1 | /** @file
|
---|
2 | * IPRT - Hardened AVL tree, unique key ranges.
|
---|
3 | */
|
---|
4 |
|
---|
5 | /*
|
---|
6 | * Copyright (C) 2022 Oracle Corporation
|
---|
7 | *
|
---|
8 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
9 | * available from http://www.virtualbox.org. This file is free software;
|
---|
10 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
11 | * General Public License (GPL) as published by the Free Software
|
---|
12 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
13 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
14 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
15 | *
|
---|
16 | * The contents of this file may alternatively be used under the terms
|
---|
17 | * of the Common Development and Distribution License Version 1.0
|
---|
18 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
19 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
20 | * CDDL are applicable instead of those of the GPL.
|
---|
21 | *
|
---|
22 | * You may elect to license modified versions of this file under the
|
---|
23 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
24 | */
|
---|
25 |
|
---|
26 | #ifndef IPRT_INCLUDED_cpp_hardavlrange_h
|
---|
27 | #define IPRT_INCLUDED_cpp_hardavlrange_h
|
---|
28 | #ifndef RT_WITHOUT_PRAGMA_ONCE
|
---|
29 | # pragma once
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <iprt/cpp/hardavlslaballocator.h>
|
---|
33 |
|
---|
34 | /** @defgroup grp_rt_cpp_hardavl Hardened AVL Trees
|
---|
35 | * @{
|
---|
36 | */
|
---|
37 |
|
---|
38 | /**
|
---|
39 | * Hardened AVL tree for nodes with key ranges.
|
---|
40 | *
|
---|
41 | * This is very crude and therefore expects the NodeType to feature:
|
---|
42 | * - Key and KeyLast members of KeyType.
|
---|
43 | * - idxLeft and idxRight members with type uint32_t.
|
---|
44 | * - cHeight members of type uint8_t.
|
---|
45 | *
|
---|
46 | * The code is very C-ish because of it's sources and initial use (ring-0
|
---|
47 | * without C++ exceptions enabled).
|
---|
48 | */
|
---|
49 | template<typename NodeType, typename KeyType>
|
---|
50 | struct RTCHardAvlRangeTree
|
---|
51 | {
|
---|
52 | /** The root index. */
|
---|
53 | uint32_t m_idxRoot;
|
---|
54 | /** The error count. */
|
---|
55 | uint32_t m_cErrors;
|
---|
56 |
|
---|
57 | /** The max stack depth. */
|
---|
58 | enum { kMaxStack = 28 };
|
---|
59 | /** The max height value we allow. */
|
---|
60 | enum { kMaxHeight = kMaxStack + 1 };
|
---|
61 |
|
---|
62 | /** A stack used internally to avoid recursive calls.
|
---|
63 | * This is used with operations invoking i_rebalance(). */
|
---|
64 | typedef struct HardAvlStack
|
---|
65 | {
|
---|
66 | /** Number of entries on the stack. */
|
---|
67 | unsigned cEntries;
|
---|
68 | /** The stack. */
|
---|
69 | uint32_t *apidxEntries[kMaxStack];
|
---|
70 | } HardAvlStack;
|
---|
71 |
|
---|
72 | /** @name Key comparisons
|
---|
73 | * @{ */
|
---|
74 | static inline int areKeyRangesIntersecting(KeyType a_Key1First, KeyType a_Key2First,
|
---|
75 | KeyType a_Key1Last, KeyType a_Key2Last) RT_NOEXCEPT
|
---|
76 | {
|
---|
77 | return a_Key1First <= a_Key2Last && a_Key1Last >= a_Key2First;
|
---|
78 | }
|
---|
79 |
|
---|
80 | static inline int isKeyInRange(KeyType a_Key, KeyType a_KeyFirst, KeyType a_KeyLast) RT_NOEXCEPT
|
---|
81 | {
|
---|
82 | return a_Key <= a_KeyLast && a_Key >= a_KeyFirst;
|
---|
83 | }
|
---|
84 |
|
---|
85 | static inline int isKeyGreater(KeyType a_Key1, KeyType a_Key2) RT_NOEXCEPT
|
---|
86 | {
|
---|
87 | return a_Key1 > a_Key2;
|
---|
88 | }
|
---|
89 | /** @} */
|
---|
90 |
|
---|
91 | RTCHardAvlRangeTree()
|
---|
92 | : m_idxRoot(0)
|
---|
93 | , m_cErrors(0)
|
---|
94 | { }
|
---|
95 |
|
---|
96 | RTCHardAvlRangeTree(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator)
|
---|
97 | : m_idxRoot(a_pAllocator->kNilIndex)
|
---|
98 | , m_cErrors(0)
|
---|
99 | { }
|
---|
100 |
|
---|
101 | /**
|
---|
102 | * Inserts a node into the AVL-tree.
|
---|
103 | *
|
---|
104 | * @returns IPRT status code.
|
---|
105 | * @retval VERR_ALREADY_EXISTS if a node with overlapping key range exists.
|
---|
106 | *
|
---|
107 | * @param a_pAllocator Pointer to the allocator.
|
---|
108 | * @param a_pNode Pointer to the node which is to be added.
|
---|
109 | *
|
---|
110 | * @code
|
---|
111 | * Find the location of the node (using binary tree algorithm.):
|
---|
112 | * LOOP until KAVL_NULL leaf pointer
|
---|
113 | * BEGIN
|
---|
114 | * Add node pointer pointer to the AVL-stack.
|
---|
115 | * IF new-node-key < node key THEN
|
---|
116 | * left
|
---|
117 | * ELSE
|
---|
118 | * right
|
---|
119 | * END
|
---|
120 | * Fill in leaf node and insert it.
|
---|
121 | * Rebalance the tree.
|
---|
122 | * @endcode
|
---|
123 | */
|
---|
124 | int insert(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, NodeType *a_pNode)
|
---|
125 | {
|
---|
126 | KeyType const Key = a_pNode->Key;
|
---|
127 | KeyType const KeyLast = a_pNode->KeyLast;
|
---|
128 | AssertMsgReturn(Key <= KeyLast, ("Key=%#RX64 KeyLast=%#RX64\n", (uint64_t)Key, (uint64_t)KeyLast),
|
---|
129 | VERR_HARDAVL_INSERT_INVALID_KEY_RANGE);
|
---|
130 |
|
---|
131 | uint32_t *pidxCurNode = &m_idxRoot;
|
---|
132 | HardAvlStack AVLStack;
|
---|
133 | AVLStack.cEntries = 0;
|
---|
134 | for (;;)
|
---|
135 | {
|
---|
136 | NodeType *pCurNode = a_pAllocator->ptrFromInt(*pidxCurNode);
|
---|
137 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pCurNode), ("*pidxCurNode=%#x pCurNode=%p\n", *pidxCurNode, pCurNode),
|
---|
138 | m_cErrors++, a_pAllocator->ptrErrToStatus(pCurNode));
|
---|
139 | if (!pCurNode)
|
---|
140 | break;
|
---|
141 |
|
---|
142 | unsigned const cEntries = AVLStack.cEntries;
|
---|
143 | AssertMsgReturnStmt(cEntries < RT_ELEMENTS(AVLStack.apidxEntries),
|
---|
144 | ("%p[%#x/%p] %p[%#x] %p[%#x] %p[%#x] %p[%#x] %p[%#x]\n", pidxCurNode, *pidxCurNode, pCurNode,
|
---|
145 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 1], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 1],
|
---|
146 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 2], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 2],
|
---|
147 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 3], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 3],
|
---|
148 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 4], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 4],
|
---|
149 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 5], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 5]),
|
---|
150 | m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
|
---|
151 | AVLStack.apidxEntries[cEntries] = pidxCurNode;
|
---|
152 | AVLStack.cEntries = cEntries + 1;
|
---|
153 |
|
---|
154 | /* Range check: */
|
---|
155 | if (areKeyRangesIntersecting(pCurNode->Key, Key, pCurNode->KeyLast, KeyLast))
|
---|
156 | return VERR_ALREADY_EXISTS;
|
---|
157 |
|
---|
158 | /* Descend: */
|
---|
159 | if (isKeyGreater(pCurNode->Key, Key))
|
---|
160 | pidxCurNode = &pCurNode->idxLeft;
|
---|
161 | else
|
---|
162 | pidxCurNode = &pCurNode->idxRight;
|
---|
163 | }
|
---|
164 |
|
---|
165 | a_pNode->idxLeft = a_pAllocator->kNilIndex;
|
---|
166 | a_pNode->idxRight = a_pAllocator->kNilIndex;
|
---|
167 | a_pNode->cHeight = 1;
|
---|
168 |
|
---|
169 | uint32_t const idxNode = a_pAllocator->ptrToInt(a_pNode);
|
---|
170 | AssertMsgReturn(a_pAllocator->isIdxRetOkay(idxNode), ("pNode=%p idxNode=%#x\n", a_pNode, idxNode),
|
---|
171 | a_pAllocator->idxErrToStatus(idxNode));
|
---|
172 | *pidxCurNode = idxNode;
|
---|
173 |
|
---|
174 | return i_rebalance(a_pAllocator, &AVLStack);
|
---|
175 | }
|
---|
176 |
|
---|
177 | /**
|
---|
178 | * Removes a node from the AVL-tree by a key value.
|
---|
179 | *
|
---|
180 | * @returns IPRT status code.
|
---|
181 | * @retval VERR_NOT_FOUND if not found.
|
---|
182 | * @param a_pAllocator Pointer to the allocator.
|
---|
183 | * @param a_Key A key value in the range of the node to be removed.
|
---|
184 | * @param a_ppRemoved Where to return the pointer to the removed node.
|
---|
185 | *
|
---|
186 | * @code
|
---|
187 | * Find the node which is to be removed:
|
---|
188 | * LOOP until not found
|
---|
189 | * BEGIN
|
---|
190 | * Add node pointer pointer to the AVL-stack.
|
---|
191 | * IF the keys matches THEN break!
|
---|
192 | * IF remove key < node key THEN
|
---|
193 | * left
|
---|
194 | * ELSE
|
---|
195 | * right
|
---|
196 | * END
|
---|
197 | * IF found THEN
|
---|
198 | * BEGIN
|
---|
199 | * IF left node not empty THEN
|
---|
200 | * BEGIN
|
---|
201 | * Find the right most node in the left tree while adding the pointer to the pointer to it's parent to the stack:
|
---|
202 | * Start at left node.
|
---|
203 | * LOOP until right node is empty
|
---|
204 | * BEGIN
|
---|
205 | * Add to stack.
|
---|
206 | * go right.
|
---|
207 | * END
|
---|
208 | * Link out the found node.
|
---|
209 | * Replace the node which is to be removed with the found node.
|
---|
210 | * Correct the stack entry for the pointer to the left tree.
|
---|
211 | * END
|
---|
212 | * ELSE
|
---|
213 | * BEGIN
|
---|
214 | * Move up right node.
|
---|
215 | * Remove last stack entry.
|
---|
216 | * END
|
---|
217 | * Balance tree using stack.
|
---|
218 | * END
|
---|
219 | * return pointer to the removed node (if found).
|
---|
220 | * @endcode
|
---|
221 | */
|
---|
222 | int remove(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, KeyType a_Key, NodeType **a_ppRemoved)
|
---|
223 | {
|
---|
224 | *a_ppRemoved = NULL;
|
---|
225 |
|
---|
226 | /*
|
---|
227 | * Walk the tree till we locate the node that is to be deleted.
|
---|
228 | */
|
---|
229 | uint32_t *pidxDeleteNode = &m_idxRoot;
|
---|
230 | NodeType *pDeleteNode;
|
---|
231 | HardAvlStack AVLStack;
|
---|
232 | AVLStack.cEntries = 0;
|
---|
233 | for (;;)
|
---|
234 | {
|
---|
235 | pDeleteNode = a_pAllocator->ptrFromInt(*pidxDeleteNode);
|
---|
236 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pDeleteNode),
|
---|
237 | ("*pidxCurNode=%#x pDeleteNode=%p\n", *pidxDeleteNode, pDeleteNode),
|
---|
238 | m_cErrors++, a_pAllocator->ptrErrToStatus(pDeleteNode));
|
---|
239 | if (pDeleteNode)
|
---|
240 | { /*likely*/ }
|
---|
241 | else
|
---|
242 | return VERR_NOT_FOUND;
|
---|
243 |
|
---|
244 | unsigned const cEntries = AVLStack.cEntries;
|
---|
245 | AssertMsgReturnStmt(cEntries < RT_ELEMENTS(AVLStack.apidxEntries),
|
---|
246 | ("%p[%#x/%p] %p[%#x] %p[%#x] %p[%#x] %p[%#x] %p[%#x]\n",
|
---|
247 | pidxDeleteNode, *pidxDeleteNode, pDeleteNode,
|
---|
248 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 1], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 1],
|
---|
249 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 2], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 2],
|
---|
250 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 3], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 3],
|
---|
251 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 4], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 4],
|
---|
252 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 5], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 5]),
|
---|
253 | m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
|
---|
254 | AVLStack.apidxEntries[cEntries] = pidxDeleteNode;
|
---|
255 | AVLStack.cEntries = cEntries + 1;
|
---|
256 |
|
---|
257 | /* Range check: */
|
---|
258 | if (isKeyInRange(a_Key, pDeleteNode->Key, pDeleteNode->KeyLast))
|
---|
259 | break;
|
---|
260 |
|
---|
261 | /* Descend: */
|
---|
262 | if (isKeyGreater(pDeleteNode->Key, a_Key))
|
---|
263 | pidxDeleteNode = &pDeleteNode->idxLeft;
|
---|
264 | else
|
---|
265 | pidxDeleteNode = &pDeleteNode->idxRight;
|
---|
266 | }
|
---|
267 |
|
---|
268 | /*
|
---|
269 | * Do the deletion.
|
---|
270 | */
|
---|
271 | if (pDeleteNode->idxLeft != a_pAllocator->kNilIndex)
|
---|
272 | {
|
---|
273 | /* find the rightmost node in the left tree. */
|
---|
274 | const unsigned iStackEntry = AVLStack.cEntries;
|
---|
275 | uint32_t *pidxLeftLeast = &pDeleteNode->idxLeft;
|
---|
276 | uint32_t idxLeftLeastNode = pDeleteNode->idxLeft;
|
---|
277 | NodeType *pLeftLeastNode = a_pAllocator->ptrFromInt(idxLeftLeastNode);
|
---|
278 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftLeastNode),
|
---|
279 | ("idxLeftLeastNode=%#x pLeftLeastNode=%p\n", idxLeftLeastNode, pLeftLeastNode),
|
---|
280 | m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftLeastNode));
|
---|
281 |
|
---|
282 | while (pLeftLeastNode->idxRight != a_pAllocator->kNilIndex)
|
---|
283 | {
|
---|
284 | unsigned const cEntries = AVLStack.cEntries;
|
---|
285 | AssertMsgReturnStmt(cEntries < RT_ELEMENTS(AVLStack.apidxEntries),
|
---|
286 | ("%p[%#x/%p] %p[%#x] %p[%#x] %p[%#x] %p[%#x] %p[%#x]\n",
|
---|
287 | pidxDeleteNode, *pidxDeleteNode, pDeleteNode,
|
---|
288 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 1], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 1],
|
---|
289 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 2], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 2],
|
---|
290 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 3], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 3],
|
---|
291 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 4], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 4],
|
---|
292 | AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 5], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 5]),
|
---|
293 | m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
|
---|
294 | AVLStack.apidxEntries[cEntries] = pidxDeleteNode;
|
---|
295 | AVLStack.cEntries = cEntries + 1;
|
---|
296 |
|
---|
297 | pidxLeftLeast = &pLeftLeastNode->idxRight;
|
---|
298 | idxLeftLeastNode = pLeftLeastNode->idxRight;
|
---|
299 | pLeftLeastNode = a_pAllocator->ptrFromInt(idxLeftLeastNode);
|
---|
300 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftLeastNode),
|
---|
301 | ("idxLeftLeastNode=%#x pLeftLeastNode=%p\n", idxLeftLeastNode, pLeftLeastNode),
|
---|
302 | m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftLeastNode));
|
---|
303 | }
|
---|
304 |
|
---|
305 | uint32_t const idxLeftLeastLeftNode = pLeftLeastNode->idxLeft;
|
---|
306 | AssertReturnStmt(a_pAllocator->isIntValid(idxLeftLeastLeftNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
|
---|
307 |
|
---|
308 | uint32_t const idxDeleteLeftNode = pDeleteNode->idxLeft;
|
---|
309 | AssertReturnStmt(a_pAllocator->isIntValid(idxDeleteLeftNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
|
---|
310 | uint32_t const idxDeleteRightNode = pDeleteNode->idxRight;
|
---|
311 | AssertReturnStmt(a_pAllocator->isIntValid(idxDeleteRightNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
|
---|
312 |
|
---|
313 | /* link out pLeftLeast */
|
---|
314 | *pidxLeftLeast = idxLeftLeastLeftNode;
|
---|
315 |
|
---|
316 | /* link it in place of the delete node. */
|
---|
317 | pLeftLeastNode->idxLeft = idxDeleteLeftNode;
|
---|
318 | pLeftLeastNode->idxRight = idxDeleteRightNode;
|
---|
319 | pLeftLeastNode->cHeight = pDeleteNode->cHeight;
|
---|
320 | *pidxDeleteNode = idxLeftLeastNode;
|
---|
321 | AVLStack.apidxEntries[iStackEntry] = &pLeftLeastNode->idxLeft;
|
---|
322 | }
|
---|
323 | else
|
---|
324 | {
|
---|
325 | /* No left node, just pull up the right one. */
|
---|
326 | uint32_t const idxDeleteRightNode = pDeleteNode->idxRight;
|
---|
327 | AssertReturnStmt(a_pAllocator->isIntValid(idxDeleteRightNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
|
---|
328 | *pidxDeleteNode = idxDeleteRightNode;
|
---|
329 | AVLStack.cEntries--;
|
---|
330 | }
|
---|
331 | *a_ppRemoved = pDeleteNode;
|
---|
332 |
|
---|
333 | return i_rebalance(a_pAllocator, &AVLStack);
|
---|
334 | }
|
---|
335 |
|
---|
336 | /**
|
---|
337 | * Looks up a node from the tree.
|
---|
338 | *
|
---|
339 | * @returns IPRT status code.
|
---|
340 | * @retval VERR_NOT_FOUND if not found.
|
---|
341 | *
|
---|
342 | * @param a_pAllocator Pointer to the allocator.
|
---|
343 | * @param a_Key A key value in the range of the desired node.
|
---|
344 | * @param a_ppFound Where to return the pointer to the node.
|
---|
345 | */
|
---|
346 | int lookup(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, KeyType a_Key, NodeType **a_ppFound)
|
---|
347 | {
|
---|
348 | *a_ppFound = NULL;
|
---|
349 |
|
---|
350 | NodeType *pNode = a_pAllocator->ptrFromInt(m_idxRoot);
|
---|
351 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("m_idxRoot=%#x pNode=%p\n", m_idxRoot, pNode),
|
---|
352 | m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
|
---|
353 |
|
---|
354 | unsigned cDepth = 0;
|
---|
355 | while (pNode)
|
---|
356 | {
|
---|
357 | AssertReturn(cDepth <= kMaxHeight, VERR_HARDAVL_LOOKUP_TOO_DEEP);
|
---|
358 | cDepth++;
|
---|
359 |
|
---|
360 | if (isKeyInRange(a_Key, pNode->Key, pNode->KeyLast))
|
---|
361 | {
|
---|
362 | *a_ppFound = pNode;
|
---|
363 | return VINF_SUCCESS;
|
---|
364 | }
|
---|
365 | if (isKeyGreater(pNode->Key, a_Key))
|
---|
366 | {
|
---|
367 | uint32_t const idxLeft = pNode->idxLeft;
|
---|
368 | pNode = a_pAllocator->ptrFromInt(idxLeft);
|
---|
369 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("idxLeft=%#x pNode=%p\n", idxLeft, pNode),
|
---|
370 | m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
|
---|
371 | }
|
---|
372 | else
|
---|
373 | {
|
---|
374 | uint32_t const idxRight = pNode->idxRight;
|
---|
375 | pNode = a_pAllocator->ptrFromInt(idxRight);
|
---|
376 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("idxRight=%#x pNode=%p\n", idxRight, pNode),
|
---|
377 | m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
|
---|
378 | }
|
---|
379 | }
|
---|
380 |
|
---|
381 | return VERR_NOT_FOUND;
|
---|
382 | }
|
---|
383 |
|
---|
384 | /**
|
---|
385 | * A callback for doWithAllFromLeft and doWithAllFromRight.
|
---|
386 | *
|
---|
387 | * @returns IPRT status code. Any non-zero status causes immediate return from
|
---|
388 | * the enumeration function.
|
---|
389 | * @param pNode The current node.
|
---|
390 | * @param pvUser The user argument.
|
---|
391 | */
|
---|
392 | typedef DECLCALLBACKTYPE(int, FNCALLBACK,(NodeType *pNode, void *pvUser));
|
---|
393 | /** Pointer to a callback for doWithAllFromLeft and doWithAllFromRight. */
|
---|
394 | typedef FNCALLBACK *PFNCALLBACK;
|
---|
395 |
|
---|
396 | /**
|
---|
397 | * Iterates thru all nodes in the tree from left (smaller) to right.
|
---|
398 | *
|
---|
399 | * @returns IPRT status code.
|
---|
400 | *
|
---|
401 | * @param a_pAllocator Pointer to the allocator.
|
---|
402 | * @param a_pfnCallBack Pointer to callback function.
|
---|
403 | * @param a_pvUser Callback user argument.
|
---|
404 | */
|
---|
405 | int doWithAllFromLeft(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, PFNCALLBACK a_pfnCallBack, void *a_pvUser)
|
---|
406 | {
|
---|
407 | NodeType *pNode = a_pAllocator->ptrFromInt(m_idxRoot);
|
---|
408 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("m_idxRoot=%#x pNode=%p\n", m_idxRoot, pNode),
|
---|
409 | m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
|
---|
410 | if (!pNode)
|
---|
411 | return VINF_SUCCESS;
|
---|
412 |
|
---|
413 | /*
|
---|
414 | * We simulate recursive calling here. For safety reasons, we do not
|
---|
415 | * pop before going down the right tree like the original code did.
|
---|
416 | */
|
---|
417 | uint32_t cNodesLeft = a_pAllocator->m_cNodes;
|
---|
418 | NodeType *apEntries[kMaxStack];
|
---|
419 | uint8_t abState[kMaxStack];
|
---|
420 | unsigned cEntries = 1;
|
---|
421 | abState[0] = 0;
|
---|
422 | apEntries[0] = pNode;
|
---|
423 | while (cEntries > 0)
|
---|
424 | {
|
---|
425 | pNode = apEntries[cEntries - 1];
|
---|
426 | switch (abState[cEntries - 1])
|
---|
427 | {
|
---|
428 | /* Go left. */
|
---|
429 | case 0:
|
---|
430 | {
|
---|
431 | abState[cEntries - 1] = 1;
|
---|
432 |
|
---|
433 | NodeType * const pLeftNode = a_pAllocator->ptrFromInt(pNode->idxLeft);
|
---|
434 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftNode),
|
---|
435 | ("idxLeft=%#x pLeftNode=%p\n", pNode->idxLeft, pLeftNode),
|
---|
436 | m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftNode));
|
---|
437 | if (pLeftNode)
|
---|
438 | {
|
---|
439 | AssertCompile(kMaxStack > 6);
|
---|
440 | AssertMsgReturnStmt(cEntries < RT_ELEMENTS(apEntries),
|
---|
441 | ("%p[%#x] %p %p %p %p %p %p\n", pLeftNode, pNode->idxLeft, apEntries[kMaxStack - 1],
|
---|
442 | apEntries[kMaxStack - 2], apEntries[kMaxStack - 3], apEntries[kMaxStack - 4],
|
---|
443 | apEntries[kMaxStack - 5], apEntries[kMaxStack - 6]),
|
---|
444 | m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
|
---|
445 | apEntries[cEntries] = pLeftNode;
|
---|
446 | abState[cEntries] = 0;
|
---|
447 | cEntries++;
|
---|
448 |
|
---|
449 | AssertReturn(cNodesLeft > 0, VERR_HARDAVL_TRAVERSED_TOO_MANY_NODES);
|
---|
450 | cNodesLeft--;
|
---|
451 | break;
|
---|
452 | }
|
---|
453 | RT_FALL_THROUGH();
|
---|
454 | }
|
---|
455 |
|
---|
456 | /* center then right. */
|
---|
457 | case 1:
|
---|
458 | {
|
---|
459 | abState[cEntries - 1] = 2;
|
---|
460 |
|
---|
461 | int rc = a_pfnCallBack(pNode, a_pvUser);
|
---|
462 | if (rc != VINF_SUCCESS)
|
---|
463 | return rc;
|
---|
464 |
|
---|
465 | NodeType * const pRightNode = a_pAllocator->ptrFromInt(pNode->idxRight);
|
---|
466 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightNode),
|
---|
467 | ("idxRight=%#x pRightNode=%p\n", pNode->idxRight, pRightNode),
|
---|
468 | m_cErrors++, a_pAllocator->ptrErrToStatus(pRightNode));
|
---|
469 | if (pRightNode)
|
---|
470 | {
|
---|
471 | AssertCompile(kMaxStack > 6);
|
---|
472 | AssertMsgReturnStmt(cEntries < RT_ELEMENTS(apEntries),
|
---|
473 | ("%p[%#x] %p %p %p %p %p %p\n", pRightNode, pNode->idxRight, apEntries[kMaxStack - 1],
|
---|
474 | apEntries[kMaxStack - 2], apEntries[kMaxStack - 3], apEntries[kMaxStack - 4],
|
---|
475 | apEntries[kMaxStack - 5], apEntries[kMaxStack - 6]),
|
---|
476 | m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
|
---|
477 | apEntries[cEntries] = pRightNode;
|
---|
478 | abState[cEntries] = 0;
|
---|
479 | cEntries++;
|
---|
480 |
|
---|
481 | AssertReturn(cNodesLeft > 0, VERR_HARDAVL_TRAVERSED_TOO_MANY_NODES);
|
---|
482 | cNodesLeft--;
|
---|
483 | break;
|
---|
484 | }
|
---|
485 | RT_FALL_THROUGH();
|
---|
486 | }
|
---|
487 |
|
---|
488 | default:
|
---|
489 | /* pop it. */
|
---|
490 | cEntries -= 1;
|
---|
491 | break;
|
---|
492 | }
|
---|
493 | }
|
---|
494 | return VINF_SUCCESS;
|
---|
495 | }
|
---|
496 |
|
---|
497 | /**
|
---|
498 | * A callback for destroy to do additional cleanups before the node is freed.
|
---|
499 | *
|
---|
500 | * @param pNode The current node.
|
---|
501 | * @param pvUser The user argument.
|
---|
502 | */
|
---|
503 | typedef DECLCALLBACKTYPE(void, FNDESTROYCALLBACK,(NodeType *pNode, void *pvUser));
|
---|
504 | /** Pointer to a callback for destroy. */
|
---|
505 | typedef FNDESTROYCALLBACK *PFNDESTROYCALLBACK;
|
---|
506 |
|
---|
507 | /**
|
---|
508 | * Destroys the tree, starting with the root node.
|
---|
509 | *
|
---|
510 | * This will invoke the freeNode() method on the allocate for every node after
|
---|
511 | * first doing the callback to let the caller free additional resources
|
---|
512 | * referenced by the node.
|
---|
513 | *
|
---|
514 | * @returns IPRT status code.
|
---|
515 | *
|
---|
516 | * @param a_pAllocator Pointer to the allocator.
|
---|
517 | * @param a_pfnCallBack Pointer to callback function. Optional.
|
---|
518 | * @param a_pvUser Callback user argument.
|
---|
519 | *
|
---|
520 | * @note This is mostly the same code as the doWithAllFromLeft().
|
---|
521 | */
|
---|
522 | int destroy(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, PFNDESTROYCALLBACK a_pfnCallBack = NULL, void *a_pvUser = NULL)
|
---|
523 | {
|
---|
524 | NodeType *pNode = a_pAllocator->ptrFromInt(m_idxRoot);
|
---|
525 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("m_idxRoot=%#x pNode=%p\n", m_idxRoot, pNode),
|
---|
526 | m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
|
---|
527 | if (!pNode)
|
---|
528 | return VINF_SUCCESS;
|
---|
529 |
|
---|
530 | /*
|
---|
531 | * We simulate recursive calling here. For safety reasons, we do not
|
---|
532 | * pop before going down the right tree like the original code did.
|
---|
533 | */
|
---|
534 | uint32_t cNodesLeft = a_pAllocator->m_cNodes;
|
---|
535 | NodeType *apEntries[kMaxStack];
|
---|
536 | uint8_t abState[kMaxStack];
|
---|
537 | unsigned cEntries = 1;
|
---|
538 | abState[0] = 0;
|
---|
539 | apEntries[0] = pNode;
|
---|
540 | while (cEntries > 0)
|
---|
541 | {
|
---|
542 | pNode = apEntries[cEntries - 1];
|
---|
543 | switch (abState[cEntries - 1])
|
---|
544 | {
|
---|
545 | /* Go left. */
|
---|
546 | case 0:
|
---|
547 | {
|
---|
548 | abState[cEntries - 1] = 1;
|
---|
549 |
|
---|
550 | NodeType * const pLeftNode = a_pAllocator->ptrFromInt(pNode->idxLeft);
|
---|
551 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftNode),
|
---|
552 | ("idxLeft=%#x pLeftNode=%p\n", pNode->idxLeft, pLeftNode),
|
---|
553 | m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftNode));
|
---|
554 | if (pLeftNode)
|
---|
555 | {
|
---|
556 | AssertCompile(kMaxStack > 6);
|
---|
557 | AssertMsgReturnStmt(cEntries < RT_ELEMENTS(apEntries),
|
---|
558 | ("%p[%#x] %p %p %p %p %p %p\n", pLeftNode, pNode->idxLeft, apEntries[kMaxStack - 1],
|
---|
559 | apEntries[kMaxStack - 2], apEntries[kMaxStack - 3], apEntries[kMaxStack - 4],
|
---|
560 | apEntries[kMaxStack - 5], apEntries[kMaxStack - 6]),
|
---|
561 | m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
|
---|
562 | apEntries[cEntries] = pLeftNode;
|
---|
563 | abState[cEntries] = 0;
|
---|
564 | cEntries++;
|
---|
565 |
|
---|
566 | AssertReturn(cNodesLeft > 0, VERR_HARDAVL_TRAVERSED_TOO_MANY_NODES);
|
---|
567 | cNodesLeft--;
|
---|
568 | break;
|
---|
569 | }
|
---|
570 | RT_FALL_THROUGH();
|
---|
571 | }
|
---|
572 |
|
---|
573 | /* right. */
|
---|
574 | case 1:
|
---|
575 | {
|
---|
576 | abState[cEntries - 1] = 2;
|
---|
577 |
|
---|
578 | NodeType * const pRightNode = a_pAllocator->ptrFromInt(pNode->idxRight);
|
---|
579 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightNode),
|
---|
580 | ("idxRight=%#x pRightNode=%p\n", pNode->idxRight, pRightNode),
|
---|
581 | m_cErrors++, a_pAllocator->ptrErrToStatus(pRightNode));
|
---|
582 | if (pRightNode)
|
---|
583 | {
|
---|
584 | AssertCompile(kMaxStack > 6);
|
---|
585 | AssertMsgReturnStmt(cEntries < RT_ELEMENTS(apEntries),
|
---|
586 | ("%p[%#x] %p %p %p %p %p %p\n", pRightNode, pNode->idxRight, apEntries[kMaxStack - 1],
|
---|
587 | apEntries[kMaxStack - 2], apEntries[kMaxStack - 3], apEntries[kMaxStack - 4],
|
---|
588 | apEntries[kMaxStack - 5], apEntries[kMaxStack - 6]),
|
---|
589 | m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
|
---|
590 | apEntries[cEntries] = pRightNode;
|
---|
591 | abState[cEntries] = 0;
|
---|
592 | cEntries++;
|
---|
593 |
|
---|
594 | AssertReturn(cNodesLeft > 0, VERR_HARDAVL_TRAVERSED_TOO_MANY_NODES);
|
---|
595 | cNodesLeft--;
|
---|
596 | break;
|
---|
597 | }
|
---|
598 | RT_FALL_THROUGH();
|
---|
599 | }
|
---|
600 |
|
---|
601 | default:
|
---|
602 | {
|
---|
603 | /* pop it and destroy it. */
|
---|
604 | if (a_pfnCallBack)
|
---|
605 | a_pfnCallBack(pNode, a_pvUser);
|
---|
606 |
|
---|
607 | int rc = a_pAllocator->freeNode(pNode);
|
---|
608 | AssertRCReturnStmt(rc, m_cErrors++, rc);
|
---|
609 |
|
---|
610 | cEntries -= 1;
|
---|
611 | break;
|
---|
612 | }
|
---|
613 | }
|
---|
614 | }
|
---|
615 |
|
---|
616 | Assert(m_idxRoot == a_pAllocator->kNilIndex);
|
---|
617 | return VINF_SUCCESS;
|
---|
618 | }
|
---|
619 |
|
---|
620 | private:
|
---|
621 | /**
|
---|
622 | * Rewinds a stack of pointers to pointers to nodes, rebalancing the tree.
|
---|
623 | *
|
---|
624 | * @returns IPRT status code.
|
---|
625 | *
|
---|
626 | * @param a_pAllocator Pointer to the allocator.
|
---|
627 | * @param a_pStack Pointer to stack to rewind.
|
---|
628 | *
|
---|
629 | * @code
|
---|
630 | * LOOP thru all stack entries
|
---|
631 | * BEGIN
|
---|
632 | * Get pointer to pointer to node (and pointer to node) from the stack.
|
---|
633 | * IF 2 higher left subtree than in right subtree THEN
|
---|
634 | * BEGIN
|
---|
635 | * IF higher (or equal) left-sub-subtree than right-sub-subtree THEN
|
---|
636 | * * n+2|n+3
|
---|
637 | * / \ / \
|
---|
638 | * n+2 n ==> n+1 n+1|n+2
|
---|
639 | * / \ / \
|
---|
640 | * n+1 n|n+1 n|n+1 n
|
---|
641 | *
|
---|
642 | * Or with keys:
|
---|
643 | *
|
---|
644 | * 4 2
|
---|
645 | * / \ / \
|
---|
646 | * 2 5 ==> 1 4
|
---|
647 | * / \ / \
|
---|
648 | * 1 3 3 5
|
---|
649 | *
|
---|
650 | * ELSE
|
---|
651 | * * n+2
|
---|
652 | * / \ / \
|
---|
653 | * n+2 n n+1 n+1
|
---|
654 | * / \ ==> / \ / \
|
---|
655 | * n n+1 n L R n
|
---|
656 | * / \
|
---|
657 | * L R
|
---|
658 | *
|
---|
659 | * Or with keys:
|
---|
660 | * 6 4
|
---|
661 | * / \ / \
|
---|
662 | * 2 7 ==> 2 6
|
---|
663 | * / \ / \ / \
|
---|
664 | * 1 4 1 3 5 7
|
---|
665 | * / \
|
---|
666 | * 3 5
|
---|
667 | * END
|
---|
668 | * ELSE IF 2 higher in right subtree than in left subtree THEN
|
---|
669 | * BEGIN
|
---|
670 | * Same as above but left <==> right. (invert the picture)
|
---|
671 | * ELSE
|
---|
672 | * IF correct height THEN break
|
---|
673 | * ELSE correct height.
|
---|
674 | * END
|
---|
675 | * @endcode
|
---|
676 | * @internal
|
---|
677 | */
|
---|
678 | int i_rebalance(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, HardAvlStack *a_pStack)
|
---|
679 | {
|
---|
680 | while (a_pStack->cEntries > 0)
|
---|
681 | {
|
---|
682 | /* pop */
|
---|
683 | uint32_t * const pidxNode = a_pStack->apidxEntries[--a_pStack->cEntries];
|
---|
684 | uint32_t const idxNode = *pidxNode;
|
---|
685 | NodeType * const pNode = a_pAllocator->ptrFromInt(idxNode);
|
---|
686 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode),
|
---|
687 | ("pidxNode=%p[%#x] pNode=%p\n", pidxNode, *pidxNode, pNode),
|
---|
688 | m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
|
---|
689 |
|
---|
690 | /* Read node properties: */
|
---|
691 | uint32_t const idxLeftNode = pNode->idxLeft;
|
---|
692 | NodeType * const pLeftNode = a_pAllocator->ptrFromInt(idxLeftNode);
|
---|
693 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftNode),
|
---|
694 | ("idxLeftNode=%#x pLeftNode=%p\n", idxLeftNode, pLeftNode),
|
---|
695 | m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftNode));
|
---|
696 |
|
---|
697 | uint32_t const idxRightNode = pNode->idxRight;
|
---|
698 | NodeType * const pRightNode = a_pAllocator->ptrFromInt(idxRightNode);
|
---|
699 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightNode),
|
---|
700 | ("idxRight=%#x pRightNode=%p\n", idxRightNode, pRightNode),
|
---|
701 | m_cErrors++, a_pAllocator->ptrErrToStatus(pRightNode));
|
---|
702 |
|
---|
703 | uint8_t const cLeftHeight = pLeftNode ? pLeftNode->cHeight : 0;
|
---|
704 | AssertReturnStmt(cLeftHeight <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_LEFT_HEIGHT);
|
---|
705 |
|
---|
706 | uint8_t const cRightHeight = pRightNode ? pRightNode->cHeight : 0;
|
---|
707 | AssertReturnStmt(cRightHeight <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_RIGHT_HEIGHT);
|
---|
708 |
|
---|
709 | /* Decide what needs doing: */
|
---|
710 | if (cRightHeight + 1 < cLeftHeight)
|
---|
711 | {
|
---|
712 | AssertReturnStmt(pLeftNode, m_cErrors++, VERR_HARDAVL_UNEXPECTED_NULL_LEFT);
|
---|
713 |
|
---|
714 | uint32_t const idxLeftLeftNode = pLeftNode->idxLeft;
|
---|
715 | NodeType * const pLeftLeftNode = a_pAllocator->ptrFromInt(idxLeftLeftNode);
|
---|
716 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftLeftNode),
|
---|
717 | ("idxLeftLeftNode=%#x pLeftLeftNode=%p\n", idxLeftLeftNode, pLeftLeftNode),
|
---|
718 | m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftLeftNode));
|
---|
719 |
|
---|
720 | uint32_t const idxLeftRightNode = pLeftNode->idxRight;
|
---|
721 | NodeType * const pLeftRightNode = a_pAllocator->ptrFromInt(idxLeftRightNode);
|
---|
722 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftRightNode),
|
---|
723 | ("idxLeftRightNode=%#x pLeftRightNode=%p\n", idxLeftRightNode, pLeftRightNode),
|
---|
724 | m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftRightNode));
|
---|
725 |
|
---|
726 | uint8_t const cLeftRightHeight = pLeftRightNode ? pLeftRightNode->cHeight : 0;
|
---|
727 | if ((pLeftLeftNode ? pLeftLeftNode->cHeight : 0) >= cLeftRightHeight)
|
---|
728 | {
|
---|
729 | AssertReturnStmt(cLeftRightHeight + 2 <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_NEW_HEIGHT);
|
---|
730 | pNode->idxLeft = idxLeftRightNode;
|
---|
731 | pNode->cHeight = (uint8_t)(cLeftRightHeight + 1);
|
---|
732 | pLeftNode->cHeight = (uint8_t)(cLeftRightHeight + 2);
|
---|
733 | pLeftNode->idxRight = idxNode;
|
---|
734 | *pidxNode = idxLeftNode;
|
---|
735 | }
|
---|
736 | else
|
---|
737 | {
|
---|
738 | AssertReturnStmt(cLeftRightHeight <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_RIGHT_HEIGHT);
|
---|
739 | AssertReturnStmt(pLeftRightNode, m_cErrors++, VERR_HARDAVL_UNEXPECTED_NULL_RIGHT);
|
---|
740 |
|
---|
741 | uint32_t const idxLeftRightLeftNode = pLeftRightNode->idxLeft;
|
---|
742 | AssertReturnStmt(a_pAllocator->isIntValid(idxLeftRightLeftNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
|
---|
743 | uint32_t const idxLeftRightRightNode = pLeftRightNode->idxRight;
|
---|
744 | AssertReturnStmt(a_pAllocator->isIntValid(idxLeftRightRightNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
|
---|
745 | pLeftNode->idxRight = idxLeftRightLeftNode;
|
---|
746 | pNode->idxLeft = idxLeftRightRightNode;
|
---|
747 |
|
---|
748 | pLeftRightNode->idxLeft = idxLeftNode;
|
---|
749 | pLeftRightNode->idxRight = idxNode;
|
---|
750 | pLeftNode->cHeight = cLeftRightHeight;
|
---|
751 | pNode->cHeight = cLeftRightHeight;
|
---|
752 | pLeftRightNode->cHeight = cLeftHeight;
|
---|
753 | *pidxNode = idxLeftRightNode;
|
---|
754 | }
|
---|
755 | }
|
---|
756 | else if (cLeftHeight + 1 < cRightHeight)
|
---|
757 | {
|
---|
758 | AssertReturnStmt(pRightNode, m_cErrors++, VERR_HARDAVL_UNEXPECTED_NULL_RIGHT);
|
---|
759 |
|
---|
760 | uint32_t const idxRightLeftNode = pRightNode->idxLeft;
|
---|
761 | NodeType * const pRightLeftNode = a_pAllocator->ptrFromInt(idxRightLeftNode);
|
---|
762 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightLeftNode),
|
---|
763 | ("idxRightLeftNode=%#x pRightLeftNode=%p\n", idxRightLeftNode, pRightLeftNode),
|
---|
764 | m_cErrors++, a_pAllocator->ptrErrToStatus(pRightLeftNode));
|
---|
765 |
|
---|
766 | uint32_t const idxRightRightNode = pRightNode->idxRight;
|
---|
767 | NodeType * const pRightRightNode = a_pAllocator->ptrFromInt(idxRightRightNode);
|
---|
768 | AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightRightNode),
|
---|
769 | ("idxRightRightNode=%#x pRightRightNode=%p\n", idxRightRightNode, pRightRightNode),
|
---|
770 | m_cErrors++, a_pAllocator->ptrErrToStatus(pRightRightNode));
|
---|
771 |
|
---|
772 | uint8_t const cRightLeftHeight = pRightLeftNode ? pRightLeftNode->cHeight : 0;
|
---|
773 | if ((pRightRightNode ? pRightRightNode->cHeight : 0) >= cRightLeftHeight)
|
---|
774 | {
|
---|
775 | AssertReturnStmt(cRightLeftHeight + 2 <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_NEW_HEIGHT);
|
---|
776 |
|
---|
777 | pNode->idxRight = idxRightLeftNode;
|
---|
778 | pRightNode->idxLeft = idxNode;
|
---|
779 | pNode->cHeight = (uint8_t)(cRightLeftHeight + 1);
|
---|
780 | pRightNode->cHeight = (uint8_t)(cRightLeftHeight + 2);
|
---|
781 | *pidxNode = idxRightNode;
|
---|
782 | }
|
---|
783 | else
|
---|
784 | {
|
---|
785 | AssertReturnStmt(cRightLeftHeight <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_LEFT_HEIGHT);
|
---|
786 | AssertReturnStmt(pRightLeftNode, m_cErrors++, VERR_HARDAVL_UNEXPECTED_NULL_LEFT);
|
---|
787 |
|
---|
788 | uint32_t const idxRightLeftRightNode = pRightLeftNode->idxRight;
|
---|
789 | AssertReturnStmt(a_pAllocator->isIntValid(idxRightLeftRightNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
|
---|
790 | uint32_t const idxRightLeftLeftNode = pRightLeftNode->idxLeft;
|
---|
791 | AssertReturnStmt(a_pAllocator->isIntValid(idxRightLeftLeftNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
|
---|
792 | pRightNode->idxLeft = idxRightLeftRightNode;
|
---|
793 | pNode->idxRight = idxRightLeftLeftNode;
|
---|
794 | pRightLeftNode->idxRight = idxRightNode;
|
---|
795 | pRightLeftNode->idxLeft = idxNode;
|
---|
796 | pRightNode->cHeight = cRightLeftHeight;
|
---|
797 | pNode->cHeight = cRightLeftHeight;
|
---|
798 | pRightLeftNode->cHeight = cRightHeight;
|
---|
799 | *pidxNode = idxRightLeftNode;
|
---|
800 | }
|
---|
801 | }
|
---|
802 | else
|
---|
803 | {
|
---|
804 | uint8_t const cHeight = (uint8_t)(RT_MAX(cLeftHeight, cRightHeight) + 1);
|
---|
805 | AssertReturnStmt(cHeight <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_NEW_HEIGHT);
|
---|
806 | if (cHeight == pNode->cHeight)
|
---|
807 | break;
|
---|
808 | pNode->cHeight = cHeight;
|
---|
809 | }
|
---|
810 | }
|
---|
811 | return VINF_SUCCESS;
|
---|
812 | }
|
---|
813 | };
|
---|
814 |
|
---|
815 | /** @} */
|
---|
816 |
|
---|
817 | #endif /* !IPRT_INCLUDED_cpp_hardavlrange_h */
|
---|
818 |
|
---|