VirtualBox

source: kBuild/vendor/grep/2.12/lib/mbsstr.c@ 3576

Last change on this file since 3576 was 2595, checked in by bird, 13 years ago

gnu grep version 2.12 (grep-2.12.tar.xz, md5sum=8d2f0346d08b13c18afb81f0e8aa1e2f)

  • Property svn:eol-style set to native
File size: 13.9 KB
Line 
1/* Searching in a string.
2 Copyright (C) 2005-2012 Free Software Foundation, Inc.
3 Written by Bruno Haible <[email protected]>, 2005.
4
5 This program is free software: you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18#include <config.h>
19
20/* Specification. */
21#include <string.h>
22
23#include <stdbool.h>
24#include <stddef.h> /* for NULL, in case a nonstandard string.h lacks it */
25
26#include "malloca.h"
27#include "mbuiter.h"
28
29/* Knuth-Morris-Pratt algorithm. */
30#define UNIT unsigned char
31#define CANON_ELEMENT(c) c
32#include "str-kmp.h"
33
34/* Knuth-Morris-Pratt algorithm.
35 See http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
36 Return a boolean indicating success:
37 Return true and set *RESULTP if the search was completed.
38 Return false if it was aborted because not enough memory was available. */
39static bool
40knuth_morris_pratt_multibyte (const char *haystack, const char *needle,
41 const char **resultp)
42{
43 size_t m = mbslen (needle);
44 mbchar_t *needle_mbchars;
45 size_t *table;
46
47 /* Allocate room for needle_mbchars and the table. */
48 char *memory = (char *) nmalloca (m, sizeof (mbchar_t) + sizeof (size_t));
49 if (memory == NULL)
50 return false;
51 needle_mbchars = (mbchar_t *) memory;
52 table = (size_t *) (memory + m * sizeof (mbchar_t));
53
54 /* Fill needle_mbchars. */
55 {
56 mbui_iterator_t iter;
57 size_t j;
58
59 j = 0;
60 for (mbui_init (iter, needle); mbui_avail (iter); mbui_advance (iter), j++)
61 mb_copy (&needle_mbchars[j], &mbui_cur (iter));
62 }
63
64 /* Fill the table.
65 For 0 < i < m:
66 0 < table[i] <= i is defined such that
67 forall 0 < x < table[i]: needle[x..i-1] != needle[0..i-1-x],
68 and table[i] is as large as possible with this property.
69 This implies:
70 1) For 0 < i < m:
71 If table[i] < i,
72 needle[table[i]..i-1] = needle[0..i-1-table[i]].
73 2) For 0 < i < m:
74 rhaystack[0..i-1] == needle[0..i-1]
75 and exists h, i <= h < m: rhaystack[h] != needle[h]
76 implies
77 forall 0 <= x < table[i]: rhaystack[x..x+m-1] != needle[0..m-1].
78 table[0] remains uninitialized. */
79 {
80 size_t i, j;
81
82 /* i = 1: Nothing to verify for x = 0. */
83 table[1] = 1;
84 j = 0;
85
86 for (i = 2; i < m; i++)
87 {
88 /* Here: j = i-1 - table[i-1].
89 The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold
90 for x < table[i-1], by induction.
91 Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
92 mbchar_t *b = &needle_mbchars[i - 1];
93
94 for (;;)
95 {
96 /* Invariants: The inequality needle[x..i-1] != needle[0..i-1-x]
97 is known to hold for x < i-1-j.
98 Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
99 if (mb_equal (*b, needle_mbchars[j]))
100 {
101 /* Set table[i] := i-1-j. */
102 table[i] = i - ++j;
103 break;
104 }
105 /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
106 for x = i-1-j, because
107 needle[i-1] != needle[j] = needle[i-1-x]. */
108 if (j == 0)
109 {
110 /* The inequality holds for all possible x. */
111 table[i] = i;
112 break;
113 }
114 /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
115 for i-1-j < x < i-1-j+table[j], because for these x:
116 needle[x..i-2]
117 = needle[x-(i-1-j)..j-1]
118 != needle[0..j-1-(x-(i-1-j))] (by definition of table[j])
119 = needle[0..i-2-x],
120 hence needle[x..i-1] != needle[0..i-1-x].
121 Furthermore
122 needle[i-1-j+table[j]..i-2]
123 = needle[table[j]..j-1]
124 = needle[0..j-1-table[j]] (by definition of table[j]). */
125 j = j - table[j];
126 }
127 /* Here: j = i - table[i]. */
128 }
129 }
130
131 /* Search, using the table to accelerate the processing. */
132 {
133 size_t j;
134 mbui_iterator_t rhaystack;
135 mbui_iterator_t phaystack;
136
137 *resultp = NULL;
138 j = 0;
139 mbui_init (rhaystack, haystack);
140 mbui_init (phaystack, haystack);
141 /* Invariant: phaystack = rhaystack + j. */
142 while (mbui_avail (phaystack))
143 if (mb_equal (needle_mbchars[j], mbui_cur (phaystack)))
144 {
145 j++;
146 mbui_advance (phaystack);
147 if (j == m)
148 {
149 /* The entire needle has been found. */
150 *resultp = mbui_cur_ptr (rhaystack);
151 break;
152 }
153 }
154 else if (j > 0)
155 {
156 /* Found a match of needle[0..j-1], mismatch at needle[j]. */
157 size_t count = table[j];
158 j -= count;
159 for (; count > 0; count--)
160 {
161 if (!mbui_avail (rhaystack))
162 abort ();
163 mbui_advance (rhaystack);
164 }
165 }
166 else
167 {
168 /* Found a mismatch at needle[0] already. */
169 if (!mbui_avail (rhaystack))
170 abort ();
171 mbui_advance (rhaystack);
172 mbui_advance (phaystack);
173 }
174 }
175
176 freea (memory);
177 return true;
178}
179
180/* Find the first occurrence of the character string NEEDLE in the character
181 string HAYSTACK. Return NULL if NEEDLE is not found in HAYSTACK. */
182char *
183mbsstr (const char *haystack, const char *needle)
184{
185 /* Be careful not to look at the entire extent of haystack or needle
186 until needed. This is useful because of these two cases:
187 - haystack may be very long, and a match of needle found early,
188 - needle may be very long, and not even a short initial segment of
189 needle may be found in haystack. */
190 if (MB_CUR_MAX > 1)
191 {
192 mbui_iterator_t iter_needle;
193
194 mbui_init (iter_needle, needle);
195 if (mbui_avail (iter_needle))
196 {
197 /* Minimizing the worst-case complexity:
198 Let n = mbslen(haystack), m = mbslen(needle).
199 The naïve algorithm is O(n*m) worst-case.
200 The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
201 memory allocation.
202 To achieve linear complexity and yet amortize the cost of the
203 memory allocation, we activate the Knuth-Morris-Pratt algorithm
204 only once the naïve algorithm has already run for some time; more
205 precisely, when
206 - the outer loop count is >= 10,
207 - the average number of comparisons per outer loop is >= 5,
208 - the total number of comparisons is >= m.
209 But we try it only once. If the memory allocation attempt failed,
210 we don't retry it. */
211 bool try_kmp = true;
212 size_t outer_loop_count = 0;
213 size_t comparison_count = 0;
214 size_t last_ccount = 0; /* last comparison count */
215 mbui_iterator_t iter_needle_last_ccount; /* = needle + last_ccount */
216
217 mbui_iterator_t iter_haystack;
218
219 mbui_init (iter_needle_last_ccount, needle);
220 mbui_init (iter_haystack, haystack);
221 for (;; mbui_advance (iter_haystack))
222 {
223 if (!mbui_avail (iter_haystack))
224 /* No match. */
225 return NULL;
226
227 /* See whether it's advisable to use an asymptotically faster
228 algorithm. */
229 if (try_kmp
230 && outer_loop_count >= 10
231 && comparison_count >= 5 * outer_loop_count)
232 {
233 /* See if needle + comparison_count now reaches the end of
234 needle. */
235 size_t count = comparison_count - last_ccount;
236 for (;
237 count > 0 && mbui_avail (iter_needle_last_ccount);
238 count--)
239 mbui_advance (iter_needle_last_ccount);
240 last_ccount = comparison_count;
241 if (!mbui_avail (iter_needle_last_ccount))
242 {
243 /* Try the Knuth-Morris-Pratt algorithm. */
244 const char *result;
245 bool success =
246 knuth_morris_pratt_multibyte (haystack, needle,
247 &result);
248 if (success)
249 return (char *) result;
250 try_kmp = false;
251 }
252 }
253
254 outer_loop_count++;
255 comparison_count++;
256 if (mb_equal (mbui_cur (iter_haystack), mbui_cur (iter_needle)))
257 /* The first character matches. */
258 {
259 mbui_iterator_t rhaystack;
260 mbui_iterator_t rneedle;
261
262 memcpy (&rhaystack, &iter_haystack, sizeof (mbui_iterator_t));
263 mbui_advance (rhaystack);
264
265 mbui_init (rneedle, needle);
266 if (!mbui_avail (rneedle))
267 abort ();
268 mbui_advance (rneedle);
269
270 for (;; mbui_advance (rhaystack), mbui_advance (rneedle))
271 {
272 if (!mbui_avail (rneedle))
273 /* Found a match. */
274 return (char *) mbui_cur_ptr (iter_haystack);
275 if (!mbui_avail (rhaystack))
276 /* No match. */
277 return NULL;
278 comparison_count++;
279 if (!mb_equal (mbui_cur (rhaystack), mbui_cur (rneedle)))
280 /* Nothing in this round. */
281 break;
282 }
283 }
284 }
285 }
286 else
287 return (char *) haystack;
288 }
289 else
290 {
291 if (*needle != '\0')
292 {
293 /* Minimizing the worst-case complexity:
294 Let n = strlen(haystack), m = strlen(needle).
295 The naïve algorithm is O(n*m) worst-case.
296 The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
297 memory allocation.
298 To achieve linear complexity and yet amortize the cost of the
299 memory allocation, we activate the Knuth-Morris-Pratt algorithm
300 only once the naïve algorithm has already run for some time; more
301 precisely, when
302 - the outer loop count is >= 10,
303 - the average number of comparisons per outer loop is >= 5,
304 - the total number of comparisons is >= m.
305 But we try it only once. If the memory allocation attempt failed,
306 we don't retry it. */
307 bool try_kmp = true;
308 size_t outer_loop_count = 0;
309 size_t comparison_count = 0;
310 size_t last_ccount = 0; /* last comparison count */
311 const char *needle_last_ccount = needle; /* = needle + last_ccount */
312
313 /* Speed up the following searches of needle by caching its first
314 character. */
315 char b = *needle++;
316
317 for (;; haystack++)
318 {
319 if (*haystack == '\0')
320 /* No match. */
321 return NULL;
322
323 /* See whether it's advisable to use an asymptotically faster
324 algorithm. */
325 if (try_kmp
326 && outer_loop_count >= 10
327 && comparison_count >= 5 * outer_loop_count)
328 {
329 /* See if needle + comparison_count now reaches the end of
330 needle. */
331 if (needle_last_ccount != NULL)
332 {
333 needle_last_ccount +=
334 strnlen (needle_last_ccount,
335 comparison_count - last_ccount);
336 if (*needle_last_ccount == '\0')
337 needle_last_ccount = NULL;
338 last_ccount = comparison_count;
339 }
340 if (needle_last_ccount == NULL)
341 {
342 /* Try the Knuth-Morris-Pratt algorithm. */
343 const unsigned char *result;
344 bool success =
345 knuth_morris_pratt ((const unsigned char *) haystack,
346 (const unsigned char *) (needle - 1),
347 strlen (needle - 1),
348 &result);
349 if (success)
350 return (char *) result;
351 try_kmp = false;
352 }
353 }
354
355 outer_loop_count++;
356 comparison_count++;
357 if (*haystack == b)
358 /* The first character matches. */
359 {
360 const char *rhaystack = haystack + 1;
361 const char *rneedle = needle;
362
363 for (;; rhaystack++, rneedle++)
364 {
365 if (*rneedle == '\0')
366 /* Found a match. */
367 return (char *) haystack;
368 if (*rhaystack == '\0')
369 /* No match. */
370 return NULL;
371 comparison_count++;
372 if (*rhaystack != *rneedle)
373 /* Nothing in this round. */
374 break;
375 }
376 }
377 }
378 }
379 else
380 return (char *) haystack;
381 }
382}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette