VirtualBox

source: kBuild/vendor/gnumake/2005-05-16/hash.c@ 1158

Last change on this file since 1158 was 54, checked in by (none), 21 years ago

This commit was manufactured by cvs2svn to create branch 'GNU'.

  • Property svn:eol-style set to native
File size: 8.1 KB
Line 
1/* hash.c -- hash table maintenance
2 Copyright (C) 1995, 1999, 2002 Free Software Foundation, Inc.
3 Written by Greg McGary <[email protected]> <[email protected]>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2, or (at your option)
8 any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18*/
19
20#include "make.h"
21#include "hash.h"
22
23#define CALLOC(t, n) ((t *) calloc (sizeof (t), (n)))
24#define MALLOC(t, n) ((t *) xmalloc (sizeof (t) * (n)))
25#define REALLOC(o, t, n) ((t *) xrealloc ((o), sizeof (t) * (n)))
26#define CLONE(o, t, n) ((t *) memcpy (MALLOC (t, (n)), (o), sizeof (t) * (n)))
27
28static void hash_rehash __P((struct hash_table* ht));
29static unsigned long round_up_2 __P((unsigned long rough));
30
31/* Implement double hashing with open addressing. The table size is
32 always a power of two. The secondary (`increment') hash function
33 is forced to return an odd-value, in order to be relatively prime
34 to the table size. This guarantees that the increment can
35 potentially hit every slot in the table during collision
36 resolution. */
37
38void *hash_deleted_item = &hash_deleted_item;
39
40/* Force the table size to be a power of two, possibly rounding up the
41 given size. */
42
43void
44hash_init (struct hash_table *ht, unsigned long size,
45 hash_func_t hash_1, hash_func_t hash_2, hash_cmp_func_t hash_cmp)
46{
47 ht->ht_size = round_up_2 (size);
48 ht->ht_empty_slots = ht->ht_size;
49 ht->ht_vec = (void**) CALLOC (struct token *, ht->ht_size);
50 if (ht->ht_vec == 0)
51 {
52 fprintf (stderr, _("can't allocate %ld bytes for hash table: memory exhausted"),
53 ht->ht_size * sizeof(struct token *));
54 exit (1);
55 }
56
57 ht->ht_capacity = ht->ht_size - (ht->ht_size / 16); /* 93.75% loading factor */
58 ht->ht_fill = 0;
59 ht->ht_collisions = 0;
60 ht->ht_lookups = 0;
61 ht->ht_rehashes = 0;
62 ht->ht_hash_1 = hash_1;
63 ht->ht_hash_2 = hash_2;
64 ht->ht_compare = hash_cmp;
65}
66
67/* Load an array of items into `ht'. */
68
69void
70hash_load (struct hash_table *ht, void *item_table,
71 unsigned long cardinality, unsigned long size)
72{
73 char *items = (char *) item_table;
74 while (cardinality--)
75 {
76 hash_insert (ht, items);
77 items += size;
78 }
79}
80
81/* Returns the address of the table slot matching `key'. If `key' is
82 not found, return the address of an empty slot suitable for
83 inserting `key'. The caller is responsible for incrementing
84 ht_fill on insertion. */
85
86void **
87hash_find_slot (struct hash_table *ht, const void *key)
88{
89 void **slot;
90 void **deleted_slot = 0;
91 unsigned int hash_2 = 0;
92 unsigned int hash_1 = (*ht->ht_hash_1) (key);
93
94 ht->ht_lookups++;
95 for (;;)
96 {
97 hash_1 &= (ht->ht_size - 1);
98 slot = &ht->ht_vec[hash_1];
99
100 if (*slot == 0)
101 return (deleted_slot ? deleted_slot : slot);
102 if (*slot == hash_deleted_item)
103 {
104 if (deleted_slot == 0)
105 deleted_slot = slot;
106 }
107 else
108 {
109 if (key == *slot)
110 return slot;
111 if ((*ht->ht_compare) (key, *slot) == 0)
112 return slot;
113 ht->ht_collisions++;
114 }
115 if (!hash_2)
116 hash_2 = (*ht->ht_hash_2) (key) | 1;
117 hash_1 += hash_2;
118 }
119}
120
121void *
122hash_find_item (struct hash_table *ht, const void *key)
123{
124 void **slot = hash_find_slot (ht, key);
125 return ((HASH_VACANT (*slot)) ? 0 : *slot);
126}
127
128void *
129hash_insert (struct hash_table *ht, void *item)
130{
131 void **slot = hash_find_slot (ht, item);
132 void *old_item = slot ? *slot : 0;
133 hash_insert_at (ht, item, slot);
134 return ((HASH_VACANT (old_item)) ? 0 : old_item);
135}
136
137void *
138hash_insert_at (struct hash_table *ht, void *item, const void *slot)
139{
140 void *old_item = *(void **) slot;
141 if (HASH_VACANT (old_item))
142 {
143 ht->ht_fill++;
144 if (old_item == 0)
145 ht->ht_empty_slots--;
146 old_item = item;
147 }
148 *(void const **) slot = item;
149 if (ht->ht_empty_slots < ht->ht_size - ht->ht_capacity)
150 {
151 hash_rehash (ht);
152 return (void *) hash_find_slot (ht, item);
153 }
154 else
155 return (void *) slot;
156}
157
158void *
159hash_delete (struct hash_table *ht, const void *item)
160{
161 void **slot = hash_find_slot (ht, item);
162 return hash_delete_at (ht, slot);
163}
164
165void *
166hash_delete_at (struct hash_table *ht, const void *slot)
167{
168 void *item = *(void **) slot;
169 if (!HASH_VACANT (item))
170 {
171 *(void const **) slot = hash_deleted_item;
172 ht->ht_fill--;
173 return item;
174 }
175 else
176 return 0;
177}
178
179void
180hash_free_items (struct hash_table *ht)
181{
182 void **vec = ht->ht_vec;
183 void **end = &vec[ht->ht_size];
184 for (; vec < end; vec++)
185 {
186 void *item = *vec;
187 if (!HASH_VACANT (item))
188 free (item);
189 *vec = 0;
190 }
191 ht->ht_fill = 0;
192 ht->ht_empty_slots = ht->ht_size;
193}
194
195void
196hash_delete_items (struct hash_table *ht)
197{
198 void **vec = ht->ht_vec;
199 void **end = &vec[ht->ht_size];
200 for (; vec < end; vec++)
201 *vec = 0;
202 ht->ht_fill = 0;
203 ht->ht_collisions = 0;
204 ht->ht_lookups = 0;
205 ht->ht_rehashes = 0;
206 ht->ht_empty_slots = ht->ht_size;
207}
208
209void
210hash_free (struct hash_table *ht, int free_items)
211{
212 if (free_items)
213 hash_free_items (ht);
214 else
215 {
216 ht->ht_fill = 0;
217 ht->ht_empty_slots = ht->ht_size;
218 }
219 free (ht->ht_vec);
220 ht->ht_vec = 0;
221 ht->ht_capacity = 0;
222}
223
224void
225hash_map (struct hash_table *ht, hash_map_func_t map)
226{
227 void **slot;
228 void **end = &ht->ht_vec[ht->ht_size];
229
230 for (slot = ht->ht_vec; slot < end; slot++)
231 {
232 if (!HASH_VACANT (*slot))
233 (*map) (*slot);
234 }
235}
236
237void
238hash_map_arg (struct hash_table *ht, hash_map_arg_func_t map, void *arg)
239{
240 void **slot;
241 void **end = &ht->ht_vec[ht->ht_size];
242
243 for (slot = ht->ht_vec; slot < end; slot++)
244 {
245 if (!HASH_VACANT (*slot))
246 (*map) (*slot, arg);
247 }
248}
249
250/* Double the size of the hash table in the event of overflow... */
251
252static void
253hash_rehash (struct hash_table *ht)
254{
255 unsigned long old_ht_size = ht->ht_size;
256 void **old_vec = ht->ht_vec;
257 void **ovp;
258
259 if (ht->ht_fill >= ht->ht_capacity)
260 {
261 ht->ht_size *= 2;
262 ht->ht_capacity = ht->ht_size - (ht->ht_size >> 4);
263 }
264 ht->ht_rehashes++;
265 ht->ht_vec = (void **) CALLOC (struct token *, ht->ht_size);
266
267 for (ovp = old_vec; ovp < &old_vec[old_ht_size]; ovp++)
268 {
269 if (! HASH_VACANT (*ovp))
270 {
271 void **slot = hash_find_slot (ht, *ovp);
272 *slot = *ovp;
273 }
274 }
275 ht->ht_empty_slots = ht->ht_size - ht->ht_fill;
276 free (old_vec);
277}
278
279void
280hash_print_stats (struct hash_table *ht, FILE *out_FILE)
281{
282 /* GKM FIXME: honor NO_FLOAT */
283 fprintf (out_FILE, _("Load=%ld/%ld=%.0f%%, "), ht->ht_fill, ht->ht_size,
284 100.0 * (double) ht->ht_fill / (double) ht->ht_size);
285 fprintf (out_FILE, _("Rehash=%d, "), ht->ht_rehashes);
286 fprintf (out_FILE, _("Collisions=%ld/%ld=%.0f%%"), ht->ht_collisions, ht->ht_lookups,
287 (ht->ht_lookups
288 ? (100.0 * (double) ht->ht_collisions / (double) ht->ht_lookups)
289 : 0));
290}
291
292/* Dump all items into a NULL-terminated vector. Use the
293 user-supplied vector, or malloc one. */
294
295void **
296hash_dump (struct hash_table *ht, void **vector_0, qsort_cmp_t compare)
297{
298 void **vector;
299 void **slot;
300 void **end = &ht->ht_vec[ht->ht_size];
301
302 if (vector_0 == 0)
303 vector_0 = MALLOC (void *, ht->ht_fill + 1);
304 vector = vector_0;
305
306 for (slot = ht->ht_vec; slot < end; slot++)
307 if (!HASH_VACANT (*slot))
308 *vector++ = *slot;
309 *vector = 0;
310
311 if (compare)
312 qsort (vector_0, ht->ht_fill, sizeof (void *), compare);
313 return vector_0;
314}
315
316/* Round a given number up to the nearest power of 2. */
317
318static unsigned long
319round_up_2 (unsigned long n)
320{
321 n |= (n >> 1);
322 n |= (n >> 2);
323 n |= (n >> 4);
324 n |= (n >> 8);
325 n |= (n >> 16);
326
327#if !defined(HAVE_LIMITS_H) || ULONG_MAX > 4294967295
328 /* We only need this on systems where unsigned long is >32 bits. */
329 n |= (n >> 32);
330#endif
331
332 return n + 1;
333}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette