/** @file * IPRT - Assembly Functions. */ /* * Copyright (C) 2006-2012 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ #ifndef ___iprt_asm_h #define ___iprt_asm_h #include #include #include /** @def RT_INLINE_ASM_USES_INTRIN * Defined as 1 if we're using a _MSC_VER 1400. * Otherwise defined as 0. */ /* Solaris 10 header ugliness */ #ifdef u # undef u #endif #if defined(_MSC_VER) && RT_INLINE_ASM_USES_INTRIN # include /* Emit the intrinsics at all optimization levels. */ # pragma intrinsic(_ReadWriteBarrier) # pragma intrinsic(__cpuid) # pragma intrinsic(__stosd) # pragma intrinsic(__stosw) # pragma intrinsic(__stosb) # pragma intrinsic(_BitScanForward) # pragma intrinsic(_BitScanReverse) # pragma intrinsic(_bittest) # pragma intrinsic(_bittestandset) # pragma intrinsic(_bittestandreset) # pragma intrinsic(_bittestandcomplement) # pragma intrinsic(_byteswap_ushort) # pragma intrinsic(_byteswap_ulong) # pragma intrinsic(_interlockedbittestandset) # pragma intrinsic(_interlockedbittestandreset) # pragma intrinsic(_InterlockedAnd) # pragma intrinsic(_InterlockedOr) # pragma intrinsic(_InterlockedIncrement) # pragma intrinsic(_InterlockedDecrement) # pragma intrinsic(_InterlockedExchange) # pragma intrinsic(_InterlockedExchangeAdd) # pragma intrinsic(_InterlockedCompareExchange) # pragma intrinsic(_InterlockedCompareExchange64) # ifdef RT_ARCH_AMD64 # pragma intrinsic(__stosq) # pragma intrinsic(_byteswap_uint64) # pragma intrinsic(_InterlockedExchange64) # pragma intrinsic(_InterlockedExchangeAdd64) # pragma intrinsic(_InterlockedAnd64) # pragma intrinsic(_InterlockedOr64) # pragma intrinsic(_InterlockedIncrement64) # pragma intrinsic(_InterlockedDecrement64) # endif #endif /** @defgroup grp_rt_asm ASM - Assembly Routines * @ingroup grp_rt * * @remarks The difference between ordered and unordered atomic operations are that * the former will complete outstanding reads and writes before continuing * while the latter doesn't make any promises about the order. Ordered * operations doesn't, it seems, make any 100% promise wrt to whether * the operation will complete before any subsequent memory access. * (please, correct if wrong.) * * ASMAtomicSomething operations are all ordered, while ASMAtomicUoSomething * are unordered (note the Uo). * * @remarks Some remarks about __volatile__: Without this keyword gcc is allowed to reorder * or even optimize assembler instructions away. For instance, in the following code * the second rdmsr instruction is optimized away because gcc treats that instruction * as deterministic: * * @code * static inline uint64_t rdmsr_low(int idx) * { * uint32_t low; * __asm__ ("rdmsr" : "=a"(low) : "c"(idx) : "edx"); * } * ... * uint32_t msr1 = rdmsr_low(1); * foo(msr1); * msr1 = rdmsr_low(1); * bar(msr1); * @endcode * * The input parameter of rdmsr_low is the same for both calls and therefore gcc will * use the result of the first call as input parameter for bar() as well. For rdmsr this * is not acceptable as this instruction is _not_ deterministic. This applies to reading * machine status information in general. * * @{ */ /** @def RT_INLINE_ASM_GCC_4_3_X_X86 * Used to work around some 4.3.x register allocation issues in this version of * the compiler. So far this workaround is still required for 4.4 and 4.5. */ #ifdef __GNUC__ # define RT_INLINE_ASM_GCC_4_3_X_X86 (__GNUC__ == 4 && __GNUC_MINOR__ >= 3 && defined(__i386__)) #endif #ifndef RT_INLINE_ASM_GCC_4_3_X_X86 # define RT_INLINE_ASM_GCC_4_3_X_X86 0 #endif /** @def RT_INLINE_DONT_USE_CMPXCHG8B * i686-apple-darwin9-gcc-4.0.1 (GCC) 4.0.1 (Apple Inc. build 5493) screws up * RTSemRWRequestWrite semsemrw-lockless-generic.cpp in release builds. PIC * mode, x86. * * Some gcc 4.3.x versions may have register allocation issues with cmpxchg8b * when in PIC mode on x86. */ #ifndef RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC # define RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC \ ( (defined(PIC) || defined(__PIC__)) \ && defined(RT_ARCH_X86) \ && ( RT_INLINE_ASM_GCC_4_3_X_X86 \ || defined(RT_OS_DARWIN)) ) #endif /** @def ASMReturnAddress * Gets the return address of the current (or calling if you like) function or method. */ #ifdef _MSC_VER # ifdef __cplusplus extern "C" # endif void * _ReturnAddress(void); # pragma intrinsic(_ReturnAddress) # define ASMReturnAddress() _ReturnAddress() #elif defined(__GNUC__) || defined(DOXYGEN_RUNNING) # define ASMReturnAddress() __builtin_return_address(0) #else # error "Unsupported compiler." #endif /** * Compiler memory barrier. * * Ensure that the compiler does not use any cached (register/tmp stack) memory * values or any outstanding writes when returning from this function. * * This function must be used if non-volatile data is modified by a * device or the VMM. Typical cases are port access, MMIO access, * trapping instruction, etc. */ #if RT_INLINE_ASM_GNU_STYLE # define ASMCompilerBarrier() do { __asm__ __volatile__("" : : : "memory"); } while (0) #elif RT_INLINE_ASM_USES_INTRIN # define ASMCompilerBarrier() do { _ReadWriteBarrier(); } while (0) #else /* 2003 should have _ReadWriteBarrier() but I guess we're at 2002 level then... */ DECLINLINE(void) ASMCompilerBarrier(void) { __asm { } } #endif /** @def ASMBreakpoint * Debugger Breakpoint. * @deprecated Use RT_BREAKPOINT instead. * @internal */ #define ASMBreakpoint() RT_BREAKPOINT() /** * Spinloop hint for platforms that have these, empty function on the other * platforms. * * x86 & AMD64: The PAUSE variant of NOP for helping hyperthreaded CPUs detecting * spin locks. */ #if RT_INLINE_ASM_EXTERNAL && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)) DECLASM(void) ASMNopPause(void); #else DECLINLINE(void) ASMNopPause(void) { # if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__(".byte 0xf3,0x90\n\t"); # else __asm { _emit 0f3h _emit 090h } # endif # else /* dummy */ # endif } #endif /** * Atomically Exchange an unsigned 8-bit value, ordered. * * @returns Current *pu8 value * @param pu8 Pointer to the 8-bit variable to update. * @param u8 The 8-bit value to assign to *pu8. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(uint8_t) ASMAtomicXchgU8(volatile uint8_t *pu8, uint8_t u8); #else DECLINLINE(uint8_t) ASMAtomicXchgU8(volatile uint8_t *pu8, uint8_t u8) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("xchgb %0, %1\n\t" : "=m" (*pu8), "=q" (u8) /* =r - busted on g++ (GCC) 3.4.4 20050721 (Red Hat 3.4.4-2) */ : "1" (u8), "m" (*pu8)); # else __asm { # ifdef RT_ARCH_AMD64 mov rdx, [pu8] mov al, [u8] xchg [rdx], al mov [u8], al # else mov edx, [pu8] mov al, [u8] xchg [edx], al mov [u8], al # endif } # endif return u8; } #endif /** * Atomically Exchange a signed 8-bit value, ordered. * * @returns Current *pu8 value * @param pi8 Pointer to the 8-bit variable to update. * @param i8 The 8-bit value to assign to *pi8. */ DECLINLINE(int8_t) ASMAtomicXchgS8(volatile int8_t *pi8, int8_t i8) { return (int8_t)ASMAtomicXchgU8((volatile uint8_t *)pi8, (uint8_t)i8); } /** * Atomically Exchange a bool value, ordered. * * @returns Current *pf value * @param pf Pointer to the 8-bit variable to update. * @param f The 8-bit value to assign to *pi8. */ DECLINLINE(bool) ASMAtomicXchgBool(volatile bool *pf, bool f) { #ifdef _MSC_VER return !!ASMAtomicXchgU8((volatile uint8_t *)pf, (uint8_t)f); #else return (bool)ASMAtomicXchgU8((volatile uint8_t *)pf, (uint8_t)f); #endif } /** * Atomically Exchange an unsigned 16-bit value, ordered. * * @returns Current *pu16 value * @param pu16 Pointer to the 16-bit variable to update. * @param u16 The 16-bit value to assign to *pu16. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(uint16_t) ASMAtomicXchgU16(volatile uint16_t *pu16, uint16_t u16); #else DECLINLINE(uint16_t) ASMAtomicXchgU16(volatile uint16_t *pu16, uint16_t u16) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("xchgw %0, %1\n\t" : "=m" (*pu16), "=r" (u16) : "1" (u16), "m" (*pu16)); # else __asm { # ifdef RT_ARCH_AMD64 mov rdx, [pu16] mov ax, [u16] xchg [rdx], ax mov [u16], ax # else mov edx, [pu16] mov ax, [u16] xchg [edx], ax mov [u16], ax # endif } # endif return u16; } #endif /** * Atomically Exchange a signed 16-bit value, ordered. * * @returns Current *pu16 value * @param pi16 Pointer to the 16-bit variable to update. * @param i16 The 16-bit value to assign to *pi16. */ DECLINLINE(int16_t) ASMAtomicXchgS16(volatile int16_t *pi16, int16_t i16) { return (int16_t)ASMAtomicXchgU16((volatile uint16_t *)pi16, (uint16_t)i16); } /** * Atomically Exchange an unsigned 32-bit value, ordered. * * @returns Current *pu32 value * @param pu32 Pointer to the 32-bit variable to update. * @param u32 The 32-bit value to assign to *pu32. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMAtomicXchgU32(volatile uint32_t *pu32, uint32_t u32); #else DECLINLINE(uint32_t) ASMAtomicXchgU32(volatile uint32_t *pu32, uint32_t u32) { # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("xchgl %0, %1\n\t" : "=m" (*pu32), "=r" (u32) : "1" (u32), "m" (*pu32)); # elif RT_INLINE_ASM_USES_INTRIN u32 = _InterlockedExchange((long *)pu32, u32); # else __asm { # ifdef RT_ARCH_AMD64 mov rdx, [pu32] mov eax, u32 xchg [rdx], eax mov [u32], eax # else mov edx, [pu32] mov eax, u32 xchg [edx], eax mov [u32], eax # endif } # endif return u32; } #endif /** * Atomically Exchange a signed 32-bit value, ordered. * * @returns Current *pu32 value * @param pi32 Pointer to the 32-bit variable to update. * @param i32 The 32-bit value to assign to *pi32. */ DECLINLINE(int32_t) ASMAtomicXchgS32(volatile int32_t *pi32, int32_t i32) { return (int32_t)ASMAtomicXchgU32((volatile uint32_t *)pi32, (uint32_t)i32); } /** * Atomically Exchange an unsigned 64-bit value, ordered. * * @returns Current *pu64 value * @param pu64 Pointer to the 64-bit variable to update. * @param u64 The 64-bit value to assign to *pu64. */ #if (RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN) \ || RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC DECLASM(uint64_t) ASMAtomicXchgU64(volatile uint64_t *pu64, uint64_t u64); #else DECLINLINE(uint64_t) ASMAtomicXchgU64(volatile uint64_t *pu64, uint64_t u64) { # if defined(RT_ARCH_AMD64) # if RT_INLINE_ASM_USES_INTRIN u64 = _InterlockedExchange64((__int64 *)pu64, u64); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("xchgq %0, %1\n\t" : "=m" (*pu64), "=r" (u64) : "1" (u64), "m" (*pu64)); # else __asm { mov rdx, [pu64] mov rax, [u64] xchg [rdx], rax mov [u64], rax } # endif # else /* !RT_ARCH_AMD64 */ # if RT_INLINE_ASM_GNU_STYLE # if defined(PIC) || defined(__PIC__) uint32_t u32EBX = (uint32_t)u64; __asm__ __volatile__(/*"xchgl %%esi, %5\n\t"*/ "xchgl %%ebx, %3\n\t" "1:\n\t" "lock; cmpxchg8b (%5)\n\t" "jnz 1b\n\t" "movl %3, %%ebx\n\t" /*"xchgl %%esi, %5\n\t"*/ : "=A" (u64), "=m" (*pu64) : "0" (*pu64), "m" ( u32EBX ), "c" ( (uint32_t)(u64 >> 32) ), "S" (pu64)); # else /* !PIC */ __asm__ __volatile__("1:\n\t" "lock; cmpxchg8b %1\n\t" "jnz 1b\n\t" : "=A" (u64), "=m" (*pu64) : "0" (*pu64), "b" ( (uint32_t)u64 ), "c" ( (uint32_t)(u64 >> 32) )); # endif # else __asm { mov ebx, dword ptr [u64] mov ecx, dword ptr [u64 + 4] mov edi, pu64 mov eax, dword ptr [edi] mov edx, dword ptr [edi + 4] retry: lock cmpxchg8b [edi] jnz retry mov dword ptr [u64], eax mov dword ptr [u64 + 4], edx } # endif # endif /* !RT_ARCH_AMD64 */ return u64; } #endif /** * Atomically Exchange an signed 64-bit value, ordered. * * @returns Current *pi64 value * @param pi64 Pointer to the 64-bit variable to update. * @param i64 The 64-bit value to assign to *pi64. */ DECLINLINE(int64_t) ASMAtomicXchgS64(volatile int64_t *pi64, int64_t i64) { return (int64_t)ASMAtomicXchgU64((volatile uint64_t *)pi64, (uint64_t)i64); } /** * Atomically Exchange a pointer value, ordered. * * @returns Current *ppv value * @param ppv Pointer to the pointer variable to update. * @param pv The pointer value to assign to *ppv. */ DECLINLINE(void *) ASMAtomicXchgPtr(void * volatile *ppv, const void *pv) { #if ARCH_BITS == 32 return (void *)ASMAtomicXchgU32((volatile uint32_t *)(void *)ppv, (uint32_t)pv); #elif ARCH_BITS == 64 return (void *)ASMAtomicXchgU64((volatile uint64_t *)(void *)ppv, (uint64_t)pv); #else # error "ARCH_BITS is bogus" #endif } /** * Convenience macro for avoiding the annoying casting with ASMAtomicXchgPtr. * * @returns Current *pv value * @param ppv Pointer to the pointer variable to update. * @param pv The pointer value to assign to *ppv. * @param Type The type of *ppv, sans volatile. */ #ifdef __GNUC__ # define ASMAtomicXchgPtrT(ppv, pv, Type) \ __extension__ \ ({\ __typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \ Type const pvTypeChecked = (pv); \ Type pvTypeCheckedRet = (__typeof__(*(ppv))) ASMAtomicXchgPtr((void * volatile *)ppvTypeChecked, (void *)pvTypeChecked); \ pvTypeCheckedRet; \ }) #else # define ASMAtomicXchgPtrT(ppv, pv, Type) \ (Type)ASMAtomicXchgPtr((void * volatile *)(ppv), (void *)(pv)) #endif /** * Atomically Exchange a raw-mode context pointer value, ordered. * * @returns Current *ppv value * @param ppvRC Pointer to the pointer variable to update. * @param pvRC The pointer value to assign to *ppv. */ DECLINLINE(RTRCPTR) ASMAtomicXchgRCPtr(RTRCPTR volatile *ppvRC, RTRCPTR pvRC) { return (RTRCPTR)ASMAtomicXchgU32((uint32_t volatile *)(void *)ppvRC, (uint32_t)pvRC); } /** * Atomically Exchange a ring-0 pointer value, ordered. * * @returns Current *ppv value * @param ppvR0 Pointer to the pointer variable to update. * @param pvR0 The pointer value to assign to *ppv. */ DECLINLINE(RTR0PTR) ASMAtomicXchgR0Ptr(RTR0PTR volatile *ppvR0, RTR0PTR pvR0) { #if R0_ARCH_BITS == 32 return (RTR0PTR)ASMAtomicXchgU32((volatile uint32_t *)(void *)ppvR0, (uint32_t)pvR0); #elif R0_ARCH_BITS == 64 return (RTR0PTR)ASMAtomicXchgU64((volatile uint64_t *)(void *)ppvR0, (uint64_t)pvR0); #else # error "R0_ARCH_BITS is bogus" #endif } /** * Atomically Exchange a ring-3 pointer value, ordered. * * @returns Current *ppv value * @param ppvR3 Pointer to the pointer variable to update. * @param pvR3 The pointer value to assign to *ppv. */ DECLINLINE(RTR3PTR) ASMAtomicXchgR3Ptr(RTR3PTR volatile *ppvR3, RTR3PTR pvR3) { #if R3_ARCH_BITS == 32 return (RTR3PTR)ASMAtomicXchgU32((volatile uint32_t *)(void *)ppvR3, (uint32_t)pvR3); #elif R3_ARCH_BITS == 64 return (RTR3PTR)ASMAtomicXchgU64((volatile uint64_t *)(void *)ppvR3, (uint64_t)pvR3); #else # error "R3_ARCH_BITS is bogus" #endif } /** @def ASMAtomicXchgHandle * Atomically Exchange a typical IPRT handle value, ordered. * * @param ph Pointer to the value to update. * @param hNew The new value to assigned to *pu. * @param phRes Where to store the current *ph value. * * @remarks This doesn't currently work for all handles (like RTFILE). */ #if HC_ARCH_BITS == 32 # define ASMAtomicXchgHandle(ph, hNew, phRes) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint32_t)); \ AssertCompile(sizeof(*(phRes)) == sizeof(uint32_t)); \ *(uint32_t *)(phRes) = ASMAtomicXchgU32((uint32_t volatile *)(ph), (const uint32_t)(hNew)); \ } while (0) #elif HC_ARCH_BITS == 64 # define ASMAtomicXchgHandle(ph, hNew, phRes) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \ AssertCompile(sizeof(*(phRes)) == sizeof(uint64_t)); \ *(uint64_t *)(phRes) = ASMAtomicXchgU64((uint64_t volatile *)(ph), (const uint64_t)(hNew)); \ } while (0) #else # error HC_ARCH_BITS #endif /** * Atomically Exchange a value which size might differ * between platforms or compilers, ordered. * * @param pu Pointer to the variable to update. * @param uNew The value to assign to *pu. * @todo This is busted as its missing the result argument. */ #define ASMAtomicXchgSize(pu, uNew) \ do { \ switch (sizeof(*(pu))) { \ case 1: ASMAtomicXchgU8((volatile uint8_t *)(void *)(pu), (uint8_t)(uNew)); break; \ case 2: ASMAtomicXchgU16((volatile uint16_t *)(void *)(pu), (uint16_t)(uNew)); break; \ case 4: ASMAtomicXchgU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew)); break; \ case 8: ASMAtomicXchgU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew)); break; \ default: AssertMsgFailed(("ASMAtomicXchgSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Atomically Exchange a value which size might differ * between platforms or compilers, ordered. * * @param pu Pointer to the variable to update. * @param uNew The value to assign to *pu. * @param puRes Where to store the current *pu value. */ #define ASMAtomicXchgSizeCorrect(pu, uNew, puRes) \ do { \ switch (sizeof(*(pu))) { \ case 1: *(uint8_t *)(puRes) = ASMAtomicXchgU8((volatile uint8_t *)(void *)(pu), (uint8_t)(uNew)); break; \ case 2: *(uint16_t *)(puRes) = ASMAtomicXchgU16((volatile uint16_t *)(void *)(pu), (uint16_t)(uNew)); break; \ case 4: *(uint32_t *)(puRes) = ASMAtomicXchgU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew)); break; \ case 8: *(uint64_t *)(puRes) = ASMAtomicXchgU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew)); break; \ default: AssertMsgFailed(("ASMAtomicXchgSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Atomically Compare and Exchange an unsigned 8-bit value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pu8 Pointer to the value to update. * @param u8New The new value to assigned to *pu8. * @param u8Old The old value to *pu8 compare with. */ #if RT_INLINE_ASM_EXTERNAL || !RT_INLINE_ASM_GNU_STYLE DECLASM(bool) ASMAtomicCmpXchgU8(volatile uint8_t *pu8, const uint8_t u8New, const uint8_t u8Old); #else DECLINLINE(bool) ASMAtomicCmpXchgU8(volatile uint8_t *pu8, const uint8_t u8New, uint8_t u8Old) { uint8_t u8Ret; __asm__ __volatile__("lock; cmpxchgb %3, %0\n\t" "setz %1\n\t" : "=m" (*pu8), "=qm" (u8Ret), "=a" (u8Old) : "q" (u8New), "2" (u8Old), "m" (*pu8)); return (bool)u8Ret; } #endif /** * Atomically Compare and Exchange a signed 8-bit value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pi8 Pointer to the value to update. * @param i8New The new value to assigned to *pi8. * @param i8Old The old value to *pi8 compare with. */ DECLINLINE(bool) ASMAtomicCmpXchgS8(volatile int8_t *pi8, const int8_t i8New, const int8_t i8Old) { return ASMAtomicCmpXchgU8((volatile uint8_t *)pi8, (const uint8_t)i8New, (const uint8_t)i8Old); } /** * Atomically Compare and Exchange a bool value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pf Pointer to the value to update. * @param fNew The new value to assigned to *pf. * @param fOld The old value to *pf compare with. */ DECLINLINE(bool) ASMAtomicCmpXchgBool(volatile bool *pf, const bool fNew, const bool fOld) { return ASMAtomicCmpXchgU8((volatile uint8_t *)pf, (const uint8_t)fNew, (const uint8_t)fOld); } /** * Atomically Compare and Exchange an unsigned 32-bit value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pu32 Pointer to the value to update. * @param u32New The new value to assigned to *pu32. * @param u32Old The old value to *pu32 compare with. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMAtomicCmpXchgU32(volatile uint32_t *pu32, const uint32_t u32New, const uint32_t u32Old); #else DECLINLINE(bool) ASMAtomicCmpXchgU32(volatile uint32_t *pu32, const uint32_t u32New, uint32_t u32Old) { # if RT_INLINE_ASM_GNU_STYLE uint8_t u8Ret; __asm__ __volatile__("lock; cmpxchgl %3, %0\n\t" "setz %1\n\t" : "=m" (*pu32), "=qm" (u8Ret), "=a" (u32Old) : "r" (u32New), "2" (u32Old), "m" (*pu32)); return (bool)u8Ret; # elif RT_INLINE_ASM_USES_INTRIN return (uint32_t)_InterlockedCompareExchange((long *)pu32, u32New, u32Old) == u32Old; # else uint32_t u32Ret; __asm { # ifdef RT_ARCH_AMD64 mov rdx, [pu32] # else mov edx, [pu32] # endif mov eax, [u32Old] mov ecx, [u32New] # ifdef RT_ARCH_AMD64 lock cmpxchg [rdx], ecx # else lock cmpxchg [edx], ecx # endif setz al movzx eax, al mov [u32Ret], eax } return !!u32Ret; # endif } #endif /** * Atomically Compare and Exchange a signed 32-bit value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pi32 Pointer to the value to update. * @param i32New The new value to assigned to *pi32. * @param i32Old The old value to *pi32 compare with. */ DECLINLINE(bool) ASMAtomicCmpXchgS32(volatile int32_t *pi32, const int32_t i32New, const int32_t i32Old) { return ASMAtomicCmpXchgU32((volatile uint32_t *)pi32, (uint32_t)i32New, (uint32_t)i32Old); } /** * Atomically Compare and exchange an unsigned 64-bit value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pu64 Pointer to the 64-bit variable to update. * @param u64New The 64-bit value to assign to *pu64. * @param u64Old The value to compare with. */ #if (RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN) \ || RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC DECLASM(bool) ASMAtomicCmpXchgU64(volatile uint64_t *pu64, const uint64_t u64New, const uint64_t u64Old); #else DECLINLINE(bool) ASMAtomicCmpXchgU64(volatile uint64_t *pu64, uint64_t u64New, uint64_t u64Old) { # if RT_INLINE_ASM_USES_INTRIN return (uint64_t)_InterlockedCompareExchange64((__int64 *)pu64, u64New, u64Old) == u64Old; # elif defined(RT_ARCH_AMD64) # if RT_INLINE_ASM_GNU_STYLE uint8_t u8Ret; __asm__ __volatile__("lock; cmpxchgq %3, %0\n\t" "setz %1\n\t" : "=m" (*pu64), "=qm" (u8Ret), "=a" (u64Old) : "r" (u64New), "2" (u64Old), "m" (*pu64)); return (bool)u8Ret; # else bool fRet; __asm { mov rdx, [pu32] mov rax, [u64Old] mov rcx, [u64New] lock cmpxchg [rdx], rcx setz al mov [fRet], al } return fRet; # endif # else /* !RT_ARCH_AMD64 */ uint32_t u32Ret; # if RT_INLINE_ASM_GNU_STYLE # if defined(PIC) || defined(__PIC__) uint32_t u32EBX = (uint32_t)u64New; uint32_t u32Spill; __asm__ __volatile__("xchgl %%ebx, %4\n\t" "lock; cmpxchg8b (%6)\n\t" "setz %%al\n\t" "movl %4, %%ebx\n\t" "movzbl %%al, %%eax\n\t" : "=a" (u32Ret), "=d" (u32Spill), # if (__GNUC__ * 100 + __GNUC_MINOR__) >= 403 "+m" (*pu64) # else "=m" (*pu64) # endif : "A" (u64Old), "m" ( u32EBX ), "c" ( (uint32_t)(u64New >> 32) ), "S" (pu64)); # else /* !PIC */ uint32_t u32Spill; __asm__ __volatile__("lock; cmpxchg8b %2\n\t" "setz %%al\n\t" "movzbl %%al, %%eax\n\t" : "=a" (u32Ret), "=d" (u32Spill), "+m" (*pu64) : "A" (u64Old), "b" ( (uint32_t)u64New ), "c" ( (uint32_t)(u64New >> 32) )); # endif return (bool)u32Ret; # else __asm { mov ebx, dword ptr [u64New] mov ecx, dword ptr [u64New + 4] mov edi, [pu64] mov eax, dword ptr [u64Old] mov edx, dword ptr [u64Old + 4] lock cmpxchg8b [edi] setz al movzx eax, al mov dword ptr [u32Ret], eax } return !!u32Ret; # endif # endif /* !RT_ARCH_AMD64 */ } #endif /** * Atomically Compare and exchange a signed 64-bit value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pi64 Pointer to the 64-bit variable to update. * @param i64 The 64-bit value to assign to *pu64. * @param i64Old The value to compare with. */ DECLINLINE(bool) ASMAtomicCmpXchgS64(volatile int64_t *pi64, const int64_t i64, const int64_t i64Old) { return ASMAtomicCmpXchgU64((volatile uint64_t *)pi64, (uint64_t)i64, (uint64_t)i64Old); } /** * Atomically Compare and Exchange a pointer value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param ppv Pointer to the value to update. * @param pvNew The new value to assigned to *ppv. * @param pvOld The old value to *ppv compare with. */ DECLINLINE(bool) ASMAtomicCmpXchgPtrVoid(void * volatile *ppv, const void *pvNew, const void *pvOld) { #if ARCH_BITS == 32 return ASMAtomicCmpXchgU32((volatile uint32_t *)(void *)ppv, (uint32_t)pvNew, (uint32_t)pvOld); #elif ARCH_BITS == 64 return ASMAtomicCmpXchgU64((volatile uint64_t *)(void *)ppv, (uint64_t)pvNew, (uint64_t)pvOld); #else # error "ARCH_BITS is bogus" #endif } /** * Atomically Compare and Exchange a pointer value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param ppv Pointer to the value to update. * @param pvNew The new value to assigned to *ppv. * @param pvOld The old value to *ppv compare with. * * @remarks This is relatively type safe on GCC platforms. */ #ifdef __GNUC__ # define ASMAtomicCmpXchgPtr(ppv, pvNew, pvOld) \ __extension__ \ ({\ __typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \ __typeof__(*(ppv)) const pvNewTypeChecked = (pvNew); \ __typeof__(*(ppv)) const pvOldTypeChecked = (pvOld); \ bool fMacroRet = ASMAtomicCmpXchgPtrVoid((void * volatile *)ppvTypeChecked, \ (void *)pvNewTypeChecked, (void *)pvOldTypeChecked); \ fMacroRet; \ }) #else # define ASMAtomicCmpXchgPtr(ppv, pvNew, pvOld) \ ASMAtomicCmpXchgPtrVoid((void * volatile *)(ppv), (void *)(pvNew), (void *)(pvOld)) #endif /** @def ASMAtomicCmpXchgHandle * Atomically Compare and Exchange a typical IPRT handle value, ordered. * * @param ph Pointer to the value to update. * @param hNew The new value to assigned to *pu. * @param hOld The old value to *pu compare with. * @param fRc Where to store the result. * * @remarks This doesn't currently work for all handles (like RTFILE). */ #if HC_ARCH_BITS == 32 # define ASMAtomicCmpXchgHandle(ph, hNew, hOld, fRc) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint32_t)); \ (fRc) = ASMAtomicCmpXchgU32((uint32_t volatile *)(ph), (const uint32_t)(hNew), (const uint32_t)(hOld)); \ } while (0) #elif HC_ARCH_BITS == 64 # define ASMAtomicCmpXchgHandle(ph, hNew, hOld, fRc) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \ (fRc) = ASMAtomicCmpXchgU64((uint64_t volatile *)(ph), (const uint64_t)(hNew), (const uint64_t)(hOld)); \ } while (0) #else # error HC_ARCH_BITS #endif /** @def ASMAtomicCmpXchgSize * Atomically Compare and Exchange a value which size might differ * between platforms or compilers, ordered. * * @param pu Pointer to the value to update. * @param uNew The new value to assigned to *pu. * @param uOld The old value to *pu compare with. * @param fRc Where to store the result. */ #define ASMAtomicCmpXchgSize(pu, uNew, uOld, fRc) \ do { \ switch (sizeof(*(pu))) { \ case 4: (fRc) = ASMAtomicCmpXchgU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew), (uint32_t)(uOld)); \ break; \ case 8: (fRc) = ASMAtomicCmpXchgU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew), (uint64_t)(uOld)); \ break; \ default: AssertMsgFailed(("ASMAtomicCmpXchgSize: size %d is not supported\n", sizeof(*(pu)))); \ (fRc) = false; \ break; \ } \ } while (0) /** * Atomically Compare and Exchange an unsigned 32-bit value, additionally * passes back old value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pu32 Pointer to the value to update. * @param u32New The new value to assigned to *pu32. * @param u32Old The old value to *pu32 compare with. * @param pu32Old Pointer store the old value at. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMAtomicCmpXchgExU32(volatile uint32_t *pu32, const uint32_t u32New, const uint32_t u32Old, uint32_t *pu32Old); #else DECLINLINE(bool) ASMAtomicCmpXchgExU32(volatile uint32_t *pu32, const uint32_t u32New, const uint32_t u32Old, uint32_t *pu32Old) { # if RT_INLINE_ASM_GNU_STYLE uint8_t u8Ret; __asm__ __volatile__("lock; cmpxchgl %3, %0\n\t" "setz %1\n\t" : "=m" (*pu32), "=qm" (u8Ret), "=a" (*pu32Old) : "r" (u32New), "a" (u32Old), "m" (*pu32)); return (bool)u8Ret; # elif RT_INLINE_ASM_USES_INTRIN return (*pu32Old =_InterlockedCompareExchange((long *)pu32, u32New, u32Old)) == u32Old; # else uint32_t u32Ret; __asm { # ifdef RT_ARCH_AMD64 mov rdx, [pu32] # else mov edx, [pu32] # endif mov eax, [u32Old] mov ecx, [u32New] # ifdef RT_ARCH_AMD64 lock cmpxchg [rdx], ecx mov rdx, [pu32Old] mov [rdx], eax # else lock cmpxchg [edx], ecx mov edx, [pu32Old] mov [edx], eax # endif setz al movzx eax, al mov [u32Ret], eax } return !!u32Ret; # endif } #endif /** * Atomically Compare and Exchange a signed 32-bit value, additionally * passes back old value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pi32 Pointer to the value to update. * @param i32New The new value to assigned to *pi32. * @param i32Old The old value to *pi32 compare with. * @param pi32Old Pointer store the old value at. */ DECLINLINE(bool) ASMAtomicCmpXchgExS32(volatile int32_t *pi32, const int32_t i32New, const int32_t i32Old, int32_t *pi32Old) { return ASMAtomicCmpXchgExU32((volatile uint32_t *)pi32, (uint32_t)i32New, (uint32_t)i32Old, (uint32_t *)pi32Old); } /** * Atomically Compare and exchange an unsigned 64-bit value, additionally * passing back old value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pu64 Pointer to the 64-bit variable to update. * @param u64New The 64-bit value to assign to *pu64. * @param u64Old The value to compare with. * @param pu64Old Pointer store the old value at. */ #if (RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN) \ || RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC DECLASM(bool) ASMAtomicCmpXchgExU64(volatile uint64_t *pu64, const uint64_t u64New, const uint64_t u64Old, uint64_t *pu64Old); #else DECLINLINE(bool) ASMAtomicCmpXchgExU64(volatile uint64_t *pu64, const uint64_t u64New, const uint64_t u64Old, uint64_t *pu64Old) { # if RT_INLINE_ASM_USES_INTRIN return (*pu64Old =_InterlockedCompareExchange64((__int64 *)pu64, u64New, u64Old)) == u64Old; # elif defined(RT_ARCH_AMD64) # if RT_INLINE_ASM_GNU_STYLE uint8_t u8Ret; __asm__ __volatile__("lock; cmpxchgq %3, %0\n\t" "setz %1\n\t" : "=m" (*pu64), "=qm" (u8Ret), "=a" (*pu64Old) : "r" (u64New), "a" (u64Old), "m" (*pu64)); return (bool)u8Ret; # else bool fRet; __asm { mov rdx, [pu32] mov rax, [u64Old] mov rcx, [u64New] lock cmpxchg [rdx], rcx mov rdx, [pu64Old] mov [rdx], rax setz al mov [fRet], al } return fRet; # endif # else /* !RT_ARCH_AMD64 */ # if RT_INLINE_ASM_GNU_STYLE uint64_t u64Ret; # if defined(PIC) || defined(__PIC__) /* NB: this code uses a memory clobber description, because the clean * solution with an output value for *pu64 makes gcc run out of registers. * This will cause suboptimal code, and anyone with a better solution is * welcome to improve this. */ __asm__ __volatile__("xchgl %%ebx, %1\n\t" "lock; cmpxchg8b %3\n\t" "xchgl %%ebx, %1\n\t" : "=A" (u64Ret) : "DS" ((uint32_t)u64New), "c" ((uint32_t)(u64New >> 32)), "m" (*pu64), "0" (u64Old) : "memory" ); # else /* !PIC */ __asm__ __volatile__("lock; cmpxchg8b %4\n\t" : "=A" (u64Ret), "=m" (*pu64) : "b" ((uint32_t)u64New), "c" ((uint32_t)(u64New >> 32)), "m" (*pu64), "0" (u64Old)); # endif *pu64Old = u64Ret; return u64Ret == u64Old; # else uint32_t u32Ret; __asm { mov ebx, dword ptr [u64New] mov ecx, dword ptr [u64New + 4] mov edi, [pu64] mov eax, dword ptr [u64Old] mov edx, dword ptr [u64Old + 4] lock cmpxchg8b [edi] mov ebx, [pu64Old] mov [ebx], eax setz al movzx eax, al add ebx, 4 mov [ebx], edx mov dword ptr [u32Ret], eax } return !!u32Ret; # endif # endif /* !RT_ARCH_AMD64 */ } #endif /** * Atomically Compare and exchange a signed 64-bit value, additionally * passing back old value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param pi64 Pointer to the 64-bit variable to update. * @param i64 The 64-bit value to assign to *pu64. * @param i64Old The value to compare with. * @param pi64Old Pointer store the old value at. */ DECLINLINE(bool) ASMAtomicCmpXchgExS64(volatile int64_t *pi64, const int64_t i64, const int64_t i64Old, int64_t *pi64Old) { return ASMAtomicCmpXchgExU64((volatile uint64_t *)pi64, (uint64_t)i64, (uint64_t)i64Old, (uint64_t *)pi64Old); } /** @def ASMAtomicCmpXchgExHandle * Atomically Compare and Exchange a typical IPRT handle value, ordered. * * @param ph Pointer to the value to update. * @param hNew The new value to assigned to *pu. * @param hOld The old value to *pu compare with. * @param fRc Where to store the result. * @param phOldVal Pointer to where to store the old value. * * @remarks This doesn't currently work for all handles (like RTFILE). */ #if HC_ARCH_BITS == 32 # define ASMAtomicCmpXchgExHandle(ph, hNew, hOld, fRc, phOldVal) \ do { \ AssertCompile(sizeof(*ph) == sizeof(uint32_t)); \ AssertCompile(sizeof(*phOldVal) == sizeof(uint32_t)); \ (fRc) = ASMAtomicCmpXchgExU32((volatile uint32_t *)(pu), (uint32_t)(uNew), (uint32_t)(uOld), (uint32_t *)(puOldVal)); \ } while (0) #elif HC_ARCH_BITS == 64 # define ASMAtomicCmpXchgExHandle(ph, hNew, hOld, fRc, phOldVal) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \ AssertCompile(sizeof(*(phOldVal)) == sizeof(uint64_t)); \ (fRc) = ASMAtomicCmpXchgExU64((volatile uint64_t *)(pu), (uint64_t)(uNew), (uint64_t)(uOld), (uint64_t *)(puOldVal)); \ } while (0) #else # error HC_ARCH_BITS #endif /** @def ASMAtomicCmpXchgExSize * Atomically Compare and Exchange a value which size might differ * between platforms or compilers. Additionally passes back old value. * * @param pu Pointer to the value to update. * @param uNew The new value to assigned to *pu. * @param uOld The old value to *pu compare with. * @param fRc Where to store the result. * @param puOldVal Pointer to where to store the old value. */ #define ASMAtomicCmpXchgExSize(pu, uNew, uOld, fRc, puOldVal) \ do { \ switch (sizeof(*(pu))) { \ case 4: (fRc) = ASMAtomicCmpXchgExU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew), (uint32_t)(uOld), (uint32_t *)(uOldVal)); \ break; \ case 8: (fRc) = ASMAtomicCmpXchgExU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew), (uint64_t)(uOld), (uint64_t *)(uOldVal)); \ break; \ default: AssertMsgFailed(("ASMAtomicCmpXchgSize: size %d is not supported\n", sizeof(*(pu)))); \ (fRc) = false; \ (uOldVal) = 0; \ break; \ } \ } while (0) /** * Atomically Compare and Exchange a pointer value, additionally * passing back old value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param ppv Pointer to the value to update. * @param pvNew The new value to assigned to *ppv. * @param pvOld The old value to *ppv compare with. * @param ppvOld Pointer store the old value at. */ DECLINLINE(bool) ASMAtomicCmpXchgExPtrVoid(void * volatile *ppv, const void *pvNew, const void *pvOld, void **ppvOld) { #if ARCH_BITS == 32 return ASMAtomicCmpXchgExU32((volatile uint32_t *)(void *)ppv, (uint32_t)pvNew, (uint32_t)pvOld, (uint32_t *)ppvOld); #elif ARCH_BITS == 64 return ASMAtomicCmpXchgExU64((volatile uint64_t *)(void *)ppv, (uint64_t)pvNew, (uint64_t)pvOld, (uint64_t *)ppvOld); #else # error "ARCH_BITS is bogus" #endif } /** * Atomically Compare and Exchange a pointer value, additionally * passing back old value, ordered. * * @returns true if xchg was done. * @returns false if xchg wasn't done. * * @param ppv Pointer to the value to update. * @param pvNew The new value to assigned to *ppv. * @param pvOld The old value to *ppv compare with. * @param ppvOld Pointer store the old value at. * * @remarks This is relatively type safe on GCC platforms. */ #ifdef __GNUC__ # define ASMAtomicCmpXchgExPtr(ppv, pvNew, pvOld, ppvOld) \ __extension__ \ ({\ __typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \ __typeof__(*(ppv)) const pvNewTypeChecked = (pvNew); \ __typeof__(*(ppv)) const pvOldTypeChecked = (pvOld); \ __typeof__(*(ppv)) * const ppvOldTypeChecked = (ppvOld); \ bool fMacroRet = ASMAtomicCmpXchgExPtrVoid((void * volatile *)ppvTypeChecked, \ (void *)pvNewTypeChecked, (void *)pvOldTypeChecked, \ (void **)ppvOldTypeChecked); \ fMacroRet; \ }) #else # define ASMAtomicCmpXchgExPtr(ppv, pvNew, pvOld, ppvOld) \ ASMAtomicCmpXchgExPtrVoid((void * volatile *)(ppv), (void *)(pvNew), (void *)(pvOld), (void **)(ppvOld)) #endif /** * Serialize Instruction. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMSerializeInstruction(void); #else DECLINLINE(void) ASMSerializeInstruction(void) { # if RT_INLINE_ASM_GNU_STYLE RTCCUINTREG xAX = 0; # ifdef RT_ARCH_AMD64 __asm__ ("cpuid" : "=a" (xAX) : "0" (xAX) : "rbx", "rcx", "rdx"); # elif (defined(PIC) || defined(__PIC__)) && defined(__i386__) __asm__ ("push %%ebx\n\t" "cpuid\n\t" "pop %%ebx\n\t" : "=a" (xAX) : "0" (xAX) : "ecx", "edx"); # else __asm__ ("cpuid" : "=a" (xAX) : "0" (xAX) : "ebx", "ecx", "edx"); # endif # elif RT_INLINE_ASM_USES_INTRIN int aInfo[4]; __cpuid(aInfo, 0); # else __asm { push ebx xor eax, eax cpuid pop ebx } # endif } #endif /** * Memory fence, waits for any pending writes and reads to complete. */ DECLINLINE(void) ASMMemoryFence(void) { /** @todo use mfence? check if all cpus we care for support it. */ uint32_t volatile u32; ASMAtomicXchgU32(&u32, 0); } /** * Write fence, waits for any pending writes to complete. */ DECLINLINE(void) ASMWriteFence(void) { /** @todo use sfence? check if all cpus we care for support it. */ ASMMemoryFence(); } /** * Read fence, waits for any pending reads to complete. */ DECLINLINE(void) ASMReadFence(void) { /** @todo use lfence? check if all cpus we care for support it. */ ASMMemoryFence(); } /** * Atomically reads an unsigned 8-bit value, ordered. * * @returns Current *pu8 value * @param pu8 Pointer to the 8-bit variable to read. */ DECLINLINE(uint8_t) ASMAtomicReadU8(volatile uint8_t *pu8) { ASMMemoryFence(); return *pu8; /* byte reads are atomic on x86 */ } /** * Atomically reads an unsigned 8-bit value, unordered. * * @returns Current *pu8 value * @param pu8 Pointer to the 8-bit variable to read. */ DECLINLINE(uint8_t) ASMAtomicUoReadU8(volatile uint8_t *pu8) { return *pu8; /* byte reads are atomic on x86 */ } /** * Atomically reads a signed 8-bit value, ordered. * * @returns Current *pi8 value * @param pi8 Pointer to the 8-bit variable to read. */ DECLINLINE(int8_t) ASMAtomicReadS8(volatile int8_t *pi8) { ASMMemoryFence(); return *pi8; /* byte reads are atomic on x86 */ } /** * Atomically reads a signed 8-bit value, unordered. * * @returns Current *pi8 value * @param pi8 Pointer to the 8-bit variable to read. */ DECLINLINE(int8_t) ASMAtomicUoReadS8(volatile int8_t *pi8) { return *pi8; /* byte reads are atomic on x86 */ } /** * Atomically reads an unsigned 16-bit value, ordered. * * @returns Current *pu16 value * @param pu16 Pointer to the 16-bit variable to read. */ DECLINLINE(uint16_t) ASMAtomicReadU16(volatile uint16_t *pu16) { ASMMemoryFence(); Assert(!((uintptr_t)pu16 & 1)); return *pu16; } /** * Atomically reads an unsigned 16-bit value, unordered. * * @returns Current *pu16 value * @param pu16 Pointer to the 16-bit variable to read. */ DECLINLINE(uint16_t) ASMAtomicUoReadU16(volatile uint16_t *pu16) { Assert(!((uintptr_t)pu16 & 1)); return *pu16; } /** * Atomically reads a signed 16-bit value, ordered. * * @returns Current *pi16 value * @param pi16 Pointer to the 16-bit variable to read. */ DECLINLINE(int16_t) ASMAtomicReadS16(volatile int16_t *pi16) { ASMMemoryFence(); Assert(!((uintptr_t)pi16 & 1)); return *pi16; } /** * Atomically reads a signed 16-bit value, unordered. * * @returns Current *pi16 value * @param pi16 Pointer to the 16-bit variable to read. */ DECLINLINE(int16_t) ASMAtomicUoReadS16(volatile int16_t *pi16) { Assert(!((uintptr_t)pi16 & 1)); return *pi16; } /** * Atomically reads an unsigned 32-bit value, ordered. * * @returns Current *pu32 value * @param pu32 Pointer to the 32-bit variable to read. */ DECLINLINE(uint32_t) ASMAtomicReadU32(volatile uint32_t *pu32) { ASMMemoryFence(); Assert(!((uintptr_t)pu32 & 3)); return *pu32; } /** * Atomically reads an unsigned 32-bit value, unordered. * * @returns Current *pu32 value * @param pu32 Pointer to the 32-bit variable to read. */ DECLINLINE(uint32_t) ASMAtomicUoReadU32(volatile uint32_t *pu32) { Assert(!((uintptr_t)pu32 & 3)); return *pu32; } /** * Atomically reads a signed 32-bit value, ordered. * * @returns Current *pi32 value * @param pi32 Pointer to the 32-bit variable to read. */ DECLINLINE(int32_t) ASMAtomicReadS32(volatile int32_t *pi32) { ASMMemoryFence(); Assert(!((uintptr_t)pi32 & 3)); return *pi32; } /** * Atomically reads a signed 32-bit value, unordered. * * @returns Current *pi32 value * @param pi32 Pointer to the 32-bit variable to read. */ DECLINLINE(int32_t) ASMAtomicUoReadS32(volatile int32_t *pi32) { Assert(!((uintptr_t)pi32 & 3)); return *pi32; } /** * Atomically reads an unsigned 64-bit value, ordered. * * @returns Current *pu64 value * @param pu64 Pointer to the 64-bit variable to read. * The memory pointed to must be writable. * @remark This will fault if the memory is read-only! */ #if (RT_INLINE_ASM_EXTERNAL && !defined(RT_ARCH_AMD64)) \ || RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC DECLASM(uint64_t) ASMAtomicReadU64(volatile uint64_t *pu64); #else DECLINLINE(uint64_t) ASMAtomicReadU64(volatile uint64_t *pu64) { uint64_t u64; # ifdef RT_ARCH_AMD64 Assert(!((uintptr_t)pu64 & 7)); /*# if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__( "mfence\n\t" "movq %1, %0\n\t" : "=r" (u64) : "m" (*pu64)); # else __asm { mfence mov rdx, [pu64] mov rax, [rdx] mov [u64], rax } # endif*/ ASMMemoryFence(); u64 = *pu64; # else /* !RT_ARCH_AMD64 */ # if RT_INLINE_ASM_GNU_STYLE # if defined(PIC) || defined(__PIC__) uint32_t u32EBX = 0; Assert(!((uintptr_t)pu64 & 7)); __asm__ __volatile__("xchgl %%ebx, %3\n\t" "lock; cmpxchg8b (%5)\n\t" "movl %3, %%ebx\n\t" : "=A" (u64), # if (__GNUC__ * 100 + __GNUC_MINOR__) >= 403 "+m" (*pu64) # else "=m" (*pu64) # endif : "0" (0ULL), "m" (u32EBX), "c" (0), "S" (pu64)); # else /* !PIC */ __asm__ __volatile__("lock; cmpxchg8b %1\n\t" : "=A" (u64), "+m" (*pu64) : "0" (0ULL), "b" (0), "c" (0)); # endif # else Assert(!((uintptr_t)pu64 & 7)); __asm { xor eax, eax xor edx, edx mov edi, pu64 xor ecx, ecx xor ebx, ebx lock cmpxchg8b [edi] mov dword ptr [u64], eax mov dword ptr [u64 + 4], edx } # endif # endif /* !RT_ARCH_AMD64 */ return u64; } #endif /** * Atomically reads an unsigned 64-bit value, unordered. * * @returns Current *pu64 value * @param pu64 Pointer to the 64-bit variable to read. * The memory pointed to must be writable. * @remark This will fault if the memory is read-only! */ #if (RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN) \ || RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC DECLASM(uint64_t) ASMAtomicUoReadU64(volatile uint64_t *pu64); #else DECLINLINE(uint64_t) ASMAtomicUoReadU64(volatile uint64_t *pu64) { uint64_t u64; # ifdef RT_ARCH_AMD64 Assert(!((uintptr_t)pu64 & 7)); /*# if RT_INLINE_ASM_GNU_STYLE Assert(!((uintptr_t)pu64 & 7)); __asm__ __volatile__("movq %1, %0\n\t" : "=r" (u64) : "m" (*pu64)); # else __asm { mov rdx, [pu64] mov rax, [rdx] mov [u64], rax } # endif */ u64 = *pu64; # else /* !RT_ARCH_AMD64 */ # if RT_INLINE_ASM_GNU_STYLE # if defined(PIC) || defined(__PIC__) uint32_t u32EBX = 0; uint32_t u32Spill; Assert(!((uintptr_t)pu64 & 7)); __asm__ __volatile__("xor %%eax,%%eax\n\t" "xor %%ecx,%%ecx\n\t" "xor %%edx,%%edx\n\t" "xchgl %%ebx, %3\n\t" "lock; cmpxchg8b (%4)\n\t" "movl %3, %%ebx\n\t" : "=A" (u64), # if (__GNUC__ * 100 + __GNUC_MINOR__) >= 403 "+m" (*pu64), # else "=m" (*pu64), # endif "=c" (u32Spill) : "m" (u32EBX), "S" (pu64)); # else /* !PIC */ __asm__ __volatile__("lock; cmpxchg8b %1\n\t" : "=A" (u64), "+m" (*pu64) : "0" (0ULL), "b" (0), "c" (0)); # endif # else Assert(!((uintptr_t)pu64 & 7)); __asm { xor eax, eax xor edx, edx mov edi, pu64 xor ecx, ecx xor ebx, ebx lock cmpxchg8b [edi] mov dword ptr [u64], eax mov dword ptr [u64 + 4], edx } # endif # endif /* !RT_ARCH_AMD64 */ return u64; } #endif /** * Atomically reads a signed 64-bit value, ordered. * * @returns Current *pi64 value * @param pi64 Pointer to the 64-bit variable to read. * The memory pointed to must be writable. * @remark This will fault if the memory is read-only! */ DECLINLINE(int64_t) ASMAtomicReadS64(volatile int64_t *pi64) { return (int64_t)ASMAtomicReadU64((volatile uint64_t *)pi64); } /** * Atomically reads a signed 64-bit value, unordered. * * @returns Current *pi64 value * @param pi64 Pointer to the 64-bit variable to read. * The memory pointed to must be writable. * @remark This will fault if the memory is read-only! */ DECLINLINE(int64_t) ASMAtomicUoReadS64(volatile int64_t *pi64) { return (int64_t)ASMAtomicUoReadU64((volatile uint64_t *)pi64); } /** * Atomically reads a size_t value, ordered. * * @returns Current *pcb value * @param pcb Pointer to the size_t variable to read. */ DECLINLINE(size_t) ASMAtomicReadZ(size_t volatile *pcb) { #if ARCH_BITS == 64 return ASMAtomicReadU64((uint64_t volatile *)pcb); #elif ARCH_BITS == 32 return ASMAtomicReadU32((uint32_t volatile *)pcb); #else # error "Unsupported ARCH_BITS value" #endif } /** * Atomically reads a size_t value, unordered. * * @returns Current *pcb value * @param pcb Pointer to the size_t variable to read. */ DECLINLINE(size_t) ASMAtomicUoReadZ(size_t volatile *pcb) { #if ARCH_BITS == 64 return ASMAtomicUoReadU64((uint64_t volatile *)pcb); #elif ARCH_BITS == 32 return ASMAtomicUoReadU32((uint32_t volatile *)pcb); #else # error "Unsupported ARCH_BITS value" #endif } /** * Atomically reads a pointer value, ordered. * * @returns Current *pv value * @param ppv Pointer to the pointer variable to read. * * @remarks Please use ASMAtomicReadPtrT, it provides better type safety and * requires less typing (no casts). */ DECLINLINE(void *) ASMAtomicReadPtr(void * volatile *ppv) { #if ARCH_BITS == 32 return (void *)ASMAtomicReadU32((volatile uint32_t *)(void *)ppv); #elif ARCH_BITS == 64 return (void *)ASMAtomicReadU64((volatile uint64_t *)(void *)ppv); #else # error "ARCH_BITS is bogus" #endif } /** * Convenience macro for avoiding the annoying casting with ASMAtomicReadPtr. * * @returns Current *pv value * @param ppv Pointer to the pointer variable to read. * @param Type The type of *ppv, sans volatile. */ #ifdef __GNUC__ # define ASMAtomicReadPtrT(ppv, Type) \ __extension__ \ ({\ __typeof__(*(ppv)) volatile *ppvTypeChecked = (ppv); \ Type pvTypeChecked = (__typeof__(*(ppv))) ASMAtomicReadPtr((void * volatile *)ppvTypeChecked); \ pvTypeChecked; \ }) #else # define ASMAtomicReadPtrT(ppv, Type) \ (Type)ASMAtomicReadPtr((void * volatile *)(ppv)) #endif /** * Atomically reads a pointer value, unordered. * * @returns Current *pv value * @param ppv Pointer to the pointer variable to read. * * @remarks Please use ASMAtomicUoReadPtrT, it provides better type safety and * requires less typing (no casts). */ DECLINLINE(void *) ASMAtomicUoReadPtr(void * volatile *ppv) { #if ARCH_BITS == 32 return (void *)ASMAtomicUoReadU32((volatile uint32_t *)(void *)ppv); #elif ARCH_BITS == 64 return (void *)ASMAtomicUoReadU64((volatile uint64_t *)(void *)ppv); #else # error "ARCH_BITS is bogus" #endif } /** * Convenience macro for avoiding the annoying casting with ASMAtomicUoReadPtr. * * @returns Current *pv value * @param ppv Pointer to the pointer variable to read. * @param Type The type of *ppv, sans volatile. */ #ifdef __GNUC__ # define ASMAtomicUoReadPtrT(ppv, Type) \ __extension__ \ ({\ __typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \ Type pvTypeChecked = (__typeof__(*(ppv))) ASMAtomicUoReadPtr((void * volatile *)ppvTypeChecked); \ pvTypeChecked; \ }) #else # define ASMAtomicUoReadPtrT(ppv, Type) \ (Type)ASMAtomicUoReadPtr((void * volatile *)(ppv)) #endif /** * Atomically reads a boolean value, ordered. * * @returns Current *pf value * @param pf Pointer to the boolean variable to read. */ DECLINLINE(bool) ASMAtomicReadBool(volatile bool *pf) { ASMMemoryFence(); return *pf; /* byte reads are atomic on x86 */ } /** * Atomically reads a boolean value, unordered. * * @returns Current *pf value * @param pf Pointer to the boolean variable to read. */ DECLINLINE(bool) ASMAtomicUoReadBool(volatile bool *pf) { return *pf; /* byte reads are atomic on x86 */ } /** * Atomically read a typical IPRT handle value, ordered. * * @param ph Pointer to the handle variable to read. * @param phRes Where to store the result. * * @remarks This doesn't currently work for all handles (like RTFILE). */ #if HC_ARCH_BITS == 32 # define ASMAtomicReadHandle(ph, phRes) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint32_t)); \ AssertCompile(sizeof(*(phRes)) == sizeof(uint32_t)); \ *(uint32_t *)(phRes) = ASMAtomicReadU32((uint32_t volatile *)(ph)); \ } while (0) #elif HC_ARCH_BITS == 64 # define ASMAtomicReadHandle(ph, phRes) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \ AssertCompile(sizeof(*(phRes)) == sizeof(uint64_t)); \ *(uint64_t *)(phRes) = ASMAtomicReadU64((uint64_t volatile *)(ph)); \ } while (0) #else # error HC_ARCH_BITS #endif /** * Atomically read a typical IPRT handle value, unordered. * * @param ph Pointer to the handle variable to read. * @param phRes Where to store the result. * * @remarks This doesn't currently work for all handles (like RTFILE). */ #if HC_ARCH_BITS == 32 # define ASMAtomicUoReadHandle(ph, phRes) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint32_t)); \ AssertCompile(sizeof(*(phRes)) == sizeof(uint32_t)); \ *(uint32_t *)(phRes) = ASMAtomicUoReadU32((uint32_t volatile *)(ph)); \ } while (0) #elif HC_ARCH_BITS == 64 # define ASMAtomicUoReadHandle(ph, phRes) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \ AssertCompile(sizeof(*(phRes)) == sizeof(uint64_t)); \ *(uint64_t *)(phRes) = ASMAtomicUoReadU64((uint64_t volatile *)(ph)); \ } while (0) #else # error HC_ARCH_BITS #endif /** * Atomically read a value which size might differ * between platforms or compilers, ordered. * * @param pu Pointer to the variable to read. * @param puRes Where to store the result. */ #define ASMAtomicReadSize(pu, puRes) \ do { \ switch (sizeof(*(pu))) { \ case 1: *(uint8_t *)(puRes) = ASMAtomicReadU8( (volatile uint8_t *)(void *)(pu)); break; \ case 2: *(uint16_t *)(puRes) = ASMAtomicReadU16((volatile uint16_t *)(void *)(pu)); break; \ case 4: *(uint32_t *)(puRes) = ASMAtomicReadU32((volatile uint32_t *)(void *)(pu)); break; \ case 8: *(uint64_t *)(puRes) = ASMAtomicReadU64((volatile uint64_t *)(void *)(pu)); break; \ default: AssertMsgFailed(("ASMAtomicReadSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Atomically read a value which size might differ * between platforms or compilers, unordered. * * @param pu Pointer to the variable to read. * @param puRes Where to store the result. */ #define ASMAtomicUoReadSize(pu, puRes) \ do { \ switch (sizeof(*(pu))) { \ case 1: *(uint8_t *)(puRes) = ASMAtomicUoReadU8( (volatile uint8_t *)(void *)(pu)); break; \ case 2: *(uint16_t *)(puRes) = ASMAtomicUoReadU16((volatile uint16_t *)(void *)(pu)); break; \ case 4: *(uint32_t *)(puRes) = ASMAtomicUoReadU32((volatile uint32_t *)(void *)(pu)); break; \ case 8: *(uint64_t *)(puRes) = ASMAtomicUoReadU64((volatile uint64_t *)(void *)(pu)); break; \ default: AssertMsgFailed(("ASMAtomicReadSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Atomically writes an unsigned 8-bit value, ordered. * * @param pu8 Pointer to the 8-bit variable. * @param u8 The 8-bit value to assign to *pu8. */ DECLINLINE(void) ASMAtomicWriteU8(volatile uint8_t *pu8, uint8_t u8) { ASMAtomicXchgU8(pu8, u8); } /** * Atomically writes an unsigned 8-bit value, unordered. * * @param pu8 Pointer to the 8-bit variable. * @param u8 The 8-bit value to assign to *pu8. */ DECLINLINE(void) ASMAtomicUoWriteU8(volatile uint8_t *pu8, uint8_t u8) { *pu8 = u8; /* byte writes are atomic on x86 */ } /** * Atomically writes a signed 8-bit value, ordered. * * @param pi8 Pointer to the 8-bit variable to read. * @param i8 The 8-bit value to assign to *pi8. */ DECLINLINE(void) ASMAtomicWriteS8(volatile int8_t *pi8, int8_t i8) { ASMAtomicXchgS8(pi8, i8); } /** * Atomically writes a signed 8-bit value, unordered. * * @param pi8 Pointer to the 8-bit variable to write. * @param i8 The 8-bit value to assign to *pi8. */ DECLINLINE(void) ASMAtomicUoWriteS8(volatile int8_t *pi8, int8_t i8) { *pi8 = i8; /* byte writes are atomic on x86 */ } /** * Atomically writes an unsigned 16-bit value, ordered. * * @param pu16 Pointer to the 16-bit variable to write. * @param u16 The 16-bit value to assign to *pu16. */ DECLINLINE(void) ASMAtomicWriteU16(volatile uint16_t *pu16, uint16_t u16) { ASMAtomicXchgU16(pu16, u16); } /** * Atomically writes an unsigned 16-bit value, unordered. * * @param pu16 Pointer to the 16-bit variable to write. * @param u16 The 16-bit value to assign to *pu16. */ DECLINLINE(void) ASMAtomicUoWriteU16(volatile uint16_t *pu16, uint16_t u16) { Assert(!((uintptr_t)pu16 & 1)); *pu16 = u16; } /** * Atomically writes a signed 16-bit value, ordered. * * @param pi16 Pointer to the 16-bit variable to write. * @param i16 The 16-bit value to assign to *pi16. */ DECLINLINE(void) ASMAtomicWriteS16(volatile int16_t *pi16, int16_t i16) { ASMAtomicXchgS16(pi16, i16); } /** * Atomically writes a signed 16-bit value, unordered. * * @param pi16 Pointer to the 16-bit variable to write. * @param i16 The 16-bit value to assign to *pi16. */ DECLINLINE(void) ASMAtomicUoWriteS16(volatile int16_t *pi16, int16_t i16) { Assert(!((uintptr_t)pi16 & 1)); *pi16 = i16; } /** * Atomically writes an unsigned 32-bit value, ordered. * * @param pu32 Pointer to the 32-bit variable to write. * @param u32 The 32-bit value to assign to *pu32. */ DECLINLINE(void) ASMAtomicWriteU32(volatile uint32_t *pu32, uint32_t u32) { ASMAtomicXchgU32(pu32, u32); } /** * Atomically writes an unsigned 32-bit value, unordered. * * @param pu32 Pointer to the 32-bit variable to write. * @param u32 The 32-bit value to assign to *pu32. */ DECLINLINE(void) ASMAtomicUoWriteU32(volatile uint32_t *pu32, uint32_t u32) { Assert(!((uintptr_t)pu32 & 3)); *pu32 = u32; } /** * Atomically writes a signed 32-bit value, ordered. * * @param pi32 Pointer to the 32-bit variable to write. * @param i32 The 32-bit value to assign to *pi32. */ DECLINLINE(void) ASMAtomicWriteS32(volatile int32_t *pi32, int32_t i32) { ASMAtomicXchgS32(pi32, i32); } /** * Atomically writes a signed 32-bit value, unordered. * * @param pi32 Pointer to the 32-bit variable to write. * @param i32 The 32-bit value to assign to *pi32. */ DECLINLINE(void) ASMAtomicUoWriteS32(volatile int32_t *pi32, int32_t i32) { Assert(!((uintptr_t)pi32 & 3)); *pi32 = i32; } /** * Atomically writes an unsigned 64-bit value, ordered. * * @param pu64 Pointer to the 64-bit variable to write. * @param u64 The 64-bit value to assign to *pu64. */ DECLINLINE(void) ASMAtomicWriteU64(volatile uint64_t *pu64, uint64_t u64) { ASMAtomicXchgU64(pu64, u64); } /** * Atomically writes an unsigned 64-bit value, unordered. * * @param pu64 Pointer to the 64-bit variable to write. * @param u64 The 64-bit value to assign to *pu64. */ DECLINLINE(void) ASMAtomicUoWriteU64(volatile uint64_t *pu64, uint64_t u64) { Assert(!((uintptr_t)pu64 & 7)); #if ARCH_BITS == 64 *pu64 = u64; #else ASMAtomicXchgU64(pu64, u64); #endif } /** * Atomically writes a signed 64-bit value, ordered. * * @param pi64 Pointer to the 64-bit variable to write. * @param i64 The 64-bit value to assign to *pi64. */ DECLINLINE(void) ASMAtomicWriteS64(volatile int64_t *pi64, int64_t i64) { ASMAtomicXchgS64(pi64, i64); } /** * Atomically writes a signed 64-bit value, unordered. * * @param pi64 Pointer to the 64-bit variable to write. * @param i64 The 64-bit value to assign to *pi64. */ DECLINLINE(void) ASMAtomicUoWriteS64(volatile int64_t *pi64, int64_t i64) { Assert(!((uintptr_t)pi64 & 7)); #if ARCH_BITS == 64 *pi64 = i64; #else ASMAtomicXchgS64(pi64, i64); #endif } /** * Atomically writes a boolean value, unordered. * * @param pf Pointer to the boolean variable to write. * @param f The boolean value to assign to *pf. */ DECLINLINE(void) ASMAtomicWriteBool(volatile bool *pf, bool f) { ASMAtomicWriteU8((uint8_t volatile *)pf, f); } /** * Atomically writes a boolean value, unordered. * * @param pf Pointer to the boolean variable to write. * @param f The boolean value to assign to *pf. */ DECLINLINE(void) ASMAtomicUoWriteBool(volatile bool *pf, bool f) { *pf = f; /* byte writes are atomic on x86 */ } /** * Atomically writes a pointer value, ordered. * * @param ppv Pointer to the pointer variable to write. * @param pv The pointer value to assign to *ppv. */ DECLINLINE(void) ASMAtomicWritePtrVoid(void * volatile *ppv, const void *pv) { #if ARCH_BITS == 32 ASMAtomicWriteU32((volatile uint32_t *)(void *)ppv, (uint32_t)pv); #elif ARCH_BITS == 64 ASMAtomicWriteU64((volatile uint64_t *)(void *)ppv, (uint64_t)pv); #else # error "ARCH_BITS is bogus" #endif } /** * Atomically writes a pointer value, ordered. * * @param ppv Pointer to the pointer variable to write. * @param pv The pointer value to assign to *ppv. If NULL use * ASMAtomicWriteNullPtr or you'll land in trouble. * * @remarks This is relatively type safe on GCC platforms when @a pv isn't * NULL. */ #ifdef __GNUC__ # define ASMAtomicWritePtr(ppv, pv) \ do \ { \ __typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \ __typeof__(*(ppv)) const pvTypeChecked = (pv); \ \ AssertCompile(sizeof(*ppv) == sizeof(void *)); \ AssertCompile(sizeof(pv) == sizeof(void *)); \ Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \ \ ASMAtomicWritePtrVoid((void * volatile *)(ppvTypeChecked), (void *)(pvTypeChecked)); \ } while (0) #else # define ASMAtomicWritePtr(ppv, pv) \ do \ { \ AssertCompile(sizeof(*ppv) == sizeof(void *)); \ AssertCompile(sizeof(pv) == sizeof(void *)); \ Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \ \ ASMAtomicWritePtrVoid((void * volatile *)(ppv), (void *)(pv)); \ } while (0) #endif /** * Atomically sets a pointer to NULL, ordered. * * @param ppv Pointer to the pointer variable that should be set to NULL. * * @remarks This is relatively type safe on GCC platforms. */ #ifdef __GNUC__ # define ASMAtomicWriteNullPtr(ppv) \ do \ { \ __typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \ AssertCompile(sizeof(*ppv) == sizeof(void *)); \ Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \ ASMAtomicWritePtrVoid((void * volatile *)(ppvTypeChecked), NULL); \ } while (0) #else # define ASMAtomicWriteNullPtr(ppv) \ do \ { \ AssertCompile(sizeof(*ppv) == sizeof(void *)); \ Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \ ASMAtomicWritePtrVoid((void * volatile *)(ppv), NULL); \ } while (0) #endif /** * Atomically writes a pointer value, unordered. * * @returns Current *pv value * @param ppv Pointer to the pointer variable. * @param pv The pointer value to assign to *ppv. If NULL use * ASMAtomicUoWriteNullPtr or you'll land in trouble. * * @remarks This is relatively type safe on GCC platforms when @a pv isn't * NULL. */ #ifdef __GNUC__ # define ASMAtomicUoWritePtr(ppv, pv) \ do \ { \ __typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \ __typeof__(*(ppv)) const pvTypeChecked = (pv); \ \ AssertCompile(sizeof(*ppv) == sizeof(void *)); \ AssertCompile(sizeof(pv) == sizeof(void *)); \ Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \ \ *(ppvTypeChecked) = pvTypeChecked; \ } while (0) #else # define ASMAtomicUoWritePtr(ppv, pv) \ do \ { \ AssertCompile(sizeof(*ppv) == sizeof(void *)); \ AssertCompile(sizeof(pv) == sizeof(void *)); \ Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \ *(ppv) = pv; \ } while (0) #endif /** * Atomically sets a pointer to NULL, unordered. * * @param ppv Pointer to the pointer variable that should be set to NULL. * * @remarks This is relatively type safe on GCC platforms. */ #ifdef __GNUC__ # define ASMAtomicUoWriteNullPtr(ppv) \ do \ { \ __typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \ AssertCompile(sizeof(*ppv) == sizeof(void *)); \ Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \ *(ppvTypeChecked) = NULL; \ } while (0) #else # define ASMAtomicUoWriteNullPtr(ppv) \ do \ { \ AssertCompile(sizeof(*ppv) == sizeof(void *)); \ Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \ *(ppv) = NULL; \ } while (0) #endif /** * Atomically write a typical IPRT handle value, ordered. * * @param ph Pointer to the variable to update. * @param hNew The value to assign to *ph. * * @remarks This doesn't currently work for all handles (like RTFILE). */ #if HC_ARCH_BITS == 32 # define ASMAtomicWriteHandle(ph, hNew) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint32_t)); \ ASMAtomicWriteU32((uint32_t volatile *)(ph), (const uint32_t)(hNew)); \ } while (0) #elif HC_ARCH_BITS == 64 # define ASMAtomicWriteHandle(ph, hNew) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \ ASMAtomicWriteU64((uint64_t volatile *)(ph), (const uint64_t)(hNew)); \ } while (0) #else # error HC_ARCH_BITS #endif /** * Atomically write a typical IPRT handle value, unordered. * * @param ph Pointer to the variable to update. * @param hNew The value to assign to *ph. * * @remarks This doesn't currently work for all handles (like RTFILE). */ #if HC_ARCH_BITS == 32 # define ASMAtomicUoWriteHandle(ph, hNew) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint32_t)); \ ASMAtomicUoWriteU32((uint32_t volatile *)(ph), (const uint32_t)hNew); \ } while (0) #elif HC_ARCH_BITS == 64 # define ASMAtomicUoWriteHandle(ph, hNew) \ do { \ AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \ ASMAtomicUoWriteU64((uint64_t volatile *)(ph), (const uint64_t)hNew); \ } while (0) #else # error HC_ARCH_BITS #endif /** * Atomically write a value which size might differ * between platforms or compilers, ordered. * * @param pu Pointer to the variable to update. * @param uNew The value to assign to *pu. */ #define ASMAtomicWriteSize(pu, uNew) \ do { \ switch (sizeof(*(pu))) { \ case 1: ASMAtomicWriteU8( (volatile uint8_t *)(void *)(pu), (uint8_t )(uNew)); break; \ case 2: ASMAtomicWriteU16((volatile uint16_t *)(void *)(pu), (uint16_t)(uNew)); break; \ case 4: ASMAtomicWriteU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew)); break; \ case 8: ASMAtomicWriteU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew)); break; \ default: AssertMsgFailed(("ASMAtomicWriteSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Atomically write a value which size might differ * between platforms or compilers, unordered. * * @param pu Pointer to the variable to update. * @param uNew The value to assign to *pu. */ #define ASMAtomicUoWriteSize(pu, uNew) \ do { \ switch (sizeof(*(pu))) { \ case 1: ASMAtomicUoWriteU8( (volatile uint8_t *)(void *)(pu), (uint8_t )(uNew)); break; \ case 2: ASMAtomicUoWriteU16((volatile uint16_t *)(void *)(pu), (uint16_t)(uNew)); break; \ case 4: ASMAtomicUoWriteU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew)); break; \ case 8: ASMAtomicUoWriteU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew)); break; \ default: AssertMsgFailed(("ASMAtomicWriteSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Atomically exchanges and adds to a 32-bit value, ordered. * * @returns The old value. * @param pu32 Pointer to the value. * @param u32 Number to add. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMAtomicAddU32(uint32_t volatile *pu32, uint32_t u32); #else DECLINLINE(uint32_t) ASMAtomicAddU32(uint32_t volatile *pu32, uint32_t u32) { # if RT_INLINE_ASM_USES_INTRIN u32 = _InterlockedExchangeAdd((long *)pu32, u32); return u32; # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; xaddl %0, %1\n\t" : "=r" (u32), "=m" (*pu32) : "0" (u32), "m" (*pu32) : "memory"); return u32; # else __asm { mov eax, [u32] # ifdef RT_ARCH_AMD64 mov rdx, [pu32] lock xadd [rdx], eax # else mov edx, [pu32] lock xadd [edx], eax # endif mov [u32], eax } return u32; # endif } #endif /** * Atomically exchanges and adds to a signed 32-bit value, ordered. * * @returns The old value. * @param pi32 Pointer to the value. * @param i32 Number to add. */ DECLINLINE(int32_t) ASMAtomicAddS32(int32_t volatile *pi32, int32_t i32) { return (int32_t)ASMAtomicAddU32((uint32_t volatile *)pi32, (uint32_t)i32); } /** * Atomically exchanges and adds to a 64-bit value, ordered. * * @returns The old value. * @param pu64 Pointer to the value. * @param u64 Number to add. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint64_t) ASMAtomicAddU64(uint64_t volatile *pu64, uint64_t u64); #else DECLINLINE(uint64_t) ASMAtomicAddU64(uint64_t volatile *pu64, uint64_t u64) { # if RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_AMD64) u64 = _InterlockedExchangeAdd64((__int64 *)pu64, u64); return u64; # elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64) __asm__ __volatile__("lock; xaddq %0, %1\n\t" : "=r" (u64), "=m" (*pu64) : "0" (u64), "m" (*pu64) : "memory"); return u64; # else uint64_t u64Old; for (;;) { uint64_t u64New; u64Old = ASMAtomicUoReadU64(pu64); u64New = u64Old + u64; if (ASMAtomicCmpXchgU64(pu64, u64New, u64Old)) break; ASMNopPause(); } return u64Old; # endif } #endif /** * Atomically exchanges and adds to a signed 64-bit value, ordered. * * @returns The old value. * @param pi64 Pointer to the value. * @param i64 Number to add. */ DECLINLINE(int64_t) ASMAtomicAddS64(int64_t volatile *pi64, int64_t i64) { return (int64_t)ASMAtomicAddU64((uint64_t volatile *)pi64, (uint64_t)i64); } /** * Atomically exchanges and adds to a size_t value, ordered. * * @returns The old value. * @param pcb Pointer to the size_t value. * @param cb Number to add. */ DECLINLINE(size_t) ASMAtomicAddZ(size_t volatile *pcb, size_t cb) { #if ARCH_BITS == 64 return ASMAtomicAddU64((uint64_t volatile *)pcb, cb); #elif ARCH_BITS == 32 return ASMAtomicAddU32((uint32_t volatile *)pcb, cb); #else # error "Unsupported ARCH_BITS value" #endif } /** * Atomically exchanges and adds a value which size might differ between * platforms or compilers, ordered. * * @param pu Pointer to the variable to update. * @param uNew The value to add to *pu. * @param puOld Where to store the old value. */ #define ASMAtomicAddSize(pu, uNew, puOld) \ do { \ switch (sizeof(*(pu))) { \ case 4: *(uint32_t *)(puOld) = ASMAtomicAddU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew)); break; \ case 8: *(uint64_t *)(puOld) = ASMAtomicAddU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew)); break; \ default: AssertMsgFailed(("ASMAtomicAddSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Atomically exchanges and subtracts to an unsigned 32-bit value, ordered. * * @returns The old value. * @param pu32 Pointer to the value. * @param u32 Number to subtract. */ DECLINLINE(uint32_t) ASMAtomicSubU32(uint32_t volatile *pu32, uint32_t u32) { return ASMAtomicAddU32(pu32, (uint32_t)-(int32_t)u32); } /** * Atomically exchanges and subtracts to a signed 32-bit value, ordered. * * @returns The old value. * @param pi32 Pointer to the value. * @param i32 Number to subtract. */ DECLINLINE(int32_t) ASMAtomicSubS32(int32_t volatile *pi32, int32_t i32) { return (int32_t)ASMAtomicAddU32((uint32_t volatile *)pi32, (uint32_t)-i32); } /** * Atomically exchanges and subtracts to an unsigned 64-bit value, ordered. * * @returns The old value. * @param pu64 Pointer to the value. * @param u64 Number to subtract. */ DECLINLINE(uint64_t) ASMAtomicSubU64(uint64_t volatile *pu64, uint64_t u64) { return ASMAtomicAddU64(pu64, (uint64_t)-(int64_t)u64); } /** * Atomically exchanges and subtracts to a signed 64-bit value, ordered. * * @returns The old value. * @param pi64 Pointer to the value. * @param i64 Number to subtract. */ DECLINLINE(int64_t) ASMAtomicSubS64(int64_t volatile *pi64, int64_t i64) { return (int64_t)ASMAtomicAddU64((uint64_t volatile *)pi64, (uint64_t)-i64); } /** * Atomically exchanges and subtracts to a size_t value, ordered. * * @returns The old value. * @param pcb Pointer to the size_t value. * @param cb Number to subtract. */ DECLINLINE(size_t) ASMAtomicSubZ(size_t volatile *pcb, size_t cb) { #if ARCH_BITS == 64 return ASMAtomicSubU64((uint64_t volatile *)pcb, cb); #elif ARCH_BITS == 32 return ASMAtomicSubU32((uint32_t volatile *)pcb, cb); #else # error "Unsupported ARCH_BITS value" #endif } /** * Atomically exchanges and subtracts a value which size might differ between * platforms or compilers, ordered. * * @param pu Pointer to the variable to update. * @param uNew The value to subtract to *pu. * @param puOld Where to store the old value. */ #define ASMAtomicSubSize(pu, uNew, puOld) \ do { \ switch (sizeof(*(pu))) { \ case 4: *(uint32_t *)(puOld) = ASMAtomicSubU32((volatile uint32_t *)(void *)(pu), (uint32_t)(uNew)); break; \ case 8: *(uint64_t *)(puOld) = ASMAtomicSubU64((volatile uint64_t *)(void *)(pu), (uint64_t)(uNew)); break; \ default: AssertMsgFailed(("ASMAtomicSubSize: size %d is not supported\n", sizeof(*(pu)))); \ } \ } while (0) /** * Atomically increment a 32-bit value, ordered. * * @returns The new value. * @param pu32 Pointer to the value to increment. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMAtomicIncU32(uint32_t volatile *pu32); #else DECLINLINE(uint32_t) ASMAtomicIncU32(uint32_t volatile *pu32) { uint32_t u32; # if RT_INLINE_ASM_USES_INTRIN u32 = _InterlockedIncrement((long *)pu32); return u32; # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; xaddl %0, %1\n\t" : "=r" (u32), "=m" (*pu32) : "0" (1), "m" (*pu32) : "memory"); return u32+1; # else __asm { mov eax, 1 # ifdef RT_ARCH_AMD64 mov rdx, [pu32] lock xadd [rdx], eax # else mov edx, [pu32] lock xadd [edx], eax # endif mov u32, eax } return u32+1; # endif } #endif /** * Atomically increment a signed 32-bit value, ordered. * * @returns The new value. * @param pi32 Pointer to the value to increment. */ DECLINLINE(int32_t) ASMAtomicIncS32(int32_t volatile *pi32) { return (int32_t)ASMAtomicIncU32((uint32_t volatile *)pi32); } /** * Atomically increment a 64-bit value, ordered. * * @returns The new value. * @param pu64 Pointer to the value to increment. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint64_t) ASMAtomicIncU64(uint64_t volatile *pu64); #else DECLINLINE(uint64_t) ASMAtomicIncU64(uint64_t volatile *pu64) { # if RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_AMD64) uint64_t u64; u64 = _InterlockedIncrement64((__int64 *)pu64); return u64; # elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64) uint64_t u64; __asm__ __volatile__("lock; xaddq %0, %1\n\t" : "=r" (u64), "=m" (*pu64) : "0" (1), "m" (*pu64) : "memory"); return u64 + 1; # else return ASMAtomicAddU64(pu64, 1) + 1; # endif } #endif /** * Atomically increment a signed 64-bit value, ordered. * * @returns The new value. * @param pi64 Pointer to the value to increment. */ DECLINLINE(int64_t) ASMAtomicIncS64(int64_t volatile *pi64) { return (int64_t)ASMAtomicIncU64((uint64_t volatile *)pi64); } /** * Atomically increment a size_t value, ordered. * * @returns The new value. * @param pcb Pointer to the value to increment. */ DECLINLINE(int64_t) ASMAtomicIncZ(size_t volatile *pcb) { #if ARCH_BITS == 64 return ASMAtomicIncU64((uint64_t volatile *)pcb); #elif ARCH_BITS == 32 return ASMAtomicIncU32((uint32_t volatile *)pcb); #else # error "Unsupported ARCH_BITS value" #endif } /** * Atomically decrement an unsigned 32-bit value, ordered. * * @returns The new value. * @param pu32 Pointer to the value to decrement. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMAtomicDecU32(uint32_t volatile *pu32); #else DECLINLINE(uint32_t) ASMAtomicDecU32(uint32_t volatile *pu32) { uint32_t u32; # if RT_INLINE_ASM_USES_INTRIN u32 = _InterlockedDecrement((long *)pu32); return u32; # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; xaddl %0, %1\n\t" : "=r" (u32), "=m" (*pu32) : "0" (-1), "m" (*pu32) : "memory"); return u32-1; # else __asm { mov eax, -1 # ifdef RT_ARCH_AMD64 mov rdx, [pu32] lock xadd [rdx], eax # else mov edx, [pu32] lock xadd [edx], eax # endif mov u32, eax } return u32-1; # endif } #endif /** * Atomically decrement a signed 32-bit value, ordered. * * @returns The new value. * @param pi32 Pointer to the value to decrement. */ DECLINLINE(int32_t) ASMAtomicDecS32(int32_t volatile *pi32) { return (int32_t)ASMAtomicDecU32((uint32_t volatile *)pi32); } /** * Atomically decrement an unsigned 64-bit value, ordered. * * @returns The new value. * @param pu64 Pointer to the value to decrement. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint64_t) ASMAtomicDecU64(uint64_t volatile *pu64); #else DECLINLINE(uint64_t) ASMAtomicDecU64(uint64_t volatile *pu64) { # if RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_AMD64) uint64_t u64 = _InterlockedDecrement64((__int64 volatile *)pu64); return u64; # elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64) uint64_t u64; __asm__ __volatile__("lock; xaddq %q0, %1\n\t" : "=r" (u64), "=m" (*pu64) : "0" (~(uint64_t)0), "m" (*pu64) : "memory"); return u64-1; # else return ASMAtomicAddU64(pu64, UINT64_MAX) - 1; # endif } #endif /** * Atomically decrement a signed 64-bit value, ordered. * * @returns The new value. * @param pi64 Pointer to the value to decrement. */ DECLINLINE(int64_t) ASMAtomicDecS64(int64_t volatile *pi64) { return (int64_t)ASMAtomicDecU64((uint64_t volatile *)pi64); } /** * Atomically decrement a size_t value, ordered. * * @returns The new value. * @param pcb Pointer to the value to decrement. */ DECLINLINE(int64_t) ASMAtomicDecZ(size_t volatile *pcb) { #if ARCH_BITS == 64 return ASMAtomicDecU64((uint64_t volatile *)pcb); #elif ARCH_BITS == 32 return ASMAtomicDecU32((uint32_t volatile *)pcb); #else # error "Unsupported ARCH_BITS value" #endif } /** * Atomically Or an unsigned 32-bit value, ordered. * * @param pu32 Pointer to the pointer variable to OR u32 with. * @param u32 The value to OR *pu32 with. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMAtomicOrU32(uint32_t volatile *pu32, uint32_t u32); #else DECLINLINE(void) ASMAtomicOrU32(uint32_t volatile *pu32, uint32_t u32) { # if RT_INLINE_ASM_USES_INTRIN _InterlockedOr((long volatile *)pu32, (long)u32); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; orl %1, %0\n\t" : "=m" (*pu32) : "ir" (u32), "m" (*pu32)); # else __asm { mov eax, [u32] # ifdef RT_ARCH_AMD64 mov rdx, [pu32] lock or [rdx], eax # else mov edx, [pu32] lock or [edx], eax # endif } # endif } #endif /** * Atomically Or a signed 32-bit value, ordered. * * @param pi32 Pointer to the pointer variable to OR u32 with. * @param i32 The value to OR *pu32 with. */ DECLINLINE(void) ASMAtomicOrS32(int32_t volatile *pi32, int32_t i32) { ASMAtomicOrU32((uint32_t volatile *)pi32, i32); } /** * Atomically Or an unsigned 64-bit value, ordered. * * @param pu64 Pointer to the pointer variable to OR u64 with. * @param u64 The value to OR *pu64 with. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMAtomicOrU64(uint64_t volatile *pu64, uint64_t u64); #else DECLINLINE(void) ASMAtomicOrU64(uint64_t volatile *pu64, uint64_t u64) { # if RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_AMD64) _InterlockedOr64((__int64 volatile *)pu64, (__int64)u64); # elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64) __asm__ __volatile__("lock; orq %1, %q0\n\t" : "=m" (*pu64) : "r" (u64), "m" (*pu64)); # else for (;;) { uint64_t u64Old = ASMAtomicUoReadU64(pu64); uint64_t u64New = u64Old | u64; if (ASMAtomicCmpXchgU64(pu64, u64New, u64Old)) break; ASMNopPause(); } # endif } #endif /** * Atomically Or a signed 64-bit value, ordered. * * @param pi64 Pointer to the pointer variable to OR u64 with. * @param i64 The value to OR *pu64 with. */ DECLINLINE(void) ASMAtomicOrS64(int64_t volatile *pi64, int64_t i64) { ASMAtomicOrU64((uint64_t volatile *)pi64, i64); } /** * Atomically And an unsigned 32-bit value, ordered. * * @param pu32 Pointer to the pointer variable to AND u32 with. * @param u32 The value to AND *pu32 with. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMAtomicAndU32(uint32_t volatile *pu32, uint32_t u32); #else DECLINLINE(void) ASMAtomicAndU32(uint32_t volatile *pu32, uint32_t u32) { # if RT_INLINE_ASM_USES_INTRIN _InterlockedAnd((long volatile *)pu32, u32); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; andl %1, %0\n\t" : "=m" (*pu32) : "ir" (u32), "m" (*pu32)); # else __asm { mov eax, [u32] # ifdef RT_ARCH_AMD64 mov rdx, [pu32] lock and [rdx], eax # else mov edx, [pu32] lock and [edx], eax # endif } # endif } #endif /** * Atomically And a signed 32-bit value, ordered. * * @param pi32 Pointer to the pointer variable to AND i32 with. * @param i32 The value to AND *pi32 with. */ DECLINLINE(void) ASMAtomicAndS32(int32_t volatile *pi32, int32_t i32) { ASMAtomicAndU32((uint32_t volatile *)pi32, (uint32_t)i32); } /** * Atomically And an unsigned 64-bit value, ordered. * * @param pu64 Pointer to the pointer variable to AND u64 with. * @param u64 The value to AND *pu64 with. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMAtomicAndU64(uint64_t volatile *pu64, uint64_t u64); #else DECLINLINE(void) ASMAtomicAndU64(uint64_t volatile *pu64, uint64_t u64) { # if RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_AMD64) _InterlockedAnd64((__int64 volatile *)pu64, u64); # elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64) __asm__ __volatile__("lock; andq %1, %0\n\t" : "=m" (*pu64) : "r" (u64), "m" (*pu64)); # else for (;;) { uint64_t u64Old = ASMAtomicUoReadU64(pu64); uint64_t u64New = u64Old & u64; if (ASMAtomicCmpXchgU64(pu64, u64New, u64Old)) break; ASMNopPause(); } # endif } #endif /** * Atomically And a signed 64-bit value, ordered. * * @param pi64 Pointer to the pointer variable to AND i64 with. * @param i64 The value to AND *pi64 with. */ DECLINLINE(void) ASMAtomicAndS64(int64_t volatile *pi64, int64_t i64) { ASMAtomicAndU64((uint64_t volatile *)pi64, (uint64_t)i64); } /** @def RT_ASM_PAGE_SIZE * We try avoid dragging in iprt/param.h here. * @internal */ #if defined(RT_ARCH_SPARC64) # define RT_ASM_PAGE_SIZE 0x2000 # if defined(PAGE_SIZE) && !defined(NT_INCLUDED) # if PAGE_SIZE != 0x2000 # error "PAGE_SIZE is not 0x2000!" # endif # endif #else # define RT_ASM_PAGE_SIZE 0x1000 # if defined(PAGE_SIZE) && !defined(NT_INCLUDED) # if PAGE_SIZE != 0x1000 # error "PAGE_SIZE is not 0x1000!" # endif # endif #endif /** * Zeros a 4K memory page. * * @param pv Pointer to the memory block. This must be page aligned. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMMemZeroPage(volatile void *pv); # else DECLINLINE(void) ASMMemZeroPage(volatile void *pv) { # if RT_INLINE_ASM_USES_INTRIN # ifdef RT_ARCH_AMD64 __stosq((unsigned __int64 *)pv, 0, RT_ASM_PAGE_SIZE / 8); # else __stosd((unsigned long *)pv, 0, RT_ASM_PAGE_SIZE / 4); # endif # elif RT_INLINE_ASM_GNU_STYLE RTCCUINTREG uDummy; # ifdef RT_ARCH_AMD64 __asm__ __volatile__("rep stosq" : "=D" (pv), "=c" (uDummy) : "0" (pv), "c" (RT_ASM_PAGE_SIZE >> 3), "a" (0) : "memory"); # else __asm__ __volatile__("rep stosl" : "=D" (pv), "=c" (uDummy) : "0" (pv), "c" (RT_ASM_PAGE_SIZE >> 2), "a" (0) : "memory"); # endif # else __asm { # ifdef RT_ARCH_AMD64 xor rax, rax mov ecx, 0200h mov rdi, [pv] rep stosq # else xor eax, eax mov ecx, 0400h mov edi, [pv] rep stosd # endif } # endif } # endif /** * Zeros a memory block with a 32-bit aligned size. * * @param pv Pointer to the memory block. * @param cb Number of bytes in the block. This MUST be aligned on 32-bit! */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMMemZero32(volatile void *pv, size_t cb); #else DECLINLINE(void) ASMMemZero32(volatile void *pv, size_t cb) { # if RT_INLINE_ASM_USES_INTRIN # ifdef RT_ARCH_AMD64 if (!(cb & 7)) __stosq((unsigned __int64 *)pv, 0, cb / 8); else # endif __stosd((unsigned long *)pv, 0, cb / 4); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("rep stosl" : "=D" (pv), "=c" (cb) : "0" (pv), "1" (cb >> 2), "a" (0) : "memory"); # else __asm { xor eax, eax # ifdef RT_ARCH_AMD64 mov rcx, [cb] shr rcx, 2 mov rdi, [pv] # else mov ecx, [cb] shr ecx, 2 mov edi, [pv] # endif rep stosd } # endif } #endif /** * Fills a memory block with a 32-bit aligned size. * * @param pv Pointer to the memory block. * @param cb Number of bytes in the block. This MUST be aligned on 32-bit! * @param u32 The value to fill with. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMMemFill32(volatile void *pv, size_t cb, uint32_t u32); #else DECLINLINE(void) ASMMemFill32(volatile void *pv, size_t cb, uint32_t u32) { # if RT_INLINE_ASM_USES_INTRIN # ifdef RT_ARCH_AMD64 if (!(cb & 7)) __stosq((unsigned __int64 *)pv, RT_MAKE_U64(u32, u32), cb / 8); else # endif __stosd((unsigned long *)pv, u32, cb / 4); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("rep stosl" : "=D" (pv), "=c" (cb) : "0" (pv), "1" (cb >> 2), "a" (u32) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rcx, [cb] shr rcx, 2 mov rdi, [pv] # else mov ecx, [cb] shr ecx, 2 mov edi, [pv] # endif mov eax, [u32] rep stosd } # endif } #endif /** * Checks if a memory page is all zeros. * * @returns true / false. * * @param pvPage Pointer to the page. Must be aligned on 16 byte * boundary */ DECLINLINE(bool) ASMMemIsZeroPage(void const *pvPage) { # if 0 /*RT_INLINE_ASM_GNU_STYLE - this is actually slower... */ union { RTCCUINTREG r; bool f; } uAX; RTCCUINTREG xCX, xDI; Assert(!((uintptr_t)pvPage & 15)); __asm__ __volatile__("repe; " # ifdef RT_ARCH_AMD64 "scasq\n\t" # else "scasl\n\t" # endif "setnc %%al\n\t" : "=&c" (xCX), "=&D" (xDI), "=&a" (uAX.r) : "mr" (pvPage), # ifdef RT_ARCH_AMD64 "0" (RT_ASM_PAGE_SIZE/8), # else "0" (RT_ASM_PAGE_SIZE/4), # endif "1" (pvPage), "2" (0)); return uAX.f; # else uintptr_t const *puPtr = (uintptr_t const *)pvPage; int cLeft = RT_ASM_PAGE_SIZE / sizeof(uintptr_t) / 8; Assert(!((uintptr_t)pvPage & 15)); for (;;) { if (puPtr[0]) return false; if (puPtr[4]) return false; if (puPtr[2]) return false; if (puPtr[6]) return false; if (puPtr[1]) return false; if (puPtr[5]) return false; if (puPtr[3]) return false; if (puPtr[7]) return false; if (!--cLeft) return true; puPtr += 8; } return true; # endif } /** * Checks if a memory block is filled with the specified byte. * * This is a sort of inverted memchr. * * @returns Pointer to the byte which doesn't equal u8. * @returns NULL if all equal to u8. * * @param pv Pointer to the memory block. * @param cb Number of bytes in the block. This MUST be aligned on 32-bit! * @param u8 The value it's supposed to be filled with. * * @todo Fix name, it is a predicate function but it's not returning boolean! */ DECLINLINE(void *) ASMMemIsAll8(void const *pv, size_t cb, uint8_t u8) { /** @todo rewrite this in inline assembly? */ uint8_t const *pb = (uint8_t const *)pv; for (; cb; cb--, pb++) if (RT_UNLIKELY(*pb != u8)) return (void *)pb; return NULL; } /** * Checks if a memory block is filled with the specified 32-bit value. * * This is a sort of inverted memchr. * * @returns Pointer to the first value which doesn't equal u32. * @returns NULL if all equal to u32. * * @param pv Pointer to the memory block. * @param cb Number of bytes in the block. This MUST be aligned on 32-bit! * @param u32 The value it's supposed to be filled with. * * @todo Fix name, it is a predicate function but it's not returning boolean! */ DECLINLINE(uint32_t *) ASMMemIsAllU32(void const *pv, size_t cb, uint32_t u32) { /** @todo rewrite this in inline assembly? */ uint32_t const *pu32 = (uint32_t const *)pv; for (; cb; cb -= 4, pu32++) if (RT_UNLIKELY(*pu32 != u32)) return (uint32_t *)pu32; return NULL; } /** * Probes a byte pointer for read access. * * While the function will not fault if the byte is not read accessible, * the idea is to do this in a safe place like before acquiring locks * and such like. * * Also, this functions guarantees that an eager compiler is not going * to optimize the probing away. * * @param pvByte Pointer to the byte. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(uint8_t) ASMProbeReadByte(const void *pvByte); #else DECLINLINE(uint8_t) ASMProbeReadByte(const void *pvByte) { /** @todo verify that the compiler actually doesn't optimize this away. (intel & gcc) */ uint8_t u8; # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("movb (%1), %0\n\t" : "=r" (u8) : "r" (pvByte)); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvByte] mov al, [rax] # else mov eax, [pvByte] mov al, [eax] # endif mov [u8], al } # endif return u8; } #endif /** * Probes a buffer for read access page by page. * * While the function will fault if the buffer is not fully read * accessible, the idea is to do this in a safe place like before * acquiring locks and such like. * * Also, this functions guarantees that an eager compiler is not going * to optimize the probing away. * * @param pvBuf Pointer to the buffer. * @param cbBuf The size of the buffer in bytes. Must be >= 1. */ DECLINLINE(void) ASMProbeReadBuffer(const void *pvBuf, size_t cbBuf) { /** @todo verify that the compiler actually doesn't optimize this away. (intel & gcc) */ /* the first byte */ const uint8_t *pu8 = (const uint8_t *)pvBuf; ASMProbeReadByte(pu8); /* the pages in between pages. */ while (cbBuf > RT_ASM_PAGE_SIZE) { ASMProbeReadByte(pu8); cbBuf -= RT_ASM_PAGE_SIZE; pu8 += RT_ASM_PAGE_SIZE; } /* the last byte */ ASMProbeReadByte(pu8 + cbBuf - 1); } /** @defgroup grp_inline_bits Bit Operations * @{ */ /** * Sets a bit in a bitmap. * * @param pvBitmap Pointer to the bitmap. This should be 32-bit aligned. * @param iBit The bit to set. * * @remarks The 32-bit aligning of pvBitmap is not a strict requirement. * However, doing so will yield better performance as well as avoiding * traps accessing the last bits in the bitmap. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMBitSet(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(void) ASMBitSet(volatile void *pvBitmap, int32_t iBit) { # if RT_INLINE_ASM_USES_INTRIN _bittestandset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("btsl %1, %0" : "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit), "m" (*(volatile long *)pvBitmap) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] mov edx, [iBit] bts [rax], edx # else mov eax, [pvBitmap] mov edx, [iBit] bts [eax], edx # endif } # endif } #endif /** * Atomically sets a bit in a bitmap, ordered. * * @param pvBitmap Pointer to the bitmap. Must be 32-bit aligned, otherwise * the memory access isn't atomic! * @param iBit The bit to set. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMAtomicBitSet(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(void) ASMAtomicBitSet(volatile void *pvBitmap, int32_t iBit) { AssertMsg(!((uintptr_t)pvBitmap & 3), ("address %p not 32-bit aligned", pvBitmap)); # if RT_INLINE_ASM_USES_INTRIN _interlockedbittestandset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; btsl %1, %0" : "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit), "m" (*(volatile long *)pvBitmap) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] mov edx, [iBit] lock bts [rax], edx # else mov eax, [pvBitmap] mov edx, [iBit] lock bts [eax], edx # endif } # endif } #endif /** * Clears a bit in a bitmap. * * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to clear. * * @remarks The 32-bit aligning of pvBitmap is not a strict requirement. * However, doing so will yield better performance as well as avoiding * traps accessing the last bits in the bitmap. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMBitClear(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(void) ASMBitClear(volatile void *pvBitmap, int32_t iBit) { # if RT_INLINE_ASM_USES_INTRIN _bittestandreset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("btrl %1, %0" : "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit), "m" (*(volatile long *)pvBitmap) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] mov edx, [iBit] btr [rax], edx # else mov eax, [pvBitmap] mov edx, [iBit] btr [eax], edx # endif } # endif } #endif /** * Atomically clears a bit in a bitmap, ordered. * * @param pvBitmap Pointer to the bitmap. Must be 32-bit aligned, otherwise * the memory access isn't atomic! * @param iBit The bit to toggle set. * @remarks No memory barrier, take care on smp. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(void) ASMAtomicBitClear(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(void) ASMAtomicBitClear(volatile void *pvBitmap, int32_t iBit) { AssertMsg(!((uintptr_t)pvBitmap & 3), ("address %p not 32-bit aligned", pvBitmap)); # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; btrl %1, %0" : "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit), "m" (*(volatile long *)pvBitmap) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] mov edx, [iBit] lock btr [rax], edx # else mov eax, [pvBitmap] mov edx, [iBit] lock btr [eax], edx # endif } # endif } #endif /** * Toggles a bit in a bitmap. * * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to toggle. * * @remarks The 32-bit aligning of pvBitmap is not a strict requirement. * However, doing so will yield better performance as well as avoiding * traps accessing the last bits in the bitmap. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(void) ASMBitToggle(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(void) ASMBitToggle(volatile void *pvBitmap, int32_t iBit) { # if RT_INLINE_ASM_USES_INTRIN _bittestandcomplement((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("btcl %1, %0" : "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit), "m" (*(volatile long *)pvBitmap) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] mov edx, [iBit] btc [rax], edx # else mov eax, [pvBitmap] mov edx, [iBit] btc [eax], edx # endif } # endif } #endif /** * Atomically toggles a bit in a bitmap, ordered. * * @param pvBitmap Pointer to the bitmap. Must be 32-bit aligned, otherwise * the memory access isn't atomic! * @param iBit The bit to test and set. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(void) ASMAtomicBitToggle(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(void) ASMAtomicBitToggle(volatile void *pvBitmap, int32_t iBit) { AssertMsg(!((uintptr_t)pvBitmap & 3), ("address %p not 32-bit aligned", pvBitmap)); # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; btcl %1, %0" : "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit), "m" (*(volatile long *)pvBitmap) : "memory"); # else __asm { # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] mov edx, [iBit] lock btc [rax], edx # else mov eax, [pvBitmap] mov edx, [iBit] lock btc [eax], edx # endif } # endif } #endif /** * Tests and sets a bit in a bitmap. * * @returns true if the bit was set. * @returns false if the bit was clear. * * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to test and set. * * @remarks The 32-bit aligning of pvBitmap is not a strict requirement. * However, doing so will yield better performance as well as avoiding * traps accessing the last bits in the bitmap. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMBitTestAndSet(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMBitTestAndSet(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; # if RT_INLINE_ASM_USES_INTRIN rc.u8 = _bittestandset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("btsl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit), "m" (*(volatile long *)pvBitmap) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] bts [rax], edx # else mov eax, [pvBitmap] bts [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Atomically tests and sets a bit in a bitmap, ordered. * * @returns true if the bit was set. * @returns false if the bit was clear. * * @param pvBitmap Pointer to the bitmap. Must be 32-bit aligned, otherwise * the memory access isn't atomic! * @param iBit The bit to set. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMAtomicBitTestAndSet(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMAtomicBitTestAndSet(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; AssertMsg(!((uintptr_t)pvBitmap & 3), ("address %p not 32-bit aligned", pvBitmap)); # if RT_INLINE_ASM_USES_INTRIN rc.u8 = _interlockedbittestandset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; btsl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit), "m" (*(volatile long *)pvBitmap) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] lock bts [rax], edx # else mov eax, [pvBitmap] lock bts [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Tests and clears a bit in a bitmap. * * @returns true if the bit was set. * @returns false if the bit was clear. * * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to test and clear. * * @remarks The 32-bit aligning of pvBitmap is not a strict requirement. * However, doing so will yield better performance as well as avoiding * traps accessing the last bits in the bitmap. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMBitTestAndClear(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMBitTestAndClear(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; # if RT_INLINE_ASM_USES_INTRIN rc.u8 = _bittestandreset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("btrl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit), "m" (*(volatile long *)pvBitmap) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] btr [rax], edx # else mov eax, [pvBitmap] btr [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Atomically tests and clears a bit in a bitmap, ordered. * * @returns true if the bit was set. * @returns false if the bit was clear. * * @param pvBitmap Pointer to the bitmap. Must be 32-bit aligned, otherwise * the memory access isn't atomic! * @param iBit The bit to test and clear. * * @remarks No memory barrier, take care on smp. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMAtomicBitTestAndClear(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMAtomicBitTestAndClear(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; AssertMsg(!((uintptr_t)pvBitmap & 3), ("address %p not 32-bit aligned", pvBitmap)); # if RT_INLINE_ASM_USES_INTRIN rc.u8 = _interlockedbittestandreset((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; btrl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit), "m" (*(volatile long *)pvBitmap) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] lock btr [rax], edx # else mov eax, [pvBitmap] lock btr [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Tests and toggles a bit in a bitmap. * * @returns true if the bit was set. * @returns false if the bit was clear. * * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to test and toggle. * * @remarks The 32-bit aligning of pvBitmap is not a strict requirement. * However, doing so will yield better performance as well as avoiding * traps accessing the last bits in the bitmap. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMBitTestAndToggle(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMBitTestAndToggle(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; # if RT_INLINE_ASM_USES_INTRIN rc.u8 = _bittestandcomplement((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("btcl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit), "m" (*(volatile long *)pvBitmap) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] btc [rax], edx # else mov eax, [pvBitmap] btc [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Atomically tests and toggles a bit in a bitmap, ordered. * * @returns true if the bit was set. * @returns false if the bit was clear. * * @param pvBitmap Pointer to the bitmap. Must be 32-bit aligned, otherwise * the memory access isn't atomic! * @param iBit The bit to test and toggle. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(bool) ASMAtomicBitTestAndToggle(volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMAtomicBitTestAndToggle(volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; AssertMsg(!((uintptr_t)pvBitmap & 3), ("address %p not 32-bit aligned", pvBitmap)); # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("lock; btcl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32), "=m" (*(volatile long *)pvBitmap) : "Ir" (iBit), "m" (*(volatile long *)pvBitmap) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] lock btc [rax], edx # else mov eax, [pvBitmap] lock btc [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Tests if a bit in a bitmap is set. * * @returns true if the bit is set. * @returns false if the bit is clear. * * @param pvBitmap Pointer to the bitmap. * @param iBit The bit to test. * * @remarks The 32-bit aligning of pvBitmap is not a strict requirement. * However, doing so will yield better performance as well as avoiding * traps accessing the last bits in the bitmap. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(bool) ASMBitTest(const volatile void *pvBitmap, int32_t iBit); #else DECLINLINE(bool) ASMBitTest(const volatile void *pvBitmap, int32_t iBit) { union { bool f; uint32_t u32; uint8_t u8; } rc; # if RT_INLINE_ASM_USES_INTRIN rc.u32 = _bittest((long *)pvBitmap, iBit); # elif RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("btl %2, %1\n\t" "setc %b0\n\t" "andl $1, %0\n\t" : "=q" (rc.u32) : "m" (*(const volatile long *)pvBitmap), "Ir" (iBit) : "memory"); # else __asm { mov edx, [iBit] # ifdef RT_ARCH_AMD64 mov rax, [pvBitmap] bt [rax], edx # else mov eax, [pvBitmap] bt [eax], edx # endif setc al and eax, 1 mov [rc.u32], eax } # endif return rc.f; } #endif /** * Clears a bit range within a bitmap. * * @param pvBitmap Pointer to the bitmap. * @param iBitStart The First bit to clear. * @param iBitEnd The first bit not to clear. */ DECLINLINE(void) ASMBitClearRange(volatile void *pvBitmap, int32_t iBitStart, int32_t iBitEnd) { if (iBitStart < iBitEnd) { volatile uint32_t *pu32 = (volatile uint32_t *)pvBitmap + (iBitStart >> 5); int iStart = iBitStart & ~31; int iEnd = iBitEnd & ~31; if (iStart == iEnd) *pu32 &= ((1 << (iBitStart & 31)) - 1) | ~((1 << (iBitEnd & 31)) - 1); else { /* bits in first dword. */ if (iBitStart & 31) { *pu32 &= (1 << (iBitStart & 31)) - 1; pu32++; iBitStart = iStart + 32; } /* whole dword. */ if (iBitStart != iEnd) ASMMemZero32(pu32, (iEnd - iBitStart) >> 3); /* bits in last dword. */ if (iBitEnd & 31) { pu32 = (volatile uint32_t *)pvBitmap + (iBitEnd >> 5); *pu32 &= ~((1 << (iBitEnd & 31)) - 1); } } } } /** * Sets a bit range within a bitmap. * * @param pvBitmap Pointer to the bitmap. * @param iBitStart The First bit to set. * @param iBitEnd The first bit not to set. */ DECLINLINE(void) ASMBitSetRange(volatile void *pvBitmap, int32_t iBitStart, int32_t iBitEnd) { if (iBitStart < iBitEnd) { volatile uint32_t *pu32 = (volatile uint32_t *)pvBitmap + (iBitStart >> 5); int iStart = iBitStart & ~31; int iEnd = iBitEnd & ~31; if (iStart == iEnd) *pu32 |= ((1 << (iBitEnd - iBitStart)) - 1) << iBitStart; else { /* bits in first dword. */ if (iBitStart & 31) { *pu32 |= ~((1 << (iBitStart & 31)) - 1); pu32++; iBitStart = iStart + 32; } /* whole dword. */ if (iBitStart != iEnd) ASMMemFill32(pu32, (iEnd - iBitStart) >> 3, ~UINT32_C(0)); /* bits in last dword. */ if (iBitEnd & 31) { pu32 = (volatile uint32_t *)pvBitmap + (iBitEnd >> 5); *pu32 |= (1 << (iBitEnd & 31)) - 1; } } } } /** * Finds the first clear bit in a bitmap. * * @returns Index of the first zero bit. * @returns -1 if no clear bit was found. * @param pvBitmap Pointer to the bitmap. * @param cBits The number of bits in the bitmap. Multiple of 32. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(int) ASMBitFirstClear(const volatile void *pvBitmap, uint32_t cBits); #else DECLINLINE(int) ASMBitFirstClear(const volatile void *pvBitmap, uint32_t cBits) { if (cBits) { int32_t iBit; # if RT_INLINE_ASM_GNU_STYLE RTCCUINTREG uEAX, uECX, uEDI; cBits = RT_ALIGN_32(cBits, 32); __asm__ __volatile__("repe; scasl\n\t" "je 1f\n\t" # ifdef RT_ARCH_AMD64 "lea -4(%%rdi), %%rdi\n\t" "xorl (%%rdi), %%eax\n\t" "subq %5, %%rdi\n\t" # else "lea -4(%%edi), %%edi\n\t" "xorl (%%edi), %%eax\n\t" "subl %5, %%edi\n\t" # endif "shll $3, %%edi\n\t" "bsfl %%eax, %%edx\n\t" "addl %%edi, %%edx\n\t" "1:\t\n" : "=d" (iBit), "=&c" (uECX), "=&D" (uEDI), "=&a" (uEAX) : "0" (0xffffffff), "mr" (pvBitmap), "1" (cBits >> 5), "2" (pvBitmap), "3" (0xffffffff)); # else cBits = RT_ALIGN_32(cBits, 32); __asm { # ifdef RT_ARCH_AMD64 mov rdi, [pvBitmap] mov rbx, rdi # else mov edi, [pvBitmap] mov ebx, edi # endif mov edx, 0ffffffffh mov eax, edx mov ecx, [cBits] shr ecx, 5 repe scasd je done # ifdef RT_ARCH_AMD64 lea rdi, [rdi - 4] xor eax, [rdi] sub rdi, rbx # else lea edi, [edi - 4] xor eax, [edi] sub edi, ebx # endif shl edi, 3 bsf edx, eax add edx, edi done: mov [iBit], edx } # endif return iBit; } return -1; } #endif /** * Finds the next clear bit in a bitmap. * * @returns Index of the first zero bit. * @returns -1 if no clear bit was found. * @param pvBitmap Pointer to the bitmap. * @param cBits The number of bits in the bitmap. Multiple of 32. * @param iBitPrev The bit returned from the last search. * The search will start at iBitPrev + 1. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(int) ASMBitNextClear(const volatile void *pvBitmap, uint32_t cBits, uint32_t iBitPrev); #else DECLINLINE(int) ASMBitNextClear(const volatile void *pvBitmap, uint32_t cBits, uint32_t iBitPrev) { const volatile uint32_t *pau32Bitmap = (const volatile uint32_t *)pvBitmap; int iBit = ++iBitPrev & 31; if (iBit) { /* * Inspect the 32-bit word containing the unaligned bit. */ uint32_t u32 = ~pau32Bitmap[iBitPrev / 32] >> iBit; # if RT_INLINE_ASM_USES_INTRIN unsigned long ulBit = 0; if (_BitScanForward(&ulBit, u32)) return ulBit + iBitPrev; # else # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("bsf %1, %0\n\t" "jnz 1f\n\t" "movl $-1, %0\n\t" "1:\n\t" : "=r" (iBit) : "r" (u32)); # else __asm { mov edx, [u32] bsf eax, edx jnz done mov eax, 0ffffffffh done: mov [iBit], eax } # endif if (iBit >= 0) return iBit + iBitPrev; # endif /* * Skip ahead and see if there is anything left to search. */ iBitPrev |= 31; iBitPrev++; if (cBits <= (uint32_t)iBitPrev) return -1; } /* * 32-bit aligned search, let ASMBitFirstClear do the dirty work. */ iBit = ASMBitFirstClear(&pau32Bitmap[iBitPrev / 32], cBits - iBitPrev); if (iBit >= 0) iBit += iBitPrev; return iBit; } #endif /** * Finds the first set bit in a bitmap. * * @returns Index of the first set bit. * @returns -1 if no clear bit was found. * @param pvBitmap Pointer to the bitmap. * @param cBits The number of bits in the bitmap. Multiple of 32. */ #if RT_INLINE_ASM_EXTERNAL DECLASM(int) ASMBitFirstSet(const volatile void *pvBitmap, uint32_t cBits); #else DECLINLINE(int) ASMBitFirstSet(const volatile void *pvBitmap, uint32_t cBits) { if (cBits) { int32_t iBit; # if RT_INLINE_ASM_GNU_STYLE RTCCUINTREG uEAX, uECX, uEDI; cBits = RT_ALIGN_32(cBits, 32); __asm__ __volatile__("repe; scasl\n\t" "je 1f\n\t" # ifdef RT_ARCH_AMD64 "lea -4(%%rdi), %%rdi\n\t" "movl (%%rdi), %%eax\n\t" "subq %5, %%rdi\n\t" # else "lea -4(%%edi), %%edi\n\t" "movl (%%edi), %%eax\n\t" "subl %5, %%edi\n\t" # endif "shll $3, %%edi\n\t" "bsfl %%eax, %%edx\n\t" "addl %%edi, %%edx\n\t" "1:\t\n" : "=d" (iBit), "=&c" (uECX), "=&D" (uEDI), "=&a" (uEAX) : "0" (0xffffffff), "mr" (pvBitmap), "1" (cBits >> 5), "2" (pvBitmap), "3" (0)); # else cBits = RT_ALIGN_32(cBits, 32); __asm { # ifdef RT_ARCH_AMD64 mov rdi, [pvBitmap] mov rbx, rdi # else mov edi, [pvBitmap] mov ebx, edi # endif mov edx, 0ffffffffh xor eax, eax mov ecx, [cBits] shr ecx, 5 repe scasd je done # ifdef RT_ARCH_AMD64 lea rdi, [rdi - 4] mov eax, [rdi] sub rdi, rbx # else lea edi, [edi - 4] mov eax, [edi] sub edi, ebx # endif shl edi, 3 bsf edx, eax add edx, edi done: mov [iBit], edx } # endif return iBit; } return -1; } #endif /** * Finds the next set bit in a bitmap. * * @returns Index of the next set bit. * @returns -1 if no set bit was found. * @param pvBitmap Pointer to the bitmap. * @param cBits The number of bits in the bitmap. Multiple of 32. * @param iBitPrev The bit returned from the last search. * The search will start at iBitPrev + 1. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(int) ASMBitNextSet(const volatile void *pvBitmap, uint32_t cBits, uint32_t iBitPrev); #else DECLINLINE(int) ASMBitNextSet(const volatile void *pvBitmap, uint32_t cBits, uint32_t iBitPrev) { const volatile uint32_t *pau32Bitmap = (const volatile uint32_t *)pvBitmap; int iBit = ++iBitPrev & 31; if (iBit) { /* * Inspect the 32-bit word containing the unaligned bit. */ uint32_t u32 = pau32Bitmap[iBitPrev / 32] >> iBit; # if RT_INLINE_ASM_USES_INTRIN unsigned long ulBit = 0; if (_BitScanForward(&ulBit, u32)) return ulBit + iBitPrev; # else # if RT_INLINE_ASM_GNU_STYLE __asm__ __volatile__("bsf %1, %0\n\t" "jnz 1f\n\t" "movl $-1, %0\n\t" "1:\n\t" : "=r" (iBit) : "r" (u32)); # else __asm { mov edx, [u32] bsf eax, edx jnz done mov eax, 0ffffffffh done: mov [iBit], eax } # endif if (iBit >= 0) return iBit + iBitPrev; # endif /* * Skip ahead and see if there is anything left to search. */ iBitPrev |= 31; iBitPrev++; if (cBits <= (uint32_t)iBitPrev) return -1; } /* * 32-bit aligned search, let ASMBitFirstClear do the dirty work. */ iBit = ASMBitFirstSet(&pau32Bitmap[iBitPrev / 32], cBits - iBitPrev); if (iBit >= 0) iBit += iBitPrev; return iBit; } #endif /** * Finds the first bit which is set in the given 32-bit integer. * Bits are numbered from 1 (least significant) to 32. * * @returns index [1..32] of the first set bit. * @returns 0 if all bits are cleared. * @param u32 Integer to search for set bits. * @remark Similar to ffs() in BSD. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(unsigned) ASMBitFirstSetU32(uint32_t u32); #else DECLINLINE(unsigned) ASMBitFirstSetU32(uint32_t u32) { # if RT_INLINE_ASM_USES_INTRIN unsigned long iBit; if (_BitScanForward(&iBit, u32)) iBit++; else iBit = 0; # elif RT_INLINE_ASM_GNU_STYLE uint32_t iBit; __asm__ __volatile__("bsf %1, %0\n\t" "jnz 1f\n\t" "xorl %0, %0\n\t" "jmp 2f\n" "1:\n\t" "incl %0\n" "2:\n\t" : "=r" (iBit) : "rm" (u32)); # else uint32_t iBit; _asm { bsf eax, [u32] jnz found xor eax, eax jmp done found: inc eax done: mov [iBit], eax } # endif return iBit; } #endif /** * Finds the first bit which is set in the given 32-bit integer. * Bits are numbered from 1 (least significant) to 32. * * @returns index [1..32] of the first set bit. * @returns 0 if all bits are cleared. * @param i32 Integer to search for set bits. * @remark Similar to ffs() in BSD. */ DECLINLINE(unsigned) ASMBitFirstSetS32(int32_t i32) { return ASMBitFirstSetU32((uint32_t)i32); } /** * Finds the last bit which is set in the given 32-bit integer. * Bits are numbered from 1 (least significant) to 32. * * @returns index [1..32] of the last set bit. * @returns 0 if all bits are cleared. * @param u32 Integer to search for set bits. * @remark Similar to fls() in BSD. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(unsigned) ASMBitLastSetU32(uint32_t u32); #else DECLINLINE(unsigned) ASMBitLastSetU32(uint32_t u32) { # if RT_INLINE_ASM_USES_INTRIN unsigned long iBit; if (_BitScanReverse(&iBit, u32)) iBit++; else iBit = 0; # elif RT_INLINE_ASM_GNU_STYLE uint32_t iBit; __asm__ __volatile__("bsrl %1, %0\n\t" "jnz 1f\n\t" "xorl %0, %0\n\t" "jmp 2f\n" "1:\n\t" "incl %0\n" "2:\n\t" : "=r" (iBit) : "rm" (u32)); # else uint32_t iBit; _asm { bsr eax, [u32] jnz found xor eax, eax jmp done found: inc eax done: mov [iBit], eax } # endif return iBit; } #endif /** * Finds the last bit which is set in the given 32-bit integer. * Bits are numbered from 1 (least significant) to 32. * * @returns index [1..32] of the last set bit. * @returns 0 if all bits are cleared. * @param i32 Integer to search for set bits. * @remark Similar to fls() in BSD. */ DECLINLINE(unsigned) ASMBitLastSetS32(int32_t i32) { return ASMBitLastSetU32((uint32_t)i32); } /** * Reverse the byte order of the given 16-bit integer. * * @returns Revert * @param u16 16-bit integer value. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint16_t) ASMByteSwapU16(uint16_t u16); #else DECLINLINE(uint16_t) ASMByteSwapU16(uint16_t u16) { # if RT_INLINE_ASM_USES_INTRIN u16 = _byteswap_ushort(u16); # elif RT_INLINE_ASM_GNU_STYLE __asm__ ("rorw $8, %0" : "=r" (u16) : "0" (u16)); # else _asm { mov ax, [u16] ror ax, 8 mov [u16], ax } # endif return u16; } #endif /** * Reverse the byte order of the given 32-bit integer. * * @returns Revert * @param u32 32-bit integer value. */ #if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN DECLASM(uint32_t) ASMByteSwapU32(uint32_t u32); #else DECLINLINE(uint32_t) ASMByteSwapU32(uint32_t u32) { # if RT_INLINE_ASM_USES_INTRIN u32 = _byteswap_ulong(u32); # elif RT_INLINE_ASM_GNU_STYLE __asm__ ("bswapl %0" : "=r" (u32) : "0" (u32)); # else _asm { mov eax, [u32] bswap eax mov [u32], eax } # endif return u32; } #endif /** * Reverse the byte order of the given 64-bit integer. * * @returns Revert * @param u64 64-bit integer value. */ DECLINLINE(uint64_t) ASMByteSwapU64(uint64_t u64) { #if defined(RT_ARCH_AMD64) && RT_INLINE_ASM_USES_INTRIN u64 = _byteswap_uint64(u64); #else u64 = (uint64_t)ASMByteSwapU32((uint32_t)u64) << 32 | (uint64_t)ASMByteSwapU32((uint32_t)(u64 >> 32)); #endif return u64; } /** @} */ /** @} */ #endif