1 | /* dfa.c - deterministic extended regexp routines for GNU
|
---|
2 | Copyright (C) 1988, 1998, 2000, 2002, 2004-2005, 2007-2012 Free Software
|
---|
3 | Foundation, Inc.
|
---|
4 |
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation; either version 3, or (at your option)
|
---|
8 | any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | You should have received a copy of the GNU General Public License
|
---|
16 | along with this program; if not, write to the Free Software
|
---|
17 | Foundation, Inc.,
|
---|
18 | 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA */
|
---|
19 |
|
---|
20 | /* Written June, 1988 by Mike Haertel
|
---|
21 | Modified July, 1988 by Arthur David Olson to assist BMG speedups */
|
---|
22 |
|
---|
23 | #include <config.h>
|
---|
24 | #include <assert.h>
|
---|
25 | #include <ctype.h>
|
---|
26 | #include <stdio.h>
|
---|
27 | #include <sys/types.h>
|
---|
28 | #include <stdlib.h>
|
---|
29 | #include <limits.h>
|
---|
30 | #include <string.h>
|
---|
31 | #include <locale.h>
|
---|
32 |
|
---|
33 | #define STREQ(a, b) (strcmp (a, b) == 0)
|
---|
34 |
|
---|
35 | /* ISASCIIDIGIT differs from isdigit, as follows:
|
---|
36 | - Its arg may be any int or unsigned int; it need not be an unsigned char.
|
---|
37 | - It's guaranteed to evaluate its argument exactly once.
|
---|
38 | - It's typically faster.
|
---|
39 | Posix 1003.2-1992 section 2.5.2.1 page 50 lines 1556-1558 says that
|
---|
40 | only '0' through '9' are digits. Prefer ISASCIIDIGIT to isdigit unless
|
---|
41 | it's important to use the locale's definition of `digit' even when the
|
---|
42 | host does not conform to Posix. */
|
---|
43 | #define ISASCIIDIGIT(c) ((unsigned) (c) - '0' <= 9)
|
---|
44 |
|
---|
45 | /* gettext.h ensures that we don't use gettext if ENABLE_NLS is not defined */
|
---|
46 | #include "gettext.h"
|
---|
47 | #define _(str) gettext (str)
|
---|
48 |
|
---|
49 | #include "mbsupport.h" /* defines MBS_SUPPORT if appropriate */
|
---|
50 | #include <wchar.h>
|
---|
51 | #include <wctype.h>
|
---|
52 |
|
---|
53 | #if HAVE_LANGINFO_CODESET
|
---|
54 | # include <langinfo.h>
|
---|
55 | #endif
|
---|
56 |
|
---|
57 | #include "regex.h"
|
---|
58 | #include "dfa.h"
|
---|
59 | #include "hard-locale.h"
|
---|
60 | #include "xalloc.h"
|
---|
61 |
|
---|
62 | /* HPUX, define those as macros in sys/param.h */
|
---|
63 | #ifdef setbit
|
---|
64 | # undef setbit
|
---|
65 | #endif
|
---|
66 | #ifdef clrbit
|
---|
67 | # undef clrbit
|
---|
68 | #endif
|
---|
69 |
|
---|
70 | /* Number of bits in an unsigned char. */
|
---|
71 | #ifndef CHARBITS
|
---|
72 | # define CHARBITS 8
|
---|
73 | #endif
|
---|
74 |
|
---|
75 | /* First integer value that is greater than any character code. */
|
---|
76 | #define NOTCHAR (1 << CHARBITS)
|
---|
77 |
|
---|
78 | /* INTBITS need not be exact, just a lower bound. */
|
---|
79 | #ifndef INTBITS
|
---|
80 | # define INTBITS (CHARBITS * sizeof (int))
|
---|
81 | #endif
|
---|
82 |
|
---|
83 | /* Number of ints required to hold a bit for every character. */
|
---|
84 | #define CHARCLASS_INTS ((NOTCHAR + INTBITS - 1) / INTBITS)
|
---|
85 |
|
---|
86 | /* Sets of unsigned characters are stored as bit vectors in arrays of ints. */
|
---|
87 | typedef int charclass[CHARCLASS_INTS];
|
---|
88 |
|
---|
89 | /* Convert a possibly-signed character to an unsigned character. This is
|
---|
90 | a bit safer than casting to unsigned char, since it catches some type
|
---|
91 | errors that the cast doesn't. */
|
---|
92 | static inline unsigned char
|
---|
93 | to_uchar (char ch)
|
---|
94 | {
|
---|
95 | return ch;
|
---|
96 | }
|
---|
97 |
|
---|
98 | /* Contexts tell us whether a character is a newline or a word constituent.
|
---|
99 | Word-constituent characters are those that satisfy iswalnum(), plus '_'.
|
---|
100 | Each character has a single CTX_* value; bitmasks of CTX_* values denote
|
---|
101 | a particular character class.
|
---|
102 |
|
---|
103 | A state also stores a context value, which is a bitmask of CTX_* values.
|
---|
104 | A state's context represents a set of characters that the state's
|
---|
105 | predecessors must match. For example, a state whose context does not
|
---|
106 | include CTX_LETTER will never have transitions where the previous
|
---|
107 | character is a word constituent. A state whose context is CTX_ANY
|
---|
108 | might have transitions from any character. */
|
---|
109 |
|
---|
110 | #define CTX_NONE 1
|
---|
111 | #define CTX_LETTER 2
|
---|
112 | #define CTX_NEWLINE 4
|
---|
113 | #define CTX_ANY 7
|
---|
114 |
|
---|
115 | /* Sometimes characters can only be matched depending on the surrounding
|
---|
116 | context. Such context decisions depend on what the previous character
|
---|
117 | was, and the value of the current (lookahead) character. Context
|
---|
118 | dependent constraints are encoded as 8 bit integers. Each bit that
|
---|
119 | is set indicates that the constraint succeeds in the corresponding
|
---|
120 | context.
|
---|
121 |
|
---|
122 | bit 8-11 - valid contexts when next character is CTX_NEWLINE
|
---|
123 | bit 4-7 - valid contexts when next character is CTX_LETTER
|
---|
124 | bit 0-3 - valid contexts when next character is CTX_NONE
|
---|
125 |
|
---|
126 | The macro SUCCEEDS_IN_CONTEXT determines whether a given constraint
|
---|
127 | succeeds in a particular context. Prev is a bitmask of possible
|
---|
128 | context values for the previous character, curr is the (single-bit)
|
---|
129 | context value for the lookahead character. */
|
---|
130 | #define NEWLINE_CONSTRAINT(constraint) (((constraint) >> 8) & 0xf)
|
---|
131 | #define LETTER_CONSTRAINT(constraint) (((constraint) >> 4) & 0xf)
|
---|
132 | #define OTHER_CONSTRAINT(constraint) ((constraint) & 0xf)
|
---|
133 |
|
---|
134 | #define SUCCEEDS_IN_CONTEXT(constraint, prev, curr) \
|
---|
135 | ((((curr) & CTX_NONE ? OTHER_CONSTRAINT(constraint) : 0) \
|
---|
136 | | ((curr) & CTX_LETTER ? LETTER_CONSTRAINT(constraint) : 0) \
|
---|
137 | | ((curr) & CTX_NEWLINE ? NEWLINE_CONSTRAINT(constraint) : 0)) & (prev))
|
---|
138 |
|
---|
139 | /* The following macros give information about what a constraint depends on. */
|
---|
140 | #define PREV_NEWLINE_CONSTRAINT(constraint) (((constraint) >> 2) & 0x111)
|
---|
141 | #define PREV_LETTER_CONSTRAINT(constraint) (((constraint) >> 1) & 0x111)
|
---|
142 | #define PREV_OTHER_CONSTRAINT(constraint) ((constraint) & 0x111)
|
---|
143 |
|
---|
144 | #define PREV_NEWLINE_DEPENDENT(constraint) \
|
---|
145 | (PREV_NEWLINE_CONSTRAINT (constraint) != PREV_OTHER_CONSTRAINT (constraint))
|
---|
146 | #define PREV_LETTER_DEPENDENT(constraint) \
|
---|
147 | (PREV_LETTER_CONSTRAINT (constraint) != PREV_OTHER_CONSTRAINT (constraint))
|
---|
148 |
|
---|
149 | /* Tokens that match the empty string subject to some constraint actually
|
---|
150 | work by applying that constraint to determine what may follow them,
|
---|
151 | taking into account what has gone before. The following values are
|
---|
152 | the constraints corresponding to the special tokens previously defined. */
|
---|
153 | #define NO_CONSTRAINT 0x777
|
---|
154 | #define BEGLINE_CONSTRAINT 0x444
|
---|
155 | #define ENDLINE_CONSTRAINT 0x700
|
---|
156 | #define BEGWORD_CONSTRAINT 0x050
|
---|
157 | #define ENDWORD_CONSTRAINT 0x202
|
---|
158 | #define LIMWORD_CONSTRAINT 0x252
|
---|
159 | #define NOTLIMWORD_CONSTRAINT 0x525
|
---|
160 |
|
---|
161 | /* The regexp is parsed into an array of tokens in postfix form. Some tokens
|
---|
162 | are operators and others are terminal symbols. Most (but not all) of these
|
---|
163 | codes are returned by the lexical analyzer. */
|
---|
164 |
|
---|
165 | typedef ptrdiff_t token;
|
---|
166 |
|
---|
167 | /* Predefined token values. */
|
---|
168 | enum
|
---|
169 | {
|
---|
170 | END = -1, /* END is a terminal symbol that matches the
|
---|
171 | end of input; any value of END or less in
|
---|
172 | the parse tree is such a symbol. Accepting
|
---|
173 | states of the DFA are those that would have
|
---|
174 | a transition on END. */
|
---|
175 |
|
---|
176 | /* Ordinary character values are terminal symbols that match themselves. */
|
---|
177 |
|
---|
178 | EMPTY = NOTCHAR, /* EMPTY is a terminal symbol that matches
|
---|
179 | the empty string. */
|
---|
180 |
|
---|
181 | BACKREF, /* BACKREF is generated by \<digit>; it
|
---|
182 | is not completely handled. If the scanner
|
---|
183 | detects a transition on backref, it returns
|
---|
184 | a kind of "semi-success" indicating that
|
---|
185 | the match will have to be verified with
|
---|
186 | a backtracking matcher. */
|
---|
187 |
|
---|
188 | BEGLINE, /* BEGLINE is a terminal symbol that matches
|
---|
189 | the empty string if it is at the beginning
|
---|
190 | of a line. */
|
---|
191 |
|
---|
192 | ENDLINE, /* ENDLINE is a terminal symbol that matches
|
---|
193 | the empty string if it is at the end of
|
---|
194 | a line. */
|
---|
195 |
|
---|
196 | BEGWORD, /* BEGWORD is a terminal symbol that matches
|
---|
197 | the empty string if it is at the beginning
|
---|
198 | of a word. */
|
---|
199 |
|
---|
200 | ENDWORD, /* ENDWORD is a terminal symbol that matches
|
---|
201 | the empty string if it is at the end of
|
---|
202 | a word. */
|
---|
203 |
|
---|
204 | LIMWORD, /* LIMWORD is a terminal symbol that matches
|
---|
205 | the empty string if it is at the beginning
|
---|
206 | or the end of a word. */
|
---|
207 |
|
---|
208 | NOTLIMWORD, /* NOTLIMWORD is a terminal symbol that
|
---|
209 | matches the empty string if it is not at
|
---|
210 | the beginning or end of a word. */
|
---|
211 |
|
---|
212 | QMARK, /* QMARK is an operator of one argument that
|
---|
213 | matches zero or one occurrences of its
|
---|
214 | argument. */
|
---|
215 |
|
---|
216 | STAR, /* STAR is an operator of one argument that
|
---|
217 | matches the Kleene closure (zero or more
|
---|
218 | occurrences) of its argument. */
|
---|
219 |
|
---|
220 | PLUS, /* PLUS is an operator of one argument that
|
---|
221 | matches the positive closure (one or more
|
---|
222 | occurrences) of its argument. */
|
---|
223 |
|
---|
224 | REPMN, /* REPMN is a lexical token corresponding
|
---|
225 | to the {m,n} construct. REPMN never
|
---|
226 | appears in the compiled token vector. */
|
---|
227 |
|
---|
228 | CAT, /* CAT is an operator of two arguments that
|
---|
229 | matches the concatenation of its
|
---|
230 | arguments. CAT is never returned by the
|
---|
231 | lexical analyzer. */
|
---|
232 |
|
---|
233 | OR, /* OR is an operator of two arguments that
|
---|
234 | matches either of its arguments. */
|
---|
235 |
|
---|
236 | LPAREN, /* LPAREN never appears in the parse tree,
|
---|
237 | it is only a lexeme. */
|
---|
238 |
|
---|
239 | RPAREN, /* RPAREN never appears in the parse tree. */
|
---|
240 |
|
---|
241 | ANYCHAR, /* ANYCHAR is a terminal symbol that matches
|
---|
242 | any multibyte (or single byte) characters.
|
---|
243 | It is used only if MB_CUR_MAX > 1. */
|
---|
244 |
|
---|
245 | MBCSET, /* MBCSET is similar to CSET, but for
|
---|
246 | multibyte characters. */
|
---|
247 |
|
---|
248 | WCHAR, /* Only returned by lex. wctok contains
|
---|
249 | the wide character representation. */
|
---|
250 |
|
---|
251 | CSET /* CSET and (and any value greater) is a
|
---|
252 | terminal symbol that matches any of a
|
---|
253 | class of characters. */
|
---|
254 | };
|
---|
255 |
|
---|
256 |
|
---|
257 | /* States of the recognizer correspond to sets of positions in the parse
|
---|
258 | tree, together with the constraints under which they may be matched.
|
---|
259 | So a position is encoded as an index into the parse tree together with
|
---|
260 | a constraint. */
|
---|
261 | typedef struct
|
---|
262 | {
|
---|
263 | size_t index; /* Index into the parse array. */
|
---|
264 | unsigned int constraint; /* Constraint for matching this position. */
|
---|
265 | } position;
|
---|
266 |
|
---|
267 | /* Sets of positions are stored as arrays. */
|
---|
268 | typedef struct
|
---|
269 | {
|
---|
270 | position *elems; /* Elements of this position set. */
|
---|
271 | size_t nelem; /* Number of elements in this set. */
|
---|
272 | size_t alloc; /* Number of elements allocated in ELEMS. */
|
---|
273 | } position_set;
|
---|
274 |
|
---|
275 | /* Sets of leaves are also stored as arrays. */
|
---|
276 | typedef struct
|
---|
277 | {
|
---|
278 | size_t *elems; /* Elements of this position set. */
|
---|
279 | size_t nelem; /* Number of elements in this set. */
|
---|
280 | } leaf_set;
|
---|
281 |
|
---|
282 | /* A state of the dfa consists of a set of positions, some flags,
|
---|
283 | and the token value of the lowest-numbered position of the state that
|
---|
284 | contains an END token. */
|
---|
285 | typedef struct
|
---|
286 | {
|
---|
287 | size_t hash; /* Hash of the positions of this state. */
|
---|
288 | position_set elems; /* Positions this state could match. */
|
---|
289 | unsigned char context; /* Context from previous state. */
|
---|
290 | char backref; /* True if this state matches a \<digit>. */
|
---|
291 | unsigned short constraint; /* Constraint for this state to accept. */
|
---|
292 | token first_end; /* Token value of the first END in elems. */
|
---|
293 | position_set mbps; /* Positions which can match multibyte
|
---|
294 | characters. e.g. period.
|
---|
295 | These staff are used only if
|
---|
296 | MB_CUR_MAX > 1. */
|
---|
297 | } dfa_state;
|
---|
298 |
|
---|
299 | /* States are indexed by state_num values. These are normally
|
---|
300 | nonnegative but -1 is used as a special value. */
|
---|
301 | typedef ptrdiff_t state_num;
|
---|
302 |
|
---|
303 | /* A bracket operator.
|
---|
304 | e.g. [a-c], [[:alpha:]], etc. */
|
---|
305 | struct mb_char_classes
|
---|
306 | {
|
---|
307 | ptrdiff_t cset;
|
---|
308 | int invert;
|
---|
309 | wchar_t *chars; /* Normal characters. */
|
---|
310 | size_t nchars;
|
---|
311 | wctype_t *ch_classes; /* Character classes. */
|
---|
312 | size_t nch_classes;
|
---|
313 | wchar_t *range_sts; /* Range characters (start of the range). */
|
---|
314 | wchar_t *range_ends; /* Range characters (end of the range). */
|
---|
315 | size_t nranges;
|
---|
316 | char **equivs; /* Equivalence classes. */
|
---|
317 | size_t nequivs;
|
---|
318 | char **coll_elems;
|
---|
319 | size_t ncoll_elems; /* Collating elements. */
|
---|
320 | };
|
---|
321 |
|
---|
322 | /* A compiled regular expression. */
|
---|
323 | struct dfa
|
---|
324 | {
|
---|
325 | /* Fields filled by the scanner. */
|
---|
326 | charclass *charclasses; /* Array of character sets for CSET tokens. */
|
---|
327 | size_t cindex; /* Index for adding new charclasses. */
|
---|
328 | size_t calloc; /* Number of charclasses currently allocated. */
|
---|
329 |
|
---|
330 | /* Fields filled by the parser. */
|
---|
331 | token *tokens; /* Postfix parse array. */
|
---|
332 | size_t tindex; /* Index for adding new tokens. */
|
---|
333 | size_t talloc; /* Number of tokens currently allocated. */
|
---|
334 | size_t depth; /* Depth required of an evaluation stack
|
---|
335 | used for depth-first traversal of the
|
---|
336 | parse tree. */
|
---|
337 | size_t nleaves; /* Number of leaves on the parse tree. */
|
---|
338 | size_t nregexps; /* Count of parallel regexps being built
|
---|
339 | with dfaparse(). */
|
---|
340 | unsigned int mb_cur_max; /* Cached value of MB_CUR_MAX. */
|
---|
341 | token utf8_anychar_classes[5]; /* To lower ANYCHAR in UTF-8 locales. */
|
---|
342 |
|
---|
343 | /* The following are used only if MB_CUR_MAX > 1. */
|
---|
344 |
|
---|
345 | /* The value of multibyte_prop[i] is defined by following rule.
|
---|
346 | if tokens[i] < NOTCHAR
|
---|
347 | bit 0 : tokens[i] is the first byte of a character, including
|
---|
348 | single-byte characters.
|
---|
349 | bit 1 : tokens[i] is the last byte of a character, including
|
---|
350 | single-byte characters.
|
---|
351 |
|
---|
352 | if tokens[i] = MBCSET
|
---|
353 | ("the index of mbcsets corresponding to this operator" << 2) + 3
|
---|
354 |
|
---|
355 | e.g.
|
---|
356 | tokens
|
---|
357 | = 'single_byte_a', 'multi_byte_A', single_byte_b'
|
---|
358 | = 'sb_a', 'mb_A(1st byte)', 'mb_A(2nd byte)', 'mb_A(3rd byte)', 'sb_b'
|
---|
359 | multibyte_prop
|
---|
360 | = 3 , 1 , 0 , 2 , 3
|
---|
361 | */
|
---|
362 | size_t nmultibyte_prop;
|
---|
363 | int *multibyte_prop;
|
---|
364 |
|
---|
365 | /* Array of the bracket expression in the DFA. */
|
---|
366 | struct mb_char_classes *mbcsets;
|
---|
367 | size_t nmbcsets;
|
---|
368 | size_t mbcsets_alloc;
|
---|
369 |
|
---|
370 | /* Fields filled by the state builder. */
|
---|
371 | dfa_state *states; /* States of the dfa. */
|
---|
372 | state_num sindex; /* Index for adding new states. */
|
---|
373 | state_num salloc; /* Number of states currently allocated. */
|
---|
374 |
|
---|
375 | /* Fields filled by the parse tree->NFA conversion. */
|
---|
376 | position_set *follows; /* Array of follow sets, indexed by position
|
---|
377 | index. The follow of a position is the set
|
---|
378 | of positions containing characters that
|
---|
379 | could conceivably follow a character
|
---|
380 | matching the given position in a string
|
---|
381 | matching the regexp. Allocated to the
|
---|
382 | maximum possible position index. */
|
---|
383 | int searchflag; /* True if we are supposed to build a searching
|
---|
384 | as opposed to an exact matcher. A searching
|
---|
385 | matcher finds the first and shortest string
|
---|
386 | matching a regexp anywhere in the buffer,
|
---|
387 | whereas an exact matcher finds the longest
|
---|
388 | string matching, but anchored to the
|
---|
389 | beginning of the buffer. */
|
---|
390 |
|
---|
391 | /* Fields filled by dfaexec. */
|
---|
392 | state_num tralloc; /* Number of transition tables that have
|
---|
393 | slots so far. */
|
---|
394 | int trcount; /* Number of transition tables that have
|
---|
395 | actually been built. */
|
---|
396 | state_num **trans; /* Transition tables for states that can
|
---|
397 | never accept. If the transitions for a
|
---|
398 | state have not yet been computed, or the
|
---|
399 | state could possibly accept, its entry in
|
---|
400 | this table is NULL. */
|
---|
401 | state_num **realtrans; /* Trans always points to realtrans + 1; this
|
---|
402 | is so trans[-1] can contain NULL. */
|
---|
403 | state_num **fails; /* Transition tables after failing to accept
|
---|
404 | on a state that potentially could do so. */
|
---|
405 | int *success; /* Table of acceptance conditions used in
|
---|
406 | dfaexec and computed in build_state. */
|
---|
407 | state_num *newlines; /* Transitions on newlines. The entry for a
|
---|
408 | newline in any transition table is always
|
---|
409 | -1 so we can count lines without wasting
|
---|
410 | too many cycles. The transition for a
|
---|
411 | newline is stored separately and handled
|
---|
412 | as a special case. Newline is also used
|
---|
413 | as a sentinel at the end of the buffer. */
|
---|
414 | struct dfamust *musts; /* List of strings, at least one of which
|
---|
415 | is known to appear in any r.e. matching
|
---|
416 | the dfa. */
|
---|
417 | };
|
---|
418 |
|
---|
419 | /* Some macros for user access to dfa internals. */
|
---|
420 |
|
---|
421 | /* ACCEPTING returns true if s could possibly be an accepting state of r. */
|
---|
422 | #define ACCEPTING(s, r) ((r).states[s].constraint)
|
---|
423 |
|
---|
424 | /* ACCEPTS_IN_CONTEXT returns true if the given state accepts in the
|
---|
425 | specified context. */
|
---|
426 | #define ACCEPTS_IN_CONTEXT(prev, curr, state, dfa) \
|
---|
427 | SUCCEEDS_IN_CONTEXT ((dfa).states[state].constraint, prev, curr)
|
---|
428 |
|
---|
429 | static void dfamust (struct dfa *dfa);
|
---|
430 | static void regexp (void);
|
---|
431 |
|
---|
432 | /* These two macros are identical to the ones in gnulib's xalloc.h,
|
---|
433 | except that they not to case the result to "(t *)", and thus may
|
---|
434 | be used via type-free CALLOC and MALLOC macros. */
|
---|
435 | #undef XNMALLOC
|
---|
436 | #undef XCALLOC
|
---|
437 |
|
---|
438 | /* Allocate memory for N elements of type T, with error checking. */
|
---|
439 | /* extern t *XNMALLOC (size_t n, typename t); */
|
---|
440 | # define XNMALLOC(n, t) \
|
---|
441 | (sizeof (t) == 1 ? xmalloc (n) : xnmalloc (n, sizeof (t)))
|
---|
442 |
|
---|
443 | /* Allocate memory for N elements of type T, with error checking,
|
---|
444 | and zero it. */
|
---|
445 | /* extern t *XCALLOC (size_t n, typename t); */
|
---|
446 | # define XCALLOC(n, t) \
|
---|
447 | (sizeof (t) == 1 ? xzalloc (n) : xcalloc (n, sizeof (t)))
|
---|
448 |
|
---|
449 | #define CALLOC(p, n) do { (p) = XCALLOC (n, *(p)); } while (0)
|
---|
450 | #define MALLOC(p, n) do { (p) = XNMALLOC (n, *(p)); } while (0)
|
---|
451 | #define REALLOC(p, n) do {(p) = xnrealloc (p, n, sizeof (*(p))); } while (0)
|
---|
452 |
|
---|
453 | /* Reallocate an array of type *P if N_ALLOC is <= N_REQUIRED. */
|
---|
454 | #define REALLOC_IF_NECESSARY(p, n_alloc, n_required) \
|
---|
455 | do \
|
---|
456 | { \
|
---|
457 | if ((n_alloc) <= (n_required)) \
|
---|
458 | { \
|
---|
459 | size_t new_n_alloc = (n_required) + !(p); \
|
---|
460 | (p) = x2nrealloc (p, &new_n_alloc, sizeof (*(p))); \
|
---|
461 | (n_alloc) = new_n_alloc; \
|
---|
462 | } \
|
---|
463 | } \
|
---|
464 | while (false)
|
---|
465 |
|
---|
466 |
|
---|
467 | #ifdef DEBUG
|
---|
468 |
|
---|
469 | static void
|
---|
470 | prtok (token t)
|
---|
471 | {
|
---|
472 | char const *s;
|
---|
473 |
|
---|
474 | if (t < 0)
|
---|
475 | fprintf (stderr, "END");
|
---|
476 | else if (t < NOTCHAR)
|
---|
477 | {
|
---|
478 | int ch = t;
|
---|
479 | fprintf (stderr, "%c", ch);
|
---|
480 | }
|
---|
481 | else
|
---|
482 | {
|
---|
483 | switch (t)
|
---|
484 | {
|
---|
485 | case EMPTY:
|
---|
486 | s = "EMPTY";
|
---|
487 | break;
|
---|
488 | case BACKREF:
|
---|
489 | s = "BACKREF";
|
---|
490 | break;
|
---|
491 | case BEGLINE:
|
---|
492 | s = "BEGLINE";
|
---|
493 | break;
|
---|
494 | case ENDLINE:
|
---|
495 | s = "ENDLINE";
|
---|
496 | break;
|
---|
497 | case BEGWORD:
|
---|
498 | s = "BEGWORD";
|
---|
499 | break;
|
---|
500 | case ENDWORD:
|
---|
501 | s = "ENDWORD";
|
---|
502 | break;
|
---|
503 | case LIMWORD:
|
---|
504 | s = "LIMWORD";
|
---|
505 | break;
|
---|
506 | case NOTLIMWORD:
|
---|
507 | s = "NOTLIMWORD";
|
---|
508 | break;
|
---|
509 | case QMARK:
|
---|
510 | s = "QMARK";
|
---|
511 | break;
|
---|
512 | case STAR:
|
---|
513 | s = "STAR";
|
---|
514 | break;
|
---|
515 | case PLUS:
|
---|
516 | s = "PLUS";
|
---|
517 | break;
|
---|
518 | case CAT:
|
---|
519 | s = "CAT";
|
---|
520 | break;
|
---|
521 | case OR:
|
---|
522 | s = "OR";
|
---|
523 | break;
|
---|
524 | case LPAREN:
|
---|
525 | s = "LPAREN";
|
---|
526 | break;
|
---|
527 | case RPAREN:
|
---|
528 | s = "RPAREN";
|
---|
529 | break;
|
---|
530 | case ANYCHAR:
|
---|
531 | s = "ANYCHAR";
|
---|
532 | break;
|
---|
533 | case MBCSET:
|
---|
534 | s = "MBCSET";
|
---|
535 | break;
|
---|
536 | default:
|
---|
537 | s = "CSET";
|
---|
538 | break;
|
---|
539 | }
|
---|
540 | fprintf (stderr, "%s", s);
|
---|
541 | }
|
---|
542 | }
|
---|
543 | #endif /* DEBUG */
|
---|
544 |
|
---|
545 | /* Stuff pertaining to charclasses. */
|
---|
546 |
|
---|
547 | static int
|
---|
548 | tstbit (unsigned int b, charclass const c)
|
---|
549 | {
|
---|
550 | return c[b / INTBITS] & 1 << b % INTBITS;
|
---|
551 | }
|
---|
552 |
|
---|
553 | static void
|
---|
554 | setbit (unsigned int b, charclass c)
|
---|
555 | {
|
---|
556 | c[b / INTBITS] |= 1 << b % INTBITS;
|
---|
557 | }
|
---|
558 |
|
---|
559 | static void
|
---|
560 | clrbit (unsigned int b, charclass c)
|
---|
561 | {
|
---|
562 | c[b / INTBITS] &= ~(1 << b % INTBITS);
|
---|
563 | }
|
---|
564 |
|
---|
565 | static void
|
---|
566 | copyset (charclass const src, charclass dst)
|
---|
567 | {
|
---|
568 | memcpy (dst, src, sizeof (charclass));
|
---|
569 | }
|
---|
570 |
|
---|
571 | static void
|
---|
572 | zeroset (charclass s)
|
---|
573 | {
|
---|
574 | memset (s, 0, sizeof (charclass));
|
---|
575 | }
|
---|
576 |
|
---|
577 | static void
|
---|
578 | notset (charclass s)
|
---|
579 | {
|
---|
580 | int i;
|
---|
581 |
|
---|
582 | for (i = 0; i < CHARCLASS_INTS; ++i)
|
---|
583 | s[i] = ~s[i];
|
---|
584 | }
|
---|
585 |
|
---|
586 | static int
|
---|
587 | equal (charclass const s1, charclass const s2)
|
---|
588 | {
|
---|
589 | return memcmp (s1, s2, sizeof (charclass)) == 0;
|
---|
590 | }
|
---|
591 |
|
---|
592 | /* A pointer to the current dfa is kept here during parsing. */
|
---|
593 | static struct dfa *dfa;
|
---|
594 |
|
---|
595 | /* Find the index of charclass s in dfa->charclasses, or allocate a new charclass. */
|
---|
596 | static size_t
|
---|
597 | charclass_index (charclass const s)
|
---|
598 | {
|
---|
599 | size_t i;
|
---|
600 |
|
---|
601 | for (i = 0; i < dfa->cindex; ++i)
|
---|
602 | if (equal (s, dfa->charclasses[i]))
|
---|
603 | return i;
|
---|
604 | REALLOC_IF_NECESSARY (dfa->charclasses, dfa->calloc, dfa->cindex + 1);
|
---|
605 | ++dfa->cindex;
|
---|
606 | copyset (s, dfa->charclasses[i]);
|
---|
607 | return i;
|
---|
608 | }
|
---|
609 |
|
---|
610 | /* Syntax bits controlling the behavior of the lexical analyzer. */
|
---|
611 | static reg_syntax_t syntax_bits, syntax_bits_set;
|
---|
612 |
|
---|
613 | /* Flag for case-folding letters into sets. */
|
---|
614 | static int case_fold;
|
---|
615 |
|
---|
616 | /* End-of-line byte in data. */
|
---|
617 | static unsigned char eolbyte;
|
---|
618 |
|
---|
619 | /* Cache of char-context values. */
|
---|
620 | static int sbit[NOTCHAR];
|
---|
621 |
|
---|
622 | /* Set of characters considered letters. */
|
---|
623 | static charclass letters;
|
---|
624 |
|
---|
625 | /* Set of characters that are newline. */
|
---|
626 | static charclass newline;
|
---|
627 |
|
---|
628 | /* Add this to the test for whether a byte is word-constituent, since on
|
---|
629 | BSD-based systems, many values in the 128..255 range are classified as
|
---|
630 | alphabetic, while on glibc-based systems, they are not. */
|
---|
631 | #ifdef __GLIBC__
|
---|
632 | # define is_valid_unibyte_character(c) 1
|
---|
633 | #else
|
---|
634 | # define is_valid_unibyte_character(c) (! (MBS_SUPPORT && btowc (c) == WEOF))
|
---|
635 | #endif
|
---|
636 |
|
---|
637 | /* Return non-zero if C is a 'word-constituent' byte; zero otherwise. */
|
---|
638 | #define IS_WORD_CONSTITUENT(C) \
|
---|
639 | (is_valid_unibyte_character (C) && (isalnum (C) || (C) == '_'))
|
---|
640 |
|
---|
641 | static int
|
---|
642 | char_context (unsigned char c)
|
---|
643 | {
|
---|
644 | if (c == eolbyte || c == 0)
|
---|
645 | return CTX_NEWLINE;
|
---|
646 | if (IS_WORD_CONSTITUENT (c))
|
---|
647 | return CTX_LETTER;
|
---|
648 | return CTX_NONE;
|
---|
649 | }
|
---|
650 |
|
---|
651 | static int
|
---|
652 | wchar_context (wint_t wc)
|
---|
653 | {
|
---|
654 | if (wc == (wchar_t) eolbyte || wc == 0)
|
---|
655 | return CTX_NEWLINE;
|
---|
656 | if (wc == L'_' || iswalnum (wc))
|
---|
657 | return CTX_LETTER;
|
---|
658 | return CTX_NONE;
|
---|
659 | }
|
---|
660 |
|
---|
661 | /* Entry point to set syntax options. */
|
---|
662 | void
|
---|
663 | dfasyntax (reg_syntax_t bits, int fold, unsigned char eol)
|
---|
664 | {
|
---|
665 | unsigned int i;
|
---|
666 |
|
---|
667 | syntax_bits_set = 1;
|
---|
668 | syntax_bits = bits;
|
---|
669 | case_fold = fold;
|
---|
670 | eolbyte = eol;
|
---|
671 |
|
---|
672 | for (i = 0; i < NOTCHAR; ++i)
|
---|
673 | {
|
---|
674 | sbit[i] = char_context (i);
|
---|
675 | switch (sbit[i])
|
---|
676 | {
|
---|
677 | case CTX_LETTER:
|
---|
678 | setbit (i, letters);
|
---|
679 | break;
|
---|
680 | case CTX_NEWLINE:
|
---|
681 | setbit (i, newline);
|
---|
682 | break;
|
---|
683 | }
|
---|
684 | }
|
---|
685 | }
|
---|
686 |
|
---|
687 | /* Set a bit in the charclass for the given wchar_t. Do nothing if WC
|
---|
688 | is represented by a multi-byte sequence. Even for MB_CUR_MAX == 1,
|
---|
689 | this may happen when folding case in weird Turkish locales where
|
---|
690 | dotless i/dotted I are not included in the chosen character set.
|
---|
691 | Return whether a bit was set in the charclass. */
|
---|
692 | #if MBS_SUPPORT
|
---|
693 | static bool
|
---|
694 | setbit_wc (wint_t wc, charclass c)
|
---|
695 | {
|
---|
696 | int b = wctob (wc);
|
---|
697 | if (b == EOF)
|
---|
698 | return false;
|
---|
699 |
|
---|
700 | setbit (b, c);
|
---|
701 | return true;
|
---|
702 | }
|
---|
703 |
|
---|
704 | /* Set a bit in the charclass for the given single byte character,
|
---|
705 | if it is valid in the current character set. */
|
---|
706 | static void
|
---|
707 | setbit_c (int b, charclass c)
|
---|
708 | {
|
---|
709 | /* Do nothing if b is invalid in this character set. */
|
---|
710 | if (MB_CUR_MAX > 1 && btowc (b) == WEOF)
|
---|
711 | return;
|
---|
712 | setbit (b, c);
|
---|
713 | }
|
---|
714 | #else
|
---|
715 | # define setbit_c setbit
|
---|
716 | static inline bool
|
---|
717 | setbit_wc (wint_t wc, charclass c)
|
---|
718 | {
|
---|
719 | abort ();
|
---|
720 | /*NOTREACHED*/ return false;
|
---|
721 | }
|
---|
722 | #endif
|
---|
723 |
|
---|
724 | /* Like setbit_c, but if case is folded, set both cases of a letter. For
|
---|
725 | MB_CUR_MAX > 1, the resulting charset is only used as an optimization,
|
---|
726 | and the caller takes care of setting the appropriate field of struct
|
---|
727 | mb_char_classes. */
|
---|
728 | static void
|
---|
729 | setbit_case_fold_c (int b, charclass c)
|
---|
730 | {
|
---|
731 | if (MB_CUR_MAX > 1)
|
---|
732 | {
|
---|
733 | wint_t wc = btowc (b);
|
---|
734 | if (wc == WEOF)
|
---|
735 | return;
|
---|
736 | setbit (b, c);
|
---|
737 | if (case_fold && iswalpha (wc))
|
---|
738 | setbit_wc (iswupper (wc) ? towlower (wc) : towupper (wc), c);
|
---|
739 | }
|
---|
740 | else
|
---|
741 | {
|
---|
742 | setbit (b, c);
|
---|
743 | if (case_fold && isalpha (b))
|
---|
744 | setbit_c (isupper (b) ? tolower (b) : toupper (b), c);
|
---|
745 | }
|
---|
746 | }
|
---|
747 |
|
---|
748 |
|
---|
749 |
|
---|
750 | /* UTF-8 encoding allows some optimizations that we can't otherwise
|
---|
751 | assume in a multibyte encoding. */
|
---|
752 | static inline int
|
---|
753 | using_utf8 (void)
|
---|
754 | {
|
---|
755 | static int utf8 = -1;
|
---|
756 | if (utf8 == -1)
|
---|
757 | {
|
---|
758 | #if defined HAVE_LANGINFO_CODESET && MBS_SUPPORT
|
---|
759 | utf8 = (STREQ (nl_langinfo (CODESET), "UTF-8"));
|
---|
760 | #else
|
---|
761 | utf8 = 0;
|
---|
762 | #endif
|
---|
763 | }
|
---|
764 |
|
---|
765 | return utf8;
|
---|
766 | }
|
---|
767 |
|
---|
768 | /* Lexical analyzer. All the dross that deals with the obnoxious
|
---|
769 | GNU Regex syntax bits is located here. The poor, suffering
|
---|
770 | reader is referred to the GNU Regex documentation for the
|
---|
771 | meaning of the @#%!@#%^!@ syntax bits. */
|
---|
772 |
|
---|
773 | static char const *lexptr; /* Pointer to next input character. */
|
---|
774 | static size_t lexleft; /* Number of characters remaining. */
|
---|
775 | static token lasttok; /* Previous token returned; initially END. */
|
---|
776 | static int laststart; /* True if we're separated from beginning or (, |
|
---|
777 | only by zero-width characters. */
|
---|
778 | static size_t parens; /* Count of outstanding left parens. */
|
---|
779 | static int minrep, maxrep; /* Repeat counts for {m,n}. */
|
---|
780 | static int hard_LC_COLLATE; /* Nonzero if LC_COLLATE is hard. */
|
---|
781 |
|
---|
782 | static int cur_mb_len = 1; /* Length of the multibyte representation of
|
---|
783 | wctok. */
|
---|
784 | /* These variables are used only if (MB_CUR_MAX > 1). */
|
---|
785 | static mbstate_t mbs; /* Mbstate for mbrlen(). */
|
---|
786 | static wchar_t wctok; /* Wide character representation of the current
|
---|
787 | multibyte character. */
|
---|
788 | static unsigned char *mblen_buf; /* Correspond to the input buffer in dfaexec().
|
---|
789 | Each element store the amount of remain
|
---|
790 | byte of corresponding multibyte character
|
---|
791 | in the input string. A element's value
|
---|
792 | is 0 if corresponding character is a
|
---|
793 | single byte character.
|
---|
794 | e.g. input : 'a', <mb(0)>, <mb(1)>, <mb(2)>
|
---|
795 | mblen_buf : 0, 3, 2, 1
|
---|
796 | */
|
---|
797 | static wchar_t *inputwcs; /* Wide character representation of input
|
---|
798 | string in dfaexec().
|
---|
799 | The length of this array is same as
|
---|
800 | the length of input string(char array).
|
---|
801 | inputstring[i] is a single-byte char,
|
---|
802 | or 1st byte of a multibyte char.
|
---|
803 | And inputwcs[i] is the codepoint. */
|
---|
804 | static unsigned char const *buf_begin; /* reference to begin in dfaexec(). */
|
---|
805 | static unsigned char const *buf_end; /* reference to end in dfaexec(). */
|
---|
806 |
|
---|
807 |
|
---|
808 | #if MBS_SUPPORT
|
---|
809 | /* Note that characters become unsigned here. */
|
---|
810 | # define FETCH_WC(c, wc, eoferr) \
|
---|
811 | do { \
|
---|
812 | if (! lexleft) \
|
---|
813 | { \
|
---|
814 | if ((eoferr) != 0) \
|
---|
815 | dfaerror (eoferr); \
|
---|
816 | else \
|
---|
817 | return lasttok = END; \
|
---|
818 | } \
|
---|
819 | else \
|
---|
820 | { \
|
---|
821 | wchar_t _wc; \
|
---|
822 | cur_mb_len = mbrtowc (&_wc, lexptr, lexleft, &mbs); \
|
---|
823 | if (cur_mb_len <= 0) \
|
---|
824 | { \
|
---|
825 | cur_mb_len = 1; \
|
---|
826 | --lexleft; \
|
---|
827 | (wc) = (c) = to_uchar (*lexptr++); \
|
---|
828 | } \
|
---|
829 | else \
|
---|
830 | { \
|
---|
831 | lexptr += cur_mb_len; \
|
---|
832 | lexleft -= cur_mb_len; \
|
---|
833 | (wc) = _wc; \
|
---|
834 | (c) = wctob (wc); \
|
---|
835 | } \
|
---|
836 | } \
|
---|
837 | } while(0)
|
---|
838 |
|
---|
839 | # define FETCH(c, eoferr) \
|
---|
840 | do { \
|
---|
841 | wint_t wc; \
|
---|
842 | FETCH_WC (c, wc, eoferr); \
|
---|
843 | } while (0)
|
---|
844 |
|
---|
845 | #else
|
---|
846 | /* Note that characters become unsigned here. */
|
---|
847 | # define FETCH(c, eoferr) \
|
---|
848 | do { \
|
---|
849 | if (! lexleft) \
|
---|
850 | { \
|
---|
851 | if ((eoferr) != 0) \
|
---|
852 | dfaerror (eoferr); \
|
---|
853 | else \
|
---|
854 | return lasttok = END; \
|
---|
855 | } \
|
---|
856 | (c) = to_uchar (*lexptr++); \
|
---|
857 | --lexleft; \
|
---|
858 | } while(0)
|
---|
859 |
|
---|
860 | # define FETCH_WC(c, unused, eoferr) FETCH (c, eoferr)
|
---|
861 |
|
---|
862 | #endif /* MBS_SUPPORT */
|
---|
863 |
|
---|
864 | #ifndef MIN
|
---|
865 | # define MIN(a,b) ((a) < (b) ? (a) : (b))
|
---|
866 | #endif
|
---|
867 |
|
---|
868 | typedef int predicate (int);
|
---|
869 |
|
---|
870 | /* The following list maps the names of the Posix named character classes
|
---|
871 | to predicate functions that determine whether a given character is in
|
---|
872 | the class. The leading [ has already been eaten by the lexical analyzer. */
|
---|
873 | struct dfa_ctype
|
---|
874 | {
|
---|
875 | const char *name;
|
---|
876 | predicate *func;
|
---|
877 | bool single_byte_only;
|
---|
878 | };
|
---|
879 |
|
---|
880 | static const struct dfa_ctype prednames[] = {
|
---|
881 | {"alpha", isalpha, false},
|
---|
882 | {"upper", isupper, false},
|
---|
883 | {"lower", islower, false},
|
---|
884 | {"digit", isdigit, true},
|
---|
885 | {"xdigit", isxdigit, true},
|
---|
886 | {"space", isspace, false},
|
---|
887 | {"punct", ispunct, false},
|
---|
888 | {"alnum", isalnum, false},
|
---|
889 | {"print", isprint, false},
|
---|
890 | {"graph", isgraph, false},
|
---|
891 | {"cntrl", iscntrl, false},
|
---|
892 | {"blank", isblank, false},
|
---|
893 | {NULL, NULL, false}
|
---|
894 | };
|
---|
895 |
|
---|
896 | static const struct dfa_ctype *_GL_ATTRIBUTE_PURE
|
---|
897 | find_pred (const char *str)
|
---|
898 | {
|
---|
899 | unsigned int i;
|
---|
900 | for (i = 0; prednames[i].name; ++i)
|
---|
901 | if (STREQ (str, prednames[i].name))
|
---|
902 | break;
|
---|
903 |
|
---|
904 | return &prednames[i];
|
---|
905 | }
|
---|
906 |
|
---|
907 | /* Multibyte character handling sub-routine for lex.
|
---|
908 | This function parse a bracket expression and build a struct
|
---|
909 | mb_char_classes. */
|
---|
910 | static token
|
---|
911 | parse_bracket_exp (void)
|
---|
912 | {
|
---|
913 | int invert;
|
---|
914 | int c, c1, c2;
|
---|
915 | charclass ccl;
|
---|
916 |
|
---|
917 | /* Used to warn about [:space:].
|
---|
918 | Bit 0 = first character is a colon.
|
---|
919 | Bit 1 = last character is a colon.
|
---|
920 | Bit 2 = includes any other character but a colon.
|
---|
921 | Bit 3 = includes ranges, char/equiv classes or collation elements. */
|
---|
922 | int colon_warning_state;
|
---|
923 |
|
---|
924 | wint_t wc;
|
---|
925 | wint_t wc2;
|
---|
926 | wint_t wc1 = 0;
|
---|
927 |
|
---|
928 | /* Work area to build a mb_char_classes. */
|
---|
929 | struct mb_char_classes *work_mbc;
|
---|
930 | size_t chars_al, range_sts_al, range_ends_al, ch_classes_al,
|
---|
931 | equivs_al, coll_elems_al;
|
---|
932 |
|
---|
933 | chars_al = 0;
|
---|
934 | range_sts_al = range_ends_al = 0;
|
---|
935 | ch_classes_al = equivs_al = coll_elems_al = 0;
|
---|
936 | if (MB_CUR_MAX > 1)
|
---|
937 | {
|
---|
938 | REALLOC_IF_NECESSARY (dfa->mbcsets, dfa->mbcsets_alloc,
|
---|
939 | dfa->nmbcsets + 1);
|
---|
940 |
|
---|
941 | /* dfa->multibyte_prop[] hold the index of dfa->mbcsets.
|
---|
942 | We will update dfa->multibyte_prop[] in addtok(), because we can't
|
---|
943 | decide the index in dfa->tokens[]. */
|
---|
944 |
|
---|
945 | /* Initialize work area. */
|
---|
946 | work_mbc = &(dfa->mbcsets[dfa->nmbcsets++]);
|
---|
947 | memset (work_mbc, 0, sizeof *work_mbc);
|
---|
948 | }
|
---|
949 | else
|
---|
950 | work_mbc = NULL;
|
---|
951 |
|
---|
952 | memset (ccl, 0, sizeof ccl);
|
---|
953 | FETCH_WC (c, wc, _("unbalanced ["));
|
---|
954 | if (c == '^')
|
---|
955 | {
|
---|
956 | FETCH_WC (c, wc, _("unbalanced ["));
|
---|
957 | invert = 1;
|
---|
958 | }
|
---|
959 | else
|
---|
960 | invert = 0;
|
---|
961 |
|
---|
962 | colon_warning_state = (c == ':');
|
---|
963 | do
|
---|
964 | {
|
---|
965 | c1 = EOF; /* mark c1 is not initialized". */
|
---|
966 | colon_warning_state &= ~2;
|
---|
967 |
|
---|
968 | /* Note that if we're looking at some other [:...:] construct,
|
---|
969 | we just treat it as a bunch of ordinary characters. We can do
|
---|
970 | this because we assume regex has checked for syntax errors before
|
---|
971 | dfa is ever called. */
|
---|
972 | if (c == '[' && (syntax_bits & RE_CHAR_CLASSES))
|
---|
973 | {
|
---|
974 | #define BRACKET_BUFFER_SIZE 128
|
---|
975 | char str[BRACKET_BUFFER_SIZE];
|
---|
976 | FETCH_WC (c1, wc1, _("unbalanced ["));
|
---|
977 |
|
---|
978 | /* If pattern contains `[[:', `[[.', or `[[='. */
|
---|
979 | if (c1 == ':'
|
---|
980 | /* TODO: handle `[[.' and `[[=' also for MB_CUR_MAX == 1. */
|
---|
981 | || (MB_CUR_MAX > 1 && (c1 == '.' || c1 == '=')))
|
---|
982 | {
|
---|
983 | size_t len = 0;
|
---|
984 | for (;;)
|
---|
985 | {
|
---|
986 | FETCH_WC (c, wc, _("unbalanced ["));
|
---|
987 | if ((c == c1 && *lexptr == ']') || lexleft == 0)
|
---|
988 | break;
|
---|
989 | if (len < BRACKET_BUFFER_SIZE)
|
---|
990 | str[len++] = c;
|
---|
991 | else
|
---|
992 | /* This is in any case an invalid class name. */
|
---|
993 | str[0] = '\0';
|
---|
994 | }
|
---|
995 | str[len] = '\0';
|
---|
996 |
|
---|
997 | /* Fetch bracket. */
|
---|
998 | FETCH_WC (c, wc, _("unbalanced ["));
|
---|
999 | if (c1 == ':')
|
---|
1000 | /* build character class. */
|
---|
1001 | {
|
---|
1002 | char const *class
|
---|
1003 | = (case_fold && (STREQ (str, "upper")
|
---|
1004 | || STREQ (str, "lower")) ? "alpha" : str);
|
---|
1005 | const struct dfa_ctype *pred = find_pred (class);
|
---|
1006 | if (!pred)
|
---|
1007 | dfaerror (_("invalid character class"));
|
---|
1008 |
|
---|
1009 | if (MB_CUR_MAX > 1 && !pred->single_byte_only)
|
---|
1010 | {
|
---|
1011 | /* Store the character class as wctype_t. */
|
---|
1012 | wctype_t wt = wctype (class);
|
---|
1013 |
|
---|
1014 | REALLOC_IF_NECESSARY (work_mbc->ch_classes,
|
---|
1015 | ch_classes_al,
|
---|
1016 | work_mbc->nch_classes + 1);
|
---|
1017 | work_mbc->ch_classes[work_mbc->nch_classes++] = wt;
|
---|
1018 | }
|
---|
1019 |
|
---|
1020 | for (c2 = 0; c2 < NOTCHAR; ++c2)
|
---|
1021 | if (pred->func (c2))
|
---|
1022 | setbit_case_fold_c (c2, ccl);
|
---|
1023 | }
|
---|
1024 |
|
---|
1025 | else if (MBS_SUPPORT && (c1 == '=' || c1 == '.'))
|
---|
1026 | {
|
---|
1027 | char *elem = xmemdup (str, len + 1);
|
---|
1028 |
|
---|
1029 | if (c1 == '=')
|
---|
1030 | /* build equivalence class. */
|
---|
1031 | {
|
---|
1032 | REALLOC_IF_NECESSARY (work_mbc->equivs,
|
---|
1033 | equivs_al, work_mbc->nequivs + 1);
|
---|
1034 | work_mbc->equivs[work_mbc->nequivs++] = elem;
|
---|
1035 | }
|
---|
1036 |
|
---|
1037 | if (c1 == '.')
|
---|
1038 | /* build collating element. */
|
---|
1039 | {
|
---|
1040 | REALLOC_IF_NECESSARY (work_mbc->coll_elems,
|
---|
1041 | coll_elems_al,
|
---|
1042 | work_mbc->ncoll_elems + 1);
|
---|
1043 | work_mbc->coll_elems[work_mbc->ncoll_elems++] = elem;
|
---|
1044 | }
|
---|
1045 | }
|
---|
1046 | colon_warning_state |= 8;
|
---|
1047 |
|
---|
1048 | /* Fetch new lookahead character. */
|
---|
1049 | FETCH_WC (c1, wc1, _("unbalanced ["));
|
---|
1050 | continue;
|
---|
1051 | }
|
---|
1052 |
|
---|
1053 | /* We treat '[' as a normal character here. c/c1/wc/wc1
|
---|
1054 | are already set up. */
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 | if (c == '\\' && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
|
---|
1058 | FETCH_WC (c, wc, _("unbalanced ["));
|
---|
1059 |
|
---|
1060 | if (c1 == EOF)
|
---|
1061 | FETCH_WC (c1, wc1, _("unbalanced ["));
|
---|
1062 |
|
---|
1063 | if (c1 == '-')
|
---|
1064 | /* build range characters. */
|
---|
1065 | {
|
---|
1066 | FETCH_WC (c2, wc2, _("unbalanced ["));
|
---|
1067 | if (c2 == ']')
|
---|
1068 | {
|
---|
1069 | /* In the case [x-], the - is an ordinary hyphen,
|
---|
1070 | which is left in c1, the lookahead character. */
|
---|
1071 | lexptr -= cur_mb_len;
|
---|
1072 | lexleft += cur_mb_len;
|
---|
1073 | }
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 | if (c1 == '-' && c2 != ']')
|
---|
1077 | {
|
---|
1078 | if (c2 == '\\' && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
|
---|
1079 | FETCH_WC (c2, wc2, _("unbalanced ["));
|
---|
1080 |
|
---|
1081 | if (MB_CUR_MAX > 1)
|
---|
1082 | {
|
---|
1083 | /* When case folding map a range, say [m-z] (or even [M-z])
|
---|
1084 | to the pair of ranges, [m-z] [M-Z]. */
|
---|
1085 | REALLOC_IF_NECESSARY (work_mbc->range_sts,
|
---|
1086 | range_sts_al, work_mbc->nranges + 1);
|
---|
1087 | REALLOC_IF_NECESSARY (work_mbc->range_ends,
|
---|
1088 | range_ends_al, work_mbc->nranges + 1);
|
---|
1089 | work_mbc->range_sts[work_mbc->nranges] =
|
---|
1090 | case_fold ? towlower (wc) : (wchar_t) wc;
|
---|
1091 | work_mbc->range_ends[work_mbc->nranges++] =
|
---|
1092 | case_fold ? towlower (wc2) : (wchar_t) wc2;
|
---|
1093 |
|
---|
1094 | #ifndef GREP
|
---|
1095 | if (case_fold && (iswalpha (wc) || iswalpha (wc2)))
|
---|
1096 | {
|
---|
1097 | REALLOC_IF_NECESSARY (work_mbc->range_sts,
|
---|
1098 | range_sts_al, work_mbc->nranges + 1);
|
---|
1099 | work_mbc->range_sts[work_mbc->nranges] = towupper (wc);
|
---|
1100 | REALLOC_IF_NECESSARY (work_mbc->range_ends,
|
---|
1101 | range_ends_al, work_mbc->nranges + 1);
|
---|
1102 | work_mbc->range_ends[work_mbc->nranges++] = towupper (wc2);
|
---|
1103 | }
|
---|
1104 | #endif
|
---|
1105 | }
|
---|
1106 | else
|
---|
1107 | {
|
---|
1108 | c1 = c;
|
---|
1109 | if (case_fold)
|
---|
1110 | {
|
---|
1111 | c1 = tolower (c1);
|
---|
1112 | c2 = tolower (c2);
|
---|
1113 | }
|
---|
1114 | if (!hard_LC_COLLATE)
|
---|
1115 | for (c = c1; c <= c2; c++)
|
---|
1116 | setbit_case_fold_c (c, ccl);
|
---|
1117 | else
|
---|
1118 | {
|
---|
1119 | /* Defer to the system regex library about the meaning
|
---|
1120 | of range expressions. */
|
---|
1121 | regex_t re;
|
---|
1122 | char pattern[6] = { '[', c1, '-', c2, ']', 0 };
|
---|
1123 | char subject[2] = { 0, 0 };
|
---|
1124 | regcomp (&re, pattern, REG_NOSUB);
|
---|
1125 | for (c = 0; c < NOTCHAR; ++c)
|
---|
1126 | {
|
---|
1127 | subject[0] = c;
|
---|
1128 | if (!(case_fold && isupper (c))
|
---|
1129 | && regexec (&re, subject, 0, NULL, 0) != REG_NOMATCH)
|
---|
1130 | setbit_case_fold_c (c, ccl);
|
---|
1131 | }
|
---|
1132 | regfree (&re);
|
---|
1133 | }
|
---|
1134 | }
|
---|
1135 |
|
---|
1136 | colon_warning_state |= 8;
|
---|
1137 | FETCH_WC (c1, wc1, _("unbalanced ["));
|
---|
1138 | continue;
|
---|
1139 | }
|
---|
1140 |
|
---|
1141 | colon_warning_state |= (c == ':') ? 2 : 4;
|
---|
1142 |
|
---|
1143 | if (MB_CUR_MAX == 1)
|
---|
1144 | {
|
---|
1145 | setbit_case_fold_c (c, ccl);
|
---|
1146 | continue;
|
---|
1147 | }
|
---|
1148 |
|
---|
1149 | if (case_fold && iswalpha (wc))
|
---|
1150 | {
|
---|
1151 | wc = towlower (wc);
|
---|
1152 | if (!setbit_wc (wc, ccl))
|
---|
1153 | {
|
---|
1154 | REALLOC_IF_NECESSARY (work_mbc->chars, chars_al,
|
---|
1155 | work_mbc->nchars + 1);
|
---|
1156 | work_mbc->chars[work_mbc->nchars++] = wc;
|
---|
1157 | }
|
---|
1158 | #ifdef GREP
|
---|
1159 | continue;
|
---|
1160 | #else
|
---|
1161 | wc = towupper (wc);
|
---|
1162 | #endif
|
---|
1163 | }
|
---|
1164 | if (!setbit_wc (wc, ccl))
|
---|
1165 | {
|
---|
1166 | REALLOC_IF_NECESSARY (work_mbc->chars, chars_al,
|
---|
1167 | work_mbc->nchars + 1);
|
---|
1168 | work_mbc->chars[work_mbc->nchars++] = wc;
|
---|
1169 | }
|
---|
1170 | }
|
---|
1171 | while ((wc = wc1, (c = c1) != ']'));
|
---|
1172 |
|
---|
1173 | if (colon_warning_state == 7)
|
---|
1174 | dfawarn (_("character class syntax is [[:space:]], not [:space:]"));
|
---|
1175 |
|
---|
1176 | if (MB_CUR_MAX > 1)
|
---|
1177 | {
|
---|
1178 | static charclass zeroclass;
|
---|
1179 | work_mbc->invert = invert;
|
---|
1180 | work_mbc->cset = equal (ccl, zeroclass) ? -1 : charclass_index (ccl);
|
---|
1181 | return MBCSET;
|
---|
1182 | }
|
---|
1183 |
|
---|
1184 | if (invert)
|
---|
1185 | {
|
---|
1186 | assert (MB_CUR_MAX == 1);
|
---|
1187 | notset (ccl);
|
---|
1188 | if (syntax_bits & RE_HAT_LISTS_NOT_NEWLINE)
|
---|
1189 | clrbit (eolbyte, ccl);
|
---|
1190 | }
|
---|
1191 |
|
---|
1192 | return CSET + charclass_index (ccl);
|
---|
1193 | }
|
---|
1194 |
|
---|
1195 | static token
|
---|
1196 | lex (void)
|
---|
1197 | {
|
---|
1198 | unsigned int c, c2;
|
---|
1199 | int backslash = 0;
|
---|
1200 | charclass ccl;
|
---|
1201 | int i;
|
---|
1202 |
|
---|
1203 | /* Basic plan: We fetch a character. If it's a backslash,
|
---|
1204 | we set the backslash flag and go through the loop again.
|
---|
1205 | On the plus side, this avoids having a duplicate of the
|
---|
1206 | main switch inside the backslash case. On the minus side,
|
---|
1207 | it means that just about every case begins with
|
---|
1208 | "if (backslash) ...". */
|
---|
1209 | for (i = 0; i < 2; ++i)
|
---|
1210 | {
|
---|
1211 | if (MB_CUR_MAX > 1)
|
---|
1212 | {
|
---|
1213 | FETCH_WC (c, wctok, NULL);
|
---|
1214 | if ((int) c == EOF)
|
---|
1215 | goto normal_char;
|
---|
1216 | }
|
---|
1217 | else
|
---|
1218 | FETCH (c, NULL);
|
---|
1219 |
|
---|
1220 | switch (c)
|
---|
1221 | {
|
---|
1222 | case '\\':
|
---|
1223 | if (backslash)
|
---|
1224 | goto normal_char;
|
---|
1225 | if (lexleft == 0)
|
---|
1226 | dfaerror (_("unfinished \\ escape"));
|
---|
1227 | backslash = 1;
|
---|
1228 | break;
|
---|
1229 |
|
---|
1230 | case '^':
|
---|
1231 | if (backslash)
|
---|
1232 | goto normal_char;
|
---|
1233 | if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS
|
---|
1234 | || lasttok == END || lasttok == LPAREN || lasttok == OR)
|
---|
1235 | return lasttok = BEGLINE;
|
---|
1236 | goto normal_char;
|
---|
1237 |
|
---|
1238 | case '$':
|
---|
1239 | if (backslash)
|
---|
1240 | goto normal_char;
|
---|
1241 | if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS
|
---|
1242 | || lexleft == 0
|
---|
1243 | || (syntax_bits & RE_NO_BK_PARENS
|
---|
1244 | ? lexleft > 0 && *lexptr == ')'
|
---|
1245 | : lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == ')')
|
---|
1246 | || (syntax_bits & RE_NO_BK_VBAR
|
---|
1247 | ? lexleft > 0 && *lexptr == '|'
|
---|
1248 | : lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == '|')
|
---|
1249 | || ((syntax_bits & RE_NEWLINE_ALT)
|
---|
1250 | && lexleft > 0 && *lexptr == '\n'))
|
---|
1251 | return lasttok = ENDLINE;
|
---|
1252 | goto normal_char;
|
---|
1253 |
|
---|
1254 | case '1':
|
---|
1255 | case '2':
|
---|
1256 | case '3':
|
---|
1257 | case '4':
|
---|
1258 | case '5':
|
---|
1259 | case '6':
|
---|
1260 | case '7':
|
---|
1261 | case '8':
|
---|
1262 | case '9':
|
---|
1263 | if (backslash && !(syntax_bits & RE_NO_BK_REFS))
|
---|
1264 | {
|
---|
1265 | laststart = 0;
|
---|
1266 | return lasttok = BACKREF;
|
---|
1267 | }
|
---|
1268 | goto normal_char;
|
---|
1269 |
|
---|
1270 | case '`':
|
---|
1271 | if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
|
---|
1272 | return lasttok = BEGLINE; /* FIXME: should be beginning of string */
|
---|
1273 | goto normal_char;
|
---|
1274 |
|
---|
1275 | case '\'':
|
---|
1276 | if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
|
---|
1277 | return lasttok = ENDLINE; /* FIXME: should be end of string */
|
---|
1278 | goto normal_char;
|
---|
1279 |
|
---|
1280 | case '<':
|
---|
1281 | if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
|
---|
1282 | return lasttok = BEGWORD;
|
---|
1283 | goto normal_char;
|
---|
1284 |
|
---|
1285 | case '>':
|
---|
1286 | if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
|
---|
1287 | return lasttok = ENDWORD;
|
---|
1288 | goto normal_char;
|
---|
1289 |
|
---|
1290 | case 'b':
|
---|
1291 | if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
|
---|
1292 | return lasttok = LIMWORD;
|
---|
1293 | goto normal_char;
|
---|
1294 |
|
---|
1295 | case 'B':
|
---|
1296 | if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
|
---|
1297 | return lasttok = NOTLIMWORD;
|
---|
1298 | goto normal_char;
|
---|
1299 |
|
---|
1300 | case '?':
|
---|
1301 | if (syntax_bits & RE_LIMITED_OPS)
|
---|
1302 | goto normal_char;
|
---|
1303 | if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0))
|
---|
1304 | goto normal_char;
|
---|
1305 | if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
|
---|
1306 | goto normal_char;
|
---|
1307 | return lasttok = QMARK;
|
---|
1308 |
|
---|
1309 | case '*':
|
---|
1310 | if (backslash)
|
---|
1311 | goto normal_char;
|
---|
1312 | if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
|
---|
1313 | goto normal_char;
|
---|
1314 | return lasttok = STAR;
|
---|
1315 |
|
---|
1316 | case '+':
|
---|
1317 | if (syntax_bits & RE_LIMITED_OPS)
|
---|
1318 | goto normal_char;
|
---|
1319 | if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0))
|
---|
1320 | goto normal_char;
|
---|
1321 | if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
|
---|
1322 | goto normal_char;
|
---|
1323 | return lasttok = PLUS;
|
---|
1324 |
|
---|
1325 | case '{':
|
---|
1326 | if (!(syntax_bits & RE_INTERVALS))
|
---|
1327 | goto normal_char;
|
---|
1328 | if (backslash != ((syntax_bits & RE_NO_BK_BRACES) == 0))
|
---|
1329 | goto normal_char;
|
---|
1330 | if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
|
---|
1331 | goto normal_char;
|
---|
1332 |
|
---|
1333 | /* Cases:
|
---|
1334 | {M} - exact count
|
---|
1335 | {M,} - minimum count, maximum is infinity
|
---|
1336 | {,N} - 0 through N
|
---|
1337 | {,} - 0 to infinity (same as '*')
|
---|
1338 | {M,N} - M through N */
|
---|
1339 | {
|
---|
1340 | char const *p = lexptr;
|
---|
1341 | char const *lim = p + lexleft;
|
---|
1342 | minrep = maxrep = -1;
|
---|
1343 | for (; p != lim && ISASCIIDIGIT (*p); p++)
|
---|
1344 | {
|
---|
1345 | if (minrep < 0)
|
---|
1346 | minrep = *p - '0';
|
---|
1347 | else
|
---|
1348 | minrep = MIN (RE_DUP_MAX + 1, minrep * 10 + *p - '0');
|
---|
1349 | }
|
---|
1350 | if (p != lim)
|
---|
1351 | {
|
---|
1352 | if (*p != ',')
|
---|
1353 | maxrep = minrep;
|
---|
1354 | else
|
---|
1355 | {
|
---|
1356 | if (minrep < 0)
|
---|
1357 | minrep = 0;
|
---|
1358 | while (++p != lim && ISASCIIDIGIT (*p))
|
---|
1359 | {
|
---|
1360 | if (maxrep < 0)
|
---|
1361 | maxrep = *p - '0';
|
---|
1362 | else
|
---|
1363 | maxrep = MIN (RE_DUP_MAX + 1, maxrep * 10 + *p - '0');
|
---|
1364 | }
|
---|
1365 | }
|
---|
1366 | }
|
---|
1367 | if (! ((! backslash || (p != lim && *p++ == '\\'))
|
---|
1368 | && p != lim && *p++ == '}'
|
---|
1369 | && 0 <= minrep && (maxrep < 0 || minrep <= maxrep)))
|
---|
1370 | {
|
---|
1371 | if (syntax_bits & RE_INVALID_INTERVAL_ORD)
|
---|
1372 | goto normal_char;
|
---|
1373 | dfaerror (_("Invalid content of \\{\\}"));
|
---|
1374 | }
|
---|
1375 | if (RE_DUP_MAX < maxrep)
|
---|
1376 | dfaerror (_("Regular expression too big"));
|
---|
1377 | lexptr = p;
|
---|
1378 | lexleft = lim - p;
|
---|
1379 | }
|
---|
1380 | laststart = 0;
|
---|
1381 | return lasttok = REPMN;
|
---|
1382 |
|
---|
1383 | case '|':
|
---|
1384 | if (syntax_bits & RE_LIMITED_OPS)
|
---|
1385 | goto normal_char;
|
---|
1386 | if (backslash != ((syntax_bits & RE_NO_BK_VBAR) == 0))
|
---|
1387 | goto normal_char;
|
---|
1388 | laststart = 1;
|
---|
1389 | return lasttok = OR;
|
---|
1390 |
|
---|
1391 | case '\n':
|
---|
1392 | if (syntax_bits & RE_LIMITED_OPS
|
---|
1393 | || backslash || !(syntax_bits & RE_NEWLINE_ALT))
|
---|
1394 | goto normal_char;
|
---|
1395 | laststart = 1;
|
---|
1396 | return lasttok = OR;
|
---|
1397 |
|
---|
1398 | case '(':
|
---|
1399 | if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0))
|
---|
1400 | goto normal_char;
|
---|
1401 | ++parens;
|
---|
1402 | laststart = 1;
|
---|
1403 | return lasttok = LPAREN;
|
---|
1404 |
|
---|
1405 | case ')':
|
---|
1406 | if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0))
|
---|
1407 | goto normal_char;
|
---|
1408 | if (parens == 0 && syntax_bits & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
---|
1409 | goto normal_char;
|
---|
1410 | --parens;
|
---|
1411 | laststart = 0;
|
---|
1412 | return lasttok = RPAREN;
|
---|
1413 |
|
---|
1414 | case '.':
|
---|
1415 | if (backslash)
|
---|
1416 | goto normal_char;
|
---|
1417 | if (MB_CUR_MAX > 1)
|
---|
1418 | {
|
---|
1419 | /* In multibyte environment period must match with a single
|
---|
1420 | character not a byte. So we use ANYCHAR. */
|
---|
1421 | laststart = 0;
|
---|
1422 | return lasttok = ANYCHAR;
|
---|
1423 | }
|
---|
1424 | zeroset (ccl);
|
---|
1425 | notset (ccl);
|
---|
1426 | if (!(syntax_bits & RE_DOT_NEWLINE))
|
---|
1427 | clrbit (eolbyte, ccl);
|
---|
1428 | if (syntax_bits & RE_DOT_NOT_NULL)
|
---|
1429 | clrbit ('\0', ccl);
|
---|
1430 | laststart = 0;
|
---|
1431 | return lasttok = CSET + charclass_index (ccl);
|
---|
1432 |
|
---|
1433 | case 's':
|
---|
1434 | case 'S':
|
---|
1435 | if (!backslash || (syntax_bits & RE_NO_GNU_OPS))
|
---|
1436 | goto normal_char;
|
---|
1437 | zeroset (ccl);
|
---|
1438 | for (c2 = 0; c2 < NOTCHAR; ++c2)
|
---|
1439 | if (isspace (c2))
|
---|
1440 | setbit (c2, ccl);
|
---|
1441 | if (c == 'S')
|
---|
1442 | notset (ccl);
|
---|
1443 | laststart = 0;
|
---|
1444 | return lasttok = CSET + charclass_index (ccl);
|
---|
1445 |
|
---|
1446 | case 'w':
|
---|
1447 | case 'W':
|
---|
1448 | if (!backslash || (syntax_bits & RE_NO_GNU_OPS))
|
---|
1449 | goto normal_char;
|
---|
1450 | zeroset (ccl);
|
---|
1451 | for (c2 = 0; c2 < NOTCHAR; ++c2)
|
---|
1452 | if (IS_WORD_CONSTITUENT (c2))
|
---|
1453 | setbit (c2, ccl);
|
---|
1454 | if (c == 'W')
|
---|
1455 | notset (ccl);
|
---|
1456 | laststart = 0;
|
---|
1457 | return lasttok = CSET + charclass_index (ccl);
|
---|
1458 |
|
---|
1459 | case '[':
|
---|
1460 | if (backslash)
|
---|
1461 | goto normal_char;
|
---|
1462 | laststart = 0;
|
---|
1463 | return lasttok = parse_bracket_exp ();
|
---|
1464 |
|
---|
1465 | default:
|
---|
1466 | normal_char:
|
---|
1467 | laststart = 0;
|
---|
1468 | /* For multibyte character sets, folding is done in atom. Always
|
---|
1469 | return WCHAR. */
|
---|
1470 | if (MB_CUR_MAX > 1)
|
---|
1471 | return lasttok = WCHAR;
|
---|
1472 |
|
---|
1473 | if (case_fold && isalpha (c))
|
---|
1474 | {
|
---|
1475 | zeroset (ccl);
|
---|
1476 | setbit_case_fold_c (c, ccl);
|
---|
1477 | return lasttok = CSET + charclass_index (ccl);
|
---|
1478 | }
|
---|
1479 |
|
---|
1480 | return lasttok = c;
|
---|
1481 | }
|
---|
1482 | }
|
---|
1483 |
|
---|
1484 | /* The above loop should consume at most a backslash
|
---|
1485 | and some other character. */
|
---|
1486 | abort ();
|
---|
1487 | return END; /* keeps pedantic compilers happy. */
|
---|
1488 | }
|
---|
1489 |
|
---|
1490 | /* Recursive descent parser for regular expressions. */
|
---|
1491 |
|
---|
1492 | static token tok; /* Lookahead token. */
|
---|
1493 | static size_t depth; /* Current depth of a hypothetical stack
|
---|
1494 | holding deferred productions. This is
|
---|
1495 | used to determine the depth that will be
|
---|
1496 | required of the real stack later on in
|
---|
1497 | dfaanalyze(). */
|
---|
1498 |
|
---|
1499 | static void
|
---|
1500 | addtok_mb (token t, int mbprop)
|
---|
1501 | {
|
---|
1502 | if (MB_CUR_MAX > 1)
|
---|
1503 | {
|
---|
1504 | REALLOC_IF_NECESSARY (dfa->multibyte_prop, dfa->nmultibyte_prop,
|
---|
1505 | dfa->tindex + 1);
|
---|
1506 | dfa->multibyte_prop[dfa->tindex] = mbprop;
|
---|
1507 | }
|
---|
1508 |
|
---|
1509 | REALLOC_IF_NECESSARY (dfa->tokens, dfa->talloc, dfa->tindex + 1);
|
---|
1510 | dfa->tokens[dfa->tindex++] = t;
|
---|
1511 |
|
---|
1512 | switch (t)
|
---|
1513 | {
|
---|
1514 | case QMARK:
|
---|
1515 | case STAR:
|
---|
1516 | case PLUS:
|
---|
1517 | break;
|
---|
1518 |
|
---|
1519 | case CAT:
|
---|
1520 | case OR:
|
---|
1521 | --depth;
|
---|
1522 | break;
|
---|
1523 |
|
---|
1524 | default:
|
---|
1525 | ++dfa->nleaves;
|
---|
1526 | case EMPTY:
|
---|
1527 | ++depth;
|
---|
1528 | break;
|
---|
1529 | }
|
---|
1530 | if (depth > dfa->depth)
|
---|
1531 | dfa->depth = depth;
|
---|
1532 | }
|
---|
1533 |
|
---|
1534 | static void addtok_wc (wint_t wc);
|
---|
1535 |
|
---|
1536 | /* Add the given token to the parse tree, maintaining the depth count and
|
---|
1537 | updating the maximum depth if necessary. */
|
---|
1538 | static void
|
---|
1539 | addtok (token t)
|
---|
1540 | {
|
---|
1541 | if (MB_CUR_MAX > 1 && t == MBCSET)
|
---|
1542 | {
|
---|
1543 | bool need_or = false;
|
---|
1544 | struct mb_char_classes *work_mbc = &dfa->mbcsets[dfa->nmbcsets - 1];
|
---|
1545 |
|
---|
1546 | /* Extract wide characters into alternations for better performance.
|
---|
1547 | This does not require UTF-8. */
|
---|
1548 | if (!work_mbc->invert)
|
---|
1549 | {
|
---|
1550 | size_t i;
|
---|
1551 | for (i = 0; i < work_mbc->nchars; i++)
|
---|
1552 | {
|
---|
1553 | addtok_wc (work_mbc->chars[i]);
|
---|
1554 | if (need_or)
|
---|
1555 | addtok (OR);
|
---|
1556 | need_or = true;
|
---|
1557 | }
|
---|
1558 | work_mbc->nchars = 0;
|
---|
1559 | }
|
---|
1560 |
|
---|
1561 | /* UTF-8 allows treating a simple, non-inverted MBCSET like a CSET. */
|
---|
1562 | if (work_mbc->invert
|
---|
1563 | || (!using_utf8 () && work_mbc->cset != -1)
|
---|
1564 | || work_mbc->nchars != 0
|
---|
1565 | || work_mbc->nch_classes != 0
|
---|
1566 | || work_mbc->nranges != 0
|
---|
1567 | || work_mbc->nequivs != 0 || work_mbc->ncoll_elems != 0)
|
---|
1568 | {
|
---|
1569 | addtok_mb (MBCSET, ((dfa->nmbcsets - 1) << 2) + 3);
|
---|
1570 | if (need_or)
|
---|
1571 | addtok (OR);
|
---|
1572 | }
|
---|
1573 | else
|
---|
1574 | {
|
---|
1575 | /* Characters have been handled above, so it is possible
|
---|
1576 | that the mbcset is empty now. Do nothing in that case. */
|
---|
1577 | if (work_mbc->cset != -1)
|
---|
1578 | {
|
---|
1579 | assert (using_utf8 ());
|
---|
1580 | addtok (CSET + work_mbc->cset);
|
---|
1581 | if (need_or)
|
---|
1582 | addtok (OR);
|
---|
1583 | }
|
---|
1584 | }
|
---|
1585 | }
|
---|
1586 | else
|
---|
1587 | {
|
---|
1588 | addtok_mb (t, 3);
|
---|
1589 | }
|
---|
1590 | }
|
---|
1591 |
|
---|
1592 | #if MBS_SUPPORT
|
---|
1593 | /* We treat a multibyte character as a single atom, so that DFA
|
---|
1594 | can treat a multibyte character as a single expression.
|
---|
1595 |
|
---|
1596 | e.g. We construct following tree from "<mb1><mb2>".
|
---|
1597 | <mb1(1st-byte)><mb1(2nd-byte)><CAT><mb1(3rd-byte)><CAT>
|
---|
1598 | <mb2(1st-byte)><mb2(2nd-byte)><CAT><mb2(3rd-byte)><CAT><CAT> */
|
---|
1599 | static void
|
---|
1600 | addtok_wc (wint_t wc)
|
---|
1601 | {
|
---|
1602 | unsigned char buf[MB_LEN_MAX];
|
---|
1603 | mbstate_t s;
|
---|
1604 | int i;
|
---|
1605 | memset (&s, 0, sizeof s);
|
---|
1606 | cur_mb_len = wcrtomb ((char *) buf, wc, &s);
|
---|
1607 |
|
---|
1608 | /* This is merely stop-gap. When cur_mb_len is 0 or negative,
|
---|
1609 | buf[0] is undefined, yet skipping the addtok_mb call altogether
|
---|
1610 | can result in heap corruption. */
|
---|
1611 | if (cur_mb_len <= 0)
|
---|
1612 | buf[0] = 0;
|
---|
1613 |
|
---|
1614 | addtok_mb (buf[0], cur_mb_len == 1 ? 3 : 1);
|
---|
1615 | for (i = 1; i < cur_mb_len; i++)
|
---|
1616 | {
|
---|
1617 | addtok_mb (buf[i], i == cur_mb_len - 1 ? 2 : 0);
|
---|
1618 | addtok (CAT);
|
---|
1619 | }
|
---|
1620 | }
|
---|
1621 | #else
|
---|
1622 | static void
|
---|
1623 | addtok_wc (wint_t wc)
|
---|
1624 | {
|
---|
1625 | }
|
---|
1626 | #endif
|
---|
1627 |
|
---|
1628 | static void
|
---|
1629 | add_utf8_anychar (void)
|
---|
1630 | {
|
---|
1631 | #if MBS_SUPPORT
|
---|
1632 | static const charclass utf8_classes[5] = {
|
---|
1633 | {0, 0, 0, 0, ~0, ~0, 0, 0}, /* 80-bf: non-lead bytes */
|
---|
1634 | {~0, ~0, ~0, ~0, 0, 0, 0, 0}, /* 00-7f: 1-byte sequence */
|
---|
1635 | {0, 0, 0, 0, 0, 0, 0xfffffffcU, 0}, /* c2-df: 2-byte sequence */
|
---|
1636 | {0, 0, 0, 0, 0, 0, 0, 0xffff}, /* e0-ef: 3-byte sequence */
|
---|
1637 | {0, 0, 0, 0, 0, 0, 0, 0xff0000} /* f0-f7: 4-byte sequence */
|
---|
1638 | };
|
---|
1639 | const unsigned int n = sizeof (utf8_classes) / sizeof (utf8_classes[0]);
|
---|
1640 | unsigned int i;
|
---|
1641 |
|
---|
1642 | /* Define the five character classes that are needed below. */
|
---|
1643 | if (dfa->utf8_anychar_classes[0] == 0)
|
---|
1644 | for (i = 0; i < n; i++)
|
---|
1645 | {
|
---|
1646 | charclass c;
|
---|
1647 | copyset (utf8_classes[i], c);
|
---|
1648 | if (i == 1)
|
---|
1649 | {
|
---|
1650 | if (!(syntax_bits & RE_DOT_NEWLINE))
|
---|
1651 | clrbit (eolbyte, c);
|
---|
1652 | if (syntax_bits & RE_DOT_NOT_NULL)
|
---|
1653 | clrbit ('\0', c);
|
---|
1654 | }
|
---|
1655 | dfa->utf8_anychar_classes[i] = CSET + charclass_index (c);
|
---|
1656 | }
|
---|
1657 |
|
---|
1658 | /* A valid UTF-8 character is
|
---|
1659 |
|
---|
1660 | ([0x00-0x7f]
|
---|
1661 | |[0xc2-0xdf][0x80-0xbf]
|
---|
1662 | |[0xe0-0xef[0x80-0xbf][0x80-0xbf]
|
---|
1663 | |[0xf0-f7][0x80-0xbf][0x80-0xbf][0x80-0xbf])
|
---|
1664 |
|
---|
1665 | which I'll write more concisely "B|CA|DAA|EAAA". Factor the [0x00-0x7f]
|
---|
1666 | and you get "B|(C|(D|EA)A)A". And since the token buffer is in reverse
|
---|
1667 | Polish notation, you get "B C D E A CAT OR A CAT OR A CAT OR". */
|
---|
1668 | for (i = 1; i < n; i++)
|
---|
1669 | addtok (dfa->utf8_anychar_classes[i]);
|
---|
1670 | while (--i > 1)
|
---|
1671 | {
|
---|
1672 | addtok (dfa->utf8_anychar_classes[0]);
|
---|
1673 | addtok (CAT);
|
---|
1674 | addtok (OR);
|
---|
1675 | }
|
---|
1676 | #endif
|
---|
1677 | }
|
---|
1678 |
|
---|
1679 | /* The grammar understood by the parser is as follows.
|
---|
1680 |
|
---|
1681 | regexp:
|
---|
1682 | regexp OR branch
|
---|
1683 | branch
|
---|
1684 |
|
---|
1685 | branch:
|
---|
1686 | branch closure
|
---|
1687 | closure
|
---|
1688 |
|
---|
1689 | closure:
|
---|
1690 | closure QMARK
|
---|
1691 | closure STAR
|
---|
1692 | closure PLUS
|
---|
1693 | closure REPMN
|
---|
1694 | atom
|
---|
1695 |
|
---|
1696 | atom:
|
---|
1697 | <normal character>
|
---|
1698 | <multibyte character>
|
---|
1699 | ANYCHAR
|
---|
1700 | MBCSET
|
---|
1701 | CSET
|
---|
1702 | BACKREF
|
---|
1703 | BEGLINE
|
---|
1704 | ENDLINE
|
---|
1705 | BEGWORD
|
---|
1706 | ENDWORD
|
---|
1707 | LIMWORD
|
---|
1708 | NOTLIMWORD
|
---|
1709 | LPAREN regexp RPAREN
|
---|
1710 | <empty>
|
---|
1711 |
|
---|
1712 | The parser builds a parse tree in postfix form in an array of tokens. */
|
---|
1713 |
|
---|
1714 | static void
|
---|
1715 | atom (void)
|
---|
1716 | {
|
---|
1717 | if (0)
|
---|
1718 | {
|
---|
1719 | /* empty */
|
---|
1720 | }
|
---|
1721 | else if (MBS_SUPPORT && tok == WCHAR)
|
---|
1722 | {
|
---|
1723 | addtok_wc (case_fold ? towlower (wctok) : wctok);
|
---|
1724 | #ifndef GREP
|
---|
1725 | if (case_fold && iswalpha (wctok))
|
---|
1726 | {
|
---|
1727 | addtok_wc (towupper (wctok));
|
---|
1728 | addtok (OR);
|
---|
1729 | }
|
---|
1730 | #endif
|
---|
1731 |
|
---|
1732 | tok = lex ();
|
---|
1733 | }
|
---|
1734 | else if (MBS_SUPPORT && tok == ANYCHAR && using_utf8 ())
|
---|
1735 | {
|
---|
1736 | /* For UTF-8 expand the period to a series of CSETs that define a valid
|
---|
1737 | UTF-8 character. This avoids using the slow multibyte path. I'm
|
---|
1738 | pretty sure it would be both profitable and correct to do it for
|
---|
1739 | any encoding; however, the optimization must be done manually as
|
---|
1740 | it is done above in add_utf8_anychar. So, let's start with
|
---|
1741 | UTF-8: it is the most used, and the structure of the encoding
|
---|
1742 | makes the correctness more obvious. */
|
---|
1743 | add_utf8_anychar ();
|
---|
1744 | tok = lex ();
|
---|
1745 | }
|
---|
1746 | else if ((tok >= 0 && tok < NOTCHAR) || tok >= CSET || tok == BACKREF
|
---|
1747 | || tok == BEGLINE || tok == ENDLINE || tok == BEGWORD
|
---|
1748 | #if MBS_SUPPORT
|
---|
1749 | || tok == ANYCHAR || tok == MBCSET
|
---|
1750 | #endif /* MBS_SUPPORT */
|
---|
1751 | || tok == ENDWORD || tok == LIMWORD || tok == NOTLIMWORD)
|
---|
1752 | {
|
---|
1753 | addtok (tok);
|
---|
1754 | tok = lex ();
|
---|
1755 | }
|
---|
1756 | else if (tok == LPAREN)
|
---|
1757 | {
|
---|
1758 | tok = lex ();
|
---|
1759 | regexp ();
|
---|
1760 | if (tok != RPAREN)
|
---|
1761 | dfaerror (_("unbalanced ("));
|
---|
1762 | tok = lex ();
|
---|
1763 | }
|
---|
1764 | else
|
---|
1765 | addtok (EMPTY);
|
---|
1766 | }
|
---|
1767 |
|
---|
1768 | /* Return the number of tokens in the given subexpression. */
|
---|
1769 | static size_t _GL_ATTRIBUTE_PURE
|
---|
1770 | nsubtoks (size_t tindex)
|
---|
1771 | {
|
---|
1772 | size_t ntoks1;
|
---|
1773 |
|
---|
1774 | switch (dfa->tokens[tindex - 1])
|
---|
1775 | {
|
---|
1776 | default:
|
---|
1777 | return 1;
|
---|
1778 | case QMARK:
|
---|
1779 | case STAR:
|
---|
1780 | case PLUS:
|
---|
1781 | return 1 + nsubtoks (tindex - 1);
|
---|
1782 | case CAT:
|
---|
1783 | case OR:
|
---|
1784 | ntoks1 = nsubtoks (tindex - 1);
|
---|
1785 | return 1 + ntoks1 + nsubtoks (tindex - 1 - ntoks1);
|
---|
1786 | }
|
---|
1787 | }
|
---|
1788 |
|
---|
1789 | /* Copy the given subexpression to the top of the tree. */
|
---|
1790 | static void
|
---|
1791 | copytoks (size_t tindex, size_t ntokens)
|
---|
1792 | {
|
---|
1793 | size_t i;
|
---|
1794 |
|
---|
1795 | for (i = 0; i < ntokens; ++i)
|
---|
1796 | {
|
---|
1797 | addtok (dfa->tokens[tindex + i]);
|
---|
1798 | /* Update index into multibyte csets. */
|
---|
1799 | if (MB_CUR_MAX > 1 && dfa->tokens[tindex + i] == MBCSET)
|
---|
1800 | dfa->multibyte_prop[dfa->tindex - 1] = dfa->multibyte_prop[tindex + i];
|
---|
1801 | }
|
---|
1802 | }
|
---|
1803 |
|
---|
1804 | static void
|
---|
1805 | closure (void)
|
---|
1806 | {
|
---|
1807 | int i;
|
---|
1808 | size_t tindex, ntokens;
|
---|
1809 |
|
---|
1810 | atom ();
|
---|
1811 | while (tok == QMARK || tok == STAR || tok == PLUS || tok == REPMN)
|
---|
1812 | if (tok == REPMN && (minrep || maxrep))
|
---|
1813 | {
|
---|
1814 | ntokens = nsubtoks (dfa->tindex);
|
---|
1815 | tindex = dfa->tindex - ntokens;
|
---|
1816 | if (maxrep < 0)
|
---|
1817 | addtok (PLUS);
|
---|
1818 | if (minrep == 0)
|
---|
1819 | addtok (QMARK);
|
---|
1820 | for (i = 1; i < minrep; ++i)
|
---|
1821 | {
|
---|
1822 | copytoks (tindex, ntokens);
|
---|
1823 | addtok (CAT);
|
---|
1824 | }
|
---|
1825 | for (; i < maxrep; ++i)
|
---|
1826 | {
|
---|
1827 | copytoks (tindex, ntokens);
|
---|
1828 | addtok (QMARK);
|
---|
1829 | addtok (CAT);
|
---|
1830 | }
|
---|
1831 | tok = lex ();
|
---|
1832 | }
|
---|
1833 | else if (tok == REPMN)
|
---|
1834 | {
|
---|
1835 | dfa->tindex -= nsubtoks (dfa->tindex);
|
---|
1836 | tok = lex ();
|
---|
1837 | closure ();
|
---|
1838 | }
|
---|
1839 | else
|
---|
1840 | {
|
---|
1841 | addtok (tok);
|
---|
1842 | tok = lex ();
|
---|
1843 | }
|
---|
1844 | }
|
---|
1845 |
|
---|
1846 | static void
|
---|
1847 | branch (void)
|
---|
1848 | {
|
---|
1849 | closure ();
|
---|
1850 | while (tok != RPAREN && tok != OR && tok >= 0)
|
---|
1851 | {
|
---|
1852 | closure ();
|
---|
1853 | addtok (CAT);
|
---|
1854 | }
|
---|
1855 | }
|
---|
1856 |
|
---|
1857 | static void
|
---|
1858 | regexp (void)
|
---|
1859 | {
|
---|
1860 | branch ();
|
---|
1861 | while (tok == OR)
|
---|
1862 | {
|
---|
1863 | tok = lex ();
|
---|
1864 | branch ();
|
---|
1865 | addtok (OR);
|
---|
1866 | }
|
---|
1867 | }
|
---|
1868 |
|
---|
1869 | /* Main entry point for the parser. S is a string to be parsed, len is the
|
---|
1870 | length of the string, so s can include NUL characters. D is a pointer to
|
---|
1871 | the struct dfa to parse into. */
|
---|
1872 | void
|
---|
1873 | dfaparse (char const *s, size_t len, struct dfa *d)
|
---|
1874 | {
|
---|
1875 | dfa = d;
|
---|
1876 | lexptr = s;
|
---|
1877 | lexleft = len;
|
---|
1878 | lasttok = END;
|
---|
1879 | laststart = 1;
|
---|
1880 | parens = 0;
|
---|
1881 | #ifdef LC_COLLATE
|
---|
1882 | hard_LC_COLLATE = hard_locale (LC_COLLATE);
|
---|
1883 | #endif
|
---|
1884 | if (MB_CUR_MAX > 1)
|
---|
1885 | {
|
---|
1886 | cur_mb_len = 0;
|
---|
1887 | memset (&mbs, 0, sizeof mbs);
|
---|
1888 | }
|
---|
1889 |
|
---|
1890 | if (!syntax_bits_set)
|
---|
1891 | dfaerror (_("no syntax specified"));
|
---|
1892 |
|
---|
1893 | tok = lex ();
|
---|
1894 | depth = d->depth;
|
---|
1895 |
|
---|
1896 | regexp ();
|
---|
1897 |
|
---|
1898 | if (tok != END)
|
---|
1899 | dfaerror (_("unbalanced )"));
|
---|
1900 |
|
---|
1901 | addtok (END - d->nregexps);
|
---|
1902 | addtok (CAT);
|
---|
1903 |
|
---|
1904 | if (d->nregexps)
|
---|
1905 | addtok (OR);
|
---|
1906 |
|
---|
1907 | ++d->nregexps;
|
---|
1908 | }
|
---|
1909 |
|
---|
1910 | /* Some primitives for operating on sets of positions. */
|
---|
1911 |
|
---|
1912 | /* Copy one set to another; the destination must be large enough. */
|
---|
1913 | static void
|
---|
1914 | copy (position_set const *src, position_set * dst)
|
---|
1915 | {
|
---|
1916 | REALLOC_IF_NECESSARY (dst->elems, dst->alloc, src->nelem);
|
---|
1917 | memcpy (dst->elems, src->elems, sizeof (dst->elems[0]) * src->nelem);
|
---|
1918 | dst->nelem = src->nelem;
|
---|
1919 | }
|
---|
1920 |
|
---|
1921 | static void
|
---|
1922 | alloc_position_set (position_set * s, size_t size)
|
---|
1923 | {
|
---|
1924 | MALLOC (s->elems, size);
|
---|
1925 | s->alloc = size;
|
---|
1926 | s->nelem = 0;
|
---|
1927 | }
|
---|
1928 |
|
---|
1929 | /* Insert position P in set S. S is maintained in sorted order on
|
---|
1930 | decreasing index. If there is already an entry in S with P.index
|
---|
1931 | then merge (logically-OR) P's constraints into the one in S.
|
---|
1932 | S->elems must point to an array large enough to hold the resulting set. */
|
---|
1933 | static void
|
---|
1934 | insert (position p, position_set * s)
|
---|
1935 | {
|
---|
1936 | size_t count = s->nelem;
|
---|
1937 | size_t lo = 0, hi = count;
|
---|
1938 | size_t i;
|
---|
1939 | while (lo < hi)
|
---|
1940 | {
|
---|
1941 | size_t mid = (lo + hi) >> 1;
|
---|
1942 | if (s->elems[mid].index > p.index)
|
---|
1943 | lo = mid + 1;
|
---|
1944 | else
|
---|
1945 | hi = mid;
|
---|
1946 | }
|
---|
1947 |
|
---|
1948 | if (lo < count && p.index == s->elems[lo].index)
|
---|
1949 | {
|
---|
1950 | s->elems[lo].constraint |= p.constraint;
|
---|
1951 | return;
|
---|
1952 | }
|
---|
1953 |
|
---|
1954 | REALLOC_IF_NECESSARY (s->elems, s->alloc, count + 1);
|
---|
1955 | for (i = count; i > lo; i--)
|
---|
1956 | s->elems[i] = s->elems[i - 1];
|
---|
1957 | s->elems[lo] = p;
|
---|
1958 | ++s->nelem;
|
---|
1959 | }
|
---|
1960 |
|
---|
1961 | /* Merge two sets of positions into a third. The result is exactly as if
|
---|
1962 | the positions of both sets were inserted into an initially empty set. */
|
---|
1963 | static void
|
---|
1964 | merge (position_set const *s1, position_set const *s2, position_set * m)
|
---|
1965 | {
|
---|
1966 | size_t i = 0, j = 0;
|
---|
1967 |
|
---|
1968 | REALLOC_IF_NECESSARY (m->elems, m->alloc, s1->nelem + s2->nelem);
|
---|
1969 | m->nelem = 0;
|
---|
1970 | while (i < s1->nelem && j < s2->nelem)
|
---|
1971 | if (s1->elems[i].index > s2->elems[j].index)
|
---|
1972 | m->elems[m->nelem++] = s1->elems[i++];
|
---|
1973 | else if (s1->elems[i].index < s2->elems[j].index)
|
---|
1974 | m->elems[m->nelem++] = s2->elems[j++];
|
---|
1975 | else
|
---|
1976 | {
|
---|
1977 | m->elems[m->nelem] = s1->elems[i++];
|
---|
1978 | m->elems[m->nelem++].constraint |= s2->elems[j++].constraint;
|
---|
1979 | }
|
---|
1980 | while (i < s1->nelem)
|
---|
1981 | m->elems[m->nelem++] = s1->elems[i++];
|
---|
1982 | while (j < s2->nelem)
|
---|
1983 | m->elems[m->nelem++] = s2->elems[j++];
|
---|
1984 | }
|
---|
1985 |
|
---|
1986 | /* Delete a position from a set. */
|
---|
1987 | static void
|
---|
1988 | delete (position p, position_set * s)
|
---|
1989 | {
|
---|
1990 | size_t i;
|
---|
1991 |
|
---|
1992 | for (i = 0; i < s->nelem; ++i)
|
---|
1993 | if (p.index == s->elems[i].index)
|
---|
1994 | break;
|
---|
1995 | if (i < s->nelem)
|
---|
1996 | for (--s->nelem; i < s->nelem; ++i)
|
---|
1997 | s->elems[i] = s->elems[i + 1];
|
---|
1998 | }
|
---|
1999 |
|
---|
2000 | /* Find the index of the state corresponding to the given position set with
|
---|
2001 | the given preceding context, or create a new state if there is no such
|
---|
2002 | state. Context tells whether we got here on a newline or letter. */
|
---|
2003 | static state_num
|
---|
2004 | state_index (struct dfa *d, position_set const *s, int context)
|
---|
2005 | {
|
---|
2006 | size_t hash = 0;
|
---|
2007 | int constraint;
|
---|
2008 | state_num i, j;
|
---|
2009 |
|
---|
2010 | for (i = 0; i < s->nelem; ++i)
|
---|
2011 | hash ^= s->elems[i].index + s->elems[i].constraint;
|
---|
2012 |
|
---|
2013 | /* Try to find a state that exactly matches the proposed one. */
|
---|
2014 | for (i = 0; i < d->sindex; ++i)
|
---|
2015 | {
|
---|
2016 | if (hash != d->states[i].hash || s->nelem != d->states[i].elems.nelem
|
---|
2017 | || context != d->states[i].context)
|
---|
2018 | continue;
|
---|
2019 | for (j = 0; j < s->nelem; ++j)
|
---|
2020 | if (s->elems[j].constraint
|
---|
2021 | != d->states[i].elems.elems[j].constraint
|
---|
2022 | || s->elems[j].index != d->states[i].elems.elems[j].index)
|
---|
2023 | break;
|
---|
2024 | if (j == s->nelem)
|
---|
2025 | return i;
|
---|
2026 | }
|
---|
2027 |
|
---|
2028 | /* We'll have to create a new state. */
|
---|
2029 | REALLOC_IF_NECESSARY (d->states, d->salloc, d->sindex + 1);
|
---|
2030 | d->states[i].hash = hash;
|
---|
2031 | alloc_position_set (&d->states[i].elems, s->nelem);
|
---|
2032 | copy (s, &d->states[i].elems);
|
---|
2033 | d->states[i].context = context;
|
---|
2034 | d->states[i].backref = 0;
|
---|
2035 | d->states[i].constraint = 0;
|
---|
2036 | d->states[i].first_end = 0;
|
---|
2037 | if (MBS_SUPPORT)
|
---|
2038 | {
|
---|
2039 | d->states[i].mbps.nelem = 0;
|
---|
2040 | d->states[i].mbps.elems = NULL;
|
---|
2041 | }
|
---|
2042 | for (j = 0; j < s->nelem; ++j)
|
---|
2043 | if (d->tokens[s->elems[j].index] < 0)
|
---|
2044 | {
|
---|
2045 | constraint = s->elems[j].constraint;
|
---|
2046 | if (SUCCEEDS_IN_CONTEXT (constraint, context, CTX_ANY))
|
---|
2047 | d->states[i].constraint |= constraint;
|
---|
2048 | if (!d->states[i].first_end)
|
---|
2049 | d->states[i].first_end = d->tokens[s->elems[j].index];
|
---|
2050 | }
|
---|
2051 | else if (d->tokens[s->elems[j].index] == BACKREF)
|
---|
2052 | {
|
---|
2053 | d->states[i].constraint = NO_CONSTRAINT;
|
---|
2054 | d->states[i].backref = 1;
|
---|
2055 | }
|
---|
2056 |
|
---|
2057 | ++d->sindex;
|
---|
2058 |
|
---|
2059 | return i;
|
---|
2060 | }
|
---|
2061 |
|
---|
2062 | /* Find the epsilon closure of a set of positions. If any position of the set
|
---|
2063 | contains a symbol that matches the empty string in some context, replace
|
---|
2064 | that position with the elements of its follow labeled with an appropriate
|
---|
2065 | constraint. Repeat exhaustively until no funny positions are left.
|
---|
2066 | S->elems must be large enough to hold the result. */
|
---|
2067 | static void
|
---|
2068 | epsclosure (position_set * s, struct dfa const *d)
|
---|
2069 | {
|
---|
2070 | size_t i, j;
|
---|
2071 | char *visited; /* array of booleans, enough to use char, not int */
|
---|
2072 | position p, old;
|
---|
2073 |
|
---|
2074 | CALLOC (visited, d->tindex);
|
---|
2075 |
|
---|
2076 | for (i = 0; i < s->nelem; ++i)
|
---|
2077 | if (d->tokens[s->elems[i].index] >= NOTCHAR
|
---|
2078 | && d->tokens[s->elems[i].index] != BACKREF
|
---|
2079 | #if MBS_SUPPORT
|
---|
2080 | && d->tokens[s->elems[i].index] != ANYCHAR
|
---|
2081 | && d->tokens[s->elems[i].index] != MBCSET
|
---|
2082 | #endif
|
---|
2083 | && d->tokens[s->elems[i].index] < CSET)
|
---|
2084 | {
|
---|
2085 | old = s->elems[i];
|
---|
2086 | p.constraint = old.constraint;
|
---|
2087 | delete (s->elems[i], s);
|
---|
2088 | if (visited[old.index])
|
---|
2089 | {
|
---|
2090 | --i;
|
---|
2091 | continue;
|
---|
2092 | }
|
---|
2093 | visited[old.index] = 1;
|
---|
2094 | switch (d->tokens[old.index])
|
---|
2095 | {
|
---|
2096 | case BEGLINE:
|
---|
2097 | p.constraint &= BEGLINE_CONSTRAINT;
|
---|
2098 | break;
|
---|
2099 | case ENDLINE:
|
---|
2100 | p.constraint &= ENDLINE_CONSTRAINT;
|
---|
2101 | break;
|
---|
2102 | case BEGWORD:
|
---|
2103 | p.constraint &= BEGWORD_CONSTRAINT;
|
---|
2104 | break;
|
---|
2105 | case ENDWORD:
|
---|
2106 | p.constraint &= ENDWORD_CONSTRAINT;
|
---|
2107 | break;
|
---|
2108 | case LIMWORD:
|
---|
2109 | p.constraint &= LIMWORD_CONSTRAINT;
|
---|
2110 | break;
|
---|
2111 | case NOTLIMWORD:
|
---|
2112 | p.constraint &= NOTLIMWORD_CONSTRAINT;
|
---|
2113 | break;
|
---|
2114 | default:
|
---|
2115 | break;
|
---|
2116 | }
|
---|
2117 | for (j = 0; j < d->follows[old.index].nelem; ++j)
|
---|
2118 | {
|
---|
2119 | p.index = d->follows[old.index].elems[j].index;
|
---|
2120 | insert (p, s);
|
---|
2121 | }
|
---|
2122 | /* Force rescan to start at the beginning. */
|
---|
2123 | i = -1;
|
---|
2124 | }
|
---|
2125 |
|
---|
2126 | free (visited);
|
---|
2127 | }
|
---|
2128 |
|
---|
2129 | /* Returns the set of contexts for which there is at least one
|
---|
2130 | character included in C. */
|
---|
2131 |
|
---|
2132 | static int
|
---|
2133 | charclass_context (charclass c)
|
---|
2134 | {
|
---|
2135 | int context = 0;
|
---|
2136 | unsigned int j;
|
---|
2137 |
|
---|
2138 | if (tstbit (eolbyte, c))
|
---|
2139 | context |= CTX_NEWLINE;
|
---|
2140 |
|
---|
2141 | for (j = 0; j < CHARCLASS_INTS; ++j)
|
---|
2142 | {
|
---|
2143 | if (c[j] & letters[j])
|
---|
2144 | context |= CTX_LETTER;
|
---|
2145 | if (c[j] & ~(letters[j] | newline[j]))
|
---|
2146 | context |= CTX_NONE;
|
---|
2147 | }
|
---|
2148 |
|
---|
2149 | return context;
|
---|
2150 | }
|
---|
2151 |
|
---|
2152 | /* Returns the contexts on which the position set S depends. Each context
|
---|
2153 | in the set of returned contexts (let's call it SC) may have a different
|
---|
2154 | follow set than other contexts in SC, and also different from the
|
---|
2155 | follow set of the complement set (sc ^ CTX_ANY). However, all contexts
|
---|
2156 | in the complement set will have the same follow set. */
|
---|
2157 |
|
---|
2158 | static int _GL_ATTRIBUTE_PURE
|
---|
2159 | state_separate_contexts (position_set const *s)
|
---|
2160 | {
|
---|
2161 | int separate_contexts = 0;
|
---|
2162 | size_t j;
|
---|
2163 |
|
---|
2164 | for (j = 0; j < s->nelem; ++j)
|
---|
2165 | {
|
---|
2166 | if (PREV_NEWLINE_DEPENDENT (s->elems[j].constraint))
|
---|
2167 | separate_contexts |= CTX_NEWLINE;
|
---|
2168 | if (PREV_LETTER_DEPENDENT (s->elems[j].constraint))
|
---|
2169 | separate_contexts |= CTX_LETTER;
|
---|
2170 | }
|
---|
2171 |
|
---|
2172 | return separate_contexts;
|
---|
2173 | }
|
---|
2174 |
|
---|
2175 |
|
---|
2176 | /* Perform bottom-up analysis on the parse tree, computing various functions.
|
---|
2177 | Note that at this point, we're pretending constructs like \< are real
|
---|
2178 | characters rather than constraints on what can follow them.
|
---|
2179 |
|
---|
2180 | Nullable: A node is nullable if it is at the root of a regexp that can
|
---|
2181 | match the empty string.
|
---|
2182 | * EMPTY leaves are nullable.
|
---|
2183 | * No other leaf is nullable.
|
---|
2184 | * A QMARK or STAR node is nullable.
|
---|
2185 | * A PLUS node is nullable if its argument is nullable.
|
---|
2186 | * A CAT node is nullable if both its arguments are nullable.
|
---|
2187 | * An OR node is nullable if either argument is nullable.
|
---|
2188 |
|
---|
2189 | Firstpos: The firstpos of a node is the set of positions (nonempty leaves)
|
---|
2190 | that could correspond to the first character of a string matching the
|
---|
2191 | regexp rooted at the given node.
|
---|
2192 | * EMPTY leaves have empty firstpos.
|
---|
2193 | * The firstpos of a nonempty leaf is that leaf itself.
|
---|
2194 | * The firstpos of a QMARK, STAR, or PLUS node is the firstpos of its
|
---|
2195 | argument.
|
---|
2196 | * The firstpos of a CAT node is the firstpos of the left argument, union
|
---|
2197 | the firstpos of the right if the left argument is nullable.
|
---|
2198 | * The firstpos of an OR node is the union of firstpos of each argument.
|
---|
2199 |
|
---|
2200 | Lastpos: The lastpos of a node is the set of positions that could
|
---|
2201 | correspond to the last character of a string matching the regexp at
|
---|
2202 | the given node.
|
---|
2203 | * EMPTY leaves have empty lastpos.
|
---|
2204 | * The lastpos of a nonempty leaf is that leaf itself.
|
---|
2205 | * The lastpos of a QMARK, STAR, or PLUS node is the lastpos of its
|
---|
2206 | argument.
|
---|
2207 | * The lastpos of a CAT node is the lastpos of its right argument, union
|
---|
2208 | the lastpos of the left if the right argument is nullable.
|
---|
2209 | * The lastpos of an OR node is the union of the lastpos of each argument.
|
---|
2210 |
|
---|
2211 | Follow: The follow of a position is the set of positions that could
|
---|
2212 | correspond to the character following a character matching the node in
|
---|
2213 | a string matching the regexp. At this point we consider special symbols
|
---|
2214 | that match the empty string in some context to be just normal characters.
|
---|
2215 | Later, if we find that a special symbol is in a follow set, we will
|
---|
2216 | replace it with the elements of its follow, labeled with an appropriate
|
---|
2217 | constraint.
|
---|
2218 | * Every node in the firstpos of the argument of a STAR or PLUS node is in
|
---|
2219 | the follow of every node in the lastpos.
|
---|
2220 | * Every node in the firstpos of the second argument of a CAT node is in
|
---|
2221 | the follow of every node in the lastpos of the first argument.
|
---|
2222 |
|
---|
2223 | Because of the postfix representation of the parse tree, the depth-first
|
---|
2224 | analysis is conveniently done by a linear scan with the aid of a stack.
|
---|
2225 | Sets are stored as arrays of the elements, obeying a stack-like allocation
|
---|
2226 | scheme; the number of elements in each set deeper in the stack can be
|
---|
2227 | used to determine the address of a particular set's array. */
|
---|
2228 | void
|
---|
2229 | dfaanalyze (struct dfa *d, int searchflag)
|
---|
2230 | {
|
---|
2231 | int *nullable; /* Nullable stack. */
|
---|
2232 | size_t *nfirstpos; /* Element count stack for firstpos sets. */
|
---|
2233 | position *firstpos; /* Array where firstpos elements are stored. */
|
---|
2234 | size_t *nlastpos; /* Element count stack for lastpos sets. */
|
---|
2235 | position *lastpos; /* Array where lastpos elements are stored. */
|
---|
2236 | position_set tmp; /* Temporary set for merging sets. */
|
---|
2237 | position_set merged; /* Result of merging sets. */
|
---|
2238 | int separate_contexts; /* Context wanted by some position. */
|
---|
2239 | int *o_nullable;
|
---|
2240 | size_t *o_nfirst, *o_nlast;
|
---|
2241 | position *o_firstpos, *o_lastpos;
|
---|
2242 | size_t i, j;
|
---|
2243 | position *pos;
|
---|
2244 |
|
---|
2245 | #ifdef DEBUG
|
---|
2246 | fprintf (stderr, "dfaanalyze:\n");
|
---|
2247 | for (i = 0; i < d->tindex; ++i)
|
---|
2248 | {
|
---|
2249 | fprintf (stderr, " %zd:", i);
|
---|
2250 | prtok (d->tokens[i]);
|
---|
2251 | }
|
---|
2252 | putc ('\n', stderr);
|
---|
2253 | #endif
|
---|
2254 |
|
---|
2255 | d->searchflag = searchflag;
|
---|
2256 |
|
---|
2257 | MALLOC (nullable, d->depth);
|
---|
2258 | o_nullable = nullable;
|
---|
2259 | MALLOC (nfirstpos, d->depth);
|
---|
2260 | o_nfirst = nfirstpos;
|
---|
2261 | MALLOC (firstpos, d->nleaves);
|
---|
2262 | o_firstpos = firstpos, firstpos += d->nleaves;
|
---|
2263 | MALLOC (nlastpos, d->depth);
|
---|
2264 | o_nlast = nlastpos;
|
---|
2265 | MALLOC (lastpos, d->nleaves);
|
---|
2266 | o_lastpos = lastpos, lastpos += d->nleaves;
|
---|
2267 | alloc_position_set (&merged, d->nleaves);
|
---|
2268 |
|
---|
2269 | CALLOC (d->follows, d->tindex);
|
---|
2270 |
|
---|
2271 | for (i = 0; i < d->tindex; ++i)
|
---|
2272 | {
|
---|
2273 | switch (d->tokens[i])
|
---|
2274 | {
|
---|
2275 | case EMPTY:
|
---|
2276 | /* The empty set is nullable. */
|
---|
2277 | *nullable++ = 1;
|
---|
2278 |
|
---|
2279 | /* The firstpos and lastpos of the empty leaf are both empty. */
|
---|
2280 | *nfirstpos++ = *nlastpos++ = 0;
|
---|
2281 | break;
|
---|
2282 |
|
---|
2283 | case STAR:
|
---|
2284 | case PLUS:
|
---|
2285 | /* Every element in the firstpos of the argument is in the follow
|
---|
2286 | of every element in the lastpos. */
|
---|
2287 | tmp.nelem = nfirstpos[-1];
|
---|
2288 | tmp.elems = firstpos;
|
---|
2289 | pos = lastpos;
|
---|
2290 | for (j = 0; j < nlastpos[-1]; ++j)
|
---|
2291 | {
|
---|
2292 | merge (&tmp, &d->follows[pos[j].index], &merged);
|
---|
2293 | copy (&merged, &d->follows[pos[j].index]);
|
---|
2294 | }
|
---|
2295 |
|
---|
2296 | case QMARK:
|
---|
2297 | /* A QMARK or STAR node is automatically nullable. */
|
---|
2298 | if (d->tokens[i] != PLUS)
|
---|
2299 | nullable[-1] = 1;
|
---|
2300 | break;
|
---|
2301 |
|
---|
2302 | case CAT:
|
---|
2303 | /* Every element in the firstpos of the second argument is in the
|
---|
2304 | follow of every element in the lastpos of the first argument. */
|
---|
2305 | tmp.nelem = nfirstpos[-1];
|
---|
2306 | tmp.elems = firstpos;
|
---|
2307 | pos = lastpos + nlastpos[-1];
|
---|
2308 | for (j = 0; j < nlastpos[-2]; ++j)
|
---|
2309 | {
|
---|
2310 | merge (&tmp, &d->follows[pos[j].index], &merged);
|
---|
2311 | copy (&merged, &d->follows[pos[j].index]);
|
---|
2312 | }
|
---|
2313 |
|
---|
2314 | /* The firstpos of a CAT node is the firstpos of the first argument,
|
---|
2315 | union that of the second argument if the first is nullable. */
|
---|
2316 | if (nullable[-2])
|
---|
2317 | nfirstpos[-2] += nfirstpos[-1];
|
---|
2318 | else
|
---|
2319 | firstpos += nfirstpos[-1];
|
---|
2320 | --nfirstpos;
|
---|
2321 |
|
---|
2322 | /* The lastpos of a CAT node is the lastpos of the second argument,
|
---|
2323 | union that of the first argument if the second is nullable. */
|
---|
2324 | if (nullable[-1])
|
---|
2325 | nlastpos[-2] += nlastpos[-1];
|
---|
2326 | else
|
---|
2327 | {
|
---|
2328 | pos = lastpos + nlastpos[-2];
|
---|
2329 | for (j = nlastpos[-1]; j-- > 0;)
|
---|
2330 | pos[j] = lastpos[j];
|
---|
2331 | lastpos += nlastpos[-2];
|
---|
2332 | nlastpos[-2] = nlastpos[-1];
|
---|
2333 | }
|
---|
2334 | --nlastpos;
|
---|
2335 |
|
---|
2336 | /* A CAT node is nullable if both arguments are nullable. */
|
---|
2337 | nullable[-2] = nullable[-1] && nullable[-2];
|
---|
2338 | --nullable;
|
---|
2339 | break;
|
---|
2340 |
|
---|
2341 | case OR:
|
---|
2342 | /* The firstpos is the union of the firstpos of each argument. */
|
---|
2343 | nfirstpos[-2] += nfirstpos[-1];
|
---|
2344 | --nfirstpos;
|
---|
2345 |
|
---|
2346 | /* The lastpos is the union of the lastpos of each argument. */
|
---|
2347 | nlastpos[-2] += nlastpos[-1];
|
---|
2348 | --nlastpos;
|
---|
2349 |
|
---|
2350 | /* An OR node is nullable if either argument is nullable. */
|
---|
2351 | nullable[-2] = nullable[-1] || nullable[-2];
|
---|
2352 | --nullable;
|
---|
2353 | break;
|
---|
2354 |
|
---|
2355 | default:
|
---|
2356 | /* Anything else is a nonempty position. (Note that special
|
---|
2357 | constructs like \< are treated as nonempty strings here;
|
---|
2358 | an "epsilon closure" effectively makes them nullable later.
|
---|
2359 | Backreferences have to get a real position so we can detect
|
---|
2360 | transitions on them later. But they are nullable. */
|
---|
2361 | *nullable++ = d->tokens[i] == BACKREF;
|
---|
2362 |
|
---|
2363 | /* This position is in its own firstpos and lastpos. */
|
---|
2364 | *nfirstpos++ = *nlastpos++ = 1;
|
---|
2365 | --firstpos, --lastpos;
|
---|
2366 | firstpos->index = lastpos->index = i;
|
---|
2367 | firstpos->constraint = lastpos->constraint = NO_CONSTRAINT;
|
---|
2368 |
|
---|
2369 | /* Allocate the follow set for this position. */
|
---|
2370 | alloc_position_set (&d->follows[i], 1);
|
---|
2371 | break;
|
---|
2372 | }
|
---|
2373 | #ifdef DEBUG
|
---|
2374 | /* ... balance the above nonsyntactic #ifdef goo... */
|
---|
2375 | fprintf (stderr, "node %zd:", i);
|
---|
2376 | prtok (d->tokens[i]);
|
---|
2377 | putc ('\n', stderr);
|
---|
2378 | fprintf (stderr, nullable[-1] ? " nullable: yes\n" : " nullable: no\n");
|
---|
2379 | fprintf (stderr, " firstpos:");
|
---|
2380 | for (j = nfirstpos[-1]; j-- > 0;)
|
---|
2381 | {
|
---|
2382 | fprintf (stderr, " %zd:", firstpos[j].index);
|
---|
2383 | prtok (d->tokens[firstpos[j].index]);
|
---|
2384 | }
|
---|
2385 | fprintf (stderr, "\n lastpos:");
|
---|
2386 | for (j = nlastpos[-1]; j-- > 0;)
|
---|
2387 | {
|
---|
2388 | fprintf (stderr, " %zd:", lastpos[j].index);
|
---|
2389 | prtok (d->tokens[lastpos[j].index]);
|
---|
2390 | }
|
---|
2391 | putc ('\n', stderr);
|
---|
2392 | #endif
|
---|
2393 | }
|
---|
2394 |
|
---|
2395 | /* For each follow set that is the follow set of a real position, replace
|
---|
2396 | it with its epsilon closure. */
|
---|
2397 | for (i = 0; i < d->tindex; ++i)
|
---|
2398 | if (d->tokens[i] < NOTCHAR || d->tokens[i] == BACKREF
|
---|
2399 | #if MBS_SUPPORT
|
---|
2400 | || d->tokens[i] == ANYCHAR || d->tokens[i] == MBCSET
|
---|
2401 | #endif
|
---|
2402 | || d->tokens[i] >= CSET)
|
---|
2403 | {
|
---|
2404 | #ifdef DEBUG
|
---|
2405 | fprintf (stderr, "follows(%zd:", i);
|
---|
2406 | prtok (d->tokens[i]);
|
---|
2407 | fprintf (stderr, "):");
|
---|
2408 | for (j = d->follows[i].nelem; j-- > 0;)
|
---|
2409 | {
|
---|
2410 | fprintf (stderr, " %zd:", d->follows[i].elems[j].index);
|
---|
2411 | prtok (d->tokens[d->follows[i].elems[j].index]);
|
---|
2412 | }
|
---|
2413 | putc ('\n', stderr);
|
---|
2414 | #endif
|
---|
2415 | copy (&d->follows[i], &merged);
|
---|
2416 | epsclosure (&merged, d);
|
---|
2417 | copy (&merged, &d->follows[i]);
|
---|
2418 | }
|
---|
2419 |
|
---|
2420 | /* Get the epsilon closure of the firstpos of the regexp. The result will
|
---|
2421 | be the set of positions of state 0. */
|
---|
2422 | merged.nelem = 0;
|
---|
2423 | for (i = 0; i < nfirstpos[-1]; ++i)
|
---|
2424 | insert (firstpos[i], &merged);
|
---|
2425 | epsclosure (&merged, d);
|
---|
2426 |
|
---|
2427 | /* Build the initial state. */
|
---|
2428 | d->salloc = 1;
|
---|
2429 | d->sindex = 0;
|
---|
2430 | MALLOC (d->states, d->salloc);
|
---|
2431 |
|
---|
2432 | separate_contexts = state_separate_contexts (&merged);
|
---|
2433 | state_index (d, &merged,
|
---|
2434 | (separate_contexts & CTX_NEWLINE
|
---|
2435 | ? CTX_NEWLINE : separate_contexts ^ CTX_ANY));
|
---|
2436 |
|
---|
2437 | free (o_nullable);
|
---|
2438 | free (o_nfirst);
|
---|
2439 | free (o_firstpos);
|
---|
2440 | free (o_nlast);
|
---|
2441 | free (o_lastpos);
|
---|
2442 | free (merged.elems);
|
---|
2443 | }
|
---|
2444 |
|
---|
2445 |
|
---|
2446 | /* Find, for each character, the transition out of state s of d, and store
|
---|
2447 | it in the appropriate slot of trans.
|
---|
2448 |
|
---|
2449 | We divide the positions of s into groups (positions can appear in more
|
---|
2450 | than one group). Each group is labeled with a set of characters that
|
---|
2451 | every position in the group matches (taking into account, if necessary,
|
---|
2452 | preceding context information of s). For each group, find the union
|
---|
2453 | of the its elements' follows. This set is the set of positions of the
|
---|
2454 | new state. For each character in the group's label, set the transition
|
---|
2455 | on this character to be to a state corresponding to the set's positions,
|
---|
2456 | and its associated backward context information, if necessary.
|
---|
2457 |
|
---|
2458 | If we are building a searching matcher, we include the positions of state
|
---|
2459 | 0 in every state.
|
---|
2460 |
|
---|
2461 | The collection of groups is constructed by building an equivalence-class
|
---|
2462 | partition of the positions of s.
|
---|
2463 |
|
---|
2464 | For each position, find the set of characters C that it matches. Eliminate
|
---|
2465 | any characters from C that fail on grounds of backward context.
|
---|
2466 |
|
---|
2467 | Search through the groups, looking for a group whose label L has nonempty
|
---|
2468 | intersection with C. If L - C is nonempty, create a new group labeled
|
---|
2469 | L - C and having the same positions as the current group, and set L to
|
---|
2470 | the intersection of L and C. Insert the position in this group, set
|
---|
2471 | C = C - L, and resume scanning.
|
---|
2472 |
|
---|
2473 | If after comparing with every group there are characters remaining in C,
|
---|
2474 | create a new group labeled with the characters of C and insert this
|
---|
2475 | position in that group. */
|
---|
2476 | void
|
---|
2477 | dfastate (state_num s, struct dfa *d, state_num trans[])
|
---|
2478 | {
|
---|
2479 | leaf_set *grps; /* As many as will ever be needed. */
|
---|
2480 | charclass *labels; /* Labels corresponding to the groups. */
|
---|
2481 | size_t ngrps = 0; /* Number of groups actually used. */
|
---|
2482 | position pos; /* Current position being considered. */
|
---|
2483 | charclass matches; /* Set of matching characters. */
|
---|
2484 | int matchesf; /* True if matches is nonempty. */
|
---|
2485 | charclass intersect; /* Intersection with some label set. */
|
---|
2486 | int intersectf; /* True if intersect is nonempty. */
|
---|
2487 | charclass leftovers; /* Stuff in the label that didn't match. */
|
---|
2488 | int leftoversf; /* True if leftovers is nonempty. */
|
---|
2489 | position_set follows; /* Union of the follows of some group. */
|
---|
2490 | position_set tmp; /* Temporary space for merging sets. */
|
---|
2491 | int possible_contexts; /* Contexts that this group can match. */
|
---|
2492 | int separate_contexts; /* Context that new state wants to know. */
|
---|
2493 | state_num state; /* New state. */
|
---|
2494 | state_num state_newline; /* New state on a newline transition. */
|
---|
2495 | state_num state_letter; /* New state on a letter transition. */
|
---|
2496 | int next_isnt_1st_byte = 0; /* Flag if we can't add state0. */
|
---|
2497 | size_t i, j, k;
|
---|
2498 |
|
---|
2499 | MALLOC (grps, NOTCHAR);
|
---|
2500 | MALLOC (labels, NOTCHAR);
|
---|
2501 |
|
---|
2502 | zeroset (matches);
|
---|
2503 |
|
---|
2504 | for (i = 0; i < d->states[s].elems.nelem; ++i)
|
---|
2505 | {
|
---|
2506 | pos = d->states[s].elems.elems[i];
|
---|
2507 | if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR)
|
---|
2508 | setbit (d->tokens[pos.index], matches);
|
---|
2509 | else if (d->tokens[pos.index] >= CSET)
|
---|
2510 | copyset (d->charclasses[d->tokens[pos.index] - CSET], matches);
|
---|
2511 | else if (MBS_SUPPORT
|
---|
2512 | && (d->tokens[pos.index] == ANYCHAR
|
---|
2513 | || d->tokens[pos.index] == MBCSET))
|
---|
2514 | /* MB_CUR_MAX > 1 */
|
---|
2515 | {
|
---|
2516 | /* ANYCHAR and MBCSET must match with a single character, so we
|
---|
2517 | must put it to d->states[s].mbps, which contains the positions
|
---|
2518 | which can match with a single character not a byte. */
|
---|
2519 | if (d->states[s].mbps.nelem == 0)
|
---|
2520 | alloc_position_set (&d->states[s].mbps, 1);
|
---|
2521 | insert (pos, &(d->states[s].mbps));
|
---|
2522 | continue;
|
---|
2523 | }
|
---|
2524 | else
|
---|
2525 | continue;
|
---|
2526 |
|
---|
2527 | /* Some characters may need to be eliminated from matches because
|
---|
2528 | they fail in the current context. */
|
---|
2529 | if (pos.constraint != NO_CONSTRAINT)
|
---|
2530 | {
|
---|
2531 | if (!SUCCEEDS_IN_CONTEXT (pos.constraint,
|
---|
2532 | d->states[s].context, CTX_NEWLINE))
|
---|
2533 | for (j = 0; j < CHARCLASS_INTS; ++j)
|
---|
2534 | matches[j] &= ~newline[j];
|
---|
2535 | if (!SUCCEEDS_IN_CONTEXT (pos.constraint,
|
---|
2536 | d->states[s].context, CTX_LETTER))
|
---|
2537 | for (j = 0; j < CHARCLASS_INTS; ++j)
|
---|
2538 | matches[j] &= ~letters[j];
|
---|
2539 | if (!SUCCEEDS_IN_CONTEXT (pos.constraint,
|
---|
2540 | d->states[s].context, CTX_NONE))
|
---|
2541 | for (j = 0; j < CHARCLASS_INTS; ++j)
|
---|
2542 | matches[j] &= letters[j] | newline[j];
|
---|
2543 |
|
---|
2544 | /* If there are no characters left, there's no point in going on. */
|
---|
2545 | for (j = 0; j < CHARCLASS_INTS && !matches[j]; ++j)
|
---|
2546 | continue;
|
---|
2547 | if (j == CHARCLASS_INTS)
|
---|
2548 | continue;
|
---|
2549 | }
|
---|
2550 |
|
---|
2551 | for (j = 0; j < ngrps; ++j)
|
---|
2552 | {
|
---|
2553 | /* If matches contains a single character only, and the current
|
---|
2554 | group's label doesn't contain that character, go on to the
|
---|
2555 | next group. */
|
---|
2556 | if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR
|
---|
2557 | && !tstbit (d->tokens[pos.index], labels[j]))
|
---|
2558 | continue;
|
---|
2559 |
|
---|
2560 | /* Check if this group's label has a nonempty intersection with
|
---|
2561 | matches. */
|
---|
2562 | intersectf = 0;
|
---|
2563 | for (k = 0; k < CHARCLASS_INTS; ++k)
|
---|
2564 | (intersect[k] = matches[k] & labels[j][k]) ? (intersectf = 1) : 0;
|
---|
2565 | if (!intersectf)
|
---|
2566 | continue;
|
---|
2567 |
|
---|
2568 | /* It does; now find the set differences both ways. */
|
---|
2569 | leftoversf = matchesf = 0;
|
---|
2570 | for (k = 0; k < CHARCLASS_INTS; ++k)
|
---|
2571 | {
|
---|
2572 | /* Even an optimizing compiler can't know this for sure. */
|
---|
2573 | int match = matches[k], label = labels[j][k];
|
---|
2574 |
|
---|
2575 | (leftovers[k] = ~match & label) ? (leftoversf = 1) : 0;
|
---|
2576 | (matches[k] = match & ~label) ? (matchesf = 1) : 0;
|
---|
2577 | }
|
---|
2578 |
|
---|
2579 | /* If there were leftovers, create a new group labeled with them. */
|
---|
2580 | if (leftoversf)
|
---|
2581 | {
|
---|
2582 | copyset (leftovers, labels[ngrps]);
|
---|
2583 | copyset (intersect, labels[j]);
|
---|
2584 | MALLOC (grps[ngrps].elems, d->nleaves);
|
---|
2585 | memcpy (grps[ngrps].elems, grps[j].elems,
|
---|
2586 | sizeof (grps[j].elems[0]) * grps[j].nelem);
|
---|
2587 | grps[ngrps].nelem = grps[j].nelem;
|
---|
2588 | ++ngrps;
|
---|
2589 | }
|
---|
2590 |
|
---|
2591 | /* Put the position in the current group. The constraint is
|
---|
2592 | irrelevant here. */
|
---|
2593 | grps[j].elems[grps[j].nelem++] = pos.index;
|
---|
2594 |
|
---|
2595 | /* If every character matching the current position has been
|
---|
2596 | accounted for, we're done. */
|
---|
2597 | if (!matchesf)
|
---|
2598 | break;
|
---|
2599 | }
|
---|
2600 |
|
---|
2601 | /* If we've passed the last group, and there are still characters
|
---|
2602 | unaccounted for, then we'll have to create a new group. */
|
---|
2603 | if (j == ngrps)
|
---|
2604 | {
|
---|
2605 | copyset (matches, labels[ngrps]);
|
---|
2606 | zeroset (matches);
|
---|
2607 | MALLOC (grps[ngrps].elems, d->nleaves);
|
---|
2608 | grps[ngrps].nelem = 1;
|
---|
2609 | grps[ngrps].elems[0] = pos.index;
|
---|
2610 | ++ngrps;
|
---|
2611 | }
|
---|
2612 | }
|
---|
2613 |
|
---|
2614 | alloc_position_set (&follows, d->nleaves);
|
---|
2615 | alloc_position_set (&tmp, d->nleaves);
|
---|
2616 |
|
---|
2617 | /* If we are a searching matcher, the default transition is to a state
|
---|
2618 | containing the positions of state 0, otherwise the default transition
|
---|
2619 | is to fail miserably. */
|
---|
2620 | if (d->searchflag)
|
---|
2621 | {
|
---|
2622 | /* Find the state(s) corresponding to the positions of state 0. */
|
---|
2623 | copy (&d->states[0].elems, &follows);
|
---|
2624 | separate_contexts = state_separate_contexts (&follows);
|
---|
2625 | state = state_index (d, &follows, separate_contexts ^ CTX_ANY);
|
---|
2626 | if (separate_contexts & CTX_NEWLINE)
|
---|
2627 | state_newline = state_index (d, &follows, CTX_NEWLINE);
|
---|
2628 | else
|
---|
2629 | state_newline = state;
|
---|
2630 | if (separate_contexts & CTX_LETTER)
|
---|
2631 | state_letter = state_index (d, &follows, CTX_LETTER);
|
---|
2632 | else
|
---|
2633 | state_letter = state;
|
---|
2634 |
|
---|
2635 | for (i = 0; i < NOTCHAR; ++i)
|
---|
2636 | trans[i] = (IS_WORD_CONSTITUENT (i)) ? state_letter : state;
|
---|
2637 | trans[eolbyte] = state_newline;
|
---|
2638 | }
|
---|
2639 | else
|
---|
2640 | for (i = 0; i < NOTCHAR; ++i)
|
---|
2641 | trans[i] = -1;
|
---|
2642 |
|
---|
2643 | for (i = 0; i < ngrps; ++i)
|
---|
2644 | {
|
---|
2645 | follows.nelem = 0;
|
---|
2646 |
|
---|
2647 | /* Find the union of the follows of the positions of the group.
|
---|
2648 | This is a hideously inefficient loop. Fix it someday. */
|
---|
2649 | for (j = 0; j < grps[i].nelem; ++j)
|
---|
2650 | for (k = 0; k < d->follows[grps[i].elems[j]].nelem; ++k)
|
---|
2651 | insert (d->follows[grps[i].elems[j]].elems[k], &follows);
|
---|
2652 |
|
---|
2653 | if (d->mb_cur_max > 1)
|
---|
2654 | {
|
---|
2655 | /* If a token in follows.elems is not 1st byte of a multibyte
|
---|
2656 | character, or the states of follows must accept the bytes
|
---|
2657 | which are not 1st byte of the multibyte character.
|
---|
2658 | Then, if a state of follows encounter a byte, it must not be
|
---|
2659 | a 1st byte of a multibyte character nor single byte character.
|
---|
2660 | We cansel to add state[0].follows to next state, because
|
---|
2661 | state[0] must accept 1st-byte
|
---|
2662 |
|
---|
2663 | For example, we assume <sb a> is a certain single byte
|
---|
2664 | character, <mb A> is a certain multibyte character, and the
|
---|
2665 | codepoint of <sb a> equals the 2nd byte of the codepoint of
|
---|
2666 | <mb A>.
|
---|
2667 | When state[0] accepts <sb a>, state[i] transit to state[i+1]
|
---|
2668 | by accepting accepts 1st byte of <mb A>, and state[i+1]
|
---|
2669 | accepts 2nd byte of <mb A>, if state[i+1] encounter the
|
---|
2670 | codepoint of <sb a>, it must not be <sb a> but 2nd byte of
|
---|
2671 | <mb A>, so we cannot add state[0]. */
|
---|
2672 |
|
---|
2673 | next_isnt_1st_byte = 0;
|
---|
2674 | for (j = 0; j < follows.nelem; ++j)
|
---|
2675 | {
|
---|
2676 | if (!(d->multibyte_prop[follows.elems[j].index] & 1))
|
---|
2677 | {
|
---|
2678 | next_isnt_1st_byte = 1;
|
---|
2679 | break;
|
---|
2680 | }
|
---|
2681 | }
|
---|
2682 | }
|
---|
2683 |
|
---|
2684 | /* If we are building a searching matcher, throw in the positions
|
---|
2685 | of state 0 as well. */
|
---|
2686 | if (d->searchflag
|
---|
2687 | && (!MBS_SUPPORT || (d->mb_cur_max == 1 || !next_isnt_1st_byte)))
|
---|
2688 | for (j = 0; j < d->states[0].elems.nelem; ++j)
|
---|
2689 | insert (d->states[0].elems.elems[j], &follows);
|
---|
2690 |
|
---|
2691 | /* Find out if the new state will want any context information. */
|
---|
2692 | possible_contexts = charclass_context (labels[i]);
|
---|
2693 | separate_contexts = state_separate_contexts (&follows);
|
---|
2694 |
|
---|
2695 | /* Find the state(s) corresponding to the union of the follows. */
|
---|
2696 | if ((separate_contexts & possible_contexts) != possible_contexts)
|
---|
2697 | state = state_index (d, &follows, separate_contexts ^ CTX_ANY);
|
---|
2698 | else
|
---|
2699 | state = -1;
|
---|
2700 | if (separate_contexts & possible_contexts & CTX_NEWLINE)
|
---|
2701 | state_newline = state_index (d, &follows, CTX_NEWLINE);
|
---|
2702 | else
|
---|
2703 | state_newline = state;
|
---|
2704 | if (separate_contexts & possible_contexts & CTX_LETTER)
|
---|
2705 | state_letter = state_index (d, &follows, CTX_LETTER);
|
---|
2706 | else
|
---|
2707 | state_letter = state;
|
---|
2708 |
|
---|
2709 | /* Set the transitions for each character in the current label. */
|
---|
2710 | for (j = 0; j < CHARCLASS_INTS; ++j)
|
---|
2711 | for (k = 0; k < INTBITS; ++k)
|
---|
2712 | if (labels[i][j] & 1 << k)
|
---|
2713 | {
|
---|
2714 | int c = j * INTBITS + k;
|
---|
2715 |
|
---|
2716 | if (c == eolbyte)
|
---|
2717 | trans[c] = state_newline;
|
---|
2718 | else if (IS_WORD_CONSTITUENT (c))
|
---|
2719 | trans[c] = state_letter;
|
---|
2720 | else if (c < NOTCHAR)
|
---|
2721 | trans[c] = state;
|
---|
2722 | }
|
---|
2723 | }
|
---|
2724 |
|
---|
2725 | for (i = 0; i < ngrps; ++i)
|
---|
2726 | free (grps[i].elems);
|
---|
2727 | free (follows.elems);
|
---|
2728 | free (tmp.elems);
|
---|
2729 | free (grps);
|
---|
2730 | free (labels);
|
---|
2731 | }
|
---|
2732 |
|
---|
2733 | /* Some routines for manipulating a compiled dfa's transition tables.
|
---|
2734 | Each state may or may not have a transition table; if it does, and it
|
---|
2735 | is a non-accepting state, then d->trans[state] points to its table.
|
---|
2736 | If it is an accepting state then d->fails[state] points to its table.
|
---|
2737 | If it has no table at all, then d->trans[state] is NULL.
|
---|
2738 | TODO: Improve this comment, get rid of the unnecessary redundancy. */
|
---|
2739 |
|
---|
2740 | static void
|
---|
2741 | build_state (state_num s, struct dfa *d)
|
---|
2742 | {
|
---|
2743 | state_num *trans; /* The new transition table. */
|
---|
2744 | state_num i;
|
---|
2745 |
|
---|
2746 | /* Set an upper limit on the number of transition tables that will ever
|
---|
2747 | exist at once. 1024 is arbitrary. The idea is that the frequently
|
---|
2748 | used transition tables will be quickly rebuilt, whereas the ones that
|
---|
2749 | were only needed once or twice will be cleared away. */
|
---|
2750 | if (d->trcount >= 1024)
|
---|
2751 | {
|
---|
2752 | for (i = 0; i < d->tralloc; ++i)
|
---|
2753 | {
|
---|
2754 | free (d->trans[i]);
|
---|
2755 | free (d->fails[i]);
|
---|
2756 | d->trans[i] = d->fails[i] = NULL;
|
---|
2757 | }
|
---|
2758 | d->trcount = 0;
|
---|
2759 | }
|
---|
2760 |
|
---|
2761 | ++d->trcount;
|
---|
2762 |
|
---|
2763 | /* Set up the success bits for this state. */
|
---|
2764 | d->success[s] = 0;
|
---|
2765 | if (ACCEPTS_IN_CONTEXT (d->states[s].context, CTX_NEWLINE, s, *d))
|
---|
2766 | d->success[s] |= CTX_NEWLINE;
|
---|
2767 | if (ACCEPTS_IN_CONTEXT (d->states[s].context, CTX_LETTER, s, *d))
|
---|
2768 | d->success[s] |= CTX_LETTER;
|
---|
2769 | if (ACCEPTS_IN_CONTEXT (d->states[s].context, CTX_NONE, s, *d))
|
---|
2770 | d->success[s] |= CTX_NONE;
|
---|
2771 |
|
---|
2772 | MALLOC (trans, NOTCHAR);
|
---|
2773 | dfastate (s, d, trans);
|
---|
2774 |
|
---|
2775 | /* Now go through the new transition table, and make sure that the trans
|
---|
2776 | and fail arrays are allocated large enough to hold a pointer for the
|
---|
2777 | largest state mentioned in the table. */
|
---|
2778 | for (i = 0; i < NOTCHAR; ++i)
|
---|
2779 | if (trans[i] >= d->tralloc)
|
---|
2780 | {
|
---|
2781 | state_num oldalloc = d->tralloc;
|
---|
2782 |
|
---|
2783 | while (trans[i] >= d->tralloc)
|
---|
2784 | d->tralloc *= 2;
|
---|
2785 | REALLOC (d->realtrans, d->tralloc + 1);
|
---|
2786 | d->trans = d->realtrans + 1;
|
---|
2787 | REALLOC (d->fails, d->tralloc);
|
---|
2788 | REALLOC (d->success, d->tralloc);
|
---|
2789 | REALLOC (d->newlines, d->tralloc);
|
---|
2790 | while (oldalloc < d->tralloc)
|
---|
2791 | {
|
---|
2792 | d->trans[oldalloc] = NULL;
|
---|
2793 | d->fails[oldalloc++] = NULL;
|
---|
2794 | }
|
---|
2795 | }
|
---|
2796 |
|
---|
2797 | /* Keep the newline transition in a special place so we can use it as
|
---|
2798 | a sentinel. */
|
---|
2799 | d->newlines[s] = trans[eolbyte];
|
---|
2800 | trans[eolbyte] = -1;
|
---|
2801 |
|
---|
2802 | if (ACCEPTING (s, *d))
|
---|
2803 | d->fails[s] = trans;
|
---|
2804 | else
|
---|
2805 | d->trans[s] = trans;
|
---|
2806 | }
|
---|
2807 |
|
---|
2808 | static void
|
---|
2809 | build_state_zero (struct dfa *d)
|
---|
2810 | {
|
---|
2811 | d->tralloc = 1;
|
---|
2812 | d->trcount = 0;
|
---|
2813 | CALLOC (d->realtrans, d->tralloc + 1);
|
---|
2814 | d->trans = d->realtrans + 1;
|
---|
2815 | CALLOC (d->fails, d->tralloc);
|
---|
2816 | MALLOC (d->success, d->tralloc);
|
---|
2817 | MALLOC (d->newlines, d->tralloc);
|
---|
2818 | build_state (0, d);
|
---|
2819 | }
|
---|
2820 |
|
---|
2821 | /* Multibyte character handling sub-routines for dfaexec. */
|
---|
2822 |
|
---|
2823 | /* Initial state may encounter the byte which is not a single byte character
|
---|
2824 | nor 1st byte of a multibyte character. But it is incorrect for initial
|
---|
2825 | state to accept such a byte.
|
---|
2826 | For example, in sjis encoding the regular expression like "\\" accepts
|
---|
2827 | the codepoint 0x5c, but should not accept the 2nd byte of the codepoint
|
---|
2828 | 0x815c. Then Initial state must skip the bytes which are not a single byte
|
---|
2829 | character nor 1st byte of a multibyte character. */
|
---|
2830 | #define SKIP_REMAINS_MB_IF_INITIAL_STATE(s, p) \
|
---|
2831 | if (s == 0) \
|
---|
2832 | { \
|
---|
2833 | while (inputwcs[p - buf_begin] == 0 \
|
---|
2834 | && mblen_buf[p - buf_begin] > 0 \
|
---|
2835 | && (unsigned char const *) p < buf_end) \
|
---|
2836 | ++p; \
|
---|
2837 | if ((char *) p >= end) \
|
---|
2838 | { \
|
---|
2839 | free (mblen_buf); \
|
---|
2840 | free (inputwcs); \
|
---|
2841 | *end = saved_end; \
|
---|
2842 | return NULL; \
|
---|
2843 | } \
|
---|
2844 | }
|
---|
2845 |
|
---|
2846 | static void
|
---|
2847 | realloc_trans_if_necessary (struct dfa *d, state_num new_state)
|
---|
2848 | {
|
---|
2849 | /* Make sure that the trans and fail arrays are allocated large enough
|
---|
2850 | to hold a pointer for the new state. */
|
---|
2851 | if (new_state >= d->tralloc)
|
---|
2852 | {
|
---|
2853 | state_num oldalloc = d->tralloc;
|
---|
2854 |
|
---|
2855 | while (new_state >= d->tralloc)
|
---|
2856 | d->tralloc *= 2;
|
---|
2857 | REALLOC (d->realtrans, d->tralloc + 1);
|
---|
2858 | d->trans = d->realtrans + 1;
|
---|
2859 | REALLOC (d->fails, d->tralloc);
|
---|
2860 | REALLOC (d->success, d->tralloc);
|
---|
2861 | REALLOC (d->newlines, d->tralloc);
|
---|
2862 | while (oldalloc < d->tralloc)
|
---|
2863 | {
|
---|
2864 | d->trans[oldalloc] = NULL;
|
---|
2865 | d->fails[oldalloc++] = NULL;
|
---|
2866 | }
|
---|
2867 | }
|
---|
2868 | }
|
---|
2869 |
|
---|
2870 | /* Return values of transit_state_singlebyte(), and
|
---|
2871 | transit_state_consume_1char. */
|
---|
2872 | typedef enum
|
---|
2873 | {
|
---|
2874 | TRANSIT_STATE_IN_PROGRESS, /* State transition has not finished. */
|
---|
2875 | TRANSIT_STATE_DONE, /* State transition has finished. */
|
---|
2876 | TRANSIT_STATE_END_BUFFER /* Reach the end of the buffer. */
|
---|
2877 | } status_transit_state;
|
---|
2878 |
|
---|
2879 | /* Consume a single byte and transit state from 's' to '*next_state'.
|
---|
2880 | This function is almost same as the state transition routin in dfaexec().
|
---|
2881 | But state transition is done just once, otherwise matching succeed or
|
---|
2882 | reach the end of the buffer. */
|
---|
2883 | static status_transit_state
|
---|
2884 | transit_state_singlebyte (struct dfa *d, state_num s, unsigned char const *p,
|
---|
2885 | state_num * next_state)
|
---|
2886 | {
|
---|
2887 | state_num *t;
|
---|
2888 | state_num works = s;
|
---|
2889 |
|
---|
2890 | status_transit_state rval = TRANSIT_STATE_IN_PROGRESS;
|
---|
2891 |
|
---|
2892 | while (rval == TRANSIT_STATE_IN_PROGRESS)
|
---|
2893 | {
|
---|
2894 | if ((t = d->trans[works]) != NULL)
|
---|
2895 | {
|
---|
2896 | works = t[*p];
|
---|
2897 | rval = TRANSIT_STATE_DONE;
|
---|
2898 | if (works < 0)
|
---|
2899 | works = 0;
|
---|
2900 | }
|
---|
2901 | else if (works < 0)
|
---|
2902 | {
|
---|
2903 | if (p == buf_end)
|
---|
2904 | {
|
---|
2905 | /* At the moment, it must not happen. */
|
---|
2906 | abort ();
|
---|
2907 | }
|
---|
2908 | works = 0;
|
---|
2909 | }
|
---|
2910 | else if (d->fails[works])
|
---|
2911 | {
|
---|
2912 | works = d->fails[works][*p];
|
---|
2913 | rval = TRANSIT_STATE_DONE;
|
---|
2914 | }
|
---|
2915 | else
|
---|
2916 | {
|
---|
2917 | build_state (works, d);
|
---|
2918 | }
|
---|
2919 | }
|
---|
2920 | *next_state = works;
|
---|
2921 | return rval;
|
---|
2922 | }
|
---|
2923 |
|
---|
2924 | /* Match a "." against the current context. buf_begin[IDX] is the
|
---|
2925 | current position. Return the length of the match, in bytes.
|
---|
2926 | POS is the position of the ".". */
|
---|
2927 | static int
|
---|
2928 | match_anychar (struct dfa *d, state_num s, position pos, size_t idx)
|
---|
2929 | {
|
---|
2930 | int context;
|
---|
2931 | wchar_t wc;
|
---|
2932 | int mbclen;
|
---|
2933 |
|
---|
2934 | wc = inputwcs[idx];
|
---|
2935 | mbclen = (mblen_buf[idx] == 0) ? 1 : mblen_buf[idx];
|
---|
2936 |
|
---|
2937 | /* Check syntax bits. */
|
---|
2938 | if (wc == (wchar_t) eolbyte)
|
---|
2939 | {
|
---|
2940 | if (!(syntax_bits & RE_DOT_NEWLINE))
|
---|
2941 | return 0;
|
---|
2942 | }
|
---|
2943 | else if (wc == (wchar_t) '\0')
|
---|
2944 | {
|
---|
2945 | if (syntax_bits & RE_DOT_NOT_NULL)
|
---|
2946 | return 0;
|
---|
2947 | }
|
---|
2948 |
|
---|
2949 | context = wchar_context (wc);
|
---|
2950 | if (!SUCCEEDS_IN_CONTEXT (pos.constraint, d->states[s].context, context))
|
---|
2951 | return 0;
|
---|
2952 |
|
---|
2953 | return mbclen;
|
---|
2954 | }
|
---|
2955 |
|
---|
2956 | /* Match a bracket expression against the current context.
|
---|
2957 | buf_begin[IDX] is the current position.
|
---|
2958 | Return the length of the match, in bytes.
|
---|
2959 | POS is the position of the bracket expression. */
|
---|
2960 | static int
|
---|
2961 | match_mb_charset (struct dfa *d, state_num s, position pos, size_t idx)
|
---|
2962 | {
|
---|
2963 | size_t i;
|
---|
2964 | int match; /* Flag which represent that matching succeed. */
|
---|
2965 | int match_len; /* Length of the character (or collating element)
|
---|
2966 | with which this operator match. */
|
---|
2967 | int op_len; /* Length of the operator. */
|
---|
2968 | char buffer[128];
|
---|
2969 | wchar_t wcbuf[6];
|
---|
2970 |
|
---|
2971 | /* Pointer to the structure to which we are currently referring. */
|
---|
2972 | struct mb_char_classes *work_mbc;
|
---|
2973 |
|
---|
2974 | int context;
|
---|
2975 | wchar_t wc; /* Current referring character. */
|
---|
2976 |
|
---|
2977 | wc = inputwcs[idx];
|
---|
2978 |
|
---|
2979 | /* Check syntax bits. */
|
---|
2980 | if (wc == (wchar_t) eolbyte)
|
---|
2981 | {
|
---|
2982 | if (!(syntax_bits & RE_DOT_NEWLINE))
|
---|
2983 | return 0;
|
---|
2984 | }
|
---|
2985 | else if (wc == (wchar_t) '\0')
|
---|
2986 | {
|
---|
2987 | if (syntax_bits & RE_DOT_NOT_NULL)
|
---|
2988 | return 0;
|
---|
2989 | }
|
---|
2990 |
|
---|
2991 | context = wchar_context (wc);
|
---|
2992 | if (!SUCCEEDS_IN_CONTEXT (pos.constraint, d->states[s].context, context))
|
---|
2993 | return 0;
|
---|
2994 |
|
---|
2995 | /* Assign the current referring operator to work_mbc. */
|
---|
2996 | work_mbc = &(d->mbcsets[(d->multibyte_prop[pos.index]) >> 2]);
|
---|
2997 | match = !work_mbc->invert;
|
---|
2998 | match_len = (mblen_buf[idx] == 0) ? 1 : mblen_buf[idx];
|
---|
2999 |
|
---|
3000 | /* Match in range 0-255? */
|
---|
3001 | if (wc < NOTCHAR && work_mbc->cset != -1
|
---|
3002 | && tstbit ((unsigned char) wc, d->charclasses[work_mbc->cset]))
|
---|
3003 | goto charset_matched;
|
---|
3004 |
|
---|
3005 | /* match with a character class? */
|
---|
3006 | for (i = 0; i < work_mbc->nch_classes; i++)
|
---|
3007 | {
|
---|
3008 | if (iswctype ((wint_t) wc, work_mbc->ch_classes[i]))
|
---|
3009 | goto charset_matched;
|
---|
3010 | }
|
---|
3011 |
|
---|
3012 | strncpy (buffer, (char const *) buf_begin + idx, match_len);
|
---|
3013 | buffer[match_len] = '\0';
|
---|
3014 |
|
---|
3015 | /* match with an equivalence class? */
|
---|
3016 | for (i = 0; i < work_mbc->nequivs; i++)
|
---|
3017 | {
|
---|
3018 | op_len = strlen (work_mbc->equivs[i]);
|
---|
3019 | strncpy (buffer, (char const *) buf_begin + idx, op_len);
|
---|
3020 | buffer[op_len] = '\0';
|
---|
3021 | if (strcoll (work_mbc->equivs[i], buffer) == 0)
|
---|
3022 | {
|
---|
3023 | match_len = op_len;
|
---|
3024 | goto charset_matched;
|
---|
3025 | }
|
---|
3026 | }
|
---|
3027 |
|
---|
3028 | /* match with a collating element? */
|
---|
3029 | for (i = 0; i < work_mbc->ncoll_elems; i++)
|
---|
3030 | {
|
---|
3031 | op_len = strlen (work_mbc->coll_elems[i]);
|
---|
3032 | strncpy (buffer, (char const *) buf_begin + idx, op_len);
|
---|
3033 | buffer[op_len] = '\0';
|
---|
3034 |
|
---|
3035 | if (strcoll (work_mbc->coll_elems[i], buffer) == 0)
|
---|
3036 | {
|
---|
3037 | match_len = op_len;
|
---|
3038 | goto charset_matched;
|
---|
3039 | }
|
---|
3040 | }
|
---|
3041 |
|
---|
3042 | wcbuf[0] = wc;
|
---|
3043 | wcbuf[1] = wcbuf[3] = wcbuf[5] = '\0';
|
---|
3044 |
|
---|
3045 | /* match with a range? */
|
---|
3046 | for (i = 0; i < work_mbc->nranges; i++)
|
---|
3047 | {
|
---|
3048 | wcbuf[2] = work_mbc->range_sts[i];
|
---|
3049 | wcbuf[4] = work_mbc->range_ends[i];
|
---|
3050 |
|
---|
3051 | if (wcscoll (wcbuf, wcbuf + 2) >= 0 && wcscoll (wcbuf + 4, wcbuf) >= 0)
|
---|
3052 | goto charset_matched;
|
---|
3053 | }
|
---|
3054 |
|
---|
3055 | /* match with a character? */
|
---|
3056 | for (i = 0; i < work_mbc->nchars; i++)
|
---|
3057 | {
|
---|
3058 | if (wc == work_mbc->chars[i])
|
---|
3059 | goto charset_matched;
|
---|
3060 | }
|
---|
3061 |
|
---|
3062 | match = !match;
|
---|
3063 |
|
---|
3064 | charset_matched:
|
---|
3065 | return match ? match_len : 0;
|
---|
3066 | }
|
---|
3067 |
|
---|
3068 | /* Check each of `d->states[s].mbps.elem' can match or not. Then return the
|
---|
3069 | array which corresponds to `d->states[s].mbps.elem' and each element of
|
---|
3070 | the array contains the amount of the bytes with which the element can
|
---|
3071 | match.
|
---|
3072 | `idx' is the index from the buf_begin, and it is the current position
|
---|
3073 | in the buffer.
|
---|
3074 | Caller MUST free the array which this function return. */
|
---|
3075 | static int *
|
---|
3076 | check_matching_with_multibyte_ops (struct dfa *d, state_num s, size_t idx)
|
---|
3077 | {
|
---|
3078 | size_t i;
|
---|
3079 | int *rarray;
|
---|
3080 |
|
---|
3081 | MALLOC (rarray, d->states[s].mbps.nelem);
|
---|
3082 | for (i = 0; i < d->states[s].mbps.nelem; ++i)
|
---|
3083 | {
|
---|
3084 | position pos = d->states[s].mbps.elems[i];
|
---|
3085 | switch (d->tokens[pos.index])
|
---|
3086 | {
|
---|
3087 | case ANYCHAR:
|
---|
3088 | rarray[i] = match_anychar (d, s, pos, idx);
|
---|
3089 | break;
|
---|
3090 | case MBCSET:
|
---|
3091 | rarray[i] = match_mb_charset (d, s, pos, idx);
|
---|
3092 | break;
|
---|
3093 | default:
|
---|
3094 | break; /* cannot happen. */
|
---|
3095 | }
|
---|
3096 | }
|
---|
3097 | return rarray;
|
---|
3098 | }
|
---|
3099 |
|
---|
3100 | /* Consume a single character and enumerate all of the positions which can
|
---|
3101 | be next position from the state `s'.
|
---|
3102 | `match_lens' is the input. It can be NULL, but it can also be the output
|
---|
3103 | of check_matching_with_multibyte_ops() for optimization.
|
---|
3104 | `mbclen' and `pps' are the output. `mbclen' is the length of the
|
---|
3105 | character consumed, and `pps' is the set this function enumerate. */
|
---|
3106 | static status_transit_state
|
---|
3107 | transit_state_consume_1char (struct dfa *d, state_num s,
|
---|
3108 | unsigned char const **pp,
|
---|
3109 | int *match_lens, int *mbclen, position_set * pps)
|
---|
3110 | {
|
---|
3111 | size_t i, j;
|
---|
3112 | int k;
|
---|
3113 | state_num s1, s2;
|
---|
3114 | int *work_mbls;
|
---|
3115 | status_transit_state rs = TRANSIT_STATE_DONE;
|
---|
3116 |
|
---|
3117 | /* Calculate the length of the (single/multi byte) character
|
---|
3118 | to which p points. */
|
---|
3119 | *mbclen = (mblen_buf[*pp - buf_begin] == 0) ? 1 : mblen_buf[*pp - buf_begin];
|
---|
3120 |
|
---|
3121 | /* Calculate the state which can be reached from the state `s' by
|
---|
3122 | consuming `*mbclen' single bytes from the buffer. */
|
---|
3123 | s1 = s;
|
---|
3124 | for (k = 0; k < *mbclen; k++)
|
---|
3125 | {
|
---|
3126 | s2 = s1;
|
---|
3127 | rs = transit_state_singlebyte (d, s2, (*pp)++, &s1);
|
---|
3128 | }
|
---|
3129 | /* Copy the positions contained by `s1' to the set `pps'. */
|
---|
3130 | copy (&(d->states[s1].elems), pps);
|
---|
3131 |
|
---|
3132 | /* Check (input) match_lens, and initialize if it is NULL. */
|
---|
3133 | if (match_lens == NULL && d->states[s].mbps.nelem != 0)
|
---|
3134 | work_mbls = check_matching_with_multibyte_ops (d, s, *pp - buf_begin);
|
---|
3135 | else
|
---|
3136 | work_mbls = match_lens;
|
---|
3137 |
|
---|
3138 | /* Add all of the positions which can be reached from `s' by consuming
|
---|
3139 | a single character. */
|
---|
3140 | for (i = 0; i < d->states[s].mbps.nelem; i++)
|
---|
3141 | {
|
---|
3142 | if (work_mbls[i] == *mbclen)
|
---|
3143 | for (j = 0; j < d->follows[d->states[s].mbps.elems[i].index].nelem;
|
---|
3144 | j++)
|
---|
3145 | insert (d->follows[d->states[s].mbps.elems[i].index].elems[j], pps);
|
---|
3146 | }
|
---|
3147 |
|
---|
3148 | if (match_lens == NULL && work_mbls != NULL)
|
---|
3149 | free (work_mbls);
|
---|
3150 |
|
---|
3151 | /* FIXME: this return value is always ignored. */
|
---|
3152 | return rs;
|
---|
3153 | }
|
---|
3154 |
|
---|
3155 | /* Transit state from s, then return new state and update the pointer of the
|
---|
3156 | buffer. This function is for some operator which can match with a multi-
|
---|
3157 | byte character or a collating element (which may be multi characters). */
|
---|
3158 | static state_num
|
---|
3159 | transit_state (struct dfa *d, state_num s, unsigned char const **pp)
|
---|
3160 | {
|
---|
3161 | state_num s1;
|
---|
3162 | int mbclen; /* The length of current input multibyte character. */
|
---|
3163 | int maxlen = 0;
|
---|
3164 | size_t i, j;
|
---|
3165 | int *match_lens = NULL;
|
---|
3166 | size_t nelem = d->states[s].mbps.nelem; /* Just a alias. */
|
---|
3167 | position_set follows;
|
---|
3168 | unsigned char const *p1 = *pp;
|
---|
3169 | wchar_t wc;
|
---|
3170 |
|
---|
3171 | if (nelem > 0)
|
---|
3172 | /* This state has (a) multibyte operator(s).
|
---|
3173 | We check whether each of them can match or not. */
|
---|
3174 | {
|
---|
3175 | /* Note: caller must free the return value of this function. */
|
---|
3176 | match_lens = check_matching_with_multibyte_ops (d, s, *pp - buf_begin);
|
---|
3177 |
|
---|
3178 | for (i = 0; i < nelem; i++)
|
---|
3179 | /* Search the operator which match the longest string,
|
---|
3180 | in this state. */
|
---|
3181 | {
|
---|
3182 | if (match_lens[i] > maxlen)
|
---|
3183 | maxlen = match_lens[i];
|
---|
3184 | }
|
---|
3185 | }
|
---|
3186 |
|
---|
3187 | if (nelem == 0 || maxlen == 0)
|
---|
3188 | /* This state has no multibyte operator which can match.
|
---|
3189 | We need to check only one single byte character. */
|
---|
3190 | {
|
---|
3191 | status_transit_state rs;
|
---|
3192 | rs = transit_state_singlebyte (d, s, *pp, &s1);
|
---|
3193 |
|
---|
3194 | /* We must update the pointer if state transition succeeded. */
|
---|
3195 | if (rs == TRANSIT_STATE_DONE)
|
---|
3196 | ++*pp;
|
---|
3197 |
|
---|
3198 | free (match_lens);
|
---|
3199 | return s1;
|
---|
3200 | }
|
---|
3201 |
|
---|
3202 | /* This state has some operators which can match a multibyte character. */
|
---|
3203 | alloc_position_set (&follows, d->nleaves);
|
---|
3204 |
|
---|
3205 | /* `maxlen' may be longer than the length of a character, because it may
|
---|
3206 | not be a character but a (multi character) collating element.
|
---|
3207 | We enumerate all of the positions which `s' can reach by consuming
|
---|
3208 | `maxlen' bytes. */
|
---|
3209 | transit_state_consume_1char (d, s, pp, match_lens, &mbclen, &follows);
|
---|
3210 |
|
---|
3211 | wc = inputwcs[*pp - mbclen - buf_begin];
|
---|
3212 | s1 = state_index (d, &follows, wchar_context (wc));
|
---|
3213 | realloc_trans_if_necessary (d, s1);
|
---|
3214 |
|
---|
3215 | while (*pp - p1 < maxlen)
|
---|
3216 | {
|
---|
3217 | transit_state_consume_1char (d, s1, pp, NULL, &mbclen, &follows);
|
---|
3218 |
|
---|
3219 | for (i = 0; i < nelem; i++)
|
---|
3220 | {
|
---|
3221 | if (match_lens[i] == *pp - p1)
|
---|
3222 | for (j = 0;
|
---|
3223 | j < d->follows[d->states[s1].mbps.elems[i].index].nelem; j++)
|
---|
3224 | insert (d->follows[d->states[s1].mbps.elems[i].index].elems[j],
|
---|
3225 | &follows);
|
---|
3226 | }
|
---|
3227 |
|
---|
3228 | wc = inputwcs[*pp - mbclen - buf_begin];
|
---|
3229 | s1 = state_index (d, &follows, wchar_context (wc));
|
---|
3230 | realloc_trans_if_necessary (d, s1);
|
---|
3231 | }
|
---|
3232 | free (match_lens);
|
---|
3233 | free (follows.elems);
|
---|
3234 | return s1;
|
---|
3235 | }
|
---|
3236 |
|
---|
3237 |
|
---|
3238 | /* Initialize mblen_buf and inputwcs with data from the next line. */
|
---|
3239 |
|
---|
3240 | static void
|
---|
3241 | prepare_wc_buf (const char *begin, const char *end)
|
---|
3242 | {
|
---|
3243 | #if MBS_SUPPORT
|
---|
3244 | unsigned char eol = eolbyte;
|
---|
3245 | size_t remain_bytes, i;
|
---|
3246 |
|
---|
3247 | buf_begin = (unsigned char *) begin;
|
---|
3248 |
|
---|
3249 | remain_bytes = 0;
|
---|
3250 | for (i = 0; i < end - begin + 1; i++)
|
---|
3251 | {
|
---|
3252 | if (remain_bytes == 0)
|
---|
3253 | {
|
---|
3254 | remain_bytes
|
---|
3255 | = mbrtowc (inputwcs + i, begin + i, end - begin - i + 1, &mbs);
|
---|
3256 | if (remain_bytes < 1
|
---|
3257 | || remain_bytes == (size_t) -1
|
---|
3258 | || remain_bytes == (size_t) -2
|
---|
3259 | || (remain_bytes == 1 && inputwcs[i] == (wchar_t) begin[i]))
|
---|
3260 | {
|
---|
3261 | remain_bytes = 0;
|
---|
3262 | inputwcs[i] = (wchar_t) begin[i];
|
---|
3263 | mblen_buf[i] = 0;
|
---|
3264 | if (begin[i] == eol)
|
---|
3265 | break;
|
---|
3266 | }
|
---|
3267 | else
|
---|
3268 | {
|
---|
3269 | mblen_buf[i] = remain_bytes;
|
---|
3270 | remain_bytes--;
|
---|
3271 | }
|
---|
3272 | }
|
---|
3273 | else
|
---|
3274 | {
|
---|
3275 | mblen_buf[i] = remain_bytes;
|
---|
3276 | inputwcs[i] = 0;
|
---|
3277 | remain_bytes--;
|
---|
3278 | }
|
---|
3279 | }
|
---|
3280 |
|
---|
3281 | buf_end = (unsigned char *) (begin + i);
|
---|
3282 | mblen_buf[i] = 0;
|
---|
3283 | inputwcs[i] = 0; /* sentinel */
|
---|
3284 | #endif /* MBS_SUPPORT */
|
---|
3285 | }
|
---|
3286 |
|
---|
3287 | /* Search through a buffer looking for a match to the given struct dfa.
|
---|
3288 | Find the first occurrence of a string matching the regexp in the
|
---|
3289 | buffer, and the shortest possible version thereof. Return a pointer to
|
---|
3290 | the first character after the match, or NULL if none is found. BEGIN
|
---|
3291 | points to the beginning of the buffer, and END points to the first byte
|
---|
3292 | after its end. Note however that we store a sentinel byte (usually
|
---|
3293 | newline) in *END, so the actual buffer must be one byte longer.
|
---|
3294 | When ALLOW_NL is nonzero, newlines may appear in the matching string.
|
---|
3295 | If COUNT is non-NULL, increment *COUNT once for each newline processed.
|
---|
3296 | Finally, if BACKREF is non-NULL set *BACKREF to indicate whether we
|
---|
3297 | encountered a back-reference (1) or not (0). The caller may use this
|
---|
3298 | to decide whether to fall back on a backtracking matcher. */
|
---|
3299 | char *
|
---|
3300 | dfaexec (struct dfa *d, char const *begin, char *end,
|
---|
3301 | int allow_nl, size_t *count, int *backref)
|
---|
3302 | {
|
---|
3303 | state_num s, s1; /* Current state. */
|
---|
3304 | unsigned char const *p; /* Current input character. */
|
---|
3305 | state_num **trans, *t; /* Copy of d->trans so it can be optimized
|
---|
3306 | into a register. */
|
---|
3307 | unsigned char eol = eolbyte; /* Likewise for eolbyte. */
|
---|
3308 | unsigned char saved_end;
|
---|
3309 |
|
---|
3310 | if (!d->tralloc)
|
---|
3311 | build_state_zero (d);
|
---|
3312 |
|
---|
3313 | s = s1 = 0;
|
---|
3314 | p = (unsigned char const *) begin;
|
---|
3315 | trans = d->trans;
|
---|
3316 | saved_end = *(unsigned char *) end;
|
---|
3317 | *end = eol;
|
---|
3318 |
|
---|
3319 | if (d->mb_cur_max > 1)
|
---|
3320 | {
|
---|
3321 | MALLOC (mblen_buf, end - begin + 2);
|
---|
3322 | MALLOC (inputwcs, end - begin + 2);
|
---|
3323 | memset (&mbs, 0, sizeof (mbstate_t));
|
---|
3324 | prepare_wc_buf ((const char *) p, end);
|
---|
3325 | }
|
---|
3326 |
|
---|
3327 | for (;;)
|
---|
3328 | {
|
---|
3329 | if (d->mb_cur_max > 1)
|
---|
3330 | while ((t = trans[s]) != NULL)
|
---|
3331 | {
|
---|
3332 | if (p > buf_end)
|
---|
3333 | break;
|
---|
3334 | s1 = s;
|
---|
3335 | SKIP_REMAINS_MB_IF_INITIAL_STATE (s, p);
|
---|
3336 |
|
---|
3337 | if (d->states[s].mbps.nelem == 0)
|
---|
3338 | {
|
---|
3339 | s = t[*p++];
|
---|
3340 | continue;
|
---|
3341 | }
|
---|
3342 |
|
---|
3343 | /* Falling back to the glibc matcher in this case gives
|
---|
3344 | better performance (up to 25% better on [a-z], for
|
---|
3345 | example) and enables support for collating symbols and
|
---|
3346 | equivalence classes. */
|
---|
3347 | if (backref)
|
---|
3348 | {
|
---|
3349 | *backref = 1;
|
---|
3350 | free (mblen_buf);
|
---|
3351 | free (inputwcs);
|
---|
3352 | *end = saved_end;
|
---|
3353 | return (char *) p;
|
---|
3354 | }
|
---|
3355 |
|
---|
3356 | /* Can match with a multibyte character (and multi character
|
---|
3357 | collating element). Transition table might be updated. */
|
---|
3358 | s = transit_state (d, s, &p);
|
---|
3359 | trans = d->trans;
|
---|
3360 | }
|
---|
3361 | else
|
---|
3362 | {
|
---|
3363 | while ((t = trans[s]) != NULL)
|
---|
3364 | {
|
---|
3365 | s1 = t[*p++];
|
---|
3366 | if ((t = trans[s1]) == NULL)
|
---|
3367 | {
|
---|
3368 | state_num tmp = s;
|
---|
3369 | s = s1;
|
---|
3370 | s1 = tmp; /* swap */
|
---|
3371 | break;
|
---|
3372 | }
|
---|
3373 | s = t[*p++];
|
---|
3374 | }
|
---|
3375 | }
|
---|
3376 |
|
---|
3377 | if (s >= 0 && (char *) p <= end && d->fails[s])
|
---|
3378 | {
|
---|
3379 | if (d->success[s] & sbit[*p])
|
---|
3380 | {
|
---|
3381 | if (backref)
|
---|
3382 | *backref = (d->states[s].backref != 0);
|
---|
3383 | if (d->mb_cur_max > 1)
|
---|
3384 | {
|
---|
3385 | free (mblen_buf);
|
---|
3386 | free (inputwcs);
|
---|
3387 | }
|
---|
3388 | *end = saved_end;
|
---|
3389 | return (char *) p;
|
---|
3390 | }
|
---|
3391 |
|
---|
3392 | s1 = s;
|
---|
3393 | if (d->mb_cur_max > 1)
|
---|
3394 | {
|
---|
3395 | /* Can match with a multibyte character (and multicharacter
|
---|
3396 | collating element). Transition table might be updated. */
|
---|
3397 | s = transit_state (d, s, &p);
|
---|
3398 | trans = d->trans;
|
---|
3399 | }
|
---|
3400 | else
|
---|
3401 | s = d->fails[s][*p++];
|
---|
3402 | continue;
|
---|
3403 | }
|
---|
3404 |
|
---|
3405 | /* If the previous character was a newline, count it. */
|
---|
3406 | if ((char *) p <= end && p[-1] == eol)
|
---|
3407 | {
|
---|
3408 | if (count)
|
---|
3409 | ++*count;
|
---|
3410 |
|
---|
3411 | if (d->mb_cur_max > 1)
|
---|
3412 | prepare_wc_buf ((const char *) p, end);
|
---|
3413 | }
|
---|
3414 |
|
---|
3415 | /* Check if we've run off the end of the buffer. */
|
---|
3416 | if ((char *) p > end)
|
---|
3417 | {
|
---|
3418 | if (d->mb_cur_max > 1)
|
---|
3419 | {
|
---|
3420 | free (mblen_buf);
|
---|
3421 | free (inputwcs);
|
---|
3422 | }
|
---|
3423 | *end = saved_end;
|
---|
3424 | return NULL;
|
---|
3425 | }
|
---|
3426 |
|
---|
3427 | if (s >= 0)
|
---|
3428 | {
|
---|
3429 | build_state (s, d);
|
---|
3430 | trans = d->trans;
|
---|
3431 | continue;
|
---|
3432 | }
|
---|
3433 |
|
---|
3434 | if (p[-1] == eol && allow_nl)
|
---|
3435 | {
|
---|
3436 | s = d->newlines[s1];
|
---|
3437 | continue;
|
---|
3438 | }
|
---|
3439 |
|
---|
3440 | s = 0;
|
---|
3441 | }
|
---|
3442 | }
|
---|
3443 |
|
---|
3444 | static void
|
---|
3445 | free_mbdata (struct dfa *d)
|
---|
3446 | {
|
---|
3447 | size_t i;
|
---|
3448 |
|
---|
3449 | free (d->multibyte_prop);
|
---|
3450 | d->multibyte_prop = NULL;
|
---|
3451 |
|
---|
3452 | for (i = 0; i < d->nmbcsets; ++i)
|
---|
3453 | {
|
---|
3454 | size_t j;
|
---|
3455 | struct mb_char_classes *p = &(d->mbcsets[i]);
|
---|
3456 | free (p->chars);
|
---|
3457 | free (p->ch_classes);
|
---|
3458 | free (p->range_sts);
|
---|
3459 | free (p->range_ends);
|
---|
3460 |
|
---|
3461 | for (j = 0; j < p->nequivs; ++j)
|
---|
3462 | free (p->equivs[j]);
|
---|
3463 | free (p->equivs);
|
---|
3464 |
|
---|
3465 | for (j = 0; j < p->ncoll_elems; ++j)
|
---|
3466 | free (p->coll_elems[j]);
|
---|
3467 | free (p->coll_elems);
|
---|
3468 | }
|
---|
3469 |
|
---|
3470 | free (d->mbcsets);
|
---|
3471 | d->mbcsets = NULL;
|
---|
3472 | d->nmbcsets = 0;
|
---|
3473 | }
|
---|
3474 |
|
---|
3475 | /* Initialize the components of a dfa that the other routines don't
|
---|
3476 | initialize for themselves. */
|
---|
3477 | void
|
---|
3478 | dfainit (struct dfa *d)
|
---|
3479 | {
|
---|
3480 | memset (d, 0, sizeof *d);
|
---|
3481 |
|
---|
3482 | d->calloc = 1;
|
---|
3483 | MALLOC (d->charclasses, d->calloc);
|
---|
3484 |
|
---|
3485 | d->talloc = 1;
|
---|
3486 | MALLOC (d->tokens, d->talloc);
|
---|
3487 |
|
---|
3488 | d->mb_cur_max = MB_CUR_MAX;
|
---|
3489 |
|
---|
3490 | if (d->mb_cur_max > 1)
|
---|
3491 | {
|
---|
3492 | d->nmultibyte_prop = 1;
|
---|
3493 | MALLOC (d->multibyte_prop, d->nmultibyte_prop);
|
---|
3494 | d->mbcsets_alloc = 1;
|
---|
3495 | MALLOC (d->mbcsets, d->mbcsets_alloc);
|
---|
3496 | }
|
---|
3497 | }
|
---|
3498 |
|
---|
3499 | static void
|
---|
3500 | dfaoptimize (struct dfa *d)
|
---|
3501 | {
|
---|
3502 | size_t i;
|
---|
3503 |
|
---|
3504 | if (!MBS_SUPPORT || !using_utf8 ())
|
---|
3505 | return;
|
---|
3506 |
|
---|
3507 | for (i = 0; i < d->tindex; ++i)
|
---|
3508 | {
|
---|
3509 | switch (d->tokens[i])
|
---|
3510 | {
|
---|
3511 | case ANYCHAR:
|
---|
3512 | /* Lowered. */
|
---|
3513 | abort ();
|
---|
3514 | case MBCSET:
|
---|
3515 | /* Requires multi-byte algorithm. */
|
---|
3516 | return;
|
---|
3517 | default:
|
---|
3518 | break;
|
---|
3519 | }
|
---|
3520 | }
|
---|
3521 |
|
---|
3522 | free_mbdata (d);
|
---|
3523 | d->mb_cur_max = 1;
|
---|
3524 | }
|
---|
3525 |
|
---|
3526 | /* Parse and analyze a single string of the given length. */
|
---|
3527 | void
|
---|
3528 | dfacomp (char const *s, size_t len, struct dfa *d, int searchflag)
|
---|
3529 | {
|
---|
3530 | dfainit (d);
|
---|
3531 | dfaparse (s, len, d);
|
---|
3532 | dfamust (d);
|
---|
3533 | dfaoptimize (d);
|
---|
3534 | dfaanalyze (d, searchflag);
|
---|
3535 | }
|
---|
3536 |
|
---|
3537 | /* Free the storage held by the components of a dfa. */
|
---|
3538 | void
|
---|
3539 | dfafree (struct dfa *d)
|
---|
3540 | {
|
---|
3541 | size_t i;
|
---|
3542 | struct dfamust *dm, *ndm;
|
---|
3543 |
|
---|
3544 | free (d->charclasses);
|
---|
3545 | free (d->tokens);
|
---|
3546 |
|
---|
3547 | if (d->mb_cur_max > 1)
|
---|
3548 | free_mbdata (d);
|
---|
3549 |
|
---|
3550 | for (i = 0; i < d->sindex; ++i)
|
---|
3551 | {
|
---|
3552 | free (d->states[i].elems.elems);
|
---|
3553 | if (MBS_SUPPORT)
|
---|
3554 | free (d->states[i].mbps.elems);
|
---|
3555 | }
|
---|
3556 | free (d->states);
|
---|
3557 | for (i = 0; i < d->tindex; ++i)
|
---|
3558 | free (d->follows[i].elems);
|
---|
3559 | free (d->follows);
|
---|
3560 | for (i = 0; i < d->tralloc; ++i)
|
---|
3561 | {
|
---|
3562 | free (d->trans[i]);
|
---|
3563 | free (d->fails[i]);
|
---|
3564 | }
|
---|
3565 | free (d->realtrans);
|
---|
3566 | free (d->fails);
|
---|
3567 | free (d->newlines);
|
---|
3568 | free (d->success);
|
---|
3569 | for (dm = d->musts; dm; dm = ndm)
|
---|
3570 | {
|
---|
3571 | ndm = dm->next;
|
---|
3572 | free (dm->must);
|
---|
3573 | free (dm);
|
---|
3574 | }
|
---|
3575 | }
|
---|
3576 |
|
---|
3577 | /* Having found the postfix representation of the regular expression,
|
---|
3578 | try to find a long sequence of characters that must appear in any line
|
---|
3579 | containing the r.e.
|
---|
3580 | Finding a "longest" sequence is beyond the scope here;
|
---|
3581 | we take an easy way out and hope for the best.
|
---|
3582 | (Take "(ab|a)b"--please.)
|
---|
3583 |
|
---|
3584 | We do a bottom-up calculation of sequences of characters that must appear
|
---|
3585 | in matches of r.e.'s represented by trees rooted at the nodes of the postfix
|
---|
3586 | representation:
|
---|
3587 | sequences that must appear at the left of the match ("left")
|
---|
3588 | sequences that must appear at the right of the match ("right")
|
---|
3589 | lists of sequences that must appear somewhere in the match ("in")
|
---|
3590 | sequences that must constitute the match ("is")
|
---|
3591 |
|
---|
3592 | When we get to the root of the tree, we use one of the longest of its
|
---|
3593 | calculated "in" sequences as our answer. The sequence we find is returned in
|
---|
3594 | d->must (where "d" is the single argument passed to "dfamust");
|
---|
3595 | the length of the sequence is returned in d->mustn.
|
---|
3596 |
|
---|
3597 | The sequences calculated for the various types of node (in pseudo ANSI c)
|
---|
3598 | are shown below. "p" is the operand of unary operators (and the left-hand
|
---|
3599 | operand of binary operators); "q" is the right-hand operand of binary
|
---|
3600 | operators.
|
---|
3601 |
|
---|
3602 | "ZERO" means "a zero-length sequence" below.
|
---|
3603 |
|
---|
3604 | Type left right is in
|
---|
3605 | ---- ---- ----- -- --
|
---|
3606 | char c # c # c # c # c
|
---|
3607 |
|
---|
3608 | ANYCHAR ZERO ZERO ZERO ZERO
|
---|
3609 |
|
---|
3610 | MBCSET ZERO ZERO ZERO ZERO
|
---|
3611 |
|
---|
3612 | CSET ZERO ZERO ZERO ZERO
|
---|
3613 |
|
---|
3614 | STAR ZERO ZERO ZERO ZERO
|
---|
3615 |
|
---|
3616 | QMARK ZERO ZERO ZERO ZERO
|
---|
3617 |
|
---|
3618 | PLUS p->left p->right ZERO p->in
|
---|
3619 |
|
---|
3620 | CAT (p->is==ZERO)? (q->is==ZERO)? (p->is!=ZERO && p->in plus
|
---|
3621 | p->left : q->right : q->is!=ZERO) ? q->in plus
|
---|
3622 | p->is##q->left p->right##q->is p->is##q->is : p->right##q->left
|
---|
3623 | ZERO
|
---|
3624 |
|
---|
3625 | OR longest common longest common (do p->is and substrings common to
|
---|
3626 | leading trailing q->is have same p->in and q->in
|
---|
3627 | (sub)sequence (sub)sequence length and
|
---|
3628 | of p->left of p->right content) ?
|
---|
3629 | and q->left and q->right p->is : NULL
|
---|
3630 |
|
---|
3631 | If there's anything else we recognize in the tree, all four sequences get set
|
---|
3632 | to zero-length sequences. If there's something we don't recognize in the tree,
|
---|
3633 | we just return a zero-length sequence.
|
---|
3634 |
|
---|
3635 | Break ties in favor of infrequent letters (choosing 'zzz' in preference to
|
---|
3636 | 'aaa')?
|
---|
3637 |
|
---|
3638 | And. . .is it here or someplace that we might ponder "optimizations" such as
|
---|
3639 | egrep 'psi|epsilon' -> egrep 'psi'
|
---|
3640 | egrep 'pepsi|epsilon' -> egrep 'epsi'
|
---|
3641 | (Yes, we now find "epsi" as a "string
|
---|
3642 | that must occur", but we might also
|
---|
3643 | simplify the *entire* r.e. being sought)
|
---|
3644 | grep '[c]' -> grep 'c'
|
---|
3645 | grep '(ab|a)b' -> grep 'ab'
|
---|
3646 | grep 'ab*' -> grep 'a'
|
---|
3647 | grep 'a*b' -> grep 'b'
|
---|
3648 |
|
---|
3649 | There are several issues:
|
---|
3650 |
|
---|
3651 | Is optimization easy (enough)?
|
---|
3652 |
|
---|
3653 | Does optimization actually accomplish anything,
|
---|
3654 | or is the automaton you get from "psi|epsilon" (for example)
|
---|
3655 | the same as the one you get from "psi" (for example)?
|
---|
3656 |
|
---|
3657 | Are optimizable r.e.'s likely to be used in real-life situations
|
---|
3658 | (something like 'ab*' is probably unlikely; something like is
|
---|
3659 | 'psi|epsilon' is likelier)? */
|
---|
3660 |
|
---|
3661 | static char *
|
---|
3662 | icatalloc (char *old, char const *new)
|
---|
3663 | {
|
---|
3664 | char *result;
|
---|
3665 | size_t oldsize = old == NULL ? 0 : strlen (old);
|
---|
3666 | size_t newsize = new == NULL ? 0 : strlen (new);
|
---|
3667 | if (newsize == 0)
|
---|
3668 | return old;
|
---|
3669 | result = xrealloc (old, oldsize + newsize + 1);
|
---|
3670 | memcpy (result + oldsize, new, newsize + 1);
|
---|
3671 | return result;
|
---|
3672 | }
|
---|
3673 |
|
---|
3674 | static char *
|
---|
3675 | icpyalloc (char const *string)
|
---|
3676 | {
|
---|
3677 | return icatalloc (NULL, string);
|
---|
3678 | }
|
---|
3679 |
|
---|
3680 | static char *_GL_ATTRIBUTE_PURE
|
---|
3681 | istrstr (char const *lookin, char const *lookfor)
|
---|
3682 | {
|
---|
3683 | char const *cp;
|
---|
3684 | size_t len;
|
---|
3685 |
|
---|
3686 | len = strlen (lookfor);
|
---|
3687 | for (cp = lookin; *cp != '\0'; ++cp)
|
---|
3688 | if (strncmp (cp, lookfor, len) == 0)
|
---|
3689 | return (char *) cp;
|
---|
3690 | return NULL;
|
---|
3691 | }
|
---|
3692 |
|
---|
3693 | static void
|
---|
3694 | freelist (char **cpp)
|
---|
3695 | {
|
---|
3696 | size_t i;
|
---|
3697 |
|
---|
3698 | if (cpp == NULL)
|
---|
3699 | return;
|
---|
3700 | for (i = 0; cpp[i] != NULL; ++i)
|
---|
3701 | {
|
---|
3702 | free (cpp[i]);
|
---|
3703 | cpp[i] = NULL;
|
---|
3704 | }
|
---|
3705 | }
|
---|
3706 |
|
---|
3707 | static char **
|
---|
3708 | enlist (char **cpp, char *new, size_t len)
|
---|
3709 | {
|
---|
3710 | size_t i, j;
|
---|
3711 |
|
---|
3712 | if (cpp == NULL)
|
---|
3713 | return NULL;
|
---|
3714 | if ((new = icpyalloc (new)) == NULL)
|
---|
3715 | {
|
---|
3716 | freelist (cpp);
|
---|
3717 | return NULL;
|
---|
3718 | }
|
---|
3719 | new[len] = '\0';
|
---|
3720 | /* Is there already something in the list that's new (or longer)? */
|
---|
3721 | for (i = 0; cpp[i] != NULL; ++i)
|
---|
3722 | if (istrstr (cpp[i], new) != NULL)
|
---|
3723 | {
|
---|
3724 | free (new);
|
---|
3725 | return cpp;
|
---|
3726 | }
|
---|
3727 | /* Eliminate any obsoleted strings. */
|
---|
3728 | j = 0;
|
---|
3729 | while (cpp[j] != NULL)
|
---|
3730 | if (istrstr (new, cpp[j]) == NULL)
|
---|
3731 | ++j;
|
---|
3732 | else
|
---|
3733 | {
|
---|
3734 | free (cpp[j]);
|
---|
3735 | if (--i == j)
|
---|
3736 | break;
|
---|
3737 | cpp[j] = cpp[i];
|
---|
3738 | cpp[i] = NULL;
|
---|
3739 | }
|
---|
3740 | /* Add the new string. */
|
---|
3741 | REALLOC (cpp, i + 2);
|
---|
3742 | cpp[i] = new;
|
---|
3743 | cpp[i + 1] = NULL;
|
---|
3744 | return cpp;
|
---|
3745 | }
|
---|
3746 |
|
---|
3747 | /* Given pointers to two strings, return a pointer to an allocated
|
---|
3748 | list of their distinct common substrings. Return NULL if something
|
---|
3749 | seems wild. */
|
---|
3750 | static char **
|
---|
3751 | comsubs (char *left, char const *right)
|
---|
3752 | {
|
---|
3753 | char **cpp;
|
---|
3754 | char *lcp;
|
---|
3755 | char *rcp;
|
---|
3756 | size_t i, len;
|
---|
3757 |
|
---|
3758 | if (left == NULL || right == NULL)
|
---|
3759 | return NULL;
|
---|
3760 | cpp = malloc (sizeof *cpp);
|
---|
3761 | if (cpp == NULL)
|
---|
3762 | return NULL;
|
---|
3763 | cpp[0] = NULL;
|
---|
3764 | for (lcp = left; *lcp != '\0'; ++lcp)
|
---|
3765 | {
|
---|
3766 | len = 0;
|
---|
3767 | rcp = strchr (right, *lcp);
|
---|
3768 | while (rcp != NULL)
|
---|
3769 | {
|
---|
3770 | for (i = 1; lcp[i] != '\0' && lcp[i] == rcp[i]; ++i)
|
---|
3771 | continue;
|
---|
3772 | if (i > len)
|
---|
3773 | len = i;
|
---|
3774 | rcp = strchr (rcp + 1, *lcp);
|
---|
3775 | }
|
---|
3776 | if (len == 0)
|
---|
3777 | continue;
|
---|
3778 | {
|
---|
3779 | char **p = enlist (cpp, lcp, len);
|
---|
3780 | if (p == NULL)
|
---|
3781 | {
|
---|
3782 | freelist (cpp);
|
---|
3783 | cpp = NULL;
|
---|
3784 | break;
|
---|
3785 | }
|
---|
3786 | cpp = p;
|
---|
3787 | }
|
---|
3788 | }
|
---|
3789 | return cpp;
|
---|
3790 | }
|
---|
3791 |
|
---|
3792 | static char **
|
---|
3793 | addlists (char **old, char **new)
|
---|
3794 | {
|
---|
3795 | size_t i;
|
---|
3796 |
|
---|
3797 | if (old == NULL || new == NULL)
|
---|
3798 | return NULL;
|
---|
3799 | for (i = 0; new[i] != NULL; ++i)
|
---|
3800 | {
|
---|
3801 | old = enlist (old, new[i], strlen (new[i]));
|
---|
3802 | if (old == NULL)
|
---|
3803 | break;
|
---|
3804 | }
|
---|
3805 | return old;
|
---|
3806 | }
|
---|
3807 |
|
---|
3808 | /* Given two lists of substrings, return a new list giving substrings
|
---|
3809 | common to both. */
|
---|
3810 | static char **
|
---|
3811 | inboth (char **left, char **right)
|
---|
3812 | {
|
---|
3813 | char **both;
|
---|
3814 | char **temp;
|
---|
3815 | size_t lnum, rnum;
|
---|
3816 |
|
---|
3817 | if (left == NULL || right == NULL)
|
---|
3818 | return NULL;
|
---|
3819 | both = malloc (sizeof *both);
|
---|
3820 | if (both == NULL)
|
---|
3821 | return NULL;
|
---|
3822 | both[0] = NULL;
|
---|
3823 | for (lnum = 0; left[lnum] != NULL; ++lnum)
|
---|
3824 | {
|
---|
3825 | for (rnum = 0; right[rnum] != NULL; ++rnum)
|
---|
3826 | {
|
---|
3827 | temp = comsubs (left[lnum], right[rnum]);
|
---|
3828 | if (temp == NULL)
|
---|
3829 | {
|
---|
3830 | freelist (both);
|
---|
3831 | return NULL;
|
---|
3832 | }
|
---|
3833 | both = addlists (both, temp);
|
---|
3834 | freelist (temp);
|
---|
3835 | free (temp);
|
---|
3836 | if (both == NULL)
|
---|
3837 | return NULL;
|
---|
3838 | }
|
---|
3839 | }
|
---|
3840 | return both;
|
---|
3841 | }
|
---|
3842 |
|
---|
3843 | typedef struct
|
---|
3844 | {
|
---|
3845 | char **in;
|
---|
3846 | char *left;
|
---|
3847 | char *right;
|
---|
3848 | char *is;
|
---|
3849 | } must;
|
---|
3850 |
|
---|
3851 | static void
|
---|
3852 | resetmust (must * mp)
|
---|
3853 | {
|
---|
3854 | mp->left[0] = mp->right[0] = mp->is[0] = '\0';
|
---|
3855 | freelist (mp->in);
|
---|
3856 | }
|
---|
3857 |
|
---|
3858 | static void
|
---|
3859 | dfamust (struct dfa *d)
|
---|
3860 | {
|
---|
3861 | must *musts;
|
---|
3862 | must *mp;
|
---|
3863 | char *result;
|
---|
3864 | size_t ri;
|
---|
3865 | size_t i;
|
---|
3866 | int exact;
|
---|
3867 | token t;
|
---|
3868 | static must must0;
|
---|
3869 | struct dfamust *dm;
|
---|
3870 | static char empty_string[] = "";
|
---|
3871 |
|
---|
3872 | result = empty_string;
|
---|
3873 | exact = 0;
|
---|
3874 | MALLOC (musts, d->tindex + 1);
|
---|
3875 | mp = musts;
|
---|
3876 | for (i = 0; i <= d->tindex; ++i)
|
---|
3877 | mp[i] = must0;
|
---|
3878 | for (i = 0; i <= d->tindex; ++i)
|
---|
3879 | {
|
---|
3880 | mp[i].in = xmalloc (sizeof *mp[i].in);
|
---|
3881 | mp[i].left = xmalloc (2);
|
---|
3882 | mp[i].right = xmalloc (2);
|
---|
3883 | mp[i].is = xmalloc (2);
|
---|
3884 | mp[i].left[0] = mp[i].right[0] = mp[i].is[0] = '\0';
|
---|
3885 | mp[i].in[0] = NULL;
|
---|
3886 | }
|
---|
3887 | #ifdef DEBUG
|
---|
3888 | fprintf (stderr, "dfamust:\n");
|
---|
3889 | for (i = 0; i < d->tindex; ++i)
|
---|
3890 | {
|
---|
3891 | fprintf (stderr, " %zd:", i);
|
---|
3892 | prtok (d->tokens[i]);
|
---|
3893 | }
|
---|
3894 | putc ('\n', stderr);
|
---|
3895 | #endif
|
---|
3896 | for (ri = 0; ri < d->tindex; ++ri)
|
---|
3897 | {
|
---|
3898 | switch (t = d->tokens[ri])
|
---|
3899 | {
|
---|
3900 | case LPAREN:
|
---|
3901 | case RPAREN:
|
---|
3902 | assert (!"neither LPAREN nor RPAREN may appear here");
|
---|
3903 | case EMPTY:
|
---|
3904 | case BEGLINE:
|
---|
3905 | case ENDLINE:
|
---|
3906 | case BEGWORD:
|
---|
3907 | case ENDWORD:
|
---|
3908 | case LIMWORD:
|
---|
3909 | case NOTLIMWORD:
|
---|
3910 | case BACKREF:
|
---|
3911 | resetmust (mp);
|
---|
3912 | break;
|
---|
3913 | case STAR:
|
---|
3914 | case QMARK:
|
---|
3915 | assert (musts < mp);
|
---|
3916 | --mp;
|
---|
3917 | resetmust (mp);
|
---|
3918 | break;
|
---|
3919 | case OR:
|
---|
3920 | assert (&musts[2] <= mp);
|
---|
3921 | {
|
---|
3922 | char **new;
|
---|
3923 | must *lmp;
|
---|
3924 | must *rmp;
|
---|
3925 | size_t j, ln, rn, n;
|
---|
3926 |
|
---|
3927 | rmp = --mp;
|
---|
3928 | lmp = --mp;
|
---|
3929 | /* Guaranteed to be. Unlikely, but. . . */
|
---|
3930 | if (!STREQ (lmp->is, rmp->is))
|
---|
3931 | lmp->is[0] = '\0';
|
---|
3932 | /* Left side--easy */
|
---|
3933 | i = 0;
|
---|
3934 | while (lmp->left[i] != '\0' && lmp->left[i] == rmp->left[i])
|
---|
3935 | ++i;
|
---|
3936 | lmp->left[i] = '\0';
|
---|
3937 | /* Right side */
|
---|
3938 | ln = strlen (lmp->right);
|
---|
3939 | rn = strlen (rmp->right);
|
---|
3940 | n = ln;
|
---|
3941 | if (n > rn)
|
---|
3942 | n = rn;
|
---|
3943 | for (i = 0; i < n; ++i)
|
---|
3944 | if (lmp->right[ln - i - 1] != rmp->right[rn - i - 1])
|
---|
3945 | break;
|
---|
3946 | for (j = 0; j < i; ++j)
|
---|
3947 | lmp->right[j] = lmp->right[(ln - i) + j];
|
---|
3948 | lmp->right[j] = '\0';
|
---|
3949 | new = inboth (lmp->in, rmp->in);
|
---|
3950 | if (new == NULL)
|
---|
3951 | goto done;
|
---|
3952 | freelist (lmp->in);
|
---|
3953 | free (lmp->in);
|
---|
3954 | lmp->in = new;
|
---|
3955 | }
|
---|
3956 | break;
|
---|
3957 | case PLUS:
|
---|
3958 | assert (musts < mp);
|
---|
3959 | --mp;
|
---|
3960 | mp->is[0] = '\0';
|
---|
3961 | break;
|
---|
3962 | case END:
|
---|
3963 | assert (mp == &musts[1]);
|
---|
3964 | for (i = 0; musts[0].in[i] != NULL; ++i)
|
---|
3965 | if (strlen (musts[0].in[i]) > strlen (result))
|
---|
3966 | result = musts[0].in[i];
|
---|
3967 | if (STREQ (result, musts[0].is))
|
---|
3968 | exact = 1;
|
---|
3969 | goto done;
|
---|
3970 | case CAT:
|
---|
3971 | assert (&musts[2] <= mp);
|
---|
3972 | {
|
---|
3973 | must *lmp;
|
---|
3974 | must *rmp;
|
---|
3975 |
|
---|
3976 | rmp = --mp;
|
---|
3977 | lmp = --mp;
|
---|
3978 | /* In. Everything in left, plus everything in
|
---|
3979 | right, plus concatenation of
|
---|
3980 | left's right and right's left. */
|
---|
3981 | lmp->in = addlists (lmp->in, rmp->in);
|
---|
3982 | if (lmp->in == NULL)
|
---|
3983 | goto done;
|
---|
3984 | if (lmp->right[0] != '\0' && rmp->left[0] != '\0')
|
---|
3985 | {
|
---|
3986 | char *tp;
|
---|
3987 |
|
---|
3988 | tp = icpyalloc (lmp->right);
|
---|
3989 | tp = icatalloc (tp, rmp->left);
|
---|
3990 | lmp->in = enlist (lmp->in, tp, strlen (tp));
|
---|
3991 | free (tp);
|
---|
3992 | if (lmp->in == NULL)
|
---|
3993 | goto done;
|
---|
3994 | }
|
---|
3995 | /* Left-hand */
|
---|
3996 | if (lmp->is[0] != '\0')
|
---|
3997 | {
|
---|
3998 | lmp->left = icatalloc (lmp->left, rmp->left);
|
---|
3999 | if (lmp->left == NULL)
|
---|
4000 | goto done;
|
---|
4001 | }
|
---|
4002 | /* Right-hand */
|
---|
4003 | if (rmp->is[0] == '\0')
|
---|
4004 | lmp->right[0] = '\0';
|
---|
4005 | lmp->right = icatalloc (lmp->right, rmp->right);
|
---|
4006 | if (lmp->right == NULL)
|
---|
4007 | goto done;
|
---|
4008 | /* Guaranteed to be */
|
---|
4009 | if (lmp->is[0] != '\0' && rmp->is[0] != '\0')
|
---|
4010 | {
|
---|
4011 | lmp->is = icatalloc (lmp->is, rmp->is);
|
---|
4012 | if (lmp->is == NULL)
|
---|
4013 | goto done;
|
---|
4014 | }
|
---|
4015 | else
|
---|
4016 | lmp->is[0] = '\0';
|
---|
4017 | }
|
---|
4018 | break;
|
---|
4019 | default:
|
---|
4020 | if (t < END)
|
---|
4021 | {
|
---|
4022 | assert (!"oops! t >= END");
|
---|
4023 | }
|
---|
4024 | else if (t == '\0')
|
---|
4025 | {
|
---|
4026 | /* not on *my* shift */
|
---|
4027 | goto done;
|
---|
4028 | }
|
---|
4029 | else if (t >= CSET || !MBS_SUPPORT || t == ANYCHAR || t == MBCSET)
|
---|
4030 | {
|
---|
4031 | /* easy enough */
|
---|
4032 | resetmust (mp);
|
---|
4033 | }
|
---|
4034 | else
|
---|
4035 | {
|
---|
4036 | /* plain character */
|
---|
4037 | resetmust (mp);
|
---|
4038 | mp->is[0] = mp->left[0] = mp->right[0] = t;
|
---|
4039 | mp->is[1] = mp->left[1] = mp->right[1] = '\0';
|
---|
4040 | mp->in = enlist (mp->in, mp->is, (size_t) 1);
|
---|
4041 | if (mp->in == NULL)
|
---|
4042 | goto done;
|
---|
4043 | }
|
---|
4044 | break;
|
---|
4045 | }
|
---|
4046 | #ifdef DEBUG
|
---|
4047 | fprintf (stderr, " node: %zd:", ri);
|
---|
4048 | prtok (d->tokens[ri]);
|
---|
4049 | fprintf (stderr, "\n in:");
|
---|
4050 | for (i = 0; mp->in[i]; ++i)
|
---|
4051 | fprintf (stderr, " \"%s\"", mp->in[i]);
|
---|
4052 | fprintf (stderr, "\n is: \"%s\"\n", mp->is);
|
---|
4053 | fprintf (stderr, " left: \"%s\"\n", mp->left);
|
---|
4054 | fprintf (stderr, " right: \"%s\"\n", mp->right);
|
---|
4055 | #endif
|
---|
4056 | ++mp;
|
---|
4057 | }
|
---|
4058 | done:
|
---|
4059 | if (strlen (result))
|
---|
4060 | {
|
---|
4061 | MALLOC (dm, 1);
|
---|
4062 | dm->exact = exact;
|
---|
4063 | dm->must = xmemdup (result, strlen (result) + 1);
|
---|
4064 | dm->next = d->musts;
|
---|
4065 | d->musts = dm;
|
---|
4066 | }
|
---|
4067 | mp = musts;
|
---|
4068 | for (i = 0; i <= d->tindex; ++i)
|
---|
4069 | {
|
---|
4070 | freelist (mp[i].in);
|
---|
4071 | free (mp[i].in);
|
---|
4072 | free (mp[i].left);
|
---|
4073 | free (mp[i].right);
|
---|
4074 | free (mp[i].is);
|
---|
4075 | }
|
---|
4076 | free (mp);
|
---|
4077 | }
|
---|
4078 |
|
---|
4079 | struct dfa *
|
---|
4080 | dfaalloc (void)
|
---|
4081 | {
|
---|
4082 | return xmalloc (sizeof (struct dfa));
|
---|
4083 | }
|
---|
4084 |
|
---|
4085 | struct dfamust *_GL_ATTRIBUTE_PURE
|
---|
4086 | dfamusts (struct dfa const *d)
|
---|
4087 | {
|
---|
4088 | return d->musts;
|
---|
4089 | }
|
---|
4090 |
|
---|
4091 | /* vim:set shiftwidth=2: */
|
---|