/** @file * IPRT - Big Integer Numbers. */ /* * Copyright (C) 2006-2014 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ #ifndef ___iprt_bignum_h #define ___iprt_bignum_h #include RT_C_DECLS_BEGIN /** @defgroup grp_rtbignum RTBigNum - Big Integer Numbers * @ingroup grp_rt * @{ */ /** The big integer number element type. */ typedef uint32_t RTBIGNUMELEMENT; /** The size (in bytes) of one array element. */ #define RTBIGNUM_ELEMENT_SIZE 4 /** The number of bits in one array element. */ #define RTBIGNUM_ELEMENT_BITS (RTBIGNUM_ELEMENT_SIZE * 8) /** Returns the bitmask corrsponding to given bit number. */ #define RTBIGNUM_ELEMENT_BIT(iBit) RT_BIT_32(iBit) /** * IPRT big integer number. */ typedef struct RTBIGNUM { /** Elements array where the magnitue of the value is stored. */ RTBIGNUMELEMENT *pauElements; /** The current number of elements we're using in the pauElements array. */ uint32_t cUsed; /** The current allocation size of pauElements. */ uint32_t cAllocated; /** Reserved for future use. */ uint32_t uReserved; /** Set if it's a negative number, clear if positive or zero. */ uint32_t fNegative : 1; /** Whether to use a the data is sensitive (RTBIGNUMINIT_F_SENSITIVE). */ uint32_t fSensitive : 1; /** The number is currently scrambled */ uint32_t fCurScrambled : 1; /** Bits reserved for future use. */ uint32_t fReserved : 30; } RTBIGNUM; RTDECL(int) RTBigNumInit(PRTBIGNUM pBigNum, uint32_t fFlags, void const *pvRaw, size_t cbRaw); RTDECL(int) RTBigNumInitZero(PRTBIGNUM pBigNum, uint32_t fFlags); /** @name RTBIGNUMINIT_F_XXX - RTBigNumInit flags. * @{ */ /** The number is sensitive so use a safer allocator, scramble it when not * in use, and apply RTMemWipeThoroughly before freeing. The RTMemSafer API * takes care of these things. * @note When using this flag, concurrent access is not possible! */ #define RTBIGNUMINIT_F_SENSITIVE RT_BIT(0) /** Big endian number. */ #define RTBIGNUMINIT_F_ENDIAN_BIG RT_BIT(1) /** Little endian number. */ #define RTBIGNUMINIT_F_ENDIAN_LITTLE RT_BIT(2) /** The raw number is unsigned. */ #define RTBIGNUMINIT_F_UNSIGNED RT_BIT(3) /** The raw number is signed. */ #define RTBIGNUMINIT_F_SIGNED RT_BIT(4) /** @} */ RTDECL(int) RTBigNumClone(PRTBIGNUM pBigNum, PCRTBIGNUM pSrc); RTDECL(int) RTBigNumDestroy(PRTBIGNUM pBigNum); /** * The minimum number of bits require store the two's complement representation * of the number. * * @returns Width in number of bits. * @param pBigNum The big number. */ RTDECL(uint32_t) RTBigNumBitWidth(PCRTBIGNUM pBigNum); RTDECL(uint32_t) RTBigNumByteWidth(PCRTBIGNUM pBigNum); /** * Converts the big number to a sign-extended big endian byte sequence. * * @returns IPRT status code * @retval VERR_BUFFER_OVERFLOW if the specified buffer is too small. * @param pBigNum The big number. * @param pvBuf The output buffer (size is at least cbWanted). * @param cbWanted The number of bytes wanted. */ RTDECL(int) RTBigNumToBytesBigEndian(PCRTBIGNUM pBigNum, void *pvBuf, size_t cbWanted); /** * Compares two numbers. * * @retval -1 if pLeft < pRight. * @retval 0 if pLeft == pRight. * @retval 1 if pLeft > pRight. * * @param pLeft The left side number. * @param pRight The right side number. */ RTDECL(int) RTBigNumCompare(PRTBIGNUM pLeft, PRTBIGNUM pRight); RTDECL(int) RTBigNumCompareWithU64(PRTBIGNUM pLeft, uint64_t uRight); RTDECL(int) RTBigNumCompareWithS64(PRTBIGNUM pLeft, int64_t iRight); RTDECL(int) RTBigNumAssign(PRTBIGNUM pDst, PCRTBIGNUM pSrc); RTDECL(int) RTBigNumNegate(PRTBIGNUM pResult, PCRTBIGNUM pBigNum); RTDECL(int) RTBigNumNegateThis(PRTBIGNUM pThis); RTDECL(int) RTBigNumAdd(PRTBIGNUM pResult, PCRTBIGNUM pAugend, PCRTBIGNUM pAddend); RTDECL(int) RTBigNumSubtract(PRTBIGNUM pResult, PCRTBIGNUM pMinuend, PCRTBIGNUM pSubtrahend); RTDECL(int) RTBigNumMultiply(PRTBIGNUM pResult, PCRTBIGNUM pMultiplicand, PCRTBIGNUM pMultiplier); RTDECL(int) RTBigNumDivide(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor); RTDECL(int) RTBigNumModulo(PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor); RTDECL(int) RTBigNumExponentiate(PRTBIGNUM pResult, PCRTBIGNUM pBase, PCRTBIGNUM pExponent); RTDECL(int) RTBigNumModExp(PRTBIGNUM pResult, PRTBIGNUM pBase, PRTBIGNUM pExponent, PRTBIGNUM pModulus); /** @} */ RT_C_DECLS_END #endif