VirtualBox

source: vbox/trunk/include/VBox/mm.h@ 18585

Last change on this file since 18585 was 18287, checked in by vboxsync, 16 years ago

MMHeap,MMHyper: Adjusting statistics.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 12.9 KB
Line 
1/** @file
2 * MM - The Memory Manager.
3 */
4
5/*
6 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
7 *
8 * This file is part of VirtualBox Open Source Edition (OSE), as
9 * available from http://www.virtualbox.org. This file is free software;
10 * you can redistribute it and/or modify it under the terms of the GNU
11 * General Public License (GPL) as published by the Free Software
12 * Foundation, in version 2 as it comes in the "COPYING" file of the
13 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
14 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
15 *
16 * The contents of this file may alternatively be used under the terms
17 * of the Common Development and Distribution License Version 1.0
18 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
19 * VirtualBox OSE distribution, in which case the provisions of the
20 * CDDL are applicable instead of those of the GPL.
21 *
22 * You may elect to license modified versions of this file under the
23 * terms and conditions of either the GPL or the CDDL or both.
24 *
25 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
26 * Clara, CA 95054 USA or visit http://www.sun.com if you need
27 * additional information or have any questions.
28 */
29
30#ifndef ___VBox_mm_h
31#define ___VBox_mm_h
32
33#include <VBox/cdefs.h>
34#include <VBox/types.h>
35#include <VBox/x86.h>
36#include <iprt/stdarg.h>
37#include <VBox/sup.h>
38
39
40__BEGIN_DECLS
41
42/** @defgroup grp_mm The Memory Manager API
43 * @{
44 */
45
46#ifndef VBOX_WITH_NEW_PHYS_CODE
47/** @name RAM Page Flags
48 * Since internal ranges have a byte granularity it's possible for a
49 * page be flagged for several uses. The access virtualization in PGM
50 * will choose the most restricted one and use EM to emulate access to
51 * the less restricted areas of the page.
52 *
53 * Bits 0-11 only since they are fitted into the offset part of a physical memory address.
54 * @{
55 */
56/** Reserved - Not RAM, ROM nor MMIO2.
57 * If this bit is cleared the memory is assumed to be some kind of RAM.
58 * Normal MMIO may set it but that depends on whether the RAM range was
59 * created specially for the MMIO or not.
60 *
61 * @remarks The current implementation will always reserve backing
62 * memory for reserved ranges to simplify things.
63 */
64#define MM_RAM_FLAGS_RESERVED RT_BIT(0)
65/** ROM - Read Only Memory.
66 * The page have a HC physical address which contains the BIOS code. All write
67 * access is trapped and ignored.
68 *
69 * HACK: Writable shadow ROM is indicated by both ROM and MMIO2 being
70 * set. (We're out of bits.)
71 */
72#define MM_RAM_FLAGS_ROM RT_BIT(1)
73/** MMIO - Memory Mapped I/O.
74 * All access is trapped and emulated. No physical backing is required, but
75 * might for various reasons be present.
76 */
77#define MM_RAM_FLAGS_MMIO RT_BIT(2)
78/** MMIO2 - Memory Mapped I/O, variation 2.
79 * The virtualization is performed using real memory and only catching
80 * a few accesses for like keeping track for dirty pages.
81 * @remark Involved in the shadow ROM hack.
82 */
83#define MM_RAM_FLAGS_MMIO2 RT_BIT(3)
84
85/** Physical backing memory is allocated dynamically. Not set implies a one time static allocation. */
86#define MM_RAM_FLAGS_DYNAMIC_ALLOC RT_BIT(11)
87/** @} */
88
89/** @name MMR3PhysRegisterEx registration type
90 * @{
91 */
92typedef enum
93{
94 /** Normal physical region (flags specify exact page type) */
95 MM_PHYS_TYPE_NORMAL = 0,
96 /** Allocate part of a dynamically allocated physical region */
97 MM_PHYS_TYPE_DYNALLOC_CHUNK,
98
99 MM_PHYS_TYPE_32BIT_HACK = 0x7fffffff
100} MMPHYSREG;
101/** @} */
102#endif /* !VBOX_WITH_NEW_PHYS_CODE */
103
104/**
105 * Memory Allocation Tags.
106 * For use with MMHyperAlloc(), MMR3HeapAlloc(), MMR3HeapAllocEx(),
107 * MMR3HeapAllocZ() and MMR3HeapAllocZEx().
108 *
109 * @remark Don't forget to update the dump command in MMHeap.cpp!
110 */
111typedef enum MMTAG
112{
113 MM_TAG_INVALID = 0,
114
115 MM_TAG_CFGM,
116 MM_TAG_CFGM_BYTES,
117 MM_TAG_CFGM_STRING,
118 MM_TAG_CFGM_USER,
119
120 MM_TAG_CSAM,
121 MM_TAG_CSAM_PATCH,
122
123 MM_TAG_CPUM_CTX,
124
125 MM_TAG_DBGF,
126 MM_TAG_DBGF_INFO,
127 MM_TAG_DBGF_LINE,
128 MM_TAG_DBGF_LINE_DUP,
129 MM_TAG_DBGF_MODULE,
130 MM_TAG_DBGF_OS,
131 MM_TAG_DBGF_STACK,
132 MM_TAG_DBGF_SYMBOL,
133 MM_TAG_DBGF_SYMBOL_DUP,
134
135 MM_TAG_EM,
136
137 MM_TAG_IOM,
138 MM_TAG_IOM_STATS,
139
140 MM_TAG_MM,
141 MM_TAG_MM_LOOKUP_GUEST,
142 MM_TAG_MM_LOOKUP_PHYS,
143 MM_TAG_MM_LOOKUP_VIRT,
144 MM_TAG_MM_PAGE,
145
146 MM_TAG_PARAV,
147
148 MM_TAG_PATM,
149 MM_TAG_PATM_PATCH,
150
151 MM_TAG_PDM,
152 MM_TAG_PDM_ASYNC_COMPLETION,
153 MM_TAG_PDM_DEVICE,
154 MM_TAG_PDM_DEVICE_USER,
155 MM_TAG_PDM_DRIVER,
156 MM_TAG_PDM_DRIVER_USER,
157 MM_TAG_PDM_USB,
158 MM_TAG_PDM_USB_USER,
159 MM_TAG_PDM_LUN,
160 MM_TAG_PDM_QUEUE,
161 MM_TAG_PDM_THREAD,
162
163 MM_TAG_PGM,
164 MM_TAG_PGM_CHUNK_MAPPING,
165 MM_TAG_PGM_HANDLERS,
166 MM_TAG_PGM_MAPPINGS,
167 MM_TAG_PGM_PHYS,
168 MM_TAG_PGM_POOL,
169
170 MM_TAG_REM,
171
172 MM_TAG_SELM,
173
174 MM_TAG_SSM,
175
176 MM_TAG_STAM,
177
178 MM_TAG_TM,
179
180 MM_TAG_TRPM,
181
182 MM_TAG_VM,
183 MM_TAG_VM_REQ,
184
185 MM_TAG_VMM,
186
187 MM_TAG_HWACCM,
188
189 MM_TAG_32BIT_HACK = 0x7fffffff
190} MMTAG;
191
192
193
194
195/** @defgroup grp_mm_hyper Hypervisor Memory Management
196 * @ingroup grp_mm
197 * @{ */
198
199VMMDECL(RTR3PTR) MMHyperR0ToR3(PVM pVM, RTR0PTR R0Ptr);
200VMMDECL(RTRCPTR) MMHyperR0ToRC(PVM pVM, RTR0PTR R0Ptr);
201#ifndef IN_RING0
202VMMDECL(void *) MMHyperR0ToCC(PVM pVM, RTR0PTR R0Ptr);
203#endif
204VMMDECL(RTR0PTR) MMHyperR3ToR0(PVM pVM, RTR3PTR R3Ptr);
205VMMDECL(RTRCPTR) MMHyperR3ToRC(PVM pVM, RTR3PTR R3Ptr);
206VMMDECL(RTR3PTR) MMHyperRCToR3(PVM pVM, RTRCPTR RCPtr);
207VMMDECL(RTR0PTR) MMHyperRCToR0(PVM pVM, RTRCPTR RCPtr);
208
209#ifndef IN_RING3
210VMMDECL(void *) MMHyperR3ToCC(PVM pVM, RTR3PTR R3Ptr);
211#else
212DECLINLINE(void *) MMHyperR3ToCC(PVM pVM, RTR3PTR R3Ptr)
213{
214 NOREF(pVM);
215 return R3Ptr;
216}
217#endif
218
219
220#ifndef IN_RC
221VMMDECL(void *) MMHyperRCToCC(PVM pVM, RTRCPTR RCPtr);
222#else
223DECLINLINE(void *) MMHyperRCToCC(PVM pVM, RTRCPTR RCPtr)
224{
225 NOREF(pVM);
226 return (void *)RCPtr;
227}
228#endif
229
230#ifndef IN_RING3
231VMMDECL(RTR3PTR) MMHyperCCToR3(PVM pVM, void *pv);
232#else
233DECLINLINE(RTR3PTR) MMHyperCCToR3(PVM pVM, void *pv)
234{
235 NOREF(pVM);
236 return pv;
237}
238#endif
239
240#ifndef IN_RING0
241VMMDECL(RTR0PTR) MMHyperCCToR0(PVM pVM, void *pv);
242#else
243DECLINLINE(RTR0PTR) MMHyperCCToR0(PVM pVM, void *pv)
244{
245 NOREF(pVM);
246 return pv;
247}
248#endif
249
250#ifndef IN_RC
251VMMDECL(RTRCPTR) MMHyperCCToRC(PVM pVM, void *pv);
252#else
253DECLINLINE(RTRCPTR) MMHyperCCToRC(PVM pVM, void *pv)
254{
255 NOREF(pVM);
256 return (RTRCPTR)pv;
257}
258#endif
259
260
261VMMDECL(int) MMHyperAlloc(PVM pVM, size_t cb, uint32_t uAlignment, MMTAG enmTag, void **ppv);
262VMMDECL(int) MMHyperFree(PVM pVM, void *pv);
263VMMDECL(void) MMHyperHeapCheck(PVM pVM);
264#ifdef DEBUG
265VMMDECL(void) MMHyperHeapDump(PVM pVM);
266#endif
267VMMDECL(size_t) MMHyperHeapGetFreeSize(PVM pVM);
268VMMDECL(size_t) MMHyperHeapGetSize(PVM pVM);
269VMMDECL(RTGCPTR) MMHyperGetArea(PVM pVM, size_t *pcb);
270VMMDECL(bool) MMHyperIsInsideArea(PVM pVM, RTGCPTR GCPtr);
271
272
273VMMDECL(RTHCPHYS) MMPage2Phys(PVM pVM, void *pvPage);
274VMMDECL(void *) MMPagePhys2Page(PVM pVM, RTHCPHYS HCPhysPage);
275VMMDECL(int) MMPagePhys2PageEx(PVM pVM, RTHCPHYS HCPhysPage, void **ppvPage);
276VMMDECL(int) MMPagePhys2PageTry(PVM pVM, RTHCPHYS HCPhysPage, void **ppvPage);
277
278
279/** @def MMHYPER_RC_ASSERT_RCPTR
280 * Asserts that an address is either NULL or inside the hypervisor memory area.
281 * This assertion only works while IN_RC, it's a NOP everywhere else.
282 * @thread The Emulation Thread.
283 */
284#ifdef IN_RC
285# define MMHYPER_RC_ASSERT_RCPTR(pVM, RCPtr) Assert(MMHyperIsInsideArea((pVM), (RTRCUINTPTR)(RCPtr)) || !(RCPtr))
286#else
287# define MMHYPER_RC_ASSERT_RCPTR(pVM, RCPtr) do { } while (0)
288#endif
289
290/** @} */
291
292
293#ifdef IN_RING3
294/** @defgroup grp_mm_r3 The MM Host Context Ring-3 API
295 * @ingroup grp_mm
296 * @{
297 */
298
299VMMR3DECL(int) MMR3InitUVM(PUVM pUVM);
300VMMR3DECL(int) MMR3Init(PVM pVM);
301VMMR3DECL(int) MMR3InitPaging(PVM pVM);
302VMMR3DECL(int) MMR3HyperInitFinalize(PVM pVM);
303VMMR3DECL(int) MMR3Term(PVM pVM);
304VMMR3DECL(void) MMR3TermUVM(PUVM pUVM);
305VMMR3DECL(void) MMR3Reset(PVM pVM);
306VMMR3DECL(int) MMR3ReserveHandyPages(PVM pVM, uint32_t cHandyPages);
307VMMR3DECL(int) MMR3IncreaseBaseReservation(PVM pVM, uint64_t cAddBasePages);
308VMMR3DECL(int) MMR3AdjustFixedReservation(PVM pVM, int32_t cDeltaFixedPages, const char *pszDesc);
309VMMR3DECL(int) MMR3UpdateShadowReservation(PVM pVM, uint32_t cShadowPages);
310
311VMMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv);
312VMMR3DECL(int) MMR3ReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb);
313VMMR3DECL(int) MMR3WriteGCVirt(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb);
314
315
316/** @defgroup grp_mm_r3_hyper Hypervisor Memory Manager (HC R3 Portion)
317 * @ingroup grp_mm_r3
318 * @{ */
319VMMDECL(int) MMR3HyperAllocOnceNoRel(PVM pVM, size_t cb, uint32_t uAlignment, MMTAG enmTag, void **ppv);
320VMMR3DECL(int) MMR3HyperMapHCPhys(PVM pVM, void *pvR3, RTR0PTR pvR0, RTHCPHYS HCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr);
321VMMR3DECL(int) MMR3HyperMapGCPhys(PVM pVM, RTGCPHYS GCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr);
322VMMR3DECL(int) MMR3HyperMapMMIO2(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb, const char *pszDesc, PRTRCPTR pRCPtr);
323VMMR3DECL(int) MMR3HyperMapPages(PVM pVM, void *pvR3, RTR0PTR pvR0, size_t cPages, PCSUPPAGE paPages, const char *pszDesc, PRTGCPTR pGCPtr);
324VMMR3DECL(int) MMR3HyperReserve(PVM pVM, unsigned cb, const char *pszDesc, PRTGCPTR pGCPtr);
325VMMR3DECL(RTHCPHYS) MMR3HyperHCVirt2HCPhys(PVM pVM, void *pvHC);
326VMMR3DECL(int) MMR3HyperHCVirt2HCPhysEx(PVM pVM, void *pvHC, PRTHCPHYS pHCPhys);
327VMMR3DECL(void *) MMR3HyperHCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys);
328VMMR3DECL(int) MMR3HyperHCPhys2HCVirtEx(PVM pVM, RTHCPHYS HCPhys, void **ppv);
329VMMR3DECL(int) MMR3HyperReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb);
330/** @} */
331
332
333/** @defgroup grp_mm_phys Guest Physical Memory Manager
334 * @ingroup grp_mm_r3
335 * @{ */
336#ifndef VBOX_WITH_NEW_PHYS_CODE
337VMMR3DECL(int) MMR3PhysRegisterEx(PVM pVM, void *pvRam, RTGCPHYS GCPhys, unsigned cb, unsigned fFlags, MMPHYSREG enmType, const char *pszDesc);
338VMMR3DECL(int) MMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTUINT cbRange, const void *pvBinary, bool fShadow, const char *pszDesc);
339VMMR3DECL(int) MMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange);
340VMMR3DECL(int) MMR3PhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, const char *pszDesc);
341#endif
342VMMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM);
343/** @} */
344
345
346/** @defgroup grp_mm_page Physical Page Pool
347 * @ingroup grp_mm_r3
348 * @{ */
349VMMR3DECL(void *) MMR3PageAlloc(PVM pVM);
350VMMR3DECL(RTHCPHYS) MMR3PageAllocPhys(PVM pVM);
351VMMR3DECL(void) MMR3PageFree(PVM pVM, void *pvPage);
352VMMR3DECL(void *) MMR3PageAllocLow(PVM pVM);
353VMMR3DECL(void) MMR3PageFreeLow(PVM pVM, void *pvPage);
354VMMR3DECL(void) MMR3PageFreeByPhys(PVM pVM, RTHCPHYS HCPhysPage);
355VMMR3DECL(void *) MMR3PageDummyHCPtr(PVM pVM);
356VMMR3DECL(RTHCPHYS) MMR3PageDummyHCPhys(PVM pVM);
357/** @} */
358
359
360/** @defgroup grp_mm_heap Heap Manager
361 * @ingroup grp_mm_r3
362 * @{ */
363VMMR3DECL(void *) MMR3HeapAlloc(PVM pVM, MMTAG enmTag, size_t cbSize);
364VMMR3DECL(void *) MMR3HeapAllocU(PUVM pUVM, MMTAG enmTag, size_t cbSize);
365VMMR3DECL(int) MMR3HeapAllocEx(PVM pVM, MMTAG enmTag, size_t cbSize, void **ppv);
366VMMR3DECL(int) MMR3HeapAllocExU(PUVM pUVM, MMTAG enmTag, size_t cbSize, void **ppv);
367VMMR3DECL(void *) MMR3HeapAllocZ(PVM pVM, MMTAG enmTag, size_t cbSize);
368VMMR3DECL(void *) MMR3HeapAllocZU(PUVM pUVM, MMTAG enmTag, size_t cbSize);
369VMMR3DECL(int) MMR3HeapAllocZEx(PVM pVM, MMTAG enmTag, size_t cbSize, void **ppv);
370VMMR3DECL(int) MMR3HeapAllocZExU(PUVM pUVM, MMTAG enmTag, size_t cbSize, void **ppv);
371VMMR3DECL(void *) MMR3HeapRealloc(void *pv, size_t cbNewSize);
372VMMR3DECL(char *) MMR3HeapStrDup(PVM pVM, MMTAG enmTag, const char *psz);
373VMMR3DECL(char *) MMR3HeapStrDupU(PUVM pUVM, MMTAG enmTag, const char *psz);
374VMMR3DECL(char *) MMR3HeapAPrintf(PVM pVM, MMTAG enmTag, const char *pszFormat, ...);
375VMMR3DECL(char *) MMR3HeapAPrintfU(PUVM pUVM, MMTAG enmTag, const char *pszFormat, ...);
376VMMR3DECL(char *) MMR3HeapAPrintfV(PVM pVM, MMTAG enmTag, const char *pszFormat, va_list va);
377VMMR3DECL(char *) MMR3HeapAPrintfVU(PUVM pUVM, MMTAG enmTag, const char *pszFormat, va_list va);
378VMMR3DECL(void) MMR3HeapFree(void *pv);
379/** @} */
380
381/** @} */
382#endif /* IN_RING3 */
383
384
385
386#ifdef IN_RC
387/** @defgroup grp_mm_gc The MM Guest Context API
388 * @ingroup grp_mm
389 * @{
390 */
391
392VMMRCDECL(void) MMGCRamRegisterTrapHandler(PVM pVM);
393VMMRCDECL(void) MMGCRamDeregisterTrapHandler(PVM pVM);
394VMMRCDECL(int) MMGCRamReadNoTrapHandler(void *pDst, void *pSrc, size_t cb);
395VMMRCDECL(int) MMGCRamWriteNoTrapHandler(void *pDst, void *pSrc, size_t cb);
396VMMRCDECL(int) MMGCRamRead(PVM pVM, void *pDst, void *pSrc, size_t cb);
397VMMRCDECL(int) MMGCRamWrite(PVM pVM, void *pDst, void *pSrc, size_t cb);
398
399/** @} */
400#endif /* IN_RC */
401
402/** @} */
403__END_DECLS
404
405
406#endif
407
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette