VirtualBox

source: vbox/trunk/include/iprt/time.h@ 96507

Last change on this file since 96507 was 96407, checked in by vboxsync, 2 years ago

scm copyright and license note update

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 41.4 KB
Line 
1/** @file
2 * IPRT - Time.
3 */
4
5/*
6 * Copyright (C) 2006-2022 Oracle and/or its affiliates.
7 *
8 * This file is part of VirtualBox base platform packages, as
9 * available from https://www.virtualbox.org.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation, in version 3 of the
14 * License.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <https://www.gnu.org/licenses>.
23 *
24 * The contents of this file may alternatively be used under the terms
25 * of the Common Development and Distribution License Version 1.0
26 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
27 * in the VirtualBox distribution, in which case the provisions of the
28 * CDDL are applicable instead of those of the GPL.
29 *
30 * You may elect to license modified versions of this file under the
31 * terms and conditions of either the GPL or the CDDL or both.
32 *
33 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
34 */
35
36#ifndef IPRT_INCLUDED_time_h
37#define IPRT_INCLUDED_time_h
38#ifndef RT_WITHOUT_PRAGMA_ONCE
39# pragma once
40#endif
41
42#include <iprt/cdefs.h>
43#include <iprt/types.h>
44#include <iprt/assertcompile.h>
45
46RT_C_DECLS_BEGIN
47
48/** @defgroup grp_rt_time RTTime - Time
49 * @ingroup grp_rt
50 * @{
51 */
52
53/** Time Specification.
54 *
55 * Use the inline RTTimeSpecGet/Set to operate on structure this so we
56 * can easily change the representation if required later.
57 *
58 * The current representation is in nanoseconds relative to the unix epoch
59 * (1970-01-01 00:00:00 UTC). This gives us an approximate span from
60 * 1678 to 2262 without sacrificing the resolution offered by the various
61 * host OSes (BSD & LINUX 1ns, NT 100ns).
62 */
63typedef struct RTTIMESPEC
64{
65 /** Nanoseconds since epoch.
66 * The name is intentially too long to be comfortable to use because you should be
67 * using inline helpers! */
68 int64_t i64NanosecondsRelativeToUnixEpoch;
69} RTTIMESPEC;
70
71
72/** @name RTTIMESPEC methods
73 * @{ */
74
75/**
76 * Gets the time as nanoseconds relative to the unix epoch.
77 *
78 * @returns Nanoseconds relative to unix epoch.
79 * @param pTime The time spec to interpret.
80 */
81DECLINLINE(int64_t) RTTimeSpecGetNano(PCRTTIMESPEC pTime)
82{
83 return pTime->i64NanosecondsRelativeToUnixEpoch;
84}
85
86
87/**
88 * Sets the time give by nanoseconds relative to the unix epoch.
89 *
90 * @returns pTime.
91 * @param pTime The time spec to modify.
92 * @param i64Nano The new time in nanoseconds.
93 */
94DECLINLINE(PRTTIMESPEC) RTTimeSpecSetNano(PRTTIMESPEC pTime, int64_t i64Nano)
95{
96 pTime->i64NanosecondsRelativeToUnixEpoch = i64Nano;
97 return pTime;
98}
99
100
101/**
102 * Gets the time as microseconds relative to the unix epoch.
103 *
104 * @returns microseconds relative to unix epoch.
105 * @param pTime The time spec to interpret.
106 */
107DECLINLINE(int64_t) RTTimeSpecGetMicro(PCRTTIMESPEC pTime)
108{
109 return pTime->i64NanosecondsRelativeToUnixEpoch / RT_NS_1US;
110}
111
112
113/**
114 * Sets the time given by microseconds relative to the unix epoch.
115 *
116 * @returns pTime.
117 * @param pTime The time spec to modify.
118 * @param i64Micro The new time in microsecond.
119 */
120DECLINLINE(PRTTIMESPEC) RTTimeSpecSetMicro(PRTTIMESPEC pTime, int64_t i64Micro)
121{
122 pTime->i64NanosecondsRelativeToUnixEpoch = i64Micro * RT_NS_1US;
123 return pTime;
124}
125
126
127/**
128 * Gets the time as milliseconds relative to the unix epoch.
129 *
130 * @returns milliseconds relative to unix epoch.
131 * @param pTime The time spec to interpret.
132 */
133DECLINLINE(int64_t) RTTimeSpecGetMilli(PCRTTIMESPEC pTime)
134{
135 return pTime->i64NanosecondsRelativeToUnixEpoch / RT_NS_1MS;
136}
137
138
139/**
140 * Sets the time given by milliseconds relative to the unix epoch.
141 *
142 * @returns pTime.
143 * @param pTime The time spec to modify.
144 * @param i64Milli The new time in milliseconds.
145 */
146DECLINLINE(PRTTIMESPEC) RTTimeSpecSetMilli(PRTTIMESPEC pTime, int64_t i64Milli)
147{
148 pTime->i64NanosecondsRelativeToUnixEpoch = i64Milli * RT_NS_1MS;
149 return pTime;
150}
151
152
153/**
154 * Gets the time as seconds relative to the unix epoch.
155 *
156 * @returns seconds relative to unix epoch.
157 * @param pTime The time spec to interpret.
158 */
159DECLINLINE(int64_t) RTTimeSpecGetSeconds(PCRTTIMESPEC pTime)
160{
161 return pTime->i64NanosecondsRelativeToUnixEpoch / RT_NS_1SEC;
162}
163
164
165/**
166 * Sets the time given by seconds relative to the unix epoch.
167 *
168 * @returns pTime.
169 * @param pTime The time spec to modify.
170 * @param i64Seconds The new time in seconds.
171 */
172DECLINLINE(PRTTIMESPEC) RTTimeSpecSetSeconds(PRTTIMESPEC pTime, int64_t i64Seconds)
173{
174 pTime->i64NanosecondsRelativeToUnixEpoch = i64Seconds * RT_NS_1SEC;
175 return pTime;
176}
177
178
179/**
180 * Makes the time spec absolute like abs() does (i.e. a positive value).
181 *
182 * @returns pTime.
183 * @param pTime The time spec to modify.
184 */
185DECLINLINE(PRTTIMESPEC) RTTimeSpecAbsolute(PRTTIMESPEC pTime)
186{
187 if (pTime->i64NanosecondsRelativeToUnixEpoch < 0)
188 pTime->i64NanosecondsRelativeToUnixEpoch = -pTime->i64NanosecondsRelativeToUnixEpoch;
189 return pTime;
190}
191
192
193/**
194 * Negates the time.
195 *
196 * @returns pTime.
197 * @param pTime The time spec to modify.
198 */
199DECLINLINE(PRTTIMESPEC) RTTimeSpecNegate(PRTTIMESPEC pTime)
200{
201 pTime->i64NanosecondsRelativeToUnixEpoch = -pTime->i64NanosecondsRelativeToUnixEpoch;
202 return pTime;
203}
204
205
206/**
207 * Adds a time period to the time.
208 *
209 * @returns pTime.
210 * @param pTime The time spec to modify.
211 * @param pTimeAdd The time spec to add to pTime.
212 */
213DECLINLINE(PRTTIMESPEC) RTTimeSpecAdd(PRTTIMESPEC pTime, PCRTTIMESPEC pTimeAdd)
214{
215 pTime->i64NanosecondsRelativeToUnixEpoch += pTimeAdd->i64NanosecondsRelativeToUnixEpoch;
216 return pTime;
217}
218
219
220/**
221 * Adds a time period give as nanoseconds from the time.
222 *
223 * @returns pTime.
224 * @param pTime The time spec to modify.
225 * @param i64Nano The time period in nanoseconds.
226 */
227DECLINLINE(PRTTIMESPEC) RTTimeSpecAddNano(PRTTIMESPEC pTime, int64_t i64Nano)
228{
229 pTime->i64NanosecondsRelativeToUnixEpoch += i64Nano;
230 return pTime;
231}
232
233
234/**
235 * Adds a time period give as microseconds from the time.
236 *
237 * @returns pTime.
238 * @param pTime The time spec to modify.
239 * @param i64Micro The time period in microseconds.
240 */
241DECLINLINE(PRTTIMESPEC) RTTimeSpecAddMicro(PRTTIMESPEC pTime, int64_t i64Micro)
242{
243 pTime->i64NanosecondsRelativeToUnixEpoch += i64Micro * RT_NS_1US;
244 return pTime;
245}
246
247
248/**
249 * Adds a time period give as milliseconds from the time.
250 *
251 * @returns pTime.
252 * @param pTime The time spec to modify.
253 * @param i64Milli The time period in milliseconds.
254 */
255DECLINLINE(PRTTIMESPEC) RTTimeSpecAddMilli(PRTTIMESPEC pTime, int64_t i64Milli)
256{
257 pTime->i64NanosecondsRelativeToUnixEpoch += i64Milli * RT_NS_1MS;
258 return pTime;
259}
260
261
262/**
263 * Adds a time period give as seconds from the time.
264 *
265 * @returns pTime.
266 * @param pTime The time spec to modify.
267 * @param i64Seconds The time period in seconds.
268 */
269DECLINLINE(PRTTIMESPEC) RTTimeSpecAddSeconds(PRTTIMESPEC pTime, int64_t i64Seconds)
270{
271 pTime->i64NanosecondsRelativeToUnixEpoch += i64Seconds * RT_NS_1SEC;
272 return pTime;
273}
274
275
276/**
277 * Subtracts a time period from the time.
278 *
279 * @returns pTime.
280 * @param pTime The time spec to modify.
281 * @param pTimeSub The time spec to subtract from pTime.
282 */
283DECLINLINE(PRTTIMESPEC) RTTimeSpecSub(PRTTIMESPEC pTime, PCRTTIMESPEC pTimeSub)
284{
285 pTime->i64NanosecondsRelativeToUnixEpoch -= pTimeSub->i64NanosecondsRelativeToUnixEpoch;
286 return pTime;
287}
288
289
290/**
291 * Subtracts a time period give as nanoseconds from the time.
292 *
293 * @returns pTime.
294 * @param pTime The time spec to modify.
295 * @param i64Nano The time period in nanoseconds.
296 */
297DECLINLINE(PRTTIMESPEC) RTTimeSpecSubNano(PRTTIMESPEC pTime, int64_t i64Nano)
298{
299 pTime->i64NanosecondsRelativeToUnixEpoch -= i64Nano;
300 return pTime;
301}
302
303
304/**
305 * Subtracts a time period give as microseconds from the time.
306 *
307 * @returns pTime.
308 * @param pTime The time spec to modify.
309 * @param i64Micro The time period in microseconds.
310 */
311DECLINLINE(PRTTIMESPEC) RTTimeSpecSubMicro(PRTTIMESPEC pTime, int64_t i64Micro)
312{
313 pTime->i64NanosecondsRelativeToUnixEpoch -= i64Micro * RT_NS_1US;
314 return pTime;
315}
316
317
318/**
319 * Subtracts a time period give as milliseconds from the time.
320 *
321 * @returns pTime.
322 * @param pTime The time spec to modify.
323 * @param i64Milli The time period in milliseconds.
324 */
325DECLINLINE(PRTTIMESPEC) RTTimeSpecSubMilli(PRTTIMESPEC pTime, int64_t i64Milli)
326{
327 pTime->i64NanosecondsRelativeToUnixEpoch -= i64Milli * RT_NS_1MS;
328 return pTime;
329}
330
331
332/**
333 * Subtracts a time period give as seconds from the time.
334 *
335 * @returns pTime.
336 * @param pTime The time spec to modify.
337 * @param i64Seconds The time period in seconds.
338 */
339DECLINLINE(PRTTIMESPEC) RTTimeSpecSubSeconds(PRTTIMESPEC pTime, int64_t i64Seconds)
340{
341 pTime->i64NanosecondsRelativeToUnixEpoch -= i64Seconds * RT_NS_1SEC;
342 return pTime;
343}
344
345
346/**
347 * Gives the time in seconds and nanoseconds.
348 *
349 * @returns pTime.
350 * @param pTime The time spec to interpret.
351 * @param *pi32Seconds Where to store the time period in seconds.
352 * @param *pi32Nano Where to store the time period in nanoseconds.
353 */
354DECLINLINE(void) RTTimeSpecGetSecondsAndNano(PRTTIMESPEC pTime, int32_t *pi32Seconds, int32_t *pi32Nano)
355{
356 int64_t i64 = RTTimeSpecGetNano(pTime);
357 int32_t i32Nano = (int32_t)(i64 % RT_NS_1SEC);
358 i64 /= RT_NS_1SEC;
359 if (i32Nano < 0)
360 {
361 i32Nano += RT_NS_1SEC;
362 i64--;
363 }
364 *pi32Seconds = (int32_t)i64;
365 *pi32Nano = i32Nano;
366}
367
368/** @def RTTIME_LINUX_KERNEL_PREREQ
369 * Prerequisite minimum linux kernel version.
370 * @note Cannot really be moved to iprt/cdefs.h, see the-linux-kernel.h */
371/** @def RTTIME_LINUX_KERNEL_PREREQ_LT
372 * Prerequisite maxium linux kernel version (LT=less-than).
373 * @note Cannot really be moved to iprt/cdefs.h, see the-linux-kernel.h */
374#if defined(RT_OS_LINUX) && defined(LINUX_VERSION_CODE) && defined(KERNEL_VERSION)
375# define RTTIME_LINUX_KERNEL_PREREQ(a, b, c) (LINUX_VERSION_CODE >= KERNEL_VERSION(a, b, c))
376# define RTTIME_LINUX_KERNEL_PREREQ_LT(a, b, c) (!RTTIME_LINUX_KERNEL_PREREQ(a, b, c))
377#else
378# define RTTIME_LINUX_KERNEL_PREREQ(a, b, c) 0
379# define RTTIME_LINUX_KERNEL_PREREQ_LT(a, b, c) 0
380#endif
381
382/* PORTME: Add struct timeval guard macro here. */
383#if defined(RTTIME_INCL_TIMEVAL) \
384 || defined(_SYS__TIMEVAL_H_) \
385 || defined(_SYS_TIME_H) \
386 || defined(_TIMEVAL) \
387 || defined(_STRUCT_TIMEVAL) \
388 || ( defined(RT_OS_LINUX) \
389 && defined(_LINUX_TIME_H) \
390 && ( !defined(__KERNEL__) \
391 || RTTIME_LINUX_KERNEL_PREREQ_LT(5,6,0) /* @bugref{9757} */ ) ) \
392 || (defined(RT_OS_NETBSD) && defined(_SYS_TIME_H_))
393
394/**
395 * Gets the time as POSIX timeval.
396 *
397 * @returns pTime.
398 * @param pTime The time spec to interpret.
399 * @param pTimeval Where to store the time as POSIX timeval.
400 */
401DECLINLINE(struct timeval *) RTTimeSpecGetTimeval(PCRTTIMESPEC pTime, struct timeval *pTimeval)
402{
403 int64_t i64 = RTTimeSpecGetMicro(pTime);
404 int32_t i32Micro = (int32_t)(i64 % RT_US_1SEC);
405 i64 /= RT_US_1SEC;
406 if (i32Micro < 0)
407 {
408 i32Micro += RT_US_1SEC;
409 i64--;
410 }
411 pTimeval->tv_sec = (time_t)i64;
412 pTimeval->tv_usec = i32Micro;
413 return pTimeval;
414}
415
416/**
417 * Sets the time as POSIX timeval.
418 *
419 * @returns pTime.
420 * @param pTime The time spec to modify.
421 * @param pTimeval Pointer to the POSIX timeval struct with the new time.
422 */
423DECLINLINE(PRTTIMESPEC) RTTimeSpecSetTimeval(PRTTIMESPEC pTime, const struct timeval *pTimeval)
424{
425 return RTTimeSpecAddMicro(RTTimeSpecSetSeconds(pTime, pTimeval->tv_sec), pTimeval->tv_usec);
426}
427
428#endif /* various ways of detecting struct timeval */
429
430
431/* PORTME: Add struct timespec guard macro here. */
432#if defined(RTTIME_INCL_TIMESPEC) \
433 || defined(_SYS__TIMESPEC_H_) \
434 || defined(TIMEVAL_TO_TIMESPEC) \
435 || defined(_TIMESPEC) \
436 || ( defined(_STRUCT_TIMESPEC) \
437 && ( !defined(RT_OS_LINUX) \
438 || !defined(__KERNEL__) \
439 || RTTIME_LINUX_KERNEL_PREREQ_LT(5,6,0) /* @bugref{9757} */ ) ) \
440 || (defined(RT_OS_NETBSD) && defined(_SYS_TIME_H_))
441
442/**
443 * Gets the time as POSIX timespec.
444 *
445 * @returns pTimespec.
446 * @param pTime The time spec to interpret.
447 * @param pTimespec Where to store the time as POSIX timespec.
448 */
449DECLINLINE(struct timespec *) RTTimeSpecGetTimespec(PCRTTIMESPEC pTime, struct timespec *pTimespec)
450{
451 int64_t i64 = RTTimeSpecGetNano(pTime);
452 int32_t i32Nano = (int32_t)(i64 % RT_NS_1SEC);
453 i64 /= RT_NS_1SEC;
454 if (i32Nano < 0)
455 {
456 i32Nano += RT_NS_1SEC;
457 i64--;
458 }
459 pTimespec->tv_sec = (time_t)i64;
460 pTimespec->tv_nsec = i32Nano;
461 return pTimespec;
462}
463
464/**
465 * Sets the time as POSIX timespec.
466 *
467 * @returns pTime.
468 * @param pTime The time spec to modify.
469 * @param pTimespec Pointer to the POSIX timespec struct with the new time.
470 */
471DECLINLINE(PRTTIMESPEC) RTTimeSpecSetTimespec(PRTTIMESPEC pTime, const struct timespec *pTimespec)
472{
473 return RTTimeSpecAddNano(RTTimeSpecSetSeconds(pTime, pTimespec->tv_sec), pTimespec->tv_nsec);
474}
475
476#endif /* various ways of detecting struct timespec */
477
478
479#if defined(RT_OS_LINUX) && defined(_LINUX_TIME64_H) /* since linux 3.17 */
480
481/**
482 * Gets the time a linux 64-bit timespec structure.
483 * @returns pTimespec.
484 * @param pTime The time spec to modify.
485 * @param pTimespec Where to store the time as linux 64-bit timespec.
486 */
487DECLINLINE(struct timespec64 *) RTTimeSpecGetTimespec64(PCRTTIMESPEC pTime, struct timespec64 *pTimespec)
488{
489 int64_t i64 = RTTimeSpecGetNano(pTime);
490 int32_t i32Nano = (int32_t)(i64 % RT_NS_1SEC);
491 i64 /= RT_NS_1SEC;
492 if (i32Nano < 0)
493 {
494 i32Nano += RT_NS_1SEC;
495 i64--;
496 }
497 pTimespec->tv_sec = i64;
498 pTimespec->tv_nsec = i32Nano;
499 return pTimespec;
500}
501
502/**
503 * Sets the time from a linux 64-bit timespec structure.
504 * @returns pTime.
505 * @param pTime The time spec to modify.
506 * @param pTimespec Pointer to the linux 64-bit timespec struct with the new time.
507 */
508DECLINLINE(PRTTIMESPEC) RTTimeSpecSetTimespec64(PRTTIMESPEC pTime, const struct timespec64 *pTimespec)
509{
510 return RTTimeSpecAddNano(RTTimeSpecSetSeconds(pTime, pTimespec->tv_sec), pTimespec->tv_nsec);
511}
512
513#endif /* RT_OS_LINUX && _LINUX_TIME64_H */
514
515
516/** The offset of the unix epoch and the base for NT time (in 100ns units).
517 * Nt time starts at 1601-01-01 00:00:00. */
518#define RTTIME_NT_TIME_OFFSET_UNIX (116444736000000000LL)
519
520
521/**
522 * Gets the time as NT time.
523 *
524 * @returns NT time.
525 * @param pTime The time spec to interpret.
526 */
527DECLINLINE(int64_t) RTTimeSpecGetNtTime(PCRTTIMESPEC pTime)
528{
529 return pTime->i64NanosecondsRelativeToUnixEpoch / 100
530 + RTTIME_NT_TIME_OFFSET_UNIX;
531}
532
533
534/**
535 * Sets the time given by Nt time.
536 *
537 * @returns pTime.
538 * @param pTime The time spec to modify.
539 * @param u64NtTime The new time in Nt time.
540 */
541DECLINLINE(PRTTIMESPEC) RTTimeSpecSetNtTime(PRTTIMESPEC pTime, uint64_t u64NtTime)
542{
543 pTime->i64NanosecondsRelativeToUnixEpoch =
544 ((int64_t)u64NtTime - RTTIME_NT_TIME_OFFSET_UNIX) * 100;
545 return pTime;
546}
547
548
549#ifdef _FILETIME_
550
551/**
552 * Gets the time as NT file time.
553 *
554 * @returns pFileTime.
555 * @param pTime The time spec to interpret.
556 * @param pFileTime Pointer to NT filetime structure.
557 */
558DECLINLINE(PFILETIME) RTTimeSpecGetNtFileTime(PCRTTIMESPEC pTime, PFILETIME pFileTime)
559{
560 *((uint64_t *)pFileTime) = RTTimeSpecGetNtTime(pTime);
561 return pFileTime;
562}
563
564/**
565 * Sets the time as NT file time.
566 *
567 * @returns pTime.
568 * @param pTime The time spec to modify.
569 * @param pFileTime Where to store the time as Nt file time.
570 */
571DECLINLINE(PRTTIMESPEC) RTTimeSpecSetNtFileTime(PRTTIMESPEC pTime, const FILETIME *pFileTime)
572{
573 return RTTimeSpecSetNtTime(pTime, *(const uint64_t *)pFileTime);
574}
575
576#endif /* _FILETIME_ */
577
578
579/** The offset to the start of DOS time.
580 * DOS time starts 1980-01-01 00:00:00. */
581#define RTTIME_OFFSET_DOS_TIME (315532800000000000LL)
582
583
584/**
585 * Gets the time as seconds relative to the start of dos time.
586 *
587 * @returns seconds relative to the start of dos time.
588 * @param pTime The time spec to interpret.
589 */
590DECLINLINE(int64_t) RTTimeSpecGetDosSeconds(PCRTTIMESPEC pTime)
591{
592 return (pTime->i64NanosecondsRelativeToUnixEpoch - RTTIME_OFFSET_DOS_TIME)
593 / RT_NS_1SEC;
594}
595
596
597/**
598 * Sets the time given by seconds relative to the start of dos time.
599 *
600 * @returns pTime.
601 * @param pTime The time spec to modify.
602 * @param i64Seconds The new time in seconds relative to the start of dos time.
603 */
604DECLINLINE(PRTTIMESPEC) RTTimeSpecSetDosSeconds(PRTTIMESPEC pTime, int64_t i64Seconds)
605{
606 pTime->i64NanosecondsRelativeToUnixEpoch = i64Seconds * RT_NS_1SEC
607 + RTTIME_OFFSET_DOS_TIME;
608 return pTime;
609}
610
611
612/**
613 * Compare two time specs.
614 *
615 * @returns true they are equal.
616 * @returns false they are not equal.
617 * @param pTime1 The 1st time spec.
618 * @param pTime2 The 2nd time spec.
619 */
620DECLINLINE(bool) RTTimeSpecIsEqual(PCRTTIMESPEC pTime1, PCRTTIMESPEC pTime2)
621{
622 return pTime1->i64NanosecondsRelativeToUnixEpoch == pTime2->i64NanosecondsRelativeToUnixEpoch;
623}
624
625
626/**
627 * Compare two time specs.
628 *
629 * @returns 0 if equal, -1 if @a pLeft is smaller, 1 if @a pLeft is larger.
630 * @returns false they are not equal.
631 * @param pLeft The 1st time spec.
632 * @param pRight The 2nd time spec.
633 */
634DECLINLINE(int) RTTimeSpecCompare(PCRTTIMESPEC pLeft, PCRTTIMESPEC pRight)
635{
636 if (pLeft->i64NanosecondsRelativeToUnixEpoch == pRight->i64NanosecondsRelativeToUnixEpoch)
637 return 0;
638 return pLeft->i64NanosecondsRelativeToUnixEpoch < pRight->i64NanosecondsRelativeToUnixEpoch ? -1 : 1;
639}
640
641
642/**
643 * Converts a time spec to a ISO date string.
644 *
645 * @returns psz on success.
646 * @returns NULL on buffer underflow.
647 * @param pTime The time spec.
648 * @param psz Where to store the string.
649 * @param cb The size of the buffer.
650 */
651RTDECL(char *) RTTimeSpecToString(PCRTTIMESPEC pTime, char *psz, size_t cb);
652
653/**
654 * Attempts to convert an ISO date string to a time structure.
655 *
656 * We're a little forgiving with zero padding, unspecified parts, and leading
657 * and trailing spaces.
658 *
659 * @retval pTime on success,
660 * @retval NULL on failure.
661 * @param pTime The time spec.
662 * @param pszString The ISO date string to convert.
663 */
664RTDECL(PRTTIMESPEC) RTTimeSpecFromString(PRTTIMESPEC pTime, const char *pszString);
665
666/** @} */
667
668
669/**
670 * Exploded time.
671 */
672typedef struct RTTIME
673{
674 /** The year number. */
675 int32_t i32Year;
676 /** The month of the year (1-12). January is 1. */
677 uint8_t u8Month;
678 /** The day of the week (0-6). Monday is 0. */
679 uint8_t u8WeekDay;
680 /** The day of the year (1-366). January the 1st is 1. */
681 uint16_t u16YearDay;
682 /** The day of the month (1-31). */
683 uint8_t u8MonthDay;
684 /** Hour of the day (0-23). */
685 uint8_t u8Hour;
686 /** The minute of the hour (0-59). */
687 uint8_t u8Minute;
688 /** The second of the minute (0-60).
689 * (u32Nanosecond / 1000000) */
690 uint8_t u8Second;
691 /** The nanoseconds of the second (0-999999999). */
692 uint32_t u32Nanosecond;
693 /** Flags, of the RTTIME_FLAGS_* \#defines. */
694 uint32_t fFlags;
695 /** UTC time offset in minutes (-840-840). Positive for timezones east of
696 * UTC, negative for zones to the west. Same as what RTTimeLocalDeltaNano
697 * & RTTimeLocalDeltaNanoFor returns, just different unit. */
698 int32_t offUTC;
699} RTTIME;
700AssertCompileSize(RTTIME, 24);
701/** Pointer to a exploded time structure. */
702typedef RTTIME *PRTTIME;
703/** Pointer to a const exploded time structure. */
704typedef const RTTIME *PCRTTIME;
705
706/** @name RTTIME::fFlags values.
707 * @{ */
708/** Set if the time is UTC. If clear the time local time. */
709#define RTTIME_FLAGS_TYPE_MASK 3
710/** the time is UTC time. */
711#define RTTIME_FLAGS_TYPE_UTC 2
712/** The time is local time. */
713#define RTTIME_FLAGS_TYPE_LOCAL 3
714
715/** Set if the time is local and daylight saving time is in effect.
716 * Not bit is not valid if RTTIME_FLAGS_NO_DST_DATA is set. */
717#define RTTIME_FLAGS_DST RT_BIT(4)
718/** Set if the time is local and there is no data available on daylight saving time. */
719#define RTTIME_FLAGS_NO_DST_DATA RT_BIT(5)
720/** Set if the year is a leap year.
721 * This is mutual exclusiv with RTTIME_FLAGS_COMMON_YEAR. */
722#define RTTIME_FLAGS_LEAP_YEAR RT_BIT(6)
723/** Set if the year is a common year.
724 * This is mutual exclusiv with RTTIME_FLAGS_LEAP_YEAR. */
725#define RTTIME_FLAGS_COMMON_YEAR RT_BIT(7)
726/** The mask of valid flags. */
727#define RTTIME_FLAGS_MASK UINT32_C(0xff)
728/** @} */
729
730
731/**
732 * Gets the current system time (UTC).
733 *
734 * @returns pTime.
735 * @param pTime Where to store the time.
736 */
737RTDECL(PRTTIMESPEC) RTTimeNow(PRTTIMESPEC pTime);
738
739/**
740 * Sets the system time.
741 *
742 * @returns IPRT status code
743 * @param pTime The new system time (UTC).
744 *
745 * @remarks This will usually fail because changing the wall time is usually
746 * requires extra privileges.
747 */
748RTDECL(int) RTTimeSet(PCRTTIMESPEC pTime);
749
750/**
751 * Explodes a time spec (UTC).
752 *
753 * @returns pTime.
754 * @param pTime Where to store the exploded time.
755 * @param pTimeSpec The time spec to exploded.
756 */
757RTDECL(PRTTIME) RTTimeExplode(PRTTIME pTime, PCRTTIMESPEC pTimeSpec);
758
759/**
760 * Implodes exploded time to a time spec (UTC).
761 *
762 * @returns pTime on success.
763 * @returns NULL if the pTime data is invalid.
764 * @param pTimeSpec Where to store the imploded UTC time.
765 * If pTime specifies a time which outside the range, maximum or
766 * minimum values will be returned.
767 * @param pTime Pointer to the exploded time to implode.
768 * The fields u8Month, u8WeekDay and u8MonthDay are not used,
769 * and all the other fields are expected to be within their
770 * bounds. Use RTTimeNormalize() to calculate u16YearDay and
771 * normalize the ranges of the fields.
772 */
773RTDECL(PRTTIMESPEC) RTTimeImplode(PRTTIMESPEC pTimeSpec, PCRTTIME pTime);
774
775/**
776 * Normalizes the fields of a time structure.
777 *
778 * It is possible to calculate year-day from month/day and vice
779 * versa. If you adjust any of of these, make sure to zero the
780 * other so you make it clear which of the fields to use. If
781 * it's ambiguous, the year-day field is used (and you get
782 * assertions in debug builds).
783 *
784 * All the time fields and the year-day or month/day fields will
785 * be adjusted for overflows. (Since all fields are unsigned, there
786 * is no underflows.) It is possible to exploit this for simple
787 * date math, though the recommended way of doing that to implode
788 * the time into a timespec and do the math on that.
789 *
790 * @returns pTime on success.
791 * @returns NULL if the data is invalid.
792 *
793 * @param pTime The time structure to normalize.
794 *
795 * @remarks This function doesn't work with local time, only with UTC time.
796 */
797RTDECL(PRTTIME) RTTimeNormalize(PRTTIME pTime);
798
799/**
800 * Gets the current local system time.
801 *
802 * @returns pTime.
803 * @param pTime Where to store the local time.
804 */
805RTDECL(PRTTIMESPEC) RTTimeLocalNow(PRTTIMESPEC pTime);
806
807/**
808 * Gets the current delta between UTC and local time.
809 *
810 * @code
811 * RTTIMESPEC LocalTime;
812 * RTTimeSpecAddNano(RTTimeNow(&LocalTime), RTTimeLocalDeltaNano());
813 * @endcode
814 *
815 * @returns Returns the nanosecond delta between UTC and local time.
816 */
817RTDECL(int64_t) RTTimeLocalDeltaNano(void);
818
819/**
820 * Gets the delta between UTC and local time at the given time.
821 *
822 * @code
823 * RTTIMESPEC LocalTime;
824 * RTTimeNow(&LocalTime);
825 * RTTimeSpecAddNano(&LocalTime, RTTimeLocalDeltaNanoFor(&LocalTime));
826 * @endcode
827 *
828 * @param pTimeSpec The time spec giving the time to get the delta for.
829 * @returns Returns the nanosecond delta between UTC and local time.
830 */
831RTDECL(int64_t) RTTimeLocalDeltaNanoFor(PCRTTIMESPEC pTimeSpec);
832
833/**
834 * Explodes a time spec to the localized timezone.
835 *
836 * @returns pTime.
837 * @param pTime Where to store the exploded time.
838 * @param pTimeSpec The time spec to exploded (UTC).
839 */
840RTDECL(PRTTIME) RTTimeLocalExplode(PRTTIME pTime, PCRTTIMESPEC pTimeSpec);
841
842/**
843 * Normalizes the fields of a time structure containing local time.
844 *
845 * See RTTimeNormalize for details.
846 *
847 * @returns pTime on success.
848 * @returns NULL if the data is invalid.
849 * @param pTime The time structure to normalize.
850 */
851RTDECL(PRTTIME) RTTimeLocalNormalize(PRTTIME pTime);
852
853/**
854 * Converts a time structure to UTC, relying on UTC offset information
855 * if it contains local time.
856 *
857 * @returns pTime on success.
858 * @returns NULL if the data is invalid.
859 * @param pTime The time structure to convert.
860 */
861RTDECL(PRTTIME) RTTimeConvertToZulu(PRTTIME pTime);
862
863/**
864 * Converts a time spec to a ISO date string.
865 *
866 * @returns psz on success.
867 * @returns NULL on buffer underflow.
868 * @param pTime The time. Caller should've normalized this.
869 * @param psz Where to store the string.
870 * @param cb The size of the buffer.
871 */
872RTDECL(char *) RTTimeToString(PCRTTIME pTime, char *psz, size_t cb);
873
874/**
875 * Converts a time spec to a ISO date string, extended version.
876 *
877 * @returns Output string length on success (positive), VERR_BUFFER_OVERFLOW
878 * (negative) or VERR_OUT_OF_RANGE (negative) on failure.
879 * @param pTime The time. Caller should've normalized this.
880 * @param psz Where to store the string.
881 * @param cb The size of the buffer.
882 * @param cFractionDigits Number of digits in the fraction. Max is 9.
883 */
884RTDECL(ssize_t) RTTimeToStringEx(PCRTTIME pTime, char *psz, size_t cb, unsigned cFractionDigits);
885
886/** Suggested buffer length for RTTimeToString and RTTimeToStringEx output, including terminator. */
887#define RTTIME_STR_LEN 40
888
889/**
890 * Attempts to convert an ISO date string to a time structure.
891 *
892 * We're a little forgiving with zero padding, unspecified parts, and leading
893 * and trailing spaces.
894 *
895 * @retval pTime on success,
896 * @retval NULL on failure.
897 * @param pTime Where to store the time on success.
898 * @param pszString The ISO date string to convert.
899 */
900RTDECL(PRTTIME) RTTimeFromString(PRTTIME pTime, const char *pszString);
901
902/**
903 * Formats the given time on a RTC-2822 compliant format.
904 *
905 * @returns Output string length on success (positive), VERR_BUFFER_OVERFLOW
906 * (negative) on failure.
907 * @param pTime The time. Caller should've normalized this.
908 * @param psz Where to store the string.
909 * @param cb The size of the buffer.
910 * @param fFlags RTTIME_RFC2822_F_XXX
911 * @sa RTTIME_RFC2822_LEN
912 */
913RTDECL(ssize_t) RTTimeToRfc2822(PRTTIME pTime, char *psz, size_t cb, uint32_t fFlags);
914
915/** Suggested buffer length for RTTimeToRfc2822 output, including terminator. */
916#define RTTIME_RFC2822_LEN 40
917/** @name RTTIME_RFC2822_F_XXX
918 * @{ */
919/** Use the deprecated GMT timezone instead of +/-0000.
920 * This is required by the HTTP RFC-7231 7.1.1.1. */
921#define RTTIME_RFC2822_F_GMT RT_BIT_32(0)
922/** @} */
923
924/**
925 * Attempts to convert an RFC-2822 date string to a time structure.
926 *
927 * We're a little forgiving with zero padding, unspecified parts, and leading
928 * and trailing spaces.
929 *
930 * @retval pTime on success,
931 * @retval NULL on failure.
932 * @param pTime Where to store the time on success.
933 * @param pszString The ISO date string to convert.
934 */
935RTDECL(PRTTIME) RTTimeFromRfc2822(PRTTIME pTime, const char *pszString);
936
937/**
938 * Checks if a year is a leap year or not.
939 *
940 * @returns true if it's a leap year.
941 * @returns false if it's a common year.
942 * @param i32Year The year in question.
943 */
944RTDECL(bool) RTTimeIsLeapYear(int32_t i32Year);
945
946/**
947 * Compares two normalized time structures.
948 *
949 * @retval 0 if equal.
950 * @retval -1 if @a pLeft is earlier than @a pRight.
951 * @retval 1 if @a pRight is earlier than @a pLeft.
952 *
953 * @param pLeft The left side time. NULL is accepted.
954 * @param pRight The right side time. NULL is accepted.
955 *
956 * @note A NULL time is considered smaller than anything else. If both are
957 * NULL, they are considered equal.
958 */
959RTDECL(int) RTTimeCompare(PCRTTIME pLeft, PCRTTIME pRight);
960
961/**
962 * Gets the current nanosecond timestamp.
963 *
964 * @returns nanosecond timestamp.
965 */
966RTDECL(uint64_t) RTTimeNanoTS(void);
967
968/**
969 * Gets the current millisecond timestamp.
970 *
971 * @returns millisecond timestamp.
972 */
973RTDECL(uint64_t) RTTimeMilliTS(void);
974
975/**
976 * Debugging the time api.
977 *
978 * @returns the number of 1ns steps which has been applied by RTTimeNanoTS().
979 */
980RTDECL(uint32_t) RTTimeDbgSteps(void);
981
982/**
983 * Debugging the time api.
984 *
985 * @returns the number of times the TSC interval expired RTTimeNanoTS().
986 */
987RTDECL(uint32_t) RTTimeDbgExpired(void);
988
989/**
990 * Debugging the time api.
991 *
992 * @returns the number of bad previous values encountered by RTTimeNanoTS().
993 */
994RTDECL(uint32_t) RTTimeDbgBad(void);
995
996/**
997 * Debugging the time api.
998 *
999 * @returns the number of update races in RTTimeNanoTS().
1000 */
1001RTDECL(uint32_t) RTTimeDbgRaces(void);
1002
1003
1004RTDECL(const char *) RTTimeNanoTSWorkerName(void);
1005
1006
1007/** @name RTTimeNanoTS GIP worker functions, for TM.
1008 * @{ */
1009
1010/** Extra info optionally returned by the RTTimeNanoTS GIP workers. */
1011typedef struct RTITMENANOTSEXTRA
1012{
1013 /** The TSC value used (delta adjusted). */
1014 uint64_t uTSCValue;
1015} RTITMENANOTSEXTRA;
1016/** Pointer to extra info optionally returned by the RTTimeNanoTS GIP workers. */
1017typedef RTITMENANOTSEXTRA *PRTITMENANOTSEXTRA;
1018
1019/** Pointer to a RTTIMENANOTSDATA structure. */
1020typedef struct RTTIMENANOTSDATA *PRTTIMENANOTSDATA;
1021
1022/**
1023 * Nanosecond timestamp data.
1024 *
1025 * This is used to keep track of statistics and callback so IPRT
1026 * and TM (VirtualBox) can share code.
1027 *
1028 * @remark Keep this in sync with the assembly version in timesupA.asm.
1029 */
1030typedef struct RTTIMENANOTSDATA
1031{
1032 /** Where the previous timestamp is stored.
1033 * This is maintained to ensure that time doesn't go backwards or anything. */
1034 uint64_t volatile *pu64Prev;
1035
1036 /**
1037 * Helper function that's used by the assembly routines when something goes bust.
1038 *
1039 * @param pData Pointer to this structure.
1040 * @param u64NanoTS The calculated nano ts.
1041 * @param u64DeltaPrev The delta relative to the previously returned timestamp.
1042 * @param u64PrevNanoTS The previously returned timestamp (as it was read it).
1043 */
1044 DECLCALLBACKMEMBER(void, pfnBad,(PRTTIMENANOTSDATA pData, uint64_t u64NanoTS, uint64_t u64DeltaPrev, uint64_t u64PrevNanoTS));
1045
1046 /**
1047 * Callback for when rediscovery is required.
1048 *
1049 * @returns Nanosecond timestamp.
1050 * @param pData Pointer to this structure.
1051 * @param pExtra Where to return extra time info. Optional.
1052 */
1053 DECLCALLBACKMEMBER(uint64_t, pfnRediscover,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra));
1054
1055 /**
1056 * Callback for when some CPU index related stuff goes wrong.
1057 *
1058 * @returns Nanosecond timestamp.
1059 * @param pData Pointer to this structure.
1060 * @param pExtra Where to return extra time info. Optional.
1061 * @param idApic The APIC ID if available, otherwise (UINT16_MAX-1).
1062 * @param iCpuSet The CPU set index if available, otherwise
1063 * (UINT16_MAX-1).
1064 * @param iGipCpu The GIP CPU array index if available, otherwise
1065 * (UINT16_MAX-1).
1066 */
1067 DECLCALLBACKMEMBER(uint64_t, pfnBadCpuIndex,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra,
1068 uint16_t idApic, uint16_t iCpuSet, uint16_t iGipCpu));
1069
1070 /** Number of 1ns steps because of overshooting the period. */
1071 uint32_t c1nsSteps;
1072 /** The number of times the interval expired (overflow). */
1073 uint32_t cExpired;
1074 /** Number of "bad" previous values. */
1075 uint32_t cBadPrev;
1076 /** The number of update races. */
1077 uint32_t cUpdateRaces;
1078} RTTIMENANOTSDATA;
1079
1080#ifndef IN_RING3
1081/**
1082 * The Ring-3 layout of the RTTIMENANOTSDATA structure.
1083 */
1084typedef struct RTTIMENANOTSDATAR3
1085{
1086 R3PTRTYPE(uint64_t volatile *) pu64Prev;
1087 DECLR3CALLBACKMEMBER(void, pfnBad,(PRTTIMENANOTSDATA pData, uint64_t u64NanoTS, uint64_t u64DeltaPrev, uint64_t u64PrevNanoTS));
1088 DECLR3CALLBACKMEMBER(uint64_t, pfnRediscover,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra));
1089 DECLR3CALLBACKMEMBER(uint64_t, pfnBadCpuIndex,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra,
1090 uint16_t idApic, uint16_t iCpuSet, uint16_t iGipCpu));
1091 uint32_t c1nsSteps;
1092 uint32_t cExpired;
1093 uint32_t cBadPrev;
1094 uint32_t cUpdateRaces;
1095} RTTIMENANOTSDATAR3;
1096#else
1097typedef RTTIMENANOTSDATA RTTIMENANOTSDATAR3;
1098#endif
1099
1100#ifndef IN_RING0
1101/**
1102 * The Ring-3 layout of the RTTIMENANOTSDATA structure.
1103 */
1104typedef struct RTTIMENANOTSDATAR0
1105{
1106 R0PTRTYPE(uint64_t volatile *) pu64Prev;
1107 DECLR0CALLBACKMEMBER(void, pfnBad,(PRTTIMENANOTSDATA pData, uint64_t u64NanoTS, uint64_t u64DeltaPrev, uint64_t u64PrevNanoTS));
1108 DECLR0CALLBACKMEMBER(uint64_t, pfnRediscover,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra));
1109 DECLR0CALLBACKMEMBER(uint64_t, pfnBadCpuIndex,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra,
1110 uint16_t idApic, uint16_t iCpuSet, uint16_t iGipCpu));
1111 uint32_t c1nsSteps;
1112 uint32_t cExpired;
1113 uint32_t cBadPrev;
1114 uint32_t cUpdateRaces;
1115} RTTIMENANOTSDATAR0;
1116#else
1117typedef RTTIMENANOTSDATA RTTIMENANOTSDATAR0;
1118#endif
1119
1120#ifndef IN_RC
1121/**
1122 * The RC layout of the RTTIMENANOTSDATA structure.
1123 */
1124typedef struct RTTIMENANOTSDATARC
1125{
1126 RCPTRTYPE(uint64_t volatile *) pu64Prev;
1127 DECLRCCALLBACKMEMBER(void, pfnBad,(PRTTIMENANOTSDATA pData, uint64_t u64NanoTS, uint64_t u64DeltaPrev, uint64_t u64PrevNanoTS));
1128 DECLRCCALLBACKMEMBER(uint64_t, pfnRediscover,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra));
1129 DECLRCCALLBACKMEMBER(uint64_t, pfnBadCpuIndex,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra,
1130 uint16_t idApic, uint16_t iCpuSet, uint16_t iGipCpu));
1131 uint32_t c1nsSteps;
1132 uint32_t cExpired;
1133 uint32_t cBadPrev;
1134 uint32_t cUpdateRaces;
1135} RTTIMENANOTSDATARC;
1136#else
1137typedef RTTIMENANOTSDATA RTTIMENANOTSDATARC;
1138#endif
1139
1140/** Internal RTTimeNanoTS worker (assembly). */
1141typedef DECLCALLBACKTYPE(uint64_t, FNTIMENANOTSINTERNAL,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra));
1142/** Pointer to an internal RTTimeNanoTS worker (assembly). */
1143typedef FNTIMENANOTSINTERNAL *PFNTIMENANOTSINTERNAL;
1144RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarNoDelta(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1145RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarNoDelta(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1146#ifdef IN_RING3
1147RTDECL(uint64_t) RTTimeNanoTSLegacyAsyncUseApicId(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1148RTDECL(uint64_t) RTTimeNanoTSLegacyAsyncUseApicIdExt0B(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1149RTDECL(uint64_t) RTTimeNanoTSLegacyAsyncUseApicIdExt8000001E(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1150RTDECL(uint64_t) RTTimeNanoTSLegacyAsyncUseRdtscp(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1151RTDECL(uint64_t) RTTimeNanoTSLegacyAsyncUseRdtscpGroupChNumCl(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1152RTDECL(uint64_t) RTTimeNanoTSLegacyAsyncUseIdtrLim(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1153RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarWithDeltaUseApicId(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1154RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarWithDeltaUseApicIdExt0B(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1155RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarWithDeltaUseApicIdExt8000001E(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1156RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarWithDeltaUseRdtscp(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1157RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarWithDeltaUseIdtrLim(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1158RTDECL(uint64_t) RTTimeNanoTSLFenceAsyncUseApicId(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1159RTDECL(uint64_t) RTTimeNanoTSLFenceAsyncUseApicIdExt0B(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1160RTDECL(uint64_t) RTTimeNanoTSLFenceAsyncUseApicIdExt8000001E(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1161RTDECL(uint64_t) RTTimeNanoTSLFenceAsyncUseRdtscp(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1162RTDECL(uint64_t) RTTimeNanoTSLFenceAsyncUseRdtscpGroupChNumCl(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1163RTDECL(uint64_t) RTTimeNanoTSLFenceAsyncUseIdtrLim(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1164RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarWithDeltaUseApicId(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1165RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarWithDeltaUseApicIdExt0B(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1166RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarWithDeltaUseApicIdExt8000001E(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1167RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarWithDeltaUseRdtscp(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1168RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarWithDeltaUseIdtrLim(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1169#else
1170RTDECL(uint64_t) RTTimeNanoTSLegacyAsync(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1171RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarWithDelta(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1172RTDECL(uint64_t) RTTimeNanoTSLFenceAsync(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1173RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarWithDelta(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra);
1174#endif
1175
1176/** @} */
1177
1178
1179/**
1180 * Gets the current nanosecond timestamp.
1181 *
1182 * This differs from RTTimeNanoTS in that it will use system APIs and not do any
1183 * resolution or performance optimizations.
1184 *
1185 * @returns nanosecond timestamp.
1186 */
1187RTDECL(uint64_t) RTTimeSystemNanoTS(void);
1188
1189/**
1190 * Gets the current millisecond timestamp.
1191 *
1192 * This differs from RTTimeNanoTS in that it will use system APIs and not do any
1193 * resolution or performance optimizations.
1194 *
1195 * @returns millisecond timestamp.
1196 */
1197RTDECL(uint64_t) RTTimeSystemMilliTS(void);
1198
1199/**
1200 * Get the nanosecond timestamp relative to program startup.
1201 *
1202 * @returns Timestamp relative to program startup.
1203 */
1204RTDECL(uint64_t) RTTimeProgramNanoTS(void);
1205
1206/**
1207 * Get the microsecond timestamp relative to program startup.
1208 *
1209 * @returns Timestamp relative to program startup.
1210 */
1211RTDECL(uint64_t) RTTimeProgramMicroTS(void);
1212
1213/**
1214 * Get the millisecond timestamp relative to program startup.
1215 *
1216 * @returns Timestamp relative to program startup.
1217 */
1218RTDECL(uint64_t) RTTimeProgramMilliTS(void);
1219
1220/**
1221 * Get the second timestamp relative to program startup.
1222 *
1223 * @returns Timestamp relative to program startup.
1224 */
1225RTDECL(uint32_t) RTTimeProgramSecTS(void);
1226
1227/**
1228 * Get the RTTimeNanoTS() of when the program started.
1229 *
1230 * @returns Program startup timestamp.
1231 */
1232RTDECL(uint64_t) RTTimeProgramStartNanoTS(void);
1233
1234
1235/**
1236 * Time zone information.
1237 */
1238typedef struct RTTIMEZONEINFO
1239{
1240 /** Unix time zone name (continent/country[/city]|). */
1241 const char *pszUnixName;
1242 /** Windows time zone name. */
1243 const char *pszWindowsName;
1244 /** The length of the unix time zone name. */
1245 uint8_t cchUnixName;
1246 /** The length of the windows time zone name. */
1247 uint8_t cchWindowsName;
1248 /** Two letter country/territory code if applicable, otherwise 'ZZ'. */
1249 char szCountry[3];
1250 /** Two letter windows country/territory code if applicable.
1251 * Empty string if no windows mapping. */
1252 char szWindowsCountry[3];
1253#if 0 /* Add when needed and it's been extracted. */
1254 /** The standard delta in minutes (add to UTC). */
1255 int16_t cMinStdDelta;
1256 /** The daylight saving time delta in minutes (add to UTC). */
1257 int16_t cMinDstDelta;
1258#endif
1259 /** closest matching windows time zone index. */
1260 uint32_t idxWindows;
1261 /** Flags, RTTIMEZONEINFO_F_XXX. */
1262 uint32_t fFlags;
1263} RTTIMEZONEINFO;
1264/** Pointer to time zone info. */
1265typedef RTTIMEZONEINFO const *PCRTTIMEZONEINFO;
1266
1267/** @name RTTIMEZONEINFO_F_XXX - time zone info flags.
1268 * @{ */
1269/** Indicates golden mapping entry for a windows time zone name. */
1270#define RTTIMEZONEINFO_F_GOLDEN RT_BIT_32(0)
1271/** @} */
1272
1273/**
1274 * Looks up static time zone information by unix name.
1275 *
1276 * @returns Pointer to info entry if found, NULL if not.
1277 * @param pszName The unix zone name (TZ).
1278 */
1279RTDECL(PCRTTIMEZONEINFO) RTTimeZoneGetInfoByUnixName(const char *pszName);
1280
1281/**
1282 * Looks up static time zone information by window name.
1283 *
1284 * @returns Pointer to info entry if found, NULL if not.
1285 * @param pszName The windows zone name (reg key).
1286 */
1287RTDECL(PCRTTIMEZONEINFO) RTTimeZoneGetInfoByWindowsName(const char *pszName);
1288
1289/**
1290 * Looks up static time zone information by windows index.
1291 *
1292 * @returns Pointer to info entry if found, NULL if not.
1293 * @param idxZone The windows timezone index.
1294 */
1295RTDECL(PCRTTIMEZONEINFO) RTTimeZoneGetInfoByWindowsIndex(uint32_t idxZone);
1296
1297/**
1298 * Get the current time zone (TZ).
1299 *
1300 * @returns IPRT status code.
1301 * @param pszName Where to return the time zone name.
1302 * @param cbName The size of the name buffer.
1303 */
1304RTDECL(int) RTTimeZoneGetCurrent(char *pszName, size_t cbName);
1305
1306/** @} */
1307
1308RT_C_DECLS_END
1309
1310#endif /* !IPRT_INCLUDED_time_h */
1311
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette