VirtualBox

source: vbox/trunk/src/VBox/Additions/linux/sharedfolders/regops.c@ 100068

Last change on this file since 100068 was 99667, checked in by vboxsync, 22 months ago

Additions: Linux: vboxsf: Introduce initial support for kernel 6.4 (rename macro), bugref:10441.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 149.7 KB
Line 
1/* $Id: regops.c 99667 2023-05-08 11:44:16Z vboxsync $ */
2/** @file
3 * vboxsf - VBox Linux Shared Folders VFS, regular file inode and file operations.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * Permission is hereby granted, free of charge, to any person
10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without
12 * restriction, including without limitation the rights to use,
13 * copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the
15 * Software is furnished to do so, subject to the following
16 * conditions:
17 *
18 * The above copyright notice and this permission notice shall be
19 * included in all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
22 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
23 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
25 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
26 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
28 * OTHER DEALINGS IN THE SOFTWARE.
29 */
30
31
32/*********************************************************************************************************************************
33* Header Files *
34*********************************************************************************************************************************/
35#include "vfsmod.h"
36#include <linux/uio.h>
37#if RTLNX_VER_MIN(2,5,32)
38# include <linux/aio.h> /* struct kiocb before 4.1 */
39#endif
40#if RTLNX_VER_MIN(2,5,12)
41# include <linux/buffer_head.h>
42#endif
43#if RTLNX_VER_RANGE(2,5,12, 2,6,31)
44# include <linux/writeback.h>
45#endif
46#if RTLNX_VER_RANGE(2,6,23, 3,16,0)
47# include <linux/splice.h>
48#endif
49#if RTLNX_VER_RANGE(2,6,17, 2,6,23)
50# include <linux/pipe_fs_i.h>
51#endif
52#if RTLNX_VER_MIN(2,4,10)
53# include <linux/swap.h> /* for mark_page_accessed */
54#endif
55#include <iprt/err.h>
56
57#if RTLNX_VER_MAX(2,6,18)
58# define SEEK_END 2
59#endif
60
61#if RTLNX_VER_MAX(3,16,0)
62# define iter_is_iovec(a_pIter) ( !((a_pIter)->type & ITER_KVEC) )
63#elif RTLNX_VER_MAX(3,19,0)
64# define iter_is_iovec(a_pIter) ( !((a_pIter)->type & (ITER_KVEC | ITER_BVEC)) )
65#endif
66
67#if RTLNX_VER_MAX(4,17,0)
68# define vm_fault_t int
69#endif
70
71#if RTLNX_VER_MAX(2,5,20)
72# define pgoff_t unsigned long
73#endif
74
75#if RTLNX_VER_MAX(2,5,12)
76# define PageUptodate(a_pPage) Page_Uptodate(a_pPage)
77#endif
78
79
80/*********************************************************************************************************************************
81* Defined Constants And Macros *
82*********************************************************************************************************************************/
83/** @def VBSF_GET_ITER_TYPE
84 * Accessor for getting iov iter type member which changed name in 5.14. */
85#if RTLNX_VER_MIN(5,14,0)
86# define VBSF_GET_ITER_TYPE(a_pIter) ((a_pIter)->iter_type)
87#else
88# define VBSF_GET_ITER_TYPE(a_pIter) ((a_pIter)->type)
89#endif
90
91/** Starting from 6.4.0, iter_iov() macro should be used in order to access to iov field
92 * of struct iov_iter. */
93#if RTLNX_VER_MIN(6,4,0)
94# define VBSF_GET_ITER_IOV(_iter) iter_iov(_iter)
95#else
96# define VBSF_GET_ITER_IOV(_iter) iter->iov
97#endif
98
99
100/*********************************************************************************************************************************
101* Structures and Typedefs *
102*********************************************************************************************************************************/
103#if RTLNX_VER_MAX(3,16,0)
104struct vbsf_iov_iter {
105 unsigned int type;
106 unsigned int v_write : 1;
107 size_t iov_offset;
108 size_t nr_segs;
109 struct iovec const *iov;
110# ifdef VBOX_STRICT
111 struct iovec const *iov_org;
112 size_t nr_segs_org;
113# endif
114};
115# ifdef VBOX_STRICT
116# define VBSF_IOV_ITER_INITIALIZER(a_cSegs, a_pIov, a_fWrite) \
117 { vbsf_iov_iter_detect_type(a_pIov, a_cSegs), a_fWrite, 0, a_cSegs, a_pIov, a_pIov, a_cSegs }
118# else
119# define VBSF_IOV_ITER_INITIALIZER(a_cSegs, a_pIov, a_fWrite) \
120 { vbsf_iov_iter_detect_type(a_pIov, a_cSegs), a_fWrite, 0, a_cSegs, a_pIov }
121# endif
122# define ITER_KVEC 1
123# define iov_iter vbsf_iov_iter
124#endif
125
126#if RTLNX_VER_MIN(2,6,19)
127/** Used by vbsf_iter_lock_pages() to keep the first page of the next segment. */
128struct vbsf_iter_stash {
129 struct page *pPage;
130 size_t off;
131 size_t cb;
132# if RTLNX_VER_MAX(4,11,0)
133 size_t offFromEnd;
134 struct iov_iter Copy;
135# endif
136};
137#endif /* >= 3.16.0 */
138/** Initializer for struct vbsf_iter_stash. */
139#if RTLNX_VER_MIN(4,11,0)
140# define VBSF_ITER_STASH_INITIALIZER { NULL, 0 }
141#else
142# define VBSF_ITER_STASH_INITIALIZER { NULL, 0, ~(size_t)0 }
143#endif
144
145
146/*********************************************************************************************************************************
147* Internal Functions *
148*********************************************************************************************************************************/
149DECLINLINE(void) vbsf_put_page(struct page *pPage);
150static void vbsf_unlock_user_pages(struct page **papPages, size_t cPages, bool fSetDirty, bool fLockPgHack);
151static void vbsf_reg_write_sync_page_cache(struct address_space *mapping, loff_t offFile, uint32_t cbRange,
152 uint8_t const *pbSrcBuf, struct page **papSrcPages,
153 uint32_t offSrcPage, size_t cSrcPages);
154
155
156/*********************************************************************************************************************************
157* Provide more recent uio.h functionality to older kernels. *
158*********************************************************************************************************************************/
159#if RTLNX_VER_RANGE(2,6,19, 3,16,0)
160
161/**
162 * Detects the vector type.
163 */
164static int vbsf_iov_iter_detect_type(struct iovec const *paIov, size_t cSegs)
165{
166 /* Check the first segment with a non-zero length. */
167 while (cSegs-- > 0) {
168 if (paIov->iov_len > 0) {
169 if (access_ok(VERIFY_READ, paIov->iov_base, paIov->iov_len))
170#if RTLNX_VER_MIN(5,10,0)
171 return (uintptr_t)paIov->iov_base >= TASK_SIZE_MAX ? ITER_KVEC : 0;
172#else
173 return (uintptr_t)paIov->iov_base >= USER_DS.seg ? ITER_KVEC : 0;
174#endif
175 AssertMsgFailed(("%p LB %#zx\n", paIov->iov_base, paIov->iov_len));
176 break;
177 }
178 paIov++;
179 }
180 return 0;
181}
182
183
184# undef iov_iter_count
185# define iov_iter_count(a_pIter) vbsf_iov_iter_count(a_pIter)
186static size_t vbsf_iov_iter_count(struct vbsf_iov_iter const *iter)
187{
188 size_t cbRet = 0;
189 size_t cLeft = iter->nr_segs;
190 struct iovec const *iov = iter->iov;
191 while (cLeft-- > 0) {
192 cbRet += iov->iov_len;
193 iov++;
194 }
195 return cbRet - iter->iov_offset;
196}
197
198
199# undef iov_iter_single_seg_count
200# define iov_iter_single_seg_count(a_pIter) vbsf_iov_iter_single_seg_count(a_pIter)
201static size_t vbsf_iov_iter_single_seg_count(struct vbsf_iov_iter const *iter)
202{
203 if (iter->nr_segs > 0)
204 return iter->iov->iov_len - iter->iov_offset;
205 return 0;
206}
207
208
209# undef iov_iter_advance
210# define iov_iter_advance(a_pIter, a_cbSkip) vbsf_iov_iter_advance(a_pIter, a_cbSkip)
211static void vbsf_iov_iter_advance(struct vbsf_iov_iter *iter, size_t cbSkip)
212{
213 SFLOG2(("vbsf_iov_iter_advance: cbSkip=%#zx\n", cbSkip));
214 if (iter->nr_segs > 0) {
215 size_t const cbLeftCur = iter->iov->iov_len - iter->iov_offset;
216 Assert(iter->iov_offset <= iter->iov->iov_len);
217 if (cbLeftCur > cbSkip) {
218 iter->iov_offset += cbSkip;
219 } else {
220 cbSkip -= cbLeftCur;
221 iter->iov_offset = 0;
222 iter->iov++;
223 iter->nr_segs--;
224 while (iter->nr_segs > 0) {
225 size_t const cbSeg = iter->iov->iov_len;
226 if (cbSeg > cbSkip) {
227 iter->iov_offset = cbSkip;
228 break;
229 }
230 cbSkip -= cbSeg;
231 iter->iov++;
232 iter->nr_segs--;
233 }
234 }
235 }
236}
237
238
239# undef iov_iter_get_pages
240# define iov_iter_get_pages(a_pIter, a_papPages, a_cbMax, a_cMaxPages, a_poffPg0) \
241 vbsf_iov_iter_get_pages(a_pIter, a_papPages, a_cbMax, a_cMaxPages, a_poffPg0)
242static ssize_t vbsf_iov_iter_get_pages(struct vbsf_iov_iter *iter, struct page **papPages,
243 size_t cbMax, unsigned cMaxPages, size_t *poffPg0)
244{
245 while (iter->nr_segs > 0) {
246 size_t const cbLeft = iter->iov->iov_len - iter->iov_offset;
247 Assert(iter->iov->iov_len >= iter->iov_offset);
248 if (cbLeft > 0) {
249 uintptr_t uPtrFrom = (uintptr_t)iter->iov->iov_base + iter->iov_offset;
250 size_t offPg0 = *poffPg0 = uPtrFrom & PAGE_OFFSET_MASK;
251 size_t cPagesLeft = RT_ALIGN_Z(offPg0 + cbLeft, PAGE_SIZE) >> PAGE_SHIFT;
252 size_t cPages = RT_MIN(cPagesLeft, cMaxPages);
253 struct task_struct *pTask = current;
254 size_t cPagesLocked;
255
256 down_read(&pTask->mm->mmap_sem);
257 cPagesLocked = get_user_pages(pTask, pTask->mm, uPtrFrom, cPages, iter->v_write, 1 /*force*/, papPages, NULL);
258 up_read(&pTask->mm->mmap_sem);
259 if (cPagesLocked == cPages) {
260 size_t cbRet = (cPages << PAGE_SHIFT) - offPg0;
261 if (cPages == cPagesLeft) {
262 size_t offLastPg = (uPtrFrom + cbLeft) & PAGE_OFFSET_MASK;
263 if (offLastPg)
264 cbRet -= PAGE_SIZE - offLastPg;
265 }
266 Assert(cbRet <= cbLeft);
267 return cbRet;
268 }
269 if (cPagesLocked > 0)
270 vbsf_unlock_user_pages(papPages, cPagesLocked, false /*fSetDirty*/, false /*fLockPgHack*/);
271 return -EFAULT;
272 }
273 iter->iov_offset = 0;
274 iter->iov++;
275 iter->nr_segs--;
276 }
277 AssertFailed();
278 return 0;
279}
280
281
282# undef iov_iter_truncate
283# define iov_iter_truncate(iter, cbNew) vbsf_iov_iter_truncate(iter, cbNew)
284static void vbsf_iov_iter_truncate(struct vbsf_iov_iter *iter, size_t cbNew)
285{
286 /* we have no counter or stuff, so it's a no-op. */
287 RT_NOREF(iter, cbNew);
288}
289
290
291# undef iov_iter_revert
292# define iov_iter_revert(a_pIter, a_cbRewind) vbsf_iov_iter_revert(a_pIter, a_cbRewind)
293void vbsf_iov_iter_revert(struct vbsf_iov_iter *iter, size_t cbRewind)
294{
295 SFLOG2(("vbsf_iov_iter_revert: cbRewind=%#zx\n", cbRewind));
296 if (iter->iov_offset > 0) {
297 if (cbRewind <= iter->iov_offset) {
298 iter->iov_offset -= cbRewind;
299 return;
300 }
301 cbRewind -= iter->iov_offset;
302 iter->iov_offset = 0;
303 }
304
305 while (cbRewind > 0) {
306 struct iovec const *pIov = --iter->iov;
307 size_t const cbSeg = pIov->iov_len;
308 iter->nr_segs++;
309
310 Assert((uintptr_t)pIov >= (uintptr_t)iter->iov_org);
311 Assert(iter->nr_segs <= iter->nr_segs_org);
312
313 if (cbRewind <= cbSeg) {
314 iter->iov_offset = cbSeg - cbRewind;
315 break;
316 }
317 cbRewind -= cbSeg;
318 }
319}
320
321#endif /* 2.6.19 <= linux < 3.16.0 */
322#if RTLNX_VER_RANGE(3,16,0, 3,16,35)
323
324/** This is for implementing cMaxPage on 3.16 which doesn't have it. */
325static ssize_t vbsf_iov_iter_get_pages_3_16(struct iov_iter *iter, struct page **papPages,
326 size_t cbMax, unsigned cMaxPages, size_t *poffPg0)
327{
328 if (!(iter->type & ITER_BVEC)) {
329 size_t const offPg0 = iter->iov_offset & PAGE_OFFSET_MASK;
330 size_t const cbMaxPages = ((size_t)cMaxPages << PAGE_SHIFT) - offPg0;
331 if (cbMax > cbMaxPages)
332 cbMax = cbMaxPages;
333 }
334 /* else: BVEC works a page at a time and shouldn't have much of a problem here. */
335 return iov_iter_get_pages(iter, papPages, cbMax, poffPg0);
336}
337# undef iov_iter_get_pages
338# define iov_iter_get_pages(a_pIter, a_papPages, a_cbMax, a_cMaxPages, a_poffPg0) \
339 vbsf_iov_iter_get_pages_3_16(a_pIter, a_papPages, a_cbMax, a_cMaxPages, a_poffPg0)
340
341#endif /* 3.16.0-3.16.34 */
342#if RTLNX_VER_RANGE(2,6,19, 3,18,0)
343
344static size_t copy_from_iter(uint8_t *pbDst, size_t cbToCopy, struct iov_iter *pSrcIter)
345{
346 size_t const cbTotal = cbToCopy;
347 Assert(iov_iter_count(pSrcIter) >= cbToCopy);
348# if RTLNX_VER_MIN(3,16,0)
349 if (pSrcIter->type & ITER_BVEC) {
350 while (cbToCopy > 0) {
351 size_t const offPage = (uintptr_t)pbDst & PAGE_OFFSET_MASK;
352 size_t const cbThisCopy = RT_MIN(PAGE_SIZE - offPage, cbToCopy);
353 struct page *pPage = rtR0MemObjLinuxVirtToPage(pbDst);
354 size_t cbCopied = copy_page_from_iter(pPage, offPage, cbThisCopy, pSrcIter);
355 AssertStmt(cbCopied <= cbThisCopy, cbCopied = cbThisCopy);
356 pbDst += cbCopied;
357 cbToCopy -= cbCopied;
358 if (cbCopied != cbToCopy)
359 break;
360 }
361 } else
362# endif
363 {
364 while (cbToCopy > 0) {
365 size_t cbThisCopy = iov_iter_single_seg_count(pSrcIter);
366 if (cbThisCopy > 0) {
367 if (cbThisCopy > cbToCopy)
368 cbThisCopy = cbToCopy;
369 if (pSrcIter->type & ITER_KVEC)
370 memcpy(pbDst, (void *)pSrcIter->iov->iov_base + pSrcIter->iov_offset, cbThisCopy);
371 else if (copy_from_user(pbDst, pSrcIter->iov->iov_base + pSrcIter->iov_offset, cbThisCopy) != 0)
372 break;
373 pbDst += cbThisCopy;
374 cbToCopy -= cbThisCopy;
375 }
376 iov_iter_advance(pSrcIter, cbThisCopy);
377 }
378 }
379 return cbTotal - cbToCopy;
380}
381
382
383static size_t copy_to_iter(uint8_t const *pbSrc, size_t cbToCopy, struct iov_iter *pDstIter)
384{
385 size_t const cbTotal = cbToCopy;
386 Assert(iov_iter_count(pDstIter) >= cbToCopy);
387# if RTLNX_VER_MIN(3,16,0)
388 if (pDstIter->type & ITER_BVEC) {
389 while (cbToCopy > 0) {
390 size_t const offPage = (uintptr_t)pbSrc & PAGE_OFFSET_MASK;
391 size_t const cbThisCopy = RT_MIN(PAGE_SIZE - offPage, cbToCopy);
392 struct page *pPage = rtR0MemObjLinuxVirtToPage((void *)pbSrc);
393 size_t cbCopied = copy_page_to_iter(pPage, offPage, cbThisCopy, pDstIter);
394 AssertStmt(cbCopied <= cbThisCopy, cbCopied = cbThisCopy);
395 pbSrc += cbCopied;
396 cbToCopy -= cbCopied;
397 if (cbCopied != cbToCopy)
398 break;
399 }
400 } else
401# endif
402 {
403 while (cbToCopy > 0) {
404 size_t cbThisCopy = iov_iter_single_seg_count(pDstIter);
405 if (cbThisCopy > 0) {
406 if (cbThisCopy > cbToCopy)
407 cbThisCopy = cbToCopy;
408 if (pDstIter->type & ITER_KVEC)
409 memcpy((void *)pDstIter->iov->iov_base + pDstIter->iov_offset, pbSrc, cbThisCopy);
410 else if (copy_to_user(pDstIter->iov->iov_base + pDstIter->iov_offset, pbSrc, cbThisCopy) != 0) {
411 break;
412 }
413 pbSrc += cbThisCopy;
414 cbToCopy -= cbThisCopy;
415 }
416 iov_iter_advance(pDstIter, cbThisCopy);
417 }
418 }
419 return cbTotal - cbToCopy;
420}
421
422#endif /* 3.16.0 <= linux < 3.18.0 */
423
424
425
426/*********************************************************************************************************************************
427* Handle management *
428*********************************************************************************************************************************/
429
430/**
431 * Called when an inode is released to unlink all handles that might impossibly
432 * still be associated with it.
433 *
434 * @param pInodeInfo The inode which handles to drop.
435 */
436void vbsf_handle_drop_chain(struct vbsf_inode_info *pInodeInfo)
437{
438 struct vbsf_handle *pCur, *pNext;
439 unsigned long fSavedFlags;
440 SFLOGFLOW(("vbsf_handle_drop_chain: %p\n", pInodeInfo));
441 spin_lock_irqsave(&g_SfHandleLock, fSavedFlags);
442
443 RTListForEachSafe(&pInodeInfo->HandleList, pCur, pNext, struct vbsf_handle, Entry) {
444 AssertMsg( (pCur->fFlags & (VBSF_HANDLE_F_MAGIC_MASK | VBSF_HANDLE_F_ON_LIST))
445 == (VBSF_HANDLE_F_MAGIC | VBSF_HANDLE_F_ON_LIST), ("%p %#x\n", pCur, pCur->fFlags));
446 pCur->fFlags |= VBSF_HANDLE_F_ON_LIST;
447 RTListNodeRemove(&pCur->Entry);
448 }
449
450 spin_unlock_irqrestore(&g_SfHandleLock, fSavedFlags);
451}
452
453
454/**
455 * Locates a handle that matches all the flags in @a fFlags.
456 *
457 * @returns Pointer to handle on success (retained), use vbsf_handle_release() to
458 * release it. NULL if no suitable handle was found.
459 * @param pInodeInfo The inode info to search.
460 * @param fFlagsSet The flags that must be set.
461 * @param fFlagsClear The flags that must be clear.
462 */
463struct vbsf_handle *vbsf_handle_find(struct vbsf_inode_info *pInodeInfo, uint32_t fFlagsSet, uint32_t fFlagsClear)
464{
465 struct vbsf_handle *pCur;
466 unsigned long fSavedFlags;
467 spin_lock_irqsave(&g_SfHandleLock, fSavedFlags);
468
469 RTListForEach(&pInodeInfo->HandleList, pCur, struct vbsf_handle, Entry) {
470 AssertMsg( (pCur->fFlags & (VBSF_HANDLE_F_MAGIC_MASK | VBSF_HANDLE_F_ON_LIST))
471 == (VBSF_HANDLE_F_MAGIC | VBSF_HANDLE_F_ON_LIST), ("%p %#x\n", pCur, pCur->fFlags));
472 if ((pCur->fFlags & (fFlagsSet | fFlagsClear)) == fFlagsSet) {
473 uint32_t cRefs = ASMAtomicIncU32(&pCur->cRefs);
474 if (cRefs > 1) {
475 spin_unlock_irqrestore(&g_SfHandleLock, fSavedFlags);
476 SFLOGFLOW(("vbsf_handle_find: returns %p\n", pCur));
477 return pCur;
478 }
479 /* Oops, already being closed (safe as it's only ever increased here). */
480 ASMAtomicDecU32(&pCur->cRefs);
481 }
482 }
483
484 spin_unlock_irqrestore(&g_SfHandleLock, fSavedFlags);
485 SFLOGFLOW(("vbsf_handle_find: returns NULL!\n"));
486 return NULL;
487}
488
489
490/**
491 * Slow worker for vbsf_handle_release() that does the freeing.
492 *
493 * @returns 0 (ref count).
494 * @param pHandle The handle to release.
495 * @param pSuperInfo The info structure for the shared folder associated with
496 * the handle.
497 * @param pszCaller The caller name (for logging failures).
498 */
499uint32_t vbsf_handle_release_slow(struct vbsf_handle *pHandle, struct vbsf_super_info *pSuperInfo, const char *pszCaller)
500{
501 int rc;
502 unsigned long fSavedFlags;
503
504 SFLOGFLOW(("vbsf_handle_release_slow: %p (%s)\n", pHandle, pszCaller));
505
506 /*
507 * Remove from the list.
508 */
509 spin_lock_irqsave(&g_SfHandleLock, fSavedFlags);
510
511 AssertMsg((pHandle->fFlags & VBSF_HANDLE_F_MAGIC_MASK) == VBSF_HANDLE_F_MAGIC, ("%p %#x\n", pHandle, pHandle->fFlags));
512 Assert(pHandle->pInodeInfo);
513 Assert(pHandle->pInodeInfo && pHandle->pInodeInfo->u32Magic == SF_INODE_INFO_MAGIC);
514
515 if (pHandle->fFlags & VBSF_HANDLE_F_ON_LIST) {
516 pHandle->fFlags &= ~VBSF_HANDLE_F_ON_LIST;
517 RTListNodeRemove(&pHandle->Entry);
518 }
519
520 spin_unlock_irqrestore(&g_SfHandleLock, fSavedFlags);
521
522 /*
523 * Actually destroy it.
524 */
525 rc = VbglR0SfHostReqCloseSimple(pSuperInfo->map.root, pHandle->hHost);
526 if (RT_FAILURE(rc))
527 LogFunc(("Caller %s: VbglR0SfHostReqCloseSimple %#RX64 failed with rc=%Rrc\n", pszCaller, pHandle->hHost, rc));
528 pHandle->hHost = SHFL_HANDLE_NIL;
529 pHandle->fFlags = VBSF_HANDLE_F_MAGIC_DEAD;
530 kfree(pHandle);
531 return 0;
532}
533
534
535/**
536 * Appends a handle to a handle list.
537 *
538 * @param pInodeInfo The inode to add it to.
539 * @param pHandle The handle to add.
540 */
541void vbsf_handle_append(struct vbsf_inode_info *pInodeInfo, struct vbsf_handle *pHandle)
542{
543#ifdef VBOX_STRICT
544 struct vbsf_handle *pCur;
545#endif
546 unsigned long fSavedFlags;
547
548 SFLOGFLOW(("vbsf_handle_append: %p (to %p)\n", pHandle, pInodeInfo));
549 AssertMsg((pHandle->fFlags & (VBSF_HANDLE_F_MAGIC_MASK | VBSF_HANDLE_F_ON_LIST)) == VBSF_HANDLE_F_MAGIC,
550 ("%p %#x\n", pHandle, pHandle->fFlags));
551 Assert(pInodeInfo->u32Magic == SF_INODE_INFO_MAGIC);
552
553 spin_lock_irqsave(&g_SfHandleLock, fSavedFlags);
554
555 AssertMsg((pHandle->fFlags & (VBSF_HANDLE_F_MAGIC_MASK | VBSF_HANDLE_F_ON_LIST)) == VBSF_HANDLE_F_MAGIC,
556 ("%p %#x\n", pHandle, pHandle->fFlags));
557#ifdef VBOX_STRICT
558 RTListForEach(&pInodeInfo->HandleList, pCur, struct vbsf_handle, Entry) {
559 Assert(pCur != pHandle);
560 AssertMsg( (pCur->fFlags & (VBSF_HANDLE_F_MAGIC_MASK | VBSF_HANDLE_F_ON_LIST))
561 == (VBSF_HANDLE_F_MAGIC | VBSF_HANDLE_F_ON_LIST), ("%p %#x\n", pCur, pCur->fFlags));
562 }
563 pHandle->pInodeInfo = pInodeInfo;
564#endif
565
566 pHandle->fFlags |= VBSF_HANDLE_F_ON_LIST;
567 RTListAppend(&pInodeInfo->HandleList, &pHandle->Entry);
568
569 spin_unlock_irqrestore(&g_SfHandleLock, fSavedFlags);
570}
571
572
573
574/*********************************************************************************************************************************
575* Misc *
576*********************************************************************************************************************************/
577
578#if RTLNX_VER_MAX(2,6,6)
579/** Any writable mappings? */
580DECLINLINE(bool) mapping_writably_mapped(struct address_space const *mapping)
581{
582# if RTLNX_VER_MIN(2,5,6)
583 return !list_empty(&mapping->i_mmap_shared);
584# else
585 return mapping->i_mmap_shared != NULL;
586# endif
587}
588#endif
589
590
591#if RTLNX_VER_MAX(2,5,12)
592/** Missing in 2.4.x, so just stub it for now. */
593DECLINLINE(bool) PageWriteback(struct page const *page)
594{
595 return false;
596}
597#endif
598
599
600/**
601 * Helper for deciding wheter we should do a read via the page cache or not.
602 *
603 * By default we will only use the page cache if there is a writable memory
604 * mapping of the file with a chance that it may have modified any of the pages
605 * already.
606 */
607DECLINLINE(bool) vbsf_should_use_cached_read(struct file *file, struct address_space *mapping, struct vbsf_super_info *pSuperInfo)
608{
609 if ( (file->f_flags & O_DIRECT)
610 || pSuperInfo->enmCacheMode == kVbsfCacheMode_None)
611 return false;
612 if ( pSuperInfo->enmCacheMode == kVbsfCacheMode_Read
613 || pSuperInfo->enmCacheMode == kVbsfCacheMode_ReadWrite)
614 return true;
615 Assert(pSuperInfo->enmCacheMode == kVbsfCacheMode_Strict);
616 return mapping
617 && mapping->nrpages > 0
618 && mapping_writably_mapped(mapping);
619}
620
621
622
623/*********************************************************************************************************************************
624* Pipe / splice stuff mainly for 2.6.17 >= linux < 2.6.31 (where no fallbacks were available) *
625*********************************************************************************************************************************/
626
627#if RTLNX_VER_RANGE(2,6,17, 3,16,0)
628
629# if RTLNX_VER_MAX(2,6,30)
630# define LOCK_PIPE(a_pPipe) do { if ((a_pPipe)->inode) mutex_lock(&(a_pPipe)->inode->i_mutex); } while (0)
631# define UNLOCK_PIPE(a_pPipe) do { if ((a_pPipe)->inode) mutex_unlock(&(a_pPipe)->inode->i_mutex); } while (0)
632# else
633# define LOCK_PIPE(a_pPipe) pipe_lock(a_pPipe)
634# define UNLOCK_PIPE(a_pPipe) pipe_unlock(a_pPipe)
635# endif
636
637
638/** Waits for the pipe buffer status to change. */
639static void vbsf_wait_pipe(struct pipe_inode_info *pPipe)
640{
641 DEFINE_WAIT(WaitStuff);
642# ifdef TASK_NONINTERACTIVE
643 prepare_to_wait(&pPipe->wait, &WaitStuff, TASK_INTERRUPTIBLE | TASK_NONINTERACTIVE);
644# else
645 prepare_to_wait(&pPipe->wait, &WaitStuff, TASK_INTERRUPTIBLE);
646# endif
647 UNLOCK_PIPE(pPipe);
648
649 schedule();
650
651 finish_wait(&pPipe->wait, &WaitStuff);
652 LOCK_PIPE(pPipe);
653}
654
655
656/** Worker for vbsf_feed_pages_to_pipe that wakes up readers. */
657static void vbsf_wake_up_pipe(struct pipe_inode_info *pPipe, bool fReaders)
658{
659 smp_mb();
660 if (waitqueue_active(&pPipe->wait))
661 wake_up_interruptible_sync(&pPipe->wait);
662 if (fReaders)
663 kill_fasync(&pPipe->fasync_readers, SIGIO, POLL_IN);
664 else
665 kill_fasync(&pPipe->fasync_writers, SIGIO, POLL_OUT);
666}
667
668#endif
669#if RTLNX_VER_RANGE(2,6,17, 2,6,31)
670
671/** Verify pipe buffer content (needed for page-cache to ensure idle page). */
672static int vbsf_pipe_buf_confirm(struct pipe_inode_info *pPipe, struct pipe_buffer *pPipeBuf)
673{
674 /*SFLOG3(("vbsf_pipe_buf_confirm: %p\n", pPipeBuf));*/
675 return 0;
676}
677
678
679/** Maps the buffer page. */
680static void *vbsf_pipe_buf_map(struct pipe_inode_info *pPipe, struct pipe_buffer *pPipeBuf, int atomic)
681{
682 void *pvRet;
683 if (!atomic)
684 pvRet = kmap(pPipeBuf->page);
685 else {
686 pPipeBuf->flags |= PIPE_BUF_FLAG_ATOMIC;
687 pvRet = kmap_atomic(pPipeBuf->page, KM_USER0);
688 }
689 /*SFLOG3(("vbsf_pipe_buf_map: %p -> %p\n", pPipeBuf, pvRet));*/
690 return pvRet;
691}
692
693
694/** Unmaps the buffer page. */
695static void vbsf_pipe_buf_unmap(struct pipe_inode_info *pPipe, struct pipe_buffer *pPipeBuf, void *pvMapping)
696{
697 /*SFLOG3(("vbsf_pipe_buf_unmap: %p/%p\n", pPipeBuf, pvMapping)); */
698 if (!(pPipeBuf->flags & PIPE_BUF_FLAG_ATOMIC))
699 kunmap(pPipeBuf->page);
700 else {
701 pPipeBuf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
702 kunmap_atomic(pvMapping, KM_USER0);
703 }
704}
705
706
707/** Gets a reference to the page. */
708static void vbsf_pipe_buf_get(struct pipe_inode_info *pPipe, struct pipe_buffer *pPipeBuf)
709{
710 page_cache_get(pPipeBuf->page);
711 /*SFLOG3(("vbsf_pipe_buf_get: %p (return count=%d)\n", pPipeBuf, page_count(pPipeBuf->page)));*/
712}
713
714
715/** Release the buffer page (counter to vbsf_pipe_buf_get). */
716static void vbsf_pipe_buf_release(struct pipe_inode_info *pPipe, struct pipe_buffer *pPipeBuf)
717{
718 /*SFLOG3(("vbsf_pipe_buf_release: %p (incoming count=%d)\n", pPipeBuf, page_count(pPipeBuf->page)));*/
719 page_cache_release(pPipeBuf->page);
720}
721
722
723/** Attempt to steal the page.
724 * @returns 0 success, 1 on failure. */
725static int vbsf_pipe_buf_steal(struct pipe_inode_info *pPipe, struct pipe_buffer *pPipeBuf)
726{
727 if (page_count(pPipeBuf->page) == 1) {
728 lock_page(pPipeBuf->page);
729 SFLOG3(("vbsf_pipe_buf_steal: %p -> 0\n", pPipeBuf));
730 return 0;
731 }
732 SFLOG3(("vbsf_pipe_buf_steal: %p -> 1\n", pPipeBuf));
733 return 1;
734}
735
736
737/**
738 * Pipe buffer operations for used by vbsf_feed_pages_to_pipe.
739 */
740static struct pipe_buf_operations vbsf_pipe_buf_ops = {
741 .can_merge = 0,
742# if RTLNX_VER_MIN(2,6,23)
743 .confirm = vbsf_pipe_buf_confirm,
744# else
745 .pin = vbsf_pipe_buf_confirm,
746# endif
747 .map = vbsf_pipe_buf_map,
748 .unmap = vbsf_pipe_buf_unmap,
749 .get = vbsf_pipe_buf_get,
750 .release = vbsf_pipe_buf_release,
751 .steal = vbsf_pipe_buf_steal,
752};
753
754
755/**
756 * Feeds the pages to the pipe.
757 *
758 * Pages given to the pipe are set to NULL in papPages.
759 */
760static ssize_t vbsf_feed_pages_to_pipe(struct pipe_inode_info *pPipe, struct page **papPages, size_t cPages, uint32_t offPg0,
761 uint32_t cbActual, unsigned fFlags)
762{
763 ssize_t cbRet = 0;
764 size_t iPage = 0;
765 bool fNeedWakeUp = false;
766
767 LOCK_PIPE(pPipe);
768 for (;;) {
769 if ( pPipe->readers > 0
770 && pPipe->nrbufs < PIPE_BUFFERS) {
771 struct pipe_buffer *pPipeBuf = &pPipe->bufs[(pPipe->curbuf + pPipe->nrbufs) % PIPE_BUFFERS];
772 uint32_t const cbThisPage = RT_MIN(cbActual, PAGE_SIZE - offPg0);
773 pPipeBuf->len = cbThisPage;
774 pPipeBuf->offset = offPg0;
775# if RTLNX_VER_MIN(2,6,23)
776 pPipeBuf->private = 0;
777# endif
778 pPipeBuf->ops = &vbsf_pipe_buf_ops;
779 pPipeBuf->flags = fFlags & SPLICE_F_GIFT ? PIPE_BUF_FLAG_GIFT : 0;
780 pPipeBuf->page = papPages[iPage];
781
782 papPages[iPage++] = NULL;
783 pPipe->nrbufs++;
784 fNeedWakeUp |= pPipe->inode != NULL;
785 offPg0 = 0;
786 cbRet += cbThisPage;
787
788 /* done? */
789 cbActual -= cbThisPage;
790 if (!cbActual)
791 break;
792 } else if (pPipe->readers == 0) {
793 SFLOGFLOW(("vbsf_feed_pages_to_pipe: no readers!\n"));
794 send_sig(SIGPIPE, current, 0);
795 if (cbRet == 0)
796 cbRet = -EPIPE;
797 break;
798 } else if (fFlags & SPLICE_F_NONBLOCK) {
799 if (cbRet == 0)
800 cbRet = -EAGAIN;
801 break;
802 } else if (signal_pending(current)) {
803 if (cbRet == 0)
804 cbRet = -ERESTARTSYS;
805 SFLOGFLOW(("vbsf_feed_pages_to_pipe: pending signal! (%zd)\n", cbRet));
806 break;
807 } else {
808 if (fNeedWakeUp) {
809 vbsf_wake_up_pipe(pPipe, true /*fReaders*/);
810 fNeedWakeUp = 0;
811 }
812 pPipe->waiting_writers++;
813 vbsf_wait_pipe(pPipe);
814 pPipe->waiting_writers--;
815 }
816 }
817 UNLOCK_PIPE(pPipe);
818
819 if (fNeedWakeUp)
820 vbsf_wake_up_pipe(pPipe, true /*fReaders*/);
821
822 return cbRet;
823}
824
825
826/**
827 * For splicing from a file to a pipe.
828 */
829static ssize_t vbsf_splice_read(struct file *file, loff_t *poffset, struct pipe_inode_info *pipe, size_t len, unsigned int flags)
830{
831 struct inode *inode = VBSF_GET_F_DENTRY(file)->d_inode;
832 struct vbsf_super_info *pSuperInfo = VBSF_GET_SUPER_INFO(inode->i_sb);
833 ssize_t cbRet;
834
835 SFLOGFLOW(("vbsf_splice_read: file=%p poffset=%p{%#RX64} pipe=%p len=%#zx flags=%#x\n", file, poffset, *poffset, pipe, len, flags));
836 if (vbsf_should_use_cached_read(file, inode->i_mapping, pSuperInfo)) {
837 cbRet = generic_file_splice_read(file, poffset, pipe, len, flags);
838 } else {
839 /*
840 * Create a read request.
841 */
842 loff_t offFile = *poffset;
843 size_t cPages = RT_MIN(RT_ALIGN_Z((offFile & ~PAGE_CACHE_MASK) + len, PAGE_CACHE_SIZE) >> PAGE_CACHE_SHIFT,
844 PIPE_BUFFERS);
845 VBOXSFREADPGLSTREQ *pReq = (VBOXSFREADPGLSTREQ *)VbglR0PhysHeapAlloc(RT_UOFFSETOF_DYN(VBOXSFREADPGLSTREQ,
846 PgLst.aPages[cPages]));
847 if (pReq) {
848 /*
849 * Allocate pages.
850 */
851 struct page *apPages[PIPE_BUFFERS];
852 size_t i;
853 pReq->PgLst.offFirstPage = (uint16_t)offFile & (uint16_t)PAGE_OFFSET_MASK;
854 cbRet = 0;
855 for (i = 0; i < cPages; i++) {
856 struct page *pPage;
857 apPages[i] = pPage = alloc_page(GFP_USER);
858 if (pPage) {
859 pReq->PgLst.aPages[i] = page_to_phys(pPage);
860# ifdef VBOX_STRICT
861 ASMMemFill32(kmap(pPage), PAGE_SIZE, UINT32_C(0xdeadbeef));
862 kunmap(pPage);
863# endif
864 } else {
865 cbRet = -ENOMEM;
866 break;
867 }
868 }
869 if (cbRet == 0) {
870 /*
871 * Do the reading.
872 */
873 uint32_t const cbToRead = RT_MIN((cPages << PAGE_SHIFT) - (offFile & PAGE_OFFSET_MASK), len);
874 struct vbsf_reg_info *sf_r = (struct vbsf_reg_info *)file->private_data;
875 int vrc = VbglR0SfHostReqReadPgLst(pSuperInfo->map.root, pReq, sf_r->Handle.hHost, offFile, cbToRead, cPages);
876 if (RT_SUCCESS(vrc)) {
877 /*
878 * Get the number of bytes read, jettison the request
879 * and, in case of EOF, any unnecessary pages.
880 */
881 uint32_t cbActual = pReq->Parms.cb32Read.u.value32;
882 AssertStmt(cbActual <= cbToRead, cbActual = cbToRead);
883 SFLOG2(("vbsf_splice_read: read -> %#x bytes @ %#RX64\n", cbActual, offFile));
884
885 VbglR0PhysHeapFree(pReq);
886 pReq = NULL;
887
888 /*
889 * Now, feed it to the pipe thingy.
890 * This will take ownership of the all pages no matter what happens.
891 */
892 cbRet = vbsf_feed_pages_to_pipe(pipe, apPages, cPages, offFile & PAGE_OFFSET_MASK, cbActual, flags);
893 if (cbRet > 0)
894 *poffset = offFile + cbRet;
895 } else {
896 cbRet = -RTErrConvertToErrno(vrc);
897 SFLOGFLOW(("vbsf_splice_read: Read failed: %Rrc -> %zd\n", vrc, cbRet));
898 }
899 i = cPages;
900 }
901
902 while (i-- > 0)
903 if (apPages[i])
904 __free_pages(apPages[i], 0);
905 if (pReq)
906 VbglR0PhysHeapFree(pReq);
907 } else {
908 cbRet = -ENOMEM;
909 }
910 }
911 SFLOGFLOW(("vbsf_splice_read: returns %zd (%#zx), *poffset=%#RX64\n", cbRet, cbRet, *poffset));
912 return cbRet;
913}
914
915#endif /* 2.6.17 <= LINUX_VERSION_CODE < 2.6.31 */
916#if RTLNX_VER_RANGE(2,6,17, 3,16,0)
917
918/**
919 * For splicing from a pipe to a file.
920 *
921 * Since we can combine buffers and request allocations, this should be faster
922 * than the default implementation.
923 */
924static ssize_t vbsf_splice_write(struct pipe_inode_info *pPipe, struct file *file, loff_t *poffset, size_t len, unsigned int flags)
925{
926 struct inode *inode = VBSF_GET_F_DENTRY(file)->d_inode;
927 struct vbsf_super_info *pSuperInfo = VBSF_GET_SUPER_INFO(inode->i_sb);
928 ssize_t cbRet;
929
930 SFLOGFLOW(("vbsf_splice_write: pPipe=%p file=%p poffset=%p{%#RX64} len=%#zx flags=%#x\n", pPipe, file, poffset, *poffset, len, flags));
931 /** @todo later if (false) {
932 cbRet = generic_file_splice_write(pPipe, file, poffset, len, flags);
933 } else */ {
934 /*
935 * Prepare a write request.
936 */
937# ifdef PIPE_BUFFERS
938 uint32_t const cMaxPages = RT_MIN(PIPE_BUFFERS, RT_ALIGN_Z(len, PAGE_SIZE) >> PAGE_SHIFT);
939# else
940 uint32_t const cMaxPages = RT_MIN(RT_MAX(RT_MIN(pPipe->buffers, 256), PIPE_DEF_BUFFERS),
941 RT_ALIGN_Z(len, PAGE_SIZE) >> PAGE_SHIFT);
942# endif
943 VBOXSFWRITEPGLSTREQ *pReq = (VBOXSFWRITEPGLSTREQ *)VbglR0PhysHeapAlloc(RT_UOFFSETOF_DYN(VBOXSFREADPGLSTREQ,
944 PgLst.aPages[cMaxPages]));
945 if (pReq) {
946 /*
947 * Feed from the pipe.
948 */
949 struct vbsf_reg_info *sf_r = (struct vbsf_reg_info *)file->private_data;
950 struct address_space *mapping = inode->i_mapping;
951 loff_t offFile = *poffset;
952 bool fNeedWakeUp = false;
953 cbRet = 0;
954
955 LOCK_PIPE(pPipe);
956
957 for (;;) {
958 unsigned cBufs = pPipe->nrbufs;
959 /*SFLOG2(("vbsf_splice_write: nrbufs=%#x curbuf=%#x\n", cBufs, pPipe->curbuf));*/
960 if (cBufs) {
961 /*
962 * There is data available. Write it to the file.
963 */
964 int vrc;
965 struct pipe_buffer *pPipeBuf = &pPipe->bufs[pPipe->curbuf];
966 uint32_t cPagesToWrite = 1;
967 uint32_t cbToWrite = pPipeBuf->len;
968
969 Assert(pPipeBuf->offset < PAGE_SIZE);
970 Assert(pPipeBuf->offset + pPipeBuf->len <= PAGE_SIZE);
971
972 pReq->PgLst.offFirstPage = pPipeBuf->offset & PAGE_OFFSET;
973 pReq->PgLst.aPages[0] = page_to_phys(pPipeBuf->page);
974
975 /* Add any adjacent page buffers: */
976 while ( cPagesToWrite < cBufs
977 && cPagesToWrite < cMaxPages
978 && ((pReq->PgLst.offFirstPage + cbToWrite) & PAGE_OFFSET_MASK) == 0) {
979# ifdef PIPE_BUFFERS
980 struct pipe_buffer *pPipeBuf2 = &pPipe->bufs[(pPipe->curbuf + cPagesToWrite) % PIPE_BUFFERS];
981# else
982 struct pipe_buffer *pPipeBuf2 = &pPipe->bufs[(pPipe->curbuf + cPagesToWrite) % pPipe->buffers];
983# endif
984 Assert(pPipeBuf2->len <= PAGE_SIZE);
985 Assert(pPipeBuf2->offset < PAGE_SIZE);
986 if (pPipeBuf2->offset != 0)
987 break;
988 pReq->PgLst.aPages[cPagesToWrite] = page_to_phys(pPipeBuf2->page);
989 cbToWrite += pPipeBuf2->len;
990 cPagesToWrite += 1;
991 }
992
993 /* Check that we don't have signals pending before we issue the write, as
994 we'll only end up having to cancel the HGCM request 99% of the time: */
995 if (!signal_pending(current)) {
996 struct vbsf_inode_info *sf_i = VBSF_GET_INODE_INFO(inode);
997 vrc = VbglR0SfHostReqWritePgLst(pSuperInfo->map.root, pReq, sf_r->Handle.hHost, offFile,
998 cbToWrite, cPagesToWrite);
999 sf_i->ModificationTimeAtOurLastWrite = sf_i->ModificationTime;
1000 } else
1001 vrc = VERR_INTERRUPTED;
1002 if (RT_SUCCESS(vrc)) {
1003 /*
1004 * Get the number of bytes actually written, update file position
1005 * and return value, and advance the pipe buffer.
1006 */
1007 uint32_t cbActual = pReq->Parms.cb32Write.u.value32;
1008 AssertStmt(cbActual <= cbToWrite, cbActual = cbToWrite);
1009 SFLOG2(("vbsf_splice_write: write -> %#x bytes @ %#RX64\n", cbActual, offFile));
1010
1011 cbRet += cbActual;
1012
1013 while (cbActual > 0) {
1014 uint32_t cbAdvance = RT_MIN(pPipeBuf->len, cbActual);
1015
1016 vbsf_reg_write_sync_page_cache(mapping, offFile, cbAdvance, NULL,
1017 &pPipeBuf->page, pPipeBuf->offset, 1);
1018
1019 offFile += cbAdvance;
1020 cbActual -= cbAdvance;
1021 pPipeBuf->offset += cbAdvance;
1022 pPipeBuf->len -= cbAdvance;
1023
1024 if (!pPipeBuf->len) {
1025 struct pipe_buf_operations const *pOps = pPipeBuf->ops;
1026 pPipeBuf->ops = NULL;
1027 pOps->release(pPipe, pPipeBuf);
1028
1029# ifdef PIPE_BUFFERS
1030 pPipe->curbuf = (pPipe->curbuf + 1) % PIPE_BUFFERS;
1031# else
1032 pPipe->curbuf = (pPipe->curbuf + 1) % pPipe->buffers;
1033# endif
1034 pPipe->nrbufs -= 1;
1035 pPipeBuf = &pPipe->bufs[pPipe->curbuf];
1036
1037# if RTLNX_VER_MAX(2,6,30)
1038 fNeedWakeUp |= pPipe->inode != NULL;
1039# else
1040 fNeedWakeUp = true;
1041# endif
1042 } else {
1043 Assert(cbActual == 0);
1044 break;
1045 }
1046 }
1047
1048 *poffset = offFile;
1049 } else {
1050 if (cbRet == 0)
1051 cbRet = vrc == VERR_INTERRUPTED ? -ERESTARTSYS : -RTErrConvertToErrno(vrc);
1052 SFLOGFLOW(("vbsf_splice_write: Write failed: %Rrc -> %zd (cbRet=%#zx)\n",
1053 vrc, -RTErrConvertToErrno(vrc), cbRet));
1054 break;
1055 }
1056 } else {
1057 /*
1058 * Wait for data to become available, if there is chance that'll happen.
1059 */
1060 /* Quit if there are no writers (think EOF): */
1061 if (pPipe->writers == 0) {
1062 SFLOGFLOW(("vbsf_splice_write: No buffers. No writers. The show is done!\n"));
1063 break;
1064 }
1065
1066 /* Quit if if we've written some and no writers waiting on the lock: */
1067 if (cbRet > 0 && pPipe->waiting_writers == 0) {
1068 SFLOGFLOW(("vbsf_splice_write: No waiting writers, returning what we've got.\n"));
1069 break;
1070 }
1071
1072 /* Quit with EAGAIN if non-blocking: */
1073 if (flags & SPLICE_F_NONBLOCK) {
1074 if (cbRet == 0)
1075 cbRet = -EAGAIN;
1076 break;
1077 }
1078
1079 /* Quit if we've got pending signals: */
1080 if (signal_pending(current)) {
1081 if (cbRet == 0)
1082 cbRet = -ERESTARTSYS;
1083 SFLOGFLOW(("vbsf_splice_write: pending signal! (%zd)\n", cbRet));
1084 break;
1085 }
1086
1087 /* Wake up writers before we start waiting: */
1088 if (fNeedWakeUp) {
1089 vbsf_wake_up_pipe(pPipe, false /*fReaders*/);
1090 fNeedWakeUp = false;
1091 }
1092 vbsf_wait_pipe(pPipe);
1093 }
1094 } /* feed loop */
1095
1096 if (fNeedWakeUp)
1097 vbsf_wake_up_pipe(pPipe, false /*fReaders*/);
1098
1099 UNLOCK_PIPE(pPipe);
1100
1101 VbglR0PhysHeapFree(pReq);
1102 } else {
1103 cbRet = -ENOMEM;
1104 }
1105 }
1106 SFLOGFLOW(("vbsf_splice_write: returns %zd (%#zx), *poffset=%#RX64\n", cbRet, cbRet, *poffset));
1107 return cbRet;
1108}
1109
1110#endif /* 2.6.17 <= LINUX_VERSION_CODE < 3.16.0 */
1111
1112#if RTLNX_VER_RANGE(2,5,30, 2,6,23)
1113/**
1114 * Our own senfile implementation that does not go via the page cache like
1115 * generic_file_sendfile() does.
1116 */
1117static ssize_t vbsf_reg_sendfile(struct file *pFile, loff_t *poffFile, size_t cbToSend, read_actor_t pfnActor,
1118# if RTLNX_VER_MIN(2,6,8)
1119 void *pvUser
1120# else
1121 void __user *pvUser
1122# endif
1123 )
1124{
1125 struct inode *inode = VBSF_GET_F_DENTRY(pFile)->d_inode;
1126 struct vbsf_super_info *pSuperInfo = VBSF_GET_SUPER_INFO(inode->i_sb);
1127 ssize_t cbRet;
1128 SFLOGFLOW(("vbsf_reg_sendfile: pFile=%p poffFile=%p{%#RX64} cbToSend=%#zx pfnActor=%p pvUser=%p\n",
1129 pFile, poffFile, poffFile ? *poffFile : 0, cbToSend, pfnActor, pvUser));
1130 Assert(pSuperInfo);
1131
1132 /*
1133 * Return immediately if asked to send nothing.
1134 */
1135 if (cbToSend == 0)
1136 return 0;
1137
1138 /*
1139 * Like for vbsf_reg_read() and vbsf_reg_read_iter(), we allow going via
1140 * the page cache in some cases or configs.
1141 */
1142 if (vbsf_should_use_cached_read(pFile, inode->i_mapping, pSuperInfo)) {
1143 cbRet = generic_file_sendfile(pFile, poffFile, cbToSend, pfnActor, pvUser);
1144 SFLOGFLOW(("vbsf_reg_sendfile: returns %#zx *poffFile=%#RX64 [generic_file_sendfile]\n", cbRet, poffFile ? *poffFile : UINT64_MAX));
1145 } else {
1146 /*
1147 * Allocate a request and a bunch of pages for reading from the file.
1148 */
1149 struct page *apPages[16];
1150 loff_t offFile = poffFile ? *poffFile : 0;
1151 size_t const cPages = cbToSend + ((size_t)offFile & PAGE_OFFSET_MASK) >= RT_ELEMENTS(apPages) * PAGE_SIZE
1152 ? RT_ELEMENTS(apPages)
1153 : RT_ALIGN_Z(cbToSend + ((size_t)offFile & PAGE_OFFSET_MASK), PAGE_SIZE) >> PAGE_SHIFT;
1154 size_t iPage;
1155 VBOXSFREADPGLSTREQ *pReq = (VBOXSFREADPGLSTREQ *)VbglR0PhysHeapAlloc(RT_UOFFSETOF_DYN(VBOXSFREADPGLSTREQ,
1156 PgLst.aPages[cPages]));
1157 if (pReq) {
1158 Assert(cPages > 0);
1159 cbRet = 0;
1160 for (iPage = 0; iPage < cPages; iPage++) {
1161 struct page *pPage;
1162 apPages[iPage] = pPage = alloc_page(GFP_USER);
1163 if (pPage) {
1164 Assert(page_count(pPage) == 1);
1165 pReq->PgLst.aPages[iPage] = page_to_phys(pPage);
1166 } else {
1167 while (iPage-- > 0)
1168 vbsf_put_page(apPages[iPage]);
1169 cbRet = -ENOMEM;
1170 break;
1171 }
1172 }
1173 if (cbRet == 0) {
1174 /*
1175 * Do the job.
1176 */
1177 struct vbsf_reg_info *sf_r = (struct vbsf_reg_info *)pFile->private_data;
1178 read_descriptor_t RdDesc;
1179 RdDesc.count = cbToSend;
1180# if RTLNX_VER_MIN(2,6,8)
1181 RdDesc.arg.data = pvUser;
1182# else
1183 RdDesc.buf = pvUser;
1184# endif
1185 RdDesc.written = 0;
1186 RdDesc.error = 0;
1187
1188 Assert(sf_r);
1189 Assert((sf_r->Handle.fFlags & VBSF_HANDLE_F_MAGIC_MASK) == VBSF_HANDLE_F_MAGIC);
1190
1191 while (cbToSend > 0) {
1192 /*
1193 * Read another chunk. For paranoid reasons, we keep data where the page cache
1194 * would keep it, i.e. page offset bits corresponds to the file offset bits.
1195 */
1196 uint32_t const offPg0 = (uint32_t)offFile & (uint32_t)PAGE_OFFSET_MASK;
1197 uint32_t const cbToRead = RT_MIN((cPages << PAGE_SHIFT) - offPg0, cbToSend);
1198 uint32_t const cPagesToRead = RT_ALIGN_Z(cbToRead + offPg0, PAGE_SIZE) >> PAGE_SHIFT;
1199 int vrc;
1200 pReq->PgLst.offFirstPage = (uint16_t)offPg0;
1201 if (!signal_pending(current))
1202 vrc = VbglR0SfHostReqReadPgLst(pSuperInfo->map.root, pReq, sf_r->Handle.hHost, offFile,
1203 cbToRead, cPagesToRead);
1204 else
1205 vrc = VERR_INTERRUPTED;
1206 if (RT_SUCCESS(vrc)) {
1207 /*
1208 * Pass what we read to the actor.
1209 */
1210 uint32_t off = offPg0;
1211 uint32_t cbActual = pReq->Parms.cb32Read.u.value32;
1212 bool const fIsEof = cbActual < cbToRead;
1213 AssertStmt(cbActual <= cbToRead, cbActual = cbToRead);
1214 SFLOG3(("vbsf_reg_sendfile: Read %#x bytes (offPg0=%#x), wanted %#x ...\n", cbActual, offPg0, cbToRead));
1215
1216 iPage = 0;
1217 while (cbActual > 0) {
1218 uint32_t const cbPage = RT_MIN(cbActual, PAGE_SIZE - off);
1219 int const cbRetActor = pfnActor(&RdDesc, apPages[iPage], off, cbPage);
1220 Assert(cbRetActor >= 0); /* Returns zero on failure, with RdDesc.error holding the status code. */
1221
1222 AssertMsg(iPage < cPages && iPage < cPagesToRead, ("iPage=%#x cPages=%#x cPagesToRead=%#x\n", iPage, cPages, cPagesToRead));
1223
1224 offFile += cbRetActor;
1225 if ((uint32_t)cbRetActor == cbPage && RdDesc.count > 0) {
1226 cbActual -= cbPage;
1227 cbToSend -= cbPage;
1228 iPage++;
1229 } else {
1230 SFLOG3(("vbsf_reg_sendfile: cbRetActor=%#x (%d) cbPage=%#x RdDesc{count=%#lx error=%d} iPage=%#x/%#x/%#x cbToSend=%#zx\n",
1231 cbRetActor, cbRetActor, cbPage, RdDesc.count, RdDesc.error, iPage, cPagesToRead, cPages, cbToSend));
1232 vrc = VERR_CALLBACK_RETURN;
1233 break;
1234 }
1235 off = 0;
1236 }
1237
1238 /*
1239 * Are we done yet?
1240 */
1241 if (RT_FAILURE_NP(vrc) || cbToSend == 0 || RdDesc.error != 0 || fIsEof) {
1242 break;
1243 }
1244
1245 /*
1246 * Replace pages held by the actor.
1247 */
1248 vrc = VINF_SUCCESS;
1249 for (iPage = 0; iPage < cPages; iPage++) {
1250 struct page *pPage = apPages[iPage];
1251 if (page_count(pPage) != 1) {
1252 struct page *pNewPage = alloc_page(GFP_USER);
1253 if (pNewPage) {
1254 SFLOGFLOW(("vbsf_reg_sendfile: Replacing page #%x: %p -> %p\n", iPage, pPage, pNewPage));
1255 vbsf_put_page(pPage);
1256 apPages[iPage] = pNewPage;
1257 } else {
1258 SFLOGFLOW(("vbsf_reg_sendfile: Failed to allocate a replacement page.\n"));
1259 vrc = VERR_NO_MEMORY;
1260 break;
1261 }
1262 }
1263 }
1264 if (RT_FAILURE(vrc))
1265 break; /* RdDesc.written should be non-zero, so don't bother with setting error. */
1266 } else {
1267 RdDesc.error = vrc == VERR_INTERRUPTED ? -ERESTARTSYS : -RTErrConvertToErrno(vrc);
1268 SFLOGFLOW(("vbsf_reg_sendfile: Read failed: %Rrc -> %zd (RdDesc.error=%#d)\n",
1269 vrc, -RTErrConvertToErrno(vrc), RdDesc.error));
1270 break;
1271 }
1272 }
1273
1274 /*
1275 * Free memory.
1276 */
1277 for (iPage = 0; iPage < cPages; iPage++)
1278 vbsf_put_page(apPages[iPage]);
1279
1280 /*
1281 * Set the return values.
1282 */
1283 if (RdDesc.written) {
1284 cbRet = RdDesc.written;
1285 if (poffFile)
1286 *poffFile = offFile;
1287 } else {
1288 cbRet = RdDesc.error;
1289 }
1290 }
1291 VbglR0PhysHeapFree(pReq);
1292 } else {
1293 cbRet = -ENOMEM;
1294 }
1295 SFLOGFLOW(("vbsf_reg_sendfile: returns %#zx offFile=%#RX64\n", cbRet, offFile));
1296 }
1297 return cbRet;
1298}
1299#endif /* 2.5.30 <= LINUX_VERSION_CODE < 2.6.23 */
1300
1301
1302/*********************************************************************************************************************************
1303* File operations on regular files *
1304*********************************************************************************************************************************/
1305
1306/** Wrapper around put_page / page_cache_release. */
1307DECLINLINE(void) vbsf_put_page(struct page *pPage)
1308{
1309#if RTLNX_VER_MIN(4,6,0)
1310 put_page(pPage);
1311#else
1312 page_cache_release(pPage);
1313#endif
1314}
1315
1316
1317/** Wrapper around get_page / page_cache_get. */
1318DECLINLINE(void) vbsf_get_page(struct page *pPage)
1319{
1320#if RTLNX_VER_MIN(4,6,0)
1321 get_page(pPage);
1322#else
1323 page_cache_get(pPage);
1324#endif
1325}
1326
1327
1328/** Companion to vbsf_lock_user_pages(). */
1329static void vbsf_unlock_user_pages(struct page **papPages, size_t cPages, bool fSetDirty, bool fLockPgHack)
1330{
1331 /* We don't mark kernel pages dirty: */
1332 if (fLockPgHack)
1333 fSetDirty = false;
1334
1335 while (cPages-- > 0)
1336 {
1337 struct page *pPage = papPages[cPages];
1338 Assert((ssize_t)cPages >= 0);
1339 if (fSetDirty && !PageReserved(pPage))
1340 set_page_dirty(pPage);
1341 vbsf_put_page(pPage);
1342 }
1343}
1344
1345
1346/**
1347 * Worker for vbsf_lock_user_pages_failed_check_kernel() and
1348 * vbsf_iter_lock_pages().
1349 */
1350static int vbsf_lock_kernel_pages(uint8_t *pbStart, bool fWrite, size_t cPages, struct page **papPages)
1351{
1352 uintptr_t const uPtrFrom = (uintptr_t)pbStart;
1353 uintptr_t const uPtrLast = (uPtrFrom & ~(uintptr_t)PAGE_OFFSET_MASK) + (cPages << PAGE_SHIFT) - 1;
1354 uint8_t *pbPage = (uint8_t *)uPtrLast;
1355 size_t iPage = cPages;
1356
1357 /*
1358 * Touch the pages first (paranoia^2).
1359 */
1360 if (fWrite) {
1361 uint8_t volatile *pbProbe = (uint8_t volatile *)uPtrFrom;
1362 while (iPage-- > 0) {
1363 *pbProbe = *pbProbe;
1364 pbProbe += PAGE_SIZE;
1365 }
1366 } else {
1367 uint8_t const *pbProbe = (uint8_t const *)uPtrFrom;
1368 while (iPage-- > 0) {
1369 ASMProbeReadByte(pbProbe);
1370 pbProbe += PAGE_SIZE;
1371 }
1372 }
1373
1374 /*
1375 * Get the pages.
1376 * Note! Fixes here probably applies to rtR0MemObjNativeLockKernel as well.
1377 */
1378 iPage = cPages;
1379 if ( uPtrFrom >= (unsigned long)__va(0)
1380 && uPtrLast < (unsigned long)high_memory) {
1381 /* The physical page mapping area: */
1382 while (iPage-- > 0) {
1383 struct page *pPage = papPages[iPage] = virt_to_page(pbPage);
1384 vbsf_get_page(pPage);
1385 pbPage -= PAGE_SIZE;
1386 }
1387 } else {
1388 /* This is vmalloc or some such thing, so go thru page tables: */
1389 while (iPage-- > 0) {
1390 struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
1391 if (pPage) {
1392 papPages[iPage] = pPage;
1393 vbsf_get_page(pPage);
1394 pbPage -= PAGE_SIZE;
1395 } else {
1396 while (++iPage < cPages) {
1397 pPage = papPages[iPage];
1398 vbsf_put_page(pPage);
1399 }
1400 return -EFAULT;
1401 }
1402 }
1403 }
1404 return 0;
1405}
1406
1407
1408/**
1409 * Catches kernel_read() and kernel_write() calls and works around them.
1410 *
1411 * The file_operations::read and file_operations::write callbacks supposedly
1412 * hands us the user buffers to read into and write out of. To allow the kernel
1413 * to read and write without allocating buffers in userland, they kernel_read()
1414 * and kernel_write() increases the user space address limit before calling us
1415 * so that copyin/copyout won't reject it. Our problem is that get_user_pages()
1416 * works on the userspace address space structures and will not be fooled by an
1417 * increased addr_limit.
1418 *
1419 * This code tries to detect this situation and fake get_user_lock() for the
1420 * kernel buffer.
1421 */
1422static int vbsf_lock_user_pages_failed_check_kernel(uintptr_t uPtrFrom, size_t cPages, bool fWrite, int rcFailed,
1423 struct page **papPages, bool *pfLockPgHack)
1424{
1425 /*
1426 * Check that this is valid user memory that is actually in the kernel range.
1427 */
1428#if RTLNX_VER_MIN(5,10,0)
1429 if ( access_ok((void *)uPtrFrom, cPages << PAGE_SHIFT)
1430 && uPtrFrom >= TASK_SIZE_MAX)
1431#elif RTLNX_VER_MIN(5,0,0) || RTLNX_RHEL_MIN(8,1)
1432 if ( access_ok((void *)uPtrFrom, cPages << PAGE_SHIFT)
1433 && uPtrFrom >= USER_DS.seg)
1434#else
1435 if ( access_ok(fWrite ? VERIFY_WRITE : VERIFY_READ, (void *)uPtrFrom, cPages << PAGE_SHIFT)
1436 && uPtrFrom >= USER_DS.seg)
1437#endif
1438 {
1439 int rc = vbsf_lock_kernel_pages((uint8_t *)uPtrFrom, fWrite, cPages, papPages);
1440 if (rc == 0) {
1441 *pfLockPgHack = true;
1442 return 0;
1443 }
1444 }
1445
1446 return rcFailed;
1447}
1448
1449
1450/** Wrapper around get_user_pages. */
1451DECLINLINE(int) vbsf_lock_user_pages(uintptr_t uPtrFrom, size_t cPages, bool fWrite, struct page **papPages, bool *pfLockPgHack)
1452{
1453# if RTLNX_VER_MIN(4,9,0) \
1454 || (defined(CONFIG_SUSE_KERNEL) && RTLNX_VER_RANGE(4,4,73, 4,4,74) /** @todo Figure out when & what exactly. */) \
1455 || (defined(CONFIG_SUSE_KERNEL) && RTLNX_VER_RANGE(4,4,75, 4,4,90) /** @todo Figure out when & what exactly. */) \
1456 || (defined(CONFIG_SUSE_KERNEL) && RTLNX_VER_RANGE(4,4,92, 4,5,0) /** @todo Figure out when & what exactly. */)
1457 ssize_t cPagesLocked = get_user_pages_unlocked(uPtrFrom, cPages, papPages,
1458 fWrite ? FOLL_WRITE | FOLL_FORCE : FOLL_FORCE);
1459# elif RTLNX_VER_MIN(4,6,0)
1460 ssize_t cPagesLocked = get_user_pages_unlocked(uPtrFrom, cPages, fWrite, 1 /*force*/, papPages);
1461# elif RTLNX_VER_RANGE(4,4,168, 4,5,0)
1462 ssize_t cPagesLocked = get_user_pages_unlocked(current, current->mm, uPtrFrom, cPages, papPages,
1463 fWrite ? FOLL_WRITE | FOLL_FORCE : FOLL_FORCE);
1464# elif RTLNX_VER_MIN(4,0,0)
1465 ssize_t cPagesLocked = get_user_pages_unlocked(current, current->mm, uPtrFrom, cPages, fWrite, 1 /*force*/, papPages);
1466# else
1467 struct task_struct *pTask = current;
1468 ssize_t cPagesLocked;
1469 down_read(&pTask->mm->mmap_sem);
1470 cPagesLocked = get_user_pages(pTask, pTask->mm, uPtrFrom, cPages, fWrite, 1 /*force*/, papPages, NULL);
1471 up_read(&pTask->mm->mmap_sem);
1472# endif
1473 *pfLockPgHack = false;
1474 if (cPagesLocked == cPages)
1475 return 0;
1476
1477 /*
1478 * It failed.
1479 */
1480 if (cPagesLocked < 0)
1481 return vbsf_lock_user_pages_failed_check_kernel(uPtrFrom, cPages, fWrite, (int)cPagesLocked, papPages, pfLockPgHack);
1482
1483 vbsf_unlock_user_pages(papPages, cPagesLocked, false /*fSetDirty*/, false /*fLockPgHack*/);
1484
1485 /* We could use uPtrFrom + cPagesLocked to get the correct status here... */
1486 return -EFAULT;
1487}
1488
1489#if RTLNX_VER_MAX(5,10,0) /* No regular .read/.write for 5.10, only .read_iter/.write_iter or in-kernel reads/writes fail. */
1490
1491/**
1492 * Read function used when accessing files that are memory mapped.
1493 *
1494 * We read from the page cache here to present the a cohertent picture of the
1495 * the file content.
1496 */
1497static ssize_t vbsf_reg_read_mapped(struct file *file, char /*__user*/ *buf, size_t size, loff_t *off)
1498{
1499# if RTLNX_VER_MIN(3,16,0)
1500 struct iovec iov = { .iov_base = buf, .iov_len = size };
1501 struct iov_iter iter;
1502 struct kiocb kiocb;
1503 ssize_t cbRet;
1504
1505 init_sync_kiocb(&kiocb, file);
1506 kiocb.ki_pos = *off;
1507 iov_iter_init(&iter, READ, &iov, 1, size);
1508
1509 cbRet = generic_file_read_iter(&kiocb, &iter);
1510
1511 *off = kiocb.ki_pos;
1512 return cbRet;
1513
1514# elif RTLNX_VER_MIN(2,6,19)
1515 struct iovec iov = { .iov_base = buf, .iov_len = size };
1516 struct kiocb kiocb;
1517 ssize_t cbRet;
1518
1519 init_sync_kiocb(&kiocb, file);
1520 kiocb.ki_pos = *off;
1521
1522 cbRet = generic_file_aio_read(&kiocb, &iov, 1, *off);
1523 if (cbRet == -EIOCBQUEUED)
1524 cbRet = wait_on_sync_kiocb(&kiocb);
1525
1526 *off = kiocb.ki_pos;
1527 return cbRet;
1528
1529# else /* 2.6.18 or earlier: */
1530 return generic_file_read(file, buf, size, off);
1531# endif
1532}
1533
1534
1535/**
1536 * Fallback case of vbsf_reg_read() that locks the user buffers and let the host
1537 * write directly to them.
1538 */
1539static ssize_t vbsf_reg_read_locking(struct file *file, char /*__user*/ *buf, size_t size, loff_t *off,
1540 struct vbsf_super_info *pSuperInfo, struct vbsf_reg_info *sf_r)
1541{
1542 /*
1543 * Lock pages and execute the read, taking care not to pass the host
1544 * more than it can handle in one go or more than we care to allocate
1545 * page arrays for. The latter limit is set at just short of 32KB due
1546 * to how the physical heap works.
1547 */
1548 struct page *apPagesStack[16];
1549 struct page **papPages = &apPagesStack[0];
1550 struct page **papPagesFree = NULL;
1551 VBOXSFREADPGLSTREQ *pReq;
1552 loff_t offFile = *off;
1553 ssize_t cbRet = -ENOMEM;
1554 size_t cPages = (((uintptr_t)buf & PAGE_OFFSET_MASK) + size + PAGE_OFFSET_MASK) >> PAGE_SHIFT;
1555 size_t cMaxPages = RT_MIN(RT_MAX(pSuperInfo->cMaxIoPages, 1), cPages);
1556 bool fLockPgHack;
1557
1558 pReq = (VBOXSFREADPGLSTREQ *)VbglR0PhysHeapAlloc(RT_UOFFSETOF_DYN(VBOXSFREADPGLSTREQ, PgLst.aPages[cMaxPages]));
1559 while (!pReq && cMaxPages > 4) {
1560 cMaxPages /= 2;
1561 pReq = (VBOXSFREADPGLSTREQ *)VbglR0PhysHeapAlloc(RT_UOFFSETOF_DYN(VBOXSFREADPGLSTREQ, PgLst.aPages[cMaxPages]));
1562 }
1563 if (pReq && cMaxPages > RT_ELEMENTS(apPagesStack))
1564 papPagesFree = papPages = kmalloc(cMaxPages * sizeof(sizeof(papPages[0])), GFP_KERNEL);
1565 if (pReq && papPages) {
1566 cbRet = 0;
1567 for (;;) {
1568 /*
1569 * Figure out how much to process now and lock the user pages.
1570 */
1571 int rc;
1572 size_t cbChunk = (uintptr_t)buf & PAGE_OFFSET_MASK;
1573 pReq->PgLst.offFirstPage = (uint16_t)cbChunk;
1574 cPages = RT_ALIGN_Z(cbChunk + size, PAGE_SIZE) >> PAGE_SHIFT;
1575 if (cPages <= cMaxPages)
1576 cbChunk = size;
1577 else {
1578 cPages = cMaxPages;
1579 cbChunk = (cMaxPages << PAGE_SHIFT) - cbChunk;
1580 }
1581
1582 rc = vbsf_lock_user_pages((uintptr_t)buf, cPages, true /*fWrite*/, papPages, &fLockPgHack);
1583 if (rc == 0) {
1584 size_t iPage = cPages;
1585 while (iPage-- > 0)
1586 pReq->PgLst.aPages[iPage] = page_to_phys(papPages[iPage]);
1587 } else {
1588 cbRet = rc;
1589 break;
1590 }
1591
1592 /*
1593 * Issue the request and unlock the pages.
1594 */
1595 rc = VbglR0SfHostReqReadPgLst(pSuperInfo->map.root, pReq, sf_r->Handle.hHost, offFile, cbChunk, cPages);
1596
1597 Assert(cPages <= cMaxPages);
1598 vbsf_unlock_user_pages(papPages, cPages, true /*fSetDirty*/, fLockPgHack);
1599
1600 if (RT_SUCCESS(rc)) {
1601 /*
1602 * Success, advance position and buffer.
1603 */
1604 uint32_t cbActual = pReq->Parms.cb32Read.u.value32;
1605 AssertStmt(cbActual <= cbChunk, cbActual = cbChunk);
1606 cbRet += cbActual;
1607 offFile += cbActual;
1608 buf = (uint8_t *)buf + cbActual;
1609 size -= cbActual;
1610
1611 /*
1612 * Are we done already? If so commit the new file offset.
1613 */
1614 if (!size || cbActual < cbChunk) {
1615 *off = offFile;
1616 break;
1617 }
1618 } else if (rc == VERR_NO_MEMORY && cMaxPages > 4) {
1619 /*
1620 * The host probably doesn't have enough heap to handle the
1621 * request, reduce the page count and retry.
1622 */
1623 cMaxPages /= 4;
1624 Assert(cMaxPages > 0);
1625 } else {
1626 /*
1627 * If we've successfully read stuff, return it rather than
1628 * the error. (Not sure if this is such a great idea...)
1629 */
1630 if (cbRet > 0) {
1631 SFLOGFLOW(("vbsf_reg_read: read at %#RX64 -> %Rrc; got cbRet=%#zx already\n", offFile, rc, cbRet));
1632 *off = offFile;
1633 } else {
1634 SFLOGFLOW(("vbsf_reg_read: read at %#RX64 -> %Rrc\n", offFile, rc));
1635 cbRet = -EPROTO;
1636 }
1637 break;
1638 }
1639 }
1640 }
1641 if (papPagesFree)
1642 kfree(papPages);
1643 if (pReq)
1644 VbglR0PhysHeapFree(pReq);
1645 SFLOGFLOW(("vbsf_reg_read: returns %zd (%#zx), *off=%RX64 [lock]\n", cbRet, cbRet, *off));
1646 return cbRet;
1647}
1648
1649
1650/**
1651 * Read from a regular file.
1652 *
1653 * @param file the file
1654 * @param buf the buffer
1655 * @param size length of the buffer
1656 * @param off offset within the file (in/out).
1657 * @returns the number of read bytes on success, Linux error code otherwise
1658 */
1659static ssize_t vbsf_reg_read(struct file *file, char /*__user*/ *buf, size_t size, loff_t *off)
1660{
1661 struct inode *inode = VBSF_GET_F_DENTRY(file)->d_inode;
1662 struct vbsf_super_info *pSuperInfo = VBSF_GET_SUPER_INFO(inode->i_sb);
1663 struct vbsf_reg_info *sf_r = file->private_data;
1664 struct address_space *mapping = inode->i_mapping;
1665
1666 SFLOGFLOW(("vbsf_reg_read: inode=%p file=%p buf=%p size=%#zx off=%#llx\n", inode, file, buf, size, *off));
1667
1668 if (!S_ISREG(inode->i_mode)) {
1669 LogFunc(("read from non regular file %d\n", inode->i_mode));
1670 return -EINVAL;
1671 }
1672
1673 /** @todo XXX Check read permission according to inode->i_mode! */
1674
1675 if (!size)
1676 return 0;
1677
1678 /*
1679 * If there is a mapping and O_DIRECT isn't in effect, we must at a
1680 * heed dirty pages in the mapping and read from them. For simplicity
1681 * though, we just do page cache reading when there are writable
1682 * mappings around with any kind of pages loaded.
1683 */
1684 if (vbsf_should_use_cached_read(file, mapping, pSuperInfo))
1685 return vbsf_reg_read_mapped(file, buf, size, off);
1686
1687 /*
1688 * For small requests, try use an embedded buffer provided we get a heap block
1689 * that does not cross page boundraries (see host code).
1690 */
1691 if (size <= PAGE_SIZE / 4 * 3 - RT_UOFFSETOF(VBOXSFREADEMBEDDEDREQ, abData[0]) /* see allocator */) {
1692 uint32_t const cbReq = RT_UOFFSETOF(VBOXSFREADEMBEDDEDREQ, abData[0]) + size;
1693 VBOXSFREADEMBEDDEDREQ *pReq = (VBOXSFREADEMBEDDEDREQ *)VbglR0PhysHeapAlloc(cbReq);
1694 if (pReq) {
1695 if ((PAGE_SIZE - ((uintptr_t)pReq & PAGE_OFFSET_MASK)) >= cbReq) {
1696 ssize_t cbRet;
1697 int vrc = VbglR0SfHostReqReadEmbedded(pSuperInfo->map.root, pReq, sf_r->Handle.hHost, *off, (uint32_t)size);
1698 if (RT_SUCCESS(vrc)) {
1699 cbRet = pReq->Parms.cb32Read.u.value32;
1700 AssertStmt(cbRet <= (ssize_t)size, cbRet = size);
1701 if (copy_to_user(buf, pReq->abData, cbRet) == 0)
1702 *off += cbRet;
1703 else
1704 cbRet = -EFAULT;
1705 } else
1706 cbRet = -EPROTO;
1707 VbglR0PhysHeapFree(pReq);
1708 SFLOGFLOW(("vbsf_reg_read: returns %zd (%#zx), *off=%RX64 [embed]\n", cbRet, cbRet, *off));
1709 return cbRet;
1710 }
1711 VbglR0PhysHeapFree(pReq);
1712 }
1713 }
1714
1715# if 0 /* Turns out this is slightly slower than locking the pages even for 4KB reads (4.19/amd64). */
1716 /*
1717 * For medium sized requests try use a bounce buffer.
1718 */
1719 if (size <= _64K /** @todo make this configurable? */) {
1720 void *pvBounce = kmalloc(size, GFP_KERNEL);
1721 if (pvBounce) {
1722 VBOXSFREADPGLSTREQ *pReq = (VBOXSFREADPGLSTREQ *)VbglR0PhysHeapAlloc(sizeof(*pReq));
1723 if (pReq) {
1724 ssize_t cbRet;
1725 int vrc = VbglR0SfHostReqReadContig(pSuperInfo->map.root, pReq, sf_r->Handle.hHost, *off,
1726 (uint32_t)size, pvBounce, virt_to_phys(pvBounce));
1727 if (RT_SUCCESS(vrc)) {
1728 cbRet = pReq->Parms.cb32Read.u.value32;
1729 AssertStmt(cbRet <= (ssize_t)size, cbRet = size);
1730 if (copy_to_user(buf, pvBounce, cbRet) == 0)
1731 *off += cbRet;
1732 else
1733 cbRet = -EFAULT;
1734 } else
1735 cbRet = -EPROTO;
1736 VbglR0PhysHeapFree(pReq);
1737 kfree(pvBounce);
1738 SFLOGFLOW(("vbsf_reg_read: returns %zd (%#zx), *off=%RX64 [bounce]\n", cbRet, cbRet, *off));
1739 return cbRet;
1740 }
1741 kfree(pvBounce);
1742 }
1743 }
1744# endif
1745
1746 return vbsf_reg_read_locking(file, buf, size, off, pSuperInfo, sf_r);
1747}
1748
1749#endif /* < 5.10.0 */
1750
1751/**
1752 * Helper the synchronizes the page cache content with something we just wrote
1753 * to the host.
1754 */
1755static void vbsf_reg_write_sync_page_cache(struct address_space *mapping, loff_t offFile, uint32_t cbRange,
1756 uint8_t const *pbSrcBuf, struct page **papSrcPages,
1757 uint32_t offSrcPage, size_t cSrcPages)
1758{
1759 Assert(offSrcPage < PAGE_SIZE);
1760 if (mapping && mapping->nrpages > 0) {
1761 /*
1762 * Work the pages in the write range.
1763 */
1764 while (cbRange > 0) {
1765 /*
1766 * Lookup the page at offFile. We're fine if there aren't
1767 * any there. We're skip if it's dirty or is being written
1768 * back, at least for now.
1769 */
1770 size_t const offDstPage = offFile & PAGE_OFFSET_MASK;
1771 size_t const cbToCopy = RT_MIN(PAGE_SIZE - offDstPage, cbRange);
1772 pgoff_t const idxPage = offFile >> PAGE_SHIFT;
1773 struct page *pDstPage = find_lock_page(mapping, idxPage);
1774 if (pDstPage) {
1775 if ( pDstPage->mapping == mapping /* ignore if re-purposed (paranoia) */
1776 && pDstPage->index == idxPage
1777 && !PageDirty(pDstPage) /* ignore if dirty */
1778 && !PageWriteback(pDstPage) /* ignore if being written back */ ) {
1779 /*
1780 * Map the page and do the copying.
1781 */
1782 uint8_t *pbDst = (uint8_t *)kmap(pDstPage);
1783 if (pbSrcBuf)
1784 memcpy(&pbDst[offDstPage], pbSrcBuf, cbToCopy);
1785 else {
1786 uint32_t const cbSrc0 = PAGE_SIZE - offSrcPage;
1787 uint8_t const *pbSrc = (uint8_t const *)kmap(papSrcPages[0]);
1788 AssertMsg(cSrcPages >= 1, ("offFile=%#llx cbRange=%#zx cbToCopy=%#zx\n", offFile, cbRange, cbToCopy));
1789 memcpy(&pbDst[offDstPage], &pbSrc[offSrcPage], RT_MIN(cbToCopy, cbSrc0));
1790 kunmap(papSrcPages[0]);
1791 if (cbToCopy > cbSrc0) {
1792 AssertMsg(cSrcPages >= 2, ("offFile=%#llx cbRange=%#zx cbToCopy=%#zx\n", offFile, cbRange, cbToCopy));
1793 pbSrc = (uint8_t const *)kmap(papSrcPages[1]);
1794 memcpy(&pbDst[offDstPage + cbSrc0], pbSrc, cbToCopy - cbSrc0);
1795 kunmap(papSrcPages[1]);
1796 }
1797 }
1798 kunmap(pDstPage);
1799 flush_dcache_page(pDstPage);
1800 if (cbToCopy == PAGE_SIZE)
1801 SetPageUptodate(pDstPage);
1802# if RTLNX_VER_MIN(2,4,10)
1803 mark_page_accessed(pDstPage);
1804# endif
1805 } else
1806 SFLOGFLOW(("vbsf_reg_write_sync_page_cache: Skipping page %p: mapping=%p (vs %p) writeback=%d offset=%#lx (vs%#lx)\n",
1807 pDstPage, pDstPage->mapping, mapping, PageWriteback(pDstPage), pDstPage->index, idxPage));
1808 unlock_page(pDstPage);
1809 vbsf_put_page(pDstPage);
1810 }
1811
1812 /*
1813 * Advance.
1814 */
1815 if (pbSrcBuf)
1816 pbSrcBuf += cbToCopy;
1817 else
1818 {
1819 offSrcPage += cbToCopy;
1820 Assert(offSrcPage < PAGE_SIZE * 2);
1821 if (offSrcPage >= PAGE_SIZE) {
1822 offSrcPage &= PAGE_OFFSET_MASK;
1823 papSrcPages++;
1824# ifdef VBOX_STRICT
1825 Assert(cSrcPages > 0);
1826 cSrcPages--;
1827# endif
1828 }
1829 }
1830 offFile += cbToCopy;
1831 cbRange -= cbToCopy;
1832 }
1833 }
1834 RT_NOREF(cSrcPages);
1835}
1836
1837#if RTLNX_VER_MAX(5,10,0) /* No regular .read/.write for 5.10, only .read_iter/.write_iter or in-kernel reads/writes fail. */
1838
1839/**
1840 * Fallback case of vbsf_reg_write() that locks the user buffers and let the host
1841 * write directly to them.
1842 */
1843static ssize_t vbsf_reg_write_locking(struct file *file, const char /*__user*/ *buf, size_t size, loff_t *off, loff_t offFile,
1844 struct inode *inode, struct vbsf_inode_info *sf_i,
1845 struct vbsf_super_info *pSuperInfo, struct vbsf_reg_info *sf_r)
1846{
1847 /*
1848 * Lock pages and execute the write, taking care not to pass the host
1849 * more than it can handle in one go or more than we care to allocate
1850 * page arrays for. The latter limit is set at just short of 32KB due
1851 * to how the physical heap works.
1852 */
1853 struct page *apPagesStack[16];
1854 struct page **papPages = &apPagesStack[0];
1855 struct page **papPagesFree = NULL;
1856 VBOXSFWRITEPGLSTREQ *pReq;
1857 ssize_t cbRet = -ENOMEM;
1858 size_t cPages = (((uintptr_t)buf & PAGE_OFFSET_MASK) + size + PAGE_OFFSET_MASK) >> PAGE_SHIFT;
1859 size_t cMaxPages = RT_MIN(RT_MAX(pSuperInfo->cMaxIoPages, 1), cPages);
1860 bool fLockPgHack;
1861
1862 pReq = (VBOXSFWRITEPGLSTREQ *)VbglR0PhysHeapAlloc(RT_UOFFSETOF_DYN(VBOXSFWRITEPGLSTREQ, PgLst.aPages[cMaxPages]));
1863 while (!pReq && cMaxPages > 4) {
1864 cMaxPages /= 2;
1865 pReq = (VBOXSFWRITEPGLSTREQ *)VbglR0PhysHeapAlloc(RT_UOFFSETOF_DYN(VBOXSFWRITEPGLSTREQ, PgLst.aPages[cMaxPages]));
1866 }
1867 if (pReq && cMaxPages > RT_ELEMENTS(apPagesStack))
1868 papPagesFree = papPages = kmalloc(cMaxPages * sizeof(sizeof(papPages[0])), GFP_KERNEL);
1869 if (pReq && papPages) {
1870 cbRet = 0;
1871 for (;;) {
1872 /*
1873 * Figure out how much to process now and lock the user pages.
1874 */
1875 int rc;
1876 size_t cbChunk = (uintptr_t)buf & PAGE_OFFSET_MASK;
1877 pReq->PgLst.offFirstPage = (uint16_t)cbChunk;
1878 cPages = RT_ALIGN_Z(cbChunk + size, PAGE_SIZE) >> PAGE_SHIFT;
1879 if (cPages <= cMaxPages)
1880 cbChunk = size;
1881 else {
1882 cPages = cMaxPages;
1883 cbChunk = (cMaxPages << PAGE_SHIFT) - cbChunk;
1884 }
1885
1886 rc = vbsf_lock_user_pages((uintptr_t)buf, cPages, false /*fWrite*/, papPages, &fLockPgHack);
1887 if (rc == 0) {
1888 size_t iPage = cPages;
1889 while (iPage-- > 0)
1890 pReq->PgLst.aPages[iPage] = page_to_phys(papPages[iPage]);
1891 } else {
1892 cbRet = rc;
1893 break;
1894 }
1895
1896 /*
1897 * Issue the request and unlock the pages.
1898 */
1899 rc = VbglR0SfHostReqWritePgLst(pSuperInfo->map.root, pReq, sf_r->Handle.hHost, offFile, cbChunk, cPages);
1900 sf_i->ModificationTimeAtOurLastWrite = sf_i->ModificationTime;
1901 if (RT_SUCCESS(rc)) {
1902 /*
1903 * Success, advance position and buffer.
1904 */
1905 uint32_t cbActual = pReq->Parms.cb32Write.u.value32;
1906 AssertStmt(cbActual <= cbChunk, cbActual = cbChunk);
1907
1908 vbsf_reg_write_sync_page_cache(inode->i_mapping, offFile, cbActual, NULL /*pbKrnlBuf*/,
1909 papPages, (uintptr_t)buf & PAGE_OFFSET_MASK, cPages);
1910 Assert(cPages <= cMaxPages);
1911 vbsf_unlock_user_pages(papPages, cPages, false /*fSetDirty*/, fLockPgHack);
1912
1913 cbRet += cbActual;
1914 buf = (uint8_t *)buf + cbActual;
1915 size -= cbActual;
1916
1917 offFile += cbActual;
1918 if ((file->f_flags & O_APPEND) && (g_fSfFeatures & SHFL_FEATURE_WRITE_UPDATES_OFFSET))
1919 offFile = pReq->Parms.off64Write.u.value64;
1920 if (offFile > i_size_read(inode))
1921 i_size_write(inode, offFile);
1922
1923 sf_i->force_restat = 1; /* mtime (and size) may have changed */
1924
1925 /*
1926 * Are we done already? If so commit the new file offset.
1927 */
1928 if (!size || cbActual < cbChunk) {
1929 *off = offFile;
1930 break;
1931 }
1932 } else {
1933 vbsf_unlock_user_pages(papPages, cPages, false /*fSetDirty*/, fLockPgHack);
1934 if (rc == VERR_NO_MEMORY && cMaxPages > 4) {
1935 /*
1936 * The host probably doesn't have enough heap to handle the
1937 * request, reduce the page count and retry.
1938 */
1939 cMaxPages /= 4;
1940 Assert(cMaxPages > 0);
1941 } else {
1942 /*
1943 * If we've successfully written stuff, return it rather than
1944 * the error. (Not sure if this is such a great idea...)
1945 */
1946 if (cbRet > 0) {
1947 SFLOGFLOW(("vbsf_reg_write: write at %#RX64 -> %Rrc; got cbRet=%#zx already\n", offFile, rc, cbRet));
1948 *off = offFile;
1949 } else {
1950 SFLOGFLOW(("vbsf_reg_write: write at %#RX64 -> %Rrc\n", offFile, rc));
1951 cbRet = -EPROTO;
1952 }
1953 break;
1954 }
1955 }
1956 }
1957 }
1958 if (papPagesFree)
1959 kfree(papPages);
1960 if (pReq)
1961 VbglR0PhysHeapFree(pReq);
1962 SFLOGFLOW(("vbsf_reg_write: returns %zd (%#zx), *off=%RX64 [lock]\n", cbRet, cbRet, *off));
1963 return cbRet;
1964}
1965
1966
1967/**
1968 * Write to a regular file.
1969 *
1970 * @param file the file
1971 * @param buf the buffer
1972 * @param size length of the buffer
1973 * @param off offset within the file
1974 * @returns the number of written bytes on success, Linux error code otherwise
1975 */
1976static ssize_t vbsf_reg_write(struct file *file, const char *buf, size_t size, loff_t * off)
1977{
1978 struct inode *inode = VBSF_GET_F_DENTRY(file)->d_inode;
1979 struct vbsf_inode_info *sf_i = VBSF_GET_INODE_INFO(inode);
1980 struct vbsf_super_info *pSuperInfo = VBSF_GET_SUPER_INFO(inode->i_sb);
1981 struct vbsf_reg_info *sf_r = file->private_data;
1982 struct address_space *mapping = inode->i_mapping;
1983 loff_t pos;
1984
1985 SFLOGFLOW(("vbsf_reg_write: inode=%p file=%p buf=%p size=%#zx off=%#llx\n", inode, file, buf, size, *off));
1986 Assert(sf_i);
1987 Assert(pSuperInfo);
1988 Assert(sf_r);
1989 AssertReturn(S_ISREG(inode->i_mode), -EINVAL);
1990
1991 pos = *off;
1992 if (file->f_flags & O_APPEND)
1993 pos = i_size_read(inode);
1994
1995 /** @todo XXX Check write permission according to inode->i_mode! */
1996
1997 if (!size) {
1998 if (file->f_flags & O_APPEND) /** @todo check if this is the consensus behavior... */
1999 *off = pos;
2000 return 0;
2001 }
2002
2003 /** @todo Implement the read-write caching mode. */
2004
2005 /*
2006 * If there are active writable mappings, coordinate with any
2007 * pending writes via those.
2008 */
2009 if ( mapping
2010 && mapping->nrpages > 0
2011 && mapping_writably_mapped(mapping)) {
2012# if RTLNX_VER_MIN(2,6,32)
2013 int err = filemap_fdatawait_range(mapping, pos, pos + size - 1);
2014 if (err)
2015 return err;
2016# else
2017 /** @todo ... */
2018# endif
2019 }
2020
2021 /*
2022 * For small requests, try use an embedded buffer provided we get a heap block
2023 * that does not cross page boundraries (see host code).
2024 */
2025 if (size <= PAGE_SIZE / 4 * 3 - RT_UOFFSETOF(VBOXSFWRITEEMBEDDEDREQ, abData[0]) /* see allocator */) {
2026 uint32_t const cbReq = RT_UOFFSETOF(VBOXSFWRITEEMBEDDEDREQ, abData[0]) + size;
2027 VBOXSFWRITEEMBEDDEDREQ *pReq = (VBOXSFWRITEEMBEDDEDREQ *)VbglR0PhysHeapAlloc(cbReq);
2028 if ( pReq
2029 && (PAGE_SIZE - ((uintptr_t)pReq & PAGE_OFFSET_MASK)) >= cbReq) {
2030 ssize_t cbRet;
2031 if (copy_from_user(pReq->abData, buf, size) == 0) {
2032 int vrc = VbglR0SfHostReqWriteEmbedded(pSuperInfo->map.root, pReq, sf_r->Handle.hHost,
2033 pos, (uint32_t)size);
2034 sf_i->ModificationTimeAtOurLastWrite = sf_i->ModificationTime;
2035 if (RT_SUCCESS(vrc)) {
2036 cbRet = pReq->Parms.cb32Write.u.value32;
2037 AssertStmt(cbRet <= (ssize_t)size, cbRet = size);
2038 vbsf_reg_write_sync_page_cache(mapping, pos, (uint32_t)cbRet, pReq->abData,
2039 NULL /*papSrcPages*/, 0 /*offSrcPage0*/, 0 /*cSrcPages*/);
2040 pos += cbRet;
2041 if ((file->f_flags & O_APPEND) && (g_fSfFeatures & SHFL_FEATURE_WRITE_UPDATES_OFFSET))
2042 pos = pReq->Parms.off64Write.u.value64;
2043 *off = pos;
2044 if (pos > i_size_read(inode))
2045 i_size_write(inode, pos);
2046 } else
2047 cbRet = -EPROTO;
2048 sf_i->force_restat = 1; /* mtime (and size) may have changed */
2049 } else
2050 cbRet = -EFAULT;
2051
2052 VbglR0PhysHeapFree(pReq);
2053 SFLOGFLOW(("vbsf_reg_write: returns %zd (%#zx), *off=%RX64 [embed]\n", cbRet, cbRet, *off));
2054 return cbRet;
2055 }
2056 if (pReq)
2057 VbglR0PhysHeapFree(pReq);
2058 }
2059
2060# if 0 /* Turns out this is slightly slower than locking the pages even for 4KB reads (4.19/amd64). */
2061 /*
2062 * For medium sized requests try use a bounce buffer.
2063 */
2064 if (size <= _64K /** @todo make this configurable? */) {
2065 void *pvBounce = kmalloc(size, GFP_KERNEL);
2066 if (pvBounce) {
2067 if (copy_from_user(pvBounce, buf, size) == 0) {
2068 VBOXSFWRITEPGLSTREQ *pReq = (VBOXSFWRITEPGLSTREQ *)VbglR0PhysHeapAlloc(sizeof(*pReq));
2069 if (pReq) {
2070 ssize_t cbRet;
2071 int vrc = VbglR0SfHostReqWriteContig(pSuperInfo->map.root, pReq, sf_r->handle, pos,
2072 (uint32_t)size, pvBounce, virt_to_phys(pvBounce));
2073 sf_i->ModificationTimeAtOurLastWrite = sf_i->ModificationTime;
2074 if (RT_SUCCESS(vrc)) {
2075 cbRet = pReq->Parms.cb32Write.u.value32;
2076 AssertStmt(cbRet <= (ssize_t)size, cbRet = size);
2077 vbsf_reg_write_sync_page_cache(mapping, pos, (uint32_t)cbRet, (uint8_t const *)pvBounce,
2078 NULL /*papSrcPages*/, 0 /*offSrcPage0*/, 0 /*cSrcPages*/);
2079 pos += cbRet;
2080 *off = pos;
2081 if (pos > i_size_read(inode))
2082 i_size_write(inode, pos);
2083 } else
2084 cbRet = -EPROTO;
2085 sf_i->force_restat = 1; /* mtime (and size) may have changed */
2086 VbglR0PhysHeapFree(pReq);
2087 kfree(pvBounce);
2088 SFLOGFLOW(("vbsf_reg_write: returns %zd (%#zx), *off=%RX64 [bounce]\n", cbRet, cbRet, *off));
2089 return cbRet;
2090 }
2091 kfree(pvBounce);
2092 } else {
2093 kfree(pvBounce);
2094 SFLOGFLOW(("vbsf_reg_write: returns -EFAULT, *off=%RX64 [bounce]\n", *off));
2095 return -EFAULT;
2096 }
2097 }
2098 }
2099# endif
2100
2101 return vbsf_reg_write_locking(file, buf, size, off, pos, inode, sf_i, pSuperInfo, sf_r);
2102}
2103
2104#endif /* < 5.10.0 */
2105#if RTLNX_VER_MIN(2,6,19)
2106/* See kernel 6.0.0 change eba2d3d798295dc43cae8fade102f9d083a2a741. */
2107# if RTLNX_VER_MIN(6,0,0)
2108# define VBOX_IOV_GET_PAGES iov_iter_get_pages2
2109# else
2110# define VBOX_IOV_GET_PAGES iov_iter_get_pages
2111# endif
2112
2113/**
2114 * Companion to vbsf_iter_lock_pages().
2115 */
2116DECLINLINE(void) vbsf_iter_unlock_pages(struct iov_iter *iter, struct page **papPages, size_t cPages, bool fSetDirty)
2117{
2118 /* We don't mark kernel pages dirty (KVECs, BVECs, PIPEs): */
2119 if (!iter_is_iovec(iter))
2120 fSetDirty = false;
2121
2122 while (cPages-- > 0)
2123 {
2124 struct page *pPage = papPages[cPages];
2125 if (fSetDirty && !PageReserved(pPage))
2126 set_page_dirty(pPage);
2127 vbsf_put_page(pPage);
2128 }
2129}
2130
2131
2132/**
2133 * Locks up to @a cMaxPages from the I/O vector iterator, advancing the
2134 * iterator.
2135 *
2136 * @returns 0 on success, negative errno value on failure.
2137 * @param iter The iterator to lock pages from.
2138 * @param fWrite Whether to write (true) or read (false) lock the pages.
2139 * @param pStash Where we stash peek results.
2140 * @param cMaxPages The maximum number of pages to get.
2141 * @param papPages Where to return the locked pages.
2142 * @param pcPages Where to return the number of pages.
2143 * @param poffPage0 Where to return the offset into the first page.
2144 * @param pcbChunk Where to return the number of bytes covered.
2145 */
2146static int vbsf_iter_lock_pages(struct iov_iter *iter, bool fWrite, struct vbsf_iter_stash *pStash, size_t cMaxPages,
2147 struct page **papPages, size_t *pcPages, size_t *poffPage0, size_t *pcbChunk)
2148{
2149 size_t cbChunk = 0;
2150 size_t cPages = 0;
2151 size_t offPage0 = 0;
2152 int rc = 0;
2153
2154 Assert(iov_iter_count(iter) + pStash->cb > 0);
2155 if (!(VBSF_GET_ITER_TYPE(iter) & ITER_KVEC)) {
2156 /*
2157 * Do we have a stashed page?
2158 */
2159 if (pStash->pPage) {
2160 papPages[0] = pStash->pPage;
2161 offPage0 = pStash->off;
2162 cbChunk = pStash->cb;
2163 cPages = 1;
2164 pStash->pPage = NULL;
2165 pStash->off = 0;
2166 pStash->cb = 0;
2167 if ( offPage0 + cbChunk < PAGE_SIZE
2168 || iov_iter_count(iter) == 0) {
2169 *poffPage0 = offPage0;
2170 *pcbChunk = cbChunk;
2171 *pcPages = cPages;
2172 SFLOGFLOW(("vbsf_iter_lock_pages: returns %d - cPages=%#zx offPage0=%#zx cbChunk=%zx (stashed)\n",
2173 rc, cPages, offPage0, cbChunk));
2174 return 0;
2175 }
2176 cMaxPages -= 1;
2177 SFLOG3(("vbsf_iter_lock_pages: Picked up stashed page: %#zx LB %#zx\n", offPage0, cbChunk));
2178 } else {
2179# if RTLNX_VER_MAX(4,11,0)
2180 /*
2181 * Copy out our starting point to assist rewinding.
2182 */
2183 pStash->offFromEnd = iov_iter_count(iter);
2184 pStash->Copy = *iter;
2185# endif
2186 }
2187
2188 /*
2189 * Get pages segment by segment.
2190 */
2191 do {
2192 /*
2193 * Make a special case of the first time thru here, since that's
2194 * the most typical scenario.
2195 */
2196 ssize_t cbSegRet;
2197 if (cPages == 0) {
2198# if RTLNX_VER_MAX(3,19,0)
2199 while (!iov_iter_single_seg_count(iter)) /* Old code didn't skip empty segments which caused EFAULTs. */
2200 iov_iter_advance(iter, 0);
2201# endif
2202 cbSegRet = VBOX_IOV_GET_PAGES(iter, papPages, iov_iter_count(iter), cMaxPages, &offPage0);
2203 if (cbSegRet > 0) {
2204# if RTLNX_VER_MAX(6,0,0)
2205 iov_iter_advance(iter, cbSegRet);
2206#endif
2207 cbChunk = (size_t)cbSegRet;
2208 cPages = RT_ALIGN_Z(offPage0 + cbSegRet, PAGE_SIZE) >> PAGE_SHIFT;
2209 cMaxPages -= cPages;
2210 SFLOG3(("vbsf_iter_lock_pages: iov_iter_get_pages -> %#zx @ %#zx; %#zx pages [first]\n", cbSegRet, offPage0, cPages));
2211 if ( cMaxPages == 0
2212 || ((offPage0 + (size_t)cbSegRet) & PAGE_OFFSET_MASK))
2213 break;
2214 } else {
2215 AssertStmt(cbSegRet < 0, cbSegRet = -EFAULT);
2216 rc = (int)cbSegRet;
2217 break;
2218 }
2219 } else {
2220 /*
2221 * Probe first page of new segment to check that we've got a zero offset and
2222 * can continue on the current chunk. Stash the page if the offset isn't zero.
2223 */
2224 size_t offPgProbe;
2225 size_t cbSeg = iov_iter_single_seg_count(iter);
2226 while (!cbSeg) {
2227 iov_iter_advance(iter, 0);
2228 cbSeg = iov_iter_single_seg_count(iter);
2229 }
2230 cbSegRet = VBOX_IOV_GET_PAGES(iter, &papPages[cPages], iov_iter_count(iter), 1, &offPgProbe);
2231 if (cbSegRet > 0) {
2232# if RTLNX_VER_MAX(6,0,0)
2233 iov_iter_advance(iter, cbSegRet); /** @todo maybe not do this if we stash the page? */
2234#endif
2235 Assert(offPgProbe + cbSegRet <= PAGE_SIZE);
2236 if (offPgProbe == 0) {
2237 cbChunk += cbSegRet;
2238 cPages += 1;
2239 cMaxPages -= 1;
2240 SFLOG3(("vbsf_iter_lock_pages: iov_iter_get_pages(1) -> %#zx @ %#zx\n", cbSegRet, offPgProbe));
2241 if ( cMaxPages == 0
2242 || cbSegRet != PAGE_SIZE)
2243 break;
2244
2245 /*
2246 * Get the rest of the segment (if anything remaining).
2247 */
2248 cbSeg -= cbSegRet;
2249 if (cbSeg > 0) {
2250 cbSegRet = VBOX_IOV_GET_PAGES(iter, &papPages[cPages], iov_iter_count(iter), cMaxPages, &offPgProbe);
2251 if (cbSegRet > 0) {
2252 size_t const cPgRet = RT_ALIGN_Z((size_t)cbSegRet, PAGE_SIZE) >> PAGE_SHIFT;
2253 Assert(offPgProbe == 0);
2254# if RTLNX_VER_MAX(6,0,0)
2255 iov_iter_advance(iter, cbSegRet);
2256# endif
2257 SFLOG3(("vbsf_iter_lock_pages: iov_iter_get_pages() -> %#zx; %#zx pages\n", cbSegRet, cPgRet));
2258 cPages += cPgRet;
2259 cMaxPages -= cPgRet;
2260 cbChunk += cbSegRet;
2261 if ( cMaxPages == 0
2262 || ((size_t)cbSegRet & PAGE_OFFSET_MASK))
2263 break;
2264 } else {
2265 AssertStmt(cbSegRet < 0, cbSegRet = -EFAULT);
2266 rc = (int)cbSegRet;
2267 break;
2268 }
2269 }
2270 } else {
2271 /* The segment didn't start at a page boundrary, so stash it for
2272 the next round: */
2273 SFLOGFLOW(("vbsf_iter_lock_pages: iov_iter_get_pages(1) -> %#zx @ %#zx; stashed\n", cbSegRet, offPgProbe));
2274 Assert(papPages[cPages]);
2275 pStash->pPage = papPages[cPages];
2276 pStash->off = offPgProbe;
2277 pStash->cb = cbSegRet;
2278 break;
2279 }
2280 } else {
2281 AssertStmt(cbSegRet < 0, cbSegRet = -EFAULT);
2282 rc = (int)cbSegRet;
2283 break;
2284 }
2285 }
2286 Assert(cMaxPages > 0);
2287 } while (iov_iter_count(iter) > 0);
2288
2289 } else {
2290 /*
2291 * The silly iov_iter_get_pages_alloc() function doesn't handle KVECs,
2292 * so everyone needs to do that by themselves.
2293 *
2294 * Note! Fixes here may apply to rtR0MemObjNativeLockKernel()
2295 * and vbsf_lock_user_pages_failed_check_kernel() as well.
2296 */
2297# if RTLNX_VER_MAX(4,11,0)
2298 pStash->offFromEnd = iov_iter_count(iter);
2299 pStash->Copy = *iter;
2300# endif
2301 do {
2302 uint8_t *pbBuf;
2303 size_t offStart;
2304 size_t cPgSeg;
2305
2306 size_t cbSeg = iov_iter_single_seg_count(iter);
2307 while (!cbSeg) {
2308 iov_iter_advance(iter, 0);
2309 cbSeg = iov_iter_single_seg_count(iter);
2310 }
2311
2312# if RTLNX_VER_MIN(3,19,0)
2313 pbBuf = iter->kvec->iov_base + iter->iov_offset;
2314# else
2315 pbBuf = iter->iov->iov_base + iter->iov_offset;
2316# endif
2317 offStart = (uintptr_t)pbBuf & PAGE_OFFSET_MASK;
2318 if (!cPages)
2319 offPage0 = offStart;
2320 else if (offStart)
2321 break;
2322
2323 cPgSeg = RT_ALIGN_Z(cbSeg, PAGE_SIZE) >> PAGE_SHIFT;
2324 if (cPgSeg > cMaxPages) {
2325 cPgSeg = cMaxPages;
2326 cbSeg = (cPgSeg << PAGE_SHIFT) - offStart;
2327 }
2328
2329 rc = vbsf_lock_kernel_pages(pbBuf, fWrite, cPgSeg, &papPages[cPages]);
2330 if (rc == 0) {
2331 iov_iter_advance(iter, cbSeg);
2332 cbChunk += cbSeg;
2333 cPages += cPgSeg;
2334 cMaxPages -= cPgSeg;
2335 if ( cMaxPages == 0
2336 || ((offStart + cbSeg) & PAGE_OFFSET_MASK) != 0)
2337 break;
2338 } else
2339 break;
2340 } while (iov_iter_count(iter) > 0);
2341 }
2342
2343 /*
2344 * Clean up if we failed; set return values.
2345 */
2346 if (rc == 0) {
2347 /* likely */
2348 } else {
2349 if (cPages > 0)
2350 vbsf_iter_unlock_pages(iter, papPages, cPages, false /*fSetDirty*/);
2351 offPage0 = cbChunk = cPages = 0;
2352 }
2353 *poffPage0 = offPage0;
2354 *pcbChunk = cbChunk;
2355 *pcPages = cPages;
2356 SFLOGFLOW(("vbsf_iter_lock_pages: returns %d - cPages=%#zx offPage0=%#zx cbChunk=%zx\n", rc, cPages, offPage0, cbChunk));
2357 return rc;
2358}
2359
2360
2361/**
2362 * Rewinds the I/O vector.
2363 */
2364static bool vbsf_iter_rewind(struct iov_iter *iter, struct vbsf_iter_stash *pStash, size_t cbToRewind, size_t cbChunk)
2365{
2366 size_t cbExtra;
2367 if (!pStash->pPage) {
2368 cbExtra = 0;
2369 } else {
2370 cbExtra = pStash->cb;
2371 vbsf_put_page(pStash->pPage);
2372 pStash->pPage = NULL;
2373 pStash->cb = 0;
2374 pStash->off = 0;
2375 }
2376
2377# if RTLNX_VER_MIN(4,11,0) || RTLNX_VER_MAX(3,16,0)
2378 iov_iter_revert(iter, cbToRewind + cbExtra);
2379 return true;
2380# else
2381 /** @todo impl this */
2382 return false;
2383# endif
2384}
2385
2386
2387/**
2388 * Cleans up the page locking stash.
2389 */
2390DECLINLINE(void) vbsf_iter_cleanup_stash(struct iov_iter *iter, struct vbsf_iter_stash *pStash)
2391{
2392 if (pStash->pPage)
2393 vbsf_iter_rewind(iter, pStash, 0, 0);
2394}
2395
2396
2397/**
2398 * Calculates the longest span of pages we could transfer to the host in a
2399 * single request.
2400 *
2401 * @returns Page count, non-zero.
2402 * @param iter The I/O vector iterator to inspect.
2403 */
2404static size_t vbsf_iter_max_span_of_pages(struct iov_iter *iter)
2405{
2406 size_t cPages;
2407# if RTLNX_VER_MIN(3,16,0)
2408 if (iter_is_iovec(iter) || (VBSF_GET_ITER_TYPE(iter) & ITER_KVEC)) {
2409# endif
2410 const struct iovec *pCurIov = VBSF_GET_ITER_IOV(iter);
2411 size_t cLeft = iter->nr_segs;
2412 size_t cPagesSpan = 0;
2413
2414 /* iovect and kvec are identical, except for the __user tagging of iov_base. */
2415 AssertCompileMembersSameSizeAndOffset(struct iovec, iov_base, struct kvec, iov_base);
2416 AssertCompileMembersSameSizeAndOffset(struct iovec, iov_len, struct kvec, iov_len);
2417 AssertCompile(sizeof(struct iovec) == sizeof(struct kvec));
2418
2419 cPages = 1;
2420 AssertReturn(cLeft > 0, cPages);
2421
2422 /* Special case: segment offset. */
2423 if (iter->iov_offset > 0) {
2424 if (iter->iov_offset < pCurIov->iov_len) {
2425 size_t const cbSegLeft = pCurIov->iov_len - iter->iov_offset;
2426 size_t const offPage0 = ((uintptr_t)pCurIov->iov_base + iter->iov_offset) & PAGE_OFFSET_MASK;
2427 cPages = cPagesSpan = RT_ALIGN_Z(offPage0 + cbSegLeft, PAGE_SIZE) >> PAGE_SHIFT;
2428 if ((offPage0 + cbSegLeft) & PAGE_OFFSET_MASK)
2429 cPagesSpan = 0;
2430 }
2431 SFLOGFLOW(("vbsf_iter: seg[0]= %p LB %#zx\n", pCurIov->iov_base, pCurIov->iov_len));
2432 pCurIov++;
2433 cLeft--;
2434 }
2435
2436 /* Full segments. */
2437 while (cLeft-- > 0) {
2438 if (pCurIov->iov_len > 0) {
2439 size_t const offPage0 = (uintptr_t)pCurIov->iov_base & PAGE_OFFSET_MASK;
2440 if (offPage0 == 0) {
2441 if (!(pCurIov->iov_len & PAGE_OFFSET_MASK)) {
2442 cPagesSpan += pCurIov->iov_len >> PAGE_SHIFT;
2443 } else {
2444 cPagesSpan += RT_ALIGN_Z(pCurIov->iov_len, PAGE_SIZE) >> PAGE_SHIFT;
2445 if (cPagesSpan > cPages)
2446 cPages = cPagesSpan;
2447 cPagesSpan = 0;
2448 }
2449 } else {
2450 if (cPagesSpan > cPages)
2451 cPages = cPagesSpan;
2452 if (!((offPage0 + pCurIov->iov_len) & PAGE_OFFSET_MASK)) {
2453 cPagesSpan = pCurIov->iov_len >> PAGE_SHIFT;
2454 } else {
2455 cPagesSpan += RT_ALIGN_Z(offPage0 + pCurIov->iov_len, PAGE_SIZE) >> PAGE_SHIFT;
2456 if (cPagesSpan > cPages)
2457 cPages = cPagesSpan;
2458 cPagesSpan = 0;
2459 }
2460 }
2461 }
2462 SFLOGFLOW(("vbsf_iter: seg[%u]= %p LB %#zx\n", iter->nr_segs - cLeft, pCurIov->iov_base, pCurIov->iov_len));
2463 pCurIov++;
2464 }
2465 if (cPagesSpan > cPages)
2466 cPages = cPagesSpan;
2467# if RTLNX_VER_MIN(3,16,0)
2468 } else {
2469 /* Won't bother with accurate counts for the next two types, just make
2470 some rough estimates (does pipes have segments?): */
2471 size_t cSegs = VBSF_GET_ITER_TYPE(iter) & ITER_BVEC ? RT_MAX(1, iter->nr_segs) : 1;
2472 cPages = (iov_iter_count(iter) + (PAGE_SIZE * 2 - 2) * cSegs) >> PAGE_SHIFT;
2473 }
2474# endif
2475 SFLOGFLOW(("vbsf_iter_max_span_of_pages: returns %#zx\n", cPages));
2476 return cPages;
2477}
2478
2479
2480/**
2481 * Worker for vbsf_reg_read_iter() that deals with larger reads using page
2482 * locking.
2483 */
2484static ssize_t vbsf_reg_read_iter_locking(struct kiocb *kio, struct iov_iter *iter, size_t cbToRead,
2485 struct vbsf_super_info *pSuperInfo, struct vbsf_reg_info *sf_r)
2486{
2487 /*
2488 * Estimate how many pages we may possible submit in a single request so
2489 * that we can allocate matching request buffer and page array.
2490 */
2491 struct page *apPagesStack[16];
2492 struct page **papPages = &apPagesStack[0];
2493 struct page **papPagesFree = NULL;
2494 VBOXSFREADPGLSTREQ *pReq;
2495 ssize_t cbRet = 0;
2496 size_t cMaxPages = vbsf_iter_max_span_of_pages(iter);
2497 cMaxPages = RT_MIN(RT_MAX(pSuperInfo->cMaxIoPages, 2), cMaxPages);
2498
2499 pReq = (VBOXSFREADPGLSTREQ *)VbglR0PhysHeapAlloc(RT_UOFFSETOF_DYN(VBOXSFREADPGLSTREQ, PgLst.aPages[cMaxPages]));
2500 while (!pReq && cMaxPages > 4) {
2501 cMaxPages /= 2;
2502 pReq = (VBOXSFREADPGLSTREQ *)VbglR0PhysHeapAlloc(RT_UOFFSETOF_DYN(VBOXSFREADPGLSTREQ, PgLst.aPages[cMaxPages]));
2503 }
2504 if (pReq && cMaxPages > RT_ELEMENTS(apPagesStack))
2505 papPagesFree = papPages = kmalloc(cMaxPages * sizeof(sizeof(papPages[0])), GFP_KERNEL);
2506 if (pReq && papPages) {
2507
2508 /*
2509 * The read loop.
2510 */
2511 struct vbsf_iter_stash Stash = VBSF_ITER_STASH_INITIALIZER;
2512 do {
2513 /*
2514 * Grab as many pages as we can. This means that if adjacent
2515 * segments both starts and ends at a page boundrary, we can
2516 * do them both in the same transfer from the host.
2517 */
2518 size_t cPages = 0;
2519 size_t cbChunk = 0;
2520 size_t offPage0 = 0;
2521 int rc = vbsf_iter_lock_pages(iter, true /*fWrite*/, &Stash, cMaxPages, papPages, &cPages, &offPage0, &cbChunk);
2522 if (rc == 0) {
2523 size_t iPage = cPages;
2524 while (iPage-- > 0)
2525 pReq->PgLst.aPages[iPage] = page_to_phys(papPages[iPage]);
2526 pReq->PgLst.offFirstPage = (uint16_t)offPage0;
2527 AssertStmt(cbChunk <= cbToRead, cbChunk = cbToRead);
2528 } else {
2529 cbRet = rc;
2530 break;
2531 }
2532
2533 /*
2534 * Issue the request and unlock the pages.
2535 */
2536 rc = VbglR0SfHostReqReadPgLst(pSuperInfo->map.root, pReq, sf_r->Handle.hHost, kio->ki_pos, cbChunk, cPages);
2537 SFLOGFLOW(("vbsf_reg_read_iter_locking: VbglR0SfHostReqReadPgLst -> %d (cbActual=%#x cbChunk=%#zx of %#zx cPages=%#zx offPage0=%#x\n",
2538 rc, pReq->Parms.cb32Read.u.value32, cbChunk, cbToRead, cPages, offPage0));
2539
2540 vbsf_iter_unlock_pages(iter, papPages, cPages, true /*fSetDirty*/);
2541
2542 if (RT_SUCCESS(rc)) {
2543 /*
2544 * Success, advance position and buffer.
2545 */
2546 uint32_t cbActual = pReq->Parms.cb32Read.u.value32;
2547 AssertStmt(cbActual <= cbChunk, cbActual = cbChunk);
2548 cbRet += cbActual;
2549 kio->ki_pos += cbActual;
2550 cbToRead -= cbActual;
2551
2552 /*
2553 * Are we done already?
2554 */
2555 if (!cbToRead)
2556 break;
2557 if (cbActual < cbChunk) { /* We ASSUME end-of-file here. */
2558 if (vbsf_iter_rewind(iter, &Stash, cbChunk - cbActual, cbActual))
2559 iov_iter_truncate(iter, 0);
2560 break;
2561 }
2562 } else {
2563 /*
2564 * Try rewind the iter structure.
2565 */
2566 bool const fRewindOkay = vbsf_iter_rewind(iter, &Stash, cbChunk, cbChunk);
2567 if (rc == VERR_NO_MEMORY && cMaxPages > 4 && fRewindOkay) {
2568 /*
2569 * The host probably doesn't have enough heap to handle the
2570 * request, reduce the page count and retry.
2571 */
2572 cMaxPages /= 4;
2573 Assert(cMaxPages > 0);
2574 } else {
2575 /*
2576 * If we've successfully read stuff, return it rather than
2577 * the error. (Not sure if this is such a great idea...)
2578 */
2579 if (cbRet <= 0)
2580 cbRet = -EPROTO;
2581 break;
2582 }
2583 }
2584 } while (cbToRead > 0);
2585
2586 vbsf_iter_cleanup_stash(iter, &Stash);
2587 }
2588 else
2589 cbRet = -ENOMEM;
2590 if (papPagesFree)
2591 kfree(papPages);
2592 if (pReq)
2593 VbglR0PhysHeapFree(pReq);
2594 SFLOGFLOW(("vbsf_reg_read_iter_locking: returns %#zx (%zd)\n", cbRet, cbRet));
2595 return cbRet;
2596}
2597
2598
2599/**
2600 * Read into I/O vector iterator.
2601 *
2602 * @returns Number of bytes read on success, negative errno on error.
2603 * @param kio The kernel I/O control block (or something like that).
2604 * @param iter The I/O vector iterator describing the buffer.
2605 */
2606# if RTLNX_VER_MIN(3,16,0)
2607static ssize_t vbsf_reg_read_iter(struct kiocb *kio, struct iov_iter *iter)
2608# else
2609static ssize_t vbsf_reg_aio_read(struct kiocb *kio, const struct iovec *iov, unsigned long cSegs, loff_t offFile)
2610# endif
2611{
2612# if RTLNX_VER_MAX(3,16,0)
2613 struct vbsf_iov_iter fake_iter = VBSF_IOV_ITER_INITIALIZER(cSegs, iov, 0 /*write*/);
2614 struct vbsf_iov_iter *iter = &fake_iter;
2615# endif
2616 size_t cbToRead = iov_iter_count(iter);
2617 struct inode *inode = VBSF_GET_F_DENTRY(kio->ki_filp)->d_inode;
2618 struct address_space *mapping = inode->i_mapping;
2619
2620 struct vbsf_reg_info *sf_r = kio->ki_filp->private_data;
2621 struct vbsf_super_info *pSuperInfo = VBSF_GET_SUPER_INFO(inode->i_sb);
2622
2623 SFLOGFLOW(("vbsf_reg_read_iter: inode=%p file=%p size=%#zx off=%#llx type=%#x\n",
2624 inode, kio->ki_filp, cbToRead, kio->ki_pos, VBSF_GET_ITER_TYPE(iter) ));
2625 AssertReturn(S_ISREG(inode->i_mode), -EINVAL);
2626
2627 /*
2628 * Do we have anything at all to do here?
2629 */
2630 if (!cbToRead)
2631 return 0;
2632
2633 /*
2634 * If there is a mapping and O_DIRECT isn't in effect, we must at a
2635 * heed dirty pages in the mapping and read from them. For simplicity
2636 * though, we just do page cache reading when there are writable
2637 * mappings around with any kind of pages loaded.
2638 */
2639 if (vbsf_should_use_cached_read(kio->ki_filp, mapping, pSuperInfo)) {
2640# if RTLNX_VER_MIN(3,16,0)
2641 return generic_file_read_iter(kio, iter);
2642# else
2643 return generic_file_aio_read(kio, iov, cSegs, offFile);
2644# endif
2645 }
2646
2647 /*
2648 * Now now we reject async I/O requests.
2649 */
2650 if (!is_sync_kiocb(kio)) {
2651 SFLOGFLOW(("vbsf_reg_read_iter: async I/O not yet supported\n")); /** @todo extend FsPerf with AIO tests. */
2652 return -EOPNOTSUPP;
2653 }
2654
2655 /*
2656 * For small requests, try use an embedded buffer provided we get a heap block
2657 * that does not cross page boundraries (see host code).
2658 */
2659 if (cbToRead <= PAGE_SIZE / 4 * 3 - RT_UOFFSETOF(VBOXSFREADEMBEDDEDREQ, abData[0]) /* see allocator */) {
2660 uint32_t const cbReq = RT_UOFFSETOF(VBOXSFREADEMBEDDEDREQ, abData[0]) + cbToRead;
2661 VBOXSFREADEMBEDDEDREQ *pReq = (VBOXSFREADEMBEDDEDREQ *)VbglR0PhysHeapAlloc(cbReq);
2662 if (pReq) {
2663 if ((PAGE_SIZE - ((uintptr_t)pReq & PAGE_OFFSET_MASK)) >= cbReq) {
2664 ssize_t cbRet;
2665 int vrc = VbglR0SfHostReqReadEmbedded(pSuperInfo->map.root, pReq, sf_r->Handle.hHost,
2666 kio->ki_pos, (uint32_t)cbToRead);
2667 if (RT_SUCCESS(vrc)) {
2668 cbRet = pReq->Parms.cb32Read.u.value32;
2669 AssertStmt(cbRet <= (ssize_t)cbToRead, cbRet = cbToRead);
2670 if (copy_to_iter(pReq->abData, cbRet, iter) == cbRet) {
2671 kio->ki_pos += cbRet;
2672 if (cbRet < cbToRead)
2673 iov_iter_truncate(iter, 0);
2674 } else
2675 cbRet = -EFAULT;
2676 } else
2677 cbRet = -EPROTO;
2678 VbglR0PhysHeapFree(pReq);
2679 SFLOGFLOW(("vbsf_reg_read_iter: returns %#zx (%zd)\n", cbRet, cbRet));
2680 return cbRet;
2681 }
2682 VbglR0PhysHeapFree(pReq);
2683 }
2684 }
2685
2686 /*
2687 * Otherwise do the page locking thing.
2688 */
2689 return vbsf_reg_read_iter_locking(kio, iter, cbToRead, pSuperInfo, sf_r);
2690}
2691
2692
2693/**
2694 * Worker for vbsf_reg_write_iter() that deals with larger writes using page
2695 * locking.
2696 */
2697static ssize_t vbsf_reg_write_iter_locking(struct kiocb *kio, struct iov_iter *iter, size_t cbToWrite, loff_t offFile,
2698 struct vbsf_super_info *pSuperInfo, struct vbsf_reg_info *sf_r, struct inode *inode,
2699 struct vbsf_inode_info *sf_i, struct address_space *mapping, bool fAppend)
2700{
2701 /*
2702 * Estimate how many pages we may possible submit in a single request so
2703 * that we can allocate matching request buffer and page array.
2704 */
2705 struct page *apPagesStack[16];
2706 struct page **papPages = &apPagesStack[0];
2707 struct page **papPagesFree = NULL;
2708 VBOXSFWRITEPGLSTREQ *pReq;
2709 ssize_t cbRet = 0;
2710 size_t cMaxPages = vbsf_iter_max_span_of_pages(iter);
2711 cMaxPages = RT_MIN(RT_MAX(pSuperInfo->cMaxIoPages, 2), cMaxPages);
2712
2713 pReq = (VBOXSFWRITEPGLSTREQ *)VbglR0PhysHeapAlloc(RT_UOFFSETOF_DYN(VBOXSFWRITEPGLSTREQ, PgLst.aPages[cMaxPages]));
2714 while (!pReq && cMaxPages > 4) {
2715 cMaxPages /= 2;
2716 pReq = (VBOXSFWRITEPGLSTREQ *)VbglR0PhysHeapAlloc(RT_UOFFSETOF_DYN(VBOXSFWRITEPGLSTREQ, PgLst.aPages[cMaxPages]));
2717 }
2718 if (pReq && cMaxPages > RT_ELEMENTS(apPagesStack))
2719 papPagesFree = papPages = kmalloc(cMaxPages * sizeof(sizeof(papPages[0])), GFP_KERNEL);
2720 if (pReq && papPages) {
2721
2722 /*
2723 * The write loop.
2724 */
2725 struct vbsf_iter_stash Stash = VBSF_ITER_STASH_INITIALIZER;
2726 do {
2727 /*
2728 * Grab as many pages as we can. This means that if adjacent
2729 * segments both starts and ends at a page boundrary, we can
2730 * do them both in the same transfer from the host.
2731 */
2732 size_t cPages = 0;
2733 size_t cbChunk = 0;
2734 size_t offPage0 = 0;
2735 int rc = vbsf_iter_lock_pages(iter, false /*fWrite*/, &Stash, cMaxPages, papPages, &cPages, &offPage0, &cbChunk);
2736 if (rc == 0) {
2737 size_t iPage = cPages;
2738 while (iPage-- > 0)
2739 pReq->PgLst.aPages[iPage] = page_to_phys(papPages[iPage]);
2740 pReq->PgLst.offFirstPage = (uint16_t)offPage0;
2741 AssertStmt(cbChunk <= cbToWrite, cbChunk = cbToWrite);
2742 } else {
2743 cbRet = rc;
2744 break;
2745 }
2746
2747 /*
2748 * Issue the request and unlock the pages.
2749 */
2750 rc = VbglR0SfHostReqWritePgLst(pSuperInfo->map.root, pReq, sf_r->Handle.hHost, offFile, cbChunk, cPages);
2751 sf_i->ModificationTimeAtOurLastWrite = sf_i->ModificationTime;
2752 SFLOGFLOW(("vbsf_reg_write_iter_locking: VbglR0SfHostReqWritePgLst -> %d (cbActual=%#x cbChunk=%#zx of %#zx cPages=%#zx offPage0=%#x\n",
2753 rc, pReq->Parms.cb32Write.u.value32, cbChunk, cbToWrite, cPages, offPage0));
2754 if (RT_SUCCESS(rc)) {
2755 /*
2756 * Success, advance position and buffer.
2757 */
2758 uint32_t cbActual = pReq->Parms.cb32Write.u.value32;
2759 AssertStmt(cbActual <= cbChunk, cbActual = cbChunk);
2760
2761 vbsf_reg_write_sync_page_cache(mapping, offFile, cbActual, NULL /*pbSrcBuf*/, papPages, offPage0, cPages);
2762 vbsf_iter_unlock_pages(iter, papPages, cPages, false /*fSetDirty*/);
2763
2764 cbRet += cbActual;
2765 cbToWrite -= cbActual;
2766
2767 offFile += cbActual;
2768 if (fAppend && (g_fSfFeatures & SHFL_FEATURE_WRITE_UPDATES_OFFSET))
2769 offFile = pReq->Parms.off64Write.u.value64;
2770 kio->ki_pos = offFile;
2771 if (offFile > i_size_read(inode))
2772 i_size_write(inode, offFile);
2773
2774 sf_i->force_restat = 1; /* mtime (and size) may have changed */
2775
2776 /*
2777 * Are we done already?
2778 */
2779 if (!cbToWrite)
2780 break;
2781 if (cbActual < cbChunk) { /* We ASSUME end-of-file here. */
2782 if (vbsf_iter_rewind(iter, &Stash, cbChunk - cbActual, cbActual))
2783 iov_iter_truncate(iter, 0);
2784 break;
2785 }
2786 } else {
2787 /*
2788 * Try rewind the iter structure.
2789 */
2790 bool fRewindOkay;
2791 vbsf_iter_unlock_pages(iter, papPages, cPages, false /*fSetDirty*/);
2792 fRewindOkay = vbsf_iter_rewind(iter, &Stash, cbChunk, cbChunk);
2793 if (rc == VERR_NO_MEMORY && cMaxPages > 4 && fRewindOkay) {
2794 /*
2795 * The host probably doesn't have enough heap to handle the
2796 * request, reduce the page count and retry.
2797 */
2798 cMaxPages /= 4;
2799 Assert(cMaxPages > 0);
2800 } else {
2801 /*
2802 * If we've successfully written stuff, return it rather than
2803 * the error. (Not sure if this is such a great idea...)
2804 */
2805 if (cbRet <= 0)
2806 cbRet = -EPROTO;
2807 break;
2808 }
2809 }
2810 } while (cbToWrite > 0);
2811
2812 vbsf_iter_cleanup_stash(iter, &Stash);
2813 }
2814 else
2815 cbRet = -ENOMEM;
2816 if (papPagesFree)
2817 kfree(papPages);
2818 if (pReq)
2819 VbglR0PhysHeapFree(pReq);
2820 SFLOGFLOW(("vbsf_reg_write_iter_locking: returns %#zx (%zd)\n", cbRet, cbRet));
2821 return cbRet;
2822}
2823
2824
2825/**
2826 * Write from I/O vector iterator.
2827 *
2828 * @returns Number of bytes written on success, negative errno on error.
2829 * @param kio The kernel I/O control block (or something like that).
2830 * @param iter The I/O vector iterator describing the buffer.
2831 */
2832# if RTLNX_VER_MIN(3,16,0)
2833static ssize_t vbsf_reg_write_iter(struct kiocb *kio, struct iov_iter *iter)
2834# else
2835static ssize_t vbsf_reg_aio_write(struct kiocb *kio, const struct iovec *iov, unsigned long cSegs, loff_t offFile)
2836# endif
2837{
2838# if RTLNX_VER_MAX(3,16,0)
2839 struct vbsf_iov_iter fake_iter = VBSF_IOV_ITER_INITIALIZER(cSegs, iov, 1 /*write*/);
2840 struct vbsf_iov_iter *iter = &fake_iter;
2841# endif
2842 size_t cbToWrite = iov_iter_count(iter);
2843 struct inode *inode = VBSF_GET_F_DENTRY(kio->ki_filp)->d_inode;
2844 struct vbsf_inode_info *sf_i = VBSF_GET_INODE_INFO(inode);
2845 struct address_space *mapping = inode->i_mapping;
2846
2847 struct vbsf_reg_info *sf_r = kio->ki_filp->private_data;
2848 struct vbsf_super_info *pSuperInfo = VBSF_GET_SUPER_INFO(inode->i_sb);
2849# if RTLNX_VER_MIN(3,16,0)
2850 loff_t offFile = kio->ki_pos;
2851# endif
2852# if RTLNX_VER_MIN(4,1,0)
2853 bool const fAppend = RT_BOOL(kio->ki_flags & IOCB_APPEND);
2854# else
2855 bool const fAppend = RT_BOOL(kio->ki_filp->f_flags & O_APPEND);
2856# endif
2857
2858
2859 SFLOGFLOW(("vbsf_reg_write_iter: inode=%p file=%p size=%#zx off=%#llx type=%#x\n",
2860 inode, kio->ki_filp, cbToWrite, offFile, VBSF_GET_ITER_TYPE(iter) ));
2861 AssertReturn(S_ISREG(inode->i_mode), -EINVAL);
2862
2863 /*
2864 * Enforce APPEND flag (more later).
2865 */
2866 if (fAppend)
2867 kio->ki_pos = offFile = i_size_read(inode);
2868
2869 /*
2870 * Do we have anything at all to do here?
2871 */
2872 if (!cbToWrite)
2873 return 0;
2874
2875 /** @todo Implement the read-write caching mode. */
2876
2877 /*
2878 * Now now we reject async I/O requests.
2879 */
2880 if (!is_sync_kiocb(kio)) {
2881 SFLOGFLOW(("vbsf_reg_write_iter: async I/O not yet supported\n")); /** @todo extend FsPerf with AIO tests. */
2882 return -EOPNOTSUPP;
2883 }
2884
2885 /*
2886 * If there are active writable mappings, coordinate with any
2887 * pending writes via those.
2888 */
2889 if ( mapping
2890 && mapping->nrpages > 0
2891 && mapping_writably_mapped(mapping)) {
2892# if RTLNX_VER_MIN(2,6,32)
2893 int err = filemap_fdatawait_range(mapping, offFile, offFile + cbToWrite - 1);
2894 if (err)
2895 return err;
2896# else
2897 /** @todo ... */
2898# endif
2899 }
2900
2901 /*
2902 * For small requests, try use an embedded buffer provided we get a heap block
2903 * that does not cross page boundraries (see host code).
2904 */
2905 if (cbToWrite <= PAGE_SIZE / 4 * 3 - RT_UOFFSETOF(VBOXSFWRITEEMBEDDEDREQ, abData[0]) /* see allocator */) {
2906 uint32_t const cbReq = RT_UOFFSETOF(VBOXSFWRITEEMBEDDEDREQ, abData[0]) + cbToWrite;
2907 VBOXSFWRITEEMBEDDEDREQ *pReq = (VBOXSFWRITEEMBEDDEDREQ *)VbglR0PhysHeapAlloc(cbReq);
2908 if (pReq) {
2909 if ((PAGE_SIZE - ((uintptr_t)pReq & PAGE_OFFSET_MASK)) >= cbReq) {
2910 ssize_t cbRet;
2911 if (copy_from_iter(pReq->abData, cbToWrite, iter) == cbToWrite) {
2912 int vrc = VbglR0SfHostReqWriteEmbedded(pSuperInfo->map.root, pReq, sf_r->Handle.hHost,
2913 offFile, (uint32_t)cbToWrite);
2914 sf_i->ModificationTimeAtOurLastWrite = sf_i->ModificationTime;
2915 if (RT_SUCCESS(vrc)) {
2916 cbRet = pReq->Parms.cb32Write.u.value32;
2917 AssertStmt(cbRet <= (ssize_t)cbToWrite, cbRet = cbToWrite);
2918 vbsf_reg_write_sync_page_cache(mapping, offFile, (uint32_t)cbRet, pReq->abData,
2919 NULL /*papSrcPages*/, 0 /*offSrcPage0*/, 0 /*cSrcPages*/);
2920
2921 offFile += cbRet;
2922 if (fAppend && (g_fSfFeatures & SHFL_FEATURE_WRITE_UPDATES_OFFSET))
2923 offFile = pReq->Parms.off64Write.u.value64;
2924 kio->ki_pos = offFile;
2925 if (offFile > i_size_read(inode))
2926 i_size_write(inode, offFile);
2927
2928# if RTLNX_VER_MIN(4,11,0)
2929 if ((size_t)cbRet < cbToWrite)
2930 iov_iter_revert(iter, cbToWrite - cbRet);
2931# endif
2932 } else
2933 cbRet = -EPROTO;
2934 sf_i->force_restat = 1; /* mtime (and size) may have changed */
2935 } else
2936 cbRet = -EFAULT;
2937 VbglR0PhysHeapFree(pReq);
2938 SFLOGFLOW(("vbsf_reg_write_iter: returns %#zx (%zd)\n", cbRet, cbRet));
2939 return cbRet;
2940 }
2941 VbglR0PhysHeapFree(pReq);
2942 }
2943 }
2944
2945 /*
2946 * Otherwise do the page locking thing.
2947 */
2948 return vbsf_reg_write_iter_locking(kio, iter, cbToWrite, offFile, pSuperInfo, sf_r, inode, sf_i, mapping, fAppend);
2949}
2950
2951#endif /* >= 2.6.19 */
2952
2953/**
2954 * Used by vbsf_reg_open() and vbsf_inode_atomic_open() to
2955 *
2956 * @returns shared folders create flags.
2957 * @param fLnxOpen The linux O_XXX flags to convert.
2958 * @param pfHandle Pointer to vbsf_handle::fFlags.
2959 * @param pszCaller Caller, for logging purposes.
2960 */
2961uint32_t vbsf_linux_oflags_to_vbox(unsigned fLnxOpen, uint32_t *pfHandle, const char *pszCaller)
2962{
2963 uint32_t fVBoxFlags = SHFL_CF_ACCESS_DENYNONE;
2964
2965 /*
2966 * Disposition.
2967 */
2968 if (fLnxOpen & O_CREAT) {
2969 Log(("%s: O_CREAT set\n", pszCaller));
2970 fVBoxFlags |= SHFL_CF_ACT_CREATE_IF_NEW;
2971 if (fLnxOpen & O_EXCL) {
2972 Log(("%s: O_EXCL set\n", pszCaller));
2973 fVBoxFlags |= SHFL_CF_ACT_FAIL_IF_EXISTS;
2974 } else if (fLnxOpen & O_TRUNC) {
2975 Log(("%s: O_TRUNC set\n", pszCaller));
2976 fVBoxFlags |= SHFL_CF_ACT_OVERWRITE_IF_EXISTS;
2977 } else
2978 fVBoxFlags |= SHFL_CF_ACT_OPEN_IF_EXISTS;
2979 } else {
2980 fVBoxFlags |= SHFL_CF_ACT_FAIL_IF_NEW;
2981 if (fLnxOpen & O_TRUNC) {
2982 Log(("%s: O_TRUNC set\n", pszCaller));
2983 fVBoxFlags |= SHFL_CF_ACT_OVERWRITE_IF_EXISTS;
2984 }
2985 }
2986
2987 /*
2988 * Access.
2989 */
2990 switch (fLnxOpen & O_ACCMODE) {
2991 case O_RDONLY:
2992 fVBoxFlags |= SHFL_CF_ACCESS_READ;
2993 *pfHandle |= VBSF_HANDLE_F_READ;
2994 break;
2995
2996 case O_WRONLY:
2997 fVBoxFlags |= SHFL_CF_ACCESS_WRITE;
2998 *pfHandle |= VBSF_HANDLE_F_WRITE;
2999 break;
3000
3001 case O_RDWR:
3002 fVBoxFlags |= SHFL_CF_ACCESS_READWRITE;
3003 *pfHandle |= VBSF_HANDLE_F_READ | VBSF_HANDLE_F_WRITE;
3004 break;
3005
3006 default:
3007 BUG();
3008 }
3009
3010 if (fLnxOpen & O_APPEND) {
3011 Log(("%s: O_APPEND set\n", pszCaller));
3012 fVBoxFlags |= SHFL_CF_ACCESS_APPEND;
3013 *pfHandle |= VBSF_HANDLE_F_APPEND;
3014 }
3015
3016 /*
3017 * Only directories?
3018 */
3019 if (fLnxOpen & O_DIRECTORY) {
3020 Log(("%s: O_DIRECTORY set\n", pszCaller));
3021 fVBoxFlags |= SHFL_CF_DIRECTORY;
3022 }
3023
3024 return fVBoxFlags;
3025}
3026
3027
3028/**
3029 * Open a regular file.
3030 *
3031 * @param inode the inode
3032 * @param file the file
3033 * @returns 0 on success, Linux error code otherwise
3034 */
3035static int vbsf_reg_open(struct inode *inode, struct file *file)
3036{
3037 int rc, rc_linux = 0;
3038 struct vbsf_super_info *pSuperInfo = VBSF_GET_SUPER_INFO(inode->i_sb);
3039 struct vbsf_inode_info *sf_i = VBSF_GET_INODE_INFO(inode);
3040 struct dentry *dentry = VBSF_GET_F_DENTRY(file);
3041 struct vbsf_reg_info *sf_r;
3042 VBOXSFCREATEREQ *pReq;
3043
3044 SFLOGFLOW(("vbsf_reg_open: inode=%p file=%p flags=%#x %s\n", inode, file, file->f_flags, sf_i ? sf_i->path->String.ach : NULL));
3045 Assert(pSuperInfo);
3046 Assert(sf_i);
3047
3048 sf_r = kmalloc(sizeof(*sf_r), GFP_KERNEL);
3049 if (!sf_r) {
3050 LogRelFunc(("could not allocate reg info\n"));
3051 return -ENOMEM;
3052 }
3053
3054 RTListInit(&sf_r->Handle.Entry);
3055 sf_r->Handle.cRefs = 1;
3056 sf_r->Handle.fFlags = VBSF_HANDLE_F_FILE | VBSF_HANDLE_F_MAGIC;
3057 sf_r->Handle.hHost = SHFL_HANDLE_NIL;
3058
3059 /* Already open? */
3060 if (sf_i->handle != SHFL_HANDLE_NIL) {
3061 /*
3062 * This inode was created with vbsf_create_worker(). Check the CreateFlags:
3063 * O_CREAT, O_TRUNC: inherent true (file was just created). Not sure
3064 * about the access flags (SHFL_CF_ACCESS_*).
3065 */
3066 sf_i->force_restat = 1;
3067 sf_r->Handle.hHost = sf_i->handle;
3068 sf_i->handle = SHFL_HANDLE_NIL;
3069 file->private_data = sf_r;
3070
3071 sf_r->Handle.fFlags |= VBSF_HANDLE_F_READ | VBSF_HANDLE_F_WRITE; /** @todo fix */
3072 vbsf_handle_append(sf_i, &sf_r->Handle);
3073 SFLOGFLOW(("vbsf_reg_open: returns 0 (#1) - sf_i=%p hHost=%#llx\n", sf_i, sf_r->Handle.hHost));
3074 return 0;
3075 }
3076
3077 pReq = (VBOXSFCREATEREQ *)VbglR0PhysHeapAlloc(sizeof(*pReq) + sf_i->path->u16Size);
3078 if (!pReq) {
3079 kfree(sf_r);
3080 LogRelFunc(("Failed to allocate a VBOXSFCREATEREQ buffer!\n"));
3081 return -ENOMEM;
3082 }
3083 VBSF_UNFORTIFIED_MEMCPY(&pReq->StrPath, sf_i->path, SHFLSTRING_HEADER_SIZE + sf_i->path->u16Size);
3084 RT_ZERO(pReq->CreateParms);
3085 pReq->CreateParms.Handle = SHFL_HANDLE_NIL;
3086
3087 /* We check the value of pReq->CreateParms.Handle afterwards to
3088 * find out if the call succeeded or failed, as the API does not seem
3089 * to cleanly distinguish error and informational messages.
3090 *
3091 * Furthermore, we must set pReq->CreateParms.Handle to SHFL_HANDLE_NIL
3092 * to make the shared folders host service use our fMode parameter */
3093
3094 /* We ignore O_EXCL, as the Linux kernel seems to call create
3095 beforehand itself, so O_EXCL should always fail. */
3096 pReq->CreateParms.CreateFlags = vbsf_linux_oflags_to_vbox(file->f_flags & ~O_EXCL, &sf_r->Handle.fFlags, __FUNCTION__);
3097 pReq->CreateParms.Info.Attr.fMode = inode->i_mode;
3098 LogFunc(("vbsf_reg_open: calling VbglR0SfHostReqCreate, file %s, flags=%#x, %#x\n",
3099 sf_i->path->String.utf8, file->f_flags, pReq->CreateParms.CreateFlags));
3100 rc = VbglR0SfHostReqCreate(pSuperInfo->map.root, pReq);
3101 if (RT_FAILURE(rc)) {
3102 LogFunc(("VbglR0SfHostReqCreate failed flags=%d,%#x rc=%Rrc\n", file->f_flags, pReq->CreateParms.CreateFlags, rc));
3103 kfree(sf_r);
3104 VbglR0PhysHeapFree(pReq);
3105 return -RTErrConvertToErrno(rc);
3106 }
3107
3108 if (pReq->CreateParms.Handle != SHFL_HANDLE_NIL) {
3109 vbsf_dentry_chain_increase_ttl(dentry);
3110 vbsf_update_inode(inode, sf_i, &pReq->CreateParms.Info, pSuperInfo, false /*fInodeLocked*/, 0 /*fSetAttrs*/);
3111 rc_linux = 0;
3112 } else {
3113 switch (pReq->CreateParms.Result) {
3114 case SHFL_PATH_NOT_FOUND:
3115 vbsf_dentry_invalidate_ttl(dentry);
3116 rc_linux = -ENOENT;
3117 break;
3118 case SHFL_FILE_NOT_FOUND:
3119 vbsf_dentry_invalidate_ttl(dentry);
3120 /** @todo sf_dentry_increase_parent_ttl(file->f_dentry); if we can trust it. */
3121 rc_linux = -ENOENT;
3122 break;
3123 case SHFL_FILE_EXISTS:
3124 vbsf_dentry_chain_increase_ttl(dentry);
3125 vbsf_update_inode(inode, sf_i, &pReq->CreateParms.Info, pSuperInfo, false /*fInodeLocked*/, 0 /*fSetAttrs*/);
3126 rc_linux = -EEXIST;
3127 break;
3128 default:
3129 vbsf_dentry_chain_increase_parent_ttl(dentry);
3130 rc_linux = 0;
3131 break;
3132 }
3133 }
3134
3135 sf_r->Handle.hHost = pReq->CreateParms.Handle;
3136 file->private_data = sf_r;
3137 vbsf_handle_append(sf_i, &sf_r->Handle);
3138 VbglR0PhysHeapFree(pReq);
3139 SFLOGFLOW(("vbsf_reg_open: returns 0 (#2) - sf_i=%p hHost=%#llx\n", sf_i, sf_r->Handle.hHost));
3140 return rc_linux;
3141}
3142
3143
3144/**
3145 * Close a regular file.
3146 *
3147 * @param inode the inode
3148 * @param file the file
3149 * @returns 0 on success, Linux error code otherwise
3150 */
3151static int vbsf_reg_release(struct inode *inode, struct file *file)
3152{
3153 struct vbsf_inode_info *sf_i = VBSF_GET_INODE_INFO(inode);
3154 struct vbsf_reg_info *sf_r = file->private_data;
3155
3156 SFLOGFLOW(("vbsf_reg_release: inode=%p file=%p\n", inode, file));
3157 if (sf_r) {
3158 struct vbsf_super_info *pSuperInfo = VBSF_GET_SUPER_INFO(inode->i_sb);
3159 struct address_space *mapping = inode->i_mapping;
3160 Assert(pSuperInfo);
3161
3162 /* If we're closing the last handle for this inode, make sure the flush
3163 the mapping or we'll end up in vbsf_writepage without a handle. */
3164 if ( mapping
3165 && mapping->nrpages > 0
3166 /** @todo && last writable handle */ ) {
3167#if RTLNX_VER_MIN(2,4,25)
3168 if (filemap_fdatawrite(mapping) != -EIO)
3169#else
3170 if ( filemap_fdatasync(mapping) == 0
3171 && fsync_inode_data_buffers(inode) == 0)
3172#endif
3173 filemap_fdatawait(inode->i_mapping);
3174 }
3175
3176 /* Release sf_r, closing the handle if we're the last user. */
3177 file->private_data = NULL;
3178 vbsf_handle_release(&sf_r->Handle, pSuperInfo, "vbsf_reg_release");
3179
3180 sf_i->handle = SHFL_HANDLE_NIL;
3181 }
3182 return 0;
3183}
3184
3185
3186/**
3187 * Wrapper around generic/default seek function that ensures that we've got
3188 * the up-to-date file size when doing anything relative to EOF.
3189 *
3190 * The issue is that the host may extend the file while we weren't looking and
3191 * if the caller wishes to append data, it may end up overwriting existing data
3192 * if we operate with a stale size. So, we always retrieve the file size on EOF
3193 * relative seeks.
3194 */
3195static loff_t vbsf_reg_llseek(struct file *file, loff_t off, int whence)
3196{
3197 SFLOGFLOW(("vbsf_reg_llseek: file=%p off=%lld whence=%d\n", file, off, whence));
3198
3199 switch (whence) {
3200#ifdef SEEK_HOLE
3201 case SEEK_HOLE:
3202 case SEEK_DATA:
3203#endif
3204 case SEEK_END: {
3205 struct vbsf_reg_info *sf_r = file->private_data;
3206 int rc = vbsf_inode_revalidate_with_handle(VBSF_GET_F_DENTRY(file), sf_r->Handle.hHost,
3207 true /*fForce*/, false /*fInodeLocked*/);
3208 if (rc == 0)
3209 break;
3210 return rc;
3211 }
3212 }
3213
3214#if RTLNX_VER_MIN(2,4,8)
3215 return generic_file_llseek(file, off, whence);
3216#else
3217 return default_llseek(file, off, whence);
3218#endif
3219}
3220
3221
3222/**
3223 * Flush region of file - chiefly mmap/msync.
3224 *
3225 * We cannot use the noop_fsync / simple_sync_file here as that means
3226 * msync(,,MS_SYNC) will return before the data hits the host, thereby
3227 * causing coherency issues with O_DIRECT access to the same file as
3228 * well as any host interaction with the file.
3229 */
3230#if RTLNX_VER_MIN(3,1,0) \
3231 || (defined(CONFIG_SUSE_KERNEL) && RTLNX_VER_MIN(3,0,101) /** @todo figure when exactly */)
3232static int vbsf_reg_fsync(struct file *file, loff_t start, loff_t end, int datasync)
3233{
3234# if RTLNX_VER_MIN(3,16,0)
3235 return __generic_file_fsync(file, start, end, datasync);
3236# else
3237 return generic_file_fsync(file, start, end, datasync);
3238# endif
3239}
3240#elif RTLNX_VER_MIN(2,6,35)
3241static int vbsf_reg_fsync(struct file *file, int datasync)
3242{
3243 return generic_file_fsync(file, datasync);
3244}
3245#else /* < 2.6.35 */
3246static int vbsf_reg_fsync(struct file *file, struct dentry *dentry, int datasync)
3247{
3248# if RTLNX_VER_MIN(2,6,31)
3249 return simple_fsync(file, dentry, datasync);
3250# else
3251 int rc;
3252 struct inode *inode = dentry->d_inode;
3253 AssertReturn(inode, -EINVAL);
3254
3255 /** @todo What about file_fsync()? (<= 2.5.11) */
3256
3257# if RTLNX_VER_MIN(2,5,12)
3258 rc = sync_mapping_buffers(inode->i_mapping);
3259 if ( rc == 0
3260 && (inode->i_state & I_DIRTY)
3261 && ((inode->i_state & I_DIRTY_DATASYNC) || !datasync)
3262 ) {
3263 struct writeback_control wbc = {
3264 .sync_mode = WB_SYNC_ALL,
3265 .nr_to_write = 0
3266 };
3267 rc = sync_inode(inode, &wbc);
3268 }
3269# else /* < 2.5.12 */
3270 /** @todo
3271 * Somethings is buggy here or in the 2.4.21-27.EL kernel I'm testing on.
3272 *
3273 * In theory we shouldn't need to do anything here, since msync will call
3274 * writepage() on each dirty page and we write them out synchronously. So, the
3275 * problem is elsewhere... Doesn't happen all the time either. Sigh.
3276 */
3277 rc = fsync_inode_buffers(inode);
3278# if RTLNX_VER_MIN(2,4,10)
3279 if (rc == 0 && datasync)
3280 rc = fsync_inode_data_buffers(inode);
3281# endif
3282
3283# endif /* < 2.5.12 */
3284 return rc;
3285# endif
3286}
3287#endif /* < 2.6.35 */
3288
3289
3290#if RTLNX_VER_MIN(4,5,0)
3291/**
3292 * Copy a datablock from one file to another on the host side.
3293 */
3294static ssize_t vbsf_reg_copy_file_range(struct file *pFileSrc, loff_t offSrc, struct file *pFileDst, loff_t offDst,
3295 size_t cbRange, unsigned int fFlags)
3296{
3297 ssize_t cbRet;
3298 if (g_uSfLastFunction >= SHFL_FN_COPY_FILE_PART) {
3299 struct inode *pInodeSrc = pFileSrc->f_inode;
3300 struct vbsf_inode_info *pInodeInfoSrc = VBSF_GET_INODE_INFO(pInodeSrc);
3301 struct vbsf_super_info *pSuperInfoSrc = VBSF_GET_SUPER_INFO(pInodeSrc->i_sb);
3302 struct vbsf_reg_info *pFileInfoSrc = (struct vbsf_reg_info *)pFileSrc->private_data;
3303 struct inode *pInodeDst = pInodeSrc;
3304 struct vbsf_inode_info *pInodeInfoDst = VBSF_GET_INODE_INFO(pInodeDst);
3305 struct vbsf_super_info *pSuperInfoDst = VBSF_GET_SUPER_INFO(pInodeDst->i_sb);
3306 struct vbsf_reg_info *pFileInfoDst = (struct vbsf_reg_info *)pFileDst->private_data;
3307 VBOXSFCOPYFILEPARTREQ *pReq;
3308
3309 /*
3310 * Some extra validation.
3311 */
3312 AssertPtrReturn(pInodeInfoSrc, -EOPNOTSUPP);
3313 Assert(pInodeInfoSrc->u32Magic == SF_INODE_INFO_MAGIC);
3314 AssertPtrReturn(pInodeInfoDst, -EOPNOTSUPP);
3315 Assert(pInodeInfoDst->u32Magic == SF_INODE_INFO_MAGIC);
3316
3317# if RTLNX_VER_MAX(4,11,0)
3318 if (!S_ISREG(pInodeSrc->i_mode) || !S_ISREG(pInodeDst->i_mode))
3319 return S_ISDIR(pInodeSrc->i_mode) || S_ISDIR(pInodeDst->i_mode) ? -EISDIR : -EINVAL;
3320# endif
3321
3322 /*
3323 * Allocate the request and issue it.
3324 */
3325 pReq = (VBOXSFCOPYFILEPARTREQ *)VbglR0PhysHeapAlloc(sizeof(*pReq));
3326 if (pReq) {
3327 int vrc = VbglR0SfHostReqCopyFilePart(pSuperInfoSrc->map.root, pFileInfoSrc->Handle.hHost, offSrc,
3328 pSuperInfoDst->map.root, pFileInfoDst->Handle.hHost, offDst,
3329 cbRange, 0 /*fFlags*/, pReq);
3330 if (RT_SUCCESS(vrc))
3331 cbRet = pReq->Parms.cb64ToCopy.u.value64;
3332 else if (vrc == VERR_NOT_IMPLEMENTED)
3333 cbRet = -EOPNOTSUPP;
3334 else
3335 cbRet = -RTErrConvertToErrno(vrc);
3336
3337 VbglR0PhysHeapFree(pReq);
3338 } else
3339 cbRet = -ENOMEM;
3340 } else {
3341 cbRet = -EOPNOTSUPP;
3342 }
3343 SFLOGFLOW(("vbsf_reg_copy_file_range: returns %zd\n", cbRet));
3344 return cbRet;
3345}
3346#endif /* > 4.5 */
3347
3348
3349#ifdef SFLOG_ENABLED
3350/*
3351 * This is just for logging page faults and such.
3352 */
3353
3354/** Pointer to the ops generic_file_mmap returns the first time it's called. */
3355static struct vm_operations_struct const *g_pGenericFileVmOps = NULL;
3356/** Merge of g_LoggingVmOpsTemplate and g_pGenericFileVmOps. */
3357static struct vm_operations_struct g_LoggingVmOps;
3358
3359
3360/* Generic page fault callback: */
3361# if RTLNX_VER_MIN(4,11,0)
3362static vm_fault_t vbsf_vmlog_fault(struct vm_fault *vmf)
3363{
3364 vm_fault_t rc;
3365 SFLOGFLOW(("vbsf_vmlog_fault: vmf=%p flags=%#x addr=%p\n", vmf, vmf->flags, vmf->address));
3366 rc = g_pGenericFileVmOps->fault(vmf);
3367 SFLOGFLOW(("vbsf_vmlog_fault: returns %d\n", rc));
3368 return rc;
3369}
3370# elif RTLNX_VER_MIN(2,6,23)
3371static int vbsf_vmlog_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3372{
3373 int rc;
3374# if RTLNX_VER_MIN(4,10,0)
3375 SFLOGFLOW(("vbsf_vmlog_fault: vma=%p vmf=%p flags=%#x addr=%p\n", vma, vmf, vmf->flags, vmf->address));
3376# else
3377 SFLOGFLOW(("vbsf_vmlog_fault: vma=%p vmf=%p flags=%#x addr=%p\n", vma, vmf, vmf->flags, vmf->virtual_address));
3378# endif
3379 rc = g_pGenericFileVmOps->fault(vma, vmf);
3380 SFLOGFLOW(("vbsf_vmlog_fault: returns %d\n", rc));
3381 return rc;
3382}
3383# endif
3384
3385
3386/* Special/generic page fault handler: */
3387# if RTLNX_VER_MIN(2,6,26)
3388# elif RTLNX_VER_MIN(2,6,1)
3389static struct page *vbsf_vmlog_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
3390{
3391 struct page *page;
3392 SFLOGFLOW(("vbsf_vmlog_nopage: vma=%p address=%p type=%p:{%#x}\n", vma, address, type, type ? *type : 0));
3393 page = g_pGenericFileVmOps->nopage(vma, address, type);
3394 SFLOGFLOW(("vbsf_vmlog_nopage: returns %p\n", page));
3395 return page;
3396}
3397# else
3398static struct page *vbsf_vmlog_nopage(struct vm_area_struct *vma, unsigned long address, int write_access_or_unused)
3399{
3400 struct page *page;
3401 SFLOGFLOW(("vbsf_vmlog_nopage: vma=%p address=%p wau=%d\n", vma, address, write_access_or_unused));
3402 page = g_pGenericFileVmOps->nopage(vma, address, write_access_or_unused);
3403 SFLOGFLOW(("vbsf_vmlog_nopage: returns %p\n", page));
3404 return page;
3405}
3406# endif /* < 2.6.26 */
3407
3408
3409/* Special page fault callback for making something writable: */
3410# if RTLNX_VER_MIN(4,11,0)
3411static vm_fault_t vbsf_vmlog_page_mkwrite(struct vm_fault *vmf)
3412{
3413 vm_fault_t rc;
3414 SFLOGFLOW(("vbsf_vmlog_page_mkwrite: vmf=%p flags=%#x addr=%p\n", vmf, vmf->flags, vmf->address));
3415 rc = g_pGenericFileVmOps->page_mkwrite(vmf);
3416 SFLOGFLOW(("vbsf_vmlog_page_mkwrite: returns %d\n", rc));
3417 return rc;
3418}
3419# elif RTLNX_VER_MIN(2,6,30)
3420static int vbsf_vmlog_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
3421{
3422 int rc;
3423# if RTLNX_VER_MIN(4,10,0)
3424 SFLOGFLOW(("vbsf_vmlog_page_mkwrite: vma=%p vmf=%p flags=%#x addr=%p\n", vma, vmf, vmf->flags, vmf->address));
3425# else
3426 SFLOGFLOW(("vbsf_vmlog_page_mkwrite: vma=%p vmf=%p flags=%#x addr=%p\n", vma, vmf, vmf->flags, vmf->virtual_address));
3427# endif
3428 rc = g_pGenericFileVmOps->page_mkwrite(vma, vmf);
3429 SFLOGFLOW(("vbsf_vmlog_page_mkwrite: returns %d\n", rc));
3430 return rc;
3431}
3432# elif RTLNX_VER_MIN(2,6,18)
3433static int vbsf_vmlog_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3434{
3435 int rc;
3436 SFLOGFLOW(("vbsf_vmlog_page_mkwrite: vma=%p page=%p\n", vma, page));
3437 rc = g_pGenericFileVmOps->page_mkwrite(vma, page);
3438 SFLOGFLOW(("vbsf_vmlog_page_mkwrite: returns %d\n", rc));
3439 return rc;
3440}
3441# endif
3442
3443
3444/* Special page fault callback for mapping pages: */
3445# if RTLNX_VER_MIN(5,12,0)
3446static vm_fault_t vbsf_vmlog_map_pages(struct vm_fault *vmf, pgoff_t start, pgoff_t end)
3447{
3448 vm_fault_t rc;
3449 SFLOGFLOW(("vbsf_vmlog_map_pages: vmf=%p (flags=%#x addr=%p) start=%p end=%p\n", vmf, vmf->flags, vmf->address, start, end));
3450 rc = g_pGenericFileVmOps->map_pages(vmf, start, end);
3451 SFLOGFLOW(("vbsf_vmlog_map_pages: returns\n"));
3452 return rc;
3453}
3454# elif RTLNX_VER_MIN(4,10,0)
3455static void vbsf_vmlog_map_pages(struct vm_fault *vmf, pgoff_t start, pgoff_t end)
3456{
3457 SFLOGFLOW(("vbsf_vmlog_map_pages: vmf=%p (flags=%#x addr=%p) start=%p end=%p\n", vmf, vmf->flags, vmf->address, start, end));
3458 g_pGenericFileVmOps->map_pages(vmf, start, end);
3459 SFLOGFLOW(("vbsf_vmlog_map_pages: returns\n"));
3460}
3461# elif RTLNX_VER_MIN(4,8,0)
3462static void vbsf_vmlog_map_pages(struct fault_env *fenv, pgoff_t start, pgoff_t end)
3463{
3464 SFLOGFLOW(("vbsf_vmlog_map_pages: fenv=%p (flags=%#x addr=%p) start=%p end=%p\n", fenv, fenv->flags, fenv->address, start, end));
3465 g_pGenericFileVmOps->map_pages(fenv, start, end);
3466 SFLOGFLOW(("vbsf_vmlog_map_pages: returns\n"));
3467}
3468# elif RTLNX_VER_MIN(3,15,0)
3469static void vbsf_vmlog_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
3470{
3471 SFLOGFLOW(("vbsf_vmlog_map_pages: vma=%p vmf=%p (flags=%#x addr=%p)\n", vma, vmf, vmf->flags, vmf->virtual_address));
3472 g_pGenericFileVmOps->map_pages(vma, vmf);
3473 SFLOGFLOW(("vbsf_vmlog_map_pages: returns\n"));
3474}
3475# endif
3476
3477
3478/** Overload template. */
3479static struct vm_operations_struct const g_LoggingVmOpsTemplate = {
3480# if RTLNX_VER_MIN(2,6,23)
3481 .fault = vbsf_vmlog_fault,
3482# endif
3483# if RTLNX_VER_MAX(2,6,26)
3484 .nopage = vbsf_vmlog_nopage,
3485# endif
3486# if RTLNX_VER_MIN(2,6,18)
3487 .page_mkwrite = vbsf_vmlog_page_mkwrite,
3488# endif
3489# if RTLNX_VER_MIN(3,15,0)
3490 .map_pages = vbsf_vmlog_map_pages,
3491# endif
3492};
3493
3494/** file_operations::mmap wrapper for logging purposes. */
3495extern int vbsf_reg_mmap(struct file *file, struct vm_area_struct *vma)
3496{
3497 int rc;
3498 SFLOGFLOW(("vbsf_reg_mmap: file=%p vma=%p\n", file, vma));
3499 rc = generic_file_mmap(file, vma);
3500 if (rc == 0) {
3501 /* Merge the ops and template the first time thru (there's a race here). */
3502 if (g_pGenericFileVmOps == NULL) {
3503 uintptr_t const *puSrc1 = (uintptr_t *)vma->vm_ops;
3504 uintptr_t const *puSrc2 = (uintptr_t *)&g_LoggingVmOpsTemplate;
3505 uintptr_t volatile *puDst = (uintptr_t *)&g_LoggingVmOps;
3506 size_t cbLeft = sizeof(g_LoggingVmOps) / sizeof(*puDst);
3507 while (cbLeft-- > 0) {
3508 *puDst = *puSrc2 && *puSrc1 ? *puSrc2 : *puSrc1;
3509 puSrc1++;
3510 puSrc2++;
3511 puDst++;
3512 }
3513 g_pGenericFileVmOps = vma->vm_ops;
3514 vma->vm_ops = &g_LoggingVmOps;
3515 } else if (g_pGenericFileVmOps == vma->vm_ops)
3516 vma->vm_ops = &g_LoggingVmOps;
3517 else
3518 SFLOGFLOW(("vbsf_reg_mmap: Warning: vm_ops=%p, expected %p!\n", vma->vm_ops, g_pGenericFileVmOps));
3519 }
3520 SFLOGFLOW(("vbsf_reg_mmap: returns %d\n", rc));
3521 return rc;
3522}
3523
3524#endif /* SFLOG_ENABLED */
3525
3526
3527/**
3528 * File operations for regular files.
3529 *
3530 * Note on splice_read/splice_write/sendfile:
3531 * - Splice was introduced in 2.6.17. The generic_file_splice_read/write
3532 * methods go thru the page cache, which is undesirable and is why we
3533 * need to cook our own versions of the code as long as we cannot track
3534 * host-side writes and correctly invalidate the guest page-cache.
3535 * - Sendfile reimplemented using splice in 2.6.23.
3536 * - The default_file_splice_read/write no-page-cache fallback functions,
3537 * were introduced in 2.6.31. The write one work in page units.
3538 * - Since linux 3.16 there is iter_file_splice_write that uses iter_write.
3539 * - Since linux 4.9 the generic_file_splice_read function started using
3540 * read_iter.
3541 */
3542struct file_operations vbsf_reg_fops = {
3543 .open = vbsf_reg_open,
3544#if RTLNX_VER_MAX(5,10,0) /* No regular .read/.write for 5.10, only .read_iter/.write_iter or in-kernel reads/writes fail. */
3545 .read = vbsf_reg_read,
3546 .write = vbsf_reg_write,
3547#endif
3548#if RTLNX_VER_MIN(3,16,0)
3549 .read_iter = vbsf_reg_read_iter,
3550 .write_iter = vbsf_reg_write_iter,
3551#elif RTLNX_VER_MIN(2,6,19)
3552 .aio_read = vbsf_reg_aio_read,
3553 .aio_write = vbsf_reg_aio_write,
3554#endif
3555 .release = vbsf_reg_release,
3556#ifdef SFLOG_ENABLED
3557 .mmap = vbsf_reg_mmap,
3558#else
3559 .mmap = generic_file_mmap,
3560#endif
3561#if RTLNX_VER_RANGE(2,6,17, 2,6,31)
3562 .splice_read = vbsf_splice_read,
3563#endif
3564#if RTLNX_VER_MIN(3,16,0)
3565 .splice_write = iter_file_splice_write,
3566#elif RTLNX_VER_MIN(2,6,17)
3567 .splice_write = vbsf_splice_write,
3568#endif
3569#if RTLNX_VER_RANGE(2,5,30, 2,6,23)
3570 .sendfile = vbsf_reg_sendfile,
3571#endif
3572 .llseek = vbsf_reg_llseek,
3573 .fsync = vbsf_reg_fsync,
3574#if RTLNX_VER_MIN(4,5,0)
3575 .copy_file_range = vbsf_reg_copy_file_range,
3576#endif
3577};
3578
3579
3580/**
3581 * Inodes operations for regular files.
3582 */
3583struct inode_operations vbsf_reg_iops = {
3584#if RTLNX_VER_MIN(2,5,18)
3585 .getattr = vbsf_inode_getattr,
3586#else
3587 .revalidate = vbsf_inode_revalidate,
3588#endif
3589 .setattr = vbsf_inode_setattr,
3590};
3591
3592
3593
3594/*********************************************************************************************************************************
3595* Address Space Operations on Regular Files (for mmap, sendfile, direct I/O) *
3596*********************************************************************************************************************************/
3597
3598/**
3599 * Used to read the content of a page into the page cache.
3600 *
3601 * Needed for mmap and reads+writes when the file is mmapped in a
3602 * shared+writeable fashion.
3603 */
3604#if RTLNX_VER_MIN(5,19,0)|| RTLNX_RHEL_RANGE(9,3, 9,99)
3605static int vbsf_read_folio(struct file *file, struct folio *folio)
3606{
3607 struct page *page = &folio->page;
3608#else
3609static int vbsf_readpage(struct file *file, struct page *page)
3610{
3611#endif
3612 struct inode *inode = VBSF_GET_F_DENTRY(file)->d_inode;
3613 int err;
3614
3615 SFLOGFLOW(("vbsf_readpage: inode=%p file=%p page=%p off=%#llx\n", inode, file, page, (uint64_t)page->index << PAGE_SHIFT));
3616 Assert(PageLocked(page));
3617
3618 if (PageUptodate(page)) {
3619 unlock_page(page);
3620 return 0;
3621 }
3622
3623 if (!is_bad_inode(inode)) {
3624 VBOXSFREADPGLSTREQ *pReq = (VBOXSFREADPGLSTREQ *)VbglR0PhysHeapAlloc(sizeof(*pReq));
3625 if (pReq) {
3626 struct vbsf_super_info *pSuperInfo = VBSF_GET_SUPER_INFO(inode->i_sb);
3627 struct vbsf_reg_info *sf_r = file->private_data;
3628 uint32_t cbRead;
3629 int vrc;
3630
3631 pReq->PgLst.offFirstPage = 0;
3632 pReq->PgLst.aPages[0] = page_to_phys(page);
3633 vrc = VbglR0SfHostReqReadPgLst(pSuperInfo->map.root,
3634 pReq,
3635 sf_r->Handle.hHost,
3636 (uint64_t)page->index << PAGE_SHIFT,
3637 PAGE_SIZE,
3638 1 /*cPages*/);
3639
3640 cbRead = pReq->Parms.cb32Read.u.value32;
3641 AssertStmt(cbRead <= PAGE_SIZE, cbRead = PAGE_SIZE);
3642 VbglR0PhysHeapFree(pReq);
3643
3644 if (RT_SUCCESS(vrc)) {
3645 if (cbRead == PAGE_SIZE) {
3646 /* likely */
3647 } else {
3648 uint8_t *pbMapped = (uint8_t *)kmap(page);
3649 RT_BZERO(&pbMapped[cbRead], PAGE_SIZE - cbRead);
3650 kunmap(page);
3651 /** @todo truncate the inode file size? */
3652 }
3653
3654 flush_dcache_page(page);
3655 SetPageUptodate(page);
3656 unlock_page(page);
3657 return 0;
3658 }
3659 err = -RTErrConvertToErrno(vrc);
3660 } else
3661 err = -ENOMEM;
3662 } else
3663 err = -EIO;
3664 SetPageError(page);
3665 unlock_page(page);
3666 return err;
3667}
3668
3669
3670/**
3671 * Used to write out the content of a dirty page cache page to the host file.
3672 *
3673 * Needed for mmap and writes when the file is mmapped in a shared+writeable
3674 * fashion.
3675 */
3676#if RTLNX_VER_MIN(2,5,52)
3677static int vbsf_writepage(struct page *page, struct writeback_control *wbc)
3678#else
3679static int vbsf_writepage(struct page *page)
3680#endif
3681{
3682 struct address_space *mapping = page->mapping;
3683 struct inode *inode = mapping->host;
3684 struct vbsf_inode_info *sf_i = VBSF_GET_INODE_INFO(inode);
3685 struct vbsf_handle *pHandle = vbsf_handle_find(sf_i, VBSF_HANDLE_F_WRITE, VBSF_HANDLE_F_APPEND);
3686 int err;
3687
3688 SFLOGFLOW(("vbsf_writepage: inode=%p page=%p off=%#llx pHandle=%p (%#llx)\n",
3689 inode, page, (uint64_t)page->index << PAGE_SHIFT, pHandle, pHandle ? pHandle->hHost : 0));
3690
3691 if (pHandle) {
3692 struct vbsf_super_info *pSuperInfo = VBSF_GET_SUPER_INFO(inode->i_sb);
3693 VBOXSFWRITEPGLSTREQ *pReq = (VBOXSFWRITEPGLSTREQ *)VbglR0PhysHeapAlloc(sizeof(*pReq));
3694 if (pReq) {
3695 uint64_t const cbFile = i_size_read(inode);
3696 uint64_t const offInFile = (uint64_t)page->index << PAGE_SHIFT;
3697 uint32_t const cbToWrite = page->index != (cbFile >> PAGE_SHIFT) ? PAGE_SIZE
3698 : (uint32_t)cbFile & (uint32_t)PAGE_OFFSET_MASK;
3699 int vrc;
3700
3701 pReq->PgLst.offFirstPage = 0;
3702 pReq->PgLst.aPages[0] = page_to_phys(page);
3703 vrc = VbglR0SfHostReqWritePgLst(pSuperInfo->map.root,
3704 pReq,
3705 pHandle->hHost,
3706 offInFile,
3707 cbToWrite,
3708 1 /*cPages*/);
3709 sf_i->ModificationTimeAtOurLastWrite = sf_i->ModificationTime;
3710 AssertMsgStmt(pReq->Parms.cb32Write.u.value32 == cbToWrite || RT_FAILURE(vrc), /* lazy bird */
3711 ("%#x vs %#x\n", pReq->Parms.cb32Write, cbToWrite),
3712 vrc = VERR_WRITE_ERROR);
3713 VbglR0PhysHeapFree(pReq);
3714
3715 if (RT_SUCCESS(vrc)) {
3716 /* Update the inode if we've extended the file. */
3717 /** @todo is this necessary given the cbToWrite calc above? */
3718 uint64_t const offEndOfWrite = offInFile + cbToWrite;
3719 if ( offEndOfWrite > cbFile
3720 && offEndOfWrite > i_size_read(inode))
3721 i_size_write(inode, offEndOfWrite);
3722
3723 /* Update and unlock the page. */
3724 if (PageError(page))
3725 ClearPageError(page);
3726 SetPageUptodate(page);
3727 unlock_page(page);
3728
3729 vbsf_handle_release(pHandle, pSuperInfo, "vbsf_writepage");
3730 return 0;
3731 }
3732
3733 /*
3734 * We failed.
3735 */
3736 err = -EIO;
3737 } else
3738 err = -ENOMEM;
3739 vbsf_handle_release(pHandle, pSuperInfo, "vbsf_writepage");
3740 } else {
3741 /** @todo we could re-open the file here and deal with this... */
3742 static uint64_t volatile s_cCalls = 0;
3743 if (s_cCalls++ < 16)
3744 printk("vbsf_writepage: no writable handle for %s..\n", sf_i->path->String.ach);
3745 err = -EIO;
3746 }
3747 SetPageError(page);
3748 unlock_page(page);
3749 return err;
3750}
3751
3752
3753#if RTLNX_VER_MIN(2,6,24)
3754/**
3755 * Called when writing thru the page cache (which we shouldn't be doing).
3756 */
3757static inline void vbsf_write_begin_warn(loff_t pos, unsigned len, unsigned flags)
3758{
3759 /** @todo r=bird: We shouldn't ever get here, should we? Because we don't use
3760 * the page cache for any writes AFAIK. We could just as well use
3761 * simple_write_begin & simple_write_end here if we think we really
3762 * need to have non-NULL function pointers in the table... */
3763 static uint64_t volatile s_cCalls = 0;
3764 if (s_cCalls++ < 16) {
3765 printk("vboxsf: Unexpected call to vbsf_write_begin(pos=%#llx len=%#x flags=%#x)! Please report.\n",
3766 (unsigned long long)pos, len, flags);
3767 RTLogBackdoorPrintf("vboxsf: Unexpected call to vbsf_write_begin(pos=%#llx len=%#x flags=%#x)! Please report.\n",
3768 (unsigned long long)pos, len, flags);
3769# ifdef WARN_ON
3770 WARN_ON(1);
3771# endif
3772 }
3773}
3774
3775# if RTLNX_VER_MIN(5,19,0) || RTLNX_RHEL_RANGE(9,3, 9,99)
3776int vbsf_write_begin(struct file *file, struct address_space *mapping, loff_t pos,
3777 unsigned len, struct page **pagep, void **fsdata)
3778{
3779 vbsf_write_begin_warn(pos, len, 0);
3780 return simple_write_begin(file, mapping, pos, len, pagep, fsdata);
3781}
3782# else
3783int vbsf_write_begin(struct file *file, struct address_space *mapping, loff_t pos,
3784 unsigned len, unsigned flags, struct page **pagep, void **fsdata)
3785{
3786 vbsf_write_begin_warn(pos, len, flags);
3787 return simple_write_begin(file, mapping, pos, len, flags, pagep, fsdata);
3788}
3789# endif
3790
3791#endif /* KERNEL_VERSION >= 2.6.24 */
3792
3793#if RTLNX_VER_MIN(5,14,0)
3794/**
3795 * Companion to vbsf_write_begin (i.e. shouldn't be called).
3796 */
3797static int vbsf_write_end(struct file *file, struct address_space *mapping,
3798 loff_t pos, unsigned int len, unsigned int copied,
3799 struct page *page, void *fsdata)
3800{
3801 static uint64_t volatile s_cCalls = 0;
3802 if (s_cCalls++ < 16)
3803 {
3804 printk("vboxsf: Unexpected call to vbsf_write_end(pos=%#llx len=%#x)! Please report.\n",
3805 (unsigned long long)pos, len);
3806 RTLogBackdoorPrintf("vboxsf: Unexpected call to vbsf_write_end(pos=%#llx len=%#x)! Please report.\n",
3807 (unsigned long long)pos, len);
3808# ifdef WARN_ON
3809 WARN_ON(1);
3810# endif
3811 }
3812 return -ENOTSUPP;
3813}
3814#endif /* KERNEL_VERSION >= 5.14.0 */
3815
3816
3817#if RTLNX_VER_MIN(2,4,10)
3818
3819# ifdef VBOX_UEK
3820# undef iov_iter /* HACK ALERT! Don't put anything needing vbsf_iov_iter after this fun! */
3821# endif
3822
3823/**
3824 * This is needed to make open accept O_DIRECT as well as dealing with direct
3825 * I/O requests if we don't intercept them earlier.
3826 */
3827# if RTLNX_VER_MIN(4, 7, 0) \
3828 || (defined(CONFIG_SUSE_KERNEL) && RTLNX_VER_RANGE(4,4,73, 4,4,74) /** @todo Figure out when exactly. */) \
3829 || (defined(CONFIG_SUSE_KERNEL) && RTLNX_VER_RANGE(4,4,75, 4,4,90) /** @todo Figure out when exactly. */) \
3830 || (defined(CONFIG_SUSE_KERNEL) && RTLNX_VER_RANGE(4,4,92, 4,5,0) /** @todo Figure out when exactly. */)
3831static ssize_t vbsf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3832# elif RTLNX_VER_MIN(4, 1, 0)
3833static ssize_t vbsf_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
3834# elif RTLNX_VER_MIN(3, 16, 0) || defined(VBOX_UEK)
3835static ssize_t vbsf_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
3836# elif RTLNX_VER_MIN(2, 6, 6)
3837static ssize_t vbsf_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t offset, unsigned long nr_segs)
3838# elif RTLNX_VER_MIN(2, 5, 55)
3839static int vbsf_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t offset, unsigned long nr_segs)
3840# elif RTLNX_VER_MIN(2, 5, 41)
3841static int vbsf_direct_IO(int rw, struct file *file, const struct iovec *iov, loff_t offset, unsigned long nr_segs)
3842# elif RTLNX_VER_MIN(2, 5, 35)
3843static int vbsf_direct_IO(int rw, struct inode *inode, const struct iovec *iov, loff_t offset, unsigned long nr_segs)
3844# elif RTLNX_VER_MIN(2, 5, 26)
3845static int vbsf_direct_IO(int rw, struct inode *inode, char *buf, loff_t offset, size_t count)
3846# elif LINUX_VERSION_CODE == KERNEL_VERSION(2, 4, 21) && defined(I_NEW) /* RHEL3 Frankenkernel. */
3847static int vbsf_direct_IO(int rw, struct file *file, struct kiobuf *buf, unsigned long whatever1, int whatever2)
3848# else
3849static int vbsf_direct_IO(int rw, struct inode *inode, struct kiobuf *buf, unsigned long whatever1, int whatever2)
3850# endif
3851{
3852 TRACE();
3853 return -EINVAL;
3854}
3855
3856#endif
3857
3858/**
3859 * Address space (for the page cache) operations for regular files.
3860 *
3861 * @todo the FsPerf touch/flush (mmap) test fails on 4.4.0 (ubuntu 16.04 lts).
3862 */
3863struct address_space_operations vbsf_reg_aops = {
3864#if RTLNX_VER_MIN(5,19,0) || RTLNX_RHEL_RANGE(9,3, 9,99)
3865 .read_folio = vbsf_read_folio,
3866#else
3867 .readpage = vbsf_readpage,
3868#endif
3869 .writepage = vbsf_writepage,
3870 /** @todo Need .writepages if we want msync performance... */
3871#if RTLNX_VER_MIN(5,18,0) || RTLNX_RHEL_RANGE(9,2, 9,99)
3872 .dirty_folio = filemap_dirty_folio,
3873#elif RTLNX_VER_MIN(2,5,12)
3874 .set_page_dirty = __set_page_dirty_buffers,
3875#endif
3876#if RTLNX_VER_MIN(5,14,0)
3877 .write_begin = vbsf_write_begin,
3878 .write_end = vbsf_write_end,
3879#elif RTLNX_VER_MIN(2,6,24)
3880 .write_begin = vbsf_write_begin,
3881 .write_end = simple_write_end,
3882#elif RTLNX_VER_MIN(2,5,45)
3883 .prepare_write = simple_prepare_write,
3884 .commit_write = simple_commit_write,
3885#endif
3886#if RTLNX_VER_MIN(2,4,10)
3887 .direct_IO = vbsf_direct_IO,
3888#endif
3889};
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette