/* $Id: VBoxGuest-solaris-streams.c 41212 2012-05-08 15:55:06Z vboxsync $ */ /** @file * VirtualBox Guest Additions Driver for Solaris. */ /* * Copyright (C) 2012 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /****************************************************************************** * Header Files * ******************************************************************************/ #ifndef TESTCASE # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include #undef u /* /usr/include/sys/user.h:249:1 is where this is defined to (curproc->p_user). very cool. */ #else /* TESTCASE */ # undef IN_RING3 # define IN_RING0 #endif /* TESTCASE */ #include "VBoxGuestInternal.h" #include #include #include #include #include #include #include #include #include #ifdef TESTCASE /* Include this last as we . */ # include "testcase/solaris.h" # include #endif /* TESTCASE */ /****************************************************************************** * Defined Constants And Macros * ******************************************************************************/ /** The module name. */ #define DEVICE_NAME "vboxguest" /** The module description as seen in 'modinfo'. */ #define DEVICE_DESC "VirtualBox GstDrv" /** The maximum number of open device nodes we support. */ #define MAX_OPEN_NODES 4096 /****************************************************************************** * Internal functions used in global structures * ******************************************************************************/ static int vbgr0SolOpen(queue_t *pReadQueue, dev_t *pDev, int fFlag, int fMode, cred_t *pCred); static int vbgr0SolClose(queue_t *pReadQueue, int fFlag, cred_t *pCred); static int vbgr0SolWPut(queue_t *pWriteQueue, mblk_t *pMBlk); static int vbgr0SolGetInfo(dev_info_t *pDip, ddi_info_cmd_t enmCmd, void *pArg, void **ppResult); static int vbgr0SolAttach(dev_info_t *pDip, ddi_attach_cmd_t enmCmd); static int vbgr0SolDetach(dev_info_t *pDip, ddi_detach_cmd_t enmCmd); /****************************************************************************** * Driver global structures * ******************************************************************************/ #ifndef TESTCASE /* I see no value in including these in the test. */ /* * mod_info: STREAMS module information. */ static struct module_info g_vbgr0SolModInfo = { 0x0ffff, /* module id number */ "vboxguest", 0, /* minimum packet size */ INFPSZ, /* maximum packet size accepted */ 512, /* high water mark for data flow control */ 128 /* low water mark */ }; /* * rinit: read queue structure for handling messages coming from below. In * our case this means the host and the virtual hardware, so we do not need * the put and service procedures. */ static struct qinit g_vbgr0SolRInit = { NULL, /* put */ NULL, /* service thread procedure */ vbgr0SolOpen, vbgr0SolClose, NULL, /* reserved */ &g_vbgr0SolModInfo, NULL /* module statistics structure */ }; /* * winit: write queue structure for handling messages coming from above. Above * means user space applications: either Guest Additions user space tools or * applications reading pointer input. Messages from the last most likely pass * through at least the "consms" console mouse streams module which multiplexes * hardware pointer drivers to a single virtual pointer. */ static struct qinit g_vbgr0SolWInit = { vbgr0SolWPut, NULL, /* service thread procedure */ NULL, /* open */ NULL, /* close */ NULL, /* reserved */ &g_vbgr0SolModInfo, NULL /* module statistics structure */ }; /** * streamtab: for drivers that support char/block entry points. */ static struct streamtab g_vbgr0SolStreamTab = { &g_vbgr0SolRInit, &g_vbgr0SolWInit, NULL, /* MUX rinit */ NULL /* MUX winit */ }; /** * cb_ops: for drivers that support char/block entry points. */ static struct cb_ops g_vbgr0SolCbOps = { nulldev, /* open */ nulldev, /* close */ nulldev, /* b strategy */ nulldev, /* b dump */ nulldev, /* b print */ nulldev, /* c read */ nulldev, /* c write */ nulldev, /* c ioctl */ nulldev, /* c devmap */ nulldev, /* c mmap */ nulldev, /* c segmap */ nochpoll, /* c poll */ ddi_prop_op, /* property ops */ &g_vbgr0SolStreamTab, D_NEW | D_MP, /* compat. flag */ }; /** * dev_ops: for driver device operations. */ static struct dev_ops g_vbgr0SolDevOps = { DEVO_REV, /* driver build revision */ 0, /* ref count */ vbgr0SolGetInfo, nulldev, /* identify */ nulldev, /* probe */ vbgr0SolAttach, vbgr0SolDetach, nodev, /* reset */ &g_vbgr0SolCbOps, (struct bus_ops *)0, nodev /* power */ }; /** * modldrv: export driver specifics to the kernel. */ static struct modldrv g_vbgr0SolModule = { &mod_driverops, /* extern from kernel */ DEVICE_DESC " " VBOX_VERSION_STRING "r" RT_XSTR(VBOX_SVN_REV), &g_vbgr0SolDevOps }; /** * modlinkage: export install/remove/info to the kernel. */ static struct modlinkage g_vbgr0SolModLinkage = { MODREV_1, /* loadable module system revision */ &g_vbgr0SolModule, NULL /* terminate array of linkage structures */ }; #else /* TESTCASE */ static void *g_vbgr0SolModLinkage; #endif /* TESTCASE */ /** * State info for each open file handle. */ typedef struct { /** Pointer to the session handle. */ PVBOXGUESTSESSION pSession; /** The STREAMS write queue which we need for sending messages up to * user-space. */ queue_t *pWriteQueue; /* The current greatest horizontal pixel offset on the screen, used for * absolute mouse position reporting. */ int cMaxScreenX; /* The current greatest vertical pixel offset on the screen, used for * absolute mouse position reporting. */ int cMaxScreenY; } VBGR0STATE, *PVBGR0STATE; /****************************************************************************** * Global Variables * ******************************************************************************/ /** Device handle (we support only one instance). */ static dev_info_t *g_pDip = NULL; /** Array of state structures for open device nodes. I don't care about * wasting a few K of memory. */ static VBGR0STATE g_aOpenNodeStates[MAX_OPEN_NODES] /* = { 0 } */; /** Mutex to protect the queue pointers in the node states from being unset * during an IRQ. */ static kmutex_t g_StateMutex; /** Device extention & session data association structure. */ static VBOXGUESTDEVEXT g_DevExt; /** IO port handle. */ static ddi_acc_handle_t g_PciIOHandle; /** MMIO handle. */ static ddi_acc_handle_t g_PciMMIOHandle; /** IO Port. */ static uint16_t g_uIOPortBase; /** Address of the MMIO region.*/ static char *g_pMMIOBase; /* Actually caddr_t. */ /** Size of the MMIO region. */ static off_t g_cbMMIO; /** Pointer to the interrupt handle vector */ static ddi_intr_handle_t *g_pIntr; /** Number of actually allocated interrupt handles */ static size_t g_cIntrAllocated; /** The IRQ Mutex */ static kmutex_t g_IrqMutex; /** Layered device handle for kernel keep-attached opens */ static ldi_handle_t g_LdiHandle = NULL; /** Ref counting for IDCOpen calls */ static uint64_t g_cLdiOpens = 0; /** The Mutex protecting the LDI handle in IDC opens */ static kmutex_t g_LdiMtx; /****************************************************************************** * Kernel entry points * ******************************************************************************/ /** Driver initialisation. */ int _init(void) { /* * Initialize IPRT R0 driver, which internally calls OS-specific r0 init. */ int rc = RTR0Init(0); if (RT_SUCCESS(rc)) { PRTLOGGER pRelLogger; static const char * const s_apszGroups[] = VBOX_LOGGROUP_NAMES; modctl_t *pModCtl; rc = RTLogCreate(&pRelLogger, 0 /* fFlags */, "all", "VBOX_RELEASE_LOG", RT_ELEMENTS(s_apszGroups), s_apszGroups, RTLOGDEST_STDOUT | RTLOGDEST_DEBUGGER | RTLOGDEST_USER, NULL); if (RT_SUCCESS(rc)) RTLogRelSetDefaultInstance(pRelLogger); else cmn_err(CE_NOTE, "failed to initialize driver logging rc=%d!\n", rc); /* * Prevent module autounloading. */ pModCtl = mod_getctl(&g_vbgr0SolModLinkage); if (pModCtl) pModCtl->mod_loadflags |= MOD_NOAUTOUNLOAD; else LogRel((DEVICE_NAME ":failed to disable autounloading!\n")); rc = mod_install(&g_vbgr0SolModLinkage); } else { cmn_err(CE_NOTE, "_init: RTR0Init failed. rc=%d\n", rc); return EINVAL; } LogRel((DEVICE_NAME ": initialisation returning %d.\n", rc)); return rc; } #ifdef TESTCASE /** Simple test of the flow through _init. */ static void test_init(RTTEST hTest) { RTTestSub(hTest, "Testing _init"); RTTEST_CHECK(hTest, _init() == 0); } #endif /** Driver cleanup. */ int _fini(void) { int rc; LogRelFlow((DEVICE_NAME ":_fini\n")); rc = mod_remove(&g_vbgr0SolModLinkage); mutex_destroy(&g_StateMutex); RTLogDestroy(RTLogRelSetDefaultInstance(NULL)); RTLogDestroy(RTLogSetDefaultInstance(NULL)); RTR0Term(); return rc; } /** Driver identification. */ int _info(struct modinfo *pModInfo) { LogFlow((DEVICE_NAME ":_info\n")); return mod_info(&g_vbgr0SolModLinkage, pModInfo); } /****************************************************************************** * Helper routines * ******************************************************************************/ /** Calls the kernel IOCtl to report mouse status to the host on behalf of * an open session. */ static int vbgr0SolSetMouseStatus(PVBOXGUESTSESSION pSession, uint32_t fStatus) { return VBoxGuestCommonIOCtl(VBOXGUEST_IOCTL_SET_MOUSE_STATUS, &g_DevExt, pSession, &fStatus, sizeof(fStatus), NULL); } /** Resets (zeroes) a member in our open node state array in an IRQ-safe way. */ static void vbgr0SolResetSoftState(PVBGR0STATE pState) { mutex_enter(&g_StateMutex); RT_ZERO(*pState); mutex_exit(&g_StateMutex); } /****************************************************************************** * Main code * ******************************************************************************/ /** * Open callback for the read queue, which we use as a generic device open * handler. */ int vbgr0SolOpen(queue_t *pReadQueue, dev_t *pDev, int fFlag, int fMode, cred_t *pCred) { int rc; PVBOXGUESTSESSION pSession = NULL; PVBGR0STATE pState = NULL; unsigned cInstance; NOREF(fFlag); NOREF(pCred); LogRelFlow((DEVICE_NAME "::Open\n")); /* * Sanity check on the mode parameter - only open as a driver, not a * module, and we do cloning ourselves. Note that we start at 1, as minor * zero was allocated to the file system device node in vbgr0SolAttach * (see https://blogs.oracle.com/timatworkhomeandinbetween/entry/using_makedevice_in_a_drivers). */ if (fMode) { LogRelFlow((DEVICE_NAME "::Open: invalid attempt to clone device.")); return EINVAL; } for (cInstance = 1; cInstance < MAX_OPEN_NODES; cInstance++) { if (ASMAtomicCmpXchgPtr(&g_aOpenNodeStates[cInstance].pWriteQueue, WR(pReadQueue), NULL)) { pState = &g_aOpenNodeStates[cInstance]; break; } } if (!pState) { LogRelFlow((DEVICE_NAME "::Open: too many open instances.")); return ENXIO; } /* * Create a new session. */ rc = VBoxGuestCreateUserSession(&g_DevExt, &pSession); if (RT_SUCCESS(rc)) { pState->pSession = pSession; *pDev = makedevice(getmajor(*pDev), cInstance); /* Initialise user data for the queues to our state and vice-versa. */ WR(pReadQueue)->q_ptr = (char *)pState; pReadQueue->q_ptr = (char *)pState; qprocson(pReadQueue); LogRel((DEVICE_NAME "::Open: pSession=%p pState=%p pid=%d\n", pSession, pState, (int)RTProcSelf())); return 0; } /* Failed, clean up. */ vbgr0SolResetSoftState(pState); LogRel((DEVICE_NAME "::Open: VBoxGuestCreateUserSession failed. rc=%d\n", rc)); return EFAULT; } /** * Close callback for the read queue, which we use as a generic device close * handler. */ int vbgr0SolClose(queue_t *pReadQueue, int fFlag, cred_t *pCred) { PVBOXGUESTSESSION pSession = NULL; PVBGR0STATE pState = (PVBGR0STATE)pReadQueue->q_ptr; LogFlow((DEVICE_NAME "::Close pid=%d\n", (int)RTProcSelf())); NOREF(fFlag); NOREF(pCred); if (!pState) { Log((DEVICE_NAME "::Close: failed to get pState.\n")); return EFAULT; } qprocsoff(pReadQueue); pSession = pState->pSession; vbgr0SolResetSoftState(pState); pReadQueue->q_ptr = NULL; Log((DEVICE_NAME "::Close: pSession=%p pState=%p\n", pSession, pState)); if (!pSession) { Log((DEVICE_NAME "::Close: failed to get pSession.\n")); return EFAULT; } /* * Close the session. */ VBoxGuestCloseSession(&g_DevExt, pSession); return 0; } #ifdef TESTCASE /** Simple test of vbgr0SolOpen and vbgr0SolClose. */ static void testOpenClose(RTTEST hTest) { queue_t aQueues[4]; dev_t device = 0; int rc; RTTestSub(hTest, "Testing vbgr0SolOpen and vbgr0SolClose"); RT_ZERO(g_aOpenNodeStates); RT_ZERO(aQueues); doInitQueues(&aQueues[0]); doInitQueues(&aQueues[2]); rc = vbgr0SolOpen(RD(&aQueues[0]), &device, 0, 0, NULL); RTTEST_CHECK(hTest, rc == 0); RTTEST_CHECK(hTest, g_aOpenNodeStates[1].pWriteQueue == WR(&aQueues[0])); rc = vbgr0SolOpen(RD(&aQueues[2]), &device, 0, 0, NULL); RTTEST_CHECK(hTest, rc == 0); RTTEST_CHECK(hTest, g_aOpenNodeStates[2].pWriteQueue == WR(&aQueues[2])); vbgr0SolClose(RD(&aQueues[0]), 0, NULL); vbgr0SolClose(RD(&aQueues[1]), 0, NULL); } #endif /* Helper for vbgr0SolWPut. */ static int vbgr0SolDispatchIOCtl(queue_t *pWriteQueue, mblk_t *pMBlk); /** * Handler for messages sent from above (user-space and upper modules) which * land in our write queue. */ int vbgr0SolWPut(queue_t *pWriteQueue, mblk_t *pMBlk) { LogRelFlowFunc((DEVICE_NAME "::\n")); switch (pMBlk->b_datap->db_type) { case M_FLUSH: /* Flush the write queue if so requested. */ if (*pMBlk->b_rptr & FLUSHW) flushq(pWriteQueue, FLUSHDATA); /* Flush the read queue if so requested. */ if (*pMBlk->b_rptr & FLUSHR) flushq(RD(pWriteQueue), FLUSHDATA); /* We have no one below us to pass the message on to. */ return 0; /* M_IOCDATA is additional data attached to (at least) transparent * IOCtls. We handle the two together here and separate them further * down. */ case M_IOCTL: case M_IOCDATA: { int err = vbgr0SolDispatchIOCtl(pWriteQueue, pMBlk); if (!err) qreply(pWriteQueue, pMBlk); else miocnak(pWriteQueue, pMBlk, 0, err); break; } } return 0; } #ifdef TESTCASE /* Constants, definitions and test functions for testWPut. */ static const int g_ccTestWPutFirmEvent = VUID_FIRM_EVENT; # define PVGFORMAT (&g_ccTestWPutFirmEvent) # define CBGFORMAT (sizeof(g_ccTestWPutFirmEvent)) static const Ms_screen_resolution g_TestResolution = { 640, 480 }; # define PMSIOSRES (&g_TestResolution) # define CBMSIOSRES (sizeof(g_TestResolution)) static inline bool testSetResolution(RTTEST hTest, queue_t *pWriteQueue, struct msgb *pMBlk) { PVBGR0STATE pState = (PVBGR0STATE)pWriteQueue->q_ptr; RTTEST_CHECK_MSG_RET(hTest, pState->cMaxScreenX == g_TestResolution.width - 1, (hTest, "pState->cMaxScreenX=%d\n", pState->cMaxScreenX), false); RTTEST_CHECK_MSG_RET(hTest, pState->cMaxScreenY == g_TestResolution.height - 1, (hTest, "pState->cMaxScreenY=%d\n", pState->cMaxScreenY), false); return true; } /** Data table for testWPut. */ static struct { int iIOCCmd; size_t cbData; const void *pvDataIn; size_t cbDataIn; const void *pvDataOut; size_t cbDataOut; int rcExp; bool (*pfnExtra)(RTTEST hTest, queue_t *pWriteQueue, struct msgb *pMBlk); bool fCanTransparent; } g_asTestWPut[] = { /* iIOCCmd cbData pvDataIn cbDataIn pvDataOut cbDataOut rcExp pfnExtra fCanTransparent */ { VUIDGFORMAT, sizeof(int), NULL, 0, PVGFORMAT, CBGFORMAT, 0, NULL, true }, { VUIDGFORMAT, sizeof(int) - 1, NULL, 0, NULL, 0, EINVAL, NULL, false }, { VUIDGFORMAT, sizeof(int) + 1, NULL, 0, PVGFORMAT, CBGFORMAT, 0, NULL, true }, { VUIDSFORMAT, sizeof(int), PVGFORMAT, CBGFORMAT, NULL, 0, 0, NULL, true }, { MSIOSRESOLUTION, CBMSIOSRES, PMSIOSRES, CBMSIOSRES, NULL, 0, 0, testSetResolution, true }, { VUIDGWHEELINFO, 0, NULL, 0, NULL, 0, EINVAL, NULL, true } }; # undef PVGFORMAT # undef CBGFORMAT # undef PMSIOSRES # undef CBMSIOSRES /* Helpers for testWPut. */ static void testWPutStreams(RTTEST hTest, unsigned i); static void testWPutTransparent(RTTEST hTest, unsigned i); static void testWPutIOCDataIn(RTTEST hTest, unsigned i); static void testWPutIOCDataOut(RTTEST hTest, unsigned i); /** Test WPut's handling of different IOCtls, which is bulk of the logic in * this file. */ static void testWPut(RTTEST hTest) { unsigned i; RTTestSub(hTest, "Testing vbgr0WPut"); for (i = 0; i < RT_ELEMENTS(g_asTestWPut); ++i) { AssertReturnVoid(g_asTestWPut[i].cbDataIn <= g_asTestWPut[i].cbData); AssertReturnVoid(g_asTestWPut[i].cbDataOut <= g_asTestWPut[i].cbData); testWPutStreams(hTest, i); if (g_asTestWPut[i].fCanTransparent) testWPutTransparent(hTest, i); if (g_asTestWPut[i].fCanTransparent && g_asTestWPut[i].cbDataIn) testWPutIOCDataIn(hTest, i); if (g_asTestWPut[i].fCanTransparent && g_asTestWPut[i].cbDataOut) testWPutIOCDataOut(hTest, i); } } #define MSG_DATA_SIZE 1024 /** Simulate sending a streams IOCtl to WPut with the parameters from table * line @a i. */ void testWPutStreams(RTTEST hTest, unsigned i) { queue_t aQueues[2]; dev_t device = 0; struct msgb *pMBlk = allocb(sizeof(struct iocblk), BPRI_MED); struct msgb *pMBlkCont = allocb(MSG_DATA_SIZE, BPRI_MED); struct iocblk *pIOCBlk = pMBlk ? (struct iocblk *)pMBlk->b_rptr : NULL; int rc, cFormat = 0; AssertReturnVoid(pMBlk); AssertReturnVoidStmt(pMBlkCont, freemsg(pMBlk)); RT_ZERO(aQueues); doInitQueues(&aQueues[0]); rc = vbgr0SolOpen(RD(&aQueues[0]), &device, 0, 0, NULL); RTTEST_CHECK_MSG(hTest, rc == 0, (hTest, "i=%u, rc=%d\n", i, rc)); RTTEST_CHECK_MSG(hTest, g_aOpenNodeStates[1].pWriteQueue == WR(&aQueues[0]), (hTest, "i=%u\n", i)); pMBlk->b_datap->db_type = M_IOCTL; pIOCBlk->ioc_cmd = g_asTestWPut[i].iIOCCmd; pIOCBlk->ioc_count = g_asTestWPut[i].cbData; AssertReturnVoid(g_asTestWPut[i].cbData <= MSG_DATA_SIZE); memcpy(pMBlkCont->b_rptr, g_asTestWPut[i].pvDataIn, g_asTestWPut[i].cbDataIn); pMBlk->b_cont = pMBlkCont; rc = vbgr0SolWPut(WR(&aQueues[0]), pMBlk); RTTEST_CHECK_MSG(hTest, pIOCBlk->ioc_error == g_asTestWPut[i].rcExp, (hTest, "i=%u, IOCBlk.ioc_error=%d\n", i, pIOCBlk->ioc_error)); RTTEST_CHECK_MSG(hTest, pIOCBlk->ioc_count == g_asTestWPut[i].cbDataOut, (hTest, "i=%u, ioc_count=%u\n", i, pIOCBlk->ioc_count)); RTTEST_CHECK_MSG(hTest, !memcmp(pMBlkCont->b_rptr, g_asTestWPut[i].pvDataOut, g_asTestWPut[i].cbDataOut), (hTest, "i=%u\n", i)); /* Hack to ensure that miocpullup() gets called when needed. */ if (g_asTestWPut[i].cbData > 0) RTTEST_CHECK_MSG(hTest, pMBlk->b_flag == 1, (hTest, "i=%u\n", i)); if (!g_asTestWPut[i].rcExp) RTTEST_CHECK_MSG(hTest, RD(&aQueues[0])->q_first == pMBlk, (hTest, "i=%u\n", i)); if (g_asTestWPut[i].pfnExtra) if (!g_asTestWPut[i].pfnExtra(hTest, WR(&aQueues[0]), pMBlk)) RTTestPrintf(hTest, RTTESTLVL_ALWAYS, "Called from %s.\n", __PRETTY_FUNCTION__); vbgr0SolClose(RD(&aQueues[1]), 0, NULL); freemsg(pMBlk); } #define USER_ADDRESS 0xfeedbacc /** Simulate sending a transparent IOCtl to WPut with the parameters from table * line @a i. */ void testWPutTransparent(RTTEST hTest, unsigned i) { queue_t aQueues[2]; dev_t device = 0; struct msgb *pMBlk = allocb(sizeof(struct iocblk), BPRI_MED); struct msgb *pMBlkCont = allocb(sizeof(void *), BPRI_MED); struct iocblk *pIOCBlk = pMBlk ? (struct iocblk *)pMBlk->b_rptr : NULL; struct copyreq *pCopyReq; int rc, cFormat = 0; /* if (g_asTestWPut[i].cbDataIn == 0 && g_asTestWPut[i].cbDataOut != 0) return; */ /* This case will be handled once the current ones work. */ AssertReturnVoid(pMBlk); AssertReturnVoidStmt(pMBlkCont, freemsg(pMBlk)); RT_ZERO(aQueues); doInitQueues(&aQueues[0]); rc = vbgr0SolOpen(RD(&aQueues[0]), &device, 0, 0, NULL); RTTEST_CHECK_MSG(hTest, rc == 0, (hTest, "i=%u, rc=%d\n", i, rc)); RTTEST_CHECK_MSG(hTest, g_aOpenNodeStates[1].pWriteQueue == WR(&aQueues[0]), (hTest, "i=%u\n", i)); pMBlk->b_datap->db_type = M_IOCTL; pIOCBlk->ioc_cmd = g_asTestWPut[i].iIOCCmd; pIOCBlk->ioc_count = TRANSPARENT; *(void **)pMBlkCont->b_rptr = (void *)USER_ADDRESS; pMBlk->b_cont = pMBlkCont; rc = vbgr0SolWPut(WR(&aQueues[0]), pMBlk); pCopyReq = (struct copyreq *)pMBlk->b_rptr; RTTEST_CHECK_MSG(hTest, ( ( g_asTestWPut[i].cbDataIn && (pMBlk->b_datap->db_type == M_COPYIN)) || ( g_asTestWPut[i].cbDataOut && (pMBlk->b_datap->db_type == M_COPYOUT)) || ( (g_asTestWPut[i].rcExp == 0) && pMBlk->b_datap->db_type == M_IOCACK) || (pMBlk->b_datap->db_type == M_IOCNAK)), (hTest, "i=%u, db_type=%u\n", i, (unsigned) pMBlk->b_datap->db_type)); /* Our TRANSPARENT IOCtls can only return non-zero if they have no payload. * Others should either return zero or be non-TRANSPARENT only. */ if (pMBlk->b_datap->db_type == M_IOCNAK) RTTEST_CHECK_MSG(hTest, pIOCBlk->ioc_error == g_asTestWPut[i].rcExp, (hTest, "i=%u, IOCBlk.ioc_error=%d\n", i, pIOCBlk->ioc_error)); if (g_asTestWPut[i].cbData) { RTTEST_CHECK_MSG(hTest, pCopyReq->cq_addr == (char *)USER_ADDRESS, (hTest, "i=%u, cq_addr=%p\n", i, pCopyReq->cq_addr)); RTTEST_CHECK_MSG( hTest, pCopyReq->cq_size == g_asTestWPut[i].cbDataIn ? g_asTestWPut[i].cbDataIn : g_asTestWPut[i].cbDataOut, (hTest, "i=%u, cq_size=%llu\n", i, (unsigned long long)pCopyReq->cq_size)); } /* Implementation detail - check that the private pointer is correctly * set to the user address *for two direction IOCtls* or NULL otherwise. */ if (g_asTestWPut[i].cbDataIn && g_asTestWPut[i].cbDataOut) RTTEST_CHECK_MSG(hTest, pCopyReq->cq_private == (mblk_t *)USER_ADDRESS, (hTest, "i=%u, cq_private=%p\n", i, pCopyReq->cq_private)); else if ( (pMBlk->b_datap->db_type == M_COPYIN) || (pMBlk->b_datap->db_type == M_COPYOUT)) RTTEST_CHECK_MSG(hTest, !pCopyReq->cq_private, (hTest, "i=%u, cq_private=%p\n", i, pCopyReq->cq_private)); if (!g_asTestWPut[i].rcExp) RTTEST_CHECK_MSG(hTest, RD(&aQueues[0])->q_first == pMBlk, (hTest, "i=%u\n", i)); if (g_asTestWPut[i].pfnExtra && !g_asTestWPut[i].cbData) if (!g_asTestWPut[i].pfnExtra(hTest, WR(&aQueues[0]), pMBlk)) RTTestPrintf(hTest, RTTESTLVL_ALWAYS, "Called from %s.\n", __PRETTY_FUNCTION__); vbgr0SolClose(RD(&aQueues[1]), 0, NULL); freemsg(pMBlk); } /** Simulate sending follow-on IOCData messages to a transparent IOCtl to WPut * with the parameters from table line @a i. */ void testWPutIOCDataIn(RTTEST hTest, unsigned i) { queue_t aQueues[2]; dev_t device = 0; struct msgb *pMBlk = allocb(sizeof(struct copyresp), BPRI_MED); struct msgb *pMBlkCont = allocb(MSG_DATA_SIZE, BPRI_MED); struct copyresp *pCopyResp = pMBlk ? (struct copyresp *)pMBlk->b_rptr : NULL; void *pvData = pMBlkCont ? pMBlkCont->b_rptr : NULL; struct copyreq *pCopyReq; int rc, cFormat = 0; AssertReturnVoid(pMBlk); AssertReturnVoidStmt(pMBlkCont, freemsg(pMBlk)); RTTestPrintf(hTest, RTTESTLVL_ALWAYS, "%s: i=%u\n", __PRETTY_FUNCTION__, i); AssertReturnVoidStmt(g_asTestWPut[i].cbDataIn, freemsg(pMBlk)); RT_ZERO(aQueues); doInitQueues(&aQueues[0]); rc = vbgr0SolOpen(RD(&aQueues[0]), &device, 0, 0, NULL); RTTEST_CHECK_MSG(hTest, rc == 0, (hTest, "i=%u, rc=%d\n", i, rc)); RTTEST_CHECK_MSG(hTest, g_aOpenNodeStates[1].pWriteQueue == WR(&aQueues[0]), (hTest, "i=%u\n", i)); pMBlk->b_datap->db_type = M_IOCDATA; pCopyResp->cp_cmd = g_asTestWPut[i].iIOCCmd; if (g_asTestWPut[i].cbDataOut) pCopyResp->cp_private = USER_ADDRESS; AssertReturnVoid(g_asTestWPut[i].cbData <= MSG_DATA_SIZE); memcpy(pMBlkCont->b_rptr, g_asTestWPut[i].pvDataIn, g_asTestWPut[i].cbDataIn); pMBlk->b_cont = pMBlkCont; rc = vbgr0SolWPut(WR(&aQueues[0]), pMBlk); pCopyReq = (struct copyreq *)pMBlk->b_rptr; RTTEST_CHECK_MSG(hTest, ( ( g_asTestWPut[i].cbDataOut && (pMBlk->b_datap->db_type == M_COPYOUT)) || ( (g_asTestWPut[i].rcExp == 0) && pMBlk->b_datap->db_type == M_IOCACK) || (pMBlk->b_datap->db_type == M_IOCNAK)), (hTest, "i=%u, db_type=%u\n", i, (unsigned) pMBlk->b_datap->db_type)); if (g_asTestWPut[i].cbDataOut) { RTTEST_CHECK_MSG(hTest, pCopyReq->cq_addr == (char *)pvData, (hTest, "i=%u, cq_addr=%p\n", i, pCopyReq->cq_addr)); RTTEST_CHECK_MSG(hTest, pCopyReq->cq_size == g_asTestWPut[i].cbData, (hTest, "i=%u, cq_size=%llu\n", i, (unsigned long long)pCopyReq->cq_size)); RTTEST_CHECK_MSG(hTest, !memcmp(pvData, g_asTestWPut[i].pvDataOut, g_asTestWPut[i].cbDataOut), (hTest, "i=%u\n", i)); } RTTEST_CHECK_MSG(hTest, !pCopyReq->cq_private, (hTest, "i=%u, cq_private=%p\n", i, pCopyReq->cq_private)); if (!g_asTestWPut[i].rcExp) RTTEST_CHECK_MSG(hTest, RD(&aQueues[0])->q_first == pMBlk, (hTest, "i=%u\n", i)); if (g_asTestWPut[i].pfnExtra && !g_asTestWPut[i].cbDataOut) if (!g_asTestWPut[i].pfnExtra(hTest, WR(&aQueues[0]), pMBlk)) RTTestPrintf(hTest, RTTESTLVL_ALWAYS, "Called from %s.\n", __PRETTY_FUNCTION__); vbgr0SolClose(RD(&aQueues[1]), 0, NULL); freemsg(pMBlk); } /** Simulate sending follow-on IOCData messages to a transparent IOCtl to WPut * with the parameters from table line @a i. */ void testWPutIOCDataOut(RTTEST hTest, unsigned i) { queue_t aQueues[2]; dev_t device = 0; struct msgb *pMBlk = allocb(sizeof(struct copyresp), BPRI_MED); struct copyresp *pCopyResp = pMBlk ? (struct copyresp *)pMBlk->b_rptr : NULL; int rc, cFormat = 0; AssertReturnVoid(pMBlk); AssertReturnVoidStmt(g_asTestWPut[i].cbDataOut, freemsg(pMBlk)); RTTestPrintf(hTest, RTTESTLVL_ALWAYS, "%s: i=%u\n", __PRETTY_FUNCTION__, i); RT_ZERO(aQueues); doInitQueues(&aQueues[0]); rc = vbgr0SolOpen(RD(&aQueues[0]), &device, 0, 0, NULL); RTTEST_CHECK_MSG(hTest, rc == 0, (hTest, "i=%u, rc=%d\n", i, rc)); RTTEST_CHECK_MSG(hTest, g_aOpenNodeStates[1].pWriteQueue == WR(&aQueues[0]), (hTest, "i=%u\n", i)); pMBlk->b_datap->db_type = M_IOCDATA; pCopyResp->cp_cmd = g_asTestWPut[i].iIOCCmd; rc = vbgr0SolWPut(WR(&aQueues[0]), pMBlk); RTTEST_CHECK_MSG(hTest, pMBlk->b_datap->db_type == M_IOCACK, (hTest, "i=%u, db_type=%u\n", i, (unsigned) pMBlk->b_datap->db_type)); if (!g_asTestWPut[i].rcExp) RTTEST_CHECK_MSG(hTest, RD(&aQueues[0])->q_first == pMBlk, (hTest, "i=%u\n", i)); vbgr0SolClose(RD(&aQueues[1]), 0, NULL); freemsg(pMBlk); } #endif /** Data transfer direction of an IOCtl. This is used for describing * transparent IOCtls, and @a UNSPECIFIED is not a valid value for them. */ enum IOCTLDIRECTION { /** This IOCtl transfers no data. */ NONE, /** This IOCtl only transfers data from user to kernel. */ IN, /** This IOCtl only transfers data from kernel to user. */ OUT, /** This IOCtl transfers data from user to kernel and back. */ BOTH, /** We aren't saying anything about how the IOCtl transfers data. */ UNSPECIFIED }; /** * IOCtl handler function. * @returns 0 on success, error code on failure. * @param iCmd The IOCtl command number. * @param pvData Buffer for the user data. * @param cbBuffer Size of the buffer in @a pvData or zero. * @param pcbData Where to set the size of the data returned. Required for * handlers which return data. * @param prc Where to store the return code. Default is zero. Only * used for IOCtls without data for convenience of * implemention. */ typedef int FNVBGR0SOLIOCTL(PVBGR0STATE pState, int iCmd, void *pvData, size_t cbBuffer, size_t *pcbData, int *prc); typedef FNVBGR0SOLIOCTL *PFNVBGR0SOLIOCTL; /* Helpers for vbgr0SolDispatchIOCtl. */ static int vbgr0SolHandleIOCtl(queue_t *pWriteQueue, mblk_t *pMBlk, PFNVBGR0SOLIOCTL pfnHandler, int iCmd, size_t cbTransparent, enum IOCTLDIRECTION enmDirection); static int vbgr0SolVUIDIOCtl(PVBGR0STATE pState, int iCmd, void *pvData, size_t cbBuffer, size_t *pcbData, int *prc); static int vbgr0SolGuestIOCtl(PVBGR0STATE pState, int iCmd, void *pvData, size_t cbBuffer, size_t *pcbData, int *prc); /** Table of supported VUID IOCtls. */ struct { /** The IOCtl number. */ int iCmd; /** The size of the buffer which needs to be copied between user and kernel * space, or zero if unknown (must be known for tranparent IOCtls). */ size_t cbBuffer; /** The direction the buffer data needs to be copied. This must be * specified for transparent IOCtls. */ enum IOCTLDIRECTION enmDirection; } g_aVUIDIOCtlDescriptions[] = { { VUIDGFORMAT, sizeof(int), OUT }, { VUIDSFORMAT, sizeof(int), IN }, { VUIDGADDR, 0, UNSPECIFIED }, { VUIDGADDR, 0, UNSPECIFIED }, { MSIOGETPARMS, sizeof(Ms_parms), OUT }, { MSIOSETPARMS, sizeof(Ms_parms), IN }, { MSIOSRESOLUTION, sizeof(Ms_screen_resolution), IN }, { MSIOBUTTONS, sizeof(int), OUT }, { VUIDGWHEELCOUNT, sizeof(int), OUT }, { VUIDGWHEELINFO, 0, UNSPECIFIED }, { VUIDGWHEELSTATE, 0, UNSPECIFIED }, { VUIDSWHEELSTATE, 0, UNSPECIFIED } }; /** * Handle a STREAMS IOCtl message for our driver on the write stream. This * function takes care of the IOCtl logic only and does not call qreply() or * miocnak() at all - the caller must call these on success or failure * respectively. * @returns 0 on success or the IOCtl error code on failure. * @param pWriteQueue pointer to the STREAMS write queue structure. * @param pMBlk pointer to the STREAMS message block structure. */ static int vbgr0SolDispatchIOCtl(queue_t *pWriteQueue, mblk_t *pMBlk) { struct iocblk *pIOCBlk = (struct iocblk *)pMBlk->b_rptr; int iCmd = pIOCBlk->ioc_cmd, iCmdType = iCmd & (0xff << 8); size_t cbBuffer; enum IOCTLDIRECTION enmDirection; LogFlowFunc((DEVICE_NAME "::iCmdType=%c, iCmd=%d\n", (char) (iCmdType >> 8), iCmd)); switch (iCmdType) { case MSIOC: case VUIOC: { unsigned i; for (i = 0; i < RT_ELEMENTS(g_aVUIDIOCtlDescriptions); ++i) if (g_aVUIDIOCtlDescriptions[i].iCmd == iCmd) { cbBuffer = g_aVUIDIOCtlDescriptions[i].cbBuffer; enmDirection = g_aVUIDIOCtlDescriptions[i].enmDirection; return vbgr0SolHandleIOCtl(pWriteQueue, pMBlk, vbgr0SolVUIDIOCtl, iCmd, cbBuffer, enmDirection); } return EINVAL; } case 'V' << 8: return ENOTTY; return vbgr0SolHandleIOCtl(pWriteQueue, pMBlk, vbgr0SolGuestIOCtl, iCmd, 0, UNSPECIFIED); default: return ENOTTY; } } /* Helpers for vbgr0SolHandleIOCtl. */ static int vbgr0SolHandleIOCtlData(queue_t *pWriteQueue, mblk_t *pMBlk, PFNVBGR0SOLIOCTL pfnHandler, int iCmd, size_t cbTransparent, enum IOCTLDIRECTION enmDirection); static int vbgr0SolHandleTransparentIOCtl(queue_t *pWriteQueue, mblk_t *pMBlk, PFNVBGR0SOLIOCTL pfnHandler, int iCmd, size_t cbTransparent, enum IOCTLDIRECTION enmDirection); static int vbgr0SolHandleIStrIOCtl(queue_t *pWriteQueue, mblk_t *pMBlk, PFNVBGR0SOLIOCTL pfnHandler, int iCmd); /** * Generic code for handling STREAMS-specific IOCtl logic and boilerplate. It * calls the IOCtl handler passed to it without the handler having to be aware * of STREAMS structures, or whether this is a transparent (traditional) or an * I_STR (using a STREAMS structure to describe the data) IOCtl. With the * caveat that we only support transparent IOCtls which pass all data in a * single buffer of a fixed size (I_STR IOCtls are restricted to a single * buffer anyway, but the caller can choose the buffer size). * @returns 0 on success or the IOCtl error code on failure. * @param pWriteQueue pointer to the STREAMS write queue structure. * @param pMBlk pointer to the STREAMS message block structure. * @param pfnHandler pointer to the right IOCtl handler function for this * IOCtl number. * @param iCmd IOCtl command number. * @param cbTransparent size of the user space buffer for this IOCtl number, * used for processing transparent IOCtls. Pass zero * for IOCtls with no maximum buffer size (which will * not be able to be handled as transparent) or with * no argument. * @param enmDirection data transfer direction of the IOCtl. */ static int vbgr0SolHandleIOCtl(queue_t *pWriteQueue, mblk_t *pMBlk, PFNVBGR0SOLIOCTL pfnHandler, int iCmd, size_t cbTransparent, enum IOCTLDIRECTION enmDirection) { struct iocblk *pIOCBlk = (struct iocblk *)pMBlk->b_rptr; if (pMBlk->b_datap->db_type == M_IOCDATA) return vbgr0SolHandleIOCtlData(pWriteQueue, pMBlk, pfnHandler, iCmd, cbTransparent, enmDirection); else if ( pMBlk->b_datap->db_type == M_IOCTL && pIOCBlk->ioc_count == TRANSPARENT) return vbgr0SolHandleTransparentIOCtl(pWriteQueue, pMBlk, pfnHandler, iCmd, cbTransparent, enmDirection); else if (pMBlk->b_datap->db_type == M_IOCTL) return vbgr0SolHandleIStrIOCtl(pWriteQueue, pMBlk, pfnHandler, iCmd); return EINVAL; } /** * Helper for vbgr0SolHandleIOCtl. This rather complicated-looking * code is basically the standard boilerplate for handling any streams IOCtl * additional data, which we currently only use for transparent IOCtls. * @copydoc vbgr0SolHandleIOCtl */ static int vbgr0SolHandleIOCtlData(queue_t *pWriteQueue, mblk_t *pMBlk, PFNVBGR0SOLIOCTL pfnHandler, int iCmd, size_t cbTransparent, enum IOCTLDIRECTION enmDirection) { struct copyresp *pCopyResp = (struct copyresp *)pMBlk->b_rptr; PVBGR0STATE pState = (PVBGR0STATE)pWriteQueue->q_ptr; if (pCopyResp->cp_rval) /* cp_rval is a pointer used as a boolean. */ { freemsg(pMBlk); return EAGAIN; } if ((pCopyResp->cp_private && enmDirection == BOTH) || enmDirection == IN) { size_t cbData = 0; void *pvData = NULL; int err; if (!pMBlk->b_cont) return EINVAL; if (enmDirection == BOTH && !pCopyResp->cp_private) return EINVAL; pvData = pMBlk->b_cont->b_rptr; err = pfnHandler(pState, iCmd, pvData, cbTransparent, &cbData, NULL); if (!err && enmDirection == BOTH) mcopyout(pMBlk, NULL, cbData, pCopyResp->cp_private, NULL); else if (!err && enmDirection == IN) miocack(pWriteQueue, pMBlk, 0, 0); return err; } else { AssertReturn(enmDirection == OUT || enmDirection == BOTH, EINVAL); miocack(pWriteQueue, pMBlk, 0, 0); return 0; } } /** * Helper for vbgr0SolHandleIOCtl. This rather complicated-looking * code is basically the standard boilerplate for handling transparent IOCtls, * that is, IOCtls which are not re-packed inside STREAMS IOCtls. * @copydoc vbgr0SolHandleIOCtl */ int vbgr0SolHandleTransparentIOCtl(queue_t *pWriteQueue, mblk_t *pMBlk, PFNVBGR0SOLIOCTL pfnHandler, int iCmd, size_t cbTransparent, enum IOCTLDIRECTION enmDirection) { int err = 0, rc = 0; size_t cbData = 0; PVBGR0STATE pState = (PVBGR0STATE)pWriteQueue->q_ptr; if ( (enmDirection != NONE && !pMBlk->b_cont) || enmDirection == UNSPECIFIED) return EINVAL; if (enmDirection == IN || enmDirection == BOTH) { void *pUserAddr = NULL; /* We only need state data if there is something to copy back. */ if (enmDirection == BOTH) pUserAddr = *(void **)pMBlk->b_cont->b_rptr; mcopyin(pMBlk, pUserAddr /* state data */, cbTransparent, NULL); } else if (enmDirection == OUT) { mblk_t *pMBlkOut = allocb(cbTransparent, BPRI_MED); void *pvData; if (!pMBlkOut) return EAGAIN; pvData = pMBlkOut->b_rptr; err = pfnHandler(pState, iCmd, pvData, cbTransparent, &cbData, NULL); if (!err) mcopyout(pMBlk, NULL, cbData, NULL, pMBlkOut); else freemsg(pMBlkOut); } else { AssertReturn(enmDirection == NONE, EINVAL); err = pfnHandler(pState, iCmd, NULL, 0, NULL, &rc); if (!err) miocack(pWriteQueue, pMBlk, 0, rc); } return err; } /** * Helper for vbgr0SolHandleIOCtl. This rather complicated-looking * code is basically the standard boilerplate for handling any streams IOCtl. * @copydoc vbgr0SolHandleIOCtl */ static int vbgr0SolHandleIStrIOCtl(queue_t *pWriteQueue, mblk_t *pMBlk, PFNVBGR0SOLIOCTL pfnHandler, int iCmd) { struct iocblk *pIOCBlk = (struct iocblk *)pMBlk->b_rptr; PVBGR0STATE pState = (PVBGR0STATE)pWriteQueue->q_ptr; uint_t cbBuffer = pIOCBlk->ioc_count; void *pvData = NULL; int err, rc = 0; size_t cbData = 0; if (cbBuffer && !pMBlk->b_cont) return EINVAL; /* Repack the whole buffer into a single message block if needed. */ if (cbBuffer) { err = miocpullup(pMBlk, cbBuffer); if (err) return err; pvData = pMBlk->b_cont->b_rptr; } err = pfnHandler(pState, iCmd, pvData, cbBuffer, &cbData, &rc); if (!err) miocack(pWriteQueue, pMBlk, cbData, rc); return err; } /** * Handle a VUID input device IOCtl. * @copydoc FNVBGR0SOLIOCTL */ static int vbgr0SolVUIDIOCtl(PVBGR0STATE pState, int iCmd, void *pvData, size_t cbBuffer, size_t *pcbData, int *prc) { LogFlowFunc((DEVICE_NAME ":: " /* no '\n' */)); switch (iCmd) { case VUIDGFORMAT: { LogFlowFunc(("VUIDGFORMAT\n")); if (cbBuffer < sizeof(int)) return EINVAL; *(int *)pvData = VUID_FIRM_EVENT; *pcbData = sizeof(int); return 0; } case VUIDSFORMAT: LogFlowFunc(("VUIDSFORMAT\n")); /* We define our native format to be VUID_FIRM_EVENT, so there * is nothing more to do and we exit here on success or on * failure. */ return 0; case VUIDGADDR: case VUIDSADDR: LogFlowFunc(("VUIDGADDR/VUIDSADDR\n")); return ENOTTY; case MSIOGETPARMS: { Ms_parms parms = { 0 }; LogFlowFunc(("MSIOGETPARMS\n")); if (cbBuffer < sizeof(Ms_parms)) return EINVAL; *(Ms_parms *)pvData = parms; *pcbData = sizeof(Ms_parms); return 0; } case MSIOSETPARMS: LogFlowFunc(("MSIOSETPARMS\n")); return 0; case MSIOSRESOLUTION: { Ms_screen_resolution *pResolution = (Ms_screen_resolution *)pvData; int rc; LogFlowFunc(("MSIOSRESOLUTION\n")); if (cbBuffer < sizeof(Ms_screen_resolution)) return EINVAL; pState->cMaxScreenX = pResolution->width - 1; pState->cMaxScreenY = pResolution->height - 1; /* Note: we don't disable this again until session close. */ rc = vbgr0SolSetMouseStatus(pState->pSession, VMMDEV_MOUSE_GUEST_CAN_ABSOLUTE | VMMDEV_MOUSE_NEW_PROTOCOL); if (RT_SUCCESS(rc)) return 0; pState->cMaxScreenX = 0; pState->cMaxScreenY = 0; return ENODEV; } case MSIOBUTTONS: { LogFlowFunc(("MSIOBUTTONS\n")); if (cbBuffer < sizeof(int)) return EINVAL; *(int *)pvData = 0; *pcbData = sizeof(int); return 0; } case VUIDGWHEELCOUNT: { LogFlowFunc(("VUIDGWHEELCOUNT\n")); if (cbBuffer < sizeof(int)) return EINVAL; *(int *)pvData = 0; *pcbData = sizeof(int); return 0; } case VUIDGWHEELINFO: case VUIDGWHEELSTATE: case VUIDSWHEELSTATE: LogFlowFunc(("VUIDGWHEELINFO/VUIDGWHEELSTATE/VUIDSWHEELSTATE\n")); return EINVAL; default: LogFlowFunc(("Invalid IOCtl command %x\n", iCmd)); return EINVAL; } } /** * Handle a VBoxGuest IOCtl. * @copydoc FNVBGR0SOLIOCTL */ static int vbgr0SolGuestIOCtl(PVBGR0STATE pState, int iCmd, void *pvData, size_t cbBuffer, size_t *pcbData, int *prc) { int rc = VBoxGuestCommonIOCtl(iCmd, &g_DevExt, pState->pSession, pvData, cbBuffer, pcbData); if (RT_SUCCESS(rc)) { *prc = rc; return 0; } else { /* * We Log() instead of LogRel() here because VBOXGUEST_IOCTL_WAITEVENT can return VERR_TIMEOUT, * VBOXGUEST_IOCTL_CANCEL_ALL_EVENTS can return VERR_INTERRUPTED and possibly more in the future; * which are not really failures that require logging. */ Log((DEVICE_NAME "::IOCtl: VBoxGuestCommonIOCtl failed. Cmd=%#x rc=%d\n", iCmd, rc)); rc = RTErrConvertToErrno(rc); return rc; } } /** * Info entry point, called by solaris kernel for obtaining driver info. * * @param pDip The module structure instance (do not use). * @param enmCmd Information request type. * @param pvArg Type specific argument. * @param ppvResult Where to store the requested info. * * @return corresponding solaris error code. */ int vbgr0SolGetInfo(dev_info_t *pDip, ddi_info_cmd_t enmCmd, void *pvArg, void **ppvResult) { int rc = DDI_SUCCESS; LogFlow((DEVICE_NAME "::GetInfo\n")); switch (enmCmd) { case DDI_INFO_DEVT2DEVINFO: *ppvResult = (void *)g_pDip; break; case DDI_INFO_DEVT2INSTANCE: *ppvResult = (void *)(uintptr_t)ddi_get_instance(g_pDip); break; default: rc = DDI_FAILURE; break; } NOREF(pvArg); return rc; } /* Helpers for vbgr0SolAttach and vbgr0SolDetach. */ static int vbgr0SolAddIRQ(dev_info_t *pDip); static void vbgr0SolRemoveIRQ(dev_info_t *pDip); /** * Attach entry point, to attach a device to the system or resume it. * * @param pDip The module structure instance. * @param enmCmd Attach type (ddi_attach_cmd_t) * * @return corresponding solaris error code. */ int vbgr0SolAttach(dev_info_t *pDip, ddi_attach_cmd_t enmCmd) { LogFlow((DEVICE_NAME "::Attach\n")); switch (enmCmd) { case DDI_ATTACH: { int instance, rc; ddi_acc_handle_t PciHandle; if (g_pDip) { LogRel((DEVICE_NAME "::Attach: Only one instance supported.\n")); return DDI_FAILURE; } instance = ddi_get_instance(pDip); /* * Enable resources for PCI access. */ rc = pci_config_setup(pDip, &PciHandle); if (rc == DDI_SUCCESS) { /* * Map the register address space. */ char *baseAddr; /* Actually caddr_t. */ ddi_device_acc_attr_t deviceAttr; deviceAttr.devacc_attr_version = DDI_DEVICE_ATTR_V0; deviceAttr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; deviceAttr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; deviceAttr.devacc_attr_access = DDI_DEFAULT_ACC; rc = ddi_regs_map_setup(pDip, 1, &baseAddr, 0, 0, &deviceAttr, &g_PciIOHandle); if (rc == DDI_SUCCESS) { /* * Read size of the MMIO region. */ g_uIOPortBase = (uintptr_t)baseAddr; rc = ddi_dev_regsize(pDip, 2, &g_cbMMIO); if (rc == DDI_SUCCESS) { rc = ddi_regs_map_setup(pDip, 2, &g_pMMIOBase, 0, g_cbMMIO, &deviceAttr, &g_PciMMIOHandle); if (rc == DDI_SUCCESS) { /* * Add IRQ of VMMDev. */ rc = vbgr0SolAddIRQ(pDip); if (rc == DDI_SUCCESS) { /* * Call the common device extension initializer. */ #if ARCH_BITS == 64 # define VBOXGUEST_OS_TYPE VBOXOSTYPE_Solaris_x64 #else # define VBOXGUEST_OS_TYPE VBOXOSTYPE_Solaris #endif rc = VBoxGuestInitDevExt(&g_DevExt, g_uIOPortBase, g_pMMIOBase, g_cbMMIO, VBOXGUEST_OS_TYPE, VMMDEV_EVENT_MOUSE_POSITION_CHANGED); #undef VBOXGUEST_OS_TYPE if (RT_SUCCESS(rc)) { rc = ddi_create_minor_node(pDip, DEVICE_NAME, S_IFCHR, instance, DDI_PSEUDO, 0); if (rc == DDI_SUCCESS) { g_pDip = pDip; pci_config_teardown(&PciHandle); return DDI_SUCCESS; } LogRel((DEVICE_NAME "::Attach: ddi_create_minor_node failed.\n")); VBoxGuestDeleteDevExt(&g_DevExt); } else LogRel((DEVICE_NAME "::Attach: VBoxGuestInitDevExt failed.\n")); vbgr0SolRemoveIRQ(pDip); } else LogRel((DEVICE_NAME "::Attach: vbgr0SolAddIRQ failed.\n")); ddi_regs_map_free(&g_PciMMIOHandle); } else LogRel((DEVICE_NAME "::Attach: ddi_regs_map_setup for MMIO region failed.\n")); } else LogRel((DEVICE_NAME "::Attach: ddi_dev_regsize for MMIO region failed.\n")); ddi_regs_map_free(&g_PciIOHandle); } else LogRel((DEVICE_NAME "::Attach: ddi_regs_map_setup for IOport failed.\n")); pci_config_teardown(&PciHandle); } else LogRel((DEVICE_NAME "::Attach: pci_config_setup failed rc=%d.\n", rc)); return DDI_FAILURE; } case DDI_RESUME: { /** @todo implement resume for guest driver. */ return DDI_SUCCESS; } default: return DDI_FAILURE; } } /** * Detach entry point, to detach a device to the system or suspend it. * * @param pDip The module structure instance. * @param enmCmd Attach type (ddi_attach_cmd_t) * * @return corresponding solaris error code. */ int vbgr0SolDetach(dev_info_t *pDip, ddi_detach_cmd_t enmCmd) { LogFlow((DEVICE_NAME "::Detach\n")); switch (enmCmd) { case DDI_DETACH: { vbgr0SolRemoveIRQ(pDip); ddi_regs_map_free(&g_PciIOHandle); ddi_regs_map_free(&g_PciMMIOHandle); ddi_remove_minor_node(pDip, NULL); VBoxGuestDeleteDevExt(&g_DevExt); g_pDip = NULL; return DDI_SUCCESS; } case DDI_SUSPEND: { /** @todo implement suspend for guest driver. */ return DDI_SUCCESS; } default: return DDI_FAILURE; } } /* Interrupt service routine installed by vbgr0SolAddIRQ. */ static uint_t vbgr0SolISR(char *Arg /* Actually caddr_t. */); /** * Sets IRQ for VMMDev. * * @returns Solaris error code. * @param pDip Pointer to the device info structure. */ static int vbgr0SolAddIRQ(dev_info_t *pDip) { int IntrType = 0, rc; LogFlow((DEVICE_NAME "::AddIRQ: pDip=%p\n", pDip)); rc = ddi_intr_get_supported_types(pDip, &IntrType); if (rc == DDI_SUCCESS) { /* We won't need to bother about MSIs. */ if (IntrType & DDI_INTR_TYPE_FIXED) { int IntrCount = 0; rc = ddi_intr_get_nintrs(pDip, IntrType, &IntrCount); if ( rc == DDI_SUCCESS && IntrCount > 0) { int IntrAvail = 0; rc = ddi_intr_get_navail(pDip, IntrType, &IntrAvail); if ( rc == DDI_SUCCESS && IntrAvail > 0) { /* Allocated kernel memory for the interrupt handles. The allocation size is stored internally. */ g_pIntr = RTMemAlloc(IntrCount * sizeof(ddi_intr_handle_t)); if (g_pIntr) { int IntrAllocated; unsigned i; rc = ddi_intr_alloc(pDip, g_pIntr, IntrType, 0, IntrCount, &IntrAllocated, DDI_INTR_ALLOC_NORMAL); if ( rc == DDI_SUCCESS && IntrAllocated > 0) { uint_t uIntrPriority; g_cIntrAllocated = IntrAllocated; rc = ddi_intr_get_pri(g_pIntr[0], &uIntrPriority); if (rc == DDI_SUCCESS) { /* Initialize the mutex. */ mutex_init(&g_IrqMutex, NULL, MUTEX_DRIVER, DDI_INTR_PRI(uIntrPriority)); /* Initialise the node state mutex. This will * be taken in the ISR. */ mutex_init(&g_StateMutex, NULL, MUTEX_DRIVER, DDI_INTR_PRI(uIntrPriority)); /* Assign interrupt handler functions and enable interrupts. */ for (i = 0; i < IntrAllocated; i++) { rc = ddi_intr_add_handler(g_pIntr[i], (ddi_intr_handler_t *)vbgr0SolISR, NULL /* No Private Data */, NULL); if (rc == DDI_SUCCESS) rc = ddi_intr_enable(g_pIntr[i]); if (rc != DDI_SUCCESS) { /* Changing local IntrAllocated to hold so-far allocated handles for freeing. */ IntrAllocated = i; break; } } if (rc == DDI_SUCCESS) return rc; /* Remove any assigned handlers */ LogRel((DEVICE_NAME ":failed to assign IRQs allocated=%d\n", IntrAllocated)); for (i = 0; i < IntrAllocated; i++) ddi_intr_remove_handler(g_pIntr[i]); } else LogRel((DEVICE_NAME "::AddIRQ: failed to get priority of interrupt. rc=%d\n", rc)); /* Remove allocated IRQs, too bad we can free only one handle at a time. */ for (i = 0; i < g_cIntrAllocated; i++) ddi_intr_free(g_pIntr[i]); } else LogRel((DEVICE_NAME "::AddIRQ: failed to allocated IRQs. count=%d\n", IntrCount)); RTMemFree(g_pIntr); } else LogRel((DEVICE_NAME "::AddIRQ: failed to allocated IRQs. count=%d\n", IntrCount)); } else LogRel((DEVICE_NAME "::AddIRQ: failed to get or insufficient available IRQs. rc=%d IntrAvail=%d\n", rc, IntrAvail)); } else LogRel((DEVICE_NAME "::AddIRQ: failed to get or insufficient number of IRQs. rc=%d IntrCount=%d\n", rc, IntrCount)); } else LogRel((DEVICE_NAME "::AddIRQ: invalid irq type. IntrType=%#x\n", IntrType)); } else LogRel((DEVICE_NAME "::AddIRQ: failed to get supported interrupt types\n")); return rc; } /** * Removes IRQ for VMMDev. * * @param pDip Pointer to the device info structure. */ static void vbgr0SolRemoveIRQ(dev_info_t *pDip) { unsigned i; LogFlow((DEVICE_NAME "::RemoveIRQ:\n")); for (i = 0; i < g_cIntrAllocated; i++) { int rc = ddi_intr_disable(g_pIntr[i]); if (rc == DDI_SUCCESS) { rc = ddi_intr_remove_handler(g_pIntr[i]); if (rc == DDI_SUCCESS) ddi_intr_free(g_pIntr[i]); } } RTMemFree(g_pIntr); mutex_destroy(&g_IrqMutex); } /** * Interrupt Service Routine for VMMDev. * * @param Arg Private data (unused, will be NULL). * @returns DDI_INTR_CLAIMED if it's our interrupt, DDI_INTR_UNCLAIMED if it isn't. */ static uint_t vbgr0SolISR(char *Arg /* Actually caddr_t. */) { bool fOurIRQ; LogFlow((DEVICE_NAME "::ISR:\n")); mutex_enter(&g_IrqMutex); fOurIRQ = VBoxGuestCommonISR(&g_DevExt); mutex_exit(&g_IrqMutex); return fOurIRQ ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED; } /* Helper for VBoxGuestNativeISRMousePollEvent. */ static void vbgr0SolVUIDPutAbsEvent(PVBGR0STATE pState, ushort_t cEvent, int cValue); /** * Native part of the IRQ service routine, called when the VBoxGuest mouse * pointer is moved. We send a VUID event up to user space. */ void VBoxGuestNativeISRMousePollEvent(PVBOXGUESTDEVEXT pDevExt) { VMMDevReqMouseStatus *pReq; int rc; LogFlow((DEVICE_NAME "::NativeISRMousePollEvent:\n")); rc = VbglGRAlloc((VMMDevRequestHeader **)&pReq, sizeof(*pReq), VMMDevReq_GetMouseStatus); if (RT_FAILURE(rc)) return; /* If kernel memory is short a missed event is acceptable! */ pReq->mouseFeatures = 0; pReq->pointerXPos = 0; pReq->pointerYPos = 0; rc = VbglGRPerform(&pReq->header); if (RT_SUCCESS(rc)) { unsigned i; mutex_enter(&g_StateMutex); for (i = 1; i < MAX_OPEN_NODES; ++i) { int cMaxScreenX = g_aOpenNodeStates[i].cMaxScreenX; int cMaxScreenY = g_aOpenNodeStates[i].cMaxScreenY; if (!cMaxScreenX || !cMaxScreenY) continue; vbgr0SolVUIDPutAbsEvent(&g_aOpenNodeStates[i], LOC_X_ABSOLUTE, pReq->pointerXPos * cMaxScreenX / VMMDEV_MOUSE_RANGE_MAX); vbgr0SolVUIDPutAbsEvent(&g_aOpenNodeStates[i], LOC_Y_ABSOLUTE, pReq->pointerYPos * cMaxScreenY / VMMDEV_MOUSE_RANGE_MAX); } mutex_exit(&g_StateMutex); } VbglGRFree(&pReq->header); } void vbgr0SolVUIDPutAbsEvent(PVBGR0STATE pState, ushort_t cEvent, int cValue) { queue_t *pReadQueue = RD(pState->pWriteQueue); mblk_t *pMBlk = allocb(sizeof(Firm_event), BPRI_HI); Firm_event *pEvent; AssertReturnVoid(cEvent == LOC_X_ABSOLUTE || cEvent == LOC_Y_ABSOLUTE); if (!pMBlk) return; /* If kernel memory is short a missed event is acceptable! */ pEvent = (Firm_event *)pMBlk->b_wptr; pEvent->id = cEvent; pEvent->pair_type = FE_PAIR_DELTA; pEvent->pair = cEvent == LOC_X_ABSOLUTE ? LOC_X_DELTA : LOC_Y_DELTA; pEvent->value = cValue; uniqtime32(&pEvent->time); pMBlk->b_wptr += sizeof(Firm_event); /* Put the message on the queue immediately if it is not blocked. */ if (canput(pReadQueue->q_next)) putnext(pReadQueue, pMBlk); else putbq(pReadQueue, pMBlk); } /* Common code that depends on g_DevExt. */ #ifndef TESTCASE # include "VBoxGuestIDC-unix.c.h" #endif #ifdef TESTCASE int main(void) { RTTEST hTest; int rc = RTTestInitAndCreate("tstVBoxGuest-solaris", &hTest); if (rc) return rc; RTTestBanner(hTest); test_init(hTest); testOpenClose(hTest); testWPut(hTest); /* * Summary. */ return RTTestSummaryAndDestroy(hTest); } #endif