1 | /* Searching in a string.
|
---|
2 | Copyright (C) 2005-2012 Free Software Foundation, Inc.
|
---|
3 | Written by Bruno Haible <[email protected]>, 2005.
|
---|
4 |
|
---|
5 | This program is free software: you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation; either version 3 of the License, or
|
---|
8 | (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | You should have received a copy of the GNU General Public License
|
---|
16 | along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
---|
17 |
|
---|
18 | #include <config.h>
|
---|
19 |
|
---|
20 | /* Specification. */
|
---|
21 | #include <string.h>
|
---|
22 |
|
---|
23 | #include <stdbool.h>
|
---|
24 | #include <stddef.h> /* for NULL, in case a nonstandard string.h lacks it */
|
---|
25 |
|
---|
26 | #include "malloca.h"
|
---|
27 | #include "mbuiter.h"
|
---|
28 |
|
---|
29 | /* Knuth-Morris-Pratt algorithm. */
|
---|
30 | #define UNIT unsigned char
|
---|
31 | #define CANON_ELEMENT(c) c
|
---|
32 | #include "str-kmp.h"
|
---|
33 |
|
---|
34 | /* Knuth-Morris-Pratt algorithm.
|
---|
35 | See http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
|
---|
36 | Return a boolean indicating success:
|
---|
37 | Return true and set *RESULTP if the search was completed.
|
---|
38 | Return false if it was aborted because not enough memory was available. */
|
---|
39 | static bool
|
---|
40 | knuth_morris_pratt_multibyte (const char *haystack, const char *needle,
|
---|
41 | const char **resultp)
|
---|
42 | {
|
---|
43 | size_t m = mbslen (needle);
|
---|
44 | mbchar_t *needle_mbchars;
|
---|
45 | size_t *table;
|
---|
46 |
|
---|
47 | /* Allocate room for needle_mbchars and the table. */
|
---|
48 | char *memory = (char *) nmalloca (m, sizeof (mbchar_t) + sizeof (size_t));
|
---|
49 | if (memory == NULL)
|
---|
50 | return false;
|
---|
51 | needle_mbchars = (mbchar_t *) memory;
|
---|
52 | table = (size_t *) (memory + m * sizeof (mbchar_t));
|
---|
53 |
|
---|
54 | /* Fill needle_mbchars. */
|
---|
55 | {
|
---|
56 | mbui_iterator_t iter;
|
---|
57 | size_t j;
|
---|
58 |
|
---|
59 | j = 0;
|
---|
60 | for (mbui_init (iter, needle); mbui_avail (iter); mbui_advance (iter), j++)
|
---|
61 | mb_copy (&needle_mbchars[j], &mbui_cur (iter));
|
---|
62 | }
|
---|
63 |
|
---|
64 | /* Fill the table.
|
---|
65 | For 0 < i < m:
|
---|
66 | 0 < table[i] <= i is defined such that
|
---|
67 | forall 0 < x < table[i]: needle[x..i-1] != needle[0..i-1-x],
|
---|
68 | and table[i] is as large as possible with this property.
|
---|
69 | This implies:
|
---|
70 | 1) For 0 < i < m:
|
---|
71 | If table[i] < i,
|
---|
72 | needle[table[i]..i-1] = needle[0..i-1-table[i]].
|
---|
73 | 2) For 0 < i < m:
|
---|
74 | rhaystack[0..i-1] == needle[0..i-1]
|
---|
75 | and exists h, i <= h < m: rhaystack[h] != needle[h]
|
---|
76 | implies
|
---|
77 | forall 0 <= x < table[i]: rhaystack[x..x+m-1] != needle[0..m-1].
|
---|
78 | table[0] remains uninitialized. */
|
---|
79 | {
|
---|
80 | size_t i, j;
|
---|
81 |
|
---|
82 | /* i = 1: Nothing to verify for x = 0. */
|
---|
83 | table[1] = 1;
|
---|
84 | j = 0;
|
---|
85 |
|
---|
86 | for (i = 2; i < m; i++)
|
---|
87 | {
|
---|
88 | /* Here: j = i-1 - table[i-1].
|
---|
89 | The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold
|
---|
90 | for x < table[i-1], by induction.
|
---|
91 | Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
|
---|
92 | mbchar_t *b = &needle_mbchars[i - 1];
|
---|
93 |
|
---|
94 | for (;;)
|
---|
95 | {
|
---|
96 | /* Invariants: The inequality needle[x..i-1] != needle[0..i-1-x]
|
---|
97 | is known to hold for x < i-1-j.
|
---|
98 | Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
|
---|
99 | if (mb_equal (*b, needle_mbchars[j]))
|
---|
100 | {
|
---|
101 | /* Set table[i] := i-1-j. */
|
---|
102 | table[i] = i - ++j;
|
---|
103 | break;
|
---|
104 | }
|
---|
105 | /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
|
---|
106 | for x = i-1-j, because
|
---|
107 | needle[i-1] != needle[j] = needle[i-1-x]. */
|
---|
108 | if (j == 0)
|
---|
109 | {
|
---|
110 | /* The inequality holds for all possible x. */
|
---|
111 | table[i] = i;
|
---|
112 | break;
|
---|
113 | }
|
---|
114 | /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
|
---|
115 | for i-1-j < x < i-1-j+table[j], because for these x:
|
---|
116 | needle[x..i-2]
|
---|
117 | = needle[x-(i-1-j)..j-1]
|
---|
118 | != needle[0..j-1-(x-(i-1-j))] (by definition of table[j])
|
---|
119 | = needle[0..i-2-x],
|
---|
120 | hence needle[x..i-1] != needle[0..i-1-x].
|
---|
121 | Furthermore
|
---|
122 | needle[i-1-j+table[j]..i-2]
|
---|
123 | = needle[table[j]..j-1]
|
---|
124 | = needle[0..j-1-table[j]] (by definition of table[j]). */
|
---|
125 | j = j - table[j];
|
---|
126 | }
|
---|
127 | /* Here: j = i - table[i]. */
|
---|
128 | }
|
---|
129 | }
|
---|
130 |
|
---|
131 | /* Search, using the table to accelerate the processing. */
|
---|
132 | {
|
---|
133 | size_t j;
|
---|
134 | mbui_iterator_t rhaystack;
|
---|
135 | mbui_iterator_t phaystack;
|
---|
136 |
|
---|
137 | *resultp = NULL;
|
---|
138 | j = 0;
|
---|
139 | mbui_init (rhaystack, haystack);
|
---|
140 | mbui_init (phaystack, haystack);
|
---|
141 | /* Invariant: phaystack = rhaystack + j. */
|
---|
142 | while (mbui_avail (phaystack))
|
---|
143 | if (mb_equal (needle_mbchars[j], mbui_cur (phaystack)))
|
---|
144 | {
|
---|
145 | j++;
|
---|
146 | mbui_advance (phaystack);
|
---|
147 | if (j == m)
|
---|
148 | {
|
---|
149 | /* The entire needle has been found. */
|
---|
150 | *resultp = mbui_cur_ptr (rhaystack);
|
---|
151 | break;
|
---|
152 | }
|
---|
153 | }
|
---|
154 | else if (j > 0)
|
---|
155 | {
|
---|
156 | /* Found a match of needle[0..j-1], mismatch at needle[j]. */
|
---|
157 | size_t count = table[j];
|
---|
158 | j -= count;
|
---|
159 | for (; count > 0; count--)
|
---|
160 | {
|
---|
161 | if (!mbui_avail (rhaystack))
|
---|
162 | abort ();
|
---|
163 | mbui_advance (rhaystack);
|
---|
164 | }
|
---|
165 | }
|
---|
166 | else
|
---|
167 | {
|
---|
168 | /* Found a mismatch at needle[0] already. */
|
---|
169 | if (!mbui_avail (rhaystack))
|
---|
170 | abort ();
|
---|
171 | mbui_advance (rhaystack);
|
---|
172 | mbui_advance (phaystack);
|
---|
173 | }
|
---|
174 | }
|
---|
175 |
|
---|
176 | freea (memory);
|
---|
177 | return true;
|
---|
178 | }
|
---|
179 |
|
---|
180 | /* Find the first occurrence of the character string NEEDLE in the character
|
---|
181 | string HAYSTACK. Return NULL if NEEDLE is not found in HAYSTACK. */
|
---|
182 | char *
|
---|
183 | mbsstr (const char *haystack, const char *needle)
|
---|
184 | {
|
---|
185 | /* Be careful not to look at the entire extent of haystack or needle
|
---|
186 | until needed. This is useful because of these two cases:
|
---|
187 | - haystack may be very long, and a match of needle found early,
|
---|
188 | - needle may be very long, and not even a short initial segment of
|
---|
189 | needle may be found in haystack. */
|
---|
190 | if (MB_CUR_MAX > 1)
|
---|
191 | {
|
---|
192 | mbui_iterator_t iter_needle;
|
---|
193 |
|
---|
194 | mbui_init (iter_needle, needle);
|
---|
195 | if (mbui_avail (iter_needle))
|
---|
196 | {
|
---|
197 | /* Minimizing the worst-case complexity:
|
---|
198 | Let n = mbslen(haystack), m = mbslen(needle).
|
---|
199 | The naïve algorithm is O(n*m) worst-case.
|
---|
200 | The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
|
---|
201 | memory allocation.
|
---|
202 | To achieve linear complexity and yet amortize the cost of the
|
---|
203 | memory allocation, we activate the Knuth-Morris-Pratt algorithm
|
---|
204 | only once the naïve algorithm has already run for some time; more
|
---|
205 | precisely, when
|
---|
206 | - the outer loop count is >= 10,
|
---|
207 | - the average number of comparisons per outer loop is >= 5,
|
---|
208 | - the total number of comparisons is >= m.
|
---|
209 | But we try it only once. If the memory allocation attempt failed,
|
---|
210 | we don't retry it. */
|
---|
211 | bool try_kmp = true;
|
---|
212 | size_t outer_loop_count = 0;
|
---|
213 | size_t comparison_count = 0;
|
---|
214 | size_t last_ccount = 0; /* last comparison count */
|
---|
215 | mbui_iterator_t iter_needle_last_ccount; /* = needle + last_ccount */
|
---|
216 |
|
---|
217 | mbui_iterator_t iter_haystack;
|
---|
218 |
|
---|
219 | mbui_init (iter_needle_last_ccount, needle);
|
---|
220 | mbui_init (iter_haystack, haystack);
|
---|
221 | for (;; mbui_advance (iter_haystack))
|
---|
222 | {
|
---|
223 | if (!mbui_avail (iter_haystack))
|
---|
224 | /* No match. */
|
---|
225 | return NULL;
|
---|
226 |
|
---|
227 | /* See whether it's advisable to use an asymptotically faster
|
---|
228 | algorithm. */
|
---|
229 | if (try_kmp
|
---|
230 | && outer_loop_count >= 10
|
---|
231 | && comparison_count >= 5 * outer_loop_count)
|
---|
232 | {
|
---|
233 | /* See if needle + comparison_count now reaches the end of
|
---|
234 | needle. */
|
---|
235 | size_t count = comparison_count - last_ccount;
|
---|
236 | for (;
|
---|
237 | count > 0 && mbui_avail (iter_needle_last_ccount);
|
---|
238 | count--)
|
---|
239 | mbui_advance (iter_needle_last_ccount);
|
---|
240 | last_ccount = comparison_count;
|
---|
241 | if (!mbui_avail (iter_needle_last_ccount))
|
---|
242 | {
|
---|
243 | /* Try the Knuth-Morris-Pratt algorithm. */
|
---|
244 | const char *result;
|
---|
245 | bool success =
|
---|
246 | knuth_morris_pratt_multibyte (haystack, needle,
|
---|
247 | &result);
|
---|
248 | if (success)
|
---|
249 | return (char *) result;
|
---|
250 | try_kmp = false;
|
---|
251 | }
|
---|
252 | }
|
---|
253 |
|
---|
254 | outer_loop_count++;
|
---|
255 | comparison_count++;
|
---|
256 | if (mb_equal (mbui_cur (iter_haystack), mbui_cur (iter_needle)))
|
---|
257 | /* The first character matches. */
|
---|
258 | {
|
---|
259 | mbui_iterator_t rhaystack;
|
---|
260 | mbui_iterator_t rneedle;
|
---|
261 |
|
---|
262 | memcpy (&rhaystack, &iter_haystack, sizeof (mbui_iterator_t));
|
---|
263 | mbui_advance (rhaystack);
|
---|
264 |
|
---|
265 | mbui_init (rneedle, needle);
|
---|
266 | if (!mbui_avail (rneedle))
|
---|
267 | abort ();
|
---|
268 | mbui_advance (rneedle);
|
---|
269 |
|
---|
270 | for (;; mbui_advance (rhaystack), mbui_advance (rneedle))
|
---|
271 | {
|
---|
272 | if (!mbui_avail (rneedle))
|
---|
273 | /* Found a match. */
|
---|
274 | return (char *) mbui_cur_ptr (iter_haystack);
|
---|
275 | if (!mbui_avail (rhaystack))
|
---|
276 | /* No match. */
|
---|
277 | return NULL;
|
---|
278 | comparison_count++;
|
---|
279 | if (!mb_equal (mbui_cur (rhaystack), mbui_cur (rneedle)))
|
---|
280 | /* Nothing in this round. */
|
---|
281 | break;
|
---|
282 | }
|
---|
283 | }
|
---|
284 | }
|
---|
285 | }
|
---|
286 | else
|
---|
287 | return (char *) haystack;
|
---|
288 | }
|
---|
289 | else
|
---|
290 | {
|
---|
291 | if (*needle != '\0')
|
---|
292 | {
|
---|
293 | /* Minimizing the worst-case complexity:
|
---|
294 | Let n = strlen(haystack), m = strlen(needle).
|
---|
295 | The naïve algorithm is O(n*m) worst-case.
|
---|
296 | The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
|
---|
297 | memory allocation.
|
---|
298 | To achieve linear complexity and yet amortize the cost of the
|
---|
299 | memory allocation, we activate the Knuth-Morris-Pratt algorithm
|
---|
300 | only once the naïve algorithm has already run for some time; more
|
---|
301 | precisely, when
|
---|
302 | - the outer loop count is >= 10,
|
---|
303 | - the average number of comparisons per outer loop is >= 5,
|
---|
304 | - the total number of comparisons is >= m.
|
---|
305 | But we try it only once. If the memory allocation attempt failed,
|
---|
306 | we don't retry it. */
|
---|
307 | bool try_kmp = true;
|
---|
308 | size_t outer_loop_count = 0;
|
---|
309 | size_t comparison_count = 0;
|
---|
310 | size_t last_ccount = 0; /* last comparison count */
|
---|
311 | const char *needle_last_ccount = needle; /* = needle + last_ccount */
|
---|
312 |
|
---|
313 | /* Speed up the following searches of needle by caching its first
|
---|
314 | character. */
|
---|
315 | char b = *needle++;
|
---|
316 |
|
---|
317 | for (;; haystack++)
|
---|
318 | {
|
---|
319 | if (*haystack == '\0')
|
---|
320 | /* No match. */
|
---|
321 | return NULL;
|
---|
322 |
|
---|
323 | /* See whether it's advisable to use an asymptotically faster
|
---|
324 | algorithm. */
|
---|
325 | if (try_kmp
|
---|
326 | && outer_loop_count >= 10
|
---|
327 | && comparison_count >= 5 * outer_loop_count)
|
---|
328 | {
|
---|
329 | /* See if needle + comparison_count now reaches the end of
|
---|
330 | needle. */
|
---|
331 | if (needle_last_ccount != NULL)
|
---|
332 | {
|
---|
333 | needle_last_ccount +=
|
---|
334 | strnlen (needle_last_ccount,
|
---|
335 | comparison_count - last_ccount);
|
---|
336 | if (*needle_last_ccount == '\0')
|
---|
337 | needle_last_ccount = NULL;
|
---|
338 | last_ccount = comparison_count;
|
---|
339 | }
|
---|
340 | if (needle_last_ccount == NULL)
|
---|
341 | {
|
---|
342 | /* Try the Knuth-Morris-Pratt algorithm. */
|
---|
343 | const unsigned char *result;
|
---|
344 | bool success =
|
---|
345 | knuth_morris_pratt ((const unsigned char *) haystack,
|
---|
346 | (const unsigned char *) (needle - 1),
|
---|
347 | strlen (needle - 1),
|
---|
348 | &result);
|
---|
349 | if (success)
|
---|
350 | return (char *) result;
|
---|
351 | try_kmp = false;
|
---|
352 | }
|
---|
353 | }
|
---|
354 |
|
---|
355 | outer_loop_count++;
|
---|
356 | comparison_count++;
|
---|
357 | if (*haystack == b)
|
---|
358 | /* The first character matches. */
|
---|
359 | {
|
---|
360 | const char *rhaystack = haystack + 1;
|
---|
361 | const char *rneedle = needle;
|
---|
362 |
|
---|
363 | for (;; rhaystack++, rneedle++)
|
---|
364 | {
|
---|
365 | if (*rneedle == '\0')
|
---|
366 | /* Found a match. */
|
---|
367 | return (char *) haystack;
|
---|
368 | if (*rhaystack == '\0')
|
---|
369 | /* No match. */
|
---|
370 | return NULL;
|
---|
371 | comparison_count++;
|
---|
372 | if (*rhaystack != *rneedle)
|
---|
373 | /* Nothing in this round. */
|
---|
374 | break;
|
---|
375 | }
|
---|
376 | }
|
---|
377 | }
|
---|
378 | }
|
---|
379 | else
|
---|
380 | return (char *) haystack;
|
---|
381 | }
|
---|
382 | }
|
---|