1 | /* dfasearch.c - searching subroutines using dfa and regex for grep.
|
---|
2 | Copyright 1992, 1998, 2000, 2007, 2009-2012 Free Software Foundation, Inc.
|
---|
3 |
|
---|
4 | This program is free software; you can redistribute it and/or modify
|
---|
5 | it under the terms of the GNU General Public License as published by
|
---|
6 | the Free Software Foundation; either version 3, or (at your option)
|
---|
7 | any later version.
|
---|
8 |
|
---|
9 | This program is distributed in the hope that it will be useful,
|
---|
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
12 | GNU General Public License for more details.
|
---|
13 |
|
---|
14 | You should have received a copy of the GNU General Public License
|
---|
15 | along with this program; if not, write to the Free Software
|
---|
16 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
|
---|
17 | 02110-1301, USA. */
|
---|
18 |
|
---|
19 | /* Written August 1992 by Mike Haertel. */
|
---|
20 |
|
---|
21 | #include <config.h>
|
---|
22 | #include "intprops.h"
|
---|
23 | #include "search.h"
|
---|
24 | #include "dfa.h"
|
---|
25 |
|
---|
26 | /* For -w, we also consider _ to be word constituent. */
|
---|
27 | #define WCHAR(C) (isalnum (C) || (C) == '_')
|
---|
28 |
|
---|
29 | /* KWset compiled pattern. For Ecompile and Gcompile, we compile
|
---|
30 | a list of strings, at least one of which is known to occur in
|
---|
31 | any string matching the regexp. */
|
---|
32 | static kwset_t kwset;
|
---|
33 |
|
---|
34 | /* DFA compiled regexp. */
|
---|
35 | static struct dfa *dfa;
|
---|
36 |
|
---|
37 | /* The Regex compiled patterns. */
|
---|
38 | static struct patterns
|
---|
39 | {
|
---|
40 | /* Regex compiled regexp. */
|
---|
41 | struct re_pattern_buffer regexbuf;
|
---|
42 | struct re_registers regs; /* This is here on account of a BRAIN-DEAD
|
---|
43 | Q@#%!# library interface in regex.c. */
|
---|
44 | } patterns0;
|
---|
45 |
|
---|
46 | static struct patterns *patterns;
|
---|
47 | static size_t pcount;
|
---|
48 |
|
---|
49 | void
|
---|
50 | dfaerror (char const *mesg)
|
---|
51 | {
|
---|
52 | error (EXIT_TROUBLE, 0, "%s", mesg);
|
---|
53 |
|
---|
54 | /* notreached */
|
---|
55 | /* Tell static analyzers that this function does not return. */
|
---|
56 | abort ();
|
---|
57 | }
|
---|
58 |
|
---|
59 | /* For now, the sole dfawarn-eliciting condition (use of a regexp
|
---|
60 | like '[:lower:]') is unequivocally an error, so treat it as such,
|
---|
61 | when possible. */
|
---|
62 | void
|
---|
63 | dfawarn (char const *mesg)
|
---|
64 | {
|
---|
65 | static enum { DW_NONE = 0, DW_POSIX, DW_GNU } mode;
|
---|
66 | if (mode == DW_NONE)
|
---|
67 | mode = (getenv ("POSIXLY_CORRECT") ? DW_POSIX : DW_GNU);
|
---|
68 | if (mode == DW_GNU)
|
---|
69 | dfaerror (mesg);
|
---|
70 | }
|
---|
71 |
|
---|
72 | /* Number of compiled fixed strings known to exactly match the regexp.
|
---|
73 | If kwsexec returns < kwset_exact_matches, then we don't need to
|
---|
74 | call the regexp matcher at all. */
|
---|
75 | static size_t kwset_exact_matches;
|
---|
76 |
|
---|
77 | static char const *
|
---|
78 | kwsincr_case (const char *must)
|
---|
79 | {
|
---|
80 | size_t n = strlen (must);
|
---|
81 | const char *buf = (match_icase && MB_CUR_MAX > 1
|
---|
82 | ? mbtolower (must, &n)
|
---|
83 | : must);
|
---|
84 | return kwsincr (kwset, buf, n);
|
---|
85 | }
|
---|
86 |
|
---|
87 | /* If the DFA turns out to have some set of fixed strings one of
|
---|
88 | which must occur in the match, then we build a kwset matcher
|
---|
89 | to find those strings, and thus quickly filter out impossible
|
---|
90 | matches. */
|
---|
91 | static void
|
---|
92 | kwsmusts (void)
|
---|
93 | {
|
---|
94 | struct dfamust const *dm;
|
---|
95 | char const *err;
|
---|
96 |
|
---|
97 | dm = dfamusts (dfa);
|
---|
98 | if (dm)
|
---|
99 | {
|
---|
100 | kwsinit (&kwset);
|
---|
101 | /* First, we compile in the substrings known to be exact
|
---|
102 | matches. The kwset matcher will return the index
|
---|
103 | of the matching string that it chooses. */
|
---|
104 | for (; dm; dm = dm->next)
|
---|
105 | {
|
---|
106 | if (!dm->exact)
|
---|
107 | continue;
|
---|
108 | ++kwset_exact_matches;
|
---|
109 | if ((err = kwsincr_case (dm->must)) != NULL)
|
---|
110 | error (EXIT_TROUBLE, 0, "%s", err);
|
---|
111 | }
|
---|
112 | /* Now, we compile the substrings that will require
|
---|
113 | the use of the regexp matcher. */
|
---|
114 | for (dm = dfamusts (dfa); dm; dm = dm->next)
|
---|
115 | {
|
---|
116 | if (dm->exact)
|
---|
117 | continue;
|
---|
118 | if ((err = kwsincr_case (dm->must)) != NULL)
|
---|
119 | error (EXIT_TROUBLE, 0, "%s", err);
|
---|
120 | }
|
---|
121 | if ((err = kwsprep (kwset)) != NULL)
|
---|
122 | error (EXIT_TROUBLE, 0, "%s", err);
|
---|
123 | }
|
---|
124 | }
|
---|
125 |
|
---|
126 | void
|
---|
127 | GEAcompile (char const *pattern, size_t size, reg_syntax_t syntax_bits)
|
---|
128 | {
|
---|
129 | const char *err;
|
---|
130 | const char *p, *sep;
|
---|
131 | size_t total = size;
|
---|
132 | char *motif;
|
---|
133 |
|
---|
134 | if (match_icase)
|
---|
135 | syntax_bits |= RE_ICASE;
|
---|
136 | re_set_syntax (syntax_bits);
|
---|
137 | dfasyntax (syntax_bits, match_icase, eolbyte);
|
---|
138 |
|
---|
139 | /* For GNU regex compiler we have to pass the patterns separately to detect
|
---|
140 | errors like "[\nallo\n]\n". The patterns here are "[", "allo" and "]"
|
---|
141 | GNU regex should have raise a syntax error. The same for backref, where
|
---|
142 | the backref should have been local to each pattern. */
|
---|
143 | p = pattern;
|
---|
144 | do
|
---|
145 | {
|
---|
146 | size_t len;
|
---|
147 | sep = memchr (p, '\n', total);
|
---|
148 | if (sep)
|
---|
149 | {
|
---|
150 | len = sep - p;
|
---|
151 | sep++;
|
---|
152 | total -= (len + 1);
|
---|
153 | }
|
---|
154 | else
|
---|
155 | {
|
---|
156 | len = total;
|
---|
157 | total = 0;
|
---|
158 | }
|
---|
159 |
|
---|
160 | patterns = xnrealloc (patterns, pcount + 1, sizeof *patterns);
|
---|
161 | patterns[pcount] = patterns0;
|
---|
162 |
|
---|
163 | if ((err = re_compile_pattern (p, len,
|
---|
164 | &(patterns[pcount].regexbuf))) != NULL)
|
---|
165 | error (EXIT_TROUBLE, 0, "%s", err);
|
---|
166 | pcount++;
|
---|
167 |
|
---|
168 | p = sep;
|
---|
169 | } while (sep && total != 0);
|
---|
170 |
|
---|
171 | /* In the match_words and match_lines cases, we use a different pattern
|
---|
172 | for the DFA matcher that will quickly throw out cases that won't work.
|
---|
173 | Then if DFA succeeds we do some hairy stuff using the regex matcher
|
---|
174 | to decide whether the match should really count. */
|
---|
175 | if (match_words || match_lines)
|
---|
176 | {
|
---|
177 | static char const line_beg_no_bk[] = "^(";
|
---|
178 | static char const line_end_no_bk[] = ")$";
|
---|
179 | static char const word_beg_no_bk[] = "(^|[^[:alnum:]_])(";
|
---|
180 | static char const word_end_no_bk[] = ")([^[:alnum:]_]|$)";
|
---|
181 | static char const line_beg_bk[] = "^\\(";
|
---|
182 | static char const line_end_bk[] = "\\)$";
|
---|
183 | static char const word_beg_bk[] = "\\(^\\|[^[:alnum:]_]\\)\\(";
|
---|
184 | static char const word_end_bk[] = "\\)\\([^[:alnum:]_]\\|$\\)";
|
---|
185 | int bk = !(syntax_bits & RE_NO_BK_PARENS);
|
---|
186 | char *n = xmalloc (sizeof word_beg_bk - 1 + size + sizeof word_end_bk);
|
---|
187 |
|
---|
188 | strcpy (n, match_lines ? (bk ? line_beg_bk : line_beg_no_bk)
|
---|
189 | : (bk ? word_beg_bk : word_beg_no_bk));
|
---|
190 | total = strlen(n);
|
---|
191 | memcpy (n + total, pattern, size);
|
---|
192 | total += size;
|
---|
193 | strcpy (n + total, match_lines ? (bk ? line_end_bk : line_end_no_bk)
|
---|
194 | : (bk ? word_end_bk : word_end_no_bk));
|
---|
195 | total += strlen (n + total);
|
---|
196 | pattern = motif = n;
|
---|
197 | size = total;
|
---|
198 | }
|
---|
199 | else
|
---|
200 | motif = NULL;
|
---|
201 |
|
---|
202 | dfa = dfaalloc ();
|
---|
203 | dfacomp (pattern, size, dfa, 1);
|
---|
204 | kwsmusts ();
|
---|
205 |
|
---|
206 | free(motif);
|
---|
207 | }
|
---|
208 |
|
---|
209 | size_t
|
---|
210 | EGexecute (char const *buf, size_t size, size_t *match_size,
|
---|
211 | char const *start_ptr)
|
---|
212 | {
|
---|
213 | char const *buflim, *beg, *end, *match, *best_match, *mb_start;
|
---|
214 | char eol = eolbyte;
|
---|
215 | int backref;
|
---|
216 | regoff_t start;
|
---|
217 | ptrdiff_t len, best_len;
|
---|
218 | struct kwsmatch kwsm;
|
---|
219 | size_t i, ret_val;
|
---|
220 | if (MB_CUR_MAX > 1)
|
---|
221 | {
|
---|
222 | if (match_icase)
|
---|
223 | {
|
---|
224 | /* mbtolower adds a NUL byte at the end. That will provide
|
---|
225 | space for the sentinel byte dfaexec may add. */
|
---|
226 | char *case_buf = mbtolower (buf, &size);
|
---|
227 | if (start_ptr)
|
---|
228 | start_ptr = case_buf + (start_ptr - buf);
|
---|
229 | buf = case_buf;
|
---|
230 | }
|
---|
231 | }
|
---|
232 |
|
---|
233 | mb_start = buf;
|
---|
234 | buflim = buf + size;
|
---|
235 |
|
---|
236 | for (beg = end = buf; end < buflim; beg = end)
|
---|
237 | {
|
---|
238 | if (!start_ptr)
|
---|
239 | {
|
---|
240 | /* We don't care about an exact match. */
|
---|
241 | if (kwset)
|
---|
242 | {
|
---|
243 | /* Find a possible match using the KWset matcher. */
|
---|
244 | size_t offset = kwsexec (kwset, beg, buflim - beg, &kwsm);
|
---|
245 | if (offset == (size_t) -1)
|
---|
246 | goto failure;
|
---|
247 | beg += offset;
|
---|
248 | /* Narrow down to the line containing the candidate, and
|
---|
249 | run it through DFA. */
|
---|
250 | if ((end = memchr(beg, eol, buflim - beg)) != NULL)
|
---|
251 | end++;
|
---|
252 | else
|
---|
253 | end = buflim;
|
---|
254 | match = beg;
|
---|
255 | while (beg > buf && beg[-1] != eol)
|
---|
256 | --beg;
|
---|
257 | if (kwsm.index < kwset_exact_matches)
|
---|
258 | {
|
---|
259 | if (!MBS_SUPPORT)
|
---|
260 | goto success;
|
---|
261 |
|
---|
262 | if (mb_start < beg)
|
---|
263 | mb_start = beg;
|
---|
264 | if (MB_CUR_MAX == 1
|
---|
265 | || !is_mb_middle (&mb_start, match, buflim,
|
---|
266 | kwsm.size[0]))
|
---|
267 | goto success;
|
---|
268 | }
|
---|
269 | if (dfaexec (dfa, beg, (char *) end, 0, NULL, &backref) == NULL)
|
---|
270 | continue;
|
---|
271 | }
|
---|
272 | else
|
---|
273 | {
|
---|
274 | /* No good fixed strings; start with DFA. */
|
---|
275 | char const *next_beg = dfaexec (dfa, beg, (char *) buflim,
|
---|
276 | 0, NULL, &backref);
|
---|
277 | if (next_beg == NULL)
|
---|
278 | break;
|
---|
279 | /* Narrow down to the line we've found. */
|
---|
280 | beg = next_beg;
|
---|
281 | if ((end = memchr(beg, eol, buflim - beg)) != NULL)
|
---|
282 | end++;
|
---|
283 | else
|
---|
284 | end = buflim;
|
---|
285 | while (beg > buf && beg[-1] != eol)
|
---|
286 | --beg;
|
---|
287 | }
|
---|
288 | /* Successful, no backreferences encountered! */
|
---|
289 | if (!backref)
|
---|
290 | goto success;
|
---|
291 | }
|
---|
292 | else
|
---|
293 | {
|
---|
294 | /* We are looking for the leftmost (then longest) exact match.
|
---|
295 | We will go through the outer loop only once. */
|
---|
296 | beg = start_ptr;
|
---|
297 | end = buflim;
|
---|
298 | }
|
---|
299 |
|
---|
300 | /* If the "line" is longer than the maximum regexp offset,
|
---|
301 | die as if we've run out of memory. */
|
---|
302 | if (TYPE_MAXIMUM (regoff_t) < end - buf - 1)
|
---|
303 | xalloc_die ();
|
---|
304 |
|
---|
305 | /* If we've made it to this point, this means DFA has seen
|
---|
306 | a probable match, and we need to run it through Regex. */
|
---|
307 | best_match = end;
|
---|
308 | best_len = 0;
|
---|
309 | for (i = 0; i < pcount; i++)
|
---|
310 | {
|
---|
311 | patterns[i].regexbuf.not_eol = 0;
|
---|
312 | start = re_search (&(patterns[i].regexbuf),
|
---|
313 | buf, end - buf - 1,
|
---|
314 | beg - buf, end - beg - 1,
|
---|
315 | &(patterns[i].regs));
|
---|
316 | if (start < -1)
|
---|
317 | xalloc_die ();
|
---|
318 | else if (0 <= start)
|
---|
319 | {
|
---|
320 | len = patterns[i].regs.end[0] - start;
|
---|
321 | match = buf + start;
|
---|
322 | if (match > best_match)
|
---|
323 | continue;
|
---|
324 | if (start_ptr && !match_words)
|
---|
325 | goto assess_pattern_match;
|
---|
326 | if ((!match_lines && !match_words)
|
---|
327 | || (match_lines && len == end - beg - 1))
|
---|
328 | {
|
---|
329 | match = beg;
|
---|
330 | len = end - beg;
|
---|
331 | goto assess_pattern_match;
|
---|
332 | }
|
---|
333 | /* If -w, check if the match aligns with word boundaries.
|
---|
334 | We do this iteratively because:
|
---|
335 | (a) the line may contain more than one occurrence of the
|
---|
336 | pattern, and
|
---|
337 | (b) Several alternatives in the pattern might be valid at a
|
---|
338 | given point, and we may need to consider a shorter one to
|
---|
339 | find a word boundary. */
|
---|
340 | if (match_words)
|
---|
341 | while (match <= best_match)
|
---|
342 | {
|
---|
343 | if ((match == buf || !WCHAR ((unsigned char) match[-1]))
|
---|
344 | && (start + len == end - buf - 1
|
---|
345 | || !WCHAR ((unsigned char) match[len])))
|
---|
346 | goto assess_pattern_match;
|
---|
347 | if (len > 0)
|
---|
348 | {
|
---|
349 | /* Try a shorter length anchored at the same place. */
|
---|
350 | --len;
|
---|
351 | patterns[i].regexbuf.not_eol = 1;
|
---|
352 | len = re_match (&(patterns[i].regexbuf),
|
---|
353 | buf, match + len - beg, match - buf,
|
---|
354 | &(patterns[i].regs));
|
---|
355 | if (len < -1)
|
---|
356 | xalloc_die ();
|
---|
357 | }
|
---|
358 | if (len <= 0)
|
---|
359 | {
|
---|
360 | /* Try looking further on. */
|
---|
361 | if (match == end - 1)
|
---|
362 | break;
|
---|
363 | match++;
|
---|
364 | patterns[i].regexbuf.not_eol = 0;
|
---|
365 | start = re_search (&(patterns[i].regexbuf),
|
---|
366 | buf, end - buf - 1,
|
---|
367 | match - buf, end - match - 1,
|
---|
368 | &(patterns[i].regs));
|
---|
369 | if (start < 0)
|
---|
370 | {
|
---|
371 | if (start < -1)
|
---|
372 | xalloc_die ();
|
---|
373 | break;
|
---|
374 | }
|
---|
375 | len = patterns[i].regs.end[0] - start;
|
---|
376 | match = buf + start;
|
---|
377 | }
|
---|
378 | } /* while (match <= best_match) */
|
---|
379 | continue;
|
---|
380 | assess_pattern_match:
|
---|
381 | if (!start_ptr)
|
---|
382 | {
|
---|
383 | /* Good enough for a non-exact match.
|
---|
384 | No need to look at further patterns, if any. */
|
---|
385 | goto success;
|
---|
386 | }
|
---|
387 | if (match < best_match || (match == best_match && len > best_len))
|
---|
388 | {
|
---|
389 | /* Best exact match: leftmost, then longest. */
|
---|
390 | best_match = match;
|
---|
391 | best_len = len;
|
---|
392 | }
|
---|
393 | } /* if re_search >= 0 */
|
---|
394 | } /* for Regex patterns. */
|
---|
395 | if (best_match < end)
|
---|
396 | {
|
---|
397 | /* We have found an exact match. We were just
|
---|
398 | waiting for the best one (leftmost then longest). */
|
---|
399 | beg = best_match;
|
---|
400 | len = best_len;
|
---|
401 | goto success_in_len;
|
---|
402 | }
|
---|
403 | } /* for (beg = end ..) */
|
---|
404 |
|
---|
405 | failure:
|
---|
406 | ret_val = -1;
|
---|
407 | goto out;
|
---|
408 |
|
---|
409 | success:
|
---|
410 | len = end - beg;
|
---|
411 | success_in_len:
|
---|
412 | *match_size = len;
|
---|
413 | ret_val = beg - buf;
|
---|
414 | out:
|
---|
415 | return ret_val;
|
---|
416 | }
|
---|