VirtualBox

source: vbox/trunk/src/VBox/Debugger/DBGCEmulateCodeView.cpp@ 103422

Last change on this file since 103422 was 103422, checked in by vboxsync, 10 months ago

Debugger: Fix some harmless warnings, bugref:3409

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 320.8 KB
Line 
1/* $Id: DBGCEmulateCodeView.cpp 103422 2024-02-19 10:05:01Z vboxsync $ */
2/** @file
3 * DBGC - Debugger Console, CodeView / WinDbg Emulation.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_DBGC
33#include <VBox/dbg.h>
34#include <VBox/vmm/dbgf.h>
35#include <VBox/vmm/dbgfflowtrace.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/cpum.h>
38#include <VBox/dis.h>
39#include <VBox/param.h>
40#include <VBox/err.h>
41#include <VBox/log.h>
42
43#include <iprt/asm.h>
44#include <iprt/mem.h>
45#include <iprt/string.h>
46#include <iprt/assert.h>
47#include <iprt/ctype.h>
48#include <iprt/time.h>
49
50#include <stdlib.h>
51#include <stdio.h>
52
53#include "DBGCInternal.h"
54
55
56/*********************************************************************************************************************************
57* Internal Functions *
58*********************************************************************************************************************************/
59static FNDBGCCMD dbgcCmdBrkAccess;
60static FNDBGCCMD dbgcCmdBrkClear;
61static FNDBGCCMD dbgcCmdBrkDisable;
62static FNDBGCCMD dbgcCmdBrkEnable;
63static FNDBGCCMD dbgcCmdBrkList;
64static FNDBGCCMD dbgcCmdBrkSet;
65static FNDBGCCMD dbgcCmdBrkREM;
66static FNDBGCCMD dbgcCmdDumpMem;
67static FNDBGCCMD dbgcCmdDumpDT;
68static FNDBGCCMD dbgcCmdDumpIDT;
69static FNDBGCCMD dbgcCmdDumpPageDir;
70static FNDBGCCMD dbgcCmdDumpPageDirBoth;
71static FNDBGCCMD dbgcCmdDumpPageHierarchy;
72static FNDBGCCMD dbgcCmdDumpPageTable;
73static FNDBGCCMD dbgcCmdDumpPageTableBoth;
74static FNDBGCCMD dbgcCmdDumpTSS;
75static FNDBGCCMD dbgcCmdDumpTypeInfo;
76static FNDBGCCMD dbgcCmdDumpTypedVal;
77static FNDBGCCMD dbgcCmdEditMem;
78static FNDBGCCMD dbgcCmdGo;
79static FNDBGCCMD dbgcCmdGoUp;
80static FNDBGCCMD dbgcCmdListModules;
81static FNDBGCCMD dbgcCmdListNear;
82static FNDBGCCMD dbgcCmdListSource;
83static FNDBGCCMD dbgcCmdListSymbols;
84static FNDBGCCMD dbgcCmdMemoryInfo;
85static FNDBGCCMD dbgcCmdReg;
86static FNDBGCCMD dbgcCmdRegGuest;
87static FNDBGCCMD dbgcCmdRegTerse;
88static FNDBGCCMD dbgcCmdSearchMem;
89static FNDBGCCMD dbgcCmdSearchMemType;
90static FNDBGCCMD dbgcCmdStepTrace;
91static FNDBGCCMD dbgcCmdStepTraceTo;
92static FNDBGCCMD dbgcCmdStepTraceToggle;
93static FNDBGCCMD dbgcCmdEventCtrl;
94static FNDBGCCMD dbgcCmdEventCtrlList;
95static FNDBGCCMD dbgcCmdEventCtrlReset;
96static FNDBGCCMD dbgcCmdStack;
97static FNDBGCCMD dbgcCmdUnassemble;
98static FNDBGCCMD dbgcCmdUnassembleCfg;
99static FNDBGCCMD dbgcCmdTraceFlowClear;
100static FNDBGCCMD dbgcCmdTraceFlowDisable;
101static FNDBGCCMD dbgcCmdTraceFlowEnable;
102static FNDBGCCMD dbgcCmdTraceFlowPrint;
103static FNDBGCCMD dbgcCmdTraceFlowReset;
104
105
106/*********************************************************************************************************************************
107* Global Variables *
108*********************************************************************************************************************************/
109/** 'ba' arguments. */
110static const DBGCVARDESC g_aArgBrkAcc[] =
111{
112 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
113 { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." },
114 { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." },
115 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
116 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
117 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
118 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
119};
120
121
122/** 'bc', 'bd', 'be' arguments. */
123static const DBGCVARDESC g_aArgBrks[] =
124{
125 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
126 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." },
127 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." },
128};
129
130
131/** 'bp' arguments. */
132static const DBGCVARDESC g_aArgBrkSet[] =
133{
134 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
135 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
136 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
137 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
138 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
139};
140
141
142/** 'br' arguments. */
143static const DBGCVARDESC g_aArgBrkREM[] =
144{
145 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
146 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
147 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
148 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
149 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
150};
151
152
153/** 'd?' arguments. */
154static const DBGCVARDESC g_aArgDumpMem[] =
155{
156 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
157 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory. Tip: Use the L or LB operator to specify how may items or bytes to dump." },
158};
159
160
161/** 'dg', 'dga', 'dl', 'dla' arguments. */
162static const DBGCVARDESC g_aArgDumpDT[] =
163{
164 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
165 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." },
166 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." },
167};
168
169
170/** 'di', 'dia' arguments. */
171static const DBGCVARDESC g_aArgDumpIDT[] =
172{
173 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
174 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." },
175};
176
177
178/** 'dpd*' arguments. */
179static const DBGCVARDESC g_aArgDumpPD[] =
180{
181 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
182 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." },
183 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." },
184};
185
186
187/** 'dpda' arguments. */
188static const DBGCVARDESC g_aArgDumpPDAddr[] =
189{
190 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
191 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." },
192};
193
194
195/** 'dph*' arguments. */
196static const DBGCVARDESC g_aArgDumpPH[] =
197{
198 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
199 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." },
200 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." },
201 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." },
202};
203
204
205/** 'dpt?' arguments. */
206static const DBGCVARDESC g_aArgDumpPT[] =
207{
208 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
209 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." },
210};
211
212
213/** 'dpta' arguments. */
214static const DBGCVARDESC g_aArgDumpPTAddr[] =
215{
216 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
217 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." },
218};
219
220
221/** 'dt' arguments. */
222static const DBGCVARDESC g_aArgDumpTSS[] =
223{
224 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
225 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." },
226 { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." }
227};
228
229
230/** 'dti' arguments. */
231static const DBGCVARDESC g_aArgDumpTypeInfo[] =
232{
233 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
234 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to dump" },
235 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump the type information" }
236};
237
238
239/** 'dtv' arguments. */
240static const DBGCVARDESC g_aArgDumpTypedVal[] =
241{
242 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
243 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to use" },
244 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address to start dumping from." },
245 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump" }
246};
247
248
249/** 'e?' arguments. */
250static const DBGCVARDESC g_aArgEditMem[] =
251{
252 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
253 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." },
254 { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." },
255};
256
257
258/** 'g' arguments. */
259static const DBGCVARDESC g_aArgGo[] =
260{
261 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
262 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "idCpu", "CPU ID." },
263};
264
265
266/** 'lm' arguments. */
267static const DBGCVARDESC g_aArgListMods[] =
268{
269 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
270 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." },
271};
272
273
274/** 'ln' arguments. */
275static const DBGCVARDESC g_aArgListNear[] =
276{
277 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
278 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." },
279 { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." },
280};
281
282
283/** 'ls' arguments. */
284static const DBGCVARDESC g_aArgListSource[] =
285{
286 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
287 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." },
288};
289
290
291/** 'm' argument. */
292static const DBGCVARDESC g_aArgMemoryInfo[] =
293{
294 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
295 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." },
296};
297
298
299/** 'p', 'pc', 'pt', 't', 'tc' and 'tt' arguments. */
300static const DBGCVARDESC g_aArgStepTrace[] =
301{
302 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
303 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "count", "Number of instructions or source lines to step." },
304 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
305};
306
307
308/** 'pa' and 'ta' arguments. */
309static const DBGCVARDESC g_aArgStepTraceTo[] =
310{
311 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
312 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Where to stop" },
313 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
314};
315
316
317/** 'r' arguments. */
318static const DBGCVARDESC g_aArgReg[] =
319{
320 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
321 { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." },
322 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." },
323 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." },
324};
325
326
327/** 's' arguments. */
328static const DBGCVARDESC g_aArgSearchMem[] =
329{
330 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
331 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." },
332 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." },
333 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." },
334 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." },
335 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." },
336 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." },
337 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n <Hits>", "Maximum number of hits." },
338 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
339 { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
340};
341
342
343/** 's?' arguments. */
344static const DBGCVARDESC g_aArgSearchMemType[] =
345{
346 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
347 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
348 { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
349};
350
351
352/** 'sxe', 'sxn', 'sxi', 'sx-' arguments. */
353static const DBGCVARDESC g_aArgEventCtrl[] =
354{
355 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
356 { 0, 1, DBGCVAR_CAT_STRING, 0, "-c", "The -c option, requires <cmds>." },
357 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "cmds", "Command to execute on this event." },
358 { 0 /*weird*/, ~0U, DBGCVAR_CAT_STRING, 0, "event", "One or more events, 'all' refering to all events." },
359};
360
361/** 'sx' and 'sr' arguments. */
362static const DBGCVARDESC g_aArgEventCtrlOpt[] =
363{
364 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
365 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "event", "Zero or more events, 'all' refering to all events and being the default." },
366};
367
368/** 'u' arguments. */
369static const DBGCVARDESC g_aArgUnassemble[] =
370{
371 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
372 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
373};
374
375/** 'ucfg' arguments. */
376static const DBGCVARDESC g_aArgUnassembleCfg[] =
377{
378 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
379 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
380};
381
382/** 'x' arguments. */
383static const DBGCVARDESC g_aArgListSyms[] =
384{
385 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
386 { 1, 1, DBGCVAR_CAT_STRING, 0, "symbols", "The symbols to list, format is Module!Symbol with wildcards being supoprted." }
387};
388
389/** 'tflowc' arguments. */
390static const DBGCVARDESC g_aArgTraceFlowClear[] =
391{
392 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
393 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
394 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
395};
396
397/** 'tflowd' arguments. */
398static const DBGCVARDESC g_aArgTraceFlowDisable[] =
399{
400 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
401 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
402 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
403};
404
405/** 'tflowe' arguments. */
406static const DBGCVARDESC g_aArgTraceFlowEnable[] =
407{
408 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
409 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start tracing." },
410 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "<Hits>", "Maximum number of hits before the module is disabled." }
411};
412
413/** 'tflowp', 'tflowr' arguments. */
414static const DBGCVARDESC g_aArgTraceFlowPrintReset[] =
415{
416 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
417 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
418 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
419};
420
421/** Command descriptors for the CodeView / WinDbg emulation.
422 * The emulation isn't attempting to be identical, only somewhat similar.
423 */
424const DBGCCMD g_aCmdsCodeView[] =
425{
426 /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
427 { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "<access> <size> <address> [passes [max passes]] [cmds]",
428 "Sets a data access breakpoint." },
429 { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | <bp#> [bp# []]", "Deletes a set of breakpoints." },
430 { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | <bp#> [bp# []]", "Disables a set of breakpoints." },
431 { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | <bp#> [bp# []]", "Enables a set of breakpoints." },
432 { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." },
433 { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "<address> [passes [max passes]] [cmds]",
434 "Sets a breakpoint (int 3)." },
435 { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "<address> [passes [max passes]] [cmds]",
436 "Sets a recompiler specific breakpoint." },
437 { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size and type." },
438 { "dF", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16." },
439 { "dFs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16 with near symbols." },
440 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
441 { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." },
442 { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." },
443 { "dds", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as double words with near symbols." },
444 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
445 { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." },
446 { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." },
447 { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." },
448 { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." },
449 { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." },
450 { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." },
451 { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." },
452 { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." },
453 { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " },
454 { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." },
455 { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " },
456 { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." },
457 { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." },
458 { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." },
459 { "dp", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words." },
460 { "dps", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words with near symbols." },
461 { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the default context." },
462 { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps memory at given address as a page table." },
463 { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"<addr>", "Dumps page table entries of the guest and the hypervisor." },
464 { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the guest." },
465 { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the hypervisor." },
466 { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." },
467 { "dqs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as quad words with near symbols." },
468 { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." },
469 { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." },
470 { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." },
471 { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." },
472 { "dti", 1, 2, &g_aArgDumpTypeInfo[0],RT_ELEMENTS(g_aArgDumpTypeInfo), 0, dbgcCmdDumpTypeInfo,"<type> [levels]", "Dump type information." },
473 { "dtv", 2, 3, &g_aArgDumpTypedVal[0],RT_ELEMENTS(g_aArgDumpTypedVal), 0, dbgcCmdDumpTypedVal,"<type> <addr> [levels]", "Dump a memory buffer using the information in the given type." },
474 { "du", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as unicode string (little endian)." },
475 { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." },
476 /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also
477 * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */
478 { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 1-byte value to memory." },
479 { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 2-byte value to memory." },
480 { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 4-byte value to memory." },
481 { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 8-byte value to memory." },
482 { "g", 0, 1, &g_aArgGo[0], RT_ELEMENTS(g_aArgGo), 0, dbgcCmdGo, "[idCpu]", "Continue execution of all or the specified CPU. (The latter is not recommended unless you know exactly what you're doing.)" },
483 { "gu", 0, 0, NULL, 0, 0, dbgcCmdGoUp, "", "Go up - continue execution till after return." },
484 { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." },
485 { "kv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack." },
486 { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." },
487 { "kgv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack - guest." },
488 { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." },
489 { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." },
490 { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." },
491 { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." },
492 { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." },
493 { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." },
494 { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." },
495 { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "<addr>", "Display information about that piece of memory." },
496 { "p", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step over." },
497 { "pr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
498 { "pa", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Step to the given address." },
499 { "pc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next call instruction." },
500 { "pt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next return instruction." },
501 { "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set. Special 'all' register for showing all. Append a dot '.' to display sub-fields and aliases." },
502 { "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set. Special 'all' register for showing all. Append a dot '.' to display sub-fields and aliases." },
503 { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." },
504 { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." },
505 { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." },
506 { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] <range> <pattern>", "Continue last search." },
507 { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an ascii string." },
508 { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more bytes." },
509 { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more double words." },
510 { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more quad words." },
511 { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an unicode string." },
512 { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more words." },
513 { "sx", 0, ~0U, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlList, "[<event> [..]]", "Lists settings for exceptions, exits and other events. All if no filter is specified." },
514 { "sx-", 3, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "-c <cmd> <event> [..]", "Modifies the command for one or more exceptions, exits or other event. 'all' addresses all." },
515 { "sxe", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Enable: Break into the debugger on the specified exceptions, exits and other events. 'all' addresses all." },
516 { "sxn", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Notify: Display info in the debugger and continue on the specified exceptions, exits and other events. 'all' addresses all." },
517 { "sxi", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Ignore: Ignore the specified exceptions, exits and other events ('all' = all of them). Without the -c option, the guest runs like normal." },
518 { "sxr", 0, 0, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlReset, "", "Reset the settings to default for exceptions, exits and other events. All if no filter is specified." },
519 { "t", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace ." },
520 { "tflowc", 1, ~0U, &g_aArgTraceFlowClear[0], RT_ELEMENTS(g_aArgTraceFlowClear), 0, dbgcCmdTraceFlowClear, "all | <tf#> [tf# []]", "Clears trace execution flow for the given method." },
521 { "tflowd", 0, 1, &g_aArgTraceFlowDisable[0], RT_ELEMENTS(g_aArgTraceFlowDisable), 0, dbgcCmdTraceFlowDisable, "all | <tf#> [tf# []]", "Disables trace execution flow for the given method." },
522 { "tflowe", 0, 2, &g_aArgTraceFlowEnable[0], RT_ELEMENTS(g_aArgTraceFlowEnable), 0, dbgcCmdTraceFlowEnable, "<addr> <hits>", "Enable trace execution flow of the given method." },
523 { "tflowp", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowPrint, "all | <tf#> [tf# []]", "Prints the collected trace data of the given method." },
524 { "tflowr", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowReset, "all | <tf#> [tf# []]", "Resets the collected trace data of the given trace flow module." },
525 { "tr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
526 { "ta", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Trace to the given address." },
527 { "tc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next call instruction." },
528 { "tt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next return instruction." },
529 { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." },
530 { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." },
531 { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." },
532 { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." },
533 { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." },
534 { "ucfg", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph." },
535 { "ucfgc", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph with colors." },
536 { "x", 1, 1, &g_aArgListSyms[0], RT_ELEMENTS(g_aArgListSyms), 0, dbgcCmdListSymbols, "* | <Module!Symbol>", "Examine symbols." },
537};
538
539/** The number of commands in the CodeView/WinDbg emulation. */
540const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView);
541
542
543/**
544 * Selectable debug event descriptors.
545 *
546 * @remarks Sorted by DBGCSXEVT::enmType value.
547 */
548const DBGCSXEVT g_aDbgcSxEvents[] =
549{
550 { DBGFEVENT_INTERRUPT_HARDWARE, "hwint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Hardware interrupt" },
551 { DBGFEVENT_INTERRUPT_SOFTWARE, "swint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Software interrupt" },
552 { DBGFEVENT_TRIPLE_FAULT, "triplefault", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Enabled, 0, "Triple fault "},
553 { DBGFEVENT_XCPT_DE, "xcpt_de", "de", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DE (integer divide error)" },
554 { DBGFEVENT_XCPT_DB, "xcpt_db", "db", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DB (debug)" },
555 { DBGFEVENT_XCPT_02, "xcpt_02", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
556 { DBGFEVENT_XCPT_BP, "xcpt_bp", "bp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BP (breakpoint)" },
557 { DBGFEVENT_XCPT_OF, "xcpt_of", "of", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#OF (overflow (INTO))" },
558 { DBGFEVENT_XCPT_BR, "xcpt_br", "br", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BR (bound range exceeded)" },
559 { DBGFEVENT_XCPT_UD, "xcpt_ud", "ud", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#UD (undefined opcode)" },
560 { DBGFEVENT_XCPT_NM, "xcpt_nm", "nm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#NM (FPU not available)" },
561 { DBGFEVENT_XCPT_DF, "xcpt_df", "df", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DF (double fault)" },
562 { DBGFEVENT_XCPT_09, "xcpt_09", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "Coprocessor segment overrun" },
563 { DBGFEVENT_XCPT_TS, "xcpt_ts", "ts", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#TS (task switch)" },
564 { DBGFEVENT_XCPT_NP, "xcpt_np", "np", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#NP (segment not present)" },
565 { DBGFEVENT_XCPT_SS, "xcpt_ss", "ss", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SS (stack segment fault)" },
566 { DBGFEVENT_XCPT_GP, "xcpt_gp", "gp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#GP (general protection fault)" },
567 { DBGFEVENT_XCPT_PF, "xcpt_pf", "pf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#PF (page fault)" },
568 { DBGFEVENT_XCPT_0f, "xcpt_0f", "xcpt0f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
569 { DBGFEVENT_XCPT_MF, "xcpt_mf", "mf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MF (math fault)" },
570 { DBGFEVENT_XCPT_AC, "xcpt_ac", "ac", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#AC (alignment check)" },
571 { DBGFEVENT_XCPT_MC, "xcpt_mc", "mc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MC (machine check)" },
572 { DBGFEVENT_XCPT_XF, "xcpt_xf", "xf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#XF (SIMD floating-point exception)" },
573 { DBGFEVENT_XCPT_VE, "xcpt_vd", "ve", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#VE (virtualization exception)" },
574 { DBGFEVENT_XCPT_15, "xcpt_15", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
575 { DBGFEVENT_XCPT_16, "xcpt_16", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
576 { DBGFEVENT_XCPT_17, "xcpt_17", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
577 { DBGFEVENT_XCPT_18, "xcpt_18", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
578 { DBGFEVENT_XCPT_19, "xcpt_19", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
579 { DBGFEVENT_XCPT_1a, "xcpt_1a", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
580 { DBGFEVENT_XCPT_1b, "xcpt_1b", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
581 { DBGFEVENT_XCPT_1c, "xcpt_1c", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
582 { DBGFEVENT_XCPT_1d, "xcpt_1d", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
583 { DBGFEVENT_XCPT_SX, "xcpt_sx", "sx", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SX (security exception)" },
584 { DBGFEVENT_XCPT_1f, "xcpt_1f", "xcpt1f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
585 { DBGFEVENT_INSTR_HALT, "instr_halt", "hlt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
586 { DBGFEVENT_INSTR_MWAIT, "instr_mwait", "mwait", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
587 { DBGFEVENT_INSTR_MONITOR, "instr_monitor", "monitor", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
588 { DBGFEVENT_INSTR_CPUID, "instr_cpuid", "cpuid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
589 { DBGFEVENT_INSTR_INVD, "instr_invd", "invd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
590 { DBGFEVENT_INSTR_WBINVD, "instr_wbinvd", "wbinvd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
591 { DBGFEVENT_INSTR_INVLPG, "instr_invlpg", "invlpg", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
592 { DBGFEVENT_INSTR_RDTSC, "instr_rdtsc", "rdtsc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
593 { DBGFEVENT_INSTR_RDTSCP, "instr_rdtscp", "rdtscp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
594 { DBGFEVENT_INSTR_RDPMC, "instr_rdpmc", "rdpmc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
595 { DBGFEVENT_INSTR_RDMSR, "instr_rdmsr", "rdmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
596 { DBGFEVENT_INSTR_WRMSR, "instr_wrmsr", "wrmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
597 { DBGFEVENT_INSTR_CRX_READ, "instr_crx_read", "crx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
598 { DBGFEVENT_INSTR_CRX_WRITE, "instr_crx_write", "crx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
599 { DBGFEVENT_INSTR_DRX_READ, "instr_drx_read", "drx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
600 { DBGFEVENT_INSTR_DRX_WRITE, "instr_drx_write", "drx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
601 { DBGFEVENT_INSTR_PAUSE, "instr_pause", "pause", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
602 { DBGFEVENT_INSTR_XSETBV, "instr_xsetbv", "xsetbv", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
603 { DBGFEVENT_INSTR_SIDT, "instr_sidt", "sidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
604 { DBGFEVENT_INSTR_LIDT, "instr_lidt", "lidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
605 { DBGFEVENT_INSTR_SGDT, "instr_sgdt", "sgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
606 { DBGFEVENT_INSTR_LGDT, "instr_lgdt", "lgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
607 { DBGFEVENT_INSTR_SLDT, "instr_sldt", "sldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
608 { DBGFEVENT_INSTR_LLDT, "instr_lldt", "lldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
609 { DBGFEVENT_INSTR_STR, "instr_str", "str", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
610 { DBGFEVENT_INSTR_LTR, "instr_ltr", "ltr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
611 { DBGFEVENT_INSTR_GETSEC, "instr_getsec", "getsec", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
612 { DBGFEVENT_INSTR_RSM, "instr_rsm", "rsm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
613 { DBGFEVENT_INSTR_RDRAND, "instr_rdrand", "rdrand", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
614 { DBGFEVENT_INSTR_RDSEED, "instr_rdseed", "rdseed", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
615 { DBGFEVENT_INSTR_XSAVES, "instr_xsaves", "xsaves", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
616 { DBGFEVENT_INSTR_XRSTORS, "instr_xrstors", "xrstors", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
617 { DBGFEVENT_INSTR_VMM_CALL, "instr_vmm_call", "vmm_call", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
618 { DBGFEVENT_INSTR_VMX_VMCLEAR, "instr_vmx_vmclear", "vmclear", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
619 { DBGFEVENT_INSTR_VMX_VMLAUNCH, "instr_vmx_vmlaunch", "vmlaunch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
620 { DBGFEVENT_INSTR_VMX_VMPTRLD, "instr_vmx_vmptrld", "vmptrld", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
621 { DBGFEVENT_INSTR_VMX_VMPTRST, "instr_vmx_vmptrst", "vmptrst", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
622 { DBGFEVENT_INSTR_VMX_VMREAD, "instr_vmx_vmread", "vmread", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
623 { DBGFEVENT_INSTR_VMX_VMRESUME, "instr_vmx_vmresume", "vmresume", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
624 { DBGFEVENT_INSTR_VMX_VMWRITE, "instr_vmx_vmwrite", "vmwrite", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
625 { DBGFEVENT_INSTR_VMX_VMXOFF, "instr_vmx_vmxoff", "vmxoff", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
626 { DBGFEVENT_INSTR_VMX_VMXON, "instr_vmx_vmxon", "vmxon", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
627 { DBGFEVENT_INSTR_VMX_VMFUNC, "instr_vmx_vmfunc", "vmfunc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
628 { DBGFEVENT_INSTR_VMX_INVEPT, "instr_vmx_invept", "invept", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
629 { DBGFEVENT_INSTR_VMX_INVVPID, "instr_vmx_invvpid", "invvpid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
630 { DBGFEVENT_INSTR_VMX_INVPCID, "instr_vmx_invpcid", "invpcid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
631 { DBGFEVENT_INSTR_SVM_VMRUN, "instr_svm_vmrun", "vmrun", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
632 { DBGFEVENT_INSTR_SVM_VMLOAD, "instr_svm_vmload", "vmload", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
633 { DBGFEVENT_INSTR_SVM_VMSAVE, "instr_svm_vmsave", "vmsave", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
634 { DBGFEVENT_INSTR_SVM_STGI, "instr_svm_stgi", "stgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
635 { DBGFEVENT_INSTR_SVM_CLGI, "instr_svm_clgi", "clgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
636 { DBGFEVENT_EXIT_TASK_SWITCH, "exit_task_switch", "task_switch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
637 { DBGFEVENT_EXIT_HALT, "exit_halt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
638 { DBGFEVENT_EXIT_MWAIT, "exit_mwait", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
639 { DBGFEVENT_EXIT_MONITOR, "exit_monitor", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
640 { DBGFEVENT_EXIT_CPUID, "exit_cpuid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
641 { DBGFEVENT_EXIT_INVD, "exit_invd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
642 { DBGFEVENT_EXIT_WBINVD, "exit_wbinvd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
643 { DBGFEVENT_EXIT_INVLPG, "exit_invlpg", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
644 { DBGFEVENT_EXIT_RDTSC, "exit_rdtsc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
645 { DBGFEVENT_EXIT_RDTSCP, "exit_rdtscp", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
646 { DBGFEVENT_EXIT_RDPMC, "exit_rdpmc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
647 { DBGFEVENT_EXIT_RDMSR, "exit_rdmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
648 { DBGFEVENT_EXIT_WRMSR, "exit_wrmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
649 { DBGFEVENT_EXIT_CRX_READ, "exit_crx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
650 { DBGFEVENT_EXIT_CRX_WRITE, "exit_crx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
651 { DBGFEVENT_EXIT_DRX_READ, "exit_drx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
652 { DBGFEVENT_EXIT_DRX_WRITE, "exit_drx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
653 { DBGFEVENT_EXIT_PAUSE, "exit_pause", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
654 { DBGFEVENT_EXIT_XSETBV, "exit_xsetbv", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
655 { DBGFEVENT_EXIT_SIDT, "exit_sidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
656 { DBGFEVENT_EXIT_LIDT, "exit_lidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
657 { DBGFEVENT_EXIT_SGDT, "exit_sgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
658 { DBGFEVENT_EXIT_LGDT, "exit_lgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
659 { DBGFEVENT_EXIT_SLDT, "exit_sldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
660 { DBGFEVENT_EXIT_LLDT, "exit_lldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
661 { DBGFEVENT_EXIT_STR, "exit_str", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
662 { DBGFEVENT_EXIT_LTR, "exit_ltr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
663 { DBGFEVENT_EXIT_GETSEC, "exit_getsec", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
664 { DBGFEVENT_EXIT_RSM, "exit_rsm", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
665 { DBGFEVENT_EXIT_RDRAND, "exit_rdrand", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
666 { DBGFEVENT_EXIT_RDSEED, "exit_rdseed", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
667 { DBGFEVENT_EXIT_XSAVES, "exit_xsaves", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
668 { DBGFEVENT_EXIT_XRSTORS, "exit_xrstors", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
669 { DBGFEVENT_EXIT_VMM_CALL, "exit_vmm_call", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
670 { DBGFEVENT_EXIT_VMX_VMCLEAR, "exit_vmx_vmclear", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
671 { DBGFEVENT_EXIT_VMX_VMLAUNCH, "exit_vmx_vmlaunch", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
672 { DBGFEVENT_EXIT_VMX_VMPTRLD, "exit_vmx_vmptrld", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
673 { DBGFEVENT_EXIT_VMX_VMPTRST, "exit_vmx_vmptrst", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
674 { DBGFEVENT_EXIT_VMX_VMREAD, "exit_vmx_vmread", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
675 { DBGFEVENT_EXIT_VMX_VMRESUME, "exit_vmx_vmresume", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
676 { DBGFEVENT_EXIT_VMX_VMWRITE, "exit_vmx_vmwrite", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
677 { DBGFEVENT_EXIT_VMX_VMXOFF, "exit_vmx_vmxoff", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
678 { DBGFEVENT_EXIT_VMX_VMXON, "exit_vmx_vmxon", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
679 { DBGFEVENT_EXIT_VMX_VMFUNC, "exit_vmx_vmfunc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
680 { DBGFEVENT_EXIT_VMX_INVEPT, "exit_vmx_invept", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
681 { DBGFEVENT_EXIT_VMX_INVVPID, "exit_vmx_invvpid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
682 { DBGFEVENT_EXIT_VMX_INVPCID, "exit_vmx_invpcid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
683 { DBGFEVENT_EXIT_VMX_EPT_VIOLATION, "exit_vmx_ept_violation", "eptvio", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
684 { DBGFEVENT_EXIT_VMX_EPT_MISCONFIG, "exit_vmx_ept_misconfig", "eptmis", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
685 { DBGFEVENT_EXIT_VMX_VAPIC_ACCESS, "exit_vmx_vapic_access", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
686 { DBGFEVENT_EXIT_VMX_VAPIC_WRITE, "exit_vmx_vapic_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
687 { DBGFEVENT_EXIT_SVM_VMRUN, "exit_svm_vmrun", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
688 { DBGFEVENT_EXIT_SVM_VMLOAD, "exit_svm_vmload", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
689 { DBGFEVENT_EXIT_SVM_VMSAVE, "exit_svm_vmsave", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
690 { DBGFEVENT_EXIT_SVM_STGI, "exit_svm_stgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
691 { DBGFEVENT_EXIT_SVM_CLGI, "exit_svm_clgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
692 { DBGFEVENT_VMX_SPLIT_LOCK, "vmx_split_lock", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
693 { DBGFEVENT_IOPORT_UNASSIGNED, "pio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
694 { DBGFEVENT_IOPORT_UNUSED, "pio_unused", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
695 { DBGFEVENT_MEMORY_UNASSIGNED, "mmio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
696 { DBGFEVENT_MEMORY_ROM_WRITE, "rom_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
697 { DBGFEVENT_BSOD_MSR, "bsod_msr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
698 { DBGFEVENT_BSOD_EFI, "bsod_efi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
699 { DBGFEVENT_BSOD_VMMDEV, "bsod_vmmdev", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
700};
701/** Number of entries in g_aDbgcSxEvents. */
702const uint32_t g_cDbgcSxEvents = RT_ELEMENTS(g_aDbgcSxEvents);
703
704
705
706/**
707 * @callback_method_impl{FNDBGCCMD, The 'g' command.}
708 */
709static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
710{
711 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
712
713 /*
714 * Parse arguments.
715 */
716 VMCPUID idCpu = VMCPUID_ALL;
717 if (cArgs == 1)
718 {
719 VMCPUID cCpus = DBGFR3CpuGetCount(pUVM);
720 if (paArgs[0].u.u64Number >= cCpus)
721 return DBGCCmdHlpFail(pCmdHlp, pCmd, "idCpu %RU64 is out of range! Highest valid ID is %u.\n",
722 paArgs[0].u.u64Number, cCpus - 1);
723 idCpu = (VMCPUID)paArgs[0].u.u64Number;
724 }
725 else
726 Assert(cArgs == 0);
727
728 /*
729 * Try resume the VM or CPU.
730 */
731 int rc = DBGFR3Resume(pUVM, idCpu);
732 if (RT_SUCCESS(rc))
733 {
734 Assert(rc == VINF_SUCCESS || rc == VWRN_DBGF_ALREADY_RUNNING);
735 if (rc != VWRN_DBGF_ALREADY_RUNNING)
736 return VINF_SUCCESS;
737 if (idCpu == VMCPUID_ALL)
738 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running");
739 return DBGCCmdHlpFail(pCmdHlp, pCmd, "CPU %u is already running", idCpu);
740 }
741 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume");
742}
743
744
745/**
746 * @callback_method_impl{FNDBGCCMD, The 'gu' command.}
747 */
748static DECLCALLBACK(int) dbgcCmdGoUp(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
749{
750 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
751 RT_NOREF(pCmd, paArgs, cArgs);
752
753 /* The simple way out. */
754 PDBGFADDRESS pStackPop = NULL; /** @todo try set up some stack limitations */
755 RTGCPTR cbStackPop = 0;
756 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET, NULL, pStackPop, cbStackPop, _512K);
757 if (RT_SUCCESS(rc))
758 pDbgc->fReady = false;
759 else
760 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET,) failed");
761 return rc;
762}
763
764
765/**
766 * @callback_method_impl{FNDBGCCMD, The 'ba' command.}
767 */
768static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
769{
770 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
771
772 /*
773 * Interpret access type.
774 */
775 if ( !strchr("xrwi", paArgs[0].u.pszString[0])
776 || paArgs[0].u.pszString[1])
777 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'",
778 paArgs[0].u.pszString, pCmd->pszCmd);
779 uint8_t fType = 0;
780 switch (paArgs[0].u.pszString[0])
781 {
782 case 'x': fType = X86_DR7_RW_EO; break;
783 case 'r': fType = X86_DR7_RW_RW; break;
784 case 'w': fType = X86_DR7_RW_WO; break;
785 case 'i': fType = X86_DR7_RW_IO; break;
786 }
787
788 /*
789 * Validate size.
790 */
791 if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1)
792 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!",
793 paArgs[1].u.u64Number, pCmd->pszCmd);
794 switch (paArgs[1].u.u64Number)
795 {
796 case 1:
797 case 2:
798 case 4:
799 break;
800 /*case 8: - later*/
801 default:
802 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!",
803 paArgs[1].u.u64Number, pCmd->pszCmd);
804 }
805 uint8_t cb = (uint8_t)paArgs[1].u.u64Number;
806
807 /*
808 * Convert the pointer to a DBGF address.
809 */
810 DBGFADDRESS Address;
811 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address);
812 if (RT_FAILURE(rc))
813 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]);
814
815 /*
816 * Pick out the optional arguments.
817 */
818 uint64_t iHitTrigger = 0;
819 uint64_t iHitDisable = UINT64_MAX;
820 const char *pszCmds = NULL;
821 unsigned iArg = 3;
822 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
823 {
824 iHitTrigger = paArgs[iArg].u.u64Number;
825 iArg++;
826 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
827 {
828 iHitDisable = paArgs[iArg].u.u64Number;
829 iArg++;
830 }
831 }
832 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
833 {
834 pszCmds = paArgs[iArg].u.pszString;
835 iArg++;
836 }
837
838 /*
839 * Try set the breakpoint.
840 */
841 uint32_t iBp;
842 rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp);
843 if (RT_SUCCESS(rc))
844 {
845 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
846 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
847 if (RT_SUCCESS(rc))
848 return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
849 if (rc == VERR_DBGC_BP_EXISTS)
850 {
851 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
852 if (RT_SUCCESS(rc))
853 return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
854 }
855 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
856 AssertRC(rc2);
857 }
858 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr);
859}
860
861
862/**
863 * @callback_method_impl{FNDBGCCMD, The 'bc' command.}
864 */
865static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
866{
867 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
868
869 /*
870 * Enumerate the arguments.
871 */
872 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
873 int rc = VINF_SUCCESS;
874 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
875 {
876 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
877 {
878 /* one */
879 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
880 if (iBp == paArgs[iArg].u.u64Number)
881 {
882 int rc2 = DBGFR3BpClear(pUVM, iBp);
883 if (RT_FAILURE(rc2))
884 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
885 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
886 dbgcBpDelete(pDbgc, iBp);
887 }
888 else
889 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
890 }
891 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
892 {
893 /* all */
894 PDBGCBP pBp = pDbgc->pFirstBp;
895 while (pBp)
896 {
897 uint32_t iBp = pBp->iBp;
898 pBp = pBp->pNext;
899
900 int rc2 = DBGFR3BpClear(pUVM, iBp);
901 if (RT_FAILURE(rc2))
902 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
903 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
904 dbgcBpDelete(pDbgc, iBp);
905 }
906 }
907 else
908 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
909 }
910 return rc;
911}
912
913
914/**
915 * @callback_method_impl{FNDBGCCMD, The 'bd' command.}
916 */
917static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
918{
919 /*
920 * Enumerate the arguments.
921 */
922 int rc = VINF_SUCCESS;
923 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
924 {
925 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
926 {
927 /* one */
928 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
929 if (iBp == paArgs[iArg].u.u64Number)
930 {
931 rc = DBGFR3BpDisable(pUVM, iBp);
932 if (RT_FAILURE(rc))
933 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp);
934 }
935 else
936 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
937 }
938 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
939 {
940 /* all */
941 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
942 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
943 {
944 int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp);
945 if (RT_FAILURE(rc2))
946 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp);
947 }
948 }
949 else
950 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
951 }
952 return rc;
953}
954
955
956/**
957 * @callback_method_impl{FNDBGCCMD, The 'be' command.}
958 */
959static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
960{
961 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
962
963 /*
964 * Enumerate the arguments.
965 */
966 int rc = VINF_SUCCESS;
967 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
968 {
969 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
970 {
971 /* one */
972 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
973 if (iBp == paArgs[iArg].u.u64Number)
974 {
975 rc = DBGFR3BpEnable(pUVM, iBp);
976 if (RT_FAILURE(rc))
977 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp);
978 }
979 else
980 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
981 }
982 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
983 {
984 /* all */
985 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
986 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
987 {
988 int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp);
989 if (RT_FAILURE(rc2))
990 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp);
991 }
992 }
993 else
994 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
995 }
996 return rc;
997}
998
999
1000/**
1001 * Breakpoint enumeration callback function.
1002 *
1003 * @returns VBox status code. Any failure will stop the enumeration.
1004 * @param pUVM The user mode VM handle.
1005 * @param pvUser The user argument.
1006 * @param hBp The DBGF breakpoint handle.
1007 * @param pBp Pointer to the breakpoint information. (readonly)
1008 */
1009static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, DBGFBP hBp, PCDBGFBPPUB pBp)
1010{
1011 PDBGC pDbgc = (PDBGC)pvUser;
1012 PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, hBp);
1013
1014 /*
1015 * BP type and size.
1016 */
1017 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c ", hBp, DBGF_BP_PUB_IS_ENABLED(pBp) ? 'e' : 'd');
1018 bool fHasAddress = false;
1019 switch (DBGF_BP_PUB_GET_TYPE(pBp))
1020 {
1021 case DBGFBPTYPE_INT3:
1022 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " p %RGv", pBp->u.Int3.GCPtr);
1023 fHasAddress = true;
1024 break;
1025 case DBGFBPTYPE_REG:
1026 {
1027 char chType;
1028 switch (pBp->u.Reg.fType)
1029 {
1030 case X86_DR7_RW_EO: chType = 'x'; break;
1031 case X86_DR7_RW_WO: chType = 'w'; break;
1032 case X86_DR7_RW_IO: chType = 'i'; break;
1033 case X86_DR7_RW_RW: chType = 'r'; break;
1034 default: chType = '?'; break;
1035
1036 }
1037 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%d %c %RGv", pBp->u.Reg.cb, chType, pBp->u.Reg.GCPtr);
1038 fHasAddress = true;
1039 break;
1040 }
1041
1042/** @todo realign the list when I/O and MMIO breakpoint command have been added and it's possible to test this code. */
1043 case DBGFBPTYPE_PORT_IO:
1044 case DBGFBPTYPE_MMIO:
1045 {
1046 uint32_t fAccess = DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? pBp->u.PortIo.fAccess : pBp->u.Mmio.fAccess;
1047 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? " i" : " m");
1048 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1049 fAccess & DBGFBPIOACCESS_READ_MASK ? 'r' : '-',
1050 fAccess & DBGFBPIOACCESS_READ_BYTE ? '1' : '-',
1051 fAccess & DBGFBPIOACCESS_READ_WORD ? '2' : '-',
1052 fAccess & DBGFBPIOACCESS_READ_DWORD ? '4' : '-',
1053 fAccess & DBGFBPIOACCESS_READ_QWORD ? '8' : '-',
1054 fAccess & DBGFBPIOACCESS_READ_OTHER ? '+' : '-');
1055 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1056 fAccess & DBGFBPIOACCESS_WRITE_MASK ? 'w' : '-',
1057 fAccess & DBGFBPIOACCESS_WRITE_BYTE ? '1' : '-',
1058 fAccess & DBGFBPIOACCESS_WRITE_WORD ? '2' : '-',
1059 fAccess & DBGFBPIOACCESS_WRITE_DWORD ? '4' : '-',
1060 fAccess & DBGFBPIOACCESS_WRITE_QWORD ? '8' : '-',
1061 fAccess & DBGFBPIOACCESS_WRITE_OTHER ? '+' : '-');
1062 if (DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO)
1063 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04x-%04x",
1064 pBp->u.PortIo.uPort, pBp->u.PortIo.uPort + pBp->u.PortIo.cPorts - 1);
1065 else
1066 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%RGp LB %03x", pBp->u.Mmio.PhysAddr, pBp->u.Mmio.cb);
1067 break;
1068 }
1069
1070 default:
1071 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " unknown type %d!!", DBGF_BP_PUB_GET_TYPE(pBp));
1072 AssertFailed();
1073 break;
1074
1075 }
1076 if (pBp->iHitDisable == ~(uint64_t)0)
1077 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to ~0) ", pBp->cHits, pBp->iHitTrigger);
1078 else
1079 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to %04RX64)", pBp->cHits, pBp->iHitTrigger, pBp->iHitDisable);
1080
1081 /*
1082 * Try resolve the address if it has one.
1083 */
1084 if (fHasAddress)
1085 {
1086 RTDBGSYMBOL Sym;
1087 RTINTPTR off;
1088 DBGFADDRESS Addr;
1089 int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->u.GCPtr),
1090 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1091 &off, &Sym, NULL);
1092 if (RT_SUCCESS(rc))
1093 {
1094 if (!off)
1095 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName);
1096 else if (off > 0)
1097 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off);
1098 else
1099 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off);
1100 }
1101 }
1102
1103 /*
1104 * The commands.
1105 */
1106 if (pDbgcBp)
1107 {
1108 if (pDbgcBp->cchCmd)
1109 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd);
1110 else
1111 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n");
1112 }
1113 else
1114 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n");
1115
1116 return VINF_SUCCESS;
1117}
1118
1119
1120/**
1121 * @callback_method_impl{FNDBGCCMD, The 'bl' command.}
1122 */
1123static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1124{
1125 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1126 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
1127 NOREF(paArgs);
1128
1129 /*
1130 * Enumerate the breakpoints.
1131 */
1132 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1133 int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc);
1134 if (RT_FAILURE(rc))
1135 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum");
1136 return rc;
1137}
1138
1139
1140/**
1141 * @callback_method_impl{FNDBGCCMD, The 'bp' command.}
1142 */
1143static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1144{
1145 /*
1146 * Convert the pointer to a DBGF address.
1147 */
1148 DBGFADDRESS Address;
1149 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1150 if (RT_FAILURE(rc))
1151 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1152
1153 /*
1154 * Pick out the optional arguments.
1155 */
1156 uint64_t iHitTrigger = 0;
1157 uint64_t iHitDisable = UINT64_MAX;
1158 const char *pszCmds = NULL;
1159 unsigned iArg = 1;
1160 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1161 {
1162 iHitTrigger = paArgs[iArg].u.u64Number;
1163 iArg++;
1164 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1165 {
1166 iHitDisable = paArgs[iArg].u.u64Number;
1167 iArg++;
1168 }
1169 }
1170 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1171 {
1172 pszCmds = paArgs[iArg].u.pszString;
1173 iArg++;
1174 }
1175
1176 /*
1177 * Try set the breakpoint.
1178 */
1179 uint32_t iBp;
1180 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1181 rc = DBGFR3BpSetInt3(pUVM, pDbgc->idCpu, &Address, iHitTrigger, iHitDisable, &iBp);
1182 if (RT_SUCCESS(rc))
1183 {
1184 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1185 if (RT_SUCCESS(rc))
1186 return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1187 if (rc == VERR_DBGC_BP_EXISTS)
1188 {
1189 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1190 if (RT_SUCCESS(rc))
1191 return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1192 }
1193 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1194 AssertRC(rc2);
1195 }
1196 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr);
1197}
1198
1199
1200/**
1201 * @callback_method_impl{FNDBGCCMD, The 'br' command.}
1202 */
1203static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1204{
1205 /*
1206 * Convert the pointer to a DBGF address.
1207 */
1208 DBGFADDRESS Address;
1209 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1210 if (RT_FAILURE(rc))
1211 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1212
1213 /*
1214 * Pick out the optional arguments.
1215 */
1216 uint64_t iHitTrigger = 0;
1217 uint64_t iHitDisable = UINT64_MAX;
1218 const char *pszCmds = NULL;
1219 unsigned iArg = 1;
1220 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1221 {
1222 iHitTrigger = paArgs[iArg].u.u64Number;
1223 iArg++;
1224 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1225 {
1226 iHitDisable = paArgs[iArg].u.u64Number;
1227 iArg++;
1228 }
1229 }
1230 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1231 {
1232 pszCmds = paArgs[iArg].u.pszString;
1233 iArg++;
1234 }
1235
1236 /*
1237 * Try set the breakpoint.
1238 */
1239 uint32_t iBp;
1240 rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
1241 if (RT_SUCCESS(rc))
1242 {
1243 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1244 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1245 if (RT_SUCCESS(rc))
1246 return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1247 if (rc == VERR_DBGC_BP_EXISTS)
1248 {
1249 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1250 if (RT_SUCCESS(rc))
1251 return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1252 }
1253 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1254 AssertRC(rc2);
1255 }
1256 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr);
1257}
1258
1259
1260/**
1261 * Helps the unassmble ('u') command display symbols it starts at and passes.
1262 *
1263 * @param pUVM The user mode VM handle.
1264 * @param pCmdHlp The command helpers for printing via.
1265 * @param hDbgAs The address space to look up addresses in.
1266 * @param pAddress The current address.
1267 * @param pcbCallAgain Where to return the distance to the next check (in
1268 * instruction bytes).
1269 */
1270static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress,
1271 PRTUINTPTR pcbCallAgain)
1272{
1273 RTDBGSYMBOL Symbol;
1274 RTGCINTPTR offDispSym;
1275 int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1276 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1277 &offDispSym, &Symbol, NULL);
1278 if (RT_FAILURE(rc) || offDispSym > _1G)
1279 rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1280 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1281 &offDispSym, &Symbol, NULL);
1282 if (RT_SUCCESS(rc) && offDispSym < _1G)
1283 {
1284 if (!offDispSym)
1285 {
1286 DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName);
1287 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb;
1288 }
1289 else if (offDispSym > 0)
1290 {
1291 DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym);
1292 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1;
1293 }
1294 else
1295 {
1296 DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym);
1297 *pcbCallAgain = !Symbol.cb ? 64 : (RTGCUINTPTR)-offDispSym + Symbol.cb;
1298 }
1299 }
1300 else
1301 *pcbCallAgain = UINT32_MAX;
1302}
1303
1304
1305/**
1306 * @callback_method_impl{FNDBGCCMD, The 'u' command.}
1307 */
1308static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1309{
1310 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1311
1312 /*
1313 * Validate input.
1314 */
1315 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1316 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
1317 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
1318
1319 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1320 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
1321
1322 /*
1323 * Check the desired mode.
1324 */
1325 unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
1326 switch (pCmd->pszCmd[1])
1327 {
1328 default: AssertFailed(); RT_FALL_THRU();
1329 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
1330 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
1331 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
1332 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
1333 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
1334 }
1335
1336 /** @todo should use DBGFADDRESS for everything */
1337
1338 /*
1339 * Find address.
1340 */
1341 if (!cArgs)
1342 {
1343 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1344 {
1345#if defined(VBOX_VMM_TARGET_ARMV8)
1346 AssertReleaseFailed();
1347#else
1348 /** @todo Batch query CS, RIP, CPU mode and flags. */
1349 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1350 if (CPUMIsGuestIn64BitCode(pVCpu))
1351 {
1352 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
1353 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
1354 }
1355 else
1356 {
1357 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
1358 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
1359 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
1360 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
1361 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
1362 {
1363 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1364 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
1365 }
1366 }
1367#endif
1368
1369 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
1370 }
1371 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
1372 {
1373 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1374 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
1375 }
1376 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
1377 }
1378 else
1379 pDbgc->DisasmPos = paArgs[0];
1380 pDbgc->pLastPos = &pDbgc->DisasmPos;
1381
1382 /*
1383 * Range.
1384 */
1385 switch (pDbgc->DisasmPos.enmRangeType)
1386 {
1387 case DBGCVAR_RANGE_NONE:
1388 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1389 pDbgc->DisasmPos.u64Range = 10;
1390 break;
1391
1392 case DBGCVAR_RANGE_ELEMENTS:
1393 if (pDbgc->DisasmPos.u64Range > 2048)
1394 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
1395 break;
1396
1397 case DBGCVAR_RANGE_BYTES:
1398 if (pDbgc->DisasmPos.u64Range > 65536)
1399 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
1400 break;
1401
1402 default:
1403 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
1404 }
1405
1406 /*
1407 * Convert physical and host addresses to guest addresses.
1408 */
1409 RTDBGAS hDbgAs = pDbgc->hDbgAs;
1410 int rc;
1411 switch (pDbgc->DisasmPos.enmType)
1412 {
1413 case DBGCVAR_TYPE_GC_FLAT:
1414 case DBGCVAR_TYPE_GC_FAR:
1415 break;
1416 case DBGCVAR_TYPE_GC_PHYS:
1417 hDbgAs = DBGF_AS_PHYS;
1418 RT_FALL_THRU();
1419 case DBGCVAR_TYPE_HC_FLAT:
1420 case DBGCVAR_TYPE_HC_PHYS:
1421 {
1422 DBGCVAR VarTmp;
1423 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
1424 if (RT_FAILURE(rc))
1425 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
1426 pDbgc->DisasmPos = VarTmp;
1427 break;
1428 }
1429 default: AssertFailed(); break;
1430 }
1431
1432 DBGFADDRESS CurAddr;
1433 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1434 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1435 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1436 else
1437 {
1438 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1439 if (RT_FAILURE(rc))
1440 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
1441 }
1442
1443 pDbgc->fDisasm = fFlags;
1444
1445 /*
1446 * Figure out where we are and display it. Also calculate when we need to
1447 * check for a new symbol if possible.
1448 */
1449 RTGCUINTPTR cbCheckSymbol;
1450 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1451
1452 /*
1453 * Do the disassembling.
1454 */
1455 unsigned cTries = 32;
1456 int iRangeLeft = (int)pDbgc->DisasmPos.u64Range;
1457 if (iRangeLeft == 0) /* kludge for 'r'. */
1458 iRangeLeft = -1;
1459 for (;;)
1460 {
1461 /*
1462 * Disassemble the instruction.
1463 */
1464 char szDis[256];
1465 uint32_t cbInstr = 1;
1466 if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT)
1467 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags,
1468 &szDis[0], sizeof(szDis), &cbInstr);
1469 else
1470 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags,
1471 &szDis[0], sizeof(szDis), &cbInstr);
1472 if (RT_SUCCESS(rc))
1473 {
1474 /* print it */
1475 rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]);
1476 if (RT_FAILURE(rc))
1477 return rc;
1478 }
1479 else
1480 {
1481 /* bitch. */
1482 int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n");
1483 if (RT_FAILURE(rc2))
1484 return rc2;
1485 if (cTries-- > 0)
1486 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up");
1487 cbInstr = 1;
1488 }
1489
1490 /* advance */
1491 if (iRangeLeft < 0) /* 'r' */
1492 break;
1493 if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1494 iRangeLeft--;
1495 else
1496 iRangeLeft -= cbInstr;
1497 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr);
1498 if (RT_FAILURE(rc))
1499 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr);
1500 if (iRangeLeft <= 0)
1501 break;
1502 fFlags &= ~DBGF_DISAS_FLAGS_CURRENT_GUEST;
1503
1504 /* Print next symbol? */
1505 if (cbCheckSymbol <= cbInstr)
1506 {
1507 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1508 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1509 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1510 else
1511 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1512 if (RT_SUCCESS(rc))
1513 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1514 else
1515 cbCheckSymbol = UINT32_MAX;
1516 }
1517 else
1518 cbCheckSymbol -= cbInstr;
1519 }
1520
1521 NOREF(pCmd);
1522 return VINF_SUCCESS;
1523}
1524
1525
1526/**
1527 * @callback_method_impl{FNDGCSCREENBLIT}
1528 */
1529static DECLCALLBACK(int) dbgcCmdUnassembleCfgBlit(const char *psz, void *pvUser)
1530{
1531 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
1532 return DBGCCmdHlpPrintf(pCmdHlp, "%s", psz);
1533}
1534
1535
1536/**
1537 * Checks whether both addresses are equal.
1538 *
1539 * @returns true if both addresses point to the same location, false otherwise.
1540 * @param pAddr1 First address.
1541 * @param pAddr2 Second address.
1542 */
1543static bool dbgcCmdUnassembleCfgAddrEqual(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1544{
1545 return pAddr1->Sel == pAddr2->Sel
1546 && pAddr1->off == pAddr2->off;
1547}
1548
1549
1550/**
1551 * Checks whether the first given address is lower than the second one.
1552 *
1553 * @returns true if both addresses point to the same location, false otherwise.
1554 * @param pAddr1 First address.
1555 * @param pAddr2 Second address.
1556 */
1557static bool dbgcCmdUnassembleCfgAddrLower(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1558{
1559 return pAddr1->Sel == pAddr2->Sel
1560 && pAddr1->off < pAddr2->off;
1561}
1562
1563
1564/**
1565 * Calculates the size required for the given basic block including the
1566 * border and spacing on the edges.
1567 *
1568 * @param hFlowBb The basic block handle.
1569 * @param pDumpBb The dumper state to fill in for the basic block.
1570 */
1571static void dbgcCmdUnassembleCfgDumpCalcBbSize(DBGFFLOWBB hFlowBb, PDBGCFLOWBBDUMP pDumpBb)
1572{
1573 uint32_t fFlags = DBGFR3FlowBbGetFlags(hFlowBb);
1574 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(hFlowBb);
1575
1576 pDumpBb->hFlowBb = hFlowBb;
1577 pDumpBb->cchHeight = cInstr + 4; /* Include spacing and border top and bottom. */
1578 pDumpBb->cchWidth = 0;
1579 DBGFR3FlowBbGetStartAddress(hFlowBb, &pDumpBb->AddrStart);
1580
1581 DBGFFLOWBBENDTYPE enmType = DBGFR3FlowBbGetType(hFlowBb);
1582 if ( enmType == DBGFFLOWBBENDTYPE_COND
1583 || enmType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1584 || enmType == DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP)
1585 DBGFR3FlowBbGetBranchAddress(hFlowBb, &pDumpBb->AddrTarget);
1586
1587 if (fFlags & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1588 {
1589 const char *pszErr = NULL;
1590 DBGFR3FlowBbQueryError(hFlowBb, &pszErr);
1591 if (pszErr)
1592 {
1593 pDumpBb->cchHeight++;
1594 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszErr));
1595 }
1596 }
1597 for (unsigned i = 0; i < cInstr; i++)
1598 {
1599 const char *pszInstr = NULL;
1600 int rc = DBGFR3FlowBbQueryInstr(hFlowBb, i, NULL, NULL, &pszInstr);
1601 AssertRC(rc);
1602 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszInstr));
1603 }
1604 pDumpBb->cchWidth += 4; /* Include spacing and border left and right. */
1605}
1606
1607
1608/**
1609 * Dumps a top or bottom boundary line.
1610 *
1611 * @param hScreen The screen to draw to.
1612 * @param uStartX Where to start drawing the boundary.
1613 * @param uStartY Y coordinate.
1614 * @param cchWidth Width of the boundary.
1615 * @param enmColor The color to use for drawing.
1616 */
1617static void dbgcCmdUnassembleCfgDumpBbBoundary(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1618 DBGCSCREENCOLOR enmColor)
1619{
1620 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '+', enmColor);
1621 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1622 uStartY, '-', enmColor);
1623 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '+', enmColor);
1624}
1625
1626
1627/**
1628 * Dumps a spacing line between the top or bottom boundary and the actual disassembly.
1629 *
1630 * @param hScreen The screen to draw to.
1631 * @param uStartX Where to start drawing the spacing.
1632 * @param uStartY Y coordinate.
1633 * @param cchWidth Width of the spacing.
1634 * @param enmColor The color to use for drawing.
1635 */
1636static void dbgcCmdUnassembleCfgDumpBbSpacing(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1637 DBGCSCREENCOLOR enmColor)
1638{
1639 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmColor);
1640 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1641 uStartY, ' ', enmColor);
1642 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmColor);
1643}
1644
1645
1646/**
1647 * Writes a given text to the screen.
1648 *
1649 * @param hScreen The screen to draw to.
1650 * @param uStartX Where to start drawing the line.
1651 * @param uStartY Y coordinate.
1652 * @param cchWidth Maximum width of the text.
1653 * @param pszText The text to write.
1654 * @param enmTextColor The color to use for drawing the text.
1655 * @param enmBorderColor The color to use for drawing the border.
1656 */
1657static void dbgcCmdUnassembleCfgDumpBbText(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY,
1658 uint32_t cchWidth, const char *pszText,
1659 DBGCSCREENCOLOR enmTextColor, DBGCSCREENCOLOR enmBorderColor)
1660{
1661 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmBorderColor);
1662 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + 1, uStartY, ' ', enmTextColor);
1663 dbgcScreenAsciiDrawString(hScreen, uStartX + 2, uStartY, pszText, enmTextColor);
1664 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmBorderColor);
1665}
1666
1667
1668/**
1669 * Dumps one basic block using the dumper callback.
1670 *
1671 * @param pDumpBb The basic block dump state to dump.
1672 * @param hScreen The screen to draw to.
1673 */
1674static void dbgcCmdUnassembleCfgDumpBb(PDBGCFLOWBBDUMP pDumpBb, DBGCSCREEN hScreen)
1675{
1676 uint32_t uStartY = pDumpBb->uStartY;
1677 bool fError = RT_BOOL(DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR);
1678 DBGCSCREENCOLOR enmColor = fError ? DBGCSCREENCOLOR_RED_BRIGHT : DBGCSCREENCOLOR_DEFAULT;
1679
1680 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1681 uStartY++;
1682 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1683 uStartY++;
1684
1685 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(pDumpBb->hFlowBb);
1686 for (unsigned i = 0; i < cInstr; i++)
1687 {
1688 const char *pszInstr = NULL;
1689 DBGFR3FlowBbQueryInstr(pDumpBb->hFlowBb, i, NULL, NULL, &pszInstr);
1690 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY + i,
1691 pDumpBb->cchWidth, pszInstr, DBGCSCREENCOLOR_DEFAULT,
1692 enmColor);
1693 }
1694 uStartY += cInstr;
1695
1696 if (fError)
1697 {
1698 const char *pszErr = NULL;
1699 DBGFR3FlowBbQueryError(pDumpBb->hFlowBb, &pszErr);
1700 if (pszErr)
1701 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY,
1702 pDumpBb->cchWidth, pszErr, enmColor,
1703 enmColor);
1704 uStartY++;
1705 }
1706
1707 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1708 uStartY++;
1709 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1710 uStartY++;
1711}
1712
1713
1714/**
1715 * Dumps one branch table using the dumper callback.
1716 *
1717 * @param pDumpBranchTbl The basic block dump state to dump.
1718 * @param hScreen The screen to draw to.
1719 */
1720static void dbgcCmdUnassembleCfgDumpBranchTbl(PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl, DBGCSCREEN hScreen)
1721{
1722 uint32_t uStartY = pDumpBranchTbl->uStartY;
1723 DBGCSCREENCOLOR enmColor = DBGCSCREENCOLOR_CYAN_BRIGHT;
1724
1725 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1726 uStartY++;
1727 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1728 uStartY++;
1729
1730 uint32_t cSlots = DBGFR3FlowBranchTblGetSlots(pDumpBranchTbl->hFlowBranchTbl);
1731 for (unsigned i = 0; i < cSlots; i++)
1732 {
1733 DBGFADDRESS Addr;
1734 char szAddr[128];
1735
1736 RT_ZERO(szAddr);
1737 DBGFR3FlowBranchTblGetAddrAtSlot(pDumpBranchTbl->hFlowBranchTbl, i, &Addr);
1738
1739 if (Addr.Sel == DBGF_SEL_FLAT)
1740 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%RGv", Addr.FlatPtr);
1741 else
1742 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%04x:%RGv", Addr.Sel, Addr.off);
1743
1744 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBranchTbl->uStartX, uStartY + i,
1745 pDumpBranchTbl->cchWidth, &szAddr[0], DBGCSCREENCOLOR_DEFAULT,
1746 enmColor);
1747 }
1748 uStartY += cSlots;
1749
1750 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1751 uStartY++;
1752 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1753 uStartY++;
1754}
1755
1756
1757/**
1758 * Fills in the dump states for the basic blocks and branch tables.
1759 *
1760 * @returns VBox status code.
1761 * @param hFlowIt The control flow graph iterator handle.
1762 * @param hFlowBranchTblIt The control flow graph branch table iterator handle.
1763 * @param paDumpBb The array of basic block dump states.
1764 * @param paDumpBranchTbl The array of branch table dump states.
1765 * @param cBbs Number of basic blocks.
1766 * @param cBranchTbls Number of branch tables.
1767 */
1768static int dbgcCmdUnassembleCfgDumpCalcDimensions(DBGFFLOWIT hFlowIt, DBGFFLOWBRANCHTBLIT hFlowBranchTblIt,
1769 PDBGCFLOWBBDUMP paDumpBb, PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl,
1770 uint32_t cBbs, uint32_t cBranchTbls)
1771{
1772 RT_NOREF2(cBbs, cBranchTbls);
1773
1774 /* Calculate the sizes of each basic block first. */
1775 DBGFFLOWBB hFlowBb = DBGFR3FlowItNext(hFlowIt);
1776 uint32_t idx = 0;
1777 while (hFlowBb)
1778 {
1779 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[idx]);
1780 idx++;
1781 hFlowBb = DBGFR3FlowItNext(hFlowIt);
1782 }
1783
1784 if (paDumpBranchTbl)
1785 {
1786 idx = 0;
1787 DBGFFLOWBRANCHTBL hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1788 while (hFlowBranchTbl)
1789 {
1790 paDumpBranchTbl[idx].hFlowBranchTbl = hFlowBranchTbl;
1791 paDumpBranchTbl[idx].cchHeight = DBGFR3FlowBranchTblGetSlots(hFlowBranchTbl) + 4; /* Spacing and border. */
1792 paDumpBranchTbl[idx].cchWidth = 25 + 4; /* Spacing and border. */
1793 idx++;
1794 hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1795 }
1796 }
1797
1798 return VINF_SUCCESS;
1799}
1800
1801/**
1802 * Dumps the given control flow graph to the output.
1803 *
1804 * @returns VBox status code.
1805 * @param hCfg The control flow graph handle.
1806 * @param fUseColor Flag whether the output should be colorized.
1807 * @param pCmdHlp The command helper callback table.
1808 */
1809static int dbgcCmdUnassembleCfgDump(DBGFFLOW hCfg, bool fUseColor, PDBGCCMDHLP pCmdHlp)
1810{
1811 int rc = VINF_SUCCESS;
1812 DBGFFLOWIT hCfgIt = NULL;
1813 DBGFFLOWBRANCHTBLIT hFlowBranchTblIt = NULL;
1814 uint32_t cBbs = DBGFR3FlowGetBbCount(hCfg);
1815 uint32_t cBranchTbls = DBGFR3FlowGetBranchTblCount(hCfg);
1816 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cBbs * sizeof(DBGCFLOWBBDUMP));
1817 PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl = NULL;
1818
1819 if (cBranchTbls)
1820 paDumpBranchTbl = (PDBGCFLOWBRANCHTBLDUMP)RTMemAllocZ(cBranchTbls * sizeof(DBGCFLOWBRANCHTBLDUMP));
1821
1822 if (RT_UNLIKELY(!paDumpBb || (!paDumpBranchTbl && cBranchTbls > 0)))
1823 rc = VERR_NO_MEMORY;
1824 if (RT_SUCCESS(rc))
1825 rc = DBGFR3FlowItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hCfgIt);
1826 if (RT_SUCCESS(rc) && cBranchTbls > 0)
1827 rc = DBGFR3FlowBranchTblItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hFlowBranchTblIt);
1828
1829 if (RT_SUCCESS(rc))
1830 {
1831 rc = dbgcCmdUnassembleCfgDumpCalcDimensions(hCfgIt, hFlowBranchTblIt, paDumpBb, paDumpBranchTbl,
1832 cBbs, cBranchTbls);
1833
1834 /* Calculate the ASCII screen dimensions and create one. */
1835 uint32_t cchWidth = 0;
1836 uint32_t cchLeftExtra = 5;
1837 uint32_t cchRightExtra = 5;
1838 uint32_t cchHeight = 0;
1839 for (unsigned i = 0; i < cBbs; i++)
1840 {
1841 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1842 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
1843 cchHeight += pDumpBb->cchHeight;
1844
1845 /* Incomplete blocks don't have a successor. */
1846 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1847 continue;
1848
1849 switch (DBGFR3FlowBbGetType(pDumpBb->hFlowBb))
1850 {
1851 case DBGFFLOWBBENDTYPE_EXIT:
1852 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1853 break;
1854 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1855 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1856 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1857 cchLeftExtra++;
1858 else
1859 cchRightExtra++;
1860 break;
1861 case DBGFFLOWBBENDTYPE_UNCOND:
1862 cchHeight += 2; /* For the arrow down to the next basic block. */
1863 break;
1864 case DBGFFLOWBBENDTYPE_COND:
1865 cchHeight += 2; /* For the arrow down to the next basic block. */
1866 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1867 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1868 cchLeftExtra++;
1869 else
1870 cchRightExtra++;
1871 break;
1872 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1873 default:
1874 AssertFailed();
1875 }
1876 }
1877
1878 for (unsigned i = 0; i < cBranchTbls; i++)
1879 {
1880 PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl = &paDumpBranchTbl[i];
1881 cchWidth = RT_MAX(cchWidth, pDumpBranchTbl->cchWidth);
1882 cchHeight += pDumpBranchTbl->cchHeight;
1883 }
1884
1885 cchWidth += 2;
1886
1887 DBGCSCREEN hScreen = NULL;
1888 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth + cchLeftExtra + cchRightExtra, cchHeight);
1889 if (RT_SUCCESS(rc))
1890 {
1891 uint32_t uY = 0;
1892
1893 /* Dump the branch tables first. */
1894 for (unsigned i = 0; i < cBranchTbls; i++)
1895 {
1896 paDumpBranchTbl[i].uStartX = cchLeftExtra + (cchWidth - paDumpBranchTbl[i].cchWidth) / 2;
1897 paDumpBranchTbl[i].uStartY = uY;
1898 dbgcCmdUnassembleCfgDumpBranchTbl(&paDumpBranchTbl[i], hScreen);
1899 uY += paDumpBranchTbl[i].cchHeight;
1900 }
1901
1902 /* Dump the basic blocks and connections to the immediate successor. */
1903 for (unsigned i = 0; i < cBbs; i++)
1904 {
1905 paDumpBb[i].uStartX = cchLeftExtra + (cchWidth - paDumpBb[i].cchWidth) / 2;
1906 paDumpBb[i].uStartY = uY;
1907 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
1908 uY += paDumpBb[i].cchHeight;
1909
1910 /* Incomplete blocks don't have a successor. */
1911 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1912 continue;
1913
1914 switch (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb))
1915 {
1916 case DBGFFLOWBBENDTYPE_EXIT:
1917 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1918 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1919 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1920 break;
1921 case DBGFFLOWBBENDTYPE_UNCOND:
1922 /* Draw the arrow down to the next block. */
1923 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1924 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
1925 uY++;
1926 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1927 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
1928 uY++;
1929 break;
1930 case DBGFFLOWBBENDTYPE_COND:
1931 /* Draw the arrow down to the next block. */
1932 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1933 '|', DBGCSCREENCOLOR_RED_BRIGHT);
1934 uY++;
1935 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1936 'V', DBGCSCREENCOLOR_RED_BRIGHT);
1937 uY++;
1938 break;
1939 default:
1940 AssertFailed();
1941 }
1942 }
1943
1944 /* Last pass, connect all remaining branches. */
1945 uint32_t uBackConns = 0;
1946 uint32_t uFwdConns = 0;
1947 for (unsigned i = 0; i < cBbs; i++)
1948 {
1949 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1950 DBGFFLOWBBENDTYPE enmEndType = DBGFR3FlowBbGetType(pDumpBb->hFlowBb);
1951
1952 /* Incomplete blocks don't have a successor. */
1953 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1954 continue;
1955
1956 switch (enmEndType)
1957 {
1958 case DBGFFLOWBBENDTYPE_EXIT:
1959 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1960 case DBGFFLOWBBENDTYPE_UNCOND:
1961 break;
1962 case DBGFFLOWBBENDTYPE_COND:
1963 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1964 {
1965 /* Find the target first to get the coordinates. */
1966 PDBGCFLOWBBDUMP pDumpBbTgt = NULL;
1967 for (unsigned idxDumpBb = 0; idxDumpBb < cBbs; idxDumpBb++)
1968 {
1969 pDumpBbTgt = &paDumpBb[idxDumpBb];
1970 if (dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBbTgt->AddrStart))
1971 break;
1972 }
1973
1974 DBGCSCREENCOLOR enmColor = enmEndType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1975 ? DBGCSCREENCOLOR_YELLOW_BRIGHT
1976 : DBGCSCREENCOLOR_GREEN_BRIGHT;
1977
1978 /*
1979 * Use the right side for targets with higher addresses,
1980 * left when jumping backwards.
1981 */
1982 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1983 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1984 {
1985 /* Going backwards. */
1986 uint32_t uXVerLine = /*cchLeftExtra - 1 -*/ uBackConns + 1;
1987 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
1988 uBackConns++;
1989
1990 /* Draw the arrow pointing to the target block. */
1991 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX - 1, pDumpBbTgt->uStartY,
1992 '>', enmColor);
1993 /* Draw the horizontal line. */
1994 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBbTgt->uStartX - 2,
1995 pDumpBbTgt->uStartY, '-', enmColor);
1996 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
1997 enmColor);
1998 /* Draw the vertical line down to the source block. */
1999 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, pDumpBbTgt->uStartY + 1, uYHorLine - 1,
2000 '|', enmColor);
2001 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2002 /* Draw the horizontal connection between the source block and vertical part. */
2003 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBb->uStartX - 1,
2004 uYHorLine, '-', enmColor);
2005
2006 }
2007 else
2008 {
2009 /* Going forward. */
2010 uint32_t uXVerLine = cchWidth + cchLeftExtra + (cchRightExtra - uFwdConns) - 1;
2011 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
2012 uFwdConns++;
2013
2014 /* Draw the horizontal line. */
2015 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBb->uStartX + pDumpBb->cchWidth,
2016 uXVerLine - 1, uYHorLine, '-', enmColor);
2017 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2018 /* Draw the vertical line down to the target block. */
2019 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, uYHorLine + 1, pDumpBbTgt->uStartY - 1,
2020 '|', enmColor);
2021 /* Draw the horizontal connection between the target block and vertical part. */
2022 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2023 uXVerLine, pDumpBbTgt->uStartY, '-', enmColor);
2024 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
2025 enmColor);
2026 /* Draw the arrow pointing to the target block. */
2027 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2028 pDumpBbTgt->uStartY, '<', enmColor);
2029 }
2030 break;
2031 }
2032 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
2033 default:
2034 AssertFailed();
2035 }
2036 }
2037
2038 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, fUseColor);
2039 dbgcScreenAsciiDestroy(hScreen);
2040 }
2041 }
2042
2043 if (paDumpBb)
2044 {
2045 for (unsigned i = 0; i < cBbs; i++)
2046 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
2047 RTMemTmpFree(paDumpBb);
2048 }
2049
2050 if (paDumpBranchTbl)
2051 {
2052 for (unsigned i = 0; i < cBranchTbls; i++)
2053 DBGFR3FlowBranchTblRelease(paDumpBranchTbl[i].hFlowBranchTbl);
2054 RTMemTmpFree(paDumpBranchTbl);
2055 }
2056
2057 if (hCfgIt)
2058 DBGFR3FlowItDestroy(hCfgIt);
2059 if (hFlowBranchTblIt)
2060 DBGFR3FlowBranchTblItDestroy(hFlowBranchTblIt);
2061
2062 return rc;
2063}
2064
2065
2066/**
2067 * @callback_method_impl{FNDBGCCMD, The 'ucfg' command.}
2068 */
2069static DECLCALLBACK(int) dbgcCmdUnassembleCfg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2070{
2071 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2072
2073 /*
2074 * Validate input.
2075 */
2076 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2077 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
2078 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
2079
2080 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2081 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
2082
2083 /*
2084 * Check the desired mode.
2085 */
2086 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
2087 bool fUseColor = false;
2088 switch (pCmd->pszCmd[4])
2089 {
2090 default: AssertFailed(); RT_FALL_THRU();
2091 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
2092 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
2093 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
2094 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
2095 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
2096 case 'c': fUseColor = true; break;
2097 }
2098
2099 /** @todo should use DBGFADDRESS for everything */
2100
2101 /*
2102 * Find address.
2103 */
2104 if (!cArgs)
2105 {
2106 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2107 {
2108#if defined(VBOX_VMM_TARGET_ARMV8)
2109 AssertReleaseFailed();
2110#else
2111 /** @todo Batch query CS, RIP, CPU mode and flags. */
2112 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2113 if (CPUMIsGuestIn64BitCode(pVCpu))
2114 {
2115 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
2116 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
2117 }
2118 else
2119 {
2120 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
2121 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2122 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2123 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
2124 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
2125 {
2126 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2127 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
2128 }
2129 }
2130#endif
2131
2132 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
2133 }
2134 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
2135 {
2136 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2137 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
2138 }
2139 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
2140 }
2141 else
2142 pDbgc->DisasmPos = paArgs[0];
2143 pDbgc->pLastPos = &pDbgc->DisasmPos;
2144
2145 /*
2146 * Range.
2147 */
2148 switch (pDbgc->DisasmPos.enmRangeType)
2149 {
2150 case DBGCVAR_RANGE_NONE:
2151 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2152 pDbgc->DisasmPos.u64Range = 10;
2153 break;
2154
2155 case DBGCVAR_RANGE_ELEMENTS:
2156 if (pDbgc->DisasmPos.u64Range > 2048)
2157 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
2158 break;
2159
2160 case DBGCVAR_RANGE_BYTES:
2161 if (pDbgc->DisasmPos.u64Range > 65536)
2162 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
2163 break;
2164
2165 default:
2166 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
2167 }
2168
2169 /*
2170 * Convert physical and host addresses to guest addresses.
2171 */
2172 RTDBGAS hDbgAs = pDbgc->hDbgAs;
2173 int rc;
2174 switch (pDbgc->DisasmPos.enmType)
2175 {
2176 case DBGCVAR_TYPE_GC_FLAT:
2177 case DBGCVAR_TYPE_GC_FAR:
2178 break;
2179 case DBGCVAR_TYPE_GC_PHYS:
2180 hDbgAs = DBGF_AS_PHYS;
2181 RT_FALL_THRU();
2182 case DBGCVAR_TYPE_HC_FLAT:
2183 case DBGCVAR_TYPE_HC_PHYS:
2184 {
2185 DBGCVAR VarTmp;
2186 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
2187 if (RT_FAILURE(rc))
2188 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
2189 pDbgc->DisasmPos = VarTmp;
2190 break;
2191 }
2192 default: AssertFailed(); break;
2193 }
2194
2195 DBGFADDRESS CurAddr;
2196 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
2197 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
2198 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
2199 else
2200 {
2201 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
2202 if (RT_FAILURE(rc))
2203 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
2204 }
2205
2206 DBGFFLOW hCfg;
2207 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
2208 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
2209 if (RT_SUCCESS(rc))
2210 {
2211 /* Dump the graph. */
2212 rc = dbgcCmdUnassembleCfgDump(hCfg, fUseColor, pCmdHlp);
2213 DBGFR3FlowRelease(hCfg);
2214 }
2215 else
2216 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
2217
2218 NOREF(pCmd);
2219 return rc;
2220}
2221
2222
2223/**
2224 * @callback_method_impl{FNDBGCCMD, The 'ls' command.}
2225 */
2226static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2227{
2228 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2229
2230 /*
2231 * Validate input.
2232 */
2233 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2234 if (cArgs == 1)
2235 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2236 if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2237 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing...");
2238 if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType))
2239 return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM");
2240
2241 /*
2242 * Find address.
2243 */
2244 if (!cArgs)
2245 {
2246 if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2247 {
2248#if defined(VBOX_VMM_TARGET_ARMV8)
2249 AssertReleaseFailed();
2250#else
2251 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2252 pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR;
2253 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2254 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2255#endif
2256 }
2257 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE;
2258 }
2259 else
2260 pDbgc->SourcePos = paArgs[0];
2261 pDbgc->pLastPos = &pDbgc->SourcePos;
2262
2263 /*
2264 * Ensure the source address is flat GC.
2265 */
2266 switch (pDbgc->SourcePos.enmType)
2267 {
2268 case DBGCVAR_TYPE_GC_FLAT:
2269 break;
2270 case DBGCVAR_TYPE_GC_PHYS:
2271 case DBGCVAR_TYPE_GC_FAR:
2272 case DBGCVAR_TYPE_HC_FLAT:
2273 case DBGCVAR_TYPE_HC_PHYS:
2274 {
2275 int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos);
2276 if (RT_FAILURE(rc))
2277 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc);
2278 break;
2279 }
2280 default: AssertFailed(); break;
2281 }
2282
2283 /*
2284 * Range.
2285 */
2286 switch (pDbgc->SourcePos.enmRangeType)
2287 {
2288 case DBGCVAR_RANGE_NONE:
2289 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2290 pDbgc->SourcePos.u64Range = 10;
2291 break;
2292
2293 case DBGCVAR_RANGE_ELEMENTS:
2294 if (pDbgc->SourcePos.u64Range > 2048)
2295 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n");
2296 break;
2297
2298 case DBGCVAR_RANGE_BYTES:
2299 if (pDbgc->SourcePos.u64Range > 65536)
2300 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
2301 break;
2302
2303 default:
2304 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType);
2305 }
2306
2307 /*
2308 * Do the disassembling.
2309 */
2310 bool fFirst = 1;
2311 RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" };
2312 int iRangeLeft = (int)pDbgc->SourcePos.u64Range;
2313 if (iRangeLeft == 0) /* kludge for 'r'. */
2314 iRangeLeft = -1;
2315 for (;;)
2316 {
2317 /*
2318 * Get line info.
2319 */
2320 RTDBGLINE Line;
2321 RTGCINTPTR off;
2322 DBGFADDRESS SourcePosAddr;
2323 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr);
2324 if (RT_FAILURE(rc))
2325 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos);
2326 rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL);
2327 if (RT_FAILURE(rc))
2328 return VINF_SUCCESS;
2329
2330 unsigned cLines = 0;
2331 if (memcmp(&Line, &LinePrev, sizeof(Line)))
2332 {
2333 /*
2334 * Print filenamename
2335 */
2336 if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename))
2337 fFirst = true;
2338 if (fFirst)
2339 {
2340 rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo);
2341 if (RT_FAILURE(rc))
2342 return rc;
2343 }
2344
2345 /*
2346 * Try open the file and read the line.
2347 */
2348 FILE *phFile = fopen(Line.szFilename, "r");
2349 if (phFile)
2350 {
2351 /* Skip ahead to the desired line. */
2352 char szLine[4096];
2353 unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1;
2354 if (cBefore > 7)
2355 cBefore = 0;
2356 unsigned cLeft = Line.uLineNo - cBefore;
2357 while (cLeft > 0)
2358 {
2359 szLine[0] = '\0';
2360 if (!fgets(szLine, sizeof(szLine), phFile))
2361 break;
2362 cLeft--;
2363 }
2364 if (!cLeft)
2365 {
2366 /* print the before lines */
2367 for (;;)
2368 {
2369 size_t cch = strlen(szLine);
2370 while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) )
2371 szLine[--cch] = '\0';
2372 if (cBefore-- <= 0)
2373 break;
2374
2375 rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine);
2376 szLine[0] = '\0';
2377 const char *pszShutUpGcc = fgets(szLine, sizeof(szLine), phFile); NOREF(pszShutUpGcc);
2378 cLines++;
2379 }
2380 /* print the actual line */
2381 rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine);
2382 }
2383 fclose(phFile);
2384 if (RT_FAILURE(rc))
2385 return rc;
2386 fFirst = false;
2387 }
2388 else
2389 return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename);
2390
2391 LinePrev = Line;
2392 }
2393
2394
2395 /*
2396 * Advance
2397 */
2398 if (iRangeLeft < 0) /* 'r' */
2399 break;
2400 if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
2401 iRangeLeft -= cLines;
2402 else
2403 iRangeLeft -= 1;
2404 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1);
2405 if (RT_FAILURE(rc))
2406 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1);
2407 if (iRangeLeft <= 0)
2408 break;
2409 }
2410
2411 NOREF(pCmd);
2412 return 0;
2413}
2414
2415
2416/**
2417 * @callback_method_impl{FNDBGCCMD, The 'r' command.}
2418 */
2419static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2420{
2421 return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
2422}
2423
2424
2425/**
2426 * @callback_method_impl{FNDBGCCMD, Common worker for the dbgcCmdReg*()
2427 * commands.}
2428 */
2429static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs,
2430 const char *pszPrefix)
2431{
2432 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2433 int rc;
2434 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3);
2435 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING
2436 || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL);
2437
2438 /*
2439 * Parse the register name and kind.
2440 */
2441 bool const fAllRegs = strcmp(paArgs[0].u.pszString, "all") == 0;
2442 const char *pszReg = paArgs[0].u.pszString;
2443 if (*pszReg == '@')
2444 pszReg++;
2445 VMCPUID idCpu = pDbgc->idCpu;
2446 if (*pszPrefix)
2447 idCpu |= DBGFREG_HYPER_VMCPUID;
2448 if (*pszReg == '.')
2449 {
2450 pszReg++;
2451 idCpu |= DBGFREG_HYPER_VMCPUID;
2452 }
2453 const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : "";
2454 if (cArgs == 1)
2455 {
2456 /*
2457 * Show the register.
2458 *
2459 * If it ends with a '.' or '.*', we'll show any subfields and aliases as
2460 * well. This is a special VBox twist.
2461 */
2462 size_t cchReg = strlen(pszReg);
2463 size_t cchSuffix = 0;
2464 if (cchReg >= 2 && pszReg[cchReg - 1] == '.')
2465 cchSuffix = 1;
2466 else if (cchReg >= 3 && pszReg[cchReg - 1] == '*' && pszReg[cchReg - 2] == '.')
2467 cchSuffix = 2;
2468
2469 char szValue[160];
2470 if (!cchSuffix && !fAllRegs)
2471 {
2472 DBGFREGVALTYPE enmType;
2473 DBGFREGVAL Value;
2474 rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2475 if (RT_FAILURE(rc))
2476 {
2477 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2478 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2479 pszActualPrefix, pszReg);
2480 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2481 pszActualPrefix, pszReg, rc);
2482 }
2483
2484 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/);
2485 if (RT_SUCCESS(rc))
2486 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue);
2487 else
2488 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2489 }
2490 else
2491 {
2492 /*
2493 * Register + aliases + subfields OR 'all'.
2494 */
2495 /* Duplicate the register specifier sans suffix. */
2496 char *pszRegBase = RTStrDupN(pszReg, cchReg - cchSuffix);
2497 AssertReturn(pszRegBase, VERR_NO_STR_MEMORY);
2498
2499 /* Make a rough guess on how many entires we need, or query it in the case of 'all'. */
2500 size_t cRegsAlloc = 128;
2501 if (fAllRegs)
2502 DBGFR3RegNmQueryAllCount(pUVM, &cRegsAlloc);
2503 PDBGFREGENTRYNM paRegs = (PDBGFREGENTRYNM)RTMemTmpAlloc(sizeof(paRegs[0]) * cRegsAlloc);
2504 AssertReturnStmt(paRegs, RTStrFree(pszRegBase), VERR_NO_TMP_MEMORY);
2505 size_t cRegs = cRegsAlloc;
2506
2507 /* Query the registers.*/
2508 if (fAllRegs)
2509 rc = DBGFR3RegNmQueryAll(pUVM, paRegs, cRegs);
2510 else
2511 rc = DBGFR3RegNmQueryEx(pUVM, idCpu, pszRegBase, DBGFR3REG_QUERY_EX_F_SUBFIELDS | DBGFR3REG_QUERY_EX_F_ALIASES,
2512 paRegs, &cRegs);
2513 if (rc == VERR_BUFFER_OVERFLOW && !fAllRegs)
2514 {
2515 RTMemTmpFree(paRegs);
2516 cRegsAlloc = cRegs;
2517 paRegs = (PDBGFREGENTRYNM)RTMemTmpAlloc(sizeof(paRegs[0]) * cRegsAlloc);
2518 AssertReturnStmt(paRegs, RTStrFree(pszRegBase), VERR_NO_TMP_MEMORY);
2519 rc = DBGFR3RegNmQueryEx(pUVM, idCpu, pszRegBase,
2520 DBGFR3REG_QUERY_EX_F_SUBFIELDS | DBGFR3REG_QUERY_EX_F_ALIASES, paRegs, &cRegs);
2521 }
2522 if (RT_SUCCESS(rc))
2523 {
2524 /* Find max lengths and sizes for producing pretty columns. */
2525 size_t cchMaxNm = 2;
2526 size_t cchMaxSubFieldNm = 2;
2527 size_t cMaxSubFieldBits = 1;
2528 if (*pszActualPrefix == '\0')
2529 for (uint32_t iReg = 0; iReg < cRegs; iReg++)
2530 {
2531 size_t const cchName = strlen(paRegs[iReg].pszName);
2532 if (cchMaxNm < cchName)
2533 cchMaxNm = cchName;
2534 if (paRegs[iReg].u.s.fSubField)
2535 {
2536 cchMaxSubFieldNm = RT_MAX(cchMaxSubFieldNm, cchName);
2537 cMaxSubFieldBits = RT_MAX(cMaxSubFieldBits, paRegs[iReg].u.s.cBits);
2538 }
2539 }
2540
2541 /* Output the registers. */
2542 size_t cchMaxSubFieldValue = 2 + (cMaxSubFieldBits + 3) / 4;
2543 size_t cMaxSameLine = 80 / (2 + cchMaxSubFieldNm + 1 + cchMaxSubFieldValue);
2544 unsigned iSameLine = 0;
2545 for (uint32_t iReg = 0; iReg < cRegs; iReg++)
2546 {
2547 if ( !paRegs[iReg].u.s.fSubField
2548 || !paRegs[iReg].u.s.cBits)
2549 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &paRegs[iReg].Val,
2550 paRegs[iReg].enmType, true /*fSpecial*/);
2551 else
2552 rc = DBGFR3RegFormatValueEx(szValue, sizeof(szValue), &paRegs[iReg].Val, paRegs[iReg].enmType,
2553 16,
2554 (paRegs[iReg].u.s.cBits + 3) / 4,
2555 0,
2556 (paRegs[iReg].u.s.cBits == 1 ? 0 : RTSTR_F_SPECIAL) | RTSTR_F_WIDTH);
2557 if (RT_SUCCESS(rc))
2558 {
2559 if (!paRegs[iReg].u.s.fSubField)
2560 {
2561 if (iSameLine > 0)
2562 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2563 if (*pszActualPrefix == '\0')
2564 rc = DBGCCmdHlpPrintf(pCmdHlp, "%*s=%s\n", cchMaxNm, paRegs[iReg].pszName, szValue);
2565 else
2566 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, paRegs[iReg].pszName, szValue);
2567 iSameLine = 0;
2568 }
2569 else
2570 {
2571 if (*pszActualPrefix == '\0')
2572 rc = DBGCCmdHlpPrintf(pCmdHlp, " %*s=%s", cchMaxSubFieldNm, paRegs[iReg].pszName, szValue);
2573 else
2574 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s%s=%s", pszActualPrefix, paRegs[iReg].pszName, szValue);
2575 iSameLine++;
2576 if (iSameLine < cMaxSameLine)
2577 {
2578 size_t cchValue = strlen(szValue);
2579 if (cchValue < cchMaxSubFieldValue)
2580 rc = DBGCCmdHlpPrintf(pCmdHlp, "%*s", cchMaxSubFieldValue - cchValue, "");
2581 }
2582 else
2583 {
2584 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2585 iSameLine = 0;
2586 }
2587 }
2588 }
2589 else
2590 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue[Ex] failed for %s: %Rrc.\n",
2591 paRegs[iReg].pszName, rc);
2592 }
2593 if (iSameLine > 0)
2594 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2595 }
2596 else if (fAllRegs)
2597 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQueryAll failed: %Rrc.\n", rc);
2598 else if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2599 rc = DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2600 pszActualPrefix, pszRegBase);
2601 else
2602 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQueryEx failed querying '%s%s': %Rrc.\n",
2603 pszActualPrefix, pszRegBase, rc);
2604 RTStrFree(pszRegBase);
2605 RTMemTmpFree(paRegs);
2606 }
2607 }
2608 else
2609 {
2610 /*
2611 * We're about to modify the register.
2612 *
2613 * First we need to query the register type (see below).
2614 */
2615 DBGFREGVALTYPE enmType;
2616 DBGFREGVAL Value;
2617 rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2618 if (RT_FAILURE(rc))
2619 {
2620 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2621 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2622 pszActualPrefix, pszReg);
2623 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2624 pszActualPrefix, pszReg, rc);
2625 }
2626
2627 DBGCVAR NewValueTmp;
2628 PCDBGCVAR pNewValue;
2629 if (cArgs == 3)
2630 {
2631 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2632 if (strcmp(paArgs[1].u.pszString, "="))
2633 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='.");
2634 pNewValue = &paArgs[2];
2635 }
2636 else
2637 {
2638 /* Not possible to convince the parser to support both codeview and
2639 windbg syntax and make the equal sign optional. Try help it. */
2640 /** @todo make DBGCCmdHlpConvert do more with strings. */
2641 rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp);
2642 if (RT_FAILURE(rc))
2643 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol.");
2644 pNewValue = &NewValueTmp;
2645 }
2646
2647 /*
2648 * Modify the register.
2649 */
2650 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER);
2651 if (enmType != DBGFREGVALTYPE_DTR)
2652 {
2653 enmType = DBGFREGVALTYPE_U64;
2654 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64);
2655 }
2656 else
2657 {
2658 enmType = DBGFREGVALTYPE_DTR;
2659 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base);
2660 if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE)
2661 Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range;
2662 }
2663 if (RT_SUCCESS(rc))
2664 {
2665 rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType);
2666 if (RT_FAILURE(rc))
2667 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n",
2668 pszActualPrefix, pszReg, rc);
2669 if (rc != VINF_SUCCESS)
2670 DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc);
2671 }
2672 else
2673 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2674 }
2675 return rc;
2676}
2677
2678
2679/**
2680 * @callback_method_impl{FNDBGCCMD,
2681 * The 'rg'\, 'rg64' and 'rg32' commands\, worker for 'r'.}
2682 */
2683static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2684{
2685 /*
2686 * Show all registers our selves.
2687 */
2688 if (cArgs == 0)
2689 {
2690 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2691 bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64")
2692 || ( strcmp(pCmd->pszCmd, "rg32") != 0
2693 && DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu));
2694 return DBGCCmdHlpRegPrintf(pCmdHlp, pDbgc->idCpu, f64BitMode, pDbgc->fRegTerse);
2695 }
2696 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "");
2697}
2698
2699
2700/**
2701 * @callback_method_impl{FNDBGCCMD, The 'rt' command.}
2702 */
2703static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2704{
2705 NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2706
2707 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2708 pDbgc->fRegTerse = !pDbgc->fRegTerse;
2709 return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n");
2710}
2711
2712
2713/**
2714 * @callback_method_impl{FNDBGCCMD, The 'pr' and 'tr' commands.}
2715 */
2716static DECLCALLBACK(int) dbgcCmdStepTraceToggle(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2717{
2718 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2719 Assert(cArgs == 0); NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2720
2721 /* Note! windbg accepts 'r' as a flag to 'p', 'pa', 'pc', 'pt', 't',
2722 'ta', 'tc' and 'tt'. We've simplified it. */
2723 pDbgc->fStepTraceRegs = !pDbgc->fStepTraceRegs;
2724 return VINF_SUCCESS;
2725}
2726
2727
2728/**
2729 * @callback_method_impl{FNDBGCCMD, The 'p'\, 'pc'\, 'pt'\, 't'\, 'tc'\, and 'tt' commands.}
2730 */
2731static DECLCALLBACK(int) dbgcCmdStepTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2732{
2733 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2734 if (cArgs != 0)
2735 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2736 "Sorry, but the '%s' command does not currently implement any arguments.\n", pCmd->pszCmd);
2737
2738 /* The 'count' has to be implemented by DBGC, whereas the
2739 filtering is taken care of by DBGF. */
2740
2741 /*
2742 * Convert the command to DBGF_STEP_F_XXX and other API input.
2743 */
2744 //DBGFADDRESS StackPop;
2745 PDBGFADDRESS pStackPop = NULL;
2746 RTGCPTR cbStackPop = 0;
2747 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : _64K;
2748 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2749 if (pCmd->pszCmd[1] == 'c')
2750 fFlags |= DBGF_STEP_F_STOP_ON_CALL;
2751 else if (pCmd->pszCmd[1] == 't')
2752 fFlags |= DBGF_STEP_F_STOP_ON_RET;
2753 else if (pCmd->pszCmd[0] != 'p')
2754 cMaxSteps = 1;
2755 else
2756 {
2757 /** @todo consider passing RSP + 1 in for 'p' and something else sensible for
2758 * the 'pt' command. */
2759 }
2760
2761 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, NULL, pStackPop, cbStackPop, cMaxSteps);
2762 if (RT_SUCCESS(rc))
2763 pDbgc->fReady = false;
2764 else
2765 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2766
2767 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2768 return rc;
2769}
2770
2771
2772/**
2773 * @callback_method_impl{FNDBGCCMD, The 'pa' and 'ta' commands.}
2774 */
2775static DECLCALLBACK(int) dbgcCmdStepTraceTo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2776{
2777 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2778 if (cArgs != 1)
2779 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2780 "Sorry, but the '%s' command only implements a single argument at present.\n", pCmd->pszCmd);
2781 DBGFADDRESS Address;
2782 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
2783 if (RT_FAILURE(rc))
2784 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[0]);
2785
2786 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : 1;
2787 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2788 rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, &Address, NULL, 0, cMaxSteps);
2789 if (RT_SUCCESS(rc))
2790 pDbgc->fReady = false;
2791 else
2792 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2793 return rc;
2794}
2795
2796
2797/**
2798 * Helper that tries to resolve a far address to a symbol and formats it.
2799 *
2800 * @returns Pointer to symbol string on success, NULL if not resolved.
2801 * Free using RTStrFree.
2802 * @param pCmdHlp The command helper structure.
2803 * @param hAs The address space to use. NIL_RTDBGAS means no symbol resolving.
2804 * @param sel The selector part of the address.
2805 * @param off The offset part of the address.
2806 * @param pszPrefix How to prefix the symbol string.
2807 * @param pszSuffix How to suffix the symbol string.
2808 */
2809static char *dbgcCmdHlpFarAddrToSymbol(PDBGCCMDHLP pCmdHlp, RTDBGAS hAs, RTSEL sel, uint64_t off,
2810 const char *pszPrefix, const char *pszSuffix)
2811{
2812 char *pszRet = NULL;
2813 if (hAs != NIL_RTDBGAS)
2814 {
2815 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2816 DBGFADDRESS Addr;
2817 int rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr, sel, off);
2818 if (RT_SUCCESS(rc))
2819 {
2820 RTGCINTPTR offDispSym = 0;
2821 PRTDBGSYMBOL pSymbol = DBGFR3AsSymbolByAddrA(pDbgc->pUVM, hAs, &Addr,
2822 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL
2823 | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
2824 &offDispSym, NULL);
2825 if (pSymbol)
2826 {
2827 if (offDispSym == 0)
2828 pszRet = RTStrAPrintf2("%s%s%s", pszPrefix, pSymbol->szName, pszSuffix);
2829 else if (offDispSym > 0)
2830 pszRet = RTStrAPrintf2("%s%s+%llx%s", pszPrefix, pSymbol->szName, (int64_t)offDispSym, pszSuffix);
2831 else
2832 pszRet = RTStrAPrintf2("%s%s-%llx%s", pszPrefix, pSymbol->szName, -(int64_t)offDispSym, pszSuffix);
2833 RTDbgSymbolFree(pSymbol);
2834 }
2835 }
2836 }
2837 return pszRet;
2838}
2839
2840
2841/**
2842 * @callback_method_impl{FNDBGCCMD, The 'k'\, 'kg' and 'kh' commands.}
2843 */
2844static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2845{
2846 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2847
2848 /*
2849 * Figure which context we're called for and start walking that stack.
2850 */
2851 int rc;
2852 PCDBGFSTACKFRAME pFirstFrame;
2853 bool const fGuest = true;
2854 bool const fVerbose = pCmd->pszCmd[1] == 'v'
2855 || (pCmd->pszCmd[1] != '\0' && pCmd->pszCmd[2] == 'v');
2856 rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame);
2857 if (RT_FAILURE(rc))
2858 return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc);
2859
2860 /*
2861 * Print the frames.
2862 */
2863 char szTmp[1024];
2864 uint32_t fBitFlags = 0;
2865 for (PCDBGFSTACKFRAME pFrame = pFirstFrame;
2866 pFrame;
2867 pFrame = DBGFR3StackWalkNext(pFrame))
2868 {
2869 uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT);
2870 if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT)
2871 {
2872 if (fCurBitFlags != fBitFlags)
2873 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2874 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2875 pFrame->iFrame,
2876 pFrame->AddrFrame.Sel,
2877 (uint16_t)pFrame->AddrFrame.off,
2878 pFrame->AddrReturnFrame.Sel,
2879 (uint16_t)pFrame->AddrReturnFrame.off,
2880 (uint32_t)pFrame->AddrReturnPC.Sel,
2881 (uint32_t)pFrame->AddrReturnPC.off,
2882 pFrame->Args.au32[0],
2883 pFrame->Args.au32[1],
2884 pFrame->Args.au32[2],
2885 pFrame->Args.au32[3]);
2886 }
2887 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT)
2888 {
2889 if (fCurBitFlags != fBitFlags)
2890 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2891 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2892 pFrame->iFrame,
2893 (uint32_t)pFrame->AddrFrame.off,
2894 (uint32_t)pFrame->AddrReturnFrame.off,
2895 (uint32_t)pFrame->AddrReturnPC.Sel,
2896 (uint32_t)pFrame->AddrReturnPC.off,
2897 pFrame->Args.au32[0],
2898 pFrame->Args.au32[1],
2899 pFrame->Args.au32[2],
2900 pFrame->Args.au32[3]);
2901 }
2902 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT)
2903 {
2904 if (fCurBitFlags != fBitFlags)
2905 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n");
2906 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %016RX64 %04RX16:%016RX64 %016RX64",
2907 pFrame->iFrame,
2908 (uint64_t)pFrame->AddrFrame.off,
2909 pFrame->AddrReturnFrame.Sel,
2910 (uint64_t)pFrame->AddrReturnFrame.off,
2911 (uint64_t)pFrame->AddrReturnPC.off);
2912 }
2913 if (RT_FAILURE(rc))
2914 break;
2915 if (!pFrame->pSymPC)
2916 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
2917 fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT
2918 ? " %RTsel:%016RGv"
2919 : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT
2920 ? " %RTsel:%08RGv"
2921 : " %RTsel:%04RGv"
2922 , pFrame->AddrPC.Sel, pFrame->AddrPC.off);
2923 else
2924 {
2925 RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */
2926 if (offDisp > 0)
2927 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp);
2928 else if (offDisp < 0)
2929 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp);
2930 else
2931 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName);
2932 }
2933 if (RT_SUCCESS(rc) && pFrame->pLinePC)
2934 rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo);
2935 if (RT_SUCCESS(rc))
2936 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2937
2938 if (fVerbose && RT_SUCCESS(rc))
2939 {
2940 /*
2941 * Display verbose frame info.
2942 */
2943 const char *pszRetType = "invalid";
2944 switch (pFrame->enmReturnType)
2945 {
2946 case RTDBGRETURNTYPE_NEAR16: pszRetType = "retn/16"; break;
2947 case RTDBGRETURNTYPE_NEAR32: pszRetType = "retn/32"; break;
2948 case RTDBGRETURNTYPE_NEAR64: pszRetType = "retn/64"; break;
2949 case RTDBGRETURNTYPE_FAR16: pszRetType = "retf/16"; break;
2950 case RTDBGRETURNTYPE_FAR32: pszRetType = "retf/32"; break;
2951 case RTDBGRETURNTYPE_FAR64: pszRetType = "retf/64"; break;
2952 case RTDBGRETURNTYPE_IRET16: pszRetType = "iret-16"; break;
2953 case RTDBGRETURNTYPE_IRET32: pszRetType = "iret/32s"; break;
2954 case RTDBGRETURNTYPE_IRET32_PRIV: pszRetType = "iret/32p"; break;
2955 case RTDBGRETURNTYPE_IRET32_V86: pszRetType = "iret/v86"; break;
2956 case RTDBGRETURNTYPE_IRET64: pszRetType = "iret/64"; break;
2957
2958 case RTDBGRETURNTYPE_END:
2959 case RTDBGRETURNTYPE_INVALID:
2960 case RTDBGRETURNTYPE_32BIT_HACK:
2961 break;
2962 }
2963 size_t cchLine = DBGCCmdHlpPrintfLen(pCmdHlp, " %s", pszRetType);
2964 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_UNWIND_INFO)
2965 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-unwind-info");
2966 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_ODD_EVEN)
2967 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-odd-even");
2968 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_REAL_V86)
2969 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " real-v86");
2970 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_MAX_DEPTH)
2971 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " max-depth");
2972 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_TRAP_FRAME)
2973 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " trap-frame");
2974
2975 if (pFrame->cSureRegs > 0)
2976 {
2977 cchLine = 1024; /* force new line */
2978 for (uint32_t i = 0; i < pFrame->cSureRegs; i++)
2979 {
2980 if (cchLine > 80)
2981 {
2982 DBGCCmdHlpPrintf(pCmdHlp, "\n ");
2983 cchLine = 2;
2984 }
2985
2986 szTmp[0] = '\0';
2987 DBGFR3RegFormatValue(szTmp, sizeof(szTmp), &pFrame->paSureRegs[i].Value,
2988 pFrame->paSureRegs[i].enmType, false);
2989 const char *pszName = pFrame->paSureRegs[i].enmReg != DBGFREG_END
2990 ? DBGFR3RegCpuName(pUVM, pFrame->paSureRegs[i].enmReg, pFrame->paSureRegs[i].enmType)
2991 : pFrame->paSureRegs[i].pszName;
2992 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " %s=%s", pszName, szTmp);
2993 }
2994 }
2995
2996 if (RT_SUCCESS(rc))
2997 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2998 }
2999
3000 if (RT_FAILURE(rc))
3001 break;
3002
3003 fBitFlags = fCurBitFlags;
3004 }
3005
3006 DBGFR3StackWalkEnd(pFirstFrame);
3007
3008 NOREF(paArgs); NOREF(cArgs);
3009 return rc;
3010}
3011
3012
3013/**
3014 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
3015 *
3016 * @returns pfnPrintf status code.
3017 * @param pCmdHlp The DBGC command helpers.
3018 * @param pDesc The descriptor to display.
3019 * @param iEntry The descriptor entry number.
3020 * @param fHyper Whether the selector belongs to the hypervisor or not.
3021 * @param hAs Address space to use when resolving symbols.
3022 * @param pfDblEntry Where to indicate whether the entry is two entries wide.
3023 * Optional.
3024 */
3025static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs,
3026 bool *pfDblEntry)
3027{
3028 /* GUEST64 */
3029 int rc;
3030
3031 const char *pszHyper = fHyper ? " HYPER" : "";
3032 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
3033 if (pDesc->Gen.u1DescType)
3034 {
3035 static const char * const s_apszTypes[] =
3036 {
3037 "DataRO", /* 0 Read-Only */
3038 "DataRO", /* 1 Read-Only - Accessed */
3039 "DataRW", /* 2 Read/Write */
3040 "DataRW", /* 3 Read/Write - Accessed */
3041 "DownRO", /* 4 Expand-down, Read-Only */
3042 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
3043 "DownRW", /* 6 Expand-down, Read/Write */
3044 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
3045 "CodeEO", /* 8 Execute-Only */
3046 "CodeEO", /* 9 Execute-Only - Accessed */
3047 "CodeER", /* A Execute/Readable */
3048 "CodeER", /* B Execute/Readable - Accessed */
3049 "ConfE0", /* C Conforming, Execute-Only */
3050 "ConfE0", /* D Conforming, Execute-Only - Accessed */
3051 "ConfER", /* E Conforming, Execute/Readable */
3052 "ConfER" /* F Conforming, Execute/Readable - Accessed */
3053 };
3054 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
3055 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3056 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3057 uint32_t u32Base = X86DESC_BASE(pDesc);
3058 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
3059
3060 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
3061 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3062 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
3063 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
3064 }
3065 else
3066 {
3067 static const char * const s_apszTypes[] =
3068 {
3069 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
3070 "Ill-1 ", /* 1 0001 Available 16-bit TSS */
3071 "LDT ", /* 2 0010 LDT */
3072 "Ill-3 ", /* 3 0011 Busy 16-bit TSS */
3073 "Ill-4 ", /* 4 0100 16-bit Call Gate */
3074 "Ill-5 ", /* 5 0101 Task Gate */
3075 "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */
3076 "Ill-7 ", /* 7 0111 16-bit Trap Gate */
3077 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
3078 "Tss64A", /* 9 1001 Available 32-bit TSS */
3079 "Ill-A ", /* A 1010 Reserved (Illegal) */
3080 "Tss64B", /* B 1011 Busy 32-bit TSS */
3081 "Call64", /* C 1100 32-bit Call Gate */
3082 "Ill-D ", /* D 1101 Reserved (Illegal) */
3083 "Int64 ", /* E 1110 32-bit Interrupt Gate */
3084 "Trap64" /* F 1111 32-bit Trap Gate */
3085 };
3086 switch (pDesc->Gen.u4Type)
3087 {
3088 /* raw */
3089 case X86_SEL_TYPE_SYS_UNDEFINED:
3090 case X86_SEL_TYPE_SYS_UNDEFINED2:
3091 case X86_SEL_TYPE_SYS_UNDEFINED4:
3092 case X86_SEL_TYPE_SYS_UNDEFINED3:
3093 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3094 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3095 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3096 case X86_SEL_TYPE_SYS_286_INT_GATE:
3097 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
3098 case X86_SEL_TYPE_SYS_TASK_GATE:
3099 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
3100 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
3101 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3102 break;
3103
3104 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3105 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3106 case X86_SEL_TYPE_SYS_LDT:
3107 {
3108 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3109 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3110 const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " ";
3111
3112 uint64_t u64Base = X86DESC64_BASE(pDesc);
3113 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
3114
3115 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n",
3116 iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit,
3117 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig,
3118 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3119 pszHyper);
3120 if (pfDblEntry)
3121 *pfDblEntry = true;
3122 break;
3123 }
3124
3125 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3126 {
3127 unsigned cParams = pDesc->au8[4] & 0x1f;
3128 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3129 RTSEL sel = pDesc->au16[1];
3130 uint64_t off = pDesc->au16[0]
3131 | ((uint64_t)pDesc->au16[3] << 16)
3132 | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
3133 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3134 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s%s\n",
3135 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3136 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3137 RTStrFree(pszSymbol);
3138 if (pfDblEntry)
3139 *pfDblEntry = true;
3140 break;
3141 }
3142
3143 case X86_SEL_TYPE_SYS_386_INT_GATE:
3144 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3145 {
3146 RTSEL sel = pDesc->Gate.u16Sel;
3147 uint64_t off = pDesc->Gate.u16OffsetLow
3148 | ((uint64_t)pDesc->Gate.u16OffsetHigh << 16)
3149 | ((uint64_t)pDesc->Gate.u32OffsetTop << 32);
3150 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3151 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%u %s IST=%u%s%s\n",
3152 iEntry, s_apszTypes[pDesc->Gate.u4Type], sel, off,
3153 pDesc->Gate.u2Dpl, pszPresent, pDesc->Gate.u3IST, pszHyper, pszSymbol ? pszSymbol : "");
3154 RTStrFree(pszSymbol);
3155 if (pfDblEntry)
3156 *pfDblEntry = true;
3157 break;
3158 }
3159
3160 /* impossible, just it's necessary to keep gcc happy. */
3161 default:
3162 return VINF_SUCCESS;
3163 }
3164 }
3165 return VINF_SUCCESS;
3166}
3167
3168
3169/**
3170 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
3171 *
3172 * @returns pfnPrintf status code.
3173 * @param pCmdHlp The DBGC command helpers.
3174 * @param pDesc The descriptor to display.
3175 * @param iEntry The descriptor entry number.
3176 * @param fHyper Whether the selector belongs to the hypervisor or not.
3177 * @param hAs Address space to use when resolving symbols.
3178 */
3179static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs)
3180{
3181 int rc;
3182
3183 const char *pszHyper = fHyper ? " HYPER" : "";
3184 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
3185 if (pDesc->Gen.u1DescType)
3186 {
3187 static const char * const s_apszTypes[] =
3188 {
3189 "DataRO", /* 0 Read-Only */
3190 "DataRO", /* 1 Read-Only - Accessed */
3191 "DataRW", /* 2 Read/Write */
3192 "DataRW", /* 3 Read/Write - Accessed */
3193 "DownRO", /* 4 Expand-down, Read-Only */
3194 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
3195 "DownRW", /* 6 Expand-down, Read/Write */
3196 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
3197 "CodeEO", /* 8 Execute-Only */
3198 "CodeEO", /* 9 Execute-Only - Accessed */
3199 "CodeER", /* A Execute/Readable */
3200 "CodeER", /* B Execute/Readable - Accessed */
3201 "ConfE0", /* C Conforming, Execute-Only */
3202 "ConfE0", /* D Conforming, Execute-Only - Accessed */
3203 "ConfER", /* E Conforming, Execute/Readable */
3204 "ConfER" /* F Conforming, Execute/Readable - Accessed */
3205 };
3206 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
3207 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3208 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3209 uint32_t u32Base = pDesc->Gen.u16BaseLow
3210 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3211 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3212 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3213 if (pDesc->Gen.u1Granularity)
3214 cbLimit <<= GUEST_PAGE_SHIFT;
3215
3216 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
3217 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3218 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
3219 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
3220 }
3221 else
3222 {
3223 static const char * const s_apszTypes[] =
3224 {
3225 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
3226 "Tss16A", /* 1 0001 Available 16-bit TSS */
3227 "LDT ", /* 2 0010 LDT */
3228 "Tss16B", /* 3 0011 Busy 16-bit TSS */
3229 "Call16", /* 4 0100 16-bit Call Gate */
3230 "TaskG ", /* 5 0101 Task Gate */
3231 "Int16 ", /* 6 0110 16-bit Interrupt Gate */
3232 "Trap16", /* 7 0111 16-bit Trap Gate */
3233 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
3234 "Tss32A", /* 9 1001 Available 32-bit TSS */
3235 "Ill-A ", /* A 1010 Reserved (Illegal) */
3236 "Tss32B", /* B 1011 Busy 32-bit TSS */
3237 "Call32", /* C 1100 32-bit Call Gate */
3238 "Ill-D ", /* D 1101 Reserved (Illegal) */
3239 "Int32 ", /* E 1110 32-bit Interrupt Gate */
3240 "Trap32" /* F 1111 32-bit Trap Gate */
3241 };
3242 switch (pDesc->Gen.u4Type)
3243 {
3244 /* raw */
3245 case X86_SEL_TYPE_SYS_UNDEFINED:
3246 case X86_SEL_TYPE_SYS_UNDEFINED2:
3247 case X86_SEL_TYPE_SYS_UNDEFINED4:
3248 case X86_SEL_TYPE_SYS_UNDEFINED3:
3249 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
3250 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
3251 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3252 break;
3253
3254 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3255 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3256 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3257 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3258 case X86_SEL_TYPE_SYS_LDT:
3259 {
3260 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3261 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3262 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3263 uint32_t u32Base = pDesc->Gen.u16BaseLow
3264 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3265 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3266 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3267 if (pDesc->Gen.u1Granularity)
3268 cbLimit <<= GUEST_PAGE_SHIFT;
3269
3270 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n",
3271 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3272 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig,
3273 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3274 pszHyper);
3275 break;
3276 }
3277
3278 case X86_SEL_TYPE_SYS_TASK_GATE:
3279 {
3280 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n",
3281 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1],
3282 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3283 break;
3284 }
3285
3286 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3287 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3288 {
3289 unsigned cParams = pDesc->au8[4] & 0x1f;
3290 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3291 RTSEL sel = pDesc->au16[1];
3292 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3293 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3294 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s%s\n",
3295 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3296 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3297 RTStrFree(pszSymbol);
3298 break;
3299 }
3300
3301 case X86_SEL_TYPE_SYS_286_INT_GATE:
3302 case X86_SEL_TYPE_SYS_386_INT_GATE:
3303 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
3304 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3305 {
3306 RTSEL sel = pDesc->au16[1];
3307 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3308 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3309 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s%s\n",
3310 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3311 pDesc->Gen.u2Dpl, pszPresent, pszHyper, pszSymbol ? pszSymbol : "");
3312 RTStrFree(pszSymbol);
3313 break;
3314 }
3315
3316 /* impossible, just it's necessary to keep gcc happy. */
3317 default:
3318 return VINF_SUCCESS;
3319 }
3320 }
3321 return rc;
3322}
3323
3324
3325/**
3326 * @callback_method_impl{FNDBGCCMD, The 'dg'\, 'dga'\, 'dl' and 'dla' commands.}
3327 */
3328static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3329{
3330 /*
3331 * Validate input.
3332 */
3333 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3334
3335 /*
3336 * Get the CPU mode, check which command variation this is
3337 * and fix a default parameter if needed.
3338 */
3339 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3340 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
3341 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
3342 bool fGdt = pCmd->pszCmd[1] == 'g';
3343 bool fAll = pCmd->pszCmd[2] == 'a';
3344 RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT;
3345
3346 DBGCVAR Var;
3347 if (!cArgs)
3348 {
3349 cArgs = 1;
3350 paArgs = &Var;
3351 Var.enmType = DBGCVAR_TYPE_NUMBER;
3352 Var.u.u64Number = fGdt ? 0 : 4;
3353 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3354 Var.u64Range = 1024;
3355 }
3356
3357 /*
3358 * Process the arguments.
3359 */
3360 for (unsigned i = 0; i < cArgs; i++)
3361 {
3362 /*
3363 * Retrieve the selector value from the argument.
3364 * The parser may confuse pointers and numbers if more than one
3365 * argument is given, that that into account.
3366 */
3367 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType));
3368 uint64_t u64;
3369 unsigned cSels = 1;
3370 switch (paArgs[i].enmType)
3371 {
3372 case DBGCVAR_TYPE_NUMBER:
3373 u64 = paArgs[i].u.u64Number;
3374 if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE)
3375 cSels = RT_MIN(paArgs[i].u64Range, 1024);
3376 break;
3377 case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break;
3378 case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break;
3379 case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break;
3380 case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break;
3381 case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break;
3382 default: u64 = _64K; break;
3383 }
3384 if (u64 < _64K)
3385 {
3386 unsigned Sel = (RTSEL)u64;
3387
3388 /*
3389 * Dump the specified range.
3390 */
3391 bool fSingle = cSels == 1;
3392 while ( cSels-- > 0
3393 && Sel < _64K)
3394 {
3395 DBGFSELINFO SelInfo;
3396 int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
3397 if (RT_SUCCESS(rc))
3398 {
3399 if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE)
3400 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n",
3401 Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit);
3402 else if ( fAll
3403 || fSingle
3404 || SelInfo.u.Raw.Gen.u1Present)
3405 {
3406 if (enmMode == CPUMMODE_PROTECTED)
3407 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel,
3408 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL);
3409 else
3410 {
3411 bool fDblSkip = false;
3412 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel,
3413 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL, &fDblSkip);
3414 if (fDblSkip)
3415 Sel += 4;
3416 }
3417 }
3418 }
3419 else
3420 {
3421 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc);
3422 if (!fAll)
3423 return rc;
3424 }
3425 if (RT_FAILURE(rc))
3426 return rc;
3427
3428 /* next */
3429 Sel += 8;
3430 }
3431 }
3432 else
3433 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64);
3434 }
3435
3436 return VINF_SUCCESS;
3437}
3438
3439
3440/**
3441 * @callback_method_impl{FNDBGCCMD, The 'di' and 'dia' commands.}
3442 */
3443static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3444{
3445 /*
3446 * Validate input.
3447 */
3448 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3449
3450 /*
3451 * Establish some stuff like the current IDTR and CPU mode,
3452 * and fix a default parameter.
3453 */
3454 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3455 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
3456 uint16_t cbLimit = 0;
3457 uint64_t GCFlat = 0;
3458 int rc = DBGFR3RegCpuQueryXdtr(pDbgc->pUVM, pDbgc->idCpu, DBGFREG_IDTR, &GCFlat, &cbLimit);
3459 if (RT_FAILURE(rc))
3460 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3RegCpuQueryXdtr/DBGFREG_IDTR");
3461 unsigned cbEntry;
3462 switch (enmMode)
3463 {
3464 case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break;
3465 case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break;
3466 case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break;
3467 default:
3468 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode);
3469 }
3470
3471 bool fAll = pCmd->pszCmd[2] == 'a';
3472 DBGCVAR Var;
3473 if (!cArgs)
3474 {
3475 cArgs = 1;
3476 paArgs = &Var;
3477 Var.enmType = DBGCVAR_TYPE_NUMBER;
3478 Var.u.u64Number = 0;
3479 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3480 Var.u64Range = 256;
3481 }
3482
3483 /*
3484 * Process the arguments.
3485 */
3486 for (unsigned i = 0; i < cArgs; i++)
3487 {
3488 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER);
3489 if (paArgs[i].u.u64Number < 256)
3490 {
3491 RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number;
3492 unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE
3493 ? paArgs[i].u64Range
3494 : 1;
3495 bool fSingle = cInts == 1;
3496 while ( cInts-- > 0
3497 && iInt < 256)
3498 {
3499 /*
3500 * Try read it.
3501 */
3502 union
3503 {
3504 RTFAR16 Real;
3505 X86DESC Prot;
3506 X86DESC64 Long;
3507 } u;
3508 if (iInt * cbEntry + (cbEntry - 1) > cbLimit)
3509 {
3510 DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt);
3511 if (!fAll && !fSingle)
3512 return VINF_SUCCESS;
3513 }
3514 DBGCVAR AddrVar;
3515 AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT;
3516 AddrVar.u.GCFlat = GCFlat + iInt * cbEntry;
3517 AddrVar.enmRangeType = DBGCVAR_RANGE_NONE;
3518 rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL);
3519 if (RT_FAILURE(rc))
3520 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt);
3521
3522 /*
3523 * Display it.
3524 */
3525 switch (enmMode)
3526 {
3527 case CPUMMODE_REAL:
3528 {
3529 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, DBGF_AS_GLOBAL, u.Real.sel, u.Real.off, " (", ")");
3530 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16%s\n", (unsigned)iInt, u.Real, pszSymbol ? pszSymbol : "");
3531 RTStrFree(pszSymbol);
3532 break;
3533 }
3534 case CPUMMODE_PROTECTED:
3535 if (fAll || fSingle || u.Prot.Gen.u1Present)
3536 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false, DBGF_AS_GLOBAL);
3537 break;
3538 case CPUMMODE_LONG:
3539 if (fAll || fSingle || u.Long.Gen.u1Present)
3540 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, DBGF_AS_GLOBAL, NULL);
3541 break;
3542 default: break; /* to shut up gcc */
3543 }
3544 if (RT_FAILURE(rc))
3545 return rc;
3546
3547 /* next */
3548 iInt++;
3549 }
3550 }
3551 else
3552 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number);
3553 }
3554
3555 return VINF_SUCCESS;
3556}
3557
3558
3559/**
3560 * @callback_method_impl{FNDBGCCMD,
3561 * The 'da'\, 'dq'\, 'dqs'\, 'dd'\, 'dds'\, 'dw'\, 'db'\, 'dp'\, 'dps'\,
3562 * and 'du' commands.}
3563 */
3564static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3565{
3566 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3567
3568 /*
3569 * Validate input.
3570 */
3571 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3572 if (cArgs == 1)
3573 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3574 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3575
3576#define DBGC_DUMP_MEM_F_ASCII RT_BIT_32(31)
3577#define DBGC_DUMP_MEM_F_UNICODE RT_BIT_32(30)
3578#define DBGC_DUMP_MEM_F_FAR RT_BIT_32(29)
3579#define DBGC_DUMP_MEM_F_SYMBOLS RT_BIT_32(28)
3580#define DBGC_DUMP_MEM_F_SIZE UINT32_C(0x0000ffff)
3581
3582 /*
3583 * Figure out the element size.
3584 */
3585 unsigned cbElement;
3586 bool fAscii = false;
3587 bool fUnicode = false;
3588 bool fFar = false;
3589 bool fSymbols = pCmd->pszCmd[1] && pCmd->pszCmd[2] == 's';
3590 switch (pCmd->pszCmd[1])
3591 {
3592 default:
3593 case 'b': cbElement = 1; break;
3594 case 'w': cbElement = 2; break;
3595 case 'd': cbElement = 4; break;
3596 case 'q': cbElement = 8; break;
3597 case 'a':
3598 cbElement = 1;
3599 fAscii = true;
3600 break;
3601 case 'F':
3602 cbElement = 4;
3603 fFar = true;
3604 break;
3605 case 'p':
3606 cbElement = DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu) ? 8 : 4;
3607 break;
3608 case 'u':
3609 cbElement = 2;
3610 fUnicode = true;
3611 break;
3612 case '\0':
3613 fAscii = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_ASCII);
3614 fSymbols = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SYMBOLS);
3615 fUnicode = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_UNICODE);
3616 fFar = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_FAR);
3617 cbElement = pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SIZE;
3618 if (!cbElement)
3619 cbElement = 1;
3620 break;
3621 }
3622 uint32_t const cbDumpElement = cbElement
3623 | (fSymbols ? DBGC_DUMP_MEM_F_SYMBOLS : 0)
3624 | (fFar ? DBGC_DUMP_MEM_F_FAR : 0)
3625 | (fUnicode ? DBGC_DUMP_MEM_F_UNICODE : 0)
3626 | (fAscii ? DBGC_DUMP_MEM_F_ASCII : 0);
3627 pDbgc->cbDumpElement = cbDumpElement;
3628
3629 /*
3630 * Find address.
3631 */
3632 if (!cArgs)
3633 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE;
3634 else
3635 pDbgc->DumpPos = paArgs[0];
3636
3637 /*
3638 * Range.
3639 */
3640 switch (pDbgc->DumpPos.enmRangeType)
3641 {
3642 case DBGCVAR_RANGE_NONE:
3643 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3644 pDbgc->DumpPos.u64Range = 0x60;
3645 break;
3646
3647 case DBGCVAR_RANGE_ELEMENTS:
3648 if (pDbgc->DumpPos.u64Range > 2048)
3649 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n");
3650 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3651 pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range;
3652 break;
3653
3654 case DBGCVAR_RANGE_BYTES:
3655 if (pDbgc->DumpPos.u64Range > 65536)
3656 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
3657 break;
3658
3659 default:
3660 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType);
3661 }
3662
3663 pDbgc->pLastPos = &pDbgc->DumpPos;
3664
3665 /*
3666 * Do the dumping.
3667 */
3668 int cbLeft = (int)pDbgc->DumpPos.u64Range;
3669 uint8_t u16Prev = '\0';
3670 for (;;)
3671 {
3672 /*
3673 * Read memory.
3674 */
3675 char achBuffer[16];
3676 size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft);
3677 size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft);
3678 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb);
3679 if (RT_FAILURE(rc))
3680 {
3681 if (u16Prev && u16Prev != '\n')
3682 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3683 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos);
3684 }
3685
3686 /*
3687 * Display it.
3688 */
3689 memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb);
3690 if (!fAscii && !fUnicode)
3691 {
3692 DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos);
3693 unsigned i;
3694 for (i = 0; i < cb; i += cbElement)
3695 {
3696 const char *pszSpace = " ";
3697 if (cbElement <= 2 && i == 8)
3698 pszSpace = "-";
3699 switch (cbElement)
3700 {
3701 case 1:
3702 DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]);
3703 break;
3704 case 2:
3705 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]);
3706 break;
3707 case 4:
3708 if (!fFar)
3709 DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]);
3710 else
3711 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x:%04x:",
3712 pszSpace, *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3713 break;
3714 case 8:
3715 DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]);
3716 break;
3717 }
3718
3719 if (fSymbols)
3720 {
3721 /* Try lookup symbol for the above address. */
3722 DBGFADDRESS Addr;
3723 rc = VINF_SUCCESS;
3724 if (cbElement == 8)
3725 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint64_t *)&achBuffer[i]);
3726 else if (!fFar)
3727 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint32_t *)&achBuffer[i]);
3728 else
3729 rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr,
3730 *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3731 if (RT_SUCCESS(rc))
3732 {
3733 RTINTPTR offDisp;
3734 RTDBGSYMBOL Symbol;
3735 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, &Addr,
3736 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
3737 &offDisp, &Symbol, NULL);
3738 if (RT_SUCCESS(rc))
3739 {
3740 if (!offDisp)
3741 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", Symbol.szName);
3742 else if (offDisp > 0)
3743 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s + %RGv", Symbol.szName, offDisp);
3744 else
3745 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s - %RGv", Symbol.szName, -offDisp);
3746 if (Symbol.cb > 0)
3747 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)", Symbol.cb);
3748 }
3749 }
3750
3751 /* Next line prefix. */
3752 unsigned iNext = i + cbElement;
3753 if (iNext < cb)
3754 {
3755 DBGCVAR TmpPos = pDbgc->DumpPos;
3756 DBGCCmdHlpEval(pCmdHlp, &TmpPos, "(%Dv) + %x", &pDbgc->DumpPos, iNext);
3757 DBGCCmdHlpPrintf(pCmdHlp, "\n%DV:", &pDbgc->DumpPos);
3758 }
3759 }
3760 }
3761
3762 /* Chars column. */
3763 if (cbElement == 1)
3764 {
3765 while (i++ < sizeof(achBuffer))
3766 DBGCCmdHlpPrintf(pCmdHlp, " ");
3767 DBGCCmdHlpPrintf(pCmdHlp, " ");
3768 for (i = 0; i < cb; i += cbElement)
3769 {
3770 uint8_t u8 = *(uint8_t *)&achBuffer[i];
3771 if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32)
3772 DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
3773 else
3774 DBGCCmdHlpPrintf(pCmdHlp, ".");
3775 }
3776 }
3777 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3778 }
3779 else
3780 {
3781 /*
3782 * We print up to the first zero and stop there.
3783 * Only printables + '\t' and '\n' are printed.
3784 */
3785 if (!u16Prev)
3786 DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos);
3787 uint16_t u16 = '\0';
3788 unsigned i;
3789 for (i = 0; i < cb; i += cbElement)
3790 {
3791 u16Prev = u16;
3792 if (cbElement == 1)
3793 u16 = *(uint8_t *)&achBuffer[i];
3794 else
3795 u16 = *(uint16_t *)&achBuffer[i];
3796 if ( u16 < 127
3797 && ( (RT_C_IS_PRINT(u16) && u16 >= 32)
3798 || u16 == '\t'
3799 || u16 == '\n'))
3800 DBGCCmdHlpPrintf(pCmdHlp, "%c", (int)u16);
3801 else if (!u16)
3802 break;
3803 else
3804 DBGCCmdHlpPrintf(pCmdHlp, "\\x%0*x", cbElement * 2, u16);
3805 }
3806 if (u16 == '\0')
3807 cb = cbLeft = i + 1;
3808 if (cbLeft - cb <= 0 && u16Prev != '\n')
3809 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3810 }
3811
3812 /*
3813 * Advance
3814 */
3815 cbLeft -= (int)cb;
3816 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb);
3817 if (RT_FAILURE(rc))
3818 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb);
3819 if (cbLeft <= 0)
3820 break;
3821 }
3822
3823 NOREF(pCmd);
3824 return VINF_SUCCESS;
3825}
3826
3827
3828/**
3829 * Best guess at which paging mode currently applies to the guest
3830 * paging structures.
3831 *
3832 * This have to come up with a decent answer even when the guest
3833 * is in non-paged protected mode or real mode.
3834 *
3835 * @returns cr3.
3836 * @param pDbgc The DBGC instance.
3837 * @param pfPAE Where to store the page address extension indicator.
3838 * @param pfLME Where to store the long mode enabled indicator.
3839 * @param pfPSE Where to store the page size extension indicator.
3840 * @param pfPGE Where to store the page global enabled indicator.
3841 * @param pfNXE Where to store the no-execution enabled indicator.
3842 */
3843static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3844{
3845#if defined(VBOX_VMM_TARGET_ARMV8)
3846 AssertReleaseFailed();
3847 RT_NOREF(pDbgc, pfPAE, pfLME, pfPSE, pfPGE, pfNXE);
3848 *pfPAE = *pfLME = *pfPSE = *pfPGE = *pfNXE = false;
3849 return ~(RTGCPHYS)0;
3850#else
3851 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3852 RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu);
3853 *pfPSE = !!(cr4 & X86_CR4_PSE);
3854 *pfPGE = !!(cr4 & X86_CR4_PGE);
3855 if (cr4 & X86_CR4_PAE)
3856 {
3857 *pfPSE = true;
3858 *pfPAE = true;
3859 }
3860 else
3861 *pfPAE = false;
3862
3863 *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG;
3864 *pfNXE = false; /* GUEST64 GUESTNX */
3865 return CPUMGetGuestCR3(pVCpu);
3866#endif
3867}
3868
3869
3870/**
3871 * Determine the shadow paging mode.
3872 *
3873 * @returns cr3.
3874 * @param pDbgc The DBGC instance.
3875 * @param pfPAE Where to store the page address extension indicator.
3876 * @param pfLME Where to store the long mode enabled indicator.
3877 * @param pfPSE Where to store the page size extension indicator.
3878 * @param pfPGE Where to store the page global enabled indicator.
3879 * @param pfNXE Where to store the no-execution enabled indicator.
3880 */
3881static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3882{
3883#if defined(VBOX_VMM_TARGET_ARMV8)
3884 RT_NOREF(pDbgc, pfPAE, pfLME, pfPSE, pfPGE, pfNXE);
3885 AssertReleaseFailed();
3886 *pfPAE = *pfLME = *pfPSE = *pfPGE = *pfNXE = false;
3887 return ~(RTHCPHYS)0;
3888#else
3889 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3890
3891 *pfPSE = true;
3892 *pfPGE = false;
3893 switch (PGMGetShadowMode(pVCpu))
3894 {
3895 default:
3896 case PGMMODE_32_BIT:
3897 *pfPAE = *pfLME = *pfNXE = false;
3898 break;
3899 case PGMMODE_PAE:
3900 *pfLME = *pfNXE = false;
3901 *pfPAE = true;
3902 break;
3903 case PGMMODE_PAE_NX:
3904 *pfLME = false;
3905 *pfPAE = *pfNXE = true;
3906 break;
3907 case PGMMODE_AMD64:
3908 *pfNXE = false;
3909 *pfPAE = *pfLME = true;
3910 break;
3911 case PGMMODE_AMD64_NX:
3912 *pfPAE = *pfLME = *pfNXE = true;
3913 break;
3914 }
3915 return PGMGetHyperCR3(pVCpu);
3916#endif
3917}
3918
3919
3920/**
3921 * @callback_method_impl{FNDBGCCMD,
3922 * The 'dpd'\, 'dpda'\, 'dpdb'\, 'dpdg' and 'dpdh' commands.}
3923 */
3924static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3925{
3926 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3927
3928 /*
3929 * Validate input.
3930 */
3931 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3932 if (cArgs == 1 && pCmd->pszCmd[3] == 'a')
3933 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3934 if (cArgs == 1 && pCmd->pszCmd[3] != 'a')
3935 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3936 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
3937 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3938
3939 /*
3940 * Guest or shadow page directories? Get the paging parameters.
3941 */
3942 bool fGuest = pCmd->pszCmd[3] != 'h';
3943 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
3944 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
3945
3946 bool fPAE, fLME, fPSE, fPGE, fNXE;
3947 uint64_t cr3 = fGuest
3948 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
3949 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
3950 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
3951
3952 /*
3953 * Setup default argument if none was specified.
3954 * Fix address / index confusion.
3955 */
3956 DBGCVAR VarDefault;
3957 if (!cArgs)
3958 {
3959 if (pCmd->pszCmd[3] == 'a')
3960 {
3961 if (fLME || fPAE)
3962 return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n");
3963 if (fGuest)
3964 DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3);
3965 else
3966 DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3);
3967 }
3968 else
3969 DBGCVAR_INIT_GC_FLAT(&VarDefault, 0);
3970 paArgs = &VarDefault;
3971 cArgs = 1;
3972 }
3973 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
3974 {
3975 /* If it's a number (not an address), it's an index, so convert it to an address. */
3976 Assert(pCmd->pszCmd[3] != 'a');
3977 VarDefault = paArgs[0];
3978 if (fPAE)
3979 return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n");
3980 if (VarDefault.u.u64Number >= GUEST_PAGE_SIZE / cbEntry)
3981 return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", GUEST_PAGE_SIZE / cbEntry - 1);
3982 VarDefault.u.u64Number <<= X86_PD_SHIFT;
3983 VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT;
3984 paArgs = &VarDefault;
3985 }
3986
3987 /*
3988 * Locate the PDE to start displaying at.
3989 *
3990 * The 'dpda' command takes the address of a PDE, while the others are guest
3991 * virtual address which PDEs should be displayed. So, 'dpda' is rather simple
3992 * while the others require us to do all the tedious walking thru the paging
3993 * hierarchy to find the intended PDE.
3994 */
3995 unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */
3996 DBGCVAR VarGCPtr = { NULL, }; /* The GC address corresponding to the current PDE (iEntry != ~0U). */
3997 DBGCVAR VarPDEAddr; /* The address of the current PDE. */
3998 unsigned cEntries; /* The number of entries to display. */
3999 unsigned cEntriesMax; /* The max number of entries to display. */
4000 int rc;
4001 if (pCmd->pszCmd[3] == 'a')
4002 {
4003 VarPDEAddr = paArgs[0];
4004 switch (VarPDEAddr.enmRangeType)
4005 {
4006 case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break;
4007 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break;
4008 default: cEntries = 10; break;
4009 }
4010 cEntriesMax = GUEST_PAGE_SIZE / cbEntry;
4011 }
4012 else
4013 {
4014 /*
4015 * Determine the range.
4016 */
4017 switch (paArgs[0].enmRangeType)
4018 {
4019 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / GUEST_PAGE_SIZE; break;
4020 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
4021 default: cEntries = 10; break;
4022 }
4023
4024 /*
4025 * Normalize the input address, it must be a flat GC address.
4026 */
4027 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
4028 if (RT_FAILURE(rc))
4029 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
4030 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
4031 {
4032 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
4033 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
4034 }
4035 if (fPAE)
4036 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1);
4037 else
4038 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1);
4039
4040 /*
4041 * Do the paging walk until we get to the page directory.
4042 */
4043 DBGCVAR VarCur;
4044 if (fGuest)
4045 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
4046 else
4047 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
4048 if (fLME)
4049 {
4050 /* Page Map Level 4 Lookup. */
4051 /* Check if it's a valid address first? */
4052 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
4053 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
4054 X86PML4E Pml4e;
4055 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
4056 if (RT_FAILURE(rc))
4057 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
4058 if (!Pml4e.n.u1Present)
4059 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
4060
4061 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
4062 Assert(fPAE);
4063 }
4064 if (fPAE)
4065 {
4066 /* Page directory pointer table. */
4067 X86PDPE Pdpe;
4068 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
4069 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
4070 if (RT_FAILURE(rc))
4071 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
4072 if (!Pdpe.n.u1Present)
4073 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
4074
4075 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4076 VarPDEAddr = VarCur;
4077 VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
4078 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE);
4079 }
4080 else
4081 {
4082 /* 32-bit legacy - CR3 == page directory. */
4083 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK;
4084 VarPDEAddr = VarCur;
4085 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE);
4086 }
4087 cEntriesMax = (GUEST_PAGE_SIZE - iEntry) / cbEntry;
4088 }
4089
4090 /* adjust cEntries */
4091 cEntries = RT_MAX(1, cEntries);
4092 cEntries = RT_MIN(cEntries, cEntriesMax);
4093
4094 /*
4095 * The display loop.
4096 */
4097 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n",
4098 &VarPDEAddr, iEntry);
4099 do
4100 {
4101 /*
4102 * Read.
4103 */
4104 X86PDEPAE Pde;
4105 Pde.u = 0;
4106 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL);
4107 if (RT_FAILURE(rc))
4108 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr);
4109
4110 /*
4111 * Display.
4112 */
4113 if (iEntry != ~0U)
4114 {
4115 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
4116 iEntry++;
4117 }
4118 if (fPSE && Pde.b.u1Size)
4119 DBGCCmdHlpPrintf(pCmdHlp,
4120 fPAE
4121 ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4122 : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4123 Pde.u,
4124 Pde.u & X86_PDE_PAE_PG_MASK,
4125 Pde.b.u1Present ? "p " : "np",
4126 Pde.b.u1Write ? "w" : "r",
4127 Pde.b.u1User ? "u" : "s",
4128 Pde.b.u1Accessed ? "a " : "na",
4129 Pde.b.u1Dirty ? "d " : "nd",
4130 Pde.b.u3Available,
4131 Pde.b.u1Global ? (fPGE ? "g" : "G") : " ",
4132 Pde.b.u1WriteThru ? "pwt" : " ",
4133 Pde.b.u1CacheDisable ? "pcd" : " ",
4134 Pde.b.u1PAT ? "pat" : "",
4135 Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
4136 else
4137 DBGCCmdHlpPrintf(pCmdHlp,
4138 fPAE
4139 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s"
4140 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s",
4141 Pde.u,
4142 Pde.u & X86_PDE_PAE_PG_MASK,
4143 Pde.n.u1Present ? "p " : "np",
4144 Pde.n.u1Write ? "w" : "r",
4145 Pde.n.u1User ? "u" : "s",
4146 Pde.n.u1Accessed ? "a " : "na",
4147 Pde.u & RT_BIT(6) ? "6 " : " ",
4148 Pde.n.u3Available,
4149 Pde.u & RT_BIT(8) ? "8" : " ",
4150 Pde.n.u1WriteThru ? "pwt" : " ",
4151 Pde.n.u1CacheDisable ? "pcd" : " ",
4152 Pde.u & RT_BIT(7) ? "7" : "",
4153 Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
4154 if (Pde.u & UINT64_C(0x7fff000000000000))
4155 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000)));
4156 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4157 if (RT_FAILURE(rc))
4158 return rc;
4159
4160 /*
4161 * Advance.
4162 */
4163 VarPDEAddr.u.u64Number += cbEntry;
4164 if (iEntry != ~0U)
4165 VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT);
4166 } while (cEntries-- > 0);
4167
4168 return VINF_SUCCESS;
4169}
4170
4171
4172/**
4173 * @callback_method_impl{FNDBGCCMD, The 'dpdb' command.}
4174 */
4175static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4176{
4177 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4178 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]);
4179 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]);
4180 if (RT_FAILURE(rc1))
4181 return rc1;
4182 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
4183 return rc2;
4184}
4185
4186
4187/**
4188 * @callback_method_impl{FNDBGCCMD, The 'dph*' commands and main part of 'm'.}
4189 */
4190static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4191{
4192 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4193 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4194
4195 /*
4196 * Figure the context and base flags.
4197 */
4198 uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3;
4199 if (pCmd->pszCmd[0] == 'm')
4200 fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW;
4201 else if (pCmd->pszCmd[3] == '\0')
4202 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4203 else if (pCmd->pszCmd[3] == 'g')
4204 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4205 else if (pCmd->pszCmd[3] == 'h')
4206 fFlags |= DBGFPGDMP_FLAGS_SHADOW;
4207 else
4208 AssertFailed();
4209
4210 if (pDbgc->cPagingHierarchyDumps == 0)
4211 fFlags |= DBGFPGDMP_FLAGS_HEADER;
4212 pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42;
4213
4214 /*
4215 * Get the range.
4216 */
4217 PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos;
4218 RTGCPTR GCPtrFirst = NIL_RTGCPTR;
4219 int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst);
4220 if (RT_FAILURE(rc))
4221 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc);
4222
4223 uint64_t cbRange;
4224 rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, GUEST_PAGE_SIZE, GUEST_PAGE_SIZE * 8, &cbRange);
4225 if (RT_FAILURE(rc))
4226 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc);
4227
4228 RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst;
4229 if (cbRange >= GCPtrLast)
4230 GCPtrLast = RTGCPTR_MAX;
4231 else if (!cbRange)
4232 GCPtrLast = GCPtrFirst;
4233 else
4234 GCPtrLast = GCPtrFirst + cbRange - 1;
4235
4236 /*
4237 * Do we have a CR3?
4238 */
4239 uint64_t cr3 = 0;
4240 if (cArgs > 1)
4241 {
4242 if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW))
4243 return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please.");
4244 if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
4245 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]);
4246 cr3 = paArgs[1].u.u64Number;
4247 }
4248 else
4249 fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3;
4250
4251 /*
4252 * Do we have a mode?
4253 */
4254 if (cArgs > 2)
4255 {
4256 if (paArgs[2].enmType != DBGCVAR_TYPE_STRING)
4257 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]);
4258 static const struct MODETOFLAGS
4259 {
4260 const char *pszName;
4261 uint32_t fFlags;
4262 } s_aModeToFlags[] =
4263 {
4264 { "ept", DBGFPGDMP_FLAGS_EPT },
4265 { "legacy", 0 },
4266 { "legacy-np", DBGFPGDMP_FLAGS_NP },
4267 { "pse", DBGFPGDMP_FLAGS_PSE },
4268 { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP },
4269 { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE },
4270 { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP },
4271 { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE },
4272 { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP },
4273 { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME },
4274 { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP },
4275 { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE },
4276 { "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }
4277 };
4278 int i = RT_ELEMENTS(s_aModeToFlags);
4279 while (i-- > 0)
4280 if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString))
4281 {
4282 fFlags |= s_aModeToFlags[i].fFlags;
4283 break;
4284 }
4285 if (i < 0)
4286 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString);
4287 }
4288 else
4289 fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE;
4290
4291 /*
4292 * Call the worker.
4293 */
4294 rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/,
4295 DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp));
4296 if (RT_FAILURE(rc))
4297 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc);
4298 return VINF_SUCCESS;
4299}
4300
4301
4302
4303/**
4304 * @callback_method_impl{FNDBGCCMD, The 'dpg*' commands.}
4305 */
4306static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4307{
4308 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4309
4310 /*
4311 * Validate input.
4312 */
4313 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1);
4314 if (pCmd->pszCmd[3] == 'a')
4315 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
4316 else
4317 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
4318 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
4319 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4320
4321 /*
4322 * Guest or shadow page tables? Get the paging parameters.
4323 */
4324 bool fGuest = pCmd->pszCmd[3] != 'h';
4325 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
4326 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
4327
4328 bool fPAE, fLME, fPSE, fPGE, fNXE;
4329 uint64_t cr3 = fGuest
4330 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
4331 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
4332 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
4333
4334 /*
4335 * Locate the PTE to start displaying at.
4336 *
4337 * The 'dpta' command takes the address of a PTE, while the others are guest
4338 * virtual address which PTEs should be displayed. So, 'pdta' is rather simple
4339 * while the others require us to do all the tedious walking thru the paging
4340 * hierarchy to find the intended PTE.
4341 */
4342 unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */
4343 DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */
4344 DBGCVAR VarPTEAddr; /* The address of the current PTE. */
4345 unsigned cEntries; /* The number of entries to display. */
4346 unsigned cEntriesMax; /* The max number of entries to display. */
4347 int rc;
4348 if (pCmd->pszCmd[3] == 'a')
4349 {
4350 VarPTEAddr = paArgs[0];
4351 switch (VarPTEAddr.enmRangeType)
4352 {
4353 case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break;
4354 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break;
4355 default: cEntries = 10; break;
4356 }
4357 cEntriesMax = GUEST_PAGE_SIZE / cbEntry;
4358 }
4359 else
4360 {
4361 /*
4362 * Determine the range.
4363 */
4364 switch (paArgs[0].enmRangeType)
4365 {
4366 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / GUEST_PAGE_SIZE; break;
4367 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
4368 default: cEntries = 10; break;
4369 }
4370
4371 /*
4372 * Normalize the input address, it must be a flat GC address.
4373 */
4374 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
4375 if (RT_FAILURE(rc))
4376 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
4377 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
4378 {
4379 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
4380 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
4381 }
4382 VarGCPtr.u.GCFlat &= ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK;
4383
4384 /*
4385 * Do the paging walk until we get to the page table.
4386 */
4387 DBGCVAR VarCur;
4388 if (fGuest)
4389 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
4390 else
4391 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
4392 if (fLME)
4393 {
4394 /* Page Map Level 4 Lookup. */
4395 /* Check if it's a valid address first? */
4396 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
4397 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
4398 X86PML4E Pml4e;
4399 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
4400 if (RT_FAILURE(rc))
4401 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
4402 if (!Pml4e.n.u1Present)
4403 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
4404
4405 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
4406 Assert(fPAE);
4407 }
4408 if (fPAE)
4409 {
4410 /* Page directory pointer table. */
4411 X86PDPE Pdpe;
4412 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
4413 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
4414 if (RT_FAILURE(rc))
4415 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
4416 if (!Pdpe.n.u1Present)
4417 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
4418
4419 VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
4420
4421 /* Page directory (PAE). */
4422 X86PDEPAE Pde;
4423 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde);
4424 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4425 if (RT_FAILURE(rc))
4426 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4427 if (!Pde.n.u1Present)
4428 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4429 if (fPSE && Pde.n.u1Size)
4430 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4431
4432 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
4433 VarPTEAddr = VarCur;
4434 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK;
4435 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE);
4436 }
4437 else
4438 {
4439 /* Page directory (legacy). */
4440 X86PDE Pde;
4441 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde);
4442 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4443 if (RT_FAILURE(rc))
4444 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4445 if (!Pde.n.u1Present)
4446 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4447 if (fPSE && Pde.n.u1Size)
4448 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4449
4450 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK;
4451 VarPTEAddr = VarCur;
4452 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK;
4453 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE);
4454 }
4455 cEntriesMax = (GUEST_PAGE_SIZE - iEntry) / cbEntry;
4456 }
4457
4458 /* adjust cEntries */
4459 cEntries = RT_MAX(1, cEntries);
4460 cEntries = RT_MIN(cEntries, cEntriesMax);
4461
4462 /*
4463 * The display loop.
4464 */
4465 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n",
4466 &VarPTEAddr, &VarGCPtr, iEntry);
4467 do
4468 {
4469 /*
4470 * Read.
4471 */
4472 X86PTEPAE Pte;
4473 Pte.u = 0;
4474 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL);
4475 if (RT_FAILURE(rc))
4476 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr);
4477
4478 /*
4479 * Display.
4480 */
4481 if (iEntry != ~0U)
4482 {
4483 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
4484 iEntry++;
4485 }
4486 DBGCCmdHlpPrintf(pCmdHlp,
4487 fPAE
4488 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4489 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4490 Pte.u,
4491 Pte.u & X86_PTE_PAE_PG_MASK,
4492 Pte.n.u1Present ? "p " : "np",
4493 Pte.n.u1Write ? "w" : "r",
4494 Pte.n.u1User ? "u" : "s",
4495 Pte.n.u1Accessed ? "a " : "na",
4496 Pte.n.u1Dirty ? "d " : "nd",
4497 Pte.n.u3Available,
4498 Pte.n.u1Global ? (fPGE ? "g" : "G") : " ",
4499 Pte.n.u1WriteThru ? "pwt" : " ",
4500 Pte.n.u1CacheDisable ? "pcd" : " ",
4501 Pte.n.u1PAT ? "pat" : " ",
4502 Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "
4503 );
4504 if (Pte.u & UINT64_C(0x7fff000000000000))
4505 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000)));
4506 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4507 if (RT_FAILURE(rc))
4508 return rc;
4509
4510 /*
4511 * Advance.
4512 */
4513 VarPTEAddr.u.u64Number += cbEntry;
4514 if (iEntry != ~0U)
4515 VarGCPtr.u.GCFlat += GUEST_PAGE_SIZE;
4516 } while (cEntries-- > 0);
4517
4518 return VINF_SUCCESS;
4519}
4520
4521
4522/**
4523 * @callback_method_impl{FNDBGCCMD, The 'dptb' command.}
4524 */
4525static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4526{
4527 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4528 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]);
4529 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]);
4530 if (RT_FAILURE(rc1))
4531 return rc1;
4532 NOREF(pCmd); NOREF(cArgs);
4533 return rc2;
4534}
4535
4536
4537/**
4538 * @callback_method_impl{FNDBGCCMD, The 'dt' command.}
4539 */
4540static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4541{
4542 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4543 int rc;
4544
4545 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4546 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
4547 if (cArgs == 1)
4548 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING
4549 && paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL);
4550
4551 /*
4552 * Check if the command indicates the type.
4553 */
4554 enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined;
4555 if (!strcmp(pCmd->pszCmd, "dt16"))
4556 enmTssType = kTss16;
4557 else if (!strcmp(pCmd->pszCmd, "dt32"))
4558 enmTssType = kTss32;
4559 else if (!strcmp(pCmd->pszCmd, "dt64"))
4560 enmTssType = kTss64;
4561
4562 /*
4563 * We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer.
4564 */
4565 uint32_t SelTss = UINT32_MAX;
4566 DBGCVAR VarTssAddr;
4567 if (cArgs == 0)
4568 {
4569 /** @todo consider querying the hidden bits instead (missing API). */
4570 uint16_t SelTR;
4571 rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR);
4572 if (RT_FAILURE(rc))
4573 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc);
4574 DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0);
4575 SelTss = SelTR;
4576 }
4577 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
4578 {
4579 if (paArgs[0].u.u64Number < 0xffff)
4580 DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0);
4581 else
4582 {
4583 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS)
4584 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n");
4585 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number);
4586 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES)
4587 {
4588 VarTssAddr.enmRangeType = paArgs[0].enmRangeType;
4589 VarTssAddr.u64Range = paArgs[0].u64Range;
4590 }
4591 }
4592 }
4593 else
4594 VarTssAddr = paArgs[0];
4595
4596 /*
4597 * Deal with TSS:ign by means of the GDT.
4598 */
4599 if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR)
4600 {
4601 SelTss = VarTssAddr.u.GCFar.sel;
4602 DBGFSELINFO SelInfo;
4603 rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
4604 if (RT_FAILURE(rc))
4605 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n",
4606 pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc);
4607
4608 if (SelInfo.u.Raw.Gen.u1DescType)
4609 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel);
4610
4611 switch (SelInfo.u.Raw.Gen.u4Type)
4612 {
4613 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4614 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4615 if (enmTssType == kTssToBeDetermined)
4616 enmTssType = kTss16;
4617 break;
4618
4619 case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */
4620 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4621 if (enmTssType == kTssToBeDetermined)
4622 enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32;
4623 break;
4624
4625 default:
4626 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n",
4627 VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type);
4628 }
4629
4630 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase);
4631 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit));
4632 }
4633
4634 /*
4635 * Determine the TSS type if none is currently given.
4636 */
4637 if (enmTssType == kTssToBeDetermined)
4638 {
4639 if ( VarTssAddr.u64Range > 0
4640 && VarTssAddr.u64Range < sizeof(X86TSS32) - 4)
4641 enmTssType = kTss16;
4642 else
4643 {
4644 uint64_t uEfer;
4645 rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer);
4646 if ( RT_FAILURE(rc)
4647 || !(uEfer & MSR_K6_EFER_LMA) )
4648 enmTssType = kTss32;
4649 else
4650 enmTssType = kTss64;
4651 }
4652 }
4653
4654 /*
4655 * Figure the min/max sizes.
4656 * ASSUMES max TSS size is 64 KB.
4657 */
4658 uint32_t cbTssMin;
4659 uint32_t cbTssMax;
4660 switch (enmTssType)
4661 {
4662 case kTss16:
4663 cbTssMin = cbTssMax = X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN + 1;
4664 break;
4665 case kTss32:
4666 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4667 cbTssMax = _64K;
4668 break;
4669 case kTss64:
4670 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4671 cbTssMax = _64K;
4672 break;
4673 default:
4674 AssertFailedReturn(VERR_INTERNAL_ERROR);
4675 }
4676 uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0;
4677 if (cbTss == 0)
4678 cbTss = cbTssMin;
4679 else if (cbTss < cbTssMin)
4680 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n",
4681 cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range);
4682 else if (cbTss > cbTssMax)
4683 cbTss = cbTssMax;
4684 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss);
4685
4686 /*
4687 * Read the TSS into a temporary buffer.
4688 */
4689 uint8_t abBuf[_64K];
4690 size_t cbTssRead;
4691 rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead);
4692 if (RT_FAILURE(rc))
4693 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc);
4694 if (cbTssRead < cbTssMin)
4695 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n",
4696 cbTssRead, cbTssMin);
4697 if (cbTssRead < cbTss)
4698 memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead);
4699
4700
4701 /*
4702 * Format the TSS.
4703 */
4704 uint16_t offIoBitmap;
4705 switch (enmTssType)
4706 {
4707 case kTss16:
4708 {
4709 PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0];
4710 if (SelTss != UINT32_MAX)
4711 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr);
4712 else
4713 DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr);
4714 DBGCCmdHlpPrintf(pCmdHlp,
4715 "ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n"
4716 "ip=%04x sp=%04x bp=%04x\n"
4717 "cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n"
4718 "ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n"
4719 "prev=%04x ldtr=%04x\n"
4720 ,
4721 pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di,
4722 pTss->ip, pTss->sp, pTss->bp,
4723 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags,
4724 pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2,
4725 pTss->selPrev, pTss->selLdt);
4726 if (pTss->cs != 0)
4727 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip);
4728 offIoBitmap = 0;
4729 break;
4730 }
4731
4732 case kTss32:
4733 {
4734 PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0];
4735 if (SelTss != UINT32_MAX)
4736 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4737 else
4738 DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4739 DBGCCmdHlpPrintf(pCmdHlp,
4740 "eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
4741 "eip=%08x esp=%08x ebp=%08x\n"
4742 "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
4743 "ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n"
4744 "prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n"
4745 ,
4746 pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi,
4747 pTss->eip, pTss->esp, pTss->ebp,
4748 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags,
4749 pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2,
4750 pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap);
4751 if (pTss->cs != 0)
4752 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip);
4753 offIoBitmap = pTss->offIoBitmap;
4754 break;
4755 }
4756
4757 case kTss64:
4758 {
4759 PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0];
4760 if (SelTss != UINT32_MAX)
4761 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4762 else
4763 DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4764 DBGCCmdHlpPrintf(pCmdHlp,
4765 "rsp0=%016RX64 rsp1=%016RX64 rsp2=%016RX64\n"
4766 "ist1=%016RX64 ist2=%016RX64\n"
4767 "ist3=%016RX64 ist4=%016RX64\n"
4768 "ist5=%016RX64 ist6=%016RX64\n"
4769 "ist7=%016RX64 iomap=%04x\n"
4770 ,
4771 pTss->rsp0, pTss->rsp1, pTss->rsp2,
4772 pTss->ist1, pTss->ist2,
4773 pTss->ist3, pTss->ist4,
4774 pTss->ist5, pTss->ist6,
4775 pTss->ist7, pTss->offIoBitmap);
4776 offIoBitmap = pTss->offIoBitmap;
4777 break;
4778 }
4779
4780 default:
4781 AssertFailedReturn(VERR_INTERNAL_ERROR);
4782 }
4783
4784 /*
4785 * Dump the interrupt redirection bitmap.
4786 */
4787 if (enmTssType != kTss16)
4788 {
4789 if ( offIoBitmap > cbTssMin
4790 && offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */
4791 {
4792 if (offIoBitmap - cbTssMin >= 32)
4793 {
4794 DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n");
4795 uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32];
4796 uint32_t iStart = 0;
4797 bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */
4798 for (uint32_t i = 0; i < 256; i++)
4799 {
4800 bool fThis = ASMBitTest(pbIntRedirBitmap, i);
4801 if (fThis != fPrev)
4802 {
4803 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected");
4804 fPrev = fThis;
4805 iStart = i;
4806 }
4807 }
4808 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected");
4809 }
4810 else
4811 DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n",
4812 offIoBitmap - cbTssMin, offIoBitmap - cbTssMin);
4813 }
4814 else if (offIoBitmap > 0)
4815 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4816 else
4817 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n");
4818 }
4819
4820 /*
4821 * Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x68
4822 * (that applies to both 32-bit and 64-bit TSSs since their size is the same).
4823 * Note that there is always one padding byte that is not technically part of the bitmap
4824 * and "must have all bits set". It's not clear what happens when it doesn't. All ports
4825 * not covered by the bitmap are considered to be not accessible.
4826 */
4827 if (enmTssType != kTss16)
4828 {
4829 if (offIoBitmap < cbTss && offIoBitmap >= 0x68)
4830 {
4831 uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K);
4832 DBGCVAR VarAddr;
4833 DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap);
4834 DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts);
4835
4836 uint8_t const *pbIoBitmap = &abBuf[offIoBitmap];
4837 uint32_t iStart = 0;
4838 bool fPrev = ASMBitTest(pbIoBitmap, 0);
4839 uint32_t cLine = 0;
4840 for (uint32_t i = 1; i < _64K; i++)
4841 {
4842 bool fThis = i < cPorts ? ASMBitTest(pbIoBitmap, i) : true;
4843 if (fThis != fPrev)
4844 {
4845 cLine++;
4846 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1,
4847 fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " ");
4848 fPrev = fThis;
4849 iStart = i;
4850 }
4851 }
4852 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK");
4853 }
4854 else if (offIoBitmap > 0)
4855 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4856 else
4857 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n");
4858 }
4859
4860 return VINF_SUCCESS;
4861}
4862
4863
4864/**
4865 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dti' command dumper callback.}
4866 */
4867static DECLCALLBACK(int) dbgcCmdDumpTypeInfoCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4868 const char *pszType, uint32_t fTypeFlags,
4869 uint32_t cElements, void *pvUser)
4870{
4871 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4872
4873 /* Pad with spaces to match the level. */
4874 for (uint32_t i = 0; i < iLvl; i++)
4875 DBGCCmdHlpPrintf(pCmdHlp, " ");
4876
4877 size_t cbWritten = 0;
4878 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4879 while (cbWritten < 32)
4880 {
4881 /* Fill with spaces to get proper aligning. */
4882 DBGCCmdHlpPrintf(pCmdHlp, " ");
4883 cbWritten++;
4884 }
4885
4886 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4887 if (fTypeFlags & DBGFTYPEREGMEMBER_F_ARRAY)
4888 DBGCCmdHlpPrintf(pCmdHlp, "[%u] ", cElements);
4889 if (fTypeFlags & DBGFTYPEREGMEMBER_F_POINTER)
4890 DBGCCmdHlpPrintf(pCmdHlp, "Ptr ");
4891 DBGCCmdHlpPrintf(pCmdHlp, "%s\n", pszType);
4892
4893 return VINF_SUCCESS;
4894}
4895
4896
4897/**
4898 * @callback_method_impl{FNDBGCCMD, The 'dti' command.}
4899 */
4900static DECLCALLBACK(int) dbgcCmdDumpTypeInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4901{
4902 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4903 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
4904 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4905 if (cArgs == 2)
4906 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[1].enmType == DBGCVAR_TYPE_NUMBER);
4907
4908 uint32_t cLvlMax = cArgs == 2 ? (uint32_t)paArgs[1].u.u64Number : UINT32_MAX;
4909 return DBGFR3TypeDumpEx(pUVM, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
4910 dbgcCmdDumpTypeInfoCallback, pCmdHlp);
4911}
4912
4913
4914static void dbgcCmdDumpTypedValCallbackBuiltin(PDBGCCMDHLP pCmdHlp, DBGFTYPEBUILTIN enmType, size_t cbType,
4915 PDBGFTYPEVALBUF pValBuf)
4916{
4917 switch (enmType)
4918 {
4919 case DBGFTYPEBUILTIN_UINT8:
4920 DBGCCmdHlpPrintf(pCmdHlp, "%RU8", pValBuf->u8);
4921 break;
4922 case DBGFTYPEBUILTIN_INT8:
4923 DBGCCmdHlpPrintf(pCmdHlp, "%RI8", pValBuf->i8);
4924 break;
4925 case DBGFTYPEBUILTIN_UINT16:
4926 DBGCCmdHlpPrintf(pCmdHlp, "%RU16", pValBuf->u16);
4927 break;
4928 case DBGFTYPEBUILTIN_INT16:
4929 DBGCCmdHlpPrintf(pCmdHlp, "%RI16", pValBuf->i16);
4930 break;
4931 case DBGFTYPEBUILTIN_UINT32:
4932 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->u32);
4933 break;
4934 case DBGFTYPEBUILTIN_INT32:
4935 DBGCCmdHlpPrintf(pCmdHlp, "%RI32", pValBuf->i32);
4936 break;
4937 case DBGFTYPEBUILTIN_UINT64:
4938 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->u64);
4939 break;
4940 case DBGFTYPEBUILTIN_INT64:
4941 DBGCCmdHlpPrintf(pCmdHlp, "%RI64", pValBuf->i64);
4942 break;
4943 case DBGFTYPEBUILTIN_PTR32:
4944 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4945 break;
4946 case DBGFTYPEBUILTIN_PTR64:
4947 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4948 break;
4949 case DBGFTYPEBUILTIN_PTR:
4950 if (cbType == sizeof(uint32_t))
4951 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4952 else if (cbType == sizeof(uint64_t))
4953 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4954 else
4955 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported pointer width %u>", cbType);
4956 break;
4957 case DBGFTYPEBUILTIN_SIZE:
4958 if (cbType == sizeof(uint32_t))
4959 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->size);
4960 else if (cbType == sizeof(uint64_t))
4961 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->size);
4962 else
4963 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported size width %u>", cbType);
4964 break;
4965 case DBGFTYPEBUILTIN_FLOAT32:
4966 case DBGFTYPEBUILTIN_FLOAT64:
4967 case DBGFTYPEBUILTIN_COMPOUND:
4968 default:
4969 AssertMsgFailed(("Invalid built-in type: %d\n", enmType));
4970 }
4971}
4972
4973/**
4974 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dtv' command dumper callback.}
4975 */
4976static DECLCALLBACK(int) dbgcCmdDumpTypedValCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4977 DBGFTYPEBUILTIN enmType, size_t cbType,
4978 PDBGFTYPEVALBUF pValBuf, uint32_t cValBufs,
4979 void *pvUser)
4980{
4981 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4982
4983 /* Pad with spaces to match the level. */
4984 for (uint32_t i = 0; i < iLvl; i++)
4985 DBGCCmdHlpPrintf(pCmdHlp, " ");
4986
4987 size_t cbWritten = 0;
4988 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4989 while (cbWritten < 32)
4990 {
4991 /* Fill with spaces to get proper aligning. */
4992 DBGCCmdHlpPrintf(pCmdHlp, " ");
4993 cbWritten++;
4994 }
4995
4996 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4997 if (cValBufs > 1)
4998 DBGCCmdHlpPrintf(pCmdHlp, "[%u] [ ", cValBufs);
4999
5000 for (uint32_t i = 0; i < cValBufs; i++)
5001 {
5002 dbgcCmdDumpTypedValCallbackBuiltin(pCmdHlp, enmType, cbType, pValBuf);
5003 if (i < cValBufs - 1)
5004 DBGCCmdHlpPrintf(pCmdHlp, " , ");
5005 pValBuf++;
5006 }
5007
5008 if (cValBufs > 1)
5009 DBGCCmdHlpPrintf(pCmdHlp, " ]");
5010 DBGCCmdHlpPrintf(pCmdHlp, "\n");
5011
5012 return VINF_SUCCESS;
5013}
5014
5015
5016/**
5017 * @callback_method_impl{FNDBGCCMD, The 'dtv' command.}
5018 */
5019static DECLCALLBACK(int) dbgcCmdDumpTypedVal(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5020{
5021 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5022 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 2 || cArgs == 3);
5023 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
5024 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISGCPOINTER(paArgs[1].enmType));
5025 if (cArgs == 3)
5026 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[2].enmType == DBGCVAR_TYPE_NUMBER);
5027
5028 /*
5029 * Make DBGF address and fix the range.
5030 */
5031 DBGFADDRESS Address;
5032 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[1], &Address);
5033 if (RT_FAILURE(rc))
5034 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[1]);
5035
5036 uint32_t cLvlMax = cArgs == 3 ? (uint32_t)paArgs[2].u.u64Number : UINT32_MAX;
5037 return DBGFR3TypeValDumpEx(pUVM, &Address, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
5038 dbgcCmdDumpTypedValCallback, pCmdHlp);
5039}
5040
5041/**
5042 * @callback_method_impl{FNDBGCCMD, The 'm' command.}
5043 */
5044static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5045{
5046 DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]);
5047 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5048 return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
5049}
5050
5051
5052/**
5053 * Converts one or more variables into a byte buffer for a
5054 * given unit size.
5055 *
5056 * @returns VBox status codes:
5057 * @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched.
5058 * @retval VERR_INTERNAL_ERROR on bad variable type, bitched.
5059 * @retval VINF_SUCCESS on success.
5060 *
5061 * @param pCmdHlp The command helper callback table.
5062 * @param pvBuf The buffer to convert into.
5063 * @param pcbBuf The buffer size on input. The size of the result on output.
5064 * @param cbUnit The unit size to apply when converting.
5065 * The high bit is used to indicate unicode string.
5066 * @param paVars The array of variables to convert.
5067 * @param cVars The number of variables.
5068 */
5069int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars)
5070{
5071 union
5072 {
5073 uint8_t *pu8;
5074 uint16_t *pu16;
5075 uint32_t *pu32;
5076 uint64_t *pu64;
5077 } u, uEnd;
5078 u.pu8 = (uint8_t *)pvBuf;
5079 uEnd.pu8 = u.pu8 + *pcbBuf;
5080
5081 unsigned i;
5082 for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++)
5083 {
5084 switch (paVars[i].enmType)
5085 {
5086 case DBGCVAR_TYPE_GC_FAR:
5087 case DBGCVAR_TYPE_GC_FLAT:
5088 case DBGCVAR_TYPE_GC_PHYS:
5089 case DBGCVAR_TYPE_HC_FLAT:
5090 case DBGCVAR_TYPE_HC_PHYS:
5091 case DBGCVAR_TYPE_NUMBER:
5092 {
5093 uint64_t u64 = paVars[i].u.u64Number;
5094 switch (cbUnit & 0x1f)
5095 {
5096 case 1:
5097 do
5098 {
5099 *u.pu8++ = u64;
5100 u64 >>= 8;
5101 } while (u64);
5102 break;
5103 case 2:
5104 do
5105 {
5106 *u.pu16++ = u64;
5107 u64 >>= 16;
5108 } while (u64);
5109 break;
5110 case 4:
5111 *u.pu32++ = u64;
5112 u64 >>= 32;
5113 if (u64)
5114 *u.pu32++ = u64;
5115 break;
5116 case 8:
5117 *u.pu64++ = u64;
5118 break;
5119 }
5120 break;
5121 }
5122
5123 case DBGCVAR_TYPE_STRING:
5124 case DBGCVAR_TYPE_SYMBOL:
5125 {
5126 const char *psz = paVars[i].u.pszString;
5127 size_t cbString = strlen(psz);
5128 if (cbUnit & RT_BIT_32(31))
5129 {
5130 /* Explode char to unit. */
5131 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f))
5132 {
5133 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5134 return VERR_TOO_MUCH_DATA;
5135 }
5136 while (*psz)
5137 {
5138 switch (cbUnit & 0x1f)
5139 {
5140 case 1: *u.pu8++ = *psz; break;
5141 case 2: *u.pu16++ = *psz; break;
5142 case 4: *u.pu32++ = *psz; break;
5143 case 8: *u.pu64++ = *psz; break;
5144 }
5145 psz++;
5146 }
5147 }
5148 else
5149 {
5150 /* Raw copy with zero padding if the size isn't aligned. */
5151 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8))
5152 {
5153 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5154 return VERR_TOO_MUCH_DATA;
5155 }
5156
5157 size_t cbCopy = cbString & ~(cbUnit - 1);
5158 memcpy(u.pu8, psz, cbCopy);
5159 u.pu8 += cbCopy;
5160 psz += cbCopy;
5161
5162 size_t cbReminder = cbString & (cbUnit - 1);
5163 if (cbReminder)
5164 {
5165 memcpy(u.pu8, psz, cbString & (cbUnit - 1));
5166 memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder);
5167 u.pu8 += cbUnit;
5168 }
5169 }
5170 break;
5171 }
5172
5173 default:
5174 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5175 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR,
5176 "i=%d enmType=%d\n", i, paVars[i].enmType);
5177 return VERR_INTERNAL_ERROR;
5178 }
5179 }
5180 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5181 if (i != cVars)
5182 {
5183 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5184 return VERR_TOO_MUCH_DATA;
5185 }
5186 return VINF_SUCCESS;
5187}
5188
5189
5190/**
5191 * @callback_method_impl{FNDBGCCMD, The 'eb'\, 'ew'\, 'ed' and 'eq' commands.}
5192 */
5193static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5194{
5195 /*
5196 * Validate input.
5197 */
5198 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2);
5199 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
5200 for (unsigned iArg = 1; iArg < cArgs; iArg++)
5201 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER);
5202 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5203
5204 /*
5205 * Figure out the element size.
5206 */
5207 unsigned cbElement;
5208 switch (pCmd->pszCmd[1])
5209 {
5210 default:
5211 case 'b': cbElement = 1; break;
5212 case 'w': cbElement = 2; break;
5213 case 'd': cbElement = 4; break;
5214 case 'q': cbElement = 8; break;
5215 }
5216
5217 /*
5218 * Do setting.
5219 */
5220 DBGCVAR Addr = paArgs[0];
5221 for (unsigned iArg = 1;;)
5222 {
5223 size_t cbWritten;
5224 int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten);
5225 if (RT_FAILURE(rc))
5226 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr);
5227 if (cbWritten != cbElement)
5228 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement);
5229
5230 /* advance. */
5231 iArg++;
5232 if (iArg >= cArgs)
5233 break;
5234 rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement);
5235 if (RT_FAILURE(rc))
5236 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
5237 }
5238
5239 return VINF_SUCCESS;
5240}
5241
5242
5243/**
5244 * Executes the search.
5245 *
5246 * @returns VBox status code.
5247 * @param pCmdHlp The command helpers.
5248 * @param pUVM The user mode VM handle.
5249 * @param pAddress The address to start searching from. (undefined on output)
5250 * @param cbRange The address range to search. Must not wrap.
5251 * @param pabBytes The byte pattern to search for.
5252 * @param cbBytes The size of the pattern.
5253 * @param cbUnit The search unit.
5254 * @param cMaxHits The max number of hits.
5255 * @param pResult Where to store the result if it's a function invocation.
5256 */
5257static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange,
5258 const uint8_t *pabBytes, uint32_t cbBytes,
5259 uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult)
5260{
5261 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5262
5263 /*
5264 * Do the search.
5265 */
5266 uint64_t cHits = 0;
5267 for (;;)
5268 {
5269 /* search */
5270 DBGFADDRESS HitAddress;
5271 int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress);
5272 if (RT_FAILURE(rc))
5273 {
5274 if (rc != VERR_DBGF_MEM_NOT_FOUND)
5275 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n");
5276
5277 /* update the current address so we can save it (later). */
5278 pAddress->off += cbRange;
5279 pAddress->FlatPtr += cbRange;
5280 cbRange = 0;
5281 break;
5282 }
5283
5284 /* report result */
5285 DBGCVAR VarCur;
5286 rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur);
5287 if (RT_FAILURE(rc))
5288 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n");
5289 if (!pResult)
5290 pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur);
5291 else
5292 DBGCVAR_ASSIGN(pResult, &VarCur);
5293
5294 /* advance */
5295 cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr;
5296 *pAddress = HitAddress;
5297 pAddress->FlatPtr += cbBytes;
5298 pAddress->off += cbBytes;
5299 if (cbRange <= cbBytes)
5300 {
5301 cbRange = 0;
5302 break;
5303 }
5304 cbRange -= cbBytes;
5305
5306 if (++cHits >= cMaxHits)
5307 {
5308 /// @todo save the search.
5309 break;
5310 }
5311 }
5312
5313 /*
5314 * Save the search so we can resume it...
5315 */
5316 if (pDbgc->abSearch != pabBytes)
5317 {
5318 memcpy(pDbgc->abSearch, pabBytes, cbBytes);
5319 pDbgc->cbSearch = cbBytes;
5320 pDbgc->cbSearchUnit = cbUnit;
5321 }
5322 pDbgc->cMaxSearchHits = cMaxHits;
5323 pDbgc->SearchAddr = *pAddress;
5324 pDbgc->cbSearchRange = cbRange;
5325
5326 return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED;
5327}
5328
5329
5330/**
5331 * Resumes the previous search.
5332 *
5333 * @returns VBox status code.
5334 * @param pCmdHlp Pointer to the command helper functions.
5335 * @param pUVM The user mode VM handle.
5336 * @param pResult Where to store the result of a function invocation.
5337 */
5338static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult)
5339{
5340 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5341
5342 /*
5343 * Make sure there is a previous command.
5344 */
5345 if (!pDbgc->cbSearch)
5346 {
5347 DBGCCmdHlpPrintf(pCmdHlp, "Error: No previous search\n");
5348 return VERR_DBGC_COMMAND_FAILED;
5349 }
5350
5351 /*
5352 * Make range and address adjustments.
5353 */
5354 DBGFADDRESS Address = pDbgc->SearchAddr;
5355 if (Address.FlatPtr == ~(RTGCUINTPTR)0)
5356 {
5357 Address.FlatPtr -= Address.off;
5358 Address.off = 0;
5359 }
5360
5361 RTGCUINTPTR cbRange = pDbgc->cbSearchRange;
5362 if (!cbRange)
5363 cbRange = ~(RTGCUINTPTR)0;
5364 if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr)
5365 cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr;
5366
5367 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch,
5368 pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult);
5369}
5370
5371
5372/**
5373 * Search memory, worker for the 's' and 's?' functions.
5374 *
5375 * @returns VBox status code.
5376 * @param pCmdHlp Pointer to the command helper functions.
5377 * @param pUVM The user mode VM handle.
5378 * @param pAddress Where to start searching. If no range, search till end of address space.
5379 * @param cMaxHits The maximum number of hits.
5380 * @param chType The search type.
5381 * @param paPatArgs The pattern variable array.
5382 * @param cPatArgs Number of pattern variables.
5383 * @param pResult Where to store the result of a function invocation.
5384 */
5385static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType,
5386 PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult)
5387{
5388 if (pResult)
5389 DBGCVAR_INIT_GC_FLAT(pResult, 0);
5390
5391 /*
5392 * Convert the search pattern into bytes and DBGFR3MemScan can deal with.
5393 */
5394 uint32_t cbUnit;
5395 switch (chType)
5396 {
5397 case 'a':
5398 case 'b': cbUnit = 1; break;
5399 case 'u': cbUnit = 2 | RT_BIT_32(31); break;
5400 case 'w': cbUnit = 2; break;
5401 case 'd': cbUnit = 4; break;
5402 case 'q': cbUnit = 8; break;
5403 default:
5404 return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType);
5405 }
5406 uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)];
5407 uint32_t cbBytes = sizeof(abBytes);
5408 int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs);
5409 if (RT_FAILURE(rc))
5410 return VERR_DBGC_COMMAND_FAILED;
5411
5412 /*
5413 * Make DBGF address and fix the range.
5414 */
5415 DBGFADDRESS Address;
5416 rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address);
5417 if (RT_FAILURE(rc))
5418 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress);
5419
5420 RTGCUINTPTR cbRange;
5421 switch (pAddress->enmRangeType)
5422 {
5423 case DBGCVAR_RANGE_BYTES:
5424 cbRange = pAddress->u64Range;
5425 if (cbRange != pAddress->u64Range)
5426 cbRange = ~(RTGCUINTPTR)0;
5427 break;
5428
5429 case DBGCVAR_RANGE_ELEMENTS:
5430 cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit);
5431 if ( cbRange != pAddress->u64Range * cbUnit
5432 || cbRange < pAddress->u64Range)
5433 cbRange = ~(RTGCUINTPTR)0;
5434 break;
5435
5436 default:
5437 cbRange = ~(RTGCUINTPTR)0;
5438 break;
5439 }
5440 if (Address.FlatPtr + cbRange < Address.FlatPtr)
5441 cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr;
5442
5443 /*
5444 * Ok, do it.
5445 */
5446 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult);
5447}
5448
5449
5450/**
5451 * @callback_method_impl{FNDBGCCMD, The 's' command.}
5452 */
5453static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5454{
5455 RT_NOREF2(pCmd, paArgs);
5456
5457 /* check that the parser did what it's supposed to do. */
5458 //if ( cArgs <= 2
5459 // && paArgs[0].enmType != DBGCVAR_TYPE_STRING)
5460 // return DBGCCmdHlpPrintf(pCmdHlp, "parser error\n");
5461
5462 /*
5463 * Repeat previous search?
5464 */
5465 if (cArgs == 0)
5466 return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL);
5467
5468 /*
5469 * Parse arguments.
5470 */
5471
5472 return -1;
5473}
5474
5475
5476/**
5477 * @callback_method_impl{FNDBGCCMD, The 's?' command.}
5478 */
5479static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5480{
5481 /* check that the parser did what it's supposed to do. */
5482 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType));
5483 return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL);
5484}
5485
5486
5487/**
5488 * Matching function for interrupts event names.
5489 *
5490 * This parses the interrupt number and length.
5491 *
5492 * @returns True if match, false if not.
5493 * @param pPattern The user specified pattern to match.
5494 * @param pszEvtName The event name.
5495 * @param pCmdHlp Command helpers for warning about malformed stuff.
5496 * @param piFirst Where to return start interrupt number on success.
5497 * @param pcInts Where to return the number of interrupts on success.
5498 */
5499static bool dbgcEventIsMatchingInt(PCDBGCVAR pPattern, const char *pszEvtName, PDBGCCMDHLP pCmdHlp,
5500 uint8_t *piFirst, uint16_t *pcInts)
5501{
5502 /*
5503 * Ignore trailing hex digits when comparing with the event base name.
5504 */
5505 const char *pszPattern = pPattern->u.pszString;
5506 const char *pszEnd = RTStrEnd(pszPattern, RTSTR_MAX);
5507 while ( (uintptr_t)pszEnd > (uintptr_t)pszPattern
5508 && RT_C_IS_XDIGIT(pszEnd[-1]))
5509 pszEnd -= 1;
5510 if (RTStrSimplePatternNMatch(pszPattern, pszEnd - pszPattern, pszEvtName, RTSTR_MAX))
5511 {
5512 /*
5513 * Parse the index and length.
5514 */
5515 if (!*pszEnd)
5516 *piFirst = 0;
5517 else
5518 {
5519 int rc = RTStrToUInt8Full(pszEnd, 16, piFirst);
5520 if (rc != VINF_SUCCESS)
5521 {
5522 if (RT_FAILURE(rc))
5523 *piFirst = 0;
5524 DBGCCmdHlpPrintf(pCmdHlp, "Warning: %Rrc parsing '%s' - interpreting it as %#x\n", rc, pszEnd, *piFirst);
5525 }
5526 }
5527
5528 if (pPattern->enmRangeType == DBGCVAR_RANGE_NONE)
5529 *pcInts = 1;
5530 else
5531 *pcInts = RT_MAX(RT_MIN((uint16_t)pPattern->u64Range, 256 - *piFirst), 1);
5532 return true;
5533 }
5534 return false;
5535}
5536
5537
5538/**
5539 * Updates a DBGC event config.
5540 *
5541 * @returns VINF_SUCCESS or VERR_NO_MEMORY.
5542 * @param ppEvtCfg The event configuration entry to update.
5543 * @param pszCmd The new command. Leave command alone if NULL.
5544 * @param enmEvtState The new event state.
5545 * @param fChangeCmdOnly Whether to only update the command.
5546 */
5547static int dbgcEventUpdate(PDBGCEVTCFG *ppEvtCfg, const char *pszCmd, DBGCEVTSTATE enmEvtState, bool fChangeCmdOnly)
5548{
5549 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5550
5551 /*
5552 * If we've got a command string, update the command too.
5553 */
5554 if (pszCmd)
5555 {
5556 size_t cchCmd = strlen(pszCmd);
5557 if ( !cchCmd
5558 && ( !fChangeCmdOnly
5559 ? enmEvtState == kDbgcEvtState_Disabled
5560 : !pEvtCfg || pEvtCfg->enmState == kDbgcEvtState_Disabled))
5561 {
5562 /* NULL entry is fine if no command and disabled. */
5563 RTMemFree(pEvtCfg);
5564 *ppEvtCfg = NULL;
5565 }
5566 else
5567 {
5568 if (!pEvtCfg || pEvtCfg->cchCmd < cchCmd)
5569 {
5570 RTMemFree(pEvtCfg);
5571 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(RT_UOFFSETOF_DYN(DBGCEVTCFG, szCmd[cchCmd + 1]));
5572 if (!pEvtCfg)
5573 return VERR_NO_MEMORY;
5574 }
5575 pEvtCfg->enmState = enmEvtState;
5576 pEvtCfg->cchCmd = cchCmd;
5577 memcpy(pEvtCfg->szCmd, pszCmd, cchCmd + 1);
5578 }
5579 }
5580 /*
5581 * Update existing or enable new. If NULL and not enabled, we can keep it that way.
5582 */
5583 else if (pEvtCfg || enmEvtState != kDbgcEvtState_Disabled)
5584 {
5585 if (!pEvtCfg)
5586 {
5587 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(sizeof(DBGCEVTCFG));
5588 if (!pEvtCfg)
5589 return VERR_NO_MEMORY;
5590 pEvtCfg->cchCmd = 0;
5591 pEvtCfg->szCmd[0] = '\0';
5592 }
5593 pEvtCfg->enmState = enmEvtState;
5594 }
5595
5596 return VINF_SUCCESS;
5597}
5598
5599
5600/**
5601 * Record one settings change for a plain event.
5602 *
5603 * @returns The new @a cIntCfgs value.
5604 * @param paEventCfgs The event setttings array. Must have DBGFEVENT_END
5605 * entries.
5606 * @param cEventCfgs The current number of entries in @a paEventCfgs.
5607 * @param enmType The event to change the settings for.
5608 * @param enmEvtState The new event state.
5609 * @param iSxEvt Index into the g_aDbgcSxEvents array.
5610 *
5611 * @remarks We use abUnused[0] for the enmEvtState, while abUnused[1] and
5612 * abUnused[2] are used for iSxEvt.
5613 */
5614static uint32_t dbgcEventAddPlainConfig(PDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, DBGFEVENTTYPE enmType,
5615 DBGCEVTSTATE enmEvtState, uint16_t iSxEvt)
5616{
5617 uint32_t iCfg;
5618 for (iCfg = 0; iCfg < cEventCfgs; iCfg++)
5619 if (paEventCfgs[iCfg].enmType == enmType)
5620 break;
5621 if (iCfg == cEventCfgs)
5622 {
5623 Assert(cEventCfgs < DBGFEVENT_END);
5624 paEventCfgs[iCfg].enmType = enmType;
5625 cEventCfgs++;
5626 }
5627 paEventCfgs[iCfg].fEnabled = enmEvtState > kDbgcEvtState_Disabled;
5628 paEventCfgs[iCfg].abUnused[0] = enmEvtState;
5629 paEventCfgs[iCfg].abUnused[1] = (uint8_t)iSxEvt;
5630 paEventCfgs[iCfg].abUnused[2] = (uint8_t)(iSxEvt >> 8);
5631 return cEventCfgs;
5632}
5633
5634
5635/**
5636 * Record one or more interrupt event config changes.
5637 *
5638 * @returns The new @a cIntCfgs value.
5639 * @param paIntCfgs Interrupt confiruation array. Must have 256 entries.
5640 * @param cIntCfgs The current number of entries in @a paIntCfgs.
5641 * @param iInt The interrupt number to start with.
5642 * @param cInts The number of interrupts to change.
5643 * @param pszName The settings name (hwint/swint).
5644 * @param enmEvtState The new event state.
5645 * @param bIntOp The new DBGF interrupt state.
5646 */
5647static uint32_t dbgcEventAddIntConfig(PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs, uint8_t iInt, uint16_t cInts,
5648 const char *pszName, DBGCEVTSTATE enmEvtState, uint8_t bIntOp)
5649{
5650 bool const fHwInt = *pszName == 'h';
5651
5652 bIntOp |= (uint8_t)enmEvtState << 4;
5653 uint8_t const bSoftState = !fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5654 uint8_t const bHardState = fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5655
5656 while (cInts > 0)
5657 {
5658 uint32_t iCfg;
5659 for (iCfg = 0; iCfg < cIntCfgs; iCfg++)
5660 if (paIntCfgs[iCfg].iInterrupt == iInt)
5661 break;
5662 if (iCfg == cIntCfgs)
5663 break;
5664 if (fHwInt)
5665 paIntCfgs[iCfg].enmHardState = bHardState;
5666 else
5667 paIntCfgs[iCfg].enmSoftState = bSoftState;
5668 iInt++;
5669 cInts--;
5670 }
5671
5672 while (cInts > 0)
5673 {
5674 Assert(cIntCfgs < 256);
5675 paIntCfgs[cIntCfgs].iInterrupt = iInt;
5676 paIntCfgs[cIntCfgs].enmHardState = bHardState;
5677 paIntCfgs[cIntCfgs].enmSoftState = bSoftState;
5678 cIntCfgs++;
5679 iInt++;
5680 cInts--;
5681 }
5682
5683 return cIntCfgs;
5684}
5685
5686
5687/**
5688 * Applies event settings changes to DBGC and DBGF.
5689 *
5690 * @returns VBox status code (fully bitched)
5691 * @param pCmdHlp The command helpers.
5692 * @param pUVM The user mode VM handle.
5693 * @param paIntCfgs Interrupt configuration array. We use the upper 4
5694 * bits of the settings for the DBGCEVTSTATE. This
5695 * will be cleared.
5696 * @param cIntCfgs Number of interrupt configuration changes.
5697 * @param paEventCfgs The generic event configuration array. We use the
5698 * abUnused[0] member for the DBGCEVTSTATE, and
5699 * abUnused[2:1] for the g_aDbgcSxEvents index.
5700 * @param cEventCfgs The number of generic event settings changes.
5701 * @param pszCmd The commands to associate with the changed events.
5702 * If this is NULL, don't touch the command.
5703 * @param fChangeCmdOnly Whether to only change the commands (sx-).
5704 */
5705static int dbgcEventApplyChanges(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs,
5706 PCDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, const char *pszCmd, bool fChangeCmdOnly)
5707{
5708 int rc;
5709
5710 /*
5711 * Apply changes to DBGC. This can only fail with out of memory error.
5712 */
5713 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5714 if (cIntCfgs)
5715 for (uint32_t iCfg = 0; iCfg < cIntCfgs; iCfg++)
5716 {
5717 DBGCEVTSTATE enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmHardState >> 4);
5718 paIntCfgs[iCfg].enmHardState &= 0xf;
5719 if (paIntCfgs[iCfg].enmHardState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5720 {
5721 rc = dbgcEventUpdate(&pDbgc->apHardInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5722 if (RT_FAILURE(rc))
5723 return rc;
5724 }
5725
5726 enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmSoftState >> 4);
5727 paIntCfgs[iCfg].enmSoftState &= 0xf;
5728 if (paIntCfgs[iCfg].enmSoftState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5729 {
5730 rc = dbgcEventUpdate(&pDbgc->apSoftInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5731 if (RT_FAILURE(rc))
5732 return rc;
5733 }
5734 }
5735
5736 if (cEventCfgs)
5737 {
5738 for (uint32_t iCfg = 0; iCfg < cEventCfgs; iCfg++)
5739 {
5740 Assert((unsigned)paEventCfgs[iCfg].enmType < RT_ELEMENTS(pDbgc->apEventCfgs));
5741 uint16_t iSxEvt = RT_MAKE_U16(paEventCfgs[iCfg].abUnused[1], paEventCfgs[iCfg].abUnused[2]);
5742 Assert(iSxEvt < RT_ELEMENTS(g_aDbgcSxEvents));
5743 rc = dbgcEventUpdate(&pDbgc->apEventCfgs[iSxEvt], pszCmd, (DBGCEVTSTATE)paEventCfgs[iCfg].abUnused[0], fChangeCmdOnly);
5744 if (RT_FAILURE(rc))
5745 return rc;
5746 }
5747 }
5748
5749 /*
5750 * Apply changes to DBGF.
5751 */
5752 if (!fChangeCmdOnly)
5753 {
5754 if (cIntCfgs)
5755 {
5756 rc = DBGFR3InterruptConfigEx(pUVM, paIntCfgs, cIntCfgs);
5757 if (RT_FAILURE(rc))
5758 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3InterruptConfigEx: %Rrc\n", rc);
5759 }
5760 if (cEventCfgs)
5761 {
5762 rc = DBGFR3EventConfigEx(pUVM, paEventCfgs, cEventCfgs);
5763 if (RT_FAILURE(rc))
5764 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3EventConfigEx: %Rrc\n", rc);
5765 }
5766 }
5767
5768 return VINF_SUCCESS;
5769}
5770
5771
5772/**
5773 * @callback_method_impl{FNDBGCCMD, The 'sx[eni-]' commands.}
5774 */
5775static DECLCALLBACK(int) dbgcCmdEventCtrl(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5776{
5777 /*
5778 * Figure out which command this is.
5779 */
5780 uint8_t bIntOp;
5781 DBGCEVTSTATE enmEvtState;
5782 bool fChangeCmdOnly;
5783 switch (pCmd->pszCmd[2])
5784 {
5785 case 'e': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Enabled; fChangeCmdOnly = false; break;
5786 case 'n': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Notify; fChangeCmdOnly = false; break;
5787 case '-': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Invalid; fChangeCmdOnly = true; break;
5788 case 'i': bIntOp = DBGFINTERRUPTSTATE_DISABLED; enmEvtState = kDbgcEvtState_Disabled; fChangeCmdOnly = false; break;
5789 default:
5790 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "pszCmd=%s\n", pCmd->pszCmd);
5791 }
5792
5793 /*
5794 * Command option.
5795 */
5796 unsigned iArg = 0;
5797 const char *pszCmd = NULL;
5798 if ( cArgs >= iArg + 2
5799 && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5800 && paArgs[iArg + 1].enmType == DBGCVAR_TYPE_STRING
5801 && strcmp(paArgs[iArg].u.pszString, "-c") == 0)
5802 {
5803 pszCmd = paArgs[iArg + 1].u.pszString;
5804 iArg += 2;
5805 }
5806 if (fChangeCmdOnly && !pszCmd)
5807 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "The 'sx-' requires the '-c cmd' arguments.\n");
5808
5809 /*
5810 * The remaining arguments are event specifiers to which the operation should be applied.
5811 */
5812 uint32_t cIntCfgs = 0;
5813 DBGFINTERRUPTCONFIG aIntCfgs[256];
5814 uint32_t cEventCfgs = 0;
5815 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5816
5817 for (; iArg < cArgs; iArg++)
5818 {
5819 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, iArg, paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5820 || paArgs[iArg].enmType == DBGCVAR_TYPE_SYMBOL);
5821 uint32_t cHits = 0;
5822 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5823 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5824 {
5825 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5826 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5827 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5828 {
5829 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5830 enmEvtState, iEvt);
5831 cHits++;
5832 }
5833 }
5834 else
5835 {
5836 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5837 uint8_t iInt;
5838 uint16_t cInts;
5839 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5840 {
5841 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5842 enmEvtState, bIntOp);
5843 cHits++;
5844 }
5845 }
5846 if (!cHits)
5847 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5848 }
5849
5850 /*
5851 * Apply the changes.
5852 */
5853 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, pszCmd, fChangeCmdOnly);
5854}
5855
5856
5857/**
5858 * @callback_method_impl{FNDBGCCMD, The 'sxr' commands.}
5859 */
5860static DECLCALLBACK(int) dbgcCmdEventCtrlReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5861{
5862 RT_NOREF1(pCmd);
5863 uint32_t cEventCfgs = 0;
5864 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5865 uint32_t cIntCfgs = 0;
5866 DBGFINTERRUPTCONFIG aIntCfgs[256];
5867
5868 if (cArgs == 0)
5869 {
5870 /*
5871 * All events.
5872 */
5873 for (uint32_t iInt = 0; iInt < 256; iInt++)
5874 {
5875 aIntCfgs[iInt].iInterrupt = iInt;
5876 aIntCfgs[iInt].enmHardState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5877 aIntCfgs[iInt].enmSoftState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5878 }
5879 cIntCfgs = 256;
5880
5881 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5882 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5883 {
5884 aEventCfgs[cEventCfgs].enmType = g_aDbgcSxEvents[iEvt].enmType;
5885 aEventCfgs[cEventCfgs].fEnabled = g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled;
5886 aEventCfgs[cEventCfgs].abUnused[0] = g_aDbgcSxEvents[iEvt].enmDefault;
5887 aEventCfgs[cEventCfgs].abUnused[1] = (uint8_t)iEvt;
5888 aEventCfgs[cEventCfgs].abUnused[2] = (uint8_t)(iEvt >> 8);
5889 cEventCfgs++;
5890 }
5891 else
5892 {
5893 uint8_t const bState = ( g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5894 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED)
5895 | ((uint8_t)g_aDbgcSxEvents[iEvt].enmDefault << 4);
5896 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5897 for (uint32_t iInt = 0; iInt < 256; iInt++)
5898 aIntCfgs[iInt].enmHardState = bState;
5899 else
5900 for (uint32_t iInt = 0; iInt < 256; iInt++)
5901 aIntCfgs[iInt].enmSoftState = bState;
5902 }
5903 }
5904 else
5905 {
5906 /*
5907 * Selected events.
5908 */
5909 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
5910 {
5911 unsigned cHits = 0;
5912 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5913 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5914 {
5915 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5916 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5917 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5918 {
5919 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5920 g_aDbgcSxEvents[iEvt].enmDefault, iEvt);
5921 cHits++;
5922 }
5923 }
5924 else
5925 {
5926 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5927 uint8_t iInt;
5928 uint16_t cInts;
5929 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5930 {
5931 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5932 g_aDbgcSxEvents[iEvt].enmDefault,
5933 g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5934 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED);
5935 cHits++;
5936 }
5937 }
5938 if (!cHits)
5939 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5940 }
5941 }
5942
5943 /*
5944 * Apply the reset changes.
5945 */
5946 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, "", false);
5947}
5948
5949
5950/**
5951 * Used during DBGC initialization to configure events with defaults.
5952 *
5953 * @param pDbgc The DBGC instance.
5954 */
5955void dbgcEventInit(PDBGC pDbgc)
5956{
5957 if (pDbgc->pUVM)
5958 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5959}
5960
5961
5962/**
5963 * Used during DBGC termination to disable all events.
5964 *
5965 * @param pDbgc The DBGC instance.
5966 */
5967void dbgcEventTerm(PDBGC pDbgc)
5968{
5969/** @todo need to do more than just reset later. */
5970 if (pDbgc->pUVM && VMR3GetStateU(pDbgc->pUVM) < VMSTATE_DESTROYING)
5971 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5972}
5973
5974
5975static void dbgcEventDisplay(PDBGCCMDHLP pCmdHlp, const char *pszName, DBGCEVTSTATE enmDefault, PDBGCEVTCFG const *ppEvtCfg)
5976{
5977 RT_NOREF1(enmDefault);
5978 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5979
5980 const char *pszState;
5981 switch (pEvtCfg ? pEvtCfg->enmState : kDbgcEvtState_Disabled)
5982 {
5983 case kDbgcEvtState_Disabled: pszState = "ignore"; break;
5984 case kDbgcEvtState_Enabled: pszState = "enabled"; break;
5985 case kDbgcEvtState_Notify: pszState = "notify"; break;
5986 default:
5987 AssertFailed();
5988 pszState = "invalid";
5989 break;
5990 }
5991
5992 if (pEvtCfg && pEvtCfg->cchCmd > 0)
5993 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %-7s \"%s\"\n", pszName, pszState, pEvtCfg->szCmd);
5994 else
5995 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %s\n", pszName, pszState);
5996}
5997
5998
5999static void dbgcEventDisplayRange(PDBGCCMDHLP pCmdHlp, const char *pszBaseNm, DBGCEVTSTATE enmDefault,
6000 PDBGCEVTCFG const *papEvtCfgs, unsigned iCfg, unsigned cCfgs)
6001{
6002 do
6003 {
6004 PCDBGCEVTCFG pFirstCfg = papEvtCfgs[iCfg];
6005 if (pFirstCfg && pFirstCfg->enmState == kDbgcEvtState_Disabled && pFirstCfg->cchCmd == 0)
6006 pFirstCfg = NULL;
6007
6008 unsigned const iFirstCfg = iCfg;
6009 iCfg++;
6010 while (iCfg < cCfgs)
6011 {
6012 PCDBGCEVTCFG pCurCfg = papEvtCfgs[iCfg];
6013 if (pCurCfg && pCurCfg->enmState == kDbgcEvtState_Disabled && pCurCfg->cchCmd == 0)
6014 pCurCfg = NULL;
6015 if (pCurCfg != pFirstCfg)
6016 {
6017 if (!pCurCfg || !pFirstCfg)
6018 break;
6019 if (pCurCfg->enmState != pFirstCfg->enmState)
6020 break;
6021 if (pCurCfg->cchCmd != pFirstCfg->cchCmd)
6022 break;
6023 if (memcmp(pCurCfg->szCmd, pFirstCfg->szCmd, pFirstCfg->cchCmd) != 0)
6024 break;
6025 }
6026 iCfg++;
6027 }
6028
6029 char szName[16];
6030 unsigned cEntries = iCfg - iFirstCfg;
6031 if (cEntries == 1)
6032 RTStrPrintf(szName, sizeof(szName), "%s%02x", pszBaseNm, iFirstCfg);
6033 else
6034 RTStrPrintf(szName, sizeof(szName), "%s%02x L %#x", pszBaseNm, iFirstCfg, cEntries);
6035 dbgcEventDisplay(pCmdHlp, szName, enmDefault, &papEvtCfgs[iFirstCfg]);
6036
6037 cCfgs -= cEntries;
6038 } while (cCfgs > 0);
6039}
6040
6041
6042/**
6043 * @callback_method_impl{FNDBGCCMD, The 'sx' commands.}
6044 */
6045static DECLCALLBACK(int) dbgcCmdEventCtrlList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6046{
6047 RT_NOREF2(pCmd, pUVM);
6048 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6049
6050 if (cArgs == 0)
6051 {
6052 /*
6053 * All events.
6054 */
6055 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
6056 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
6057 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6058 &pDbgc->apEventCfgs[iEvt]);
6059 else if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
6060 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6061 pDbgc->apHardInts, 0, 256);
6062 else
6063 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6064 pDbgc->apSoftInts, 0, 256);
6065 }
6066 else
6067 {
6068 /*
6069 * Selected events.
6070 */
6071 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
6072 {
6073 unsigned cHits = 0;
6074 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
6075 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
6076 {
6077 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
6078 || ( g_aDbgcSxEvents[iEvt].pszAltNm
6079 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
6080 {
6081 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6082 &pDbgc->apEventCfgs[iEvt]);
6083 cHits++;
6084 }
6085 }
6086 else
6087 {
6088 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
6089 uint8_t iInt;
6090 uint16_t cInts;
6091 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
6092 {
6093 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
6094 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6095 pDbgc->apHardInts, iInt, cInts);
6096 else
6097 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6098 pDbgc->apSoftInts, iInt, cInts);
6099 cHits++;
6100 }
6101 }
6102 if (cHits == 0)
6103 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
6104 }
6105 }
6106
6107 return VINF_SUCCESS;
6108}
6109
6110
6111
6112/**
6113 * List near symbol.
6114 *
6115 * @returns VBox status code.
6116 * @param pCmdHlp Pointer to command helper functions.
6117 * @param pUVM The user mode VM handle.
6118 * @param pArg Pointer to the address or symbol to lookup.
6119 */
6120static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg)
6121{
6122 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6123
6124 RTDBGSYMBOL Symbol;
6125 int rc;
6126 if (pArg->enmType == DBGCVAR_TYPE_SYMBOL)
6127 {
6128 /*
6129 * Lookup the symbol address.
6130 */
6131 rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL);
6132 if (RT_FAILURE(rc))
6133 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString);
6134
6135 rc = DBGCCmdHlpPrintf(pCmdHlp, "%RTptr %s\n", Symbol.Value, Symbol.szName);
6136 }
6137 else
6138 {
6139 /*
6140 * Convert it to a flat GC address and lookup that address.
6141 */
6142 DBGCVAR AddrVar;
6143 rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg);
6144 if (RT_FAILURE(rc))
6145 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg);
6146
6147 RTINTPTR offDisp;
6148 DBGFADDRESS Addr;
6149 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat),
6150 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
6151 &offDisp, &Symbol, NULL);
6152 if (RT_FAILURE(rc))
6153 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat);
6154
6155 if (!offDisp)
6156 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s", &AddrVar, Symbol.szName);
6157 else if (offDisp > 0)
6158 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp);
6159 else
6160 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp);
6161 if (Symbol.cb > 0)
6162 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)\n", Symbol.cb);
6163 else
6164 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
6165 }
6166
6167 return rc;
6168}
6169
6170
6171/**
6172 * @callback_method_impl{FNDBGCCMD, The 'ln' (listnear) command.}
6173 */
6174static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6175{
6176 if (!cArgs)
6177 {
6178 /*
6179 * Current cs:eip symbol.
6180 */
6181 DBGCVAR AddrVar;
6182 const char *pszFmtExpr = "%%(cs:eip)";
6183 int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, pszFmtExpr);
6184 if (RT_FAILURE(rc))
6185 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%s\n", pszFmtExpr + 1);
6186 return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar);
6187 }
6188
6189/** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */
6190 /*
6191 * Iterate arguments.
6192 */
6193 for (unsigned iArg = 0; iArg < cArgs; iArg++)
6194 {
6195 int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]);
6196 if (RT_FAILURE(rc))
6197 return rc;
6198 }
6199
6200 NOREF(pCmd);
6201 return VINF_SUCCESS;
6202}
6203
6204
6205/**
6206 * Matches the module patters against a module name.
6207 *
6208 * @returns true if matching, otherwise false.
6209 * @param pszName The module name.
6210 * @param paArgs The module pattern argument list.
6211 * @param cArgs Number of arguments.
6212 */
6213static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs)
6214{
6215 for (uint32_t i = 0; i < cArgs; i++)
6216 if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName))
6217 return true;
6218 return false;
6219}
6220
6221
6222/**
6223 * @callback_method_impl{FNDBGCCMD, The 'ln' (list near) command.}
6224 */
6225static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6226{
6227 bool const fMappings = pCmd->pszCmd[2] == 'o';
6228 bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v';
6229 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6230
6231 /*
6232 * Iterate the modules in the current address space and print info about
6233 * those matching the input.
6234 */
6235 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6236 for (uint32_t iAs = 0;; iAs++)
6237 {
6238 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6239 uint32_t cMods = RTDbgAsModuleCount(hAs);
6240 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6241 {
6242 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6243 if (hMod != NIL_RTDBGMOD)
6244 {
6245 bool const fDeferred = RTDbgModIsDeferred(hMod);
6246 bool const fExports = RTDbgModIsExports(hMod);
6247 uint32_t const cSegs = fDeferred ? 1 : RTDbgModSegmentCount(hMod);
6248 const char * const pszName = RTDbgModName(hMod);
6249 const char * const pszImgFile = RTDbgModImageFile(hMod);
6250 const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod);
6251 const char * const pszDbgFile = RTDbgModDebugFile(hMod);
6252 if ( cArgs == 0
6253 || dbgcCmdListModuleMatch(pszName, paArgs, cArgs))
6254 {
6255 /*
6256 * Find the mapping with the lower address, preferring a full
6257 * image mapping, for the main line.
6258 */
6259 RTDBGASMAPINFO aMappings[128];
6260 uint32_t cMappings = RT_ELEMENTS(aMappings);
6261 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6262 if (RT_SUCCESS(rc))
6263 {
6264 bool fFull = false;
6265 RTUINTPTR uMin = RTUINTPTR_MAX;
6266 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6267 if ( aMappings[iMap].Address < uMin
6268 && ( !fFull
6269 || aMappings[iMap].iSeg == NIL_RTDBGSEGIDX))
6270 uMin = aMappings[iMap].Address;
6271 if (!fVerbose || !pszImgFile)
6272 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName,
6273 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6274 else
6275 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile,
6276 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6277 if (fVerbose && pszImgFileUsed)
6278 DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed);
6279 if (fVerbose && pszDbgFile)
6280 DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile);
6281 if (fVerbose)
6282 {
6283 char szTmp[64];
6284 RTTIMESPEC TimeSpec;
6285 int64_t secTs = 0;
6286 if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_TIMESTAMP_SECONDS, &secTs, sizeof(secTs), NULL)))
6287 DBGCCmdHlpPrintf(pCmdHlp, " Timestamp: %08RX64 %s\n", secTs,
6288 RTTimeSpecToString(RTTimeSpecSetSeconds(&TimeSpec, secTs), szTmp, sizeof(szTmp)));
6289 RTUUID Uuid;
6290 if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_UUID, &Uuid, sizeof(Uuid), NULL)))
6291 DBGCCmdHlpPrintf(pCmdHlp, " UUID: %RTuuid\n", &Uuid);
6292 }
6293
6294 if (fMappings)
6295 {
6296 /* sort by address first - not very efficient. */
6297 for (uint32_t i = 0; i + 1 < cMappings; i++)
6298 for (uint32_t j = i + 1; j < cMappings; j++)
6299 if (aMappings[j].Address < aMappings[i].Address)
6300 {
6301 RTDBGASMAPINFO Tmp = aMappings[j];
6302 aMappings[j] = aMappings[i];
6303 aMappings[i] = Tmp;
6304 }
6305
6306 /* print */
6307 if ( cMappings == 1
6308 && aMappings[0].iSeg == NIL_RTDBGSEGIDX
6309 && !fDeferred)
6310 {
6311 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
6312 {
6313 RTDBGSEGMENT SegInfo;
6314 rc = RTDbgModSegmentByIndex(hMod, iSeg, &SegInfo);
6315 if (RT_SUCCESS(rc))
6316 {
6317 if (SegInfo.uRva != RTUINTPTR_MAX)
6318 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6319 (RTGCUINTPTR)(aMappings[0].Address + SegInfo.uRva),
6320 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6321 else
6322 DBGCCmdHlpPrintf(pCmdHlp, " %*s %RGv #%02x %s\n",
6323 sizeof(RTGCUINTPTR)*2, "noload",
6324 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6325 }
6326 else
6327 DBGCCmdHlpPrintf(pCmdHlp, " Error query segment #%u: %Rrc\n", iSeg, rc);
6328 }
6329 }
6330 else
6331 {
6332 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6333 if (aMappings[iMap].iSeg == NIL_RTDBGSEGIDX)
6334 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv <everything>\n",
6335 (RTGCUINTPTR)aMappings[iMap].Address,
6336 (RTGCUINTPTR)RTDbgModImageSize(hMod));
6337 else if (!fDeferred)
6338 {
6339 RTDBGSEGMENT SegInfo;
6340 rc = RTDbgModSegmentByIndex(hMod, aMappings[iMap].iSeg, &SegInfo);
6341 if (RT_FAILURE(rc))
6342 {
6343 RT_ZERO(SegInfo);
6344 strcpy(SegInfo.szName, "error");
6345 }
6346 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6347 (RTGCUINTPTR)aMappings[iMap].Address,
6348 (RTGCUINTPTR)SegInfo.cb,
6349 aMappings[iMap].iSeg, SegInfo.szName);
6350 }
6351 else
6352 DBGCCmdHlpPrintf(pCmdHlp, " %RGv #%02x\n",
6353 (RTGCUINTPTR)aMappings[iMap].Address, aMappings[iMap].iSeg);
6354 }
6355 }
6356 }
6357 else
6358 DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n",
6359 sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc);
6360 /** @todo missing address space API for enumerating the mappings. */
6361 }
6362 RTDbgModRelease(hMod);
6363 }
6364 }
6365 RTDbgAsRelease(hAs);
6366
6367 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6368 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6369 break;
6370 AssertBreak(iAs == 0);
6371 hAsCurAlias = DBGF_AS_GLOBAL;
6372 }
6373
6374 NOREF(pCmd);
6375 return VINF_SUCCESS;
6376}
6377
6378
6379
6380/**
6381 * @callback_method_impl{FNDBGCCMD, The 'x' (examine symbols) command.}
6382 */
6383static DECLCALLBACK(int) dbgcCmdListSymbols(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6384{
6385 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6386 AssertReturn(paArgs[0].enmType == DBGCVAR_TYPE_STRING, VERR_DBGC_PARSE_BUG);
6387
6388 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6389
6390 /*
6391 * Allowed is either a single * to match everything or the Module!Symbol style
6392 * which requiresa ! to separate module and symbol.
6393 */
6394 bool fDumpAll = strcmp(paArgs[0].u.pszString, "*") == 0;
6395 const char *pszModule = NULL;
6396 size_t cchModule = 0;
6397 const char *pszSymbol = NULL;
6398 if (!fDumpAll)
6399 {
6400 const char *pszDelimiter = strchr(paArgs[0].u.pszString, '!');
6401 if (!pszDelimiter)
6402 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid search string '%s' for '%s'. Valid are either '*' or the form <Module>!<Symbol> where the <Module> and <Symbol> can contain wildcards",
6403 paArgs[0].u.pszString, pCmd->pszCmd);
6404
6405 pszModule = paArgs[0].u.pszString;
6406 cchModule = pszDelimiter - pszModule;
6407 pszSymbol = pszDelimiter + 1;
6408 }
6409
6410 /*
6411 * Iterate the modules in the current address space and print info about
6412 * those matching the input.
6413 */
6414 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6415 for (uint32_t iAs = 0;; iAs++)
6416 {
6417 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6418 uint32_t cMods = RTDbgAsModuleCount(hAs);
6419 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6420 {
6421 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6422 if (hMod != NIL_RTDBGMOD)
6423 {
6424 const char *pszModName = RTDbgModName(hMod);
6425 if ( fDumpAll
6426 || RTStrSimplePatternNMatch(pszModule, cchModule, pszModName, strlen(pszModName)))
6427 {
6428 RTDBGASMAPINFO aMappings[128];
6429 uint32_t cMappings = RT_ELEMENTS(aMappings);
6430 RTUINTPTR uMapping = 0;
6431
6432 /* Get the minimum mapping address of the module so we can print absolute values for the symbol later on. */
6433 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6434 if (RT_SUCCESS(rc))
6435 {
6436 uMapping = RTUINTPTR_MAX;
6437 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6438 if (aMappings[iMap].Address < uMapping)
6439 uMapping = aMappings[iMap].Address;
6440 }
6441
6442 /* Go through the symbols and print any matches. */
6443 uint32_t cSyms = RTDbgModSymbolCount(hMod);
6444 for (uint32_t iSym = 0; iSym < cSyms; iSym++)
6445 {
6446 RTDBGSYMBOL SymInfo;
6447 rc = RTDbgModSymbolByOrdinal(hMod, iSym, &SymInfo);
6448 if ( RT_SUCCESS(rc)
6449 && ( fDumpAll
6450 || RTStrSimplePatternMatch(pszSymbol, &SymInfo.szName[0])))
6451 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %s!%s\n", uMapping + RTDbgModSegmentRva(hMod, SymInfo.iSeg) + (RTGCUINTPTR)SymInfo.Value, pszModName, &SymInfo.szName[0]);
6452 }
6453 }
6454 RTDbgModRelease(hMod);
6455 }
6456 }
6457 RTDbgAsRelease(hAs);
6458
6459 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6460 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6461 break;
6462 AssertBreak(iAs == 0);
6463 hAsCurAlias = DBGF_AS_GLOBAL;
6464 }
6465
6466 RT_NOREF(pCmd);
6467 return VINF_SUCCESS;
6468}
6469
6470
6471/**
6472 * @callback_method_impl{FNDBGCCMD, The 'tflowc' (clear trace flow) command.}
6473 */
6474static DECLCALLBACK(int) dbgcCmdTraceFlowClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6475{
6476 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6477
6478 /*
6479 * Enumerate the arguments.
6480 */
6481 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6482 int rc = VINF_SUCCESS;
6483 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6484 {
6485 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6486 {
6487 /* one */
6488 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6489 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6490 {
6491 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6492 if (pFlowTrace)
6493 {
6494 rc = DBGFR3FlowTraceModRelease(pFlowTrace->hTraceFlowMod);
6495 if (RT_FAILURE(rc))
6496 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModRelease failed for flow trace module %#x", iFlowTraceMod);
6497 rc = DBGFR3FlowRelease(pFlowTrace->hFlow);
6498 if (RT_FAILURE(rc))
6499 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowRelease failed for flow trace module %#x", iFlowTraceMod);
6500 dbgcFlowTraceModDelete(pDbgc, iFlowTraceMod);
6501 }
6502 else
6503 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6504 }
6505 else
6506 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6507 }
6508 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6509 {
6510 /* all */
6511 PDBGCTFLOW pIt, pItNext;
6512 RTListForEachSafe(&pDbgc->LstTraceFlowMods, pIt, pItNext, DBGCTFLOW, NdTraceFlow)
6513 {
6514 int rc2 = DBGFR3FlowTraceModRelease(pIt->hTraceFlowMod);
6515 if (RT_FAILURE(rc2))
6516 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", pIt->iTraceFlowMod);
6517 dbgcFlowTraceModDelete(pDbgc, pIt->iTraceFlowMod);
6518 }
6519 }
6520 else
6521 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6522 }
6523 return rc;
6524}
6525
6526
6527/**
6528 * @callback_method_impl{FNDBGCCMD, The 'tflowd' (disable trace flow) command.}
6529 */
6530static DECLCALLBACK(int) dbgcCmdTraceFlowDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6531{
6532 /*
6533 * Enumerate the arguments.
6534 */
6535 RT_NOREF1(pUVM);
6536 int rc = VINF_SUCCESS;
6537 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6538 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6539 {
6540 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6541 {
6542 /* one */
6543 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6544 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6545 {
6546 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6547 if (pFlowTrace)
6548 {
6549 rc = DBGFR3FlowTraceModDisable(pFlowTrace->hTraceFlowMod);
6550 if (RT_FAILURE(rc))
6551 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", iFlowTraceMod);
6552 }
6553 else
6554 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6555 }
6556 else
6557 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
6558 }
6559 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6560 {
6561 /* all */
6562 PDBGCTFLOW pIt;
6563 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6564 {
6565 int rc2 = DBGFR3FlowTraceModDisable(pIt->hTraceFlowMod);
6566 if (RT_FAILURE(rc2))
6567 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x",
6568 pIt->iTraceFlowMod);
6569 }
6570 }
6571 else
6572 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6573 }
6574 return rc;
6575}
6576
6577
6578/**
6579 * @callback_method_impl{FNDBGCCMD, The 'tflowe' (enable trace flow) command.}
6580 */
6581static DECLCALLBACK(int) dbgcCmdTraceFlowEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6582{
6583 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6584
6585 /*
6586 * Validate input.
6587 */
6588 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6589 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 2);
6590 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
6591
6592 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
6593 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
6594
6595 /*
6596 * Check the desired mode.
6597 */
6598 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED | DBGF_DISAS_FLAGS_DEFAULT_MODE;
6599
6600 /** @todo should use DBGFADDRESS for everything */
6601
6602 /*
6603 * Find address.
6604 */
6605 if (!cArgs)
6606 {
6607 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
6608 {
6609#if defined(VBOX_VMM_TARGET_ARMV8)
6610 AssertReleaseFailed();
6611#else
6612 /** @todo Batch query CS, RIP, CPU mode and flags. */
6613 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
6614 if (CPUMIsGuestIn64BitCode(pVCpu))
6615 {
6616 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
6617 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
6618 }
6619 else
6620 {
6621 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
6622 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
6623 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
6624 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
6625 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
6626 {
6627 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
6628 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
6629 }
6630 }
6631#endif
6632
6633 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
6634 }
6635 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
6636 {
6637 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
6638 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
6639 }
6640 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
6641 }
6642 else
6643 pDbgc->DisasmPos = paArgs[0];
6644 pDbgc->pLastPos = &pDbgc->DisasmPos;
6645
6646 /*
6647 * Convert physical and host addresses to guest addresses.
6648 */
6649 RTDBGAS hDbgAs = pDbgc->hDbgAs;
6650 int rc;
6651 switch (pDbgc->DisasmPos.enmType)
6652 {
6653 case DBGCVAR_TYPE_GC_FLAT:
6654 case DBGCVAR_TYPE_GC_FAR:
6655 break;
6656 case DBGCVAR_TYPE_GC_PHYS:
6657 hDbgAs = DBGF_AS_PHYS;
6658 /* fall thru */
6659 case DBGCVAR_TYPE_HC_FLAT:
6660 case DBGCVAR_TYPE_HC_PHYS:
6661 {
6662 DBGCVAR VarTmp;
6663 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
6664 if (RT_FAILURE(rc))
6665 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
6666 pDbgc->DisasmPos = VarTmp;
6667 break;
6668 }
6669 default: AssertFailed(); break;
6670 }
6671
6672 DBGFADDRESS CurAddr;
6673 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
6674 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
6675 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
6676 else
6677 {
6678 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
6679 if (RT_FAILURE(rc))
6680 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
6681 }
6682
6683 DBGFFLOW hCfg;
6684 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
6685 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
6686 if (RT_SUCCESS(rc))
6687 {
6688 /* Create a probe. */
6689 DBGFFLOWTRACEPROBE hFlowTraceProbe = NULL;
6690 DBGFFLOWTRACEPROBE hFlowTraceProbeExit = NULL;
6691 DBGFFLOWTRACEPROBEENTRY Entry;
6692 DBGFFLOWTRACEMOD hFlowTraceMod = NULL;
6693 uint32_t iTraceModId = 0;
6694
6695 RT_ZERO(Entry);
6696 Entry.enmType = DBGFFLOWTRACEPROBEENTRYTYPE_DEBUGGER;
6697
6698 rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbe);
6699 if (RT_SUCCESS(rc))
6700 rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbeExit);
6701 if (RT_SUCCESS(rc))
6702 rc = DBGFR3FlowTraceProbeEntriesAdd(hFlowTraceProbeExit, &Entry, 1 /*cEntries*/);
6703 if (RT_SUCCESS(rc))
6704 rc = DBGFR3FlowTraceModCreateFromFlowGraph(pUVM, VMCPUID_ANY, hCfg, NULL,
6705 hFlowTraceProbe, hFlowTraceProbe,
6706 hFlowTraceProbeExit, &hFlowTraceMod);
6707 if (RT_SUCCESS(rc))
6708 rc = dbgcFlowTraceModAdd(pDbgc, hFlowTraceMod, hCfg, &iTraceModId);
6709 if (RT_SUCCESS(rc))
6710 rc = DBGFR3FlowTraceModEnable(hFlowTraceMod, 0, 0);
6711 if (RT_SUCCESS(rc))
6712 DBGCCmdHlpPrintf(pCmdHlp, "Enabled execution flow tracing %u at %RGv\n",
6713 iTraceModId, CurAddr.FlatPtr);
6714
6715 if (hFlowTraceProbe)
6716 DBGFR3FlowTraceProbeRelease(hFlowTraceProbe);
6717 if (hFlowTraceProbeExit)
6718 DBGFR3FlowTraceProbeRelease(hFlowTraceProbeExit);
6719 }
6720 else
6721 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
6722
6723 NOREF(pCmd);
6724 return rc;
6725}
6726
6727
6728/**
6729 * Enumerates and prints all records contained in the given flow tarce module.
6730 *
6731 * @returns VBox status code.
6732 * @param pCmd The command.
6733 * @param pCmdHlp The command helpers.
6734 * @param hFlowTraceMod The flow trace module to print.
6735 * @param hFlow The control flow graph assoicated with the given module.
6736 * @param iFlowTraceMod The flow trace module identifier.
6737 */
6738static int dbgcCmdTraceFlowPrintOne(PDBGCCMDHLP pCmdHlp, PCDBGCCMD pCmd, DBGFFLOWTRACEMOD hFlowTraceMod,
6739 DBGFFLOW hFlow, uint32_t iFlowTraceMod)
6740{
6741 RT_NOREF(hFlow);
6742
6743 DBGFFLOWTRACEREPORT hFlowTraceReport;
6744 int rc = DBGFR3FlowTraceModQueryReport(hFlowTraceMod, &hFlowTraceReport);
6745 if (RT_SUCCESS(rc))
6746 {
6747 uint32_t cRecords = DBGFR3FlowTraceReportGetRecordCount(hFlowTraceReport);
6748 DBGCCmdHlpPrintf(pCmdHlp, "Report for flow trace module %#x (%u records):\n",
6749 iFlowTraceMod, cRecords);
6750
6751 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cRecords * sizeof(DBGCFLOWBBDUMP));
6752 if (RT_LIKELY(paDumpBb))
6753 {
6754 /* Query the basic block referenced for each record and calculate the size. */
6755 for (uint32_t i = 0; i < cRecords && RT_SUCCESS(rc); i++)
6756 {
6757 DBGFFLOWTRACERECORD hRec = NULL;
6758 rc = DBGFR3FlowTraceReportQueryRecord(hFlowTraceReport, i, &hRec);
6759 if (RT_SUCCESS(rc))
6760 {
6761 DBGFADDRESS Addr;
6762 DBGFR3FlowTraceRecordGetAddr(hRec, &Addr);
6763
6764 DBGFFLOWBB hFlowBb = NULL;
6765 rc = DBGFR3FlowQueryBbByAddress(hFlow, &Addr, &hFlowBb);
6766 if (RT_SUCCESS(rc))
6767 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[i]);
6768
6769 DBGFR3FlowTraceRecordRelease(hRec);
6770 }
6771 }
6772
6773 if (RT_SUCCESS(rc))
6774 {
6775 /* Calculate the ASCII screen dimensions and create one. */
6776 uint32_t cchWidth = 0;
6777 uint32_t cchHeight = 0;
6778 for (unsigned i = 0; i < cRecords; i++)
6779 {
6780 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
6781 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
6782 cchHeight += pDumpBb->cchHeight;
6783
6784 /* Incomplete blocks don't have a successor. */
6785 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
6786 continue;
6787
6788 cchHeight += 2; /* For the arrow down to the next basic block. */
6789 }
6790
6791
6792 DBGCSCREEN hScreen = NULL;
6793 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth, cchHeight);
6794 if (RT_SUCCESS(rc))
6795 {
6796 uint32_t uY = 0;
6797
6798 /* Dump the basic blocks and connections to the immediate successor. */
6799 for (unsigned i = 0; i < cRecords; i++)
6800 {
6801 paDumpBb[i].uStartX = (cchWidth - paDumpBb[i].cchWidth) / 2;
6802 paDumpBb[i].uStartY = uY;
6803 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
6804 uY += paDumpBb[i].cchHeight;
6805
6806 /* Incomplete blocks don't have a successor. */
6807 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
6808 continue;
6809
6810 if (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb) != DBGFFLOWBBENDTYPE_EXIT)
6811 {
6812 /* Draw the arrow down to the next block. */
6813 dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY,
6814 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
6815 uY++;
6816 dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY,
6817 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
6818 uY++;
6819 }
6820 }
6821
6822 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, false /*fUseColor*/);
6823 dbgcScreenAsciiDestroy(hScreen);
6824 }
6825 else
6826 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to create virtual screen for flow trace module %#x", iFlowTraceMod);
6827 }
6828 else
6829 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query all records of flow trace module %#x", iFlowTraceMod);
6830
6831 for (unsigned i = 0; i < cRecords; i++)
6832 {
6833 if (paDumpBb[i].hFlowBb)
6834 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
6835 }
6836
6837 RTMemTmpFree(paDumpBb);
6838 }
6839 else
6840 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to allocate memory for %u records", cRecords);
6841
6842 DBGFR3FlowTraceReportRelease(hFlowTraceReport);
6843 }
6844 else
6845 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query report for flow trace module %#x", iFlowTraceMod);
6846
6847 return rc;
6848}
6849
6850
6851/**
6852 * @callback_method_impl{FNDBGCCMD, The 'tflowp' (print trace flow) command.}
6853 */
6854static DECLCALLBACK(int) dbgcCmdTraceFlowPrint(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6855{
6856 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6857
6858 /*
6859 * Enumerate the arguments.
6860 */
6861 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6862 int rc = VINF_SUCCESS;
6863 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6864 {
6865 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6866 {
6867 /* one */
6868 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6869 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6870 {
6871 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6872 if (pFlowTrace)
6873 rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pFlowTrace->hTraceFlowMod,
6874 pFlowTrace->hFlow, pFlowTrace->iTraceFlowMod);
6875 else
6876 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6877 }
6878 else
6879 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6880 }
6881 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6882 {
6883 /* all */
6884 PDBGCTFLOW pIt;
6885 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6886 {
6887 rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pIt->hTraceFlowMod,
6888 pIt->hFlow, pIt->iTraceFlowMod);
6889 if (RT_FAILURE(rc))
6890 break;
6891 }
6892 }
6893 else
6894 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6895 }
6896 return rc;
6897}
6898
6899
6900/**
6901 * @callback_method_impl{FNDBGCCMD, The 'tflowr' (reset trace flow) command.}
6902 */
6903static DECLCALLBACK(int) dbgcCmdTraceFlowReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6904{
6905 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6906
6907 /*
6908 * Enumerate the arguments.
6909 */
6910 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6911 int rc = VINF_SUCCESS;
6912 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6913 {
6914 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6915 {
6916 /* one */
6917 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6918 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6919 {
6920 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6921 if (pFlowTrace)
6922 {
6923 rc = DBGFR3FlowTraceModClear(pFlowTrace->hTraceFlowMod);
6924 if (RT_FAILURE(rc))
6925 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", iFlowTraceMod);
6926 }
6927 else
6928 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6929 }
6930 else
6931 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6932 }
6933 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6934 {
6935 /* all */
6936 PDBGCTFLOW pIt;
6937 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6938 {
6939 rc = DBGFR3FlowTraceModClear(pIt->hTraceFlowMod);
6940 if (RT_FAILURE(rc))
6941 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", pIt->iTraceFlowMod);
6942 }
6943 }
6944 else
6945 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6946 }
6947 return rc;
6948}
6949
6950
6951
6952/**
6953 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 8-bit value.}
6954 */
6955static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6956 PDBGCVAR pResult)
6957{
6958 RT_NOREF1(pUVM);
6959 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6960 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6961 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6962
6963 uint8_t b;
6964 int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL);
6965 if (RT_FAILURE(rc))
6966 return rc;
6967 DBGCVAR_INIT_NUMBER(pResult, b);
6968
6969 NOREF(pFunc);
6970 return VINF_SUCCESS;
6971}
6972
6973
6974/**
6975 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 16-bit value.}
6976 */
6977static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6978 PDBGCVAR pResult)
6979{
6980 RT_NOREF1(pUVM);
6981 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6982 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6983 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6984
6985 uint16_t u16;
6986 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL);
6987 if (RT_FAILURE(rc))
6988 return rc;
6989 DBGCVAR_INIT_NUMBER(pResult, u16);
6990
6991 NOREF(pFunc);
6992 return VINF_SUCCESS;
6993}
6994
6995
6996/**
6997 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 32-bit value.}
6998 */
6999static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7000 PDBGCVAR pResult)
7001{
7002 RT_NOREF1(pUVM);
7003 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7004 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7005 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7006
7007 uint32_t u32;
7008 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL);
7009 if (RT_FAILURE(rc))
7010 return rc;
7011 DBGCVAR_INIT_NUMBER(pResult, u32);
7012
7013 NOREF(pFunc);
7014 return VINF_SUCCESS;
7015}
7016
7017
7018/**
7019 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 64-bit value.}
7020 */
7021static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7022 PDBGCVAR pResult)
7023{
7024 RT_NOREF1(pUVM);
7025 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7026 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7027 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7028
7029 uint64_t u64;
7030 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL);
7031 if (RT_FAILURE(rc))
7032 return rc;
7033 DBGCVAR_INIT_NUMBER(pResult, u64);
7034
7035 NOREF(pFunc);
7036 return VINF_SUCCESS;
7037}
7038
7039
7040/**
7041 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned pointer-sized value.}
7042 */
7043static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7044 PDBGCVAR pResult)
7045{
7046 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7047 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7048 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7049
7050 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
7051 if (enmMode == CPUMMODE_LONG)
7052 return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
7053 return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
7054}
7055
7056
7057/**
7058 * @callback_method_impl{FNDBGCFUNC, The hi(value) function implementation.}
7059 */
7060static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7061 PDBGCVAR pResult)
7062{
7063 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7064
7065 uint16_t uHi;
7066 switch (paArgs[0].enmType)
7067 {
7068 case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break;
7069 case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break;
7070 case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break;
7071 case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break;
7072 case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break;
7073 case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break;
7074 default:
7075 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
7076 }
7077 DBGCVAR_INIT_NUMBER(pResult, uHi);
7078 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
7079
7080 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
7081 return VINF_SUCCESS;
7082}
7083
7084
7085/**
7086 * @callback_method_impl{FNDBGCFUNC, The low(value) function implementation.}
7087 */
7088static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7089 PDBGCVAR pResult)
7090{
7091 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7092
7093 uint16_t uLow;
7094 switch (paArgs[0].enmType)
7095 {
7096 case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break;
7097 case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break;
7098 case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break;
7099 case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break;
7100 case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break;
7101 case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break;
7102 default:
7103 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
7104 }
7105 DBGCVAR_INIT_NUMBER(pResult, uLow);
7106 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
7107
7108 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
7109 return VINF_SUCCESS;
7110}
7111
7112
7113/**
7114 * @callback_method_impl{FNDBGCFUNC,The low(value) function implementation.}
7115 */
7116static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7117 PDBGCVAR pResult)
7118{
7119 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7120 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
7121 return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]);
7122}
7123
7124
7125/** Generic pointer argument wo/ range. */
7126static const DBGCVARDESC g_aArgPointerWoRange[] =
7127{
7128 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
7129 { 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." },
7130};
7131
7132/** Generic pointer or number argument. */
7133static const DBGCVARDESC g_aArgPointerNumber[] =
7134{
7135 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
7136 { 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." },
7137};
7138
7139
7140
7141/** Function descriptors for the CodeView / WinDbg emulation.
7142 * The emulation isn't attempting to be identical, only somewhat similar.
7143 */
7144const DBGCFUNC g_aFuncsCodeView[] =
7145{
7146 { "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." },
7147 { "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." },
7148 { "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." },
7149 { "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." },
7150 { "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." },
7151 { "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." },
7152 { "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." },
7153 { "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." },
7154};
7155
7156/** The number of functions in the CodeView/WinDbg emulation. */
7157const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);
7158
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette