VirtualBox

source: vbox/trunk/include/iprt/mem.h@ 30827

Last change on this file since 30827 was 30827, checked in by vboxsync, 14 years ago

iprt/mem.h: Added RTMemWipeThoroughly().

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 24.2 KB
Line 
1/** @file
2 * IPRT - Memory Management and Manipulation.
3 */
4
5/*
6 * Copyright (C) 2006-2010 Oracle Corporation
7 *
8 * This file is part of VirtualBox Open Source Edition (OSE), as
9 * available from http://www.virtualbox.org. This file is free software;
10 * you can redistribute it and/or modify it under the terms of the GNU
11 * General Public License (GPL) as published by the Free Software
12 * Foundation, in version 2 as it comes in the "COPYING" file of the
13 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
14 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
15 *
16 * The contents of this file may alternatively be used under the terms
17 * of the Common Development and Distribution License Version 1.0
18 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
19 * VirtualBox OSE distribution, in which case the provisions of the
20 * CDDL are applicable instead of those of the GPL.
21 *
22 * You may elect to license modified versions of this file under the
23 * terms and conditions of either the GPL or the CDDL or both.
24 */
25
26#ifndef ___iprt_mem_h
27#define ___iprt_mem_h
28
29
30#include <iprt/cdefs.h>
31#include <iprt/types.h>
32#ifdef __cplusplus /** @todo remove when spitting. */
33# include <iprt/cpp/autores.h>
34#endif
35
36
37#ifdef IN_RC
38# error "There are no RTMem APIs available Guest Context!"
39#endif
40
41
42/** @defgroup grp_rt_mem RTMem - Memory Management and Manipulation
43 * @ingroup grp_rt
44 * @{
45 */
46
47RT_C_DECLS_BEGIN
48
49/** @def RTMEM_ALIGNMENT
50 * The alignment of the memory blocks returned by RTMemAlloc(), RTMemAllocZ(),
51 * RTMemRealloc(), RTMemTmpAlloc() and RTMemTmpAllocZ() for allocations greater
52 * than RTMEM_ALIGNMENT.
53 *
54 * @note This alignment is not forced if the electric fence is active!
55 */
56#define RTMEM_ALIGNMENT 8
57
58/**
59 * Allocates temporary memory.
60 *
61 * Temporary memory blocks are used for not too large memory blocks which
62 * are believed not to stick around for too long. Using this API instead
63 * of RTMemAlloc() not only gives the heap manager room for optimization
64 * but makes the code easier to read.
65 *
66 * @returns Pointer to the allocated memory.
67 * @returns NULL on failure.
68 * @param cb Size in bytes of the memory block to allocated.
69 */
70RTDECL(void *) RTMemTmpAlloc(size_t cb) RT_NO_THROW;
71
72/**
73 * Allocates zero'ed temporary memory.
74 *
75 * Same as RTMemTmpAlloc() but the memory will be zero'ed.
76 *
77 * @returns Pointer to the allocated memory.
78 * @returns NULL on failure.
79 * @param cb Size in bytes of the memory block to allocated.
80 */
81RTDECL(void *) RTMemTmpAllocZ(size_t cb) RT_NO_THROW;
82
83/**
84 * Free temporary memory.
85 *
86 * @param pv Pointer to memory block.
87 */
88RTDECL(void) RTMemTmpFree(void *pv) RT_NO_THROW;
89
90
91/**
92 * Allocates memory.
93 *
94 * @returns Pointer to the allocated memory.
95 * @returns NULL on failure.
96 * @param cb Size in bytes of the memory block to allocated.
97 */
98RTDECL(void *) RTMemAlloc(size_t cb) RT_NO_THROW;
99
100/**
101 * Allocates zero'ed memory.
102 *
103 * Instead of memset(pv, 0, sizeof()) use this when you want zero'ed
104 * memory. This keeps the code smaller and the heap can skip the memset
105 * in about 0.42% of calls :-).
106 *
107 * @returns Pointer to the allocated memory.
108 * @returns NULL on failure.
109 * @param cb Size in bytes of the memory block to allocated.
110 */
111RTDECL(void *) RTMemAllocZ(size_t cb) RT_NO_THROW;
112
113/**
114 * Wrapper around RTMemAlloc for automatically aligning variable sized
115 * allocations so that the various electric fence heaps works correctly.
116 *
117 * @returns See RTMemAlloc.
118 * @param cbUnaligned The unaligned size.
119 */
120RTDECL(void *) RTMemAllocVar(size_t cbUnaligned);
121
122/**
123 * Wrapper around RTMemAllocZ for automatically aligning variable sized
124 * allocations so that the various electric fence heaps works correctly.
125 *
126 * @returns See RTMemAllocZ.
127 * @param cbUnaligned The unaligned size.
128 */
129RTDECL(void *) RTMemAllocZVar(size_t cbUnaligned);
130
131/**
132 * Duplicates a chunk of memory into a new heap block.
133 *
134 * @returns New heap block with the duplicate data.
135 * @returns NULL if we're out of memory.
136 * @param pvSrc The memory to duplicate.
137 * @param cb The amount of memory to duplicate.
138 */
139RTDECL(void *) RTMemDup(const void *pvSrc, size_t cb) RT_NO_THROW;
140
141/**
142 * Duplicates a chunk of memory into a new heap block with some
143 * additional zeroed memory.
144 *
145 * @returns New heap block with the duplicate data.
146 * @returns NULL if we're out of memory.
147 * @param pvSrc The memory to duplicate.
148 * @param cbSrc The amount of memory to duplicate.
149 * @param cbExtra The amount of extra memory to allocate and zero.
150 */
151RTDECL(void *) RTMemDupEx(const void *pvSrc, size_t cbSrc, size_t cbExtra) RT_NO_THROW;
152
153/**
154 * Reallocates memory.
155 *
156 * @returns Pointer to the allocated memory.
157 * @returns NULL on failure.
158 * @param pvOld The memory block to reallocate.
159 * @param cbNew The new block size (in bytes).
160 */
161RTDECL(void *) RTMemRealloc(void *pvOld, size_t cbNew) RT_NO_THROW;
162
163/**
164 * Frees memory.
165 *
166 * @param pv Pointer to memory block.
167 */
168RTDECL(void) RTMemFree(void *pv) RT_NO_THROW;
169
170/**
171 * Allocates memory which may contain code.
172 *
173 * @returns Pointer to the allocated memory.
174 * @returns NULL on failure.
175 * @param cb Size in bytes of the memory block to allocate.
176 */
177RTDECL(void *) RTMemExecAlloc(size_t cb) RT_NO_THROW;
178
179/**
180 * Free executable/read/write memory allocated by RTMemExecAlloc().
181 *
182 * @param pv Pointer to memory block.
183 */
184RTDECL(void) RTMemExecFree(void *pv) RT_NO_THROW;
185
186#if defined(IN_RING0) && defined(RT_ARCH_AMD64) && defined(RT_OS_LINUX)
187/**
188 * Donate read+write+execute memory to the exec heap.
189 *
190 * This API is specific to AMD64 and Linux/GNU. A kernel module that desires to
191 * use RTMemExecAlloc on AMD64 Linux/GNU will have to donate some statically
192 * allocated memory in the module if it wishes for GCC generated code to work.
193 * GCC can only generate modules that work in the address range ~2GB to ~0
194 * currently.
195 *
196 * The API only accept one single donation.
197 *
198 * @returns IPRT status code.
199 * @param pvMemory Pointer to the memory block.
200 * @param cb The size of the memory block.
201 */
202RTR0DECL(int) RTR0MemExecDonate(void *pvMemory, size_t cb) RT_NO_THROW;
203#endif /* R0+AMD64+LINUX */
204
205/**
206 * Allocate page aligned memory.
207 *
208 * @returns Pointer to the allocated memory.
209 * @returns NULL if we're out of memory.
210 * @param cb Size of the memory block. Will be rounded up to page size.
211 */
212RTDECL(void *) RTMemPageAlloc(size_t cb) RT_NO_THROW;
213
214/**
215 * Allocate zero'ed page aligned memory.
216 *
217 * @returns Pointer to the allocated memory.
218 * @returns NULL if we're out of memory.
219 * @param cb Size of the memory block. Will be rounded up to page size.
220 */
221RTDECL(void *) RTMemPageAllocZ(size_t cb) RT_NO_THROW;
222
223/**
224 * Free a memory block allocated with RTMemPageAlloc() or RTMemPageAllocZ().
225 *
226 * @param pv Pointer to the block as it was returned by the allocation function.
227 * NULL will be ignored.
228 * @param cb The allocation size. Will be rounded up to page size.
229 * Ignored if @a pv is NULL.
230 */
231RTDECL(void) RTMemPageFree(void *pv, size_t cb) RT_NO_THROW;
232
233/** Page level protection flags for RTMemProtect().
234 * @{
235 */
236/** No access at all. */
237#define RTMEM_PROT_NONE 0
238/** Read access. */
239#define RTMEM_PROT_READ 1
240/** Write access. */
241#define RTMEM_PROT_WRITE 2
242/** Execute access. */
243#define RTMEM_PROT_EXEC 4
244/** @} */
245
246/**
247 * Change the page level protection of a memory region.
248 *
249 * @returns iprt status code.
250 * @param pv Start of the region. Will be rounded down to nearest page boundary.
251 * @param cb Size of the region. Will be rounded up to the nearest page boundary.
252 * @param fProtect The new protection, a combination of the RTMEM_PROT_* defines.
253 */
254RTDECL(int) RTMemProtect(void *pv, size_t cb, unsigned fProtect) RT_NO_THROW;
255
256/**
257 * Goes thru some pains to make sure the specified memory block is thoroughly
258 * scrambled.
259 *
260 * @param pv The start of the memory block.
261 * @param cb The size of the memory block.
262 * @param cMinPasses The minimum number of passes to make.
263 */
264RTDECL(void) RTMemWipeThoroughly(void *pv, size_t cb, size_t cMinPasses) RT_NO_THROW;
265
266#ifdef IN_RING0
267
268/**
269 * Allocates physical contiguous memory (below 4GB).
270 * The allocation is page aligned and the content is undefined.
271 *
272 * @returns Pointer to the memory block. This is page aligned.
273 * @param pPhys Where to store the physical address.
274 * @param cb The allocation size in bytes. This is always
275 * rounded up to PAGE_SIZE.
276 */
277RTR0DECL(void *) RTMemContAlloc(PRTCCPHYS pPhys, size_t cb) RT_NO_THROW;
278
279/**
280 * Frees memory allocated ysing RTMemContAlloc().
281 *
282 * @param pv Pointer to return from RTMemContAlloc().
283 * @param cb The cb parameter passed to RTMemContAlloc().
284 */
285RTR0DECL(void) RTMemContFree(void *pv, size_t cb) RT_NO_THROW;
286
287/**
288 * Copy memory from an user mode buffer into a kernel buffer.
289 *
290 * @retval VINF_SUCCESS on success.
291 * @retval VERR_ACCESS_DENIED on error.
292 *
293 * @param pvDst The kernel mode destination address.
294 * @param R3PtrSrc The user mode source address.
295 * @param cb The number of bytes to copy.
296 */
297RTR0DECL(int) RTR0MemUserCopyFrom(void *pvDst, RTR3PTR R3PtrSrc, size_t cb);
298
299/**
300 * Copy memory from a kernel buffer into a user mode one.
301 *
302 * @retval VINF_SUCCESS on success.
303 * @retval VERR_ACCESS_DENIED on error.
304 *
305 * @param R3PtrDst The user mode destination address.
306 * @param pvSrc The kernel mode source address.
307 * @param cb The number of bytes to copy.
308 */
309RTR0DECL(int) RTR0MemUserCopyTo(RTR3PTR R3PtrDst, void const *pvSrc, size_t cb);
310
311/**
312 * Tests if the specified address is in the user addressable range.
313 *
314 * This function does not check whether the memory at that address is accessible
315 * or anything of that sort, only if the address it self is in the user mode
316 * range.
317 *
318 * @returns true if it's in the user addressable range. false if not.
319 * @param R3Ptr The user mode pointer to test.
320 *
321 * @remarks Some systems may have overlapping kernel and user address ranges.
322 * One prominent example of this is the x86 version of Mac OS X. Use
323 * RTR0MemAreKrnlAndUsrDifferent() to check.
324 */
325RTR0DECL(bool) RTR0MemUserIsValidAddr(RTR3PTR R3Ptr);
326
327/**
328 * Tests if the specified address is in the kernel mode range.
329 *
330 * This function does not check whether the memory at that address is accessible
331 * or anything of that sort, only if the address it self is in the kernel mode
332 * range.
333 *
334 * @returns true if it's in the kernel range. false if not.
335 * @param pv The alleged kernel mode pointer.
336 *
337 * @remarks Some systems may have overlapping kernel and user address ranges.
338 * One prominent example of this is the x86 version of Mac OS X. Use
339 * RTR0MemAreKrnlAndUsrDifferent() to check.
340 */
341RTR0DECL(bool) RTR0MemKernelIsValidAddr(void *pv);
342
343/**
344 * Are user mode and kernel mode address ranges distinctly different.
345 *
346 * This determins whether RTR0MemKernelIsValidAddr and RTR0MemUserIsValidAddr
347 * can be used for deciding whether some arbitrary address is a user mode or a
348 * kernel mode one.
349 *
350 * @returns true if they are, false if not.
351 */
352RTR0DECL(bool) RTR0MemAreKrnlAndUsrDifferent(void);
353
354#endif /* IN_RING0 */
355
356
357/** @name Electrical Fence Version of some APIs.
358 * @{
359 */
360
361/**
362 * Same as RTMemTmpAlloc() except that it's fenced.
363 *
364 * @returns Pointer to the allocated memory.
365 * @returns NULL on failure.
366 * @param cb Size in bytes of the memory block to allocate.
367 */
368RTDECL(void *) RTMemEfTmpAlloc(size_t cb, RT_SRC_POS_DECL) RT_NO_THROW;
369
370/**
371 * Same as RTMemTmpAllocZ() except that it's fenced.
372 *
373 * @returns Pointer to the allocated memory.
374 * @returns NULL on failure.
375 * @param cb Size in bytes of the memory block to allocate.
376 */
377RTDECL(void *) RTMemEfTmpAllocZ(size_t cb, RT_SRC_POS_DECL) RT_NO_THROW;
378
379/**
380 * Same as RTMemTmpFree() except that it's for fenced memory.
381 *
382 * @param pv Pointer to memory block.
383 */
384RTDECL(void) RTMemEfTmpFree(void *pv, RT_SRC_POS_DECL) RT_NO_THROW;
385
386/**
387 * Same as RTMemAlloc() except that it's fenced.
388 *
389 * @returns Pointer to the allocated memory. Free with RTMemEfFree().
390 * @returns NULL on failure.
391 * @param cb Size in bytes of the memory block to allocate.
392 */
393RTDECL(void *) RTMemEfAlloc(size_t cb, RT_SRC_POS_DECL) RT_NO_THROW;
394
395/**
396 * Same as RTMemAllocZ() except that it's fenced.
397 *
398 * @returns Pointer to the allocated memory.
399 * @returns NULL on failure.
400 * @param cb Size in bytes of the memory block to allocate.
401 */
402RTDECL(void *) RTMemEfAllocZ(size_t cb, RT_SRC_POS_DECL) RT_NO_THROW;
403
404/**
405 * Same as RTMemAllocVar() except that it's fenced.
406 *
407 * @returns Pointer to the allocated memory. Free with RTMemEfFree().
408 * @returns NULL on failure.
409 * @param cbUnaligned Size in bytes of the memory block to allocate.
410 */
411RTDECL(void *) RTMemEfAllocVar(size_t cbUnaligned, RT_SRC_POS_DECL) RT_NO_THROW;
412
413/**
414 * Same as RTMemAllocZVar() except that it's fenced.
415 *
416 * @returns Pointer to the allocated memory.
417 * @returns NULL on failure.
418 * @param cbUnaligned Size in bytes of the memory block to allocate.
419 */
420RTDECL(void *) RTMemEfAllocZVar(size_t cbUnaligned, RT_SRC_POS_DECL) RT_NO_THROW;
421
422/**
423 * Same as RTMemRealloc() except that it's fenced.
424 *
425 * @returns Pointer to the allocated memory.
426 * @returns NULL on failure.
427 * @param pvOld The memory block to reallocate.
428 * @param cbNew The new block size (in bytes).
429 */
430RTDECL(void *) RTMemEfRealloc(void *pvOld, size_t cbNew, RT_SRC_POS_DECL) RT_NO_THROW;
431
432/**
433 * Free memory allocated by any of the RTMemEf* allocators.
434 *
435 * @param pv Pointer to memory block.
436 */
437RTDECL(void) RTMemEfFree(void *pv, RT_SRC_POS_DECL) RT_NO_THROW;
438
439/**
440 * Same as RTMemDup() except that it's fenced.
441 *
442 * @returns New heap block with the duplicate data.
443 * @returns NULL if we're out of memory.
444 * @param pvSrc The memory to duplicate.
445 * @param cb The amount of memory to duplicate.
446 */
447RTDECL(void *) RTMemEfDup(const void *pvSrc, size_t cb, RT_SRC_POS_DECL) RT_NO_THROW;
448
449/**
450 * Same as RTMemEfDupEx except that it's fenced.
451 *
452 * @returns New heap block with the duplicate data.
453 * @returns NULL if we're out of memory.
454 * @param pvSrc The memory to duplicate.
455 * @param cbSrc The amount of memory to duplicate.
456 * @param cbExtra The amount of extra memory to allocate and zero.
457 */
458RTDECL(void *) RTMemEfDupEx(const void *pvSrc, size_t cbSrc, size_t cbExtra, RT_SRC_POS_DECL) RT_NO_THROW;
459
460/** @def RTMEM_WRAP_TO_EF_APIS
461 * Define RTMEM_WRAP_TO_EF_APIS to wrap RTMem APIs to RTMemEf APIs.
462 */
463#if defined(RTMEM_WRAP_TO_EF_APIS) && defined(IN_RING3) && !defined(RTMEM_NO_WRAP_TO_EF_APIS)
464# define RTMemTmpAlloc(cb) RTMemEfTmpAlloc((cb), RT_SRC_POS)
465# define RTMemTmpAllocZ(cb) RTMemEfTmpAllocZ((cb), RT_SRC_POS)
466# define RTMemTmpFree(pv) RTMemEfTmpFree((pv), RT_SRC_POS)
467# define RTMemAlloc(cb) RTMemEfAlloc((cb), RT_SRC_POS)
468# define RTMemAllocZ(cb) RTMemEfAllocZ((cb), RT_SRC_POS)
469# define RTMemAllocVar(cbUnaligned) RTMemEfAllocVar((cbUnaligned), RT_SRC_POS)
470# define RTMemAllocZVar(cbUnaligned) RTMemEfAllocZVar((cbUnaligned), RT_SRC_POS)
471# define RTMemRealloc(pvOld, cbNew) RTMemEfRealloc((pvOld), (cbNew), RT_SRC_POS)
472# define RTMemFree(pv) RTMemEfFree((pv), RT_SRC_POS)
473# define RTMemDup(pvSrc, cb) RTMemEfDup((pvSrc), (cb), RT_SRC_POS)
474# define RTMemDupEx(pvSrc, cbSrc, cbExtra) RTMemEfDupEx((pvSrc), (cbSrc), (cbExtra), RT_SRC_POS)
475#endif
476#ifdef DOXYGEN_RUNNING
477# define RTMEM_WRAP_TO_EF_APIS
478#endif
479
480/**
481 * Fenced drop-in replacement for RTMemTmpAlloc.
482 * @copydoc RTMemTmpAlloc
483 */
484RTDECL(void *) RTMemEfTmpAllocNP(size_t cb) RT_NO_THROW;
485
486/**
487 * Fenced drop-in replacement for RTMemTmpAllocZ.
488 * @copydoc RTMemTmpAllocZ
489 */
490RTDECL(void *) RTMemEfTmpAllocZNP(size_t cb) RT_NO_THROW;
491
492/**
493 * Fenced drop-in replacement for RTMemTmpFree.
494 * @copydoc RTMemTmpFree
495 */
496RTDECL(void) RTMemEfTmpFreeNP(void *pv) RT_NO_THROW;
497
498/**
499 * Fenced drop-in replacement for RTMemAlloc.
500 * @copydoc RTMemAlloc
501 */
502RTDECL(void *) RTMemEfAllocNP(size_t cb) RT_NO_THROW;
503
504/**
505 * Fenced drop-in replacement for RTMemAllocZ.
506 * @copydoc RTMemAllocZ
507 */
508RTDECL(void *) RTMemEfAllocZNP(size_t cb) RT_NO_THROW;
509
510/**
511 * Fenced drop-in replacement for RTMemAllocVar
512 * @copydoc RTMemAllocVar
513 */
514RTDECL(void *) RTMemEfAllocVarNP(size_t cbUnaligned) RT_NO_THROW;
515
516/**
517 * Fenced drop-in replacement for RTMemAllocZVar.
518 * @copydoc RTMemAllocZVar
519 */
520RTDECL(void *) RTMemEfAllocZVarNP(size_t cbUnaligned) RT_NO_THROW;
521
522/**
523 * Fenced drop-in replacement for RTMemRealloc.
524 * @copydoc RTMemRealloc
525 */
526RTDECL(void *) RTMemEfReallocNP(void *pvOld, size_t cbNew) RT_NO_THROW;
527
528/**
529 * Fenced drop-in replacement for RTMemFree.
530 * @copydoc RTMemFree
531 */
532RTDECL(void) RTMemEfFreeNP(void *pv) RT_NO_THROW;
533
534/**
535 * Fenced drop-in replacement for RTMemDupEx.
536 * @copydoc RTMemDupEx
537 */
538RTDECL(void *) RTMemEfDupNP(const void *pvSrc, size_t cb) RT_NO_THROW;
539
540/**
541 * Fenced drop-in replacement for RTMemDupEx.
542 * @copydoc RTMemDupEx
543 */
544RTDECL(void *) RTMemEfDupExNP(const void *pvSrc, size_t cbSrc, size_t cbExtra) RT_NO_THROW;
545
546/** @} */
547
548RT_C_DECLS_END
549
550
551#ifdef __cplusplus /** @todo Split this out into iprt/cpp/mem.h! */
552# include <iprt/assert.h>
553
554/**
555 * Template function wrapping RTMemFree to get the correct Destruct
556 * signature for RTAutoRes.
557 *
558 * We can't use a more complex template here, because the g++ on RHEL 3
559 * chokes on it with an internal compiler error.
560 *
561 * @tparam T The data type that's being managed.
562 * @param aMem Pointer to the memory that should be free.
563 */
564template <class T>
565inline void RTMemAutoDestructor(T *aMem) RT_NO_THROW
566{
567 RTMemFree(aMem);
568}
569
570
571/**
572 * RTMemAutoPtr allocator which uses RTMemTmpAlloc().
573 *
574 * @returns Allocated memory on success, NULL on failure.
575 * @param pvOld What to reallocate, shall always be NULL.
576 * @param cbNew The amount of memory to allocate (in bytes).
577 */
578inline void *RTMemTmpAutoAllocator(void *pvOld, size_t cbNew) RT_NO_THROW
579{
580 AssertReturn(!pvOld, NULL);
581 return RTMemTmpAlloc(cbNew);
582}
583
584
585/**
586 * Template function wrapping RTMemTmpFree to get the correct Destruct
587 * signature for RTAutoRes.
588 *
589 * We can't use a more complex template here, because the g++ on RHEL 3
590 * chokes on it with an internal compiler error.
591 *
592 * @tparam T The data type that's being managed.
593 * @param aMem Pointer to the memory that should be free.
594 */
595template <class T>
596inline void RTMemTmpAutoDestructor(T *aMem) RT_NO_THROW
597{
598 RTMemTmpFree(aMem);
599}
600
601
602/**
603 * Template function wrapping RTMemEfFree to get the correct Destruct
604 * signature for RTAutoRes.
605 *
606 * We can't use a more complex template here, because the g++ on RHEL 3
607 * chokes on it with an internal compiler error.
608 *
609 * @tparam T The data type that's being managed.
610 * @param aMem Pointer to the memory that should be free.
611 */
612template <class T>
613inline void RTMemEfAutoFree(T *aMem) RT_NO_THROW
614{
615 RTMemEfFreeNP(aMem);
616}
617
618
619/**
620 * Template function wrapping NULL to get the correct NilRes signature
621 * for RTAutoRes.
622 *
623 * @tparam T The data type that's being managed.
624 * @returns NULL with the right type.
625 */
626template <class T>
627inline T * RTMemAutoNil(void) RT_NO_THROW
628{
629 return (T *)(NULL);
630}
631
632
633/**
634 * An auto pointer-type template class for managing memory allocating
635 * via C APIs like RTMem (the default).
636 *
637 * The main purpose of this class is to automatically free memory that
638 * isn't explicitly used (release()'ed) when the object goes out of scope.
639 *
640 * As an additional service it can also make the allocations and
641 * reallocations for you if you like, but it can also take of memory
642 * you hand it.
643 *
644 * @tparam T The data type to manage allocations for.
645 * @tparam Destruct The function to be used to free the resource.
646 * This will default to RTMemFree.
647 * @tparam Allocator The function to be used to allocate or reallocate
648 * the managed memory.
649 * This is standard realloc() like stuff, so it's possible
650 * to support simple allocation without actually having
651 * to support reallocating memory if that's a problem.
652 * This will default to RTMemRealloc.
653 */
654template <class T,
655 void Destruct(T *) = RTMemAutoDestructor<T>,
656# ifdef RTMEM_WRAP_TO_EF_APIS
657 void *Allocator(void *, size_t) = RTMemEfReallocNP
658# else
659 void *Allocator(void *, size_t) = RTMemRealloc
660# endif
661 >
662class RTMemAutoPtr
663 : public RTAutoRes<T *, Destruct, RTMemAutoNil<T> >
664{
665public:
666 /**
667 * Constructor.
668 *
669 * @param aPtr Memory pointer to manage. Defaults to NULL.
670 */
671 RTMemAutoPtr(T *aPtr = NULL)
672 : RTAutoRes<T *, Destruct, RTMemAutoNil<T> >(aPtr)
673 {
674 }
675
676 /**
677 * Constructor that allocates memory.
678 *
679 * @param a_cElements The number of elements (of the data type) to allocate.
680 * @param a_fZeroed Whether the memory should be memset with zeros after
681 * the allocation. Defaults to false.
682 */
683 RTMemAutoPtr(size_t a_cElements, bool a_fZeroed = false)
684 : RTAutoRes<T *, Destruct, RTMemAutoNil<T> >((T *)Allocator(NULL, a_cElements * sizeof(T)))
685 {
686 if (a_fZeroed && RT_LIKELY(this->get() != NULL))
687 memset(this->get(), '\0', a_cElements * sizeof(T));
688 }
689
690 /**
691 * Free current memory and start managing aPtr.
692 *
693 * @param aPtr Memory pointer to manage.
694 */
695 RTMemAutoPtr &operator=(T *aPtr)
696 {
697 this->RTAutoRes<T *, Destruct, RTMemAutoNil<T> >::operator=(aPtr);
698 return *this;
699 }
700
701 /**
702 * Dereference with * operator.
703 */
704 T &operator*()
705 {
706 return *this->get();
707 }
708
709 /**
710 * Dereference with -> operator.
711 */
712 T *operator->()
713 {
714 return this->get();
715 }
716
717 /**
718 * Accessed with the subscript operator ([]).
719 *
720 * @returns Reference to the element.
721 * @param a_i The element to access.
722 */
723 T &operator[](size_t a_i)
724 {
725 return this->get()[a_i];
726 }
727
728 /**
729 * Allocates memory and start manage it.
730 *
731 * Any previously managed memory will be freed before making
732 * the new allocation.
733 *
734 * @returns Success indicator.
735 * @retval true if the new allocation succeeds.
736 * @retval false on failure, no memory is associated with the object.
737 *
738 * @param a_cElements The number of elements (of the data type) to allocate.
739 * This defaults to 1.
740 * @param a_fZeroed Whether the memory should be memset with zeros after
741 * the allocation. Defaults to false.
742 */
743 bool alloc(size_t a_cElements = 1, bool a_fZeroed = false)
744 {
745 this->reset(NULL);
746 T *pNewMem = (T *)Allocator(NULL, a_cElements * sizeof(T));
747 if (a_fZeroed && RT_LIKELY(pNewMem != NULL))
748 memset(pNewMem, '\0', a_cElements * sizeof(T));
749 this->reset(pNewMem);
750 return pNewMem != NULL;
751 }
752
753 /**
754 * Reallocate or allocates the memory resource.
755 *
756 * Free the old value if allocation fails.
757 *
758 * The content of any additional memory that was allocated is
759 * undefined when using the default allocator.
760 *
761 * @returns Success indicator.
762 * @retval true if the new allocation succeeds.
763 * @retval false on failure, no memory is associated with the object.
764 *
765 * @param a_cElements The new number of elements (of the data type) to
766 * allocate. The size of the allocation is the number of
767 * elements times the size of the data type - this is
768 * currently what's passed down to the Allocator.
769 * This defaults to 1.
770 */
771 bool realloc(size_t a_cElements = 1)
772 {
773 T *aNewValue = (T *)Allocator(this->get(), a_cElements * sizeof(T));
774 if (RT_LIKELY(aNewValue != NULL))
775 this->release();
776 /* We want this both if aNewValue is non-NULL and if it is NULL. */
777 this->reset(aNewValue);
778 return aNewValue != NULL;
779 }
780};
781
782
783#endif /* __cplusplus */
784
785
786/** @} */
787
788
789#endif
790
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette