Set both the real and effective UID and GID to the user's.
They cannot be changed back to make's. */
#ifndef HAVE_SETREUID
if (setuid (user_uid) < 0)
pfatal_with_name ("child_access: setuid");
#else
if (setreuid (user_uid, user_uid) < 0)
pfatal_with_name ("child_access: setreuid");
#endif
#ifndef HAVE_SETREGID
if (setgid (user_gid) < 0)
pfatal_with_name ("child_access: setgid");
#else
if (setregid (user_gid, user_gid) < 0)
pfatal_with_name ("child_access: setregid");
#endif
log_access (_("Child access"));
#endif /* GETLOADAVG_PRIVILEGED */
}
#ifdef NEED_GET_PATH_MAX
unsigned int
get_path_max (void)
{
static unsigned int value;
if (value == 0)
{
long int x = pathconf ("/", _PC_PATH_MAX);
if (x > 0)
value = x;
else
return MAXPATHLEN;
}
return value;
}
#endif
/* This code is stolen from gnulib.
If/when we abandon the requirement to work with K&R compilers, we can
remove this (and perhaps other parts of GNU make!) and migrate to using
gnulib directly.
This is called only through atexit(), which means die() has already been
invoked. So, call exit() here directly. Apparently that works...?
*/
/* Close standard output, exiting with status 'exit_failure' on failure.
If a program writes *anything* to stdout, that program should close
stdout and make sure that it succeeds before exiting. Otherwise,
suppose that you go to the extreme of checking the return status
of every function that does an explicit write to stdout. The last
printf can succeed in writing to the internal stream buffer, and yet
the fclose(stdout) could still fail (due e.g., to a disk full error)
when it tries to write out that buffered data. Thus, you would be
left with an incomplete output file and the offending program would
exit successfully. Even calling fflush is not always sufficient,
since some file systems (NFS and CODA) buffer written/flushed data
until an actual close call.
Besides, it's wasteful to check the return value from every call
that writes to stdout -- just let the internal stream state record
the failure. That's what the ferror test is checking below.
It's important to detect such failures and exit nonzero because many
tools (most notably `make' and other build-management systems) depend
on being able to detect failure in other tools via their exit status. */
void
close_stdout (void)
{
int prev_fail = ferror (stdout);
int fclose_fail = fclose (stdout);
if (prev_fail || fclose_fail)
{
if (fclose_fail)
error (NILF, _("write error: %s"), strerror (errno));
else
error (NILF, _("write error"));
exit (EXIT_FAILURE);
}
}
#ifdef CONFIG_WITH_ALLOC_CACHES
/* Default allocator. */
static void *
alloccache_default_grow_alloc(void *ignore, unsigned int size)
{
return xmalloc (size);
}
/* Worker for growing the cache. */
struct alloccache_free_ent *
alloccache_alloc_grow (struct alloccache *cache)
{
void *item;
unsigned int items = (64*1024 - 32) / cache->size;
cache->free_start = cache->grow_alloc (cache->grow_arg, items * cache->size);
cache->free_end = cache->free_start + items * cache->size;
cache->total_count+= items;
#ifndef NDEBUG /* skip the first item so the heap can detect free(). */
cache->total_count--;
cache->free_start += cache->size;
#endif
item = cache->free_start;
cache->free_start += cache->size;
/* caller counts */
return (struct alloccache_free_ent *)item;
}
/* List of alloc caches, for printing. */
static struct alloccache *alloccache_head = NULL;
/* Initializes an alloc cache */
void
alloccache_init (struct alloccache *cache, unsigned int size, const char *name,
void *(*grow_alloc)(void *grow_arg, unsigned int size), void *grow_arg)
{
unsigned act_size;
/* ensure OK alignment and min sizeof (struct alloccache_free_ent). */
if (size <= sizeof (struct alloccache_free_ent))
act_size = sizeof (struct alloccache_free_ent);
else if (size <= 32)
{
act_size = 4;
while (act_size < size)
act_size <<= 1;
}
else
act_size = (size + 31U) & ~(size_t)31;
/* align the structure. */
cache->free_start = NULL;
cache->free_end = NULL;
cache->free_head = NULL;
cache->size = act_size;
cache->total_count = 0;
cache->alloc_count = 0;
cache->free_count = 0;
cache->name = name;
cache->grow_arg = grow_arg;
cache->grow_alloc = grow_alloc ? grow_alloc : alloccache_default_grow_alloc;
/* link it. */
cache->next = alloccache_head;
alloccache_head = cache;
}
/* Terminate an alloc cache, free all the memory it contains. */
void
alloccache_term (struct alloccache *cache,
void (*term_free)(void *term_arg, void *ptr, unsigned int size), void *term_arg)
{
/*cache->size = 0;*/
(void)cache;
(void)term_free;
(void)term_arg;
/* FIXME: Implement memory segment tracking and cleanup. */
}
/* Joins to caches, unlinking the 2nd one. */
void
alloccache_join (struct alloccache *cache, struct alloccache *eat)
{
assert (cache->size == eat->size);
#if 0 /* probably a waste of time */ /* FIXME: Optimize joining, avoid all list walking. */
/* add the free list... */
if (eat->free_head)
{
unsigned int eat_in_use = eat->alloc_count - eat->free_count;
unsigned int dst_in_use = cache->alloc_count - cache->free_count;
if (!cache->free_head)
cache->free_head = eat->free_head;
else if (eat->total_count - eat_in_use < cache->total_count - dst_ins_use)
{
struct alloccache_free_ent *last = eat->free_head;
while (last->next)
last = last->next;
last->next = cache->free_head;
cache->free_head = eat->free_head;
}
else
{
struct alloccache_free_ent *last = cache->free_head;
while (last->next)
last = last->next;
last->next = eat->free_head;
}
}
/* ... and the free space. */
while (eat->free_start != eat->free_end)
{
struct alloccache_free_ent *f = (struct alloccache_free_ent *)eat->free_start;
eat->free_start += eat->size;
f->next = cache->free_head;
cache->free_head = f;
}
/* and statistics */
cache->alloc_count += eat->alloc_count;
cache->free_count += eat->free_count;
#else
/* and statistics */
cache->alloc_count += eat->alloc_count;
cache->free_count += eat->free_count;
#endif
cache->total_count += eat->total_count;
/* unlink and disable the eat cache */
if (alloccache_head == eat)
alloccache_head = eat->next;
else
{
struct alloccache *cur = alloccache_head;
while (cur->next != eat)
cur = cur->next;
assert (cur && cur->next == eat);
cur->next = eat->next;
}
eat->size = 0;
eat->free_end = eat->free_start = NULL;
eat->free_head = NULL;
}
/* Print one alloc cache. */
void
alloccache_print (struct alloccache *cache)
{
printf (_("\n# Alloc Cache: %s\n"
"# Items: size = %-3u total = %-6u"),
cache->name, cache->size, cache->total_count);
MAKE_STATS(printf (_(" in-use = %-6lu"),
cache->alloc_count - cache->free_count););
MAKE_STATS(printf (_("\n# alloc calls = %-7lu free calls = %-7lu"),
cache->alloc_count, cache->free_count););
printf ("\n");
}
/* Print all alloc caches. */
void
alloccache_print_all (void)
{
struct alloccache *cur;
puts ("");
for (cur = alloccache_head; cur; cur = cur->next)
alloccache_print (cur);
}
#endif /* CONFIG_WITH_ALLOC_CACHES */
#ifdef CONFIG_WITH_PRINT_STATS_SWITCH
/* Print heap statistics if supported by the platform. */
void print_heap_stats (void)
{
/* Darwin / Mac OS X */
# ifdef __APPLE__
malloc_statistics_t s;
malloc_zone_statistics (NULL, &s);
printf (_("\n# CRT Heap: %zu bytes in use, in %u block, avg %zu bytes/block\n"),
s.size_in_use, s.blocks_in_use, s.size_in_use / s.blocks_in_use);
printf (_("# %zu bytes max in use (high water mark)\n"),
s.max_size_in_use);
printf (_("# %zu bytes reserved, %zu bytes free (estimate)\n"),
s.size_allocated, s.size_allocated - s.size_in_use);
# endif /* __APPLE__ */
/* Darwin Libc sources indicates that something like this may be
found in GLIBC, however, it's not in any current one... */
# if 0 /* ??? */
struct mstats m;
m = mstats();
printf (_("\n# CRT Heap: %zu blocks / %zu bytes in use, %zu blocks / %zu bytes free\n"),
m.chunks_used, m.bytes_used, m.chunks_free, m.bytes_free);
printf (_("# %zu bytes reserved\n"),
m.bytes_total);
# endif /* ??? */
/* XVID2/XPG mallinfo (displayed per GLIBC documentation). */
# if 0 && defined(__GLIBC__) /* XXX: finish on linux, check older glibc versions. */
struct mallinfo m;
m = mallinfo();
printf (_("\n# CRT Heap: %d bytes in use, %d bytes free\n"),
m.uordblks, s.fordblks);
printf (_("# # free chunks=%d, # fastbin blocks=%d\n"),
m.ordblks, m.smblks);
printf (_("# # mapped regions=%d, space in mapped regions=%d\n"),
m.hblks, m.hblkhd);
printf (_("# non-mapped space allocated from system=%d\n"),
m.arena);
printf (_("# maximum total allocated space=%d\n"),
m.usmblks);
printf (_("# top-most releasable space=%d\n"),
m.keepcost);
# endif /* __GLIBC__ */
# ifdef CONFIG_WITH_MAKE_STATS
printf(_("# %lu malloc calls, %lu realloc calls\n"),
make_stats_allocations, make_stats_reallocations);
printf(_("# %lu MBs alloc sum, not counting freed, add pinch of salt\n"), /* XXX: better wording */
make_stats_allocated / (1024*1024));
# endif
/* XXX: windows */
}
#endif /* CONFIG_WITH_PRINT_STATS_SWITCH */