/* $Revision: 45459 $ */ /** @file * VBoxGuestLib - Host-Guest Communication Manager internal functions, implemented by VBoxGuest */ /* * Copyright (C) 2006-2012 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /* Entire file is ifdef'ed with VBGL_VBOXGUEST */ #ifdef VBGL_VBOXGUEST /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_HGCM #include "VBGLInternal.h" #include #include #include #include #include #include #include #include /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ /** The max parameter buffer size for a user request. */ #define VBGLR0_MAX_HGCM_USER_PARM (24*_1M) /** The max parameter buffer size for a kernel request. */ #define VBGLR0_MAX_HGCM_KERNEL_PARM (16*_1M) #if defined(RT_OS_LINUX) || (defined(RT_OS_DARWIN) && defined(RT_ARCH_X86)) /** Linux needs to use bounce buffers since RTR0MemObjLockUser has unwanted * side effects. * Darwin 32bit also needs this because of 4GB/4GB user/kernel space. */ # define USE_BOUNCE_BUFFERS #endif /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * Lock info structure used by VbglR0HGCMInternalCall and its helpers. */ struct VbglR0ParmInfo { uint32_t cLockBufs; struct { uint32_t iParm; RTR0MEMOBJ hObj; #ifdef USE_BOUNCE_BUFFERS void *pvSmallBuf; #endif } aLockBufs[10]; }; /* These functions can be only used by VBoxGuest. */ DECLVBGL(int) VbglR0HGCMInternalConnect (VBoxGuestHGCMConnectInfo *pConnectInfo, PFNVBGLHGCMCALLBACK pfnAsyncCallback, void *pvAsyncData, uint32_t u32AsyncData) { VMMDevHGCMConnect *pHGCMConnect; int rc; if (!pConnectInfo || !pfnAsyncCallback) return VERR_INVALID_PARAMETER; pHGCMConnect = NULL; /* Allocate request */ rc = VbglGRAlloc ((VMMDevRequestHeader **)&pHGCMConnect, sizeof (VMMDevHGCMConnect), VMMDevReq_HGCMConnect); if (RT_SUCCESS(rc)) { /* Initialize request memory */ pHGCMConnect->header.fu32Flags = 0; memcpy (&pHGCMConnect->loc, &pConnectInfo->Loc, sizeof (HGCMServiceLocation)); pHGCMConnect->u32ClientID = 0; /* Issue request */ rc = VbglGRPerform (&pHGCMConnect->header.header); if (RT_SUCCESS(rc)) { /* Check if host decides to process the request asynchronously. */ if (rc == VINF_HGCM_ASYNC_EXECUTE) { /* Wait for request completion interrupt notification from host */ pfnAsyncCallback (&pHGCMConnect->header, pvAsyncData, u32AsyncData); } pConnectInfo->result = pHGCMConnect->header.result; if (RT_SUCCESS (pConnectInfo->result)) pConnectInfo->u32ClientID = pHGCMConnect->u32ClientID; } VbglGRFree (&pHGCMConnect->header.header); } return rc; } DECLR0VBGL(int) VbglR0HGCMInternalDisconnect (VBoxGuestHGCMDisconnectInfo *pDisconnectInfo, PFNVBGLHGCMCALLBACK pfnAsyncCallback, void *pvAsyncData, uint32_t u32AsyncData) { VMMDevHGCMDisconnect *pHGCMDisconnect; int rc; if (!pDisconnectInfo || !pfnAsyncCallback) return VERR_INVALID_PARAMETER; pHGCMDisconnect = NULL; /* Allocate request */ rc = VbglGRAlloc ((VMMDevRequestHeader **)&pHGCMDisconnect, sizeof (VMMDevHGCMDisconnect), VMMDevReq_HGCMDisconnect); if (RT_SUCCESS(rc)) { /* Initialize request memory */ pHGCMDisconnect->header.fu32Flags = 0; pHGCMDisconnect->u32ClientID = pDisconnectInfo->u32ClientID; /* Issue request */ rc = VbglGRPerform (&pHGCMDisconnect->header.header); if (RT_SUCCESS(rc)) { /* Check if host decides to process the request asynchronously. */ if (rc == VINF_HGCM_ASYNC_EXECUTE) { /* Wait for request completion interrupt notification from host */ pfnAsyncCallback (&pHGCMDisconnect->header, pvAsyncData, u32AsyncData); } pDisconnectInfo->result = pHGCMDisconnect->header.result; } VbglGRFree (&pHGCMDisconnect->header.header); } return rc; } /** * Preprocesses the HGCM call, validating and locking/buffering parameters. * * @returns VBox status code. * * @param pCallInfo The call info. * @param cbCallInfo The size of the call info structure. * @param fIsUser Is it a user request or kernel request. * @param pcbExtra Where to return the extra request space needed for * physical page lists. */ static int vbglR0HGCMInternalPreprocessCall(VBoxGuestHGCMCallInfo const *pCallInfo, uint32_t cbCallInfo, bool fIsUser, struct VbglR0ParmInfo *pParmInfo, size_t *pcbExtra) { HGCMFunctionParameter const *pSrcParm = VBOXGUEST_HGCM_CALL_PARMS(pCallInfo); uint32_t cParms = pCallInfo->cParms; uint32_t iParm; uint32_t cb; /* * Lock down the any linear buffers so we can get their addresses * and figure out how much extra storage we need for page lists. * * Note! With kernel mode users we can be assertive. For user mode users * we should just (debug) log it and fail without any fanfare. */ *pcbExtra = 0; pParmInfo->cLockBufs = 0; for (iParm = 0; iParm < cParms; iParm++, pSrcParm++) { switch (pSrcParm->type) { case VMMDevHGCMParmType_32bit: Log4(("GstHGCMCall: parm=%u type=32bit: %#010x\n", iParm, pSrcParm->u.value32)); break; case VMMDevHGCMParmType_64bit: Log4(("GstHGCMCall: parm=%u type=64bit: %#018x\n", iParm, pSrcParm->u.value64)); break; case VMMDevHGCMParmType_PageList: if (fIsUser) return VERR_INVALID_PARAMETER; cb = pSrcParm->u.PageList.size; if (cb) { uint32_t off = pSrcParm->u.PageList.offset; HGCMPageListInfo *pPgLst; uint32_t cPages; uint32_t u32; AssertMsgReturn(cb <= VBGLR0_MAX_HGCM_KERNEL_PARM, ("%#x > %#x\n", cb, VBGLR0_MAX_HGCM_KERNEL_PARM), VERR_OUT_OF_RANGE); AssertMsgReturn( off >= pCallInfo->cParms * sizeof(HGCMFunctionParameter) && off <= cbCallInfo - sizeof(HGCMPageListInfo), ("offset=%#x cParms=%#x cbCallInfo=%#x\n", off, pCallInfo->cParms, cbCallInfo), VERR_INVALID_PARAMETER); pPgLst = (HGCMPageListInfo *)((uint8_t *)pCallInfo + off); cPages = pPgLst->cPages; u32 = RT_OFFSETOF(HGCMPageListInfo, aPages[cPages]) + off; AssertMsgReturn(u32 <= cbCallInfo, ("u32=%#x (cPages=%#x offset=%#x) cbCallInfo=%#x\n", u32, cPages, off, cbCallInfo), VERR_INVALID_PARAMETER); AssertMsgReturn(pPgLst->offFirstPage < PAGE_SIZE, ("#x\n", pPgLst->offFirstPage), VERR_INVALID_PARAMETER); u32 = RT_ALIGN_32(pPgLst->offFirstPage + cb, PAGE_SIZE) >> PAGE_SHIFT; AssertMsgReturn(cPages == u32, ("cPages=%#x u32=%#x\n", cPages, u32), VERR_INVALID_PARAMETER); AssertMsgReturn(VBOX_HGCM_F_PARM_ARE_VALID(pPgLst->flags), ("%#x\n", pPgLst->flags), VERR_INVALID_PARAMETER); Log4(("GstHGCMCall: parm=%u type=pglst: cb=%#010x cPgs=%u offPg0=%#x flags=%#x\n", iParm, cb, cPages, pPgLst->offFirstPage, pPgLst->flags)); u32 = cPages; while (u32-- > 0) { Log4(("GstHGCMCall: pg#%u=%RHp\n", u32, pPgLst->aPages[u32])); AssertMsgReturn(!(pPgLst->aPages[u32] & (PAGE_OFFSET_MASK | UINT64_C(0xfff0000000000000))), ("pg#%u=%RHp\n", u32, pPgLst->aPages[u32]), VERR_INVALID_PARAMETER); } *pcbExtra += RT_OFFSETOF(HGCMPageListInfo, aPages[pPgLst->cPages]); } else Log4(("GstHGCMCall: parm=%u type=pglst: cb=0\n", iParm)); break; case VMMDevHGCMParmType_LinAddr_Locked_In: case VMMDevHGCMParmType_LinAddr_Locked_Out: case VMMDevHGCMParmType_LinAddr_Locked: if (fIsUser) return VERR_INVALID_PARAMETER; if (!VBGLR0_CAN_USE_PHYS_PAGE_LIST(/*a_fLocked =*/ true)) { cb = pSrcParm->u.Pointer.size; AssertMsgReturn(cb <= VBGLR0_MAX_HGCM_KERNEL_PARM, ("%#x > %#x\n", cb, VBGLR0_MAX_HGCM_KERNEL_PARM), VERR_OUT_OF_RANGE); if (cb != 0) Log4(("GstHGCMCall: parm=%u type=%#x: cb=%#010x pv=%p\n", iParm, pSrcParm->type, cb, pSrcParm->u.Pointer.u.linearAddr)); else Log4(("GstHGCMCall: parm=%u type=%#x: cb=0\n", iParm, pSrcParm->type)); break; } /* fall thru */ case VMMDevHGCMParmType_LinAddr_In: case VMMDevHGCMParmType_LinAddr_Out: case VMMDevHGCMParmType_LinAddr: cb = pSrcParm->u.Pointer.size; if (cb != 0) { #ifdef USE_BOUNCE_BUFFERS void *pvSmallBuf = NULL; #endif uint32_t iLockBuf = pParmInfo->cLockBufs; RTR0MEMOBJ hObj; int rc; uint32_t fAccess = pSrcParm->type == VMMDevHGCMParmType_LinAddr_In || pSrcParm->type == VMMDevHGCMParmType_LinAddr_Locked_In ? RTMEM_PROT_READ : RTMEM_PROT_READ | RTMEM_PROT_WRITE; AssertReturn(iLockBuf < RT_ELEMENTS(pParmInfo->aLockBufs), VERR_INVALID_PARAMETER); if (!fIsUser) { AssertMsgReturn(cb <= VBGLR0_MAX_HGCM_KERNEL_PARM, ("%#x > %#x\n", cb, VBGLR0_MAX_HGCM_KERNEL_PARM), VERR_OUT_OF_RANGE); rc = RTR0MemObjLockKernel(&hObj, (void *)pSrcParm->u.Pointer.u.linearAddr, cb, fAccess); if (RT_FAILURE(rc)) { Log(("GstHGCMCall: id=%#x fn=%u parm=%u RTR0MemObjLockKernel(,%p,%#x) -> %Rrc\n", pCallInfo->u32ClientID, pCallInfo->u32Function, iParm, pSrcParm->u.Pointer.u.linearAddr, cb, rc)); return rc; } Log3(("GstHGCMCall: parm=%u type=%#x: cb=%#010x pv=%p locked kernel -> %p\n", iParm, pSrcParm->type, cb, pSrcParm->u.Pointer.u.linearAddr, hObj)); } else if (cb > VBGLR0_MAX_HGCM_USER_PARM) { Log(("GstHGCMCall: id=%#x fn=%u parm=%u pv=%p cb=%#x > %#x -> out of range\n", pCallInfo->u32ClientID, pCallInfo->u32Function, iParm, pSrcParm->u.Pointer.u.linearAddr, cb, VBGLR0_MAX_HGCM_USER_PARM)); return VERR_OUT_OF_RANGE; } else { #ifndef USE_BOUNCE_BUFFERS rc = RTR0MemObjLockUser(&hObj, (RTR3PTR)pSrcParm->u.Pointer.u.linearAddr, cb, fAccess, NIL_RTR0PROCESS); if (RT_FAILURE(rc)) { Log(("GstHGCMCall: id=%#x fn=%u parm=%u RTR0MemObjLockUser(,%p,%#x,nil) -> %Rrc\n", pCallInfo->u32ClientID, pCallInfo->u32Function, iParm, pSrcParm->u.Pointer.u.linearAddr, cb, rc)); return rc; } Log3(("GstHGCMCall: parm=%u type=%#x: cb=%#010x pv=%p locked user -> %p\n", iParm, pSrcParm->type, cb, pSrcParm->u.Pointer.u.linearAddr, hObj)); #else /* USE_BOUNCE_BUFFERS */ /* * This is a bit massive, but we don't want to waste a * whole page for a 3 byte string buffer (guest props). * * The threshold is ASSUMING sizeof(RTMEMHDR) == 16 and * the system is using some power of two allocator. */ /** @todo A more efficient strategy would be to combine buffers. However it * is probably going to be more massive than the current code, so * it can wait till later. */ bool fCopyIn = pSrcParm->type != VMMDevHGCMParmType_LinAddr_Out && pSrcParm->type != VMMDevHGCMParmType_LinAddr_Locked_Out; if (cb <= PAGE_SIZE / 2 - 16) { pvSmallBuf = fCopyIn ? RTMemTmpAlloc(cb) : RTMemTmpAllocZ(cb); if (RT_UNLIKELY(!pvSmallBuf)) return VERR_NO_MEMORY; if (fCopyIn) { rc = RTR0MemUserCopyFrom(pvSmallBuf, pSrcParm->u.Pointer.u.linearAddr, cb); if (RT_FAILURE(rc)) { RTMemTmpFree(pvSmallBuf); Log(("GstHGCMCall: id=%#x fn=%u parm=%u RTR0MemUserCopyFrom(,%p,%#x) -> %Rrc\n", pCallInfo->u32ClientID, pCallInfo->u32Function, iParm, pSrcParm->u.Pointer.u.linearAddr, cb, rc)); return rc; } } rc = RTR0MemObjLockKernel(&hObj, pvSmallBuf, cb, fAccess); if (RT_FAILURE(rc)) { RTMemTmpFree(pvSmallBuf); Log(("GstHGCMCall: RTR0MemObjLockKernel failed for small buffer: rc=%Rrc pvSmallBuf=%p cb=%#x\n", rc, pvSmallBuf, cb)); return rc; } Log3(("GstHGCMCall: parm=%u type=%#x: cb=%#010x pv=%p small buffer %p -> %p\n", iParm, pSrcParm->type, cb, pSrcParm->u.Pointer.u.linearAddr, pvSmallBuf, hObj)); } else { rc = RTR0MemObjAllocPage(&hObj, cb, false /*fExecutable*/); if (RT_FAILURE(rc)) return rc; if (!fCopyIn) memset(RTR0MemObjAddress(hObj), '\0', cb); else { rc = RTR0MemUserCopyFrom(RTR0MemObjAddress(hObj), pSrcParm->u.Pointer.u.linearAddr, cb); if (RT_FAILURE(rc)) { RTR0MemObjFree(hObj, false /*fFreeMappings*/); Log(("GstHGCMCall: id=%#x fn=%u parm=%u RTR0MemUserCopyFrom(,%p,%#x) -> %Rrc\n", pCallInfo->u32ClientID, pCallInfo->u32Function, iParm, pSrcParm->u.Pointer.u.linearAddr, cb, rc)); return rc; } } Log3(("GstHGCMCall: parm=%u type=%#x: cb=%#010x pv=%p big buffer -> %p\n", iParm, pSrcParm->type, cb, pSrcParm->u.Pointer.u.linearAddr, hObj)); } #endif /* USE_BOUNCE_BUFFERS */ } pParmInfo->aLockBufs[iLockBuf].iParm = iParm; pParmInfo->aLockBufs[iLockBuf].hObj = hObj; #ifdef USE_BOUNCE_BUFFERS pParmInfo->aLockBufs[iLockBuf].pvSmallBuf = pvSmallBuf; #endif pParmInfo->cLockBufs = iLockBuf + 1; if (VBGLR0_CAN_USE_PHYS_PAGE_LIST(/*a_fLocked =*/ false)) { size_t const cPages = RTR0MemObjSize(hObj) >> PAGE_SHIFT; *pcbExtra += RT_OFFSETOF(HGCMPageListInfo, aPages[cPages]); } } else Log4(("GstHGCMCall: parm=%u type=%#x: cb=0\n", iParm, pSrcParm->type)); break; default: return VERR_INVALID_PARAMETER; } } return VINF_SUCCESS; } /** * Translates locked linear address to the normal type. * The locked types are only for the guest side and not handled by the host. * * @returns normal linear address type. * @param enmType The type. */ static HGCMFunctionParameterType vbglR0HGCMInternalConvertLinAddrType(HGCMFunctionParameterType enmType) { switch (enmType) { case VMMDevHGCMParmType_LinAddr_Locked_In: return VMMDevHGCMParmType_LinAddr_In; case VMMDevHGCMParmType_LinAddr_Locked_Out: return VMMDevHGCMParmType_LinAddr_Out; case VMMDevHGCMParmType_LinAddr_Locked: return VMMDevHGCMParmType_LinAddr; default: return enmType; } } /** * Translates linear address types to page list direction flags. * * @returns page list flags. * @param enmType The type. */ static uint32_t vbglR0HGCMInternalLinAddrTypeToPageListFlags(HGCMFunctionParameterType enmType) { switch (enmType) { case VMMDevHGCMParmType_LinAddr_In: case VMMDevHGCMParmType_LinAddr_Locked_In: return VBOX_HGCM_F_PARM_DIRECTION_TO_HOST; case VMMDevHGCMParmType_LinAddr_Out: case VMMDevHGCMParmType_LinAddr_Locked_Out: return VBOX_HGCM_F_PARM_DIRECTION_FROM_HOST; default: AssertFailed(); case VMMDevHGCMParmType_LinAddr: case VMMDevHGCMParmType_LinAddr_Locked: return VBOX_HGCM_F_PARM_DIRECTION_BOTH; } } /** * Initializes the call request that we're sending to the host. * * @returns VBox status code. * * @param pCallInfo The call info. * @param cbCallInfo The size of the call info structure. * @param fIsUser Is it a user request or kernel request. * @param pcbExtra Where to return the extra request space needed for * physical page lists. */ static void vbglR0HGCMInternalInitCall(VMMDevHGCMCall *pHGCMCall, VBoxGuestHGCMCallInfo const *pCallInfo, uint32_t cbCallInfo, bool fIsUser, struct VbglR0ParmInfo *pParmInfo) { HGCMFunctionParameter const *pSrcParm = VBOXGUEST_HGCM_CALL_PARMS(pCallInfo); HGCMFunctionParameter *pDstParm = VMMDEV_HGCM_CALL_PARMS(pHGCMCall); uint32_t cParms = pCallInfo->cParms; uint32_t offExtra = (uintptr_t)(pDstParm + cParms) - (uintptr_t)pHGCMCall; uint32_t iLockBuf = 0; uint32_t iParm; /* * The call request headers. */ pHGCMCall->header.fu32Flags = 0; pHGCMCall->header.result = VINF_SUCCESS; pHGCMCall->u32ClientID = pCallInfo->u32ClientID; pHGCMCall->u32Function = pCallInfo->u32Function; pHGCMCall->cParms = cParms; /* * The parameters. */ for (iParm = 0; iParm < pCallInfo->cParms; iParm++, pSrcParm++, pDstParm++) { switch (pSrcParm->type) { case VMMDevHGCMParmType_32bit: case VMMDevHGCMParmType_64bit: *pDstParm = *pSrcParm; break; case VMMDevHGCMParmType_PageList: pDstParm->type = VMMDevHGCMParmType_PageList; pDstParm->u.PageList.size = pSrcParm->u.PageList.size; if (pSrcParm->u.PageList.size) { HGCMPageListInfo const *pSrcPgLst = (HGCMPageListInfo *)((uint8_t *)pCallInfo + pSrcParm->u.PageList.offset); HGCMPageListInfo *pDstPgLst = (HGCMPageListInfo *)((uint8_t *)pHGCMCall + offExtra); uint32_t const cPages = pSrcPgLst->cPages; uint32_t iPage; pDstParm->u.PageList.offset = offExtra; pDstPgLst->flags = pSrcPgLst->flags; pDstPgLst->offFirstPage = pSrcPgLst->offFirstPage; pDstPgLst->cPages = cPages; for (iPage = 0; iPage < cPages; iPage++) pDstPgLst->aPages[iPage] = pSrcPgLst->aPages[iPage]; offExtra += RT_OFFSETOF(HGCMPageListInfo, aPages[cPages]); } else pDstParm->u.PageList.offset = 0; break; case VMMDevHGCMParmType_LinAddr_Locked_In: case VMMDevHGCMParmType_LinAddr_Locked_Out: case VMMDevHGCMParmType_LinAddr_Locked: if (!VBGLR0_CAN_USE_PHYS_PAGE_LIST(/*a_fLocked =*/ true)) { *pDstParm = *pSrcParm; pDstParm->type = vbglR0HGCMInternalConvertLinAddrType(pSrcParm->type); break; } /* fall thru */ case VMMDevHGCMParmType_LinAddr_In: case VMMDevHGCMParmType_LinAddr_Out: case VMMDevHGCMParmType_LinAddr: if (pSrcParm->u.Pointer.size != 0) { #ifdef USE_BOUNCE_BUFFERS void *pvSmallBuf = pParmInfo->aLockBufs[iLockBuf].pvSmallBuf; #endif RTR0MEMOBJ hObj = pParmInfo->aLockBufs[iLockBuf].hObj; Assert(iParm == pParmInfo->aLockBufs[iLockBuf].iParm); if (VBGLR0_CAN_USE_PHYS_PAGE_LIST(/*a_fLocked =*/ false)) { HGCMPageListInfo *pDstPgLst = (HGCMPageListInfo *)((uint8_t *)pHGCMCall + offExtra); size_t const cPages = RTR0MemObjSize(hObj) >> PAGE_SHIFT; size_t iPage; pDstParm->type = VMMDevHGCMParmType_PageList; pDstParm->u.PageList.size = pSrcParm->u.Pointer.size; pDstParm->u.PageList.offset = offExtra; pDstPgLst->flags = vbglR0HGCMInternalLinAddrTypeToPageListFlags(pSrcParm->type); #ifdef USE_BOUNCE_BUFFERS if (fIsUser) pDstPgLst->offFirstPage = (uintptr_t)pvSmallBuf & PAGE_OFFSET_MASK; else #endif pDstPgLst->offFirstPage = pSrcParm->u.Pointer.u.linearAddr & PAGE_OFFSET_MASK; pDstPgLst->cPages = cPages; Assert(pDstPgLst->cPages == cPages); for (iPage = 0; iPage < cPages; iPage++) { pDstPgLst->aPages[iPage] = RTR0MemObjGetPagePhysAddr(hObj, iPage); Assert(pDstPgLst->aPages[iPage] != NIL_RTHCPHYS); } offExtra += RT_OFFSETOF(HGCMPageListInfo, aPages[cPages]); } else { pDstParm->type = vbglR0HGCMInternalConvertLinAddrType(pSrcParm->type); pDstParm->u.Pointer.size = pSrcParm->u.Pointer.size; #ifdef USE_BOUNCE_BUFFERS if (fIsUser) pDstParm->u.Pointer.u.linearAddr = pvSmallBuf ? (uintptr_t)pvSmallBuf : (uintptr_t)RTR0MemObjAddress(hObj); else #endif pDstParm->u.Pointer.u.linearAddr = pSrcParm->u.Pointer.u.linearAddr; } iLockBuf++; } else { pDstParm->type = vbglR0HGCMInternalConvertLinAddrType(pSrcParm->type); pDstParm->u.Pointer.size = 0; pDstParm->u.Pointer.u.linearAddr = 0; } break; default: AssertFailed(); pDstParm->type = VMMDevHGCMParmType_Invalid; break; } } } /** * Performs the call and completion wait. * * @returns VBox status code of this operation, not necessarily the call. * * @param pHGCMCall The HGCM call info. * @param pfnAsyncCallback The async callback that will wait for the call * to complete. * @param pvAsyncData Argument for the callback. * @param u32AsyncData Argument for the callback. * @param pfLeakIt Where to return the leak it / free it, * indicator. Cancellation fun. */ static int vbglR0HGCMInternalDoCall(VMMDevHGCMCall *pHGCMCall, PFNVBGLHGCMCALLBACK pfnAsyncCallback, void *pvAsyncData, uint32_t u32AsyncData, bool *pfLeakIt) { int rc; Log(("calling VbglGRPerform\n")); rc = VbglGRPerform(&pHGCMCall->header.header); Log(("VbglGRPerform rc = %Rrc (header rc=%d)\n", rc, pHGCMCall->header.result)); /* * If the call failed, but as a result of the request itself, then pretend * success. Upper layers will interpret the result code in the packet. */ if ( RT_FAILURE(rc) && rc == pHGCMCall->header.result) { Assert(pHGCMCall->header.fu32Flags & VBOX_HGCM_REQ_DONE); rc = VINF_SUCCESS; } /* * Check if host decides to process the request asynchronously, * if so, we wait for it to complete using the caller supplied callback. */ *pfLeakIt = false; if (rc == VINF_HGCM_ASYNC_EXECUTE) { Log(("Processing HGCM call asynchronously\n")); rc = pfnAsyncCallback(&pHGCMCall->header, pvAsyncData, u32AsyncData); if (pHGCMCall->header.fu32Flags & VBOX_HGCM_REQ_DONE) { Assert(!(pHGCMCall->header.fu32Flags & VBOX_HGCM_REQ_CANCELLED)); rc = VINF_SUCCESS; } else { /* * The request didn't complete in time or the call was interrupted, * the RC from the callback indicates which. Try cancel the request. * * This is a bit messy because we're racing request completion. Sorry. */ /** @todo It would be nice if we could use the waiter callback to do further * waiting in case of a completion race. If it wasn't for WINNT having its own * version of all that stuff, I would've done it already. */ VMMDevHGCMCancel2 *pCancelReq; int rc2 = VbglGRAlloc((VMMDevRequestHeader **)&pCancelReq, sizeof(*pCancelReq), VMMDevReq_HGCMCancel2); if (RT_SUCCESS(rc2)) { pCancelReq->physReqToCancel = VbglPhysHeapGetPhysAddr(pHGCMCall); rc2 = VbglGRPerform(&pCancelReq->header); VbglGRFree(&pCancelReq->header); } #if 1 /** @todo ADDVER: Remove this on next minor version change. */ if (rc2 == VERR_NOT_IMPLEMENTED) { /* host is too old, or we're out of heap. */ pHGCMCall->header.fu32Flags |= VBOX_HGCM_REQ_CANCELLED; pHGCMCall->header.header.requestType = VMMDevReq_HGCMCancel; rc2 = VbglGRPerform(&pHGCMCall->header.header); if (rc2 == VERR_INVALID_PARAMETER) rc2 = VERR_NOT_FOUND; else if (RT_SUCCESS(rc)) RTThreadSleep(1); } #endif if (RT_SUCCESS(rc)) rc = VERR_INTERRUPTED; /** @todo weed this out from the WINNT VBoxGuest code. */ if (RT_SUCCESS(rc2)) { Log(("vbglR0HGCMInternalDoCall: successfully cancelled\n")); pHGCMCall->header.fu32Flags |= VBOX_HGCM_REQ_CANCELLED; } else { /* * Wait for a bit while the host (hopefully) completes it. */ uint64_t u64Start = RTTimeSystemMilliTS(); uint32_t cMilliesToWait = rc2 == VERR_NOT_FOUND || rc2 == VERR_SEM_DESTROYED ? 500 : 2000; uint64_t cElapsed = 0; if (rc2 != VERR_NOT_FOUND) { static unsigned s_cErrors = 0; if (s_cErrors++ < 32) LogRel(("vbglR0HGCMInternalDoCall: Failed to cancel the HGCM call on %Rrc: rc2=%Rrc\n", rc, rc2)); } else Log(("vbglR0HGCMInternalDoCall: Cancel race rc=%Rrc rc2=%Rrc\n", rc, rc2)); do { ASMCompilerBarrier(); /* paranoia */ if (pHGCMCall->header.fu32Flags & VBOX_HGCM_REQ_DONE) break; RTThreadSleep(1); cElapsed = RTTimeSystemMilliTS() - u64Start; } while (cElapsed < cMilliesToWait); ASMCompilerBarrier(); /* paranoia^2 */ if (pHGCMCall->header.fu32Flags & VBOX_HGCM_REQ_DONE) rc = VINF_SUCCESS; else { LogRel(("vbglR0HGCMInternalDoCall: Leaking %u bytes. Pending call to %u with %u parms. (rc2=%Rrc)\n", pHGCMCall->header.header.size, pHGCMCall->u32Function, pHGCMCall->cParms, rc2)); *pfLeakIt = true; } Log(("vbglR0HGCMInternalDoCall: Cancel race ended with rc=%Rrc (rc2=%Rrc) after %llu ms\n", rc, rc2, cElapsed)); } } } Log(("GstHGCMCall: rc=%Rrc result=%Rrc fu32Flags=%#x fLeakIt=%d\n", rc, pHGCMCall->header.result, pHGCMCall->header.fu32Flags, *pfLeakIt)); return rc; } /** * Copies the result of the call back to the caller info structure and user * buffers (if using bounce buffers). * * @returns rc, unless RTR0MemUserCopyTo fails. * @param pCallInfo Call info structure to update. * @param pHGCMCall HGCM call request. * @param pParmInfo Parameter locking/buffering info. * @param fIsUser Is it a user (true) or kernel request. * @param rc The current result code. Passed along to * preserve informational status codes. */ static int vbglR0HGCMInternalCopyBackResult(VBoxGuestHGCMCallInfo *pCallInfo, VMMDevHGCMCall const *pHGCMCall, struct VbglR0ParmInfo *pParmInfo, bool fIsUser, int rc) { HGCMFunctionParameter const *pSrcParm = VMMDEV_HGCM_CALL_PARMS(pHGCMCall); HGCMFunctionParameter *pDstParm = VBOXGUEST_HGCM_CALL_PARMS(pCallInfo); uint32_t cParms = pCallInfo->cParms; #ifdef USE_BOUNCE_BUFFERS uint32_t iLockBuf = 0; #endif uint32_t iParm; /* * The call result. */ pCallInfo->result = pHGCMCall->header.result; /* * Copy back parameters. */ for (iParm = 0; iParm < cParms; iParm++, pSrcParm++, pDstParm++) { switch (pDstParm->type) { case VMMDevHGCMParmType_32bit: case VMMDevHGCMParmType_64bit: *pDstParm = *pSrcParm; break; case VMMDevHGCMParmType_PageList: pDstParm->u.PageList.size = pSrcParm->u.PageList.size; break; case VMMDevHGCMParmType_LinAddr_Locked_In: case VMMDevHGCMParmType_LinAddr_In: #ifdef USE_BOUNCE_BUFFERS if ( fIsUser && iLockBuf < pParmInfo->cLockBufs && iParm == pParmInfo->aLockBufs[iLockBuf].iParm) iLockBuf++; #endif pDstParm->u.Pointer.size = pSrcParm->u.Pointer.size; break; case VMMDevHGCMParmType_LinAddr_Locked_Out: case VMMDevHGCMParmType_LinAddr_Locked: if (!VBGLR0_CAN_USE_PHYS_PAGE_LIST(/*a_fLocked =*/ true)) { pDstParm->u.Pointer.size = pSrcParm->u.Pointer.size; break; } /* fall thru */ case VMMDevHGCMParmType_LinAddr_Out: case VMMDevHGCMParmType_LinAddr: { #ifdef USE_BOUNCE_BUFFERS if (fIsUser) { size_t cbOut = RT_MIN(pSrcParm->u.Pointer.size, pDstParm->u.Pointer.size); if (cbOut) { int rc2; Assert(pParmInfo->aLockBufs[iLockBuf].iParm == iParm); rc2 = RTR0MemUserCopyTo((RTR3PTR)pDstParm->u.Pointer.u.linearAddr, pParmInfo->aLockBufs[iLockBuf].pvSmallBuf ? pParmInfo->aLockBufs[iLockBuf].pvSmallBuf : RTR0MemObjAddress(pParmInfo->aLockBufs[iLockBuf].hObj), cbOut); if (RT_FAILURE(rc2)) return rc2; iLockBuf++; } else if ( iLockBuf < pParmInfo->cLockBufs && iParm == pParmInfo->aLockBufs[iLockBuf].iParm) iLockBuf++; } #endif pDstParm->u.Pointer.size = pSrcParm->u.Pointer.size; break; } default: AssertFailed(); rc = VERR_INTERNAL_ERROR_4; break; } } #ifdef USE_BOUNCE_BUFFERS Assert(!fIsUser || pParmInfo->cLockBufs == iLockBuf); #endif return rc; } DECLR0VBGL(int) VbglR0HGCMInternalCall(VBoxGuestHGCMCallInfo *pCallInfo, uint32_t cbCallInfo, uint32_t fFlags, PFNVBGLHGCMCALLBACK pfnAsyncCallback, void *pvAsyncData, uint32_t u32AsyncData) { bool fIsUser = (fFlags & VBGLR0_HGCMCALL_F_MODE_MASK) == VBGLR0_HGCMCALL_F_USER; struct VbglR0ParmInfo ParmInfo; size_t cbExtra; int rc; /* * Basic validation. */ AssertMsgReturn( !pCallInfo || !pfnAsyncCallback || pCallInfo->cParms > VBOX_HGCM_MAX_PARMS || !(fFlags & ~VBGLR0_HGCMCALL_F_MODE_MASK), ("pCallInfo=%p pfnAsyncCallback=%p fFlags=%#x\n", pCallInfo, pfnAsyncCallback, fFlags), VERR_INVALID_PARAMETER); AssertReturn( cbCallInfo >= sizeof(VBoxGuestHGCMCallInfo) || cbCallInfo >= pCallInfo->cParms * sizeof(HGCMFunctionParameter), VERR_INVALID_PARAMETER); Log(("GstHGCMCall: u32ClientID=%#x u32Function=%u cParms=%u cbCallInfo=%#x fFlags=%#x\n", pCallInfo->u32ClientID, pCallInfo->u32ClientID, pCallInfo->u32Function, pCallInfo->cParms, cbCallInfo, fFlags)); /* * Validate, lock and buffer the parameters for the call. * This will calculate the amount of extra space for physical page list. */ rc = vbglR0HGCMInternalPreprocessCall(pCallInfo, cbCallInfo, fIsUser, &ParmInfo, &cbExtra); if (RT_SUCCESS(rc)) { /* * Allocate the request buffer and recreate the call request. */ VMMDevHGCMCall *pHGCMCall; rc = VbglGRAlloc((VMMDevRequestHeader **)&pHGCMCall, sizeof(VMMDevHGCMCall) + pCallInfo->cParms * sizeof(HGCMFunctionParameter) + cbExtra, VMMDevReq_HGCMCall); if (RT_SUCCESS(rc)) { bool fLeakIt; vbglR0HGCMInternalInitCall(pHGCMCall, pCallInfo, cbCallInfo, fIsUser, &ParmInfo); /* * Perform the call. */ rc = vbglR0HGCMInternalDoCall(pHGCMCall, pfnAsyncCallback, pvAsyncData, u32AsyncData, &fLeakIt); if (RT_SUCCESS(rc)) { /* * Copy back the result (parameters and buffers that changed). */ rc = vbglR0HGCMInternalCopyBackResult(pCallInfo, pHGCMCall, &ParmInfo, fIsUser, rc); } else { if ( rc != VERR_INTERRUPTED && rc != VERR_TIMEOUT) { static unsigned s_cErrors = 0; if (s_cErrors++ < 32) LogRel(("VbglR0HGCMInternalCall: vbglR0HGCMInternalDoCall failed. rc=%Rrc\n", rc)); } } if (!fLeakIt) VbglGRFree(&pHGCMCall->header.header); } } else LogRel(("VbglR0HGCMInternalCall: vbglR0HGCMInternalPreprocessCall failed. rc=%Rrc\n", rc)); /* * Release locks and free bounce buffers. */ if (ParmInfo.cLockBufs) while (ParmInfo.cLockBufs-- > 0) { RTR0MemObjFree(ParmInfo.aLockBufs[ParmInfo.cLockBufs].hObj, false /*fFreeMappings*/); #ifdef USE_BOUNCE_BUFFERS RTMemTmpFree(ParmInfo.aLockBufs[ParmInfo.cLockBufs].pvSmallBuf); #endif } return rc; } #if ARCH_BITS == 64 DECLR0VBGL(int) VbglR0HGCMInternalCall32(VBoxGuestHGCMCallInfo *pCallInfo, uint32_t cbCallInfo, uint32_t fFlags, PFNVBGLHGCMCALLBACK pfnAsyncCallback, void *pvAsyncData, uint32_t u32AsyncData) { VBoxGuestHGCMCallInfo *pCallInfo64 = NULL; HGCMFunctionParameter *pParm64 = NULL; HGCMFunctionParameter32 *pParm32 = NULL; uint32_t cParms = 0; uint32_t iParm = 0; int rc = VINF_SUCCESS; /* * Input validation. */ AssertMsgReturn( !pCallInfo || !pfnAsyncCallback || pCallInfo->cParms > VBOX_HGCM_MAX_PARMS || !(fFlags & ~VBGLR0_HGCMCALL_F_MODE_MASK), ("pCallInfo=%p pfnAsyncCallback=%p fFlags=%#x\n", pCallInfo, pfnAsyncCallback, fFlags), VERR_INVALID_PARAMETER); AssertReturn( cbCallInfo >= sizeof(VBoxGuestHGCMCallInfo) || cbCallInfo >= pCallInfo->cParms * sizeof(HGCMFunctionParameter32), VERR_INVALID_PARAMETER); /* This Assert does not work on Solaris/Windows 64/32 mixed mode, not sure why, skipping for now */ #if !defined(RT_OS_SOLARIS) && !defined(RT_OS_WINDOWS) AssertReturn((fFlags & VBGLR0_HGCMCALL_F_MODE_MASK) == VBGLR0_HGCMCALL_F_KERNEL, VERR_WRONG_ORDER); #endif cParms = pCallInfo->cParms; Log(("VbglR0HGCMInternalCall32: cParms=%d, u32Function=%d, fFlags=%#x\n", cParms, pCallInfo->u32Function, fFlags)); /* * The simple approach, allocate a temporary request and convert the parameters. */ pCallInfo64 = (VBoxGuestHGCMCallInfo *)RTMemTmpAllocZ(sizeof(*pCallInfo64) + cParms * sizeof(HGCMFunctionParameter)); if (!pCallInfo64) return VERR_NO_TMP_MEMORY; *pCallInfo64 = *pCallInfo; pParm32 = VBOXGUEST_HGCM_CALL_PARMS32(pCallInfo); pParm64 = VBOXGUEST_HGCM_CALL_PARMS(pCallInfo64); for (iParm = 0; iParm < cParms; iParm++, pParm32++, pParm64++) { switch (pParm32->type) { case VMMDevHGCMParmType_32bit: pParm64->type = VMMDevHGCMParmType_32bit; pParm64->u.value32 = pParm32->u.value32; break; case VMMDevHGCMParmType_64bit: pParm64->type = VMMDevHGCMParmType_64bit; pParm64->u.value64 = pParm32->u.value64; break; case VMMDevHGCMParmType_LinAddr_Out: case VMMDevHGCMParmType_LinAddr: case VMMDevHGCMParmType_LinAddr_In: pParm64->type = pParm32->type; pParm64->u.Pointer.size = pParm32->u.Pointer.size; pParm64->u.Pointer.u.linearAddr = pParm32->u.Pointer.u.linearAddr; break; default: rc = VERR_INVALID_PARAMETER; LogRel(("VbglR0HGCMInternalCall32: pParm32 type %#x invalid.\n", pParm32->type)); break; } if (RT_FAILURE(rc)) break; } if (RT_SUCCESS(rc)) { rc = VbglR0HGCMInternalCall(pCallInfo64, sizeof(*pCallInfo64) + cParms * sizeof(HGCMFunctionParameter), fFlags, pfnAsyncCallback, pvAsyncData, u32AsyncData); if (RT_SUCCESS(rc)) { *pCallInfo = *pCallInfo64; /* * Copy back. */ pParm32 = VBOXGUEST_HGCM_CALL_PARMS32(pCallInfo); pParm64 = VBOXGUEST_HGCM_CALL_PARMS(pCallInfo64); for (iParm = 0; iParm < cParms; iParm++, pParm32++, pParm64++) { switch (pParm64->type) { case VMMDevHGCMParmType_32bit: pParm32->u.value32 = pParm64->u.value32; break; case VMMDevHGCMParmType_64bit: pParm32->u.value64 = pParm64->u.value64; break; case VMMDevHGCMParmType_LinAddr_Out: case VMMDevHGCMParmType_LinAddr: case VMMDevHGCMParmType_LinAddr_In: pParm32->u.Pointer.size = pParm64->u.Pointer.size; break; default: LogRel(("VbglR0HGCMInternalCall32: failed invalid pParm32 type %d\n", pParm32->type)); rc = VERR_INTERNAL_ERROR_3; break; } } } else { static unsigned s_cErrors = 0; if (s_cErrors++ < 32) LogRel(("VbglR0HGCMInternalCall32: VbglR0HGCMInternalCall failed. rc=%Rrc\n", rc)); } } else { static unsigned s_cErrors = 0; if (s_cErrors++ < 32) LogRel(("VbglR0HGCMInternalCall32: failed. rc=%Rrc\n", rc)); } RTMemTmpFree(pCallInfo64); return rc; } #endif /* ARCH_BITS == 64 */ #endif /* VBGL_VBOXGUEST */