/* Copyright (c) 2001, Stanford University * All rights reserved * * See the file LICENSE.txt for information on redistributing this software. */ #include #include "cr_spu.h" #include "cr_error.h" #include "state/cr_limits.h" #include "arrayspu.h" ArraySPU array_spu; #ifdef CHROMIUM_THREADSAFE CRmutex _ArrayMutex; #endif static void ARRAYSPU_APIENTRY arrayspu_ArrayElement( GLint index ) { const CRClientState *c = &(crStateGetCurrent()->client); const CRVertexArrays *array = &(c->array); const GLboolean vpEnabled = crStateGetCurrent()->program.vpEnabled; unsigned char *p; unsigned int unit, attr; if (array->e.enabled) { p = array->e.p + index * array->e.stride; #ifdef CR_ARB_vertex_buffer_object if (array->e.buffer && array->e.buffer->data) { p = (unsigned char *)(array->e.buffer->data) + (unsigned long)p; } #endif array_spu.self.EdgeFlagv(p); } /* * Vertex attribute arrays (GL_NV_vertex_program) have priority over * the conventional vertex arrays. */ if (vpEnabled) { for (attr = 1; attr < VERT_ATTRIB_MAX; attr++) { if (array->a[attr].enabled) { GLint *iPtr; p = array->a[attr].p + index * array->a[attr].stride; #ifdef CR_ARB_vertex_buffer_object if (array->a[attr].buffer && array->a[attr].buffer->data) { p = (unsigned char *)(array->a[attr].buffer->data) + (unsigned long)p; } #endif switch (array->a[attr].type) { case GL_SHORT: switch (array->a[attr].size) { case 1: array_spu.self.VertexAttrib1svARB(attr, (GLshort *)p); break; case 2: array_spu.self.VertexAttrib2svARB(attr, (GLshort *)p); break; case 3: array_spu.self.VertexAttrib3svARB(attr, (GLshort *)p); break; case 4: array_spu.self.VertexAttrib4svARB(attr, (GLshort *)p); break; } break; case GL_INT: iPtr = (GLint *) p; switch (array->a[attr].size) { case 1: array_spu.self.VertexAttrib1fARB(attr, p[0]); break; case 2: array_spu.self.VertexAttrib2fARB(attr, p[0], p[1]); break; case 3: array_spu.self.VertexAttrib3fARB(attr, p[0], p[1], p[2]); break; case 4: array_spu.self.VertexAttrib4fARB(attr, p[0], p[1], p[2], p[3]); break; } break; case GL_FLOAT: switch (array->a[attr].size) { case 1: array_spu.self.VertexAttrib1fvARB(attr, (GLfloat *)p); break; case 2: array_spu.self.VertexAttrib2fvARB(attr, (GLfloat *)p); break; case 3: array_spu.self.VertexAttrib3fvARB(attr, (GLfloat *)p); break; case 4: array_spu.self.VertexAttrib4fvARB(attr, (GLfloat *)p); break; } break; case GL_DOUBLE: switch (array->a[attr].size) { case 1: array_spu.self.VertexAttrib1dvARB(attr, (GLdouble *)p); break; case 2: array_spu.self.VertexAttrib2dvARB(attr, (GLdouble *)p); break; case 3: array_spu.self.VertexAttrib3dvARB(attr, (GLdouble *)p); break; case 4: array_spu.self.VertexAttrib4dvARB(attr, (GLdouble *)p); break; } break; default: crWarning("Bad datatype for vertex attribute [%d] array: 0x%x\n", attr, array->a[attr].type); } } } } /* Now do conventional arrays, unless overriden by generic arrays above */ for (unit = 0 ; unit < crStateGetCurrent()->limits.maxTextureUnits ; unit++) { if (array->t[unit].enabled && !(vpEnabled && array->a[VERT_ATTRIB_TEX0+unit].enabled)) { p = array->t[unit].p + index * array->t[unit].stride; #ifdef CR_ARB_vertex_buffer_object if (array->t[unit].buffer && array->t[unit].buffer->data) { p = (unsigned char *)(array->t[unit].buffer->data) + (unsigned long)p; } #endif switch (array->t[unit].type) { case GL_SHORT: switch (array->t[unit].size) { case 1: array_spu.self.MultiTexCoord1svARB(GL_TEXTURE0_ARB + unit, (GLshort *)p); break; case 2: array_spu.self.MultiTexCoord2svARB(GL_TEXTURE0_ARB + unit, (GLshort *)p); break; case 3: array_spu.self.MultiTexCoord3svARB(GL_TEXTURE0_ARB + unit, (GLshort *)p); break; case 4: array_spu.self.MultiTexCoord4svARB(GL_TEXTURE0_ARB + unit, (GLshort *)p); break; } break; case GL_INT: switch (array->t[unit].size) { case 1: array_spu.self.MultiTexCoord1ivARB(GL_TEXTURE0_ARB + unit, (GLint *)p); break; case 2: array_spu.self.MultiTexCoord2ivARB(GL_TEXTURE0_ARB + unit, (GLint *)p); break; case 3: array_spu.self.MultiTexCoord3ivARB(GL_TEXTURE0_ARB + unit, (GLint *)p); break; case 4: array_spu.self.MultiTexCoord4ivARB(GL_TEXTURE0_ARB + unit, (GLint *)p); break; } break; case GL_FLOAT: switch (array->t[unit].size) { case 1: array_spu.self.MultiTexCoord1fvARB(GL_TEXTURE0_ARB + unit, (GLfloat *)p); break; case 2: array_spu.self.MultiTexCoord2fvARB(GL_TEXTURE0_ARB + unit, (GLfloat *)p); break; case 3: array_spu.self.MultiTexCoord3fvARB(GL_TEXTURE0_ARB + unit, (GLfloat *)p); break; case 4: array_spu.self.MultiTexCoord4fvARB(GL_TEXTURE0_ARB + unit, (GLfloat *)p); break; } break; case GL_DOUBLE: switch (array->t[unit].size) { case 1: array_spu.self.MultiTexCoord1dvARB(GL_TEXTURE0_ARB + unit, (GLdouble *)p); break; case 2: array_spu.self.MultiTexCoord2dvARB(GL_TEXTURE0_ARB + unit, (GLdouble *)p); break; case 3: array_spu.self.MultiTexCoord3dvARB(GL_TEXTURE0_ARB + unit, (GLdouble *)p); break; case 4: array_spu.self.MultiTexCoord4dvARB(GL_TEXTURE0_ARB + unit, (GLdouble *)p); break; } break; } } } if (array->i.enabled) { p = array->i.p + index * array->i.stride; #ifdef CR_ARB_vertex_buffer_object if (array->i.buffer && array->i.buffer->data) { p = (unsigned char *)(array->i.buffer->data) + (unsigned long)p; } #endif switch (array->i.type) { case GL_SHORT: array_spu.self.Indexsv((GLshort *)p); break; case GL_INT: array_spu.self.Indexiv((GLint *)p); break; case GL_FLOAT: array_spu.self.Indexfv((GLfloat *)p); break; case GL_DOUBLE: array_spu.self.Indexdv((GLdouble *)p); break; } } if (array->c.enabled && !(vpEnabled && array->a[VERT_ATTRIB_COLOR0].enabled)) { p = array->c.p + index * array->c.stride; #ifdef CR_ARB_vertex_buffer_object if (array->c.buffer && array->c.buffer->data) { p = (unsigned char *)(array->c.buffer->data) + (unsigned long)p; } #endif switch (array->c.type) { case GL_BYTE: switch (array->c.size) { case 3: array_spu.self.Color3bv((GLbyte *)p); break; case 4: array_spu.self.Color4bv((GLbyte *)p); break; } break; case GL_UNSIGNED_BYTE: switch (array->c.size) { case 3: array_spu.self.Color3ubv((GLubyte *)p); break; case 4: array_spu.self.Color4ubv((GLubyte *)p); break; } break; case GL_SHORT: switch (array->c.size) { case 3: array_spu.self.Color3sv((GLshort *)p); break; case 4: array_spu.self.Color4sv((GLshort *)p); break; } break; case GL_UNSIGNED_SHORT: switch (array->c.size) { case 3: array_spu.self.Color3usv((GLushort *)p); break; case 4: array_spu.self.Color4usv((GLushort *)p); break; } break; case GL_INT: switch (array->c.size) { case 3: array_spu.self.Color3iv((GLint *)p); break; case 4: array_spu.self.Color4iv((GLint *)p); break; } break; case GL_UNSIGNED_INT: switch (array->c.size) { case 3: array_spu.self.Color3uiv((GLuint *)p); break; case 4: array_spu.self.Color4uiv((GLuint *)p); break; } break; case GL_FLOAT: switch (array->c.size) { case 3: array_spu.self.Color3fv((GLfloat *)p); break; case 4: array_spu.self.Color4fv((GLfloat *)p); break; } break; case GL_DOUBLE: switch (array->c.size) { case 3: array_spu.self.Color3dv((GLdouble *)p); break; case 4: array_spu.self.Color4dv((GLdouble *)p); break; } break; } } if (array->n.enabled && !(vpEnabled && array->a[VERT_ATTRIB_NORMAL].enabled)) { p = array->n.p + index * array->n.stride; #ifdef CR_ARB_vertex_buffer_object if (array->n.buffer && array->n.buffer->data) { p = (unsigned char *)(array->n.buffer->data) + (unsigned long)p; } #endif switch (array->n.type) { case GL_BYTE: array_spu.self.Normal3bv((GLbyte *)p); break; case GL_SHORT: array_spu.self.Normal3sv((GLshort *)p); break; case GL_INT: array_spu.self.Normal3iv((GLint *)p); break; case GL_FLOAT: array_spu.self.Normal3fv((GLfloat *)p); break; case GL_DOUBLE: array_spu.self.Normal3dv((GLdouble *)p); break; } } #ifdef CR_EXT_secondary_color if (array->s.enabled && !(vpEnabled && array->a[VERT_ATTRIB_COLOR1].enabled)) { p = array->s.p + index * array->s.stride; #ifdef CR_ARB_vertex_buffer_object if (array->s.buffer && array->s.buffer->data) { p = (unsigned char *)(array->s.buffer->data) + (unsigned long)p; } #endif switch (array->s.type) { case GL_BYTE: array_spu.self.SecondaryColor3bvEXT((GLbyte *)p); break; case GL_UNSIGNED_BYTE: array_spu.self.SecondaryColor3ubvEXT((GLubyte *)p); break; case GL_SHORT: array_spu.self.SecondaryColor3svEXT((GLshort *)p); break; case GL_UNSIGNED_SHORT: array_spu.self.SecondaryColor3usvEXT((GLushort *)p); break; case GL_INT: array_spu.self.SecondaryColor3ivEXT((GLint *)p); break; case GL_UNSIGNED_INT: array_spu.self.SecondaryColor3uivEXT((GLuint *)p); break; case GL_FLOAT: array_spu.self.SecondaryColor3fvEXT((GLfloat *)p); break; case GL_DOUBLE: array_spu.self.SecondaryColor3dvEXT((GLdouble *)p); break; } } #endif // CR_EXT_secondary_color #ifdef CR_EXT_fog_coord if (array->f.enabled && !(vpEnabled && array->a[VERT_ATTRIB_FOG].enabled)) { p = array->f.p + index * array->f.stride; #ifdef CR_ARB_vertex_buffer_object if (array->f.buffer && array->f.buffer->data) { p = (unsigned char *)(array->f.buffer->data) + (unsigned long)p; } #endif array_spu.self.FogCoordfEXT( *((GLfloat *) p) ); } #endif // CR_EXT_fog_coord /* Need to do attrib[0] / vertex position last */ if (array->a[VERT_ATTRIB_POS].enabled) { GLint *iPtr; p = array->a[VERT_ATTRIB_POS].p + index * array->a[VERT_ATTRIB_POS].stride; #ifdef CR_ARB_vertex_buffer_object if (array->a[VERT_ATTRIB_POS].buffer && array->a[VERT_ATTRIB_POS].buffer->data) { p = (unsigned char *)(array->a[VERT_ATTRIB_POS].buffer->data) + (unsigned long)p; } #endif switch (array->a[VERT_ATTRIB_POS].type) { case GL_SHORT: switch (array->a[VERT_ATTRIB_POS].size) { case 1: array_spu.self.VertexAttrib1svARB(0, (GLshort *)p); break; case 2: array_spu.self.VertexAttrib2svARB(0, (GLshort *)p); break; case 3: array_spu.self.VertexAttrib3svARB(0, (GLshort *)p); break; case 4: array_spu.self.VertexAttrib4svARB(0, (GLshort *)p); break; } break; case GL_INT: iPtr = (GLint *) p; switch (array->a[VERT_ATTRIB_POS].size) { case 1: array_spu.self.VertexAttrib1fARB(0, p[0]); break; case 2: array_spu.self.VertexAttrib2fARB(0, p[0], p[1]); break; case 3: array_spu.self.VertexAttrib3fARB(0, p[0], p[1], p[2]); break; case 4: array_spu.self.VertexAttrib4fARB(0, p[0], p[1], p[2], p[3]); break; } break; case GL_FLOAT: switch (array->a[VERT_ATTRIB_POS].size) { case 1: array_spu.self.VertexAttrib1fvARB(0, (GLfloat *)p); break; case 2: array_spu.self.VertexAttrib2fvARB(0, (GLfloat *)p); break; case 3: array_spu.self.VertexAttrib3fvARB(0, (GLfloat *)p); break; case 4: array_spu.self.VertexAttrib4fvARB(0, (GLfloat *)p); break; } break; case GL_DOUBLE: switch (array->a[VERT_ATTRIB_POS].size) { case 1: array_spu.self.VertexAttrib1dvARB(0, (GLdouble *)p); break; case 2: array_spu.self.VertexAttrib2dvARB(0, (GLdouble *)p); break; case 3: array_spu.self.VertexAttrib3dvARB(0, (GLdouble *)p); break; case 4: array_spu.self.VertexAttrib4dvARB(0, (GLdouble *)p); break; } break; default: crWarning("Bad datatype for vertex attribute [0] array: 0x%x\n", array->a[0].type); } } else if (array->v.enabled) { p = array->v.p + index * array->v.stride; #ifdef CR_ARB_vertex_buffer_object if (array->v.buffer && array->v.buffer->data) { p = (unsigned char *)(array->v.buffer->data) + (unsigned long)p; } #endif switch (array->v.type) { case GL_SHORT: switch (array->v.size) { case 2: array_spu.self.Vertex2sv((GLshort *)p); break; case 3: array_spu.self.Vertex3sv((GLshort *)p); break; case 4: array_spu.self.Vertex4sv((GLshort *)p); break; } break; case GL_INT: switch (array->v.size) { case 2: array_spu.self.Vertex2iv((GLint *)p); break; case 3: array_spu.self.Vertex3iv((GLint *)p); break; case 4: array_spu.self.Vertex4iv((GLint *)p); break; } break; case GL_FLOAT: switch (array->v.size) { case 2: array_spu.self.Vertex2fv((GLfloat *)p); break; case 3: array_spu.self.Vertex3fv((GLfloat *)p); break; case 4: array_spu.self.Vertex4fv((GLfloat *)p); break; } break; case GL_DOUBLE: switch (array->v.size) { case 2: array_spu.self.Vertex2dv((GLdouble *)p); break; case 3: array_spu.self.Vertex3dv((GLdouble *)p); break; case 4: array_spu.self.Vertex4dv((GLdouble *)p); break; } break; default: crWarning("Bad datatype for vertex array: 0x%x\n", array->v.type); } } } static void ARRAYSPU_APIENTRY arrayspu_DrawArrays(GLenum mode, GLint first, GLsizei count) { int i; if (count < 0) { crError("array_spu.self.DrawArrays passed negative count: %d", count); } if (mode > GL_POLYGON) { crError("array_spu.self.DrawArrays called with invalid mode: %d", mode); } array_spu.self.Begin(mode); for (i=0; ibufferobject.elementsBuffer; #endif if (count < 0) { crError("array_spu.self.DrawElements passed negative count: %d", count); } if (mode > GL_POLYGON) { crError("array_spu.self.DrawElements called with invalid mode: %d", mode); } if (type != GL_UNSIGNED_BYTE && type != GL_UNSIGNED_SHORT && type != GL_UNSIGNED_INT) { crError("array_spu.self.DrawElements called with invalid type: %d", type); } #ifdef CR_ARB_vertex_buffer_object if (elementsBuffer && elementsBuffer->data) { p = (unsigned char *)(elementsBuffer->data) + (unsigned long)p; } #endif array_spu.self.Begin(mode); switch (type) { case GL_UNSIGNED_BYTE: for (i=0; i GL_POLYGON) { crError("array_spu.self.MultiDrawArraysEXT called with invalid mode: %d", mode); } for (i = 0; i < primcount; i++) { array_spu.self.DrawArrays(mode, first[i], count[i]); } } static void ARRAYSPU_APIENTRY arrayspu_MultiDrawElementsEXT(GLenum mode, GLsizei *count, GLenum type, const GLvoid **indices, GLsizei primcount) { int i; if (primcount < 0) { crError("array_spu.self.MultiDrawElementsEXT passed negative count: %d", primcount); } if (mode > GL_POLYGON) { crError("array_spu.self.MultiDrawElementsEXT called with invalid mode: %d", mode); } if (type != GL_UNSIGNED_BYTE && type != GL_UNSIGNED_SHORT && type != GL_UNSIGNED_INT) { crError("array_spu.self.MultiDrawElementsEXT called with invalid type: %d", type); } for (i = 0; i < primcount; i++) { array_spu.self.DrawElements(mode, count[i], type, indices[i]); } } /* * We need to know when vertex program mode is enabled/disabled * in order to handle vertex attribute arrays correctly. */ static void ARRAYSPU_APIENTRY arrayspu_Enable(GLenum cap) { if (cap == GL_VERTEX_PROGRAM_NV) { crStateGetCurrent()->program.vpEnabled = GL_TRUE; } array_spu.child.Enable(cap); } static void ARRAYSPU_APIENTRY arrayspu_Disable(GLenum cap) { if (cap == GL_VERTEX_PROGRAM_NV) { crStateGetCurrent()->program.vpEnabled = GL_FALSE; } array_spu.child.Disable(cap); } /*@todo: it's a hack, as GLSL shouldn't blindly reuse this bit from nv_vertex_program*/ static void ARRAYSPU_APIENTRY arrayspu_UseProgram(GLuint program) { crStateGetCurrent()->program.vpEnabled = program>0; array_spu.child.UseProgram(program); } static void ARRAYSPU_APIENTRY arrayspu_VertexAttribPointerARB(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid *pointer) { crStateVertexAttribPointerARB( index, size, type, normalized, stride, pointer ); } static void ARRAYSPU_APIENTRY arrayspu_EnableVertexAttribArrayARB(GLuint index) { crStateEnableVertexAttribArrayARB(index); } static void ARRAYSPU_APIENTRY arrayspu_DisableVertexAttribArrayARB(GLuint index) { crStateDisableVertexAttribArrayARB(index); } /* We need to implement Push/PopClientAttrib here so that _our_ state * tracker gets used. Also, pass the call onto the next SPU (in case * it's the GL_CLIENT_PIXEL_STORE_BIT, etc). */ static void ARRAYSPU_APIENTRY arrayspu_PushClientAttrib( GLbitfield mask ) { crStatePushClientAttrib(mask); array_spu.child.PushClientAttrib(mask); } static void ARRAYSPU_APIENTRY arrayspu_PopClientAttrib( void ) { crStatePopClientAttrib(); array_spu.child.PopClientAttrib(); } static void ARRAYSPU_APIENTRY arrayspu_GenBuffersARB( GLsizei n, GLuint * buffers ) { crStateGenBuffersARB(n, buffers); } static void ARRAYSPU_APIENTRY arrayspu_DeleteBuffersARB( GLsizei n, const GLuint *buffers ) { crStateDeleteBuffersARB(n, buffers); } static void ARRAYSPU_APIENTRY arrayspu_BindBufferARB( GLenum target, GLuint buffer ) { crStateBindBufferARB(target, buffer); } static GLboolean ARRAYSPU_APIENTRY arrayspu_IsBufferARB (GLuint buffer) { return crStateIsBufferARB(buffer); } static void ARRAYSPU_APIENTRY arrayspu_BufferDataARB( GLenum target, GLsizeiptrARB size, const GLvoid * data, GLenum usage ) { crStateBufferDataARB(target, size, data, usage); } static void ARRAYSPU_APIENTRY arrayspu_BufferSubDataARB( GLenum target, GLintptrARB offset, GLsizeiptrARB size, const GLvoid * data ) { crStateBufferSubDataARB(target, offset, size, data); } static void ARRAYSPU_APIENTRY arrayspu_GetBufferSubDataARB(GLenum target, GLintptrARB offset, GLsizeiptrARB size, void * data) { crStateGetBufferSubDataARB(target, offset, size, data); } static void * ARRAYSPU_APIENTRY arrayspu_MapBufferARB(GLenum target, GLenum access) { return crStateMapBufferARB(target, access); } static GLboolean ARRAYSPU_APIENTRY arrayspu_UnmapBufferARB(GLenum target) { return crStateUnmapBufferARB(target); } static void ARRAYSPU_APIENTRY arrayspu_GetBufferParameterivARB(GLenum target, GLenum pname, GLint *params) { crStateGetBufferParameterivARB(target, pname, params); } static void ARRAYSPU_APIENTRY arrayspu_GetBufferPointervARB(GLenum target, GLenum pname, GLvoid **params) { crStateGetBufferPointervARB(target, pname, params); } static void ARRAYSPU_APIENTRY arrayspu_InterleavedArrays(GLenum format, GLsizei stride, const GLvoid *p) { crStateInterleavedArrays(format, stride, p); } static GLint ARRAYSPU_APIENTRY arrayspu_CreateContext( const char *dpyName, GLint visual, GLint shareCtx ) { GLint ctx, slot; #ifdef CHROMIUM_THREADSAFE crLockMutex(&_ArrayMutex); #endif ctx = array_spu.child.CreateContext(dpyName, visual, shareCtx); /* find an empty context slot */ for (slot = 0; slot < array_spu.numContexts; slot++) { if (!array_spu.context[slot].clientState) { /* found empty slot */ break; } } if (slot == array_spu.numContexts) { array_spu.numContexts++; } array_spu.context[slot].clientState = crStateCreateContext(NULL, visual, NULL); array_spu.context[slot].clientCtx = ctx; #ifdef CR_ARB_vertex_buffer_object array_spu.context[slot].clientState->bufferobject.retainBufferData = GL_TRUE; #endif #ifdef CHROMIUM_THREADSAFE crUnlockMutex(&_ArrayMutex); #endif return ctx; } static void ARRAYSPU_APIENTRY arrayspu_MakeCurrent( GLint window, GLint nativeWindow, GLint ctx ) { #ifdef CHROMIUM_THREADSAFE crLockMutex(&_ArrayMutex); #endif array_spu.child.MakeCurrent(window, nativeWindow, ctx); if (ctx) { int slot; for (slot=0; slot