/* $Id: regops.c 72627 2018-06-20 13:53:28Z vboxsync $ */ /** @file * vboxsf - VBox Linux Shared Folders, Regular file inode and file operations. */ /* * Copyright (C) 2006-2018 Oracle Corporation * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /* * Limitations: only COW memory mapping is supported */ #include "vfsmod.h" static void *alloc_bounce_buffer(size_t * tmp_sizep, PRTCCPHYS physp, size_t xfer_size, const char *caller) { size_t tmp_size; void *tmp; /* try for big first. */ tmp_size = RT_ALIGN_Z(xfer_size, PAGE_SIZE); if (tmp_size > 16U * _1K) tmp_size = 16U * _1K; tmp = kmalloc(tmp_size, GFP_KERNEL); if (!tmp) { /* fall back on a page sized buffer. */ tmp = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!tmp) { LogRel(("%s: could not allocate bounce buffer for xfer_size=%zu %s\n", caller, xfer_size)); return NULL; } tmp_size = PAGE_SIZE; } *tmp_sizep = tmp_size; *physp = virt_to_phys(tmp); return tmp; } static void free_bounce_buffer(void *tmp) { kfree(tmp); } /* fops */ static int sf_reg_read_aux(const char *caller, struct sf_glob_info *sf_g, struct sf_reg_info *sf_r, void *buf, uint32_t * nread, uint64_t pos) { /** @todo bird: yes, kmap() and kmalloc() input only. Since the buffer is * contiguous in physical memory (kmalloc or single page), we should * use a physical address here to speed things up. */ int rc = VbglR0SfRead(&client_handle, &sf_g->map, sf_r->handle, pos, nread, buf, false /* already locked? */ ); if (RT_FAILURE(rc)) { LogFunc(("VbglR0SfRead failed. caller=%s, rc=%Rrc\n", caller, rc)); return -EPROTO; } return 0; } static int sf_reg_write_aux(const char *caller, struct sf_glob_info *sf_g, struct sf_reg_info *sf_r, void *buf, uint32_t * nwritten, uint64_t pos) { /** @todo bird: yes, kmap() and kmalloc() input only. Since the buffer is * contiguous in physical memory (kmalloc or single page), we should * use a physical address here to speed things up. */ int rc = VbglR0SfWrite(&client_handle, &sf_g->map, sf_r->handle, pos, nwritten, buf, false /* already locked? */ ); if (RT_FAILURE(rc)) { LogFunc(("VbglR0SfWrite failed. caller=%s, rc=%Rrc\n", caller, rc)); return -EPROTO; } return 0; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23) && \ LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) void free_pipebuf(struct page *kpage) { kunmap(kpage); __free_pages(kpage, 0); } void *sf_pipe_buf_map(struct pipe_inode_info *pipe, struct pipe_buffer *pipe_buf, int atomic) { return 0; } void sf_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *pipe_buf) { } void sf_pipe_buf_unmap(struct pipe_inode_info *pipe, struct pipe_buffer *pipe_buf, void *map_data) { } int sf_pipe_buf_steal(struct pipe_inode_info *pipe, struct pipe_buffer *pipe_buf) { return 0; } static void sf_pipe_buf_release(struct pipe_inode_info *pipe, struct pipe_buffer *pipe_buf) { free_pipebuf(pipe_buf->page); } int sf_pipe_buf_confirm(struct pipe_inode_info *info, struct pipe_buffer *pipe_buf) { return 0; } static struct pipe_buf_operations sf_pipe_buf_ops = { .can_merge = 0, .map = sf_pipe_buf_map, .unmap = sf_pipe_buf_unmap, .confirm = sf_pipe_buf_confirm, .release = sf_pipe_buf_release, .steal = sf_pipe_buf_steal, .get = sf_pipe_buf_get, }; #define LOCK_PIPE(pipe) \ if (pipe->inode) \ mutex_lock(&pipe->inode->i_mutex); #define UNLOCK_PIPE(pipe) \ if (pipe->inode) \ mutex_unlock(&pipe->inode->i_mutex); ssize_t sf_splice_read(struct file *in, loff_t * poffset, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { size_t bytes_remaining = len; loff_t orig_offset = *poffset; loff_t offset = orig_offset; struct inode *inode = GET_F_DENTRY(in)->d_inode; struct sf_glob_info *sf_g = GET_GLOB_INFO(inode->i_sb); struct sf_reg_info *sf_r = in->private_data; ssize_t retval; struct page *kpage = 0; size_t nsent = 0; TRACE(); if (!S_ISREG(inode->i_mode)) { LogFunc(("read from non regular file %d\n", inode->i_mode)); return -EINVAL; } if (!len) { return 0; } LOCK_PIPE(pipe); uint32_t req_size = 0; while (bytes_remaining > 0) { kpage = alloc_page(GFP_KERNEL); if (unlikely(kpage == NULL)) { UNLOCK_PIPE(pipe); return -ENOMEM; } req_size = 0; uint32_t nread = req_size = (uint32_t) min(bytes_remaining, (size_t) PAGE_SIZE); uint32_t chunk = 0; void *kbuf = kmap(kpage); while (chunk < req_size) { retval = sf_reg_read_aux(__func__, sf_g, sf_r, kbuf + chunk, &nread, offset); if (retval < 0) goto err; if (nread == 0) break; chunk += nread; offset += nread; nread = req_size - chunk; } if (!pipe->readers) { send_sig(SIGPIPE, current, 0); retval = -EPIPE; goto err; } if (pipe->nrbufs < PIPE_BUFFERS) { struct pipe_buffer *pipebuf = pipe->bufs + ((pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1)); pipebuf->page = kpage; pipebuf->ops = &sf_pipe_buf_ops; pipebuf->len = req_size; pipebuf->offset = 0; pipebuf->private = 0; pipebuf->flags = 0; pipe->nrbufs++; nsent += req_size; bytes_remaining -= req_size; if (signal_pending(current)) break; } else { /* pipe full */ if (flags & SPLICE_F_NONBLOCK) { retval = -EAGAIN; goto err; } free_pipebuf(kpage); break; } } UNLOCK_PIPE(pipe); if (!nsent && signal_pending(current)) return -ERESTARTSYS; *poffset += nsent; return offset - orig_offset; err: UNLOCK_PIPE(pipe); free_pipebuf(kpage); return retval; } #endif /** * Read from a regular file. * * @param file the file * @param buf the buffer * @param size length of the buffer * @param off offset within the file * @returns the number of read bytes on success, Linux error code otherwise */ static ssize_t sf_reg_read(struct file *file, char *buf, size_t size, loff_t * off) { int err; void *tmp; RTCCPHYS tmp_phys; size_t tmp_size; size_t left = size; ssize_t total_bytes_read = 0; struct inode *inode = GET_F_DENTRY(file)->d_inode; struct sf_glob_info *sf_g = GET_GLOB_INFO(inode->i_sb); struct sf_reg_info *sf_r = file->private_data; loff_t pos = *off; TRACE(); if (!S_ISREG(inode->i_mode)) { LogFunc(("read from non regular file %d\n", inode->i_mode)); return -EINVAL; } /** XXX Check read permission according to inode->i_mode! */ if (!size) return 0; tmp = alloc_bounce_buffer(&tmp_size, &tmp_phys, size, __PRETTY_FUNCTION__); if (!tmp) return -ENOMEM; while (left) { uint32_t to_read, nread; to_read = tmp_size; if (to_read > left) to_read = (uint32_t) left; nread = to_read; err = sf_reg_read_aux(__func__, sf_g, sf_r, tmp, &nread, pos); if (err) goto fail; if (copy_to_user(buf, tmp, nread)) { err = -EFAULT; goto fail; } pos += nread; left -= nread; buf += nread; total_bytes_read += nread; if (nread != to_read) break; } *off += total_bytes_read; free_bounce_buffer(tmp); return total_bytes_read; fail: free_bounce_buffer(tmp); return err; } /** * Write to a regular file. * * @param file the file * @param buf the buffer * @param size length of the buffer * @param off offset within the file * @returns the number of written bytes on success, Linux error code otherwise */ static ssize_t sf_reg_write(struct file *file, const char *buf, size_t size, loff_t * off) { int err; void *tmp; RTCCPHYS tmp_phys; size_t tmp_size; size_t left = size; ssize_t total_bytes_written = 0; struct inode *inode = GET_F_DENTRY(file)->d_inode; struct sf_inode_info *sf_i = GET_INODE_INFO(inode); struct sf_glob_info *sf_g = GET_GLOB_INFO(inode->i_sb); struct sf_reg_info *sf_r = file->private_data; loff_t pos; TRACE(); BUG_ON(!sf_i); BUG_ON(!sf_g); BUG_ON(!sf_r); if (!S_ISREG(inode->i_mode)) { LogFunc(("write to non regular file %d\n", inode->i_mode)); return -EINVAL; } pos = *off; if (file->f_flags & O_APPEND) { pos = inode->i_size; *off = pos; } /** XXX Check write permission according to inode->i_mode! */ if (!size) return 0; tmp = alloc_bounce_buffer(&tmp_size, &tmp_phys, size, __PRETTY_FUNCTION__); if (!tmp) return -ENOMEM; while (left) { uint32_t to_write, nwritten; to_write = tmp_size; if (to_write > left) to_write = (uint32_t) left; nwritten = to_write; if (copy_from_user(tmp, buf, to_write)) { err = -EFAULT; goto fail; } err = VbglR0SfWritePhysCont(&client_handle, &sf_g->map, sf_r->handle, pos, &nwritten, tmp_phys); err = RT_FAILURE(err) ? -EPROTO : 0; if (err) goto fail; pos += nwritten; left -= nwritten; buf += nwritten; total_bytes_written += nwritten; if (nwritten != to_write) break; } *off += total_bytes_written; if (*off > inode->i_size) inode->i_size = *off; sf_i->force_restat = 1; free_bounce_buffer(tmp); return total_bytes_written; fail: free_bounce_buffer(tmp); return err; } /** * Open a regular file. * * @param inode the inode * @param file the file * @returns 0 on success, Linux error code otherwise */ static int sf_reg_open(struct inode *inode, struct file *file) { int rc, rc_linux = 0; struct sf_glob_info *sf_g = GET_GLOB_INFO(inode->i_sb); struct sf_inode_info *sf_i = GET_INODE_INFO(inode); struct sf_reg_info *sf_r; SHFLCREATEPARMS params; TRACE(); BUG_ON(!sf_g); BUG_ON(!sf_i); LogFunc(("open %s\n", sf_i->path->String.utf8)); sf_r = kmalloc(sizeof(*sf_r), GFP_KERNEL); if (!sf_r) { LogRelFunc(("could not allocate reg info\n")); return -ENOMEM; } /* Already open? */ if (sf_i->handle != SHFL_HANDLE_NIL) { /* * This inode was created with sf_create_aux(). Check the CreateFlags: * O_CREAT, O_TRUNC: inherent true (file was just created). Not sure * about the access flags (SHFL_CF_ACCESS_*). */ sf_i->force_restat = 1; sf_r->handle = sf_i->handle; sf_i->handle = SHFL_HANDLE_NIL; sf_i->file = file; file->private_data = sf_r; return 0; } RT_ZERO(params); params.Handle = SHFL_HANDLE_NIL; /* We check the value of params.Handle afterwards to find out if * the call succeeded or failed, as the API does not seem to cleanly * distinguish error and informational messages. * * Furthermore, we must set params.Handle to SHFL_HANDLE_NIL to * make the shared folders host service use our fMode parameter */ if (file->f_flags & O_CREAT) { LogFunc(("O_CREAT set\n")); params.CreateFlags |= SHFL_CF_ACT_CREATE_IF_NEW; /* We ignore O_EXCL, as the Linux kernel seems to call create beforehand itself, so O_EXCL should always fail. */ if (file->f_flags & O_TRUNC) { LogFunc(("O_TRUNC set\n")); params.CreateFlags |= SHFL_CF_ACT_OVERWRITE_IF_EXISTS; } else params.CreateFlags |= SHFL_CF_ACT_OPEN_IF_EXISTS; } else { params.CreateFlags |= SHFL_CF_ACT_FAIL_IF_NEW; if (file->f_flags & O_TRUNC) { LogFunc(("O_TRUNC set\n")); params.CreateFlags |= SHFL_CF_ACT_OVERWRITE_IF_EXISTS; } } switch (file->f_flags & O_ACCMODE) { case O_RDONLY: params.CreateFlags |= SHFL_CF_ACCESS_READ; break; case O_WRONLY: params.CreateFlags |= SHFL_CF_ACCESS_WRITE; break; case O_RDWR: params.CreateFlags |= SHFL_CF_ACCESS_READWRITE; break; default: BUG(); } if (file->f_flags & O_APPEND) { LogFunc(("O_APPEND set\n")); params.CreateFlags |= SHFL_CF_ACCESS_APPEND; } params.Info.Attr.fMode = inode->i_mode; LogFunc(("sf_reg_open: calling VbglR0SfCreate, file %s, flags=%#x, %#x\n", sf_i->path->String.utf8, file->f_flags, params.CreateFlags)); rc = VbglR0SfCreate(&client_handle, &sf_g->map, sf_i->path, ¶ms); if (RT_FAILURE(rc)) { LogFunc(("VbglR0SfCreate failed flags=%d,%#x rc=%Rrc\n", file->f_flags, params.CreateFlags, rc)); kfree(sf_r); return -RTErrConvertToErrno(rc); } if (SHFL_HANDLE_NIL == params.Handle) { switch (params.Result) { case SHFL_PATH_NOT_FOUND: case SHFL_FILE_NOT_FOUND: rc_linux = -ENOENT; break; case SHFL_FILE_EXISTS: rc_linux = -EEXIST; break; default: break; } } sf_i->force_restat = 1; sf_r->handle = params.Handle; sf_i->file = file; file->private_data = sf_r; return rc_linux; } /** * Close a regular file. * * @param inode the inode * @param file the file * @returns 0 on success, Linux error code otherwise */ static int sf_reg_release(struct inode *inode, struct file *file) { int rc; struct sf_reg_info *sf_r; struct sf_glob_info *sf_g; struct sf_inode_info *sf_i = GET_INODE_INFO(inode); TRACE(); sf_g = GET_GLOB_INFO(inode->i_sb); sf_r = file->private_data; BUG_ON(!sf_g); BUG_ON(!sf_r); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 25) /* See the smbfs source (file.c). mmap in particular can cause data to be * written to the file after it is closed, which we can't cope with. We * copy and paste the body of filemap_write_and_wait() here as it was not * defined before 2.6.6 and not exported until quite a bit later. */ /* filemap_write_and_wait(inode->i_mapping); */ if (inode->i_mapping->nrpages && filemap_fdatawrite(inode->i_mapping) != -EIO) filemap_fdatawait(inode->i_mapping); #endif rc = VbglR0SfClose(&client_handle, &sf_g->map, sf_r->handle); if (RT_FAILURE(rc)) LogFunc(("VbglR0SfClose failed rc=%Rrc\n", rc)); kfree(sf_r); sf_i->file = NULL; sf_i->handle = SHFL_HANDLE_NIL; file->private_data = NULL; return 0; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0) static int sf_reg_fault(struct vm_fault *vmf) #elif LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 25) static int sf_reg_fault(struct vm_area_struct *vma, struct vm_fault *vmf) #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) static struct page *sf_reg_nopage(struct vm_area_struct *vma, unsigned long vaddr, int *type) #define SET_TYPE(t) *type = (t) #else /* LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) */ static struct page *sf_reg_nopage(struct vm_area_struct *vma, unsigned long vaddr, int unused) #define SET_TYPE(t) #endif { struct page *page; char *buf; loff_t off; uint32_t nread = PAGE_SIZE; int err; #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0) struct vm_area_struct *vma = vmf->vma; #endif struct file *file = vma->vm_file; struct inode *inode = GET_F_DENTRY(file)->d_inode; struct sf_glob_info *sf_g = GET_GLOB_INFO(inode->i_sb); struct sf_reg_info *sf_r = file->private_data; TRACE(); #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 25) if (vmf->pgoff > vma->vm_end) return VM_FAULT_SIGBUS; #else if (vaddr > vma->vm_end) { SET_TYPE(VM_FAULT_SIGBUS); return NOPAGE_SIGBUS; } #endif /* Don't use GFP_HIGHUSER as long as sf_reg_read_aux() calls VbglR0SfRead() * which works on virtual addresses. On Linux cannot reliably determine the * physical address for high memory, see rtR0MemObjNativeLockKernel(). */ page = alloc_page(GFP_USER); if (!page) { LogRelFunc(("failed to allocate page\n")); #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 25) return VM_FAULT_OOM; #else SET_TYPE(VM_FAULT_OOM); return NOPAGE_OOM; #endif } buf = kmap(page); #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 25) off = (vmf->pgoff << PAGE_SHIFT); #else off = (vaddr - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT); #endif err = sf_reg_read_aux(__func__, sf_g, sf_r, buf, &nread, off); if (err) { kunmap(page); put_page(page); #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 25) return VM_FAULT_SIGBUS; #else SET_TYPE(VM_FAULT_SIGBUS); return NOPAGE_SIGBUS; #endif } BUG_ON(nread > PAGE_SIZE); if (!nread) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 25) clear_user_page(page_address(page), vmf->pgoff, page); #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) clear_user_page(page_address(page), vaddr, page); #else clear_user_page(page_address(page), vaddr); #endif } else memset(buf + nread, 0, PAGE_SIZE - nread); flush_dcache_page(page); kunmap(page); #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 25) vmf->page = page; return 0; #else SET_TYPE(VM_FAULT_MAJOR); return page; #endif } static struct vm_operations_struct sf_vma_ops = { #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 25) .fault = sf_reg_fault #else .nopage = sf_reg_nopage #endif }; static int sf_reg_mmap(struct file *file, struct vm_area_struct *vma) { TRACE(); if (vma->vm_flags & VM_SHARED) { LogFunc(("shared mmapping not available\n")); return -EINVAL; } vma->vm_ops = &sf_vma_ops; return 0; } struct file_operations sf_reg_fops = { .read = sf_reg_read, .open = sf_reg_open, .write = sf_reg_write, .release = sf_reg_release, .mmap = sf_reg_mmap, #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) /** @todo This code is known to cause caching of data which should not be * cached. Investigate. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23) .splice_read = sf_splice_read, #else .sendfile = generic_file_sendfile, #endif .aio_read = generic_file_aio_read, .aio_write = generic_file_aio_write, #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35) .fsync = noop_fsync, #else .fsync = simple_sync_file, #endif .llseek = generic_file_llseek, #endif }; struct inode_operations sf_reg_iops = { #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) .revalidate = sf_inode_revalidate #else .getattr = sf_getattr, .setattr = sf_setattr #endif }; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) static int sf_readpage(struct file *file, struct page *page) { struct inode *inode = GET_F_DENTRY(file)->d_inode; struct sf_glob_info *sf_g = GET_GLOB_INFO(inode->i_sb); struct sf_reg_info *sf_r = file->private_data; uint32_t nread = PAGE_SIZE; char *buf; loff_t off = ((loff_t) page->index) << PAGE_SHIFT; int ret; TRACE(); buf = kmap(page); ret = sf_reg_read_aux(__func__, sf_g, sf_r, buf, &nread, off); if (ret) { kunmap(page); if (PageLocked(page)) unlock_page(page); return ret; } BUG_ON(nread > PAGE_SIZE); memset(&buf[nread], 0, PAGE_SIZE - nread); flush_dcache_page(page); kunmap(page); SetPageUptodate(page); unlock_page(page); return 0; } static int sf_writepage(struct page *page, struct writeback_control *wbc) { struct address_space *mapping = page->mapping; struct inode *inode = mapping->host; struct sf_glob_info *sf_g = GET_GLOB_INFO(inode->i_sb); struct sf_inode_info *sf_i = GET_INODE_INFO(inode); struct file *file = sf_i->file; struct sf_reg_info *sf_r = file->private_data; char *buf; uint32_t nwritten = PAGE_SIZE; int end_index = inode->i_size >> PAGE_SHIFT; loff_t off = ((loff_t) page->index) << PAGE_SHIFT; int err; TRACE(); if (page->index >= end_index) nwritten = inode->i_size & (PAGE_SIZE - 1); buf = kmap(page); err = sf_reg_write_aux(__func__, sf_g, sf_r, buf, &nwritten, off); if (err < 0) { ClearPageUptodate(page); goto out; } if (off > inode->i_size) inode->i_size = off; if (PageError(page)) ClearPageError(page); err = 0; out: kunmap(page); unlock_page(page); return err; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) int sf_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { TRACE(); return simple_write_begin(file, mapping, pos, len, flags, pagep, fsdata); } int sf_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = mapping->host; struct sf_glob_info *sf_g = GET_GLOB_INFO(inode->i_sb); struct sf_reg_info *sf_r = file->private_data; void *buf; unsigned from = pos & (PAGE_SIZE - 1); uint32_t nwritten = len; int err; TRACE(); buf = kmap(page); err = sf_reg_write_aux(__func__, sf_g, sf_r, buf + from, &nwritten, pos); kunmap(page); if (!PageUptodate(page) && err == PAGE_SIZE) SetPageUptodate(page); if (err >= 0) { pos += nwritten; if (pos > inode->i_size) inode->i_size = pos; } unlock_page(page); #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0) put_page(page); #else page_cache_release(page); #endif return nwritten; } #endif /* KERNEL_VERSION >= 2.6.24 */ struct address_space_operations sf_reg_aops = { .readpage = sf_readpage, .writepage = sf_writepage, #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) .write_begin = sf_write_begin, .write_end = sf_write_end, #else .prepare_write = simple_prepare_write, .commit_write = simple_commit_write, #endif }; #endif