/** @file * MM - The Memory Manager. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ #ifndef ___VBox_mm_h #define ___VBox_mm_h #include #include #include #include __BEGIN_DECLS /** @defgroup grp_mm The Memory Manager API * @{ */ /** @name RAM Page Flags * Since internal ranges have a byte granularity it's possible for a * page be flagged for several uses. The access virtualization in PGM * will choose the most restricted one and use EM to emulate access to * the less restricted areas of the page. * * Bits 0-11 only since they are fitted into the offset part of a physical memory address. * @{ */ #if 1 /** Reserved - Not RAM, ROM nor MMIO2. * If this bit is cleared the memory is assumed to be some kind of RAM. * Normal MMIO may set it but that depends on whether the RAM range was * created specially for the MMIO or not. * * @remarks The current implementation will always reserve backing * memory for reserved ranges to simplify things. */ #define MM_RAM_FLAGS_RESERVED RT_BIT(0) /** ROM - Read Only Memory. * The page have a HC physical address which contains the BIOS code. All write * access is trapped and ignored. * * HACK: Writable shadow ROM is indicated by both ROM and MMIO2 being * set. (We're out of bits.) */ #define MM_RAM_FLAGS_ROM RT_BIT(1) /** MMIO - Memory Mapped I/O. * All access is trapped and emulated. No physical backing is required, but * might for various reasons be present. */ #define MM_RAM_FLAGS_MMIO RT_BIT(2) /** MMIO2 - Memory Mapped I/O, variation 2. * The virtualization is performed using real memory and only catching * a few accesses for like keeping track for dirty pages. * @remark Involved in the shadow ROM hack. */ #define MM_RAM_FLAGS_MMIO2 RT_BIT(3) #endif #ifndef VBOX_WITH_NEW_PHYS_CODE /** Physical backing memory is allocated dynamically. Not set implies a one time static allocation. */ #define MM_RAM_FLAGS_DYNAMIC_ALLOC RT_BIT(11) #endif /* !VBOX_WITH_NEW_PHYS_CODE */ /** The shift used to get the reference count. */ #define MM_RAM_FLAGS_CREFS_SHIFT 62 /** The mask applied to the the page pool idx after using MM_RAM_FLAGS_CREFS_SHIFT to shift it down. */ #define MM_RAM_FLAGS_CREFS_MASK 0x3 /** The (shifted) cRef value used to indiciate that the idx is the head of a * physical cross reference extent list. */ #define MM_RAM_FLAGS_CREFS_PHYSEXT MM_RAM_FLAGS_CREFS_MASK /** The shift used to get the page pool idx. (Apply MM_RAM_FLAGS_IDX_MASK to the result when shifting down). */ #define MM_RAM_FLAGS_IDX_SHIFT 48 /** The mask applied to the the page pool idx after using MM_RAM_FLAGS_IDX_SHIFT to shift it down. */ #define MM_RAM_FLAGS_IDX_MASK 0x3fff /** The idx value when we're out of of extents or there are simply too many mappings of this page. */ #define MM_RAM_FLAGS_IDX_OVERFLOWED MM_RAM_FLAGS_IDX_MASK /** Mask for masking off any references to the page. */ #define MM_RAM_FLAGS_NO_REFS_MASK UINT64_C(0x0000ffffffffffff) /** @} */ #ifndef VBOX_WITH_NEW_PHYS_CODE /** @name MMR3PhysRegisterEx registration type * @{ */ typedef enum { /** Normal physical region (flags specify exact page type) */ MM_PHYS_TYPE_NORMAL = 0, /** Allocate part of a dynamically allocated physical region */ MM_PHYS_TYPE_DYNALLOC_CHUNK, MM_PHYS_TYPE_32BIT_HACK = 0x7fffffff } MMPHYSREG; /** @} */ #endif /** * Memory Allocation Tags. * For use with MMHyperAlloc(), MMR3HeapAlloc(), MMR3HeapAllocEx(), * MMR3HeapAllocZ() and MMR3HeapAllocZEx(). * * @remark Don't forget to update the dump command in MMHeap.cpp! */ typedef enum MMTAG { MM_TAG_INVALID = 0, MM_TAG_CFGM, MM_TAG_CFGM_BYTES, MM_TAG_CFGM_STRING, MM_TAG_CFGM_USER, MM_TAG_CSAM, MM_TAG_CSAM_PATCH, MM_TAG_DBGF, MM_TAG_DBGF_INFO, MM_TAG_DBGF_LINE, MM_TAG_DBGF_LINE_DUP, MM_TAG_DBGF_MODULE, MM_TAG_DBGF_OS, MM_TAG_DBGF_STACK, MM_TAG_DBGF_SYMBOL, MM_TAG_DBGF_SYMBOL_DUP, MM_TAG_EM, MM_TAG_IOM, MM_TAG_IOM_STATS, MM_TAG_MM, MM_TAG_MM_LOOKUP_GUEST, MM_TAG_MM_LOOKUP_PHYS, MM_TAG_MM_LOOKUP_VIRT, MM_TAG_MM_PAGE, MM_TAG_PATM, MM_TAG_PATM_PATCH, MM_TAG_PDM, MM_TAG_PDM_ASYNC_COMPLETION, MM_TAG_PDM_DEVICE, MM_TAG_PDM_DEVICE_USER, MM_TAG_PDM_DRIVER, MM_TAG_PDM_DRIVER_USER, MM_TAG_PDM_USB, MM_TAG_PDM_USB_USER, MM_TAG_PDM_LUN, MM_TAG_PDM_QUEUE, MM_TAG_PDM_THREAD, MM_TAG_PGM, MM_TAG_PGM_CHUNK_MAPPING, MM_TAG_PGM_HANDLERS, MM_TAG_PGM_PHYS, MM_TAG_PGM_POOL, MM_TAG_REM, MM_TAG_SELM, MM_TAG_SSM, MM_TAG_STAM, MM_TAG_TM, MM_TAG_TRPM, MM_TAG_VM, MM_TAG_VM_REQ, MM_TAG_VMM, MM_TAG_HWACCM, MM_TAG_32BIT_HACK = 0x7fffffff } MMTAG; /** @defgroup grp_mm_hyper Hypervisor Memory Management * @ingroup grp_mm * @{ */ MMDECL(RTR3PTR) MMHyperR0ToR3(PVM pVM, RTR0PTR R0Ptr); MMDECL(RTGCPTR) MMHyperR0ToGC(PVM pVM, RTR0PTR R0Ptr); #ifndef IN_RING0 MMDECL(void *) MMHyperR0ToCC(PVM pVM, RTR0PTR R0Ptr); #endif MMDECL(RTR0PTR) MMHyperR3ToR0(PVM pVM, RTR3PTR R3Ptr); MMDECL(RTGCPTR) MMHyperR3ToGC(PVM pVM, RTR3PTR R3Ptr); MMDECL(RTR3PTR) MMHyperGCToR3(PVM pVM, RTGCPTR GCPtr); MMDECL(RTR0PTR) MMHyperGCToR0(PVM pVM, RTGCPTR GCPtr); #ifndef IN_RING3 MMDECL(void *) MMHyperR3ToCC(PVM pVM, RTR3PTR R3Ptr); #else DECLINLINE(void *) MMHyperR3ToCC(PVM pVM, RTR3PTR R3Ptr) { NOREF(pVM); return R3Ptr; } #endif #ifndef IN_GC MMDECL(void *) MMHyperGCToCC(PVM pVM, RTGCPTR GCPtr); #else DECLINLINE(void *) MMHyperGCToCC(PVM pVM, RTGCPTR GCPtr) { NOREF(pVM); return GCPtr; } #endif #ifndef IN_RING3 MMDECL(RTR3PTR) MMHyperCCToR3(PVM pVM, void *pv); #else DECLINLINE(RTR3PTR) MMHyperCCToR3(PVM pVM, void *pv) { NOREF(pVM); return pv; } #endif #ifndef IN_RING0 MMDECL(RTR0PTR) MMHyperCCToR0(PVM pVM, void *pv); #else DECLINLINE(RTR0PTR) MMHyperCCToR0(PVM pVM, void *pv) { NOREF(pVM); return pv; } #endif #ifndef IN_GC MMDECL(RTGCPTR) MMHyperCCToGC(PVM pVM, void *pv); #else DECLINLINE(RTGCPTR) MMHyperCCToGC(PVM pVM, void *pv) { NOREF(pVM); return pv; } #endif #ifdef IN_GC MMDECL(RTHCPTR) MMHyper2HC(PVM pVM, uintptr_t Ptr); #else DECLINLINE(RTHCPTR) MMHyper2HC(PVM pVM, uintptr_t Ptr) { NOREF(pVM); return (RTHCPTR)Ptr; } #endif #ifndef IN_GC MMDECL(RTGCPTR) MMHyper2GC(PVM pVM, uintptr_t Ptr); #else DECLINLINE(RTGCPTR) MMHyper2GC(PVM pVM, uintptr_t Ptr) { NOREF(pVM); return (RTGCPTR)Ptr; } #endif MMDECL(RTGCPTR) MMHyperHC2GC(PVM pVM, RTHCPTR HCPtr); MMDECL(RTHCPTR) MMHyperGC2HC(PVM pVM, RTGCPTR GCPtr); MMDECL(int) MMHyperAlloc(PVM pVM, size_t cb, uint32_t uAlignment, MMTAG enmTag, void **ppv); MMDECL(int) MMHyperFree(PVM pVM, void *pv); MMDECL(void) MMHyperHeapCheck(PVM pVM); #ifdef DEBUG MMDECL(void) MMHyperHeapDump(PVM pVM); #endif MMDECL(size_t) MMHyperHeapGetFreeSize(PVM pVM); MMDECL(size_t) MMHyperHeapGetSize(PVM pVM); MMDECL(RTGCPTR) MMHyperGetArea(PVM pVM, size_t *pcb); MMDECL(bool) MMHyperIsInsideArea(PVM pVM, RTGCPTR GCPtr); MMDECL(RTHCPHYS) MMPage2Phys(PVM pVM, void *pvPage); MMDECL(void *) MMPagePhys2Page(PVM pVM, RTHCPHYS HCPhysPage); MMDECL(int) MMPagePhys2PageEx(PVM pVM, RTHCPHYS HCPhysPage, void **ppvPage); MMDECL(int) MMPagePhys2PageTry(PVM pVM, RTHCPHYS HCPhysPage, void **ppvPage); MMDECL(void *) MMPhysGCPhys2HCVirt(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange); /** @def MMHYPER_GC_ASSERT_GCPTR * Asserts that an address is either NULL or inside the hypervisor memory area. * This assertion only works while IN_GC, it's a NOP everywhere else. * @thread The Emulation Thread. */ #ifdef IN_GC # define MMHYPER_GC_ASSERT_GCPTR(pVM, GCPtr) Assert(MMHyperIsInsideArea((pVM), (GCPtr)) || !(GCPtr)) #else # define MMHYPER_GC_ASSERT_GCPTR(pVM, GCPtr) do { } while (0) #endif /** @} */ #ifdef IN_RING3 /** @defgroup grp_mm_r3 The MM Host Context Ring-3 API * @ingroup grp_mm * @{ */ MMR3DECL(int) MMR3InitUVM(PUVM pUVM); MMR3DECL(int) MMR3Init(PVM pVM); MMR3DECL(int) MMR3InitPaging(PVM pVM); MMR3DECL(int) MMR3HyperInitFinalize(PVM pVM); MMR3DECL(int) MMR3Term(PVM pVM); MMR3DECL(void) MMR3TermUVM(PUVM pUVM); MMR3DECL(void) MMR3Reset(PVM pVM); MMR3DECL(int) MMR3IncreaseBaseReservation(PVM pVM, uint64_t cAddBasePages); MMR3DECL(int) MMR3AdjustFixedReservation(PVM pVM, int32_t cDeltaFixedPages, const char *pszDesc); MMR3DECL(int) MMR3UpdateShadowReservation(PVM pVM, uint32_t cShadowPages); MMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv); MMR3DECL(int) MMR3ReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb); MMR3DECL(int) MMR3WriteGCVirt(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb); /** @defgroup grp_mm_r3_hyper Hypervisor Memory Manager (HC R3 Portion) * @ingroup grp_mm_r3 * @{ */ MMDECL(int) MMR3HyperAllocOnceNoRel(PVM pVM, size_t cb, uint32_t uAlignment, MMTAG enmTag, void **ppv); MMR3DECL(int) MMR3HyperMapHCPhys(PVM pVM, void *pvHC, RTHCPHYS HCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr); MMR3DECL(int) MMR3HyperMapGCPhys(PVM pVM, RTGCPHYS GCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr); MMR3DECL(int) MMR3HyperMapMMIO2(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb, const char *pszDesc, PRTGCPTR pGCPtr); MMR3DECL(int) MMR3HyperMapHCRam(PVM pVM, void *pvHC, size_t cb, bool fFree, const char *pszDesc, PRTGCPTR pGCPtr); MMR3DECL(int) MMR3HyperMapPages(PVM pVM, void *pvR3, RTR0PTR pvR0, size_t cPages, PCSUPPAGE paPages, const char *pszDesc, PRTGCPTR pGCPtr); MMR3DECL(int) MMR3HyperReserve(PVM pVM, unsigned cb, const char *pszDesc, PRTGCPTR pGCPtr); MMR3DECL(RTHCPHYS) MMR3HyperHCVirt2HCPhys(PVM pVM, void *pvHC); MMR3DECL(int) MMR3HyperHCVirt2HCPhysEx(PVM pVM, void *pvHC, PRTHCPHYS pHCPhys); MMR3DECL(void *) MMR3HyperHCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys); MMR3DECL(int) MMR3HyperHCPhys2HCVirtEx(PVM pVM, RTHCPHYS HCPhys, void **ppv); MMR3DECL(int) MMR3HyperReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb); /** @} */ /** @defgroup grp_mm_phys Guest Physical Memory Manager * @ingroup grp_mm_r3 * @{ */ MMR3DECL(int) MMR3PhysRegister(PVM pVM, void *pvRam, RTGCPHYS GCPhys, unsigned cb, unsigned fFlags, const char *pszDesc); #ifndef VBOX_WITH_NEW_PHYS_CODE MMR3DECL(int) MMR3PhysRegisterEx(PVM pVM, void *pvRam, RTGCPHYS GCPhys, unsigned cb, unsigned fFlags, MMPHYSREG enmType, const char *pszDesc); #endif MMR3DECL(int) MMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTUINT cbRange, const void *pvBinary, bool fShadow, const char *pszDesc); MMR3DECL(int) MMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange); MMR3DECL(int) MMR3PhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, const char *pszDesc); MMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM); /** @} */ /** @defgroup grp_mm_page Physical Page Pool * @ingroup grp_mm_r3 * @{ */ MMR3DECL(void *) MMR3PageAlloc(PVM pVM); MMR3DECL(RTHCPHYS) MMR3PageAllocPhys(PVM pVM); MMR3DECL(void) MMR3PageFree(PVM pVM, void *pvPage); MMR3DECL(void *) MMR3PageAllocLow(PVM pVM); MMR3DECL(void) MMR3PageFreeLow(PVM pVM, void *pvPage); MMR3DECL(void) MMR3PageFreeByPhys(PVM pVM, RTHCPHYS HCPhysPage); MMR3DECL(void *) MMR3PageDummyHCPtr(PVM pVM); MMR3DECL(RTHCPHYS) MMR3PageDummyHCPhys(PVM pVM); /** @} */ /** @defgroup grp_mm_heap Heap Manager * @ingroup grp_mm_r3 * @{ */ MMR3DECL(void *) MMR3HeapAlloc(PVM pVM, MMTAG enmTag, size_t cbSize); MMR3DECL(void *) MMR3HeapAllocU(PUVM pUVM, MMTAG enmTag, size_t cbSize); MMR3DECL(int) MMR3HeapAllocEx(PVM pVM, MMTAG enmTag, size_t cbSize, void **ppv); MMR3DECL(int) MMR3HeapAllocExU(PUVM pUVM, MMTAG enmTag, size_t cbSize, void **ppv); MMR3DECL(void *) MMR3HeapAllocZ(PVM pVM, MMTAG enmTag, size_t cbSize); MMR3DECL(void *) MMR3HeapAllocZU(PUVM pUVM, MMTAG enmTag, size_t cbSize); MMR3DECL(int) MMR3HeapAllocZEx(PVM pVM, MMTAG enmTag, size_t cbSize, void **ppv); MMR3DECL(int) MMR3HeapAllocZExU(PUVM pUVM, MMTAG enmTag, size_t cbSize, void **ppv); MMR3DECL(void *) MMR3HeapRealloc(void *pv, size_t cbNewSize); MMR3DECL(char *) MMR3HeapStrDup(PVM pVM, MMTAG enmTag, const char *psz); MMR3DECL(char *) MMR3HeapStrDupU(PUVM pUVM, MMTAG enmTag, const char *psz); MMR3DECL(void) MMR3HeapFree(void *pv); /** @} */ /** @} */ #endif /* IN_RING3 */ #ifdef IN_GC /** @defgroup grp_mm_gc The MM Guest Context API * @ingroup grp_mm * @{ */ MMGCDECL(void) MMGCRamRegisterTrapHandler(PVM pVM); MMGCDECL(void) MMGCRamDeregisterTrapHandler(PVM pVM); MMGCDECL(int) MMGCRamReadNoTrapHandler(void *pDst, void *pSrc, size_t cb); MMGCDECL(int) MMGCRamWriteNoTrapHandler(void *pDst, void *pSrc, size_t cb); MMGCDECL(int) MMGCRamRead(PVM pVM, void *pDst, void *pSrc, size_t cb); MMGCDECL(int) MMGCRamWrite(PVM pVM, void *pDst, void *pSrc, size_t cb); /** @} */ #endif /* IN_GC */ /** @} */ __END_DECLS #endif