VirtualBox

source: vbox/trunk/include/VBox/mm.h@ 6358

Last change on this file since 6358 was 5999, checked in by vboxsync, 17 years ago

The Giant CDDL Dual-License Header Change.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 44.1 KB
Line 
1/** @file
2 * MM - The Memory Manager.
3 */
4
5/*
6 * Copyright (C) 2006-2007 innotek GmbH
7 *
8 * This file is part of VirtualBox Open Source Edition (OSE), as
9 * available from http://www.virtualbox.org. This file is free software;
10 * you can redistribute it and/or modify it under the terms of the GNU
11 * General Public License (GPL) as published by the Free Software
12 * Foundation, in version 2 as it comes in the "COPYING" file of the
13 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
14 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
15 *
16 * The contents of this file may alternatively be used under the terms
17 * of the Common Development and Distribution License Version 1.0
18 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
19 * VirtualBox OSE distribution, in which case the provisions of the
20 * CDDL are applicable instead of those of the GPL.
21 *
22 * You may elect to license modified versions of this file under the
23 * terms and conditions of either the GPL or the CDDL or both.
24 */
25
26#ifndef ___VBox_mm_h
27#define ___VBox_mm_h
28
29#include <VBox/cdefs.h>
30#include <VBox/types.h>
31#include <VBox/x86.h>
32#include <VBox/sup.h>
33
34
35__BEGIN_DECLS
36
37/** @defgroup grp_mm The Memory Manager API
38 * @{
39 */
40
41/** @name RAM Page Flags
42 * Since internal ranges have a byte granularity it's possible for a
43 * page be flagged for several uses. The access virtualization in PGM
44 * will choose the most restricted one and use EM to emulate access to
45 * the less restricted areas of the page.
46 *
47 * Bits 0-11 only since they are fitted into the offset part of a physical memory address.
48 * @{
49 */
50/** Reserved - Not RAM, ROM nor MMIO2.
51 * If this bit is cleared the memory is assumed to be some kind of RAM.
52 * Normal MMIO may set it but that depends on whether the RAM range was
53 * created specially for the MMIO or not.
54 *
55 * @remarks The current implementation will always reserve backing
56 * memory for reserved ranges to simplify things.
57 */
58#define MM_RAM_FLAGS_RESERVED RT_BIT(0)
59/** ROM - Read Only Memory.
60 * The page have a HC physical address which contains the BIOS code. All write
61 * access is trapped and ignored.
62 *
63 * HACK: Writable shadow ROM is indicated by both ROM and MMIO2 being
64 * set. (We're out of bits.)
65 */
66#define MM_RAM_FLAGS_ROM RT_BIT(1)
67/** MMIO - Memory Mapped I/O.
68 * All access is trapped and emulated. No physical backing is required, but
69 * might for various reasons be present.
70 */
71#define MM_RAM_FLAGS_MMIO RT_BIT(2)
72/** MMIO2 - Memory Mapped I/O, variation 2.
73 * The virtualization is performed using real memory and only catching
74 * a few accesses for like keeping track for dirty pages.
75 * @remark Involved in the shadow ROM hack.
76 */
77#define MM_RAM_FLAGS_MMIO2 RT_BIT(3)
78
79/** PGM has virtual page access handler(s) defined for pages with this flag. */
80#define MM_RAM_FLAGS_VIRTUAL_HANDLER RT_BIT(4)
81/** PGM has virtual page access handler(s) for write access. */
82#define MM_RAM_FLAGS_VIRTUAL_WRITE RT_BIT(5)
83/** PGM has virtual page access handler(s) for all access. */
84#define MM_RAM_FLAGS_VIRTUAL_ALL RT_BIT(6)
85/** PGM has physical page access handler(s) defined for pages with this flag. */
86#define MM_RAM_FLAGS_PHYSICAL_HANDLER RT_BIT(7)
87/** PGM has physical page access handler(s) for write access. */
88#define MM_RAM_FLAGS_PHYSICAL_WRITE RT_BIT(8)
89/** PGM has physical page access handler(s) for all access. */
90#define MM_RAM_FLAGS_PHYSICAL_ALL RT_BIT(9)
91/** PGM has physical page access handler(s) for this page and has temporarily disabled it. */
92#define MM_RAM_FLAGS_PHYSICAL_TEMP_OFF RT_BIT(10)
93#ifndef NEW_PHYS_CODE
94/** Physical backing memory is allocated dynamically. Not set implies a one time static allocation. */
95#define MM_RAM_FLAGS_DYNAMIC_ALLOC RT_BIT(11)
96#endif /* !NEW_PHYS_CODE */
97
98/** The shift used to get the reference count. */
99#define MM_RAM_FLAGS_CREFS_SHIFT 62
100/** The mask applied to the the page pool idx after using MM_RAM_FLAGS_CREFS_SHIFT to shift it down. */
101#define MM_RAM_FLAGS_CREFS_MASK 0x3
102/** The (shifted) cRef value used to indiciate that the idx is the head of a
103 * physical cross reference extent list. */
104#define MM_RAM_FLAGS_CREFS_PHYSEXT MM_RAM_FLAGS_CREFS_MASK
105/** The shift used to get the page pool idx. (Apply MM_RAM_FLAGS_IDX_MASK to the result when shifting down). */
106#define MM_RAM_FLAGS_IDX_SHIFT 48
107/** The mask applied to the the page pool idx after using MM_RAM_FLAGS_IDX_SHIFT to shift it down. */
108#define MM_RAM_FLAGS_IDX_MASK 0x3fff
109/** The idx value when we're out of of extents or there are simply too many mappings of this page. */
110#define MM_RAM_FLAGS_IDX_OVERFLOWED MM_RAM_FLAGS_IDX_MASK
111
112/** Mask for masking off any references to the page. */
113#define MM_RAM_FLAGS_NO_REFS_MASK UINT64_C(0x0000ffffffffffff)
114/** @} */
115
116/** @name MMR3PhysRegisterEx registration type
117 * @{
118 */
119typedef enum
120{
121 /** Normal physical region (flags specify exact page type) */
122 MM_PHYS_TYPE_NORMAL = 0,
123 /** Allocate part of a dynamically allocated physical region */
124 MM_PHYS_TYPE_DYNALLOC_CHUNK,
125
126 MM_PHYS_TYPE_32BIT_HACK = 0x7fffffff
127} MMPHYSREG;
128/** @} */
129
130/**
131 * Memory Allocation Tags.
132 * For use with MMHyperAlloc(), MMR3HeapAlloc(), MMR3HeapAllocEx(),
133 * MMR3HeapAllocZ() and MMR3HeapAllocZEx().
134 *
135 * @remark Don't forget to update the dump command in MMHeap.cpp!
136 */
137typedef enum MMTAG
138{
139 MM_TAG_INVALID = 0,
140
141 MM_TAG_CFGM,
142 MM_TAG_CFGM_BYTES,
143 MM_TAG_CFGM_STRING,
144 MM_TAG_CFGM_USER,
145
146 MM_TAG_CSAM,
147 MM_TAG_CSAM_PATCH,
148
149 MM_TAG_DBGF,
150 MM_TAG_DBGF_INFO,
151 MM_TAG_DBGF_LINE,
152 MM_TAG_DBGF_LINE_DUP,
153 MM_TAG_DBGF_STACK,
154 MM_TAG_DBGF_SYMBOL,
155 MM_TAG_DBGF_SYMBOL_DUP,
156 MM_TAG_DBGF_MODULE,
157
158 MM_TAG_EM,
159
160 MM_TAG_IOM,
161 MM_TAG_IOM_STATS,
162
163 MM_TAG_MM,
164 MM_TAG_MM_LOOKUP_GUEST,
165 MM_TAG_MM_LOOKUP_PHYS,
166 MM_TAG_MM_LOOKUP_VIRT,
167 MM_TAG_MM_PAGE,
168
169 MM_TAG_PATM,
170 MM_TAG_PATM_PATCH,
171
172 MM_TAG_PDM,
173 MM_TAG_PDM_ASYNC_COMPLETION,
174 MM_TAG_PDM_DEVICE,
175 MM_TAG_PDM_DEVICE_USER,
176 MM_TAG_PDM_DRIVER,
177 MM_TAG_PDM_DRIVER_USER,
178 MM_TAG_PDM_USB,
179 MM_TAG_PDM_USB_USER,
180 MM_TAG_PDM_LUN,
181 MM_TAG_PDM_QUEUE,
182 MM_TAG_PDM_THREAD,
183
184 MM_TAG_PGM,
185 MM_TAG_PGM_CHUNK_MAPPING,
186 MM_TAG_PGM_HANDLERS,
187 MM_TAG_PGM_POOL,
188
189 MM_TAG_REM,
190
191 MM_TAG_SELM,
192
193 MM_TAG_SSM,
194
195 MM_TAG_STAM,
196
197 MM_TAG_TM,
198
199 MM_TAG_TRPM,
200
201 MM_TAG_VM,
202 MM_TAG_VM_REQ,
203
204 MM_TAG_VMM,
205
206 MM_TAG_HWACCM,
207
208 MM_TAG_32BIT_HACK = 0x7fffffff
209} MMTAG;
210
211
212
213
214/** @defgroup grp_mm_hyper Hypervisor Memory Management
215 * @ingroup grp_mm
216 * @{ */
217
218/**
219 * Converts a ring-0 host context address in the Hypervisor memory region to a ring-3 host context address.
220 *
221 * @returns ring-3 host context address.
222 * @param pVM The VM to operate on.
223 * @param R0Ptr The ring-0 host context address.
224 * You'll be damned if this is not in the HMA! :-)
225 * @thread The Emulation Thread.
226 */
227MMDECL(RTR3PTR) MMHyperR0ToR3(PVM pVM, RTR0PTR R0Ptr);
228
229/**
230 * Converts a ring-0 host context address in the Hypervisor memory region to a guest context address.
231 *
232 * @returns guest context address.
233 * @param pVM The VM to operate on.
234 * @param R0Ptr The ring-0 host context address.
235 * You'll be damned if this is not in the HMA! :-)
236 * @thread The Emulation Thread.
237 */
238MMDECL(RTGCPTR) MMHyperR0ToGC(PVM pVM, RTR0PTR R0Ptr);
239
240/**
241 * Converts a ring-0 host context address in the Hypervisor memory region to a current context address.
242 *
243 * @returns current context address.
244 * @param pVM The VM to operate on.
245 * @param R0Ptr The ring-0 host context address.
246 * You'll be damned if this is not in the HMA! :-)
247 * @thread The Emulation Thread.
248 */
249#ifndef IN_RING0
250MMDECL(void *) MMHyperR0ToCC(PVM pVM, RTR0PTR R0Ptr);
251#endif
252
253
254/**
255 * Converts a ring-3 host context address in the Hypervisor memory region to a ring-0 host context address.
256 *
257 * @returns ring-0 host context address.
258 * @param pVM The VM to operate on.
259 * @param R3Ptr The ring-3 host context address.
260 * You'll be damned if this is not in the HMA! :-)
261 * @thread The Emulation Thread.
262 */
263MMDECL(RTR0PTR) MMHyperR3ToR0(PVM pVM, RTR3PTR R3Ptr);
264
265/**
266 * Converts a ring-3 host context address in the Hypervisor memory region to a guest context address.
267 *
268 * @returns guest context address.
269 * @param pVM The VM to operate on.
270 * @param R3Ptr The ring-3 host context address.
271 * You'll be damned if this is not in the HMA! :-)
272 * @thread The Emulation Thread.
273 */
274MMDECL(RTGCPTR) MMHyperR3ToGC(PVM pVM, RTR3PTR R3Ptr);
275
276/**
277 * Converts a ring-3 host context address in the Hypervisor memory region to a current context address.
278 *
279 * @returns current context address.
280 * @param pVM The VM to operate on.
281 * @param R3Ptr The ring-3 host context address.
282 * You'll be damned if this is not in the HMA! :-)
283 * @thread The Emulation Thread.
284 */
285#ifndef IN_RING3
286MMDECL(void *) MMHyperR3ToCC(PVM pVM, RTR3PTR R3Ptr);
287#else
288DECLINLINE(void *) MMHyperR3ToCC(PVM pVM, RTR3PTR R3Ptr)
289{
290 NOREF(pVM);
291 return R3Ptr;
292}
293#endif
294
295
296/**
297 * Converts a guest context address in the Hypervisor memory region to a ring-3 context address.
298 *
299 * @returns ring-3 host context address.
300 * @param pVM The VM to operate on.
301 * @param GCPtr The guest context address.
302 * You'll be damned if this is not in the HMA! :-)
303 * @thread The Emulation Thread.
304 */
305MMDECL(RTR3PTR) MMHyperGCToR3(PVM pVM, RTGCPTR GCPtr);
306
307/**
308 * Converts a guest context address in the Hypervisor memory region to a ring-0 host context address.
309 *
310 * @returns ring-0 host context address.
311 * @param pVM The VM to operate on.
312 * @param GCPtr The guest context address.
313 * You'll be damned if this is not in the HMA! :-)
314 * @thread The Emulation Thread.
315 */
316MMDECL(RTR0PTR) MMHyperGCToR0(PVM pVM, RTGCPTR GCPtr);
317
318/**
319 * Converts a guest context address in the Hypervisor memory region to a current context address.
320 *
321 * @returns current context address.
322 * @param pVM The VM to operate on.
323 * @param GCPtr The guest host context address.
324 * You'll be damned if this is not in the HMA! :-)
325 * @thread The Emulation Thread.
326 */
327#ifndef IN_GC
328MMDECL(void *) MMHyperGCToCC(PVM pVM, RTGCPTR GCPtr);
329#else
330DECLINLINE(void *) MMHyperGCToCC(PVM pVM, RTGCPTR GCPtr)
331{
332 NOREF(pVM);
333 return GCPtr;
334}
335#endif
336
337
338
339/**
340 * Converts a current context address in the Hypervisor memory region to a ring-3 host context address.
341 *
342 * @returns ring-3 host context address.
343 * @param pVM The VM to operate on.
344 * @param pv The current context address.
345 * You'll be damned if this is not in the HMA! :-)
346 * @thread The Emulation Thread.
347 */
348#ifndef IN_RING3
349MMDECL(RTR3PTR) MMHyperCCToR3(PVM pVM, void *pv);
350#else
351DECLINLINE(RTR3PTR) MMHyperCCToR3(PVM pVM, void *pv)
352{
353 NOREF(pVM);
354 return pv;
355}
356#endif
357
358/**
359 * Converts a current context address in the Hypervisor memory region to a ring-0 host context address.
360 *
361 * @returns ring-0 host context address.
362 * @param pVM The VM to operate on.
363 * @param pv The current context address.
364 * You'll be damned if this is not in the HMA! :-)
365 * @thread The Emulation Thread.
366 */
367#ifndef IN_RING0
368MMDECL(RTR0PTR) MMHyperCCToR0(PVM pVM, void *pv);
369#else
370DECLINLINE(RTR0PTR) MMHyperCCToR0(PVM pVM, void *pv)
371{
372 NOREF(pVM);
373 return pv;
374}
375#endif
376
377/**
378 * Converts a current context address in the Hypervisor memory region to a guest context address.
379 *
380 * @returns guest context address.
381 * @param pVM The VM to operate on.
382 * @param pv The current context address.
383 * You'll be damned if this is not in the HMA! :-)
384 * @thread The Emulation Thread.
385 */
386#ifndef IN_GC
387MMDECL(RTGCPTR) MMHyperCCToGC(PVM pVM, void *pv);
388#else
389DECLINLINE(RTGCPTR) MMHyperCCToGC(PVM pVM, void *pv)
390{
391 NOREF(pVM);
392 return pv;
393}
394#endif
395
396
397
398/**
399 * Converts a current context address in the Hypervisor memory region to a HC address.
400 * The memory must have been allocated with MMHyperAlloc().
401 *
402 * @returns HC address.
403 * @param pVM The VM to operate on.
404 * @param Ptr The current context address.
405 * @thread The Emulation Thread.
406 * @deprecated
407 */
408#ifdef IN_GC
409MMDECL(RTHCPTR) MMHyper2HC(PVM pVM, uintptr_t Ptr);
410#else
411DECLINLINE(RTHCPTR) MMHyper2HC(PVM pVM, uintptr_t Ptr)
412{
413 NOREF(pVM);
414 return (RTHCPTR)Ptr;
415}
416#endif
417
418/**
419 * Converts a current context address in the Hypervisor memory region to a GC address.
420 * The memory must have been allocated with MMHyperAlloc().
421 *
422 * @returns HC address.
423 * @param pVM The VM to operate on.
424 * @param Ptr The current context address.
425 * @thread The Emulation Thread.
426 */
427#ifndef IN_GC
428MMDECL(RTGCPTR) MMHyper2GC(PVM pVM, uintptr_t Ptr);
429#else
430DECLINLINE(RTGCPTR) MMHyper2GC(PVM pVM, uintptr_t Ptr)
431{
432 NOREF(pVM);
433 return (RTGCPTR)Ptr;
434}
435#endif
436
437/**
438 * Converts a HC address in the Hypervisor memory region to a GC address.
439 * The memory must have been allocated with MMGCHyperAlloc() or MMR3HyperAlloc().
440 *
441 * @returns GC address.
442 * @param pVM The VM to operate on.
443 * @param HCPtr The host context address.
444 * You'll be damned if this is not in the HMA! :-)
445 * @thread The Emulation Thread.
446 * @deprecated
447 */
448MMDECL(RTGCPTR) MMHyperHC2GC(PVM pVM, RTHCPTR HCPtr);
449
450/**
451 * Converts a GC address in the Hypervisor memory region to a HC address.
452 * The memory must have been allocated with MMGCHyperAlloc() or MMR3HyperAlloc().
453 *
454 * @returns HC address.
455 * @param pVM The VM to operate on.
456 * @param GCPtr The guest context address.
457 * You'll be damned if this is not in the HMA! :-)
458 * @thread The Emulation Thread.
459 * @deprecated
460 */
461MMDECL(RTHCPTR) MMHyperGC2HC(PVM pVM, RTGCPTR GCPtr);
462
463
464/**
465 * Allocates memory in the Hypervisor (GC VMM) area.
466 * The returned memory is of course zeroed.
467 *
468 * @returns VBox status code.
469 * @param pVM The VM to operate on.
470 * @param cb Number of bytes to allocate.
471 * @param uAlignment Required memory alignment in bytes.
472 * Values are 0,8,16,32 and PAGE_SIZE.
473 * 0 -> default alignment, i.e. 8 bytes.
474 * @param enmTag The statistics tag.
475 * @param ppv Where to store the address to the allocated
476 * memory.
477 * @remark This is assumed not to be used at times when serialization is required.
478 */
479MMDECL(int) MMHyperAlloc(PVM pVM, size_t cb, uint32_t uAlignment, MMTAG enmTag, void **ppv);
480
481/**
482 * Free memory allocated using MMHyperAlloc().
483 *
484 * It's not possible to free memory which is page aligned!
485 *
486 * @returns VBox status code.
487 * @param pVM The VM to operate on.
488 * @param pv The memory to free.
489 * @remark Try avoid freeing hyper memory.
490 * @thread The Emulation Thread.
491 */
492MMDECL(int) MMHyperFree(PVM pVM, void *pv);
493
494#ifdef DEBUG
495/**
496 * Dumps the hypervisor heap to Log.
497 * @param pVM VM Handle.
498 * @thread The Emulation Thread.
499 */
500MMDECL(void) MMHyperHeapDump(PVM pVM);
501#endif
502
503/**
504 * Query the amount of free memory in the hypervisor heap.
505 *
506 * @returns Number of free bytes in the hypervisor heap.
507 * @thread Any.
508 */
509MMDECL(size_t) MMHyperHeapGetFreeSize(PVM pVM);
510
511/**
512 * Query the size the hypervisor heap.
513 *
514 * @returns The size of the hypervisor heap in bytes.
515 * @thread Any.
516 */
517MMDECL(size_t) MMHyperHeapGetSize(PVM pVM);
518
519
520/**
521 * Query the address and size the hypervisor memory area.
522 *
523 * @returns Base address of the hypervisor area.
524 * @param pVM VM Handle.
525 * @param pcb Where to store the size of the hypervisor area. (out)
526 * @thread Any.
527 */
528MMDECL(RTGCPTR) MMHyperGetArea(PVM pVM, size_t *pcb);
529
530/**
531 * Checks if an address is within the hypervisor memory area.
532 *
533 * @returns true if inside.
534 * @returns false if outside.
535 * @param pVM VM handle.
536 * @param GCPtr The pointer to check.
537 * @thread The Emulation Thread.
538 */
539MMDECL(bool) MMHyperIsInsideArea(PVM pVM, RTGCPTR GCPtr);
540
541/**
542 * Convert a page in the page pool to a HC physical address.
543 * This works for pages allocated by MMR3PageAlloc(), MMR3PageAllocPhys()
544 * and MMR3PageAllocLow().
545 *
546 * @returns Physical address for the specified page table.
547 * @param pVM VM handle.
548 * @param pvPage Page which physical address we query.
549 * @thread The Emulation Thread.
550 */
551MMDECL(RTHCPHYS) MMPage2Phys(PVM pVM, void *pvPage);
552
553/**
554 * Convert physical address of a page to a HC virtual address.
555 * This works for pages allocated by MMR3PageAlloc(), MMR3PageAllocPhys()
556 * and MMR3PageAllocLow().
557 *
558 * @returns Pointer to the page at that physical address.
559 * @param pVM VM handle.
560 * @param HCPhysPage The physical address of a page.
561 * @thread The Emulation Thread.
562 */
563MMDECL(void *) MMPagePhys2Page(PVM pVM, RTHCPHYS HCPhysPage);
564
565
566/**
567 * Convert physical address of a page to a HC virtual address.
568 * This works for pages allocated by MMR3PageAlloc(), MMR3PageAllocPhys()
569 * and MMR3PageAllocLow().
570 *
571 * @returns VBox status code.
572 * @param pVM VM handle.
573 * @param HCPhysPage The physical address of a page.
574 * @param ppvPage Where to store the address corresponding to HCPhysPage.
575 * @thread The Emulation Thread.
576 */
577MMDECL(int) MMPagePhys2PageEx(PVM pVM, RTHCPHYS HCPhysPage, void **ppvPage);
578
579
580/**
581 * Try convert physical address of a page to a HC virtual address.
582 * This works for pages allocated by MMR3PageAlloc(), MMR3PageAllocPhys()
583 * and MMR3PageAllocLow().
584 *
585 * @returns VBox status code.
586 * @param pVM VM handle.
587 * @param HCPhysPage The physical address of a page.
588 * @param ppvPage Where to store the address corresponding to HCPhysPage.
589 * @thread The Emulation Thread.
590 */
591MMDECL(int) MMPagePhys2PageTry(PVM pVM, RTHCPHYS HCPhysPage, void **ppvPage);
592
593/**
594 * Convert GC physical address to HC virtual address.
595 *
596 * @returns HC virtual address.
597 * @param pVM VM Handle
598 * @param GCPhys Guest context physical address.
599 * @param cbRange Physical range
600 * @thread The Emulation Thread.
601 * @deprecated
602 */
603MMDECL(void *) MMPhysGCPhys2HCVirt(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange);
604
605
606/** @def MMHYPER_GC_ASSERT_GCPTR
607 * Asserts that an address is either NULL or inside the hypervisor memory area.
608 * This assertion only works while IN_GC, it's a NOP everywhere else.
609 * @thread The Emulation Thread.
610 */
611#ifdef IN_GC
612# define MMHYPER_GC_ASSERT_GCPTR(pVM, GCPtr) Assert(MMHyperIsInsideArea((pVM), (GCPtr)) || !(GCPtr))
613#else
614# define MMHYPER_GC_ASSERT_GCPTR(pVM, GCPtr) do { } while (0)
615#endif
616
617/** @} */
618
619
620#ifdef IN_RING3
621/** @defgroup grp_mm_r3 The MM Host Context Ring-3 API
622 * @ingroup grp_mm
623 * @{
624 */
625
626/**
627 * Initialization of MM (save anything depending on PGM).
628 *
629 * @returns VBox status code.
630 * @param pVM The VM to operate on.
631 * @thread The Emulation Thread.
632 */
633MMR3DECL(int) MMR3Init(PVM pVM);
634
635/**
636 * Initializes the MM parts which depends on PGM being initialized.
637 *
638 * @returns VBox status code.
639 * @param pVM The VM to operate on.
640 * @thread The Emulation Thread.
641 */
642MMR3DECL(int) MMR3InitPaging(PVM pVM);
643
644/**
645 * Finalizes the HMA mapping.
646 *
647 * This is called later during init, most (all) HMA allocations should be done
648 * by the time this function is called.
649 *
650 * @returns VBox status.
651 */
652MMR3DECL(int) MMR3HyperInitFinalize(PVM pVM);
653
654/**
655 * Terminates the MM.
656 *
657 * Termination means cleaning up and freeing all resources,
658 * the VM it self is at this point powered off or suspended.
659 *
660 * @returns VBox status code.
661 * @param pVM The VM to operate on.
662 * @thread The Emulation Thread.
663 */
664MMR3DECL(int) MMR3Term(PVM pVM);
665
666/**
667 * Reset notification.
668 *
669 * MM will reload shadow ROMs into RAM at this point and make
670 * the ROM writable.
671 *
672 * @param pVM The VM handle.
673 */
674MMR3DECL(void) MMR3Reset(PVM pVM);
675
676/**
677 * Convert HC Physical address to HC Virtual address.
678 *
679 * @returns VBox status.
680 * @param pVM VM handle.
681 * @param HCPhys The host context virtual address.
682 * @param ppv Where to store the resulting address.
683 * @thread The Emulation Thread.
684 */
685MMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv);
686
687/**
688 * Read memory from GC virtual address using the current guest CR3.
689 *
690 * @returns VBox status.
691 * @param pVM VM handle.
692 * @param pvDst Destination address (HC of course).
693 * @param GCPtr GC virtual address.
694 * @param cb Number of bytes to read.
695 * @thread The Emulation Thread.
696 */
697MMR3DECL(int) MMR3ReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb);
698
699/**
700 * Write to memory at GC virtual address translated using the current guest CR3.
701 *
702 * @returns VBox status.
703 * @param pVM VM handle.
704 * @param GCPtrDst GC virtual address.
705 * @param pvSrc The source address (HC of course).
706 * @param cb Number of bytes to read.
707 */
708MMR3DECL(int) MMR3WriteGCVirt(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb);
709
710
711/** @defgroup grp_mm_r3_hyper Hypervisor Memory Manager (HC R3 Portion)
712 * @ingroup grp_mm_r3
713 * @{ */
714/**
715 * Allocates memory in the Hypervisor (GC VMM) area which never will
716 * be freed and don't have any offset based relation to other heap blocks.
717 *
718 * The latter means that two blocks allocated by this API will not have the
719 * same relative position to each other in GC and HC. In short, never use
720 * this API for allocating nodes for an offset based AVL tree!
721 *
722 * The returned memory is of course zeroed.
723 *
724 * @returns VBox status code.
725 * @param pVM The VM to operate on.
726 * @param cb Number of bytes to allocate.
727 * @param uAlignment Required memory alignment in bytes.
728 * Values are 0,8,16,32 and PAGE_SIZE.
729 * 0 -> default alignment, i.e. 8 bytes.
730 * @param enmTag The statistics tag.
731 * @param ppv Where to store the address to the allocated
732 * memory.
733 * @remark This is assumed not to be used at times when serialization is required.
734 */
735MMDECL(int) MMR3HyperAllocOnceNoRel(PVM pVM, size_t cb, uint32_t uAlignment, MMTAG enmTag, void **ppv);
736
737/**
738 * Maps contiguous HC physical memory into the hypervisor region in the GC.
739 *
740 * @return VBox status code.
741 *
742 * @param pVM VM handle.
743 * @param pvHC Host context address of the memory. Must be page aligned!
744 * @param HCPhys Host context physical address of the memory to be mapped. Must be page aligned!
745 * @param cb Size of the memory. Will be rounded up to nearest page.
746 * @param pszDesc Description.
747 * @param pGCPtr Where to store the GC address.
748 * @thread The Emulation Thread.
749 */
750MMR3DECL(int) MMR3HyperMapHCPhys(PVM pVM, void *pvHC, RTHCPHYS HCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr);
751
752/**
753 * Maps contiguous GC physical memory into the hypervisor region in the GC.
754 *
755 * @return VBox status code.
756 *
757 * @param pVM VM handle.
758 * @param GCPhys Guest context physical address of the memory to be mapped. Must be page aligned!
759 * @param cb Size of the memory. Will be rounded up to nearest page.
760 * @param pszDesc Mapping description.
761 * @param pGCPtr Where to store the GC address.
762 * @thread The Emulation Thread.
763 */
764MMR3DECL(int) MMR3HyperMapGCPhys(PVM pVM, RTGCPHYS GCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr);
765
766/**
767 * Locks and Maps HC virtual memory into the hypervisor region in the GC.
768 *
769 * @return VBox status code.
770 *
771 * @param pVM VM handle.
772 * @param pvHC Host context address of the memory (may be not page aligned).
773 * @param cb Size of the memory. Will be rounded up to nearest page.
774 * @param fFree Set this if MM is responsible for freeing the memory using SUPPageFree.
775 * @param pszDesc Mapping description.
776 * @param pGCPtr Where to store the GC address corresponding to pvHC.
777 * @thread The Emulation Thread.
778 */
779MMR3DECL(int) MMR3HyperMapHCRam(PVM pVM, void *pvHC, size_t cb, bool fFree, const char *pszDesc, PRTGCPTR pGCPtr);
780
781/**
782 * Maps locked R3 virtual memory into the hypervisor region in the GC.
783 *
784 * @return VBox status code.
785 *
786 * @param pVM VM handle.
787 * @param pvR3 The ring-3 address of the memory, must be page aligned.
788 * @param pvR0 The ring-0 address of the memory, must be page aligned. (optional)
789 * @param cPages The number of pages.
790 * @param paPages The page descriptors.
791 * @param pszDesc Mapping description.
792 * @param pGCPtr Where to store the GC address corresponding to pvHC.
793 */
794MMR3DECL(int) MMR3HyperMapPages(PVM pVM, void *pvR3, RTR0PTR pvR0, size_t cPages, PCSUPPAGE paPages, const char *pszDesc, PRTGCPTR pGCPtr);
795
796/**
797 * Reserves a hypervisor memory area.
798 * Most frequent usage is fence pages and dynamically mappings like the guest PD and PDPTR.
799 *
800 * @return VBox status code.
801 *
802 * @param pVM VM handle.
803 * @param cb Size of the memory. Will be rounded up to nearest page.
804 * @param pszDesc Mapping description.
805 * @param pGCPtr Where to store the assigned GC address. Optional.
806 * @thread The Emulation Thread.
807 */
808MMR3DECL(int) MMR3HyperReserve(PVM pVM, unsigned cb, const char *pszDesc, PRTGCPTR pGCPtr);
809
810
811/**
812 * Convert hypervisor HC virtual address to HC physical address.
813 *
814 * @returns HC physical address.
815 * @param pVM VM Handle
816 * @param pvHC Host context physical address.
817 * @thread The Emulation Thread.
818 */
819MMR3DECL(RTHCPHYS) MMR3HyperHCVirt2HCPhys(PVM pVM, void *pvHC);
820/**
821 * Convert hypervisor HC virtual address to HC physical address.
822 *
823 * @returns HC physical address.
824 * @param pVM VM Handle
825 * @param pvHC Host context physical address.
826 * @param pHCPhys Where to store the HC physical address.
827 * @thread The Emulation Thread.
828 */
829MMR3DECL(int) MMR3HyperHCVirt2HCPhysEx(PVM pVM, void *pvHC, PRTHCPHYS pHCPhys);
830/**
831 * Convert hypervisor HC physical address to HC virtual address.
832 *
833 * @returns HC virtual address.
834 * @param pVM VM Handle
835 * @param HCPhys Host context physical address.
836 * @thread The Emulation Thread.
837 */
838MMR3DECL(void *) MMR3HyperHCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys);
839/**
840 * Convert hypervisor HC physical address to HC virtual address.
841 *
842 * @returns VBox status.
843 * @param pVM VM Handle
844 * @param HCPhys Host context physical address.
845 * @param ppv Where to store the HC virtual address.
846 * @thread The Emulation Thread.
847 */
848MMR3DECL(int) MMR3HyperHCPhys2HCVirtEx(PVM pVM, RTHCPHYS HCPhys, void **ppv);
849
850/**
851 * Read hypervisor memory from GC virtual address.
852 *
853 * @returns VBox status.
854 * @param pVM VM handle.
855 * @param pvDst Destination address (HC of course).
856 * @param GCPtr GC virtual address.
857 * @param cb Number of bytes to read.
858 * @thread The Emulation Thread.
859 */
860MMR3DECL(int) MMR3HyperReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb);
861
862/** @} */
863
864
865/** @defgroup grp_mm_phys Guest Physical Memory Manager
866 * @ingroup grp_mm_r3
867 * @{ */
868
869/**
870 * Register externally allocated RAM for the virtual machine.
871 *
872 * The memory registered with the VM thru this interface must not be freed
873 * before the virtual machine has been destroyed. Bad things may happen... :-)
874 *
875 * @return VBox status code.
876 * @param pVM VM handle.
877 * @param pvRam Virtual address of the guest's physical memory range Must be page aligned.
878 * @param GCPhys The physical address the ram shall be registered at.
879 * @param cb Size of the memory. Must be page aligend.
880 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
881 * @param pszDesc Description of the memory.
882 * @thread The Emulation Thread.
883 */
884MMR3DECL(int) MMR3PhysRegister(PVM pVM, void *pvRam, RTGCPHYS GCPhys, unsigned cb, unsigned fFlags, const char *pszDesc);
885
886/**
887 * Register externally allocated RAM for the virtual machine.
888 *
889 * The memory registered with the VM thru this interface must not be freed
890 * before the virtual machine has been destroyed. Bad things may happen... :-)
891 *
892 * @return VBox status code.
893 * @param pVM VM handle.
894 * @param pvRam Virtual address of the guest's physical memory range Must be page aligned.
895 * @param GCPhys The physical address the ram shall be registered at.
896 * @param cb Size of the memory. Must be page aligend.
897 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
898 * @param enmType Physical range type (MM_PHYS_TYPE_*)
899 * @param pszDesc Description of the memory.
900 * @thread The Emulation Thread.
901 * @todo update this description.
902 */
903MMR3DECL(int) MMR3PhysRegisterEx(PVM pVM, void *pvRam, RTGCPHYS GCPhys, unsigned cb, unsigned fFlags, MMPHYSREG enmType, const char *pszDesc);
904
905/**
906 * Register previously registered externally allocated RAM for the virtual machine.
907 *
908 * Use this only for MMIO ranges or the guest will become very confused.
909 * The memory registered with the VM thru this interface must not be freed
910 * before the virtual machine has been destroyed. Bad things may happen... :-)
911 *
912 * @return VBox status code.
913 * @param pVM VM handle.
914 * @param GCPhysOld The physical address the ram was registered at.
915 * @param GCPhysNew The physical address the ram shall be registered at.
916 * @param cb Size of the memory. Must be page aligend.
917 * @thread The Emulation Thread.
918 */
919MMR3DECL(int) MMR3PhysRelocate(PVM pVM, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, unsigned cb);
920
921/**
922 * Register a ROM (BIOS) region.
923 *
924 * It goes without saying that this is read-only memory. The memory region must be
925 * in unassigned memory. I.e. from the top of the address space or on the PC in
926 * the 0xa0000-0xfffff range.
927 *
928 * @returns VBox status.
929 * @param pVM VM Handle.
930 * @param pDevIns The device instance owning the ROM region.
931 * @param GCPhys First physical address in the range.
932 * Must be page aligned!
933 * @param cbRange The size of the range (in bytes).
934 * Must be page aligned!
935 * @param pvBinary Pointer to the binary data backing the ROM image.
936 * This must be cbRange bytes big.
937 * It will be copied and doesn't have to stick around.
938 * It will be copied and doesn't have to stick around if fShadow is clear.
939 * @param fShadow Whether to emulate ROM shadowing. This involves leaving
940 * the ROM writable for a while during the POST and refreshing
941 * it at reset. When this flag is set, the memory pointed to by
942 * pvBinary has to stick around for the lifespan of the VM.
943 * @param pszDesc Pointer to description string. This must not be freed.
944 * @remark There is no way to remove the rom, automatically on device cleanup or
945 * manually from the device yet. At present I doubt we need such features...
946 * @thread The Emulation Thread.
947 */
948MMR3DECL(int) MMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTUINT cbRange, const void *pvBinary, bool fShadow, const char *pszDesc);
949
950/**
951 * Write-protects a shadow ROM range.
952 *
953 * This is called late in the POST for shadow ROM ranges.
954 *
955 * @returns VBox status code.
956 * @param pVM The VM handle.
957 * @param GCPhys Start of the registered shadow ROM range
958 * @param cbRange The length of the registered shadow ROM range.
959 * This can be NULL (not sure about the BIOS interface yet).
960 */
961MMR3DECL(int) MMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange);
962
963/**
964 * Reserve physical address space for ROM and MMIO ranges.
965 *
966 * @returns VBox status code.
967 * @param pVM VM Handle.
968 * @param GCPhys Start physical address.
969 * @param cbRange The size of the range.
970 * @param pszDesc Description string.
971 * @thread The Emulation Thread.
972 */
973MMR3DECL(int) MMR3PhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, const char *pszDesc);
974
975/**
976 * Get the size of the base RAM.
977 * This usually means the size of the first contigous block of physical memory.
978 *
979 * @returns
980 * @param pVM
981 * @thread Any.
982 */
983MMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM);
984
985
986/** @} */
987
988
989/** @defgroup grp_mm_page Physical Page Pool
990 * @ingroup grp_mm_r3
991 * @{ */
992/**
993 * Allocates a page from the page pool.
994 *
995 * This function may returns pages which has physical addresses any
996 * where. If you require a page to be within the first 4GB of physical
997 * memory, use MMR3PageAllocLow().
998 *
999 * @returns Pointer to the allocated page page.
1000 * @returns NULL on failure.
1001 * @param pVM VM handle.
1002 * @thread The Emulation Thread.
1003 */
1004MMR3DECL(void *) MMR3PageAlloc(PVM pVM);
1005
1006/**
1007 * Allocates a page from the page pool and return its physical address.
1008 *
1009 * This function may returns pages which has physical addresses any
1010 * where. If you require a page to be within the first 4GB of physical
1011 * memory, use MMR3PageAllocLow().
1012 *
1013 * @returns Pointer to the allocated page page.
1014 * @returns NIL_RTHCPHYS on failure.
1015 * @param pVM VM handle.
1016 * @thread The Emulation Thread.
1017 */
1018MMR3DECL(RTHCPHYS) MMR3PageAllocPhys(PVM pVM);
1019
1020/**
1021 * Frees a page allocated from the page pool by MMR3PageAlloc() and MMR3PageAllocPhys().
1022 *
1023 * @param pVM VM handle.
1024 * @param pvPage Pointer to the page.
1025 * @thread The Emulation Thread.
1026 */
1027MMR3DECL(void) MMR3PageFree(PVM pVM, void *pvPage);
1028
1029/**
1030 * Allocates a page from the low page pool.
1031 *
1032 * @returns Pointer to the allocated page.
1033 * @returns NULL on failure.
1034 * @param pVM VM handle.
1035 * @thread The Emulation Thread.
1036 */
1037MMR3DECL(void *) MMR3PageAllocLow(PVM pVM);
1038
1039/**
1040 * Frees a page allocated from the page pool by MMR3PageAllocLow().
1041 *
1042 * @param pVM VM handle.
1043 * @param pvPage Pointer to the page.
1044 * @thread The Emulation Thread.
1045 */
1046MMR3DECL(void) MMR3PageFreeLow(PVM pVM, void *pvPage);
1047
1048/**
1049 * Free a page allocated from the page pool by physical address.
1050 * This works for pages allocated by MMR3PageAlloc(), MMR3PageAllocPhys()
1051 * and MMR3PageAllocLow().
1052 *
1053 * @param pVM VM handle.
1054 * @param HCPhysPage The physical address of the page to be freed.
1055 * @thread The Emulation Thread.
1056 */
1057MMR3DECL(void) MMR3PageFreeByPhys(PVM pVM, RTHCPHYS HCPhysPage);
1058
1059/**
1060 * Gets the HC pointer to the dummy page.
1061 *
1062 * The dummy page is used as a place holder to prevent potential bugs
1063 * from doing really bad things to the system.
1064 *
1065 * @returns Pointer to the dummy page.
1066 * @param pVM VM handle.
1067 * @thread The Emulation Thread.
1068 */
1069MMR3DECL(void *) MMR3PageDummyHCPtr(PVM pVM);
1070
1071/**
1072 * Gets the HC Phys to the dummy page.
1073 *
1074 * The dummy page is used as a place holder to prevent potential bugs
1075 * from doing really bad things to the system.
1076 *
1077 * @returns Pointer to the dummy page.
1078 * @param pVM VM handle.
1079 * @thread The Emulation Thread.
1080 */
1081MMR3DECL(RTHCPHYS) MMR3PageDummyHCPhys(PVM pVM);
1082
1083
1084#if 1 /* these are temporary wrappers and will be removed soon */
1085/**
1086 * Allocates a Page Table.
1087 *
1088 * @returns Pointer to page table.
1089 * @returns NULL on failure.
1090 * @param pVM VM handle.
1091 * @deprecated Use MMR3PageAlloc().
1092 */
1093DECLINLINE(PVBOXPT) MMR3PTAlloc(PVM pVM)
1094{
1095 return (PVBOXPT)MMR3PageAlloc(pVM);
1096}
1097
1098/**
1099 * Free a Page Table.
1100 *
1101 * @param pVM VM handle.
1102 * @param pPT Pointer to the page table as returned by MMR3PTAlloc().
1103 * @deprecated Use MMR3PageFree().
1104 */
1105DECLINLINE(void) MMR3PTFree(PVM pVM, PVBOXPT pPT)
1106{
1107 MMR3PageFree(pVM, pPT);
1108}
1109
1110/**
1111 * Free a Page Table by physical address.
1112 *
1113 * @param pVM VM handle.
1114 * @param HCPhysPT The physical address of the page table to be freed.
1115 * @deprecated Use MMR3PageFreeByPhys().
1116 */
1117DECLINLINE(void) MMR3PTFreeByPhys(PVM pVM, RTHCPHYS HCPhysPT)
1118{
1119 MMR3PageFreeByPhys(pVM, HCPhysPT);
1120}
1121
1122/**
1123 * Convert a Page Table address to a HC physical address.
1124 *
1125 * @returns Physical address for the specified page table.
1126 * @param pVM VM handle.
1127 * @param pPT Page table which physical address we query.
1128 * @deprecated Use MMR3Page2Phys().
1129 */
1130DECLINLINE(RTHCPHYS) MMR3PT2Phys(PVM pVM, PVBOXPT pPT)
1131{
1132 return MMPage2Phys(pVM, pPT);
1133}
1134
1135/**
1136 * Convert a physical address to a page table address
1137 *
1138 * @returns Pointer to the page table at that physical address.
1139 * @param pVM VM handle.
1140 * @param PhysPT Page table which physical address we query.
1141 * @deprecated Use MMR3PagePhys2Page().
1142 */
1143DECLINLINE(PVBOXPT) MMR3Phys2PT(PVM pVM, RTHCPHYS PhysPT)
1144{
1145 return (PVBOXPT)MMPagePhys2Page(pVM, PhysPT);
1146}
1147
1148/**
1149 * Allocate a Page Directory.
1150 *
1151 * @returns Pointer to the page directory.
1152 * @returns NULL on failure.
1153 * @param pVM VM handle.
1154 * @deprecated Use MMR3PageAlloc().
1155 */
1156DECLINLINE(PVBOXPD) MMR3PDAlloc(PVM pVM)
1157{
1158 return (PVBOXPD)MMR3PageAlloc(pVM);
1159}
1160
1161/**
1162 * Free a Page Directory.
1163 *
1164 * @param pVM VM handle.
1165 * @param pPD Pointer to the page directory allocated by MMR3PDAlloc().
1166 * @deprecated Use MMR3PageFree().
1167 */
1168DECLINLINE(void) MMR3PDFree(PVM pVM, PVBOXPD pPD)
1169{
1170 MMR3PageFree(pVM, pPD);
1171}
1172
1173/**
1174 * Convert a Page Directory address to a physical address.
1175 *
1176 * @returns Physical address for the specified page directory.
1177 * @param pVM VM handle.
1178 * @param pPD Page directory which physical address we query.
1179 * Allocated by MMR3PDAlloc().
1180 * @deprecated Use MMR3Page2Phys().
1181 */
1182DECLINLINE(RTHCPHYS) MMR3PD2Phys(PVM pVM, PVBOXPD pPD)
1183{
1184 return MMPage2Phys(pVM, pPD);
1185}
1186
1187/**
1188 * Convert a physical address to a page directory address
1189 *
1190 * @returns Pointer to the page directory at that physical address.
1191 * @param pVM VM handle.
1192 * @param PhysPD Physical address of page directory.
1193 * Allocated by MMR3PDAlloc().
1194 * @deprecated Use MMR3PageAlloc().
1195 */
1196DECLINLINE(PVBOXPD) MMR3Phys2PD(PVM pVM, RTHCPHYS PhysPD)
1197{
1198 return (PVBOXPD)MMPagePhys2Page(pVM, PhysPD);
1199}
1200
1201/** @deprecated */
1202DECLINLINE(void *) MMR3DummyPageHCPtr(PVM pVM) { return MMR3PageDummyHCPtr(pVM); }
1203/** @deprecated */
1204DECLINLINE(RTHCPHYS) MMR3DummyPageHCPhys(PVM pVM) { return MMR3PageDummyHCPhys(pVM); }
1205
1206#endif /* will be removed */
1207
1208/** @} */
1209
1210
1211/** @defgroup grp_mm_heap Heap Manager
1212 * @ingroup grp_mm_r3
1213 * @{ */
1214
1215/**
1216 * Allocate memory associating it with the VM for collective cleanup.
1217 *
1218 * The memory will be allocated from the default heap but a header
1219 * is added in which we keep track of which VM it belongs to and chain
1220 * all the allocations together so they can be freed in a one go.
1221 *
1222 * This interface is typically used for memory block which will not be
1223 * freed during the life of the VM.
1224 *
1225 * @returns Pointer to allocated memory.
1226 * @param pVM VM handle.
1227 * @param enmTag Statistics tag. Statistics are collected on a per tag
1228 * basis in addition to a global one. Thus we can easily
1229 * identify how memory is used by the VM.
1230 * @param cbSize Size of the block.
1231 * @thread Any thread.
1232 */
1233MMR3DECL(void *) MMR3HeapAlloc(PVM pVM, MMTAG enmTag, size_t cbSize);
1234
1235/**
1236 * Same as MMR3HeapAlloc().
1237 *
1238 *
1239 * @returns Pointer to allocated memory.
1240 * @param pVM VM handle.
1241 * @param enmTag Statistics tag. Statistics are collected on a per tag
1242 * basis in addition to a global one. Thus we can easily
1243 * identify how memory is used by the VM.
1244 * @param cbSize Size of the block.
1245 * @param ppv Where to store the pointer to the allocated memory on success.
1246 * @thread Any thread.
1247 */
1248MMR3DECL(int) MMR3HeapAllocEx(PVM pVM, MMTAG enmTag, size_t cbSize, void **ppv);
1249
1250/**
1251 * Same as MMR3HeapAlloc() only the memory is zeroed.
1252 *
1253 *
1254 * @returns Pointer to allocated memory.
1255 * @param pVM VM handle.
1256 * @param enmTag Statistics tag. Statistics are collected on a per tag
1257 * basis in addition to a global one. Thus we can easily
1258 * identify how memory is used by the VM.
1259 * @param cbSize Size of the block.
1260 * @thread Any thread.
1261 */
1262MMR3DECL(void *) MMR3HeapAllocZ(PVM pVM, MMTAG enmTag, size_t cbSize);
1263
1264/**
1265 * Same as MMR3HeapAllocZ().
1266 *
1267 *
1268 * @returns Pointer to allocated memory.
1269 * @param pVM VM handle.
1270 * @param enmTag Statistics tag. Statistics are collected on a per tag
1271 * basis in addition to a global one. Thus we can easily
1272 * identify how memory is used by the VM.
1273 * @param cbSize Size of the block.
1274 * @param ppv Where to store the pointer to the allocated memory on success.
1275 * @thread Any thread.
1276 */
1277MMR3DECL(int) MMR3HeapAllocZEx(PVM pVM, MMTAG enmTag, size_t cbSize, void **ppv);
1278
1279/**
1280 * Reallocate memory allocated with MMR3HeapAlloc() or MMR3HeapRealloc().
1281 *
1282 * @returns Pointer to reallocated memory.
1283 * @param pv Pointer to the memory block to reallocate.
1284 * Must not be NULL!
1285 * @param cbNewSize New block size.
1286 * @thread Any thread.
1287 */
1288MMR3DECL(void *) MMR3HeapRealloc(void *pv, size_t cbNewSize);
1289
1290/**
1291 * Duplicates the specified string.
1292 *
1293 * @returns Pointer to the duplicate.
1294 * @returns NULL on failure or when input NULL.
1295 * @param pVM The VM handle.
1296 * @param enmTag Statistics tag. Statistics are collected on a per tag
1297 * basis in addition to a global one. Thus we can easily
1298 * identify how memory is used by the VM.
1299 * @param psz The string to duplicate. NULL is allowed.
1300 */
1301MMR3DECL(char *) MMR3HeapStrDup(PVM pVM, MMTAG enmTag, const char *psz);
1302
1303/**
1304 * Releases memory allocated with MMR3HeapAlloc() or MMR3HeapRealloc().
1305 *
1306 * @param pv Pointer to the memory block to free.
1307 * @thread Any thread.
1308 */
1309MMR3DECL(void) MMR3HeapFree(void *pv);
1310
1311/** @} */
1312
1313/** @} */
1314#endif
1315
1316
1317
1318#ifdef IN_GC
1319/** @defgroup grp_mm_gc The MM Guest Context API
1320 * @ingroup grp_mm
1321 * @{
1322 */
1323
1324/**
1325 * Install MMGCRam Hypervisor page fault handler for normal working
1326 * of MMGCRamRead and MMGCRamWrite calls.
1327 * This handler will be automatically removed at page fault.
1328 * In other case it must be removed by MMGCRamDeregisterTrapHandler call.
1329 *
1330 * @param pVM VM handle.
1331 */
1332MMGCDECL(void) MMGCRamRegisterTrapHandler(PVM pVM);
1333
1334/**
1335 * Remove MMGCRam Hypervisor page fault handler.
1336 * See description of MMGCRamRegisterTrapHandler call.
1337 *
1338 * @param pVM VM handle.
1339 */
1340MMGCDECL(void) MMGCRamDeregisterTrapHandler(PVM pVM);
1341
1342/**
1343 * Read data in guest context with \#PF control.
1344 * MMRamGC page fault handler must be installed prior this call for safe operation.
1345 * Use MMGCRamRegisterTrapHandler() call for this task.
1346 *
1347 * @returns VBox status.
1348 * @param pDst Where to store the readed data.
1349 * @param pSrc Pointer to the data to read.
1350 * @param cb Size of data to read, only 1/2/4/8 is valid.
1351 */
1352MMGCDECL(int) MMGCRamReadNoTrapHandler(void *pDst, void *pSrc, size_t cb);
1353
1354/**
1355 * Write data in guest context with \#PF control.
1356 * MMRamGC page fault handler must be installed prior this call for safe operation.
1357 * Use MMGCRamRegisterTrapHandler() call for this task.
1358 *
1359 * @returns VBox status.
1360 * @param pDst Where to write the data.
1361 * @param pSrc Pointer to the data to write.
1362 * @param cb Size of data to write, only 1/2/4 is valid.
1363 */
1364MMGCDECL(int) MMGCRamWriteNoTrapHandler(void *pDst, void *pSrc, size_t cb);
1365
1366/**
1367 * Read data in guest context with \#PF control.
1368 *
1369 * @returns VBox status.
1370 * @param pVM The VM handle.
1371 * @param pDst Where to store the readed data.
1372 * @param pSrc Pointer to the data to read.
1373 * @param cb Size of data to read, only 1/2/4/8 is valid.
1374 */
1375MMGCDECL(int) MMGCRamRead(PVM pVM, void *pDst, void *pSrc, size_t cb);
1376
1377/**
1378 * Write data in guest context with \#PF control.
1379 *
1380 * @returns VBox status.
1381 * @param pVM The VM handle.
1382 * @param pDst Where to write the data.
1383 * @param pSrc Pointer to the data to write.
1384 * @param cb Size of data to write, only 1/2/4 is valid.
1385 */
1386MMGCDECL(int) MMGCRamWrite(PVM pVM, void *pDst, void *pSrc, size_t cb);
1387
1388/** @} */
1389#endif
1390
1391/** @} */
1392__END_DECLS
1393
1394
1395#endif
1396
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette