VirtualBox

source: vbox/trunk/src/VBox/Debugger/DBGCEmulateCodeView.cpp@ 103474

Last change on this file since 103474 was 103433, checked in by vboxsync, 9 months ago

Debugger: Some warning fixes, bugref:3409

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 320.9 KB
Line 
1/* $Id: DBGCEmulateCodeView.cpp 103433 2024-02-19 12:11:34Z vboxsync $ */
2/** @file
3 * DBGC - Debugger Console, CodeView / WinDbg Emulation.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_DBGC
33#include <VBox/dbg.h>
34#include <VBox/vmm/dbgf.h>
35#include <VBox/vmm/dbgfflowtrace.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/cpum.h>
38#include <VBox/dis.h>
39#include <VBox/param.h>
40#include <VBox/err.h>
41#include <VBox/log.h>
42
43#include <iprt/asm.h>
44#include <iprt/mem.h>
45#include <iprt/string.h>
46#include <iprt/assert.h>
47#include <iprt/ctype.h>
48#include <iprt/time.h>
49
50#include <stdlib.h>
51#include <stdio.h>
52
53#include "DBGCInternal.h"
54
55
56/*********************************************************************************************************************************
57* Internal Functions *
58*********************************************************************************************************************************/
59static FNDBGCCMD dbgcCmdBrkAccess;
60static FNDBGCCMD dbgcCmdBrkClear;
61static FNDBGCCMD dbgcCmdBrkDisable;
62static FNDBGCCMD dbgcCmdBrkEnable;
63static FNDBGCCMD dbgcCmdBrkList;
64static FNDBGCCMD dbgcCmdBrkSet;
65static FNDBGCCMD dbgcCmdBrkREM;
66static FNDBGCCMD dbgcCmdDumpMem;
67static FNDBGCCMD dbgcCmdDumpDT;
68static FNDBGCCMD dbgcCmdDumpIDT;
69static FNDBGCCMD dbgcCmdDumpPageDir;
70static FNDBGCCMD dbgcCmdDumpPageDirBoth;
71static FNDBGCCMD dbgcCmdDumpPageHierarchy;
72static FNDBGCCMD dbgcCmdDumpPageTable;
73static FNDBGCCMD dbgcCmdDumpPageTableBoth;
74static FNDBGCCMD dbgcCmdDumpTSS;
75static FNDBGCCMD dbgcCmdDumpTypeInfo;
76static FNDBGCCMD dbgcCmdDumpTypedVal;
77static FNDBGCCMD dbgcCmdEditMem;
78static FNDBGCCMD dbgcCmdGo;
79static FNDBGCCMD dbgcCmdGoUp;
80static FNDBGCCMD dbgcCmdListModules;
81static FNDBGCCMD dbgcCmdListNear;
82static FNDBGCCMD dbgcCmdListSource;
83static FNDBGCCMD dbgcCmdListSymbols;
84static FNDBGCCMD dbgcCmdMemoryInfo;
85static FNDBGCCMD dbgcCmdReg;
86static FNDBGCCMD dbgcCmdRegGuest;
87static FNDBGCCMD dbgcCmdRegTerse;
88static FNDBGCCMD dbgcCmdSearchMem;
89static FNDBGCCMD dbgcCmdSearchMemType;
90static FNDBGCCMD dbgcCmdStepTrace;
91static FNDBGCCMD dbgcCmdStepTraceTo;
92static FNDBGCCMD dbgcCmdStepTraceToggle;
93static FNDBGCCMD dbgcCmdEventCtrl;
94static FNDBGCCMD dbgcCmdEventCtrlList;
95static FNDBGCCMD dbgcCmdEventCtrlReset;
96static FNDBGCCMD dbgcCmdStack;
97static FNDBGCCMD dbgcCmdUnassemble;
98static FNDBGCCMD dbgcCmdUnassembleCfg;
99static FNDBGCCMD dbgcCmdTraceFlowClear;
100static FNDBGCCMD dbgcCmdTraceFlowDisable;
101static FNDBGCCMD dbgcCmdTraceFlowEnable;
102static FNDBGCCMD dbgcCmdTraceFlowPrint;
103static FNDBGCCMD dbgcCmdTraceFlowReset;
104
105
106/*********************************************************************************************************************************
107* Global Variables *
108*********************************************************************************************************************************/
109/** 'ba' arguments. */
110static const DBGCVARDESC g_aArgBrkAcc[] =
111{
112 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
113 { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." },
114 { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." },
115 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
116 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
117 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
118 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
119};
120
121
122/** 'bc', 'bd', 'be' arguments. */
123static const DBGCVARDESC g_aArgBrks[] =
124{
125 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
126 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." },
127 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." },
128};
129
130
131/** 'bp' arguments. */
132static const DBGCVARDESC g_aArgBrkSet[] =
133{
134 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
135 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
136 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
137 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
138 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
139};
140
141
142/** 'br' arguments. */
143static const DBGCVARDESC g_aArgBrkREM[] =
144{
145 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
146 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
147 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
148 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
149 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
150};
151
152
153/** 'd?' arguments. */
154static const DBGCVARDESC g_aArgDumpMem[] =
155{
156 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
157 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory. Tip: Use the L or LB operator to specify how may items or bytes to dump." },
158};
159
160
161/** 'dg', 'dga', 'dl', 'dla' arguments. */
162static const DBGCVARDESC g_aArgDumpDT[] =
163{
164 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
165 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." },
166 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." },
167};
168
169
170/** 'di', 'dia' arguments. */
171static const DBGCVARDESC g_aArgDumpIDT[] =
172{
173 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
174 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." },
175};
176
177
178/** 'dpd*' arguments. */
179static const DBGCVARDESC g_aArgDumpPD[] =
180{
181 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
182 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." },
183 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." },
184};
185
186
187/** 'dpda' arguments. */
188static const DBGCVARDESC g_aArgDumpPDAddr[] =
189{
190 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
191 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." },
192};
193
194
195/** 'dph*' arguments. */
196static const DBGCVARDESC g_aArgDumpPH[] =
197{
198 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
199 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." },
200 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." },
201 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." },
202};
203
204
205/** 'dpt?' arguments. */
206static const DBGCVARDESC g_aArgDumpPT[] =
207{
208 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
209 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." },
210};
211
212
213/** 'dpta' arguments. */
214static const DBGCVARDESC g_aArgDumpPTAddr[] =
215{
216 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
217 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." },
218};
219
220
221/** 'dt' arguments. */
222static const DBGCVARDESC g_aArgDumpTSS[] =
223{
224 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
225 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." },
226 { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." }
227};
228
229
230/** 'dti' arguments. */
231static const DBGCVARDESC g_aArgDumpTypeInfo[] =
232{
233 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
234 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to dump" },
235 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump the type information" }
236};
237
238
239/** 'dtv' arguments. */
240static const DBGCVARDESC g_aArgDumpTypedVal[] =
241{
242 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
243 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to use" },
244 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address to start dumping from." },
245 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump" }
246};
247
248
249/** 'e?' arguments. */
250static const DBGCVARDESC g_aArgEditMem[] =
251{
252 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
253 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." },
254 { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." },
255};
256
257
258/** 'g' arguments. */
259static const DBGCVARDESC g_aArgGo[] =
260{
261 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
262 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "idCpu", "CPU ID." },
263};
264
265
266/** 'lm' arguments. */
267static const DBGCVARDESC g_aArgListMods[] =
268{
269 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
270 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." },
271};
272
273
274/** 'ln' arguments. */
275static const DBGCVARDESC g_aArgListNear[] =
276{
277 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
278 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." },
279 { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." },
280};
281
282
283/** 'ls' arguments. */
284static const DBGCVARDESC g_aArgListSource[] =
285{
286 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
287 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." },
288};
289
290
291/** 'm' argument. */
292static const DBGCVARDESC g_aArgMemoryInfo[] =
293{
294 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
295 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." },
296};
297
298
299/** 'p', 'pc', 'pt', 't', 'tc' and 'tt' arguments. */
300static const DBGCVARDESC g_aArgStepTrace[] =
301{
302 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
303 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "count", "Number of instructions or source lines to step." },
304 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
305};
306
307
308/** 'pa' and 'ta' arguments. */
309static const DBGCVARDESC g_aArgStepTraceTo[] =
310{
311 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
312 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Where to stop" },
313 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
314};
315
316
317/** 'r' arguments. */
318static const DBGCVARDESC g_aArgReg[] =
319{
320 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
321 { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." },
322 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." },
323 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." },
324};
325
326
327/** 's' arguments. */
328static const DBGCVARDESC g_aArgSearchMem[] =
329{
330 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
331 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." },
332 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." },
333 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." },
334 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." },
335 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." },
336 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." },
337 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n <Hits>", "Maximum number of hits." },
338 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
339 { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
340};
341
342
343/** 's?' arguments. */
344static const DBGCVARDESC g_aArgSearchMemType[] =
345{
346 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
347 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
348 { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
349};
350
351
352/** 'sxe', 'sxn', 'sxi', 'sx-' arguments. */
353static const DBGCVARDESC g_aArgEventCtrl[] =
354{
355 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
356 { 0, 1, DBGCVAR_CAT_STRING, 0, "-c", "The -c option, requires <cmds>." },
357 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "cmds", "Command to execute on this event." },
358 { 0 /*weird*/, ~0U, DBGCVAR_CAT_STRING, 0, "event", "One or more events, 'all' refering to all events." },
359};
360
361/** 'sx' and 'sr' arguments. */
362static const DBGCVARDESC g_aArgEventCtrlOpt[] =
363{
364 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
365 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "event", "Zero or more events, 'all' refering to all events and being the default." },
366};
367
368/** 'u' arguments. */
369static const DBGCVARDESC g_aArgUnassemble[] =
370{
371 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
372 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
373};
374
375/** 'ucfg' arguments. */
376static const DBGCVARDESC g_aArgUnassembleCfg[] =
377{
378 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
379 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
380};
381
382/** 'x' arguments. */
383static const DBGCVARDESC g_aArgListSyms[] =
384{
385 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
386 { 1, 1, DBGCVAR_CAT_STRING, 0, "symbols", "The symbols to list, format is Module!Symbol with wildcards being supoprted." }
387};
388
389/** 'tflowc' arguments. */
390static const DBGCVARDESC g_aArgTraceFlowClear[] =
391{
392 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
393 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
394 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
395};
396
397/** 'tflowd' arguments. */
398static const DBGCVARDESC g_aArgTraceFlowDisable[] =
399{
400 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
401 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
402 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
403};
404
405/** 'tflowe' arguments. */
406static const DBGCVARDESC g_aArgTraceFlowEnable[] =
407{
408 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
409 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start tracing." },
410 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "<Hits>", "Maximum number of hits before the module is disabled." }
411};
412
413/** 'tflowp', 'tflowr' arguments. */
414static const DBGCVARDESC g_aArgTraceFlowPrintReset[] =
415{
416 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
417 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
418 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
419};
420
421/** Command descriptors for the CodeView / WinDbg emulation.
422 * The emulation isn't attempting to be identical, only somewhat similar.
423 */
424const DBGCCMD g_aCmdsCodeView[] =
425{
426 /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
427 { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "<access> <size> <address> [passes [max passes]] [cmds]",
428 "Sets a data access breakpoint." },
429 { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | <bp#> [bp# []]", "Deletes a set of breakpoints." },
430 { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | <bp#> [bp# []]", "Disables a set of breakpoints." },
431 { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | <bp#> [bp# []]", "Enables a set of breakpoints." },
432 { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." },
433 { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "<address> [passes [max passes]] [cmds]",
434 "Sets a breakpoint (int 3)." },
435 { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "<address> [passes [max passes]] [cmds]",
436 "Sets a recompiler specific breakpoint." },
437 { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size and type." },
438 { "dF", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16." },
439 { "dFs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16 with near symbols." },
440 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
441 { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." },
442 { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." },
443 { "dds", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as double words with near symbols." },
444 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
445 { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." },
446 { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." },
447 { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." },
448 { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." },
449 { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." },
450 { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." },
451 { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." },
452 { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." },
453 { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " },
454 { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." },
455 { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " },
456 { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." },
457 { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." },
458 { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." },
459 { "dp", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words." },
460 { "dps", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words with near symbols." },
461 { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the default context." },
462 { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps memory at given address as a page table." },
463 { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"<addr>", "Dumps page table entries of the guest and the hypervisor." },
464 { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the guest." },
465 { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the hypervisor." },
466 { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." },
467 { "dqs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as quad words with near symbols." },
468 { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." },
469 { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." },
470 { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." },
471 { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." },
472 { "dti", 1, 2, &g_aArgDumpTypeInfo[0],RT_ELEMENTS(g_aArgDumpTypeInfo), 0, dbgcCmdDumpTypeInfo,"<type> [levels]", "Dump type information." },
473 { "dtv", 2, 3, &g_aArgDumpTypedVal[0],RT_ELEMENTS(g_aArgDumpTypedVal), 0, dbgcCmdDumpTypedVal,"<type> <addr> [levels]", "Dump a memory buffer using the information in the given type." },
474 { "du", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as unicode string (little endian)." },
475 { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." },
476 /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also
477 * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */
478 { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 1-byte value to memory." },
479 { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 2-byte value to memory." },
480 { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 4-byte value to memory." },
481 { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 8-byte value to memory." },
482 { "g", 0, 1, &g_aArgGo[0], RT_ELEMENTS(g_aArgGo), 0, dbgcCmdGo, "[idCpu]", "Continue execution of all or the specified CPU. (The latter is not recommended unless you know exactly what you're doing.)" },
483 { "gu", 0, 0, NULL, 0, 0, dbgcCmdGoUp, "", "Go up - continue execution till after return." },
484 { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." },
485 { "kv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack." },
486 { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." },
487 { "kgv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack - guest." },
488 { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." },
489 { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." },
490 { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." },
491 { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." },
492 { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." },
493 { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." },
494 { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." },
495 { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "<addr>", "Display information about that piece of memory." },
496 { "p", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step over." },
497 { "pr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
498 { "pa", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Step to the given address." },
499 { "pc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next call instruction." },
500 { "pt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next return instruction." },
501 { "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set. Special 'all' register for showing all. Append a dot '.' to display sub-fields and aliases." },
502 { "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set. Special 'all' register for showing all. Append a dot '.' to display sub-fields and aliases." },
503 { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." },
504 { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." },
505 { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." },
506 { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] <range> <pattern>", "Continue last search." },
507 { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an ascii string." },
508 { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more bytes." },
509 { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more double words." },
510 { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more quad words." },
511 { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an unicode string." },
512 { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more words." },
513 { "sx", 0, ~0U, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlList, "[<event> [..]]", "Lists settings for exceptions, exits and other events. All if no filter is specified." },
514 { "sx-", 3, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "-c <cmd> <event> [..]", "Modifies the command for one or more exceptions, exits or other event. 'all' addresses all." },
515 { "sxe", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Enable: Break into the debugger on the specified exceptions, exits and other events. 'all' addresses all." },
516 { "sxn", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Notify: Display info in the debugger and continue on the specified exceptions, exits and other events. 'all' addresses all." },
517 { "sxi", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Ignore: Ignore the specified exceptions, exits and other events ('all' = all of them). Without the -c option, the guest runs like normal." },
518 { "sxr", 0, 0, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlReset, "", "Reset the settings to default for exceptions, exits and other events. All if no filter is specified." },
519 { "t", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace ." },
520 { "tflowc", 1, ~0U, &g_aArgTraceFlowClear[0], RT_ELEMENTS(g_aArgTraceFlowClear), 0, dbgcCmdTraceFlowClear, "all | <tf#> [tf# []]", "Clears trace execution flow for the given method." },
521 { "tflowd", 0, 1, &g_aArgTraceFlowDisable[0], RT_ELEMENTS(g_aArgTraceFlowDisable), 0, dbgcCmdTraceFlowDisable, "all | <tf#> [tf# []]", "Disables trace execution flow for the given method." },
522 { "tflowe", 0, 2, &g_aArgTraceFlowEnable[0], RT_ELEMENTS(g_aArgTraceFlowEnable), 0, dbgcCmdTraceFlowEnable, "<addr> <hits>", "Enable trace execution flow of the given method." },
523 { "tflowp", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowPrint, "all | <tf#> [tf# []]", "Prints the collected trace data of the given method." },
524 { "tflowr", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowReset, "all | <tf#> [tf# []]", "Resets the collected trace data of the given trace flow module." },
525 { "tr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
526 { "ta", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Trace to the given address." },
527 { "tc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next call instruction." },
528 { "tt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next return instruction." },
529 { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." },
530 { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." },
531 { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." },
532 { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." },
533 { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." },
534 { "ucfg", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph." },
535 { "ucfgc", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph with colors." },
536 { "x", 1, 1, &g_aArgListSyms[0], RT_ELEMENTS(g_aArgListSyms), 0, dbgcCmdListSymbols, "* | <Module!Symbol>", "Examine symbols." },
537};
538
539/** The number of commands in the CodeView/WinDbg emulation. */
540const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView);
541
542
543/**
544 * Selectable debug event descriptors.
545 *
546 * @remarks Sorted by DBGCSXEVT::enmType value.
547 */
548const DBGCSXEVT g_aDbgcSxEvents[] =
549{
550 { DBGFEVENT_INTERRUPT_HARDWARE, "hwint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Hardware interrupt" },
551 { DBGFEVENT_INTERRUPT_SOFTWARE, "swint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Software interrupt" },
552 { DBGFEVENT_TRIPLE_FAULT, "triplefault", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Enabled, 0, "Triple fault "},
553 { DBGFEVENT_XCPT_DE, "xcpt_de", "de", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DE (integer divide error)" },
554 { DBGFEVENT_XCPT_DB, "xcpt_db", "db", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DB (debug)" },
555 { DBGFEVENT_XCPT_02, "xcpt_02", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
556 { DBGFEVENT_XCPT_BP, "xcpt_bp", "bp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BP (breakpoint)" },
557 { DBGFEVENT_XCPT_OF, "xcpt_of", "of", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#OF (overflow (INTO))" },
558 { DBGFEVENT_XCPT_BR, "xcpt_br", "br", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BR (bound range exceeded)" },
559 { DBGFEVENT_XCPT_UD, "xcpt_ud", "ud", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#UD (undefined opcode)" },
560 { DBGFEVENT_XCPT_NM, "xcpt_nm", "nm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#NM (FPU not available)" },
561 { DBGFEVENT_XCPT_DF, "xcpt_df", "df", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DF (double fault)" },
562 { DBGFEVENT_XCPT_09, "xcpt_09", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "Coprocessor segment overrun" },
563 { DBGFEVENT_XCPT_TS, "xcpt_ts", "ts", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#TS (task switch)" },
564 { DBGFEVENT_XCPT_NP, "xcpt_np", "np", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#NP (segment not present)" },
565 { DBGFEVENT_XCPT_SS, "xcpt_ss", "ss", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SS (stack segment fault)" },
566 { DBGFEVENT_XCPT_GP, "xcpt_gp", "gp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#GP (general protection fault)" },
567 { DBGFEVENT_XCPT_PF, "xcpt_pf", "pf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#PF (page fault)" },
568 { DBGFEVENT_XCPT_0f, "xcpt_0f", "xcpt0f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
569 { DBGFEVENT_XCPT_MF, "xcpt_mf", "mf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MF (math fault)" },
570 { DBGFEVENT_XCPT_AC, "xcpt_ac", "ac", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#AC (alignment check)" },
571 { DBGFEVENT_XCPT_MC, "xcpt_mc", "mc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MC (machine check)" },
572 { DBGFEVENT_XCPT_XF, "xcpt_xf", "xf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#XF (SIMD floating-point exception)" },
573 { DBGFEVENT_XCPT_VE, "xcpt_vd", "ve", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#VE (virtualization exception)" },
574 { DBGFEVENT_XCPT_15, "xcpt_15", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
575 { DBGFEVENT_XCPT_16, "xcpt_16", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
576 { DBGFEVENT_XCPT_17, "xcpt_17", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
577 { DBGFEVENT_XCPT_18, "xcpt_18", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
578 { DBGFEVENT_XCPT_19, "xcpt_19", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
579 { DBGFEVENT_XCPT_1a, "xcpt_1a", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
580 { DBGFEVENT_XCPT_1b, "xcpt_1b", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
581 { DBGFEVENT_XCPT_1c, "xcpt_1c", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
582 { DBGFEVENT_XCPT_1d, "xcpt_1d", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
583 { DBGFEVENT_XCPT_SX, "xcpt_sx", "sx", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SX (security exception)" },
584 { DBGFEVENT_XCPT_1f, "xcpt_1f", "xcpt1f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
585 { DBGFEVENT_INSTR_HALT, "instr_halt", "hlt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
586 { DBGFEVENT_INSTR_MWAIT, "instr_mwait", "mwait", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
587 { DBGFEVENT_INSTR_MONITOR, "instr_monitor", "monitor", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
588 { DBGFEVENT_INSTR_CPUID, "instr_cpuid", "cpuid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
589 { DBGFEVENT_INSTR_INVD, "instr_invd", "invd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
590 { DBGFEVENT_INSTR_WBINVD, "instr_wbinvd", "wbinvd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
591 { DBGFEVENT_INSTR_INVLPG, "instr_invlpg", "invlpg", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
592 { DBGFEVENT_INSTR_RDTSC, "instr_rdtsc", "rdtsc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
593 { DBGFEVENT_INSTR_RDTSCP, "instr_rdtscp", "rdtscp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
594 { DBGFEVENT_INSTR_RDPMC, "instr_rdpmc", "rdpmc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
595 { DBGFEVENT_INSTR_RDMSR, "instr_rdmsr", "rdmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
596 { DBGFEVENT_INSTR_WRMSR, "instr_wrmsr", "wrmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
597 { DBGFEVENT_INSTR_CRX_READ, "instr_crx_read", "crx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
598 { DBGFEVENT_INSTR_CRX_WRITE, "instr_crx_write", "crx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
599 { DBGFEVENT_INSTR_DRX_READ, "instr_drx_read", "drx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
600 { DBGFEVENT_INSTR_DRX_WRITE, "instr_drx_write", "drx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
601 { DBGFEVENT_INSTR_PAUSE, "instr_pause", "pause", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
602 { DBGFEVENT_INSTR_XSETBV, "instr_xsetbv", "xsetbv", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
603 { DBGFEVENT_INSTR_SIDT, "instr_sidt", "sidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
604 { DBGFEVENT_INSTR_LIDT, "instr_lidt", "lidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
605 { DBGFEVENT_INSTR_SGDT, "instr_sgdt", "sgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
606 { DBGFEVENT_INSTR_LGDT, "instr_lgdt", "lgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
607 { DBGFEVENT_INSTR_SLDT, "instr_sldt", "sldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
608 { DBGFEVENT_INSTR_LLDT, "instr_lldt", "lldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
609 { DBGFEVENT_INSTR_STR, "instr_str", "str", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
610 { DBGFEVENT_INSTR_LTR, "instr_ltr", "ltr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
611 { DBGFEVENT_INSTR_GETSEC, "instr_getsec", "getsec", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
612 { DBGFEVENT_INSTR_RSM, "instr_rsm", "rsm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
613 { DBGFEVENT_INSTR_RDRAND, "instr_rdrand", "rdrand", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
614 { DBGFEVENT_INSTR_RDSEED, "instr_rdseed", "rdseed", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
615 { DBGFEVENT_INSTR_XSAVES, "instr_xsaves", "xsaves", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
616 { DBGFEVENT_INSTR_XRSTORS, "instr_xrstors", "xrstors", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
617 { DBGFEVENT_INSTR_VMM_CALL, "instr_vmm_call", "vmm_call", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
618 { DBGFEVENT_INSTR_VMX_VMCLEAR, "instr_vmx_vmclear", "vmclear", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
619 { DBGFEVENT_INSTR_VMX_VMLAUNCH, "instr_vmx_vmlaunch", "vmlaunch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
620 { DBGFEVENT_INSTR_VMX_VMPTRLD, "instr_vmx_vmptrld", "vmptrld", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
621 { DBGFEVENT_INSTR_VMX_VMPTRST, "instr_vmx_vmptrst", "vmptrst", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
622 { DBGFEVENT_INSTR_VMX_VMREAD, "instr_vmx_vmread", "vmread", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
623 { DBGFEVENT_INSTR_VMX_VMRESUME, "instr_vmx_vmresume", "vmresume", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
624 { DBGFEVENT_INSTR_VMX_VMWRITE, "instr_vmx_vmwrite", "vmwrite", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
625 { DBGFEVENT_INSTR_VMX_VMXOFF, "instr_vmx_vmxoff", "vmxoff", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
626 { DBGFEVENT_INSTR_VMX_VMXON, "instr_vmx_vmxon", "vmxon", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
627 { DBGFEVENT_INSTR_VMX_VMFUNC, "instr_vmx_vmfunc", "vmfunc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
628 { DBGFEVENT_INSTR_VMX_INVEPT, "instr_vmx_invept", "invept", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
629 { DBGFEVENT_INSTR_VMX_INVVPID, "instr_vmx_invvpid", "invvpid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
630 { DBGFEVENT_INSTR_VMX_INVPCID, "instr_vmx_invpcid", "invpcid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
631 { DBGFEVENT_INSTR_SVM_VMRUN, "instr_svm_vmrun", "vmrun", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
632 { DBGFEVENT_INSTR_SVM_VMLOAD, "instr_svm_vmload", "vmload", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
633 { DBGFEVENT_INSTR_SVM_VMSAVE, "instr_svm_vmsave", "vmsave", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
634 { DBGFEVENT_INSTR_SVM_STGI, "instr_svm_stgi", "stgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
635 { DBGFEVENT_INSTR_SVM_CLGI, "instr_svm_clgi", "clgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
636 { DBGFEVENT_EXIT_TASK_SWITCH, "exit_task_switch", "task_switch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
637 { DBGFEVENT_EXIT_HALT, "exit_halt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
638 { DBGFEVENT_EXIT_MWAIT, "exit_mwait", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
639 { DBGFEVENT_EXIT_MONITOR, "exit_monitor", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
640 { DBGFEVENT_EXIT_CPUID, "exit_cpuid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
641 { DBGFEVENT_EXIT_INVD, "exit_invd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
642 { DBGFEVENT_EXIT_WBINVD, "exit_wbinvd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
643 { DBGFEVENT_EXIT_INVLPG, "exit_invlpg", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
644 { DBGFEVENT_EXIT_RDTSC, "exit_rdtsc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
645 { DBGFEVENT_EXIT_RDTSCP, "exit_rdtscp", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
646 { DBGFEVENT_EXIT_RDPMC, "exit_rdpmc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
647 { DBGFEVENT_EXIT_RDMSR, "exit_rdmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
648 { DBGFEVENT_EXIT_WRMSR, "exit_wrmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
649 { DBGFEVENT_EXIT_CRX_READ, "exit_crx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
650 { DBGFEVENT_EXIT_CRX_WRITE, "exit_crx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
651 { DBGFEVENT_EXIT_DRX_READ, "exit_drx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
652 { DBGFEVENT_EXIT_DRX_WRITE, "exit_drx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
653 { DBGFEVENT_EXIT_PAUSE, "exit_pause", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
654 { DBGFEVENT_EXIT_XSETBV, "exit_xsetbv", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
655 { DBGFEVENT_EXIT_SIDT, "exit_sidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
656 { DBGFEVENT_EXIT_LIDT, "exit_lidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
657 { DBGFEVENT_EXIT_SGDT, "exit_sgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
658 { DBGFEVENT_EXIT_LGDT, "exit_lgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
659 { DBGFEVENT_EXIT_SLDT, "exit_sldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
660 { DBGFEVENT_EXIT_LLDT, "exit_lldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
661 { DBGFEVENT_EXIT_STR, "exit_str", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
662 { DBGFEVENT_EXIT_LTR, "exit_ltr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
663 { DBGFEVENT_EXIT_GETSEC, "exit_getsec", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
664 { DBGFEVENT_EXIT_RSM, "exit_rsm", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
665 { DBGFEVENT_EXIT_RDRAND, "exit_rdrand", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
666 { DBGFEVENT_EXIT_RDSEED, "exit_rdseed", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
667 { DBGFEVENT_EXIT_XSAVES, "exit_xsaves", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
668 { DBGFEVENT_EXIT_XRSTORS, "exit_xrstors", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
669 { DBGFEVENT_EXIT_VMM_CALL, "exit_vmm_call", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
670 { DBGFEVENT_EXIT_VMX_VMCLEAR, "exit_vmx_vmclear", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
671 { DBGFEVENT_EXIT_VMX_VMLAUNCH, "exit_vmx_vmlaunch", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
672 { DBGFEVENT_EXIT_VMX_VMPTRLD, "exit_vmx_vmptrld", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
673 { DBGFEVENT_EXIT_VMX_VMPTRST, "exit_vmx_vmptrst", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
674 { DBGFEVENT_EXIT_VMX_VMREAD, "exit_vmx_vmread", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
675 { DBGFEVENT_EXIT_VMX_VMRESUME, "exit_vmx_vmresume", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
676 { DBGFEVENT_EXIT_VMX_VMWRITE, "exit_vmx_vmwrite", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
677 { DBGFEVENT_EXIT_VMX_VMXOFF, "exit_vmx_vmxoff", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
678 { DBGFEVENT_EXIT_VMX_VMXON, "exit_vmx_vmxon", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
679 { DBGFEVENT_EXIT_VMX_VMFUNC, "exit_vmx_vmfunc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
680 { DBGFEVENT_EXIT_VMX_INVEPT, "exit_vmx_invept", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
681 { DBGFEVENT_EXIT_VMX_INVVPID, "exit_vmx_invvpid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
682 { DBGFEVENT_EXIT_VMX_INVPCID, "exit_vmx_invpcid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
683 { DBGFEVENT_EXIT_VMX_EPT_VIOLATION, "exit_vmx_ept_violation", "eptvio", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
684 { DBGFEVENT_EXIT_VMX_EPT_MISCONFIG, "exit_vmx_ept_misconfig", "eptmis", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
685 { DBGFEVENT_EXIT_VMX_VAPIC_ACCESS, "exit_vmx_vapic_access", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
686 { DBGFEVENT_EXIT_VMX_VAPIC_WRITE, "exit_vmx_vapic_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
687 { DBGFEVENT_EXIT_SVM_VMRUN, "exit_svm_vmrun", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
688 { DBGFEVENT_EXIT_SVM_VMLOAD, "exit_svm_vmload", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
689 { DBGFEVENT_EXIT_SVM_VMSAVE, "exit_svm_vmsave", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
690 { DBGFEVENT_EXIT_SVM_STGI, "exit_svm_stgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
691 { DBGFEVENT_EXIT_SVM_CLGI, "exit_svm_clgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
692 { DBGFEVENT_VMX_SPLIT_LOCK, "vmx_split_lock", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
693 { DBGFEVENT_IOPORT_UNASSIGNED, "pio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
694 { DBGFEVENT_IOPORT_UNUSED, "pio_unused", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
695 { DBGFEVENT_MEMORY_UNASSIGNED, "mmio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
696 { DBGFEVENT_MEMORY_ROM_WRITE, "rom_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
697 { DBGFEVENT_BSOD_MSR, "bsod_msr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
698 { DBGFEVENT_BSOD_EFI, "bsod_efi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
699 { DBGFEVENT_BSOD_VMMDEV, "bsod_vmmdev", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
700};
701/** Number of entries in g_aDbgcSxEvents. */
702const uint32_t g_cDbgcSxEvents = RT_ELEMENTS(g_aDbgcSxEvents);
703
704
705
706/**
707 * @callback_method_impl{FNDBGCCMD, The 'g' command.}
708 */
709static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
710{
711 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
712
713 /*
714 * Parse arguments.
715 */
716 VMCPUID idCpu = VMCPUID_ALL;
717 if (cArgs == 1)
718 {
719 VMCPUID cCpus = DBGFR3CpuGetCount(pUVM);
720 if (paArgs[0].u.u64Number >= cCpus)
721 return DBGCCmdHlpFail(pCmdHlp, pCmd, "idCpu %RU64 is out of range! Highest valid ID is %u.\n",
722 paArgs[0].u.u64Number, cCpus - 1);
723 idCpu = (VMCPUID)paArgs[0].u.u64Number;
724 }
725 else
726 Assert(cArgs == 0);
727
728 /*
729 * Try resume the VM or CPU.
730 */
731 int rc = DBGFR3Resume(pUVM, idCpu);
732 if (RT_SUCCESS(rc))
733 {
734 Assert(rc == VINF_SUCCESS || rc == VWRN_DBGF_ALREADY_RUNNING);
735 if (rc != VWRN_DBGF_ALREADY_RUNNING)
736 return VINF_SUCCESS;
737 if (idCpu == VMCPUID_ALL)
738 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running");
739 return DBGCCmdHlpFail(pCmdHlp, pCmd, "CPU %u is already running", idCpu);
740 }
741 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume");
742}
743
744
745/**
746 * @callback_method_impl{FNDBGCCMD, The 'gu' command.}
747 */
748static DECLCALLBACK(int) dbgcCmdGoUp(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
749{
750 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
751 RT_NOREF(pCmd, paArgs, cArgs);
752
753 /* The simple way out. */
754 PDBGFADDRESS pStackPop = NULL; /** @todo try set up some stack limitations */
755 RTGCPTR cbStackPop = 0;
756 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET, NULL, pStackPop, cbStackPop, _512K);
757 if (RT_SUCCESS(rc))
758 pDbgc->fReady = false;
759 else
760 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET,) failed");
761 return rc;
762}
763
764
765/**
766 * @callback_method_impl{FNDBGCCMD, The 'ba' command.}
767 */
768static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
769{
770 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
771
772 /*
773 * Interpret access type.
774 */
775 if ( !strchr("xrwi", paArgs[0].u.pszString[0])
776 || paArgs[0].u.pszString[1])
777 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'",
778 paArgs[0].u.pszString, pCmd->pszCmd);
779 uint8_t fType = 0;
780 switch (paArgs[0].u.pszString[0])
781 {
782 case 'x': fType = X86_DR7_RW_EO; break;
783 case 'r': fType = X86_DR7_RW_RW; break;
784 case 'w': fType = X86_DR7_RW_WO; break;
785 case 'i': fType = X86_DR7_RW_IO; break;
786 }
787
788 /*
789 * Validate size.
790 */
791 if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1)
792 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!",
793 paArgs[1].u.u64Number, pCmd->pszCmd);
794 switch (paArgs[1].u.u64Number)
795 {
796 case 1:
797 case 2:
798 case 4:
799 break;
800 /*case 8: - later*/
801 default:
802 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!",
803 paArgs[1].u.u64Number, pCmd->pszCmd);
804 }
805 uint8_t cb = (uint8_t)paArgs[1].u.u64Number;
806
807 /*
808 * Convert the pointer to a DBGF address.
809 */
810 DBGFADDRESS Address;
811 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address);
812 if (RT_FAILURE(rc))
813 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]);
814
815 /*
816 * Pick out the optional arguments.
817 */
818 uint64_t iHitTrigger = 0;
819 uint64_t iHitDisable = UINT64_MAX;
820 const char *pszCmds = NULL;
821 unsigned iArg = 3;
822 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
823 {
824 iHitTrigger = paArgs[iArg].u.u64Number;
825 iArg++;
826 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
827 {
828 iHitDisable = paArgs[iArg].u.u64Number;
829 iArg++;
830 }
831 }
832 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
833 {
834 pszCmds = paArgs[iArg].u.pszString;
835 iArg++;
836 }
837
838 /*
839 * Try set the breakpoint.
840 */
841 uint32_t iBp;
842 rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp);
843 if (RT_SUCCESS(rc))
844 {
845 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
846 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
847 if (RT_SUCCESS(rc))
848 return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
849 if (rc == VERR_DBGC_BP_EXISTS)
850 {
851 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
852 if (RT_SUCCESS(rc))
853 return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
854 }
855 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
856 AssertRC(rc2);
857 }
858 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr);
859}
860
861
862/**
863 * @callback_method_impl{FNDBGCCMD, The 'bc' command.}
864 */
865static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
866{
867 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
868
869 /*
870 * Enumerate the arguments.
871 */
872 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
873 int rc = VINF_SUCCESS;
874 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
875 {
876 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
877 {
878 /* one */
879 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
880 if (iBp == paArgs[iArg].u.u64Number)
881 {
882 int rc2 = DBGFR3BpClear(pUVM, iBp);
883 if (RT_FAILURE(rc2))
884 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
885 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
886 dbgcBpDelete(pDbgc, iBp);
887 }
888 else
889 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
890 }
891 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
892 {
893 /* all */
894 PDBGCBP pBp = pDbgc->pFirstBp;
895 while (pBp)
896 {
897 uint32_t iBp = pBp->iBp;
898 pBp = pBp->pNext;
899
900 int rc2 = DBGFR3BpClear(pUVM, iBp);
901 if (RT_FAILURE(rc2))
902 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
903 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
904 dbgcBpDelete(pDbgc, iBp);
905 }
906 }
907 else
908 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
909 }
910 return rc;
911}
912
913
914/**
915 * @callback_method_impl{FNDBGCCMD, The 'bd' command.}
916 */
917static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
918{
919 /*
920 * Enumerate the arguments.
921 */
922 int rc = VINF_SUCCESS;
923 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
924 {
925 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
926 {
927 /* one */
928 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
929 if (iBp == paArgs[iArg].u.u64Number)
930 {
931 rc = DBGFR3BpDisable(pUVM, iBp);
932 if (RT_FAILURE(rc))
933 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp);
934 }
935 else
936 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
937 }
938 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
939 {
940 /* all */
941 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
942 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
943 {
944 int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp);
945 if (RT_FAILURE(rc2))
946 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp);
947 }
948 }
949 else
950 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
951 }
952 return rc;
953}
954
955
956/**
957 * @callback_method_impl{FNDBGCCMD, The 'be' command.}
958 */
959static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
960{
961 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
962
963 /*
964 * Enumerate the arguments.
965 */
966 int rc = VINF_SUCCESS;
967 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
968 {
969 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
970 {
971 /* one */
972 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
973 if (iBp == paArgs[iArg].u.u64Number)
974 {
975 rc = DBGFR3BpEnable(pUVM, iBp);
976 if (RT_FAILURE(rc))
977 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp);
978 }
979 else
980 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
981 }
982 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
983 {
984 /* all */
985 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
986 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
987 {
988 int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp);
989 if (RT_FAILURE(rc2))
990 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp);
991 }
992 }
993 else
994 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
995 }
996 return rc;
997}
998
999
1000/**
1001 * Breakpoint enumeration callback function.
1002 *
1003 * @returns VBox status code. Any failure will stop the enumeration.
1004 * @param pUVM The user mode VM handle.
1005 * @param pvUser The user argument.
1006 * @param hBp The DBGF breakpoint handle.
1007 * @param pBp Pointer to the breakpoint information. (readonly)
1008 */
1009static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, DBGFBP hBp, PCDBGFBPPUB pBp)
1010{
1011 PDBGC pDbgc = (PDBGC)pvUser;
1012 PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, hBp);
1013
1014 /*
1015 * BP type and size.
1016 */
1017 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c ", hBp, DBGF_BP_PUB_IS_ENABLED(pBp) ? 'e' : 'd');
1018 bool fHasAddress = false;
1019 switch (DBGF_BP_PUB_GET_TYPE(pBp))
1020 {
1021 case DBGFBPTYPE_INT3:
1022 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " p %RGv", pBp->u.Int3.GCPtr);
1023 fHasAddress = true;
1024 break;
1025 case DBGFBPTYPE_REG:
1026 {
1027 char chType;
1028 switch (pBp->u.Reg.fType)
1029 {
1030 case X86_DR7_RW_EO: chType = 'x'; break;
1031 case X86_DR7_RW_WO: chType = 'w'; break;
1032 case X86_DR7_RW_IO: chType = 'i'; break;
1033 case X86_DR7_RW_RW: chType = 'r'; break;
1034 default: chType = '?'; break;
1035
1036 }
1037 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%d %c %RGv", pBp->u.Reg.cb, chType, pBp->u.Reg.GCPtr);
1038 fHasAddress = true;
1039 break;
1040 }
1041
1042/** @todo realign the list when I/O and MMIO breakpoint command have been added and it's possible to test this code. */
1043 case DBGFBPTYPE_PORT_IO:
1044 case DBGFBPTYPE_MMIO:
1045 {
1046 uint32_t fAccess = DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? pBp->u.PortIo.fAccess : pBp->u.Mmio.fAccess;
1047 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? " i" : " m");
1048 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1049 fAccess & DBGFBPIOACCESS_READ_MASK ? 'r' : '-',
1050 fAccess & DBGFBPIOACCESS_READ_BYTE ? '1' : '-',
1051 fAccess & DBGFBPIOACCESS_READ_WORD ? '2' : '-',
1052 fAccess & DBGFBPIOACCESS_READ_DWORD ? '4' : '-',
1053 fAccess & DBGFBPIOACCESS_READ_QWORD ? '8' : '-',
1054 fAccess & DBGFBPIOACCESS_READ_OTHER ? '+' : '-');
1055 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1056 fAccess & DBGFBPIOACCESS_WRITE_MASK ? 'w' : '-',
1057 fAccess & DBGFBPIOACCESS_WRITE_BYTE ? '1' : '-',
1058 fAccess & DBGFBPIOACCESS_WRITE_WORD ? '2' : '-',
1059 fAccess & DBGFBPIOACCESS_WRITE_DWORD ? '4' : '-',
1060 fAccess & DBGFBPIOACCESS_WRITE_QWORD ? '8' : '-',
1061 fAccess & DBGFBPIOACCESS_WRITE_OTHER ? '+' : '-');
1062 if (DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO)
1063 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04x-%04x",
1064 pBp->u.PortIo.uPort, pBp->u.PortIo.uPort + pBp->u.PortIo.cPorts - 1);
1065 else
1066 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%RGp LB %03x", pBp->u.Mmio.PhysAddr, pBp->u.Mmio.cb);
1067 break;
1068 }
1069
1070 default:
1071 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " unknown type %d!!", DBGF_BP_PUB_GET_TYPE(pBp));
1072 AssertFailed();
1073 break;
1074
1075 }
1076 if (pBp->iHitDisable == ~(uint64_t)0)
1077 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to ~0) ", pBp->cHits, pBp->iHitTrigger);
1078 else
1079 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to %04RX64)", pBp->cHits, pBp->iHitTrigger, pBp->iHitDisable);
1080
1081 /*
1082 * Try resolve the address if it has one.
1083 */
1084 if (fHasAddress)
1085 {
1086 RTDBGSYMBOL Sym;
1087 RTINTPTR off;
1088 DBGFADDRESS Addr;
1089 int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->u.GCPtr),
1090 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1091 &off, &Sym, NULL);
1092 if (RT_SUCCESS(rc))
1093 {
1094 if (!off)
1095 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName);
1096 else if (off > 0)
1097 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off);
1098 else
1099 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off);
1100 }
1101 }
1102
1103 /*
1104 * The commands.
1105 */
1106 if (pDbgcBp)
1107 {
1108 if (pDbgcBp->cchCmd)
1109 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd);
1110 else
1111 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n");
1112 }
1113 else
1114 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n");
1115
1116 return VINF_SUCCESS;
1117}
1118
1119
1120/**
1121 * @callback_method_impl{FNDBGCCMD, The 'bl' command.}
1122 */
1123static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1124{
1125 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1126 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
1127 NOREF(paArgs);
1128
1129 /*
1130 * Enumerate the breakpoints.
1131 */
1132 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1133 int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc);
1134 if (RT_FAILURE(rc))
1135 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum");
1136 return rc;
1137}
1138
1139
1140/**
1141 * @callback_method_impl{FNDBGCCMD, The 'bp' command.}
1142 */
1143static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1144{
1145 /*
1146 * Convert the pointer to a DBGF address.
1147 */
1148 DBGFADDRESS Address;
1149 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1150 if (RT_FAILURE(rc))
1151 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1152
1153 /*
1154 * Pick out the optional arguments.
1155 */
1156 uint64_t iHitTrigger = 0;
1157 uint64_t iHitDisable = UINT64_MAX;
1158 const char *pszCmds = NULL;
1159 unsigned iArg = 1;
1160 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1161 {
1162 iHitTrigger = paArgs[iArg].u.u64Number;
1163 iArg++;
1164 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1165 {
1166 iHitDisable = paArgs[iArg].u.u64Number;
1167 iArg++;
1168 }
1169 }
1170 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1171 {
1172 pszCmds = paArgs[iArg].u.pszString;
1173 iArg++;
1174 }
1175
1176 /*
1177 * Try set the breakpoint.
1178 */
1179 uint32_t iBp;
1180 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1181 rc = DBGFR3BpSetInt3(pUVM, pDbgc->idCpu, &Address, iHitTrigger, iHitDisable, &iBp);
1182 if (RT_SUCCESS(rc))
1183 {
1184 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1185 if (RT_SUCCESS(rc))
1186 return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1187 if (rc == VERR_DBGC_BP_EXISTS)
1188 {
1189 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1190 if (RT_SUCCESS(rc))
1191 return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1192 }
1193 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1194 AssertRC(rc2);
1195 }
1196 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr);
1197}
1198
1199
1200/**
1201 * @callback_method_impl{FNDBGCCMD, The 'br' command.}
1202 */
1203static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1204{
1205 /*
1206 * Convert the pointer to a DBGF address.
1207 */
1208 DBGFADDRESS Address;
1209 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1210 if (RT_FAILURE(rc))
1211 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1212
1213 /*
1214 * Pick out the optional arguments.
1215 */
1216 uint64_t iHitTrigger = 0;
1217 uint64_t iHitDisable = UINT64_MAX;
1218 const char *pszCmds = NULL;
1219 unsigned iArg = 1;
1220 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1221 {
1222 iHitTrigger = paArgs[iArg].u.u64Number;
1223 iArg++;
1224 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1225 {
1226 iHitDisable = paArgs[iArg].u.u64Number;
1227 iArg++;
1228 }
1229 }
1230 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1231 {
1232 pszCmds = paArgs[iArg].u.pszString;
1233 iArg++;
1234 }
1235
1236 /*
1237 * Try set the breakpoint.
1238 */
1239 uint32_t iBp;
1240 rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
1241 if (RT_SUCCESS(rc))
1242 {
1243 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1244 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1245 if (RT_SUCCESS(rc))
1246 return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1247 if (rc == VERR_DBGC_BP_EXISTS)
1248 {
1249 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1250 if (RT_SUCCESS(rc))
1251 return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1252 }
1253 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1254 AssertRC(rc2);
1255 }
1256 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr);
1257}
1258
1259
1260/**
1261 * Helps the unassmble ('u') command display symbols it starts at and passes.
1262 *
1263 * @param pUVM The user mode VM handle.
1264 * @param pCmdHlp The command helpers for printing via.
1265 * @param hDbgAs The address space to look up addresses in.
1266 * @param pAddress The current address.
1267 * @param pcbCallAgain Where to return the distance to the next check (in
1268 * instruction bytes).
1269 */
1270static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress,
1271 PRTUINTPTR pcbCallAgain)
1272{
1273 RTDBGSYMBOL Symbol;
1274 RTGCINTPTR offDispSym;
1275 int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1276 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1277 &offDispSym, &Symbol, NULL);
1278 if (RT_FAILURE(rc) || offDispSym > _1G)
1279 rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1280 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1281 &offDispSym, &Symbol, NULL);
1282 if (RT_SUCCESS(rc) && offDispSym < _1G)
1283 {
1284 if (!offDispSym)
1285 {
1286 DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName);
1287 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb;
1288 }
1289 else if (offDispSym > 0)
1290 {
1291 DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym);
1292 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1;
1293 }
1294 else
1295 {
1296 DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym);
1297 *pcbCallAgain = !Symbol.cb ? 64 : (RTGCUINTPTR)-offDispSym + Symbol.cb;
1298 }
1299 }
1300 else
1301 *pcbCallAgain = UINT32_MAX;
1302}
1303
1304
1305/**
1306 * @callback_method_impl{FNDBGCCMD, The 'u' command.}
1307 */
1308static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1309{
1310 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1311
1312 /*
1313 * Validate input.
1314 */
1315 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1316 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
1317 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
1318
1319 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1320 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
1321
1322 /*
1323 * Check the desired mode.
1324 */
1325 unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
1326 switch (pCmd->pszCmd[1])
1327 {
1328 default: AssertFailed(); RT_FALL_THRU();
1329 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
1330 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
1331 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
1332 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
1333 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
1334 }
1335
1336 /** @todo should use DBGFADDRESS for everything */
1337
1338 /*
1339 * Find address.
1340 */
1341 if (!cArgs)
1342 {
1343 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1344 {
1345#if defined(VBOX_VMM_TARGET_ARMV8)
1346 AssertReleaseFailed();
1347#else
1348 /** @todo Batch query CS, RIP, CPU mode and flags. */
1349 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1350 if (CPUMIsGuestIn64BitCode(pVCpu))
1351 {
1352 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
1353 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
1354 }
1355 else
1356 {
1357 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
1358 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
1359 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
1360 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
1361 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
1362 {
1363 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1364 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
1365 }
1366 }
1367#endif
1368
1369 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
1370 }
1371 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
1372 {
1373 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1374 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
1375 }
1376 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
1377 }
1378 else
1379 pDbgc->DisasmPos = paArgs[0];
1380 pDbgc->pLastPos = &pDbgc->DisasmPos;
1381
1382 /*
1383 * Range.
1384 */
1385 switch (pDbgc->DisasmPos.enmRangeType)
1386 {
1387 case DBGCVAR_RANGE_NONE:
1388 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1389 pDbgc->DisasmPos.u64Range = 10;
1390 break;
1391
1392 case DBGCVAR_RANGE_ELEMENTS:
1393 if (pDbgc->DisasmPos.u64Range > 2048)
1394 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
1395 break;
1396
1397 case DBGCVAR_RANGE_BYTES:
1398 if (pDbgc->DisasmPos.u64Range > 65536)
1399 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
1400 break;
1401
1402 default:
1403 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
1404 }
1405
1406 /*
1407 * Convert physical and host addresses to guest addresses.
1408 */
1409 RTDBGAS hDbgAs = pDbgc->hDbgAs;
1410 int rc;
1411 switch (pDbgc->DisasmPos.enmType)
1412 {
1413 case DBGCVAR_TYPE_GC_FLAT:
1414 case DBGCVAR_TYPE_GC_FAR:
1415 break;
1416 case DBGCVAR_TYPE_GC_PHYS:
1417 hDbgAs = DBGF_AS_PHYS;
1418 RT_FALL_THRU();
1419 case DBGCVAR_TYPE_HC_FLAT:
1420 case DBGCVAR_TYPE_HC_PHYS:
1421 {
1422 DBGCVAR VarTmp;
1423 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
1424 if (RT_FAILURE(rc))
1425 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
1426 pDbgc->DisasmPos = VarTmp;
1427 break;
1428 }
1429 default: AssertFailed(); break;
1430 }
1431
1432 DBGFADDRESS CurAddr;
1433 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1434 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1435 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1436 else
1437 {
1438 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1439 if (RT_FAILURE(rc))
1440 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
1441 }
1442
1443 pDbgc->fDisasm = fFlags;
1444
1445 /*
1446 * Figure out where we are and display it. Also calculate when we need to
1447 * check for a new symbol if possible.
1448 */
1449 RTGCUINTPTR cbCheckSymbol;
1450 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1451
1452 /*
1453 * Do the disassembling.
1454 */
1455 unsigned cTries = 32;
1456 int iRangeLeft = (int)pDbgc->DisasmPos.u64Range;
1457 if (iRangeLeft == 0) /* kludge for 'r'. */
1458 iRangeLeft = -1;
1459 for (;;)
1460 {
1461 /*
1462 * Disassemble the instruction.
1463 */
1464 char szDis[256];
1465 uint32_t cbInstr = 1;
1466 if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT)
1467 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags,
1468 &szDis[0], sizeof(szDis), &cbInstr);
1469 else
1470 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags,
1471 &szDis[0], sizeof(szDis), &cbInstr);
1472 if (RT_SUCCESS(rc))
1473 {
1474 /* print it */
1475 rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]);
1476 if (RT_FAILURE(rc))
1477 return rc;
1478 }
1479 else
1480 {
1481 /* bitch. */
1482 int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n");
1483 if (RT_FAILURE(rc2))
1484 return rc2;
1485 if (cTries-- > 0)
1486 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up");
1487 cbInstr = 1;
1488 }
1489
1490 /* advance */
1491 if (iRangeLeft < 0) /* 'r' */
1492 break;
1493 if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1494 iRangeLeft--;
1495 else
1496 iRangeLeft -= cbInstr;
1497 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr);
1498 if (RT_FAILURE(rc))
1499 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr);
1500 if (iRangeLeft <= 0)
1501 break;
1502 fFlags &= ~DBGF_DISAS_FLAGS_CURRENT_GUEST;
1503
1504 /* Print next symbol? */
1505 if (cbCheckSymbol <= cbInstr)
1506 {
1507 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1508 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1509 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1510 else
1511 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1512 if (RT_SUCCESS(rc))
1513 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1514 else
1515 cbCheckSymbol = UINT32_MAX;
1516 }
1517 else
1518 cbCheckSymbol -= cbInstr;
1519 }
1520
1521 NOREF(pCmd);
1522 return VINF_SUCCESS;
1523}
1524
1525
1526/**
1527 * @callback_method_impl{FNDGCSCREENBLIT}
1528 */
1529static DECLCALLBACK(int) dbgcCmdUnassembleCfgBlit(const char *psz, void *pvUser)
1530{
1531 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
1532 return DBGCCmdHlpPrintf(pCmdHlp, "%s", psz);
1533}
1534
1535
1536/**
1537 * Checks whether both addresses are equal.
1538 *
1539 * @returns true if both addresses point to the same location, false otherwise.
1540 * @param pAddr1 First address.
1541 * @param pAddr2 Second address.
1542 */
1543static bool dbgcCmdUnassembleCfgAddrEqual(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1544{
1545 return pAddr1->Sel == pAddr2->Sel
1546 && pAddr1->off == pAddr2->off;
1547}
1548
1549
1550/**
1551 * Checks whether the first given address is lower than the second one.
1552 *
1553 * @returns true if both addresses point to the same location, false otherwise.
1554 * @param pAddr1 First address.
1555 * @param pAddr2 Second address.
1556 */
1557static bool dbgcCmdUnassembleCfgAddrLower(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1558{
1559 return pAddr1->Sel == pAddr2->Sel
1560 && pAddr1->off < pAddr2->off;
1561}
1562
1563
1564/**
1565 * Calculates the size required for the given basic block including the
1566 * border and spacing on the edges.
1567 *
1568 * @param hFlowBb The basic block handle.
1569 * @param pDumpBb The dumper state to fill in for the basic block.
1570 */
1571static void dbgcCmdUnassembleCfgDumpCalcBbSize(DBGFFLOWBB hFlowBb, PDBGCFLOWBBDUMP pDumpBb)
1572{
1573 uint32_t fFlags = DBGFR3FlowBbGetFlags(hFlowBb);
1574 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(hFlowBb);
1575
1576 pDumpBb->hFlowBb = hFlowBb;
1577 pDumpBb->cchHeight = cInstr + 4; /* Include spacing and border top and bottom. */
1578 pDumpBb->cchWidth = 0;
1579 DBGFR3FlowBbGetStartAddress(hFlowBb, &pDumpBb->AddrStart);
1580
1581 DBGFFLOWBBENDTYPE enmType = DBGFR3FlowBbGetType(hFlowBb);
1582 if ( enmType == DBGFFLOWBBENDTYPE_COND
1583 || enmType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1584 || enmType == DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP)
1585 DBGFR3FlowBbGetBranchAddress(hFlowBb, &pDumpBb->AddrTarget);
1586
1587 if (fFlags & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1588 {
1589 const char *pszErr = NULL;
1590 DBGFR3FlowBbQueryError(hFlowBb, &pszErr);
1591 if (pszErr)
1592 {
1593 uint32_t cchErr = (uint32_t)strlen(pszErr);
1594
1595 pDumpBb->cchHeight++;
1596 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, cchErr);
1597 }
1598 }
1599 for (unsigned i = 0; i < cInstr; i++)
1600 {
1601 const char *pszInstr = NULL;
1602 int rc = DBGFR3FlowBbQueryInstr(hFlowBb, i, NULL, NULL, &pszInstr);
1603 AssertRC(rc);
1604
1605 uint32_t cchInstr = (uint32_t)strlen(pszInstr);
1606 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, cchInstr);
1607 }
1608 pDumpBb->cchWidth += 4; /* Include spacing and border left and right. */
1609}
1610
1611
1612/**
1613 * Dumps a top or bottom boundary line.
1614 *
1615 * @param hScreen The screen to draw to.
1616 * @param uStartX Where to start drawing the boundary.
1617 * @param uStartY Y coordinate.
1618 * @param cchWidth Width of the boundary.
1619 * @param enmColor The color to use for drawing.
1620 */
1621static void dbgcCmdUnassembleCfgDumpBbBoundary(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1622 DBGCSCREENCOLOR enmColor)
1623{
1624 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '+', enmColor);
1625 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1626 uStartY, '-', enmColor);
1627 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '+', enmColor);
1628}
1629
1630
1631/**
1632 * Dumps a spacing line between the top or bottom boundary and the actual disassembly.
1633 *
1634 * @param hScreen The screen to draw to.
1635 * @param uStartX Where to start drawing the spacing.
1636 * @param uStartY Y coordinate.
1637 * @param cchWidth Width of the spacing.
1638 * @param enmColor The color to use for drawing.
1639 */
1640static void dbgcCmdUnassembleCfgDumpBbSpacing(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1641 DBGCSCREENCOLOR enmColor)
1642{
1643 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmColor);
1644 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1645 uStartY, ' ', enmColor);
1646 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmColor);
1647}
1648
1649
1650/**
1651 * Writes a given text to the screen.
1652 *
1653 * @param hScreen The screen to draw to.
1654 * @param uStartX Where to start drawing the line.
1655 * @param uStartY Y coordinate.
1656 * @param cchWidth Maximum width of the text.
1657 * @param pszText The text to write.
1658 * @param enmTextColor The color to use for drawing the text.
1659 * @param enmBorderColor The color to use for drawing the border.
1660 */
1661static void dbgcCmdUnassembleCfgDumpBbText(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY,
1662 uint32_t cchWidth, const char *pszText,
1663 DBGCSCREENCOLOR enmTextColor, DBGCSCREENCOLOR enmBorderColor)
1664{
1665 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmBorderColor);
1666 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + 1, uStartY, ' ', enmTextColor);
1667 dbgcScreenAsciiDrawString(hScreen, uStartX + 2, uStartY, pszText, enmTextColor);
1668 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmBorderColor);
1669}
1670
1671
1672/**
1673 * Dumps one basic block using the dumper callback.
1674 *
1675 * @param pDumpBb The basic block dump state to dump.
1676 * @param hScreen The screen to draw to.
1677 */
1678static void dbgcCmdUnassembleCfgDumpBb(PDBGCFLOWBBDUMP pDumpBb, DBGCSCREEN hScreen)
1679{
1680 uint32_t uStartY = pDumpBb->uStartY;
1681 bool fError = RT_BOOL(DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR);
1682 DBGCSCREENCOLOR enmColor = fError ? DBGCSCREENCOLOR_RED_BRIGHT : DBGCSCREENCOLOR_DEFAULT;
1683
1684 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1685 uStartY++;
1686 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1687 uStartY++;
1688
1689 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(pDumpBb->hFlowBb);
1690 for (unsigned i = 0; i < cInstr; i++)
1691 {
1692 const char *pszInstr = NULL;
1693 DBGFR3FlowBbQueryInstr(pDumpBb->hFlowBb, i, NULL, NULL, &pszInstr);
1694 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY + i,
1695 pDumpBb->cchWidth, pszInstr, DBGCSCREENCOLOR_DEFAULT,
1696 enmColor);
1697 }
1698 uStartY += cInstr;
1699
1700 if (fError)
1701 {
1702 const char *pszErr = NULL;
1703 DBGFR3FlowBbQueryError(pDumpBb->hFlowBb, &pszErr);
1704 if (pszErr)
1705 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY,
1706 pDumpBb->cchWidth, pszErr, enmColor,
1707 enmColor);
1708 uStartY++;
1709 }
1710
1711 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1712 uStartY++;
1713 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1714 uStartY++;
1715}
1716
1717
1718/**
1719 * Dumps one branch table using the dumper callback.
1720 *
1721 * @param pDumpBranchTbl The basic block dump state to dump.
1722 * @param hScreen The screen to draw to.
1723 */
1724static void dbgcCmdUnassembleCfgDumpBranchTbl(PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl, DBGCSCREEN hScreen)
1725{
1726 uint32_t uStartY = pDumpBranchTbl->uStartY;
1727 DBGCSCREENCOLOR enmColor = DBGCSCREENCOLOR_CYAN_BRIGHT;
1728
1729 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1730 uStartY++;
1731 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1732 uStartY++;
1733
1734 uint32_t cSlots = DBGFR3FlowBranchTblGetSlots(pDumpBranchTbl->hFlowBranchTbl);
1735 for (unsigned i = 0; i < cSlots; i++)
1736 {
1737 DBGFADDRESS Addr;
1738 char szAddr[128];
1739
1740 RT_ZERO(szAddr);
1741 DBGFR3FlowBranchTblGetAddrAtSlot(pDumpBranchTbl->hFlowBranchTbl, i, &Addr);
1742
1743 if (Addr.Sel == DBGF_SEL_FLAT)
1744 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%RGv", Addr.FlatPtr);
1745 else
1746 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%04x:%RGv", Addr.Sel, Addr.off);
1747
1748 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBranchTbl->uStartX, uStartY + i,
1749 pDumpBranchTbl->cchWidth, &szAddr[0], DBGCSCREENCOLOR_DEFAULT,
1750 enmColor);
1751 }
1752 uStartY += cSlots;
1753
1754 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1755 uStartY++;
1756 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1757 uStartY++;
1758}
1759
1760
1761/**
1762 * Fills in the dump states for the basic blocks and branch tables.
1763 *
1764 * @param hFlowIt The control flow graph iterator handle.
1765 * @param hFlowBranchTblIt The control flow graph branch table iterator handle.
1766 * @param paDumpBb The array of basic block dump states.
1767 * @param paDumpBranchTbl The array of branch table dump states.
1768 * @param cBbs Number of basic blocks.
1769 * @param cBranchTbls Number of branch tables.
1770 */
1771static void dbgcCmdUnassembleCfgDumpCalcDimensions(DBGFFLOWIT hFlowIt, DBGFFLOWBRANCHTBLIT hFlowBranchTblIt,
1772 PDBGCFLOWBBDUMP paDumpBb, PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl,
1773 uint32_t cBbs, uint32_t cBranchTbls)
1774{
1775 RT_NOREF2(cBbs, cBranchTbls);
1776
1777 /* Calculate the sizes of each basic block first. */
1778 DBGFFLOWBB hFlowBb = DBGFR3FlowItNext(hFlowIt);
1779 uint32_t idx = 0;
1780 while (hFlowBb)
1781 {
1782 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[idx]);
1783 idx++;
1784 hFlowBb = DBGFR3FlowItNext(hFlowIt);
1785 }
1786
1787 if (paDumpBranchTbl)
1788 {
1789 idx = 0;
1790 DBGFFLOWBRANCHTBL hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1791 while (hFlowBranchTbl)
1792 {
1793 paDumpBranchTbl[idx].hFlowBranchTbl = hFlowBranchTbl;
1794 paDumpBranchTbl[idx].cchHeight = DBGFR3FlowBranchTblGetSlots(hFlowBranchTbl) + 4; /* Spacing and border. */
1795 paDumpBranchTbl[idx].cchWidth = 25 + 4; /* Spacing and border. */
1796 idx++;
1797 hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1798 }
1799 }
1800}
1801
1802/**
1803 * Dumps the given control flow graph to the output.
1804 *
1805 * @returns VBox status code.
1806 * @param hCfg The control flow graph handle.
1807 * @param fUseColor Flag whether the output should be colorized.
1808 * @param pCmdHlp The command helper callback table.
1809 */
1810static int dbgcCmdUnassembleCfgDump(DBGFFLOW hCfg, bool fUseColor, PDBGCCMDHLP pCmdHlp)
1811{
1812 int rc = VINF_SUCCESS;
1813 DBGFFLOWIT hCfgIt = NULL;
1814 DBGFFLOWBRANCHTBLIT hFlowBranchTblIt = NULL;
1815 uint32_t cBbs = DBGFR3FlowGetBbCount(hCfg);
1816 uint32_t cBranchTbls = DBGFR3FlowGetBranchTblCount(hCfg);
1817 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cBbs * sizeof(DBGCFLOWBBDUMP));
1818 PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl = NULL;
1819
1820 if (cBranchTbls)
1821 paDumpBranchTbl = (PDBGCFLOWBRANCHTBLDUMP)RTMemAllocZ(cBranchTbls * sizeof(DBGCFLOWBRANCHTBLDUMP));
1822
1823 if (RT_UNLIKELY(!paDumpBb || (!paDumpBranchTbl && cBranchTbls > 0)))
1824 rc = VERR_NO_MEMORY;
1825 if (RT_SUCCESS(rc))
1826 rc = DBGFR3FlowItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hCfgIt);
1827 if (RT_SUCCESS(rc) && cBranchTbls > 0)
1828 rc = DBGFR3FlowBranchTblItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hFlowBranchTblIt);
1829
1830 if (RT_SUCCESS(rc))
1831 {
1832 dbgcCmdUnassembleCfgDumpCalcDimensions(hCfgIt, hFlowBranchTblIt, paDumpBb, paDumpBranchTbl,
1833 cBbs, cBranchTbls);
1834
1835 /* Calculate the ASCII screen dimensions and create one. */
1836 uint32_t cchWidth = 0;
1837 uint32_t cchLeftExtra = 5;
1838 uint32_t cchRightExtra = 5;
1839 uint32_t cchHeight = 0;
1840 for (unsigned i = 0; i < cBbs; i++)
1841 {
1842 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1843 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
1844 cchHeight += pDumpBb->cchHeight;
1845
1846 /* Incomplete blocks don't have a successor. */
1847 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1848 continue;
1849
1850 switch (DBGFR3FlowBbGetType(pDumpBb->hFlowBb))
1851 {
1852 case DBGFFLOWBBENDTYPE_EXIT:
1853 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1854 break;
1855 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1856 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1857 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1858 cchLeftExtra++;
1859 else
1860 cchRightExtra++;
1861 break;
1862 case DBGFFLOWBBENDTYPE_UNCOND:
1863 cchHeight += 2; /* For the arrow down to the next basic block. */
1864 break;
1865 case DBGFFLOWBBENDTYPE_COND:
1866 cchHeight += 2; /* For the arrow down to the next basic block. */
1867 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1868 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1869 cchLeftExtra++;
1870 else
1871 cchRightExtra++;
1872 break;
1873 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1874 default:
1875 AssertFailed();
1876 }
1877 }
1878
1879 for (unsigned i = 0; i < cBranchTbls; i++)
1880 {
1881 PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl = &paDumpBranchTbl[i];
1882 cchWidth = RT_MAX(cchWidth, pDumpBranchTbl->cchWidth);
1883 cchHeight += pDumpBranchTbl->cchHeight;
1884 }
1885
1886 cchWidth += 2;
1887
1888 DBGCSCREEN hScreen = NULL;
1889 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth + cchLeftExtra + cchRightExtra, cchHeight);
1890 if (RT_SUCCESS(rc))
1891 {
1892 uint32_t uY = 0;
1893
1894 /* Dump the branch tables first. */
1895 for (unsigned i = 0; i < cBranchTbls; i++)
1896 {
1897 paDumpBranchTbl[i].uStartX = cchLeftExtra + (cchWidth - paDumpBranchTbl[i].cchWidth) / 2;
1898 paDumpBranchTbl[i].uStartY = uY;
1899 dbgcCmdUnassembleCfgDumpBranchTbl(&paDumpBranchTbl[i], hScreen);
1900 uY += paDumpBranchTbl[i].cchHeight;
1901 }
1902
1903 /* Dump the basic blocks and connections to the immediate successor. */
1904 for (unsigned i = 0; i < cBbs; i++)
1905 {
1906 paDumpBb[i].uStartX = cchLeftExtra + (cchWidth - paDumpBb[i].cchWidth) / 2;
1907 paDumpBb[i].uStartY = uY;
1908 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
1909 uY += paDumpBb[i].cchHeight;
1910
1911 /* Incomplete blocks don't have a successor. */
1912 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1913 continue;
1914
1915 switch (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb))
1916 {
1917 case DBGFFLOWBBENDTYPE_EXIT:
1918 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1919 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1920 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1921 break;
1922 case DBGFFLOWBBENDTYPE_UNCOND:
1923 /* Draw the arrow down to the next block. */
1924 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1925 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
1926 uY++;
1927 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1928 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
1929 uY++;
1930 break;
1931 case DBGFFLOWBBENDTYPE_COND:
1932 /* Draw the arrow down to the next block. */
1933 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1934 '|', DBGCSCREENCOLOR_RED_BRIGHT);
1935 uY++;
1936 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1937 'V', DBGCSCREENCOLOR_RED_BRIGHT);
1938 uY++;
1939 break;
1940 default:
1941 AssertFailed();
1942 }
1943 }
1944
1945 /* Last pass, connect all remaining branches. */
1946 uint32_t uBackConns = 0;
1947 uint32_t uFwdConns = 0;
1948 for (unsigned i = 0; i < cBbs; i++)
1949 {
1950 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1951 DBGFFLOWBBENDTYPE enmEndType = DBGFR3FlowBbGetType(pDumpBb->hFlowBb);
1952
1953 /* Incomplete blocks don't have a successor. */
1954 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1955 continue;
1956
1957 switch (enmEndType)
1958 {
1959 case DBGFFLOWBBENDTYPE_EXIT:
1960 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1961 case DBGFFLOWBBENDTYPE_UNCOND:
1962 break;
1963 case DBGFFLOWBBENDTYPE_COND:
1964 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1965 {
1966 /* Find the target first to get the coordinates. */
1967 PDBGCFLOWBBDUMP pDumpBbTgt = NULL;
1968 for (unsigned idxDumpBb = 0; idxDumpBb < cBbs; idxDumpBb++)
1969 {
1970 pDumpBbTgt = &paDumpBb[idxDumpBb];
1971 if (dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBbTgt->AddrStart))
1972 break;
1973 }
1974
1975 DBGCSCREENCOLOR enmColor = enmEndType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1976 ? DBGCSCREENCOLOR_YELLOW_BRIGHT
1977 : DBGCSCREENCOLOR_GREEN_BRIGHT;
1978
1979 /*
1980 * Use the right side for targets with higher addresses,
1981 * left when jumping backwards.
1982 */
1983 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1984 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1985 {
1986 /* Going backwards. */
1987 uint32_t uXVerLine = /*cchLeftExtra - 1 -*/ uBackConns + 1;
1988 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
1989 uBackConns++;
1990
1991 /* Draw the arrow pointing to the target block. */
1992 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX - 1, pDumpBbTgt->uStartY,
1993 '>', enmColor);
1994 /* Draw the horizontal line. */
1995 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBbTgt->uStartX - 2,
1996 pDumpBbTgt->uStartY, '-', enmColor);
1997 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
1998 enmColor);
1999 /* Draw the vertical line down to the source block. */
2000 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, pDumpBbTgt->uStartY + 1, uYHorLine - 1,
2001 '|', enmColor);
2002 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2003 /* Draw the horizontal connection between the source block and vertical part. */
2004 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBb->uStartX - 1,
2005 uYHorLine, '-', enmColor);
2006
2007 }
2008 else
2009 {
2010 /* Going forward. */
2011 uint32_t uXVerLine = cchWidth + cchLeftExtra + (cchRightExtra - uFwdConns) - 1;
2012 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
2013 uFwdConns++;
2014
2015 /* Draw the horizontal line. */
2016 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBb->uStartX + pDumpBb->cchWidth,
2017 uXVerLine - 1, uYHorLine, '-', enmColor);
2018 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2019 /* Draw the vertical line down to the target block. */
2020 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, uYHorLine + 1, pDumpBbTgt->uStartY - 1,
2021 '|', enmColor);
2022 /* Draw the horizontal connection between the target block and vertical part. */
2023 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2024 uXVerLine, pDumpBbTgt->uStartY, '-', enmColor);
2025 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
2026 enmColor);
2027 /* Draw the arrow pointing to the target block. */
2028 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2029 pDumpBbTgt->uStartY, '<', enmColor);
2030 }
2031 break;
2032 }
2033 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
2034 default:
2035 AssertFailed();
2036 }
2037 }
2038
2039 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, fUseColor);
2040 dbgcScreenAsciiDestroy(hScreen);
2041 }
2042 }
2043
2044 if (paDumpBb)
2045 {
2046 for (unsigned i = 0; i < cBbs; i++)
2047 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
2048 RTMemTmpFree(paDumpBb);
2049 }
2050
2051 if (paDumpBranchTbl)
2052 {
2053 for (unsigned i = 0; i < cBranchTbls; i++)
2054 DBGFR3FlowBranchTblRelease(paDumpBranchTbl[i].hFlowBranchTbl);
2055 RTMemTmpFree(paDumpBranchTbl);
2056 }
2057
2058 if (hCfgIt)
2059 DBGFR3FlowItDestroy(hCfgIt);
2060 if (hFlowBranchTblIt)
2061 DBGFR3FlowBranchTblItDestroy(hFlowBranchTblIt);
2062
2063 return rc;
2064}
2065
2066
2067/**
2068 * @callback_method_impl{FNDBGCCMD, The 'ucfg' command.}
2069 */
2070static DECLCALLBACK(int) dbgcCmdUnassembleCfg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2071{
2072 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2073
2074 /*
2075 * Validate input.
2076 */
2077 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2078 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
2079 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
2080
2081 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2082 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
2083
2084 /*
2085 * Check the desired mode.
2086 */
2087 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
2088 bool fUseColor = false;
2089 switch (pCmd->pszCmd[4])
2090 {
2091 default: AssertFailed(); RT_FALL_THRU();
2092 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
2093 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
2094 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
2095 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
2096 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
2097 case 'c': fUseColor = true; break;
2098 }
2099
2100 /** @todo should use DBGFADDRESS for everything */
2101
2102 /*
2103 * Find address.
2104 */
2105 if (!cArgs)
2106 {
2107 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2108 {
2109#if defined(VBOX_VMM_TARGET_ARMV8)
2110 AssertReleaseFailed();
2111#else
2112 /** @todo Batch query CS, RIP, CPU mode and flags. */
2113 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2114 if (CPUMIsGuestIn64BitCode(pVCpu))
2115 {
2116 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
2117 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
2118 }
2119 else
2120 {
2121 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
2122 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2123 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2124 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
2125 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
2126 {
2127 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2128 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
2129 }
2130 }
2131#endif
2132
2133 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
2134 }
2135 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
2136 {
2137 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2138 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
2139 }
2140 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
2141 }
2142 else
2143 pDbgc->DisasmPos = paArgs[0];
2144 pDbgc->pLastPos = &pDbgc->DisasmPos;
2145
2146 /*
2147 * Range.
2148 */
2149 switch (pDbgc->DisasmPos.enmRangeType)
2150 {
2151 case DBGCVAR_RANGE_NONE:
2152 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2153 pDbgc->DisasmPos.u64Range = 10;
2154 break;
2155
2156 case DBGCVAR_RANGE_ELEMENTS:
2157 if (pDbgc->DisasmPos.u64Range > 2048)
2158 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
2159 break;
2160
2161 case DBGCVAR_RANGE_BYTES:
2162 if (pDbgc->DisasmPos.u64Range > 65536)
2163 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
2164 break;
2165
2166 default:
2167 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
2168 }
2169
2170 int rc;
2171#if 0 /** @todo Unused right now. */
2172 /*
2173 * Convert physical and host addresses to guest addresses.
2174 */
2175 RTDBGAS hDbgAs = pDbgc->hDbgAs;
2176 switch (pDbgc->DisasmPos.enmType)
2177 {
2178 case DBGCVAR_TYPE_GC_FLAT:
2179 case DBGCVAR_TYPE_GC_FAR:
2180 break;
2181 case DBGCVAR_TYPE_GC_PHYS:
2182 hDbgAs = DBGF_AS_PHYS;
2183 RT_FALL_THRU();
2184 case DBGCVAR_TYPE_HC_FLAT:
2185 case DBGCVAR_TYPE_HC_PHYS:
2186 {
2187 DBGCVAR VarTmp;
2188 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
2189 if (RT_FAILURE(rc))
2190 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
2191 pDbgc->DisasmPos = VarTmp;
2192 break;
2193 }
2194 default: AssertFailed(); break;
2195 }
2196#endif
2197
2198 DBGFADDRESS CurAddr;
2199 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
2200 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
2201 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
2202 else
2203 {
2204 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
2205 if (RT_FAILURE(rc))
2206 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
2207 }
2208
2209 DBGFFLOW hCfg;
2210 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
2211 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
2212 if (RT_SUCCESS(rc))
2213 {
2214 /* Dump the graph. */
2215 rc = dbgcCmdUnassembleCfgDump(hCfg, fUseColor, pCmdHlp);
2216 DBGFR3FlowRelease(hCfg);
2217 }
2218 else
2219 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
2220
2221 NOREF(pCmd);
2222 return rc;
2223}
2224
2225
2226/**
2227 * @callback_method_impl{FNDBGCCMD, The 'ls' command.}
2228 */
2229static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2230{
2231 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2232
2233 /*
2234 * Validate input.
2235 */
2236 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2237 if (cArgs == 1)
2238 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2239 if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2240 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing...");
2241 if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType))
2242 return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM");
2243
2244 /*
2245 * Find address.
2246 */
2247 if (!cArgs)
2248 {
2249 if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2250 {
2251#if defined(VBOX_VMM_TARGET_ARMV8)
2252 AssertReleaseFailed();
2253#else
2254 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2255 pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR;
2256 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2257 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2258#endif
2259 }
2260 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE;
2261 }
2262 else
2263 pDbgc->SourcePos = paArgs[0];
2264 pDbgc->pLastPos = &pDbgc->SourcePos;
2265
2266 /*
2267 * Ensure the source address is flat GC.
2268 */
2269 switch (pDbgc->SourcePos.enmType)
2270 {
2271 case DBGCVAR_TYPE_GC_FLAT:
2272 break;
2273 case DBGCVAR_TYPE_GC_PHYS:
2274 case DBGCVAR_TYPE_GC_FAR:
2275 case DBGCVAR_TYPE_HC_FLAT:
2276 case DBGCVAR_TYPE_HC_PHYS:
2277 {
2278 int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos);
2279 if (RT_FAILURE(rc))
2280 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc);
2281 break;
2282 }
2283 default: AssertFailed(); break;
2284 }
2285
2286 /*
2287 * Range.
2288 */
2289 switch (pDbgc->SourcePos.enmRangeType)
2290 {
2291 case DBGCVAR_RANGE_NONE:
2292 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2293 pDbgc->SourcePos.u64Range = 10;
2294 break;
2295
2296 case DBGCVAR_RANGE_ELEMENTS:
2297 if (pDbgc->SourcePos.u64Range > 2048)
2298 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n");
2299 break;
2300
2301 case DBGCVAR_RANGE_BYTES:
2302 if (pDbgc->SourcePos.u64Range > 65536)
2303 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
2304 break;
2305
2306 default:
2307 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType);
2308 }
2309
2310 /*
2311 * Do the disassembling.
2312 */
2313 bool fFirst = 1;
2314 RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" };
2315 int iRangeLeft = (int)pDbgc->SourcePos.u64Range;
2316 if (iRangeLeft == 0) /* kludge for 'r'. */
2317 iRangeLeft = -1;
2318 for (;;)
2319 {
2320 /*
2321 * Get line info.
2322 */
2323 RTDBGLINE Line;
2324 RTGCINTPTR off;
2325 DBGFADDRESS SourcePosAddr;
2326 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr);
2327 if (RT_FAILURE(rc))
2328 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos);
2329 rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL);
2330 if (RT_FAILURE(rc))
2331 return VINF_SUCCESS;
2332
2333 unsigned cLines = 0;
2334 if (memcmp(&Line, &LinePrev, sizeof(Line)))
2335 {
2336 /*
2337 * Print filenamename
2338 */
2339 if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename))
2340 fFirst = true;
2341 if (fFirst)
2342 {
2343 rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo);
2344 if (RT_FAILURE(rc))
2345 return rc;
2346 }
2347
2348 /*
2349 * Try open the file and read the line.
2350 */
2351 FILE *phFile = fopen(Line.szFilename, "r");
2352 if (phFile)
2353 {
2354 /* Skip ahead to the desired line. */
2355 char szLine[4096];
2356 unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1;
2357 if (cBefore > 7)
2358 cBefore = 0;
2359 unsigned cLeft = Line.uLineNo - cBefore;
2360 while (cLeft > 0)
2361 {
2362 szLine[0] = '\0';
2363 if (!fgets(szLine, sizeof(szLine), phFile))
2364 break;
2365 cLeft--;
2366 }
2367 if (!cLeft)
2368 {
2369 /* print the before lines */
2370 for (;;)
2371 {
2372 size_t cch = strlen(szLine);
2373 while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) )
2374 szLine[--cch] = '\0';
2375 if (cBefore-- <= 0)
2376 break;
2377
2378 rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine);
2379 szLine[0] = '\0';
2380 const char *pszShutUpGcc = fgets(szLine, sizeof(szLine), phFile); NOREF(pszShutUpGcc);
2381 cLines++;
2382 }
2383 /* print the actual line */
2384 rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine);
2385 }
2386 fclose(phFile);
2387 if (RT_FAILURE(rc))
2388 return rc;
2389 fFirst = false;
2390 }
2391 else
2392 return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename);
2393
2394 LinePrev = Line;
2395 }
2396
2397
2398 /*
2399 * Advance
2400 */
2401 if (iRangeLeft < 0) /* 'r' */
2402 break;
2403 if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
2404 iRangeLeft -= cLines;
2405 else
2406 iRangeLeft -= 1;
2407 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1);
2408 if (RT_FAILURE(rc))
2409 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1);
2410 if (iRangeLeft <= 0)
2411 break;
2412 }
2413
2414 NOREF(pCmd);
2415 return 0;
2416}
2417
2418
2419/**
2420 * @callback_method_impl{FNDBGCCMD, The 'r' command.}
2421 */
2422static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2423{
2424 return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
2425}
2426
2427
2428/**
2429 * @callback_method_impl{FNDBGCCMD, Common worker for the dbgcCmdReg*()
2430 * commands.}
2431 */
2432static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs,
2433 const char *pszPrefix)
2434{
2435 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2436 int rc;
2437 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3);
2438 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING
2439 || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL);
2440
2441 /*
2442 * Parse the register name and kind.
2443 */
2444 bool const fAllRegs = strcmp(paArgs[0].u.pszString, "all") == 0;
2445 const char *pszReg = paArgs[0].u.pszString;
2446 if (*pszReg == '@')
2447 pszReg++;
2448 VMCPUID idCpu = pDbgc->idCpu;
2449 if (*pszPrefix)
2450 idCpu |= DBGFREG_HYPER_VMCPUID;
2451 if (*pszReg == '.')
2452 {
2453 pszReg++;
2454 idCpu |= DBGFREG_HYPER_VMCPUID;
2455 }
2456 const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : "";
2457 if (cArgs == 1)
2458 {
2459 /*
2460 * Show the register.
2461 *
2462 * If it ends with a '.' or '.*', we'll show any subfields and aliases as
2463 * well. This is a special VBox twist.
2464 */
2465 size_t cchReg = strlen(pszReg);
2466 size_t cchSuffix = 0;
2467 if (cchReg >= 2 && pszReg[cchReg - 1] == '.')
2468 cchSuffix = 1;
2469 else if (cchReg >= 3 && pszReg[cchReg - 1] == '*' && pszReg[cchReg - 2] == '.')
2470 cchSuffix = 2;
2471
2472 char szValue[160];
2473 if (!cchSuffix && !fAllRegs)
2474 {
2475 DBGFREGVALTYPE enmType;
2476 DBGFREGVAL Value;
2477 rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2478 if (RT_FAILURE(rc))
2479 {
2480 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2481 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2482 pszActualPrefix, pszReg);
2483 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2484 pszActualPrefix, pszReg, rc);
2485 }
2486
2487 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/);
2488 if (RT_SUCCESS(rc))
2489 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue);
2490 else
2491 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2492 }
2493 else
2494 {
2495 /*
2496 * Register + aliases + subfields OR 'all'.
2497 */
2498 /* Duplicate the register specifier sans suffix. */
2499 char *pszRegBase = RTStrDupN(pszReg, cchReg - cchSuffix);
2500 AssertReturn(pszRegBase, VERR_NO_STR_MEMORY);
2501
2502 /* Make a rough guess on how many entires we need, or query it in the case of 'all'. */
2503 size_t cRegsAlloc = 128;
2504 if (fAllRegs)
2505 DBGFR3RegNmQueryAllCount(pUVM, &cRegsAlloc);
2506 PDBGFREGENTRYNM paRegs = (PDBGFREGENTRYNM)RTMemTmpAlloc(sizeof(paRegs[0]) * cRegsAlloc);
2507 AssertReturnStmt(paRegs, RTStrFree(pszRegBase), VERR_NO_TMP_MEMORY);
2508 size_t cRegs = cRegsAlloc;
2509
2510 /* Query the registers.*/
2511 if (fAllRegs)
2512 rc = DBGFR3RegNmQueryAll(pUVM, paRegs, cRegs);
2513 else
2514 rc = DBGFR3RegNmQueryEx(pUVM, idCpu, pszRegBase, DBGFR3REG_QUERY_EX_F_SUBFIELDS | DBGFR3REG_QUERY_EX_F_ALIASES,
2515 paRegs, &cRegs);
2516 if (rc == VERR_BUFFER_OVERFLOW && !fAllRegs)
2517 {
2518 RTMemTmpFree(paRegs);
2519 cRegsAlloc = cRegs;
2520 paRegs = (PDBGFREGENTRYNM)RTMemTmpAlloc(sizeof(paRegs[0]) * cRegsAlloc);
2521 AssertReturnStmt(paRegs, RTStrFree(pszRegBase), VERR_NO_TMP_MEMORY);
2522 rc = DBGFR3RegNmQueryEx(pUVM, idCpu, pszRegBase,
2523 DBGFR3REG_QUERY_EX_F_SUBFIELDS | DBGFR3REG_QUERY_EX_F_ALIASES, paRegs, &cRegs);
2524 }
2525 if (RT_SUCCESS(rc))
2526 {
2527 /* Find max lengths and sizes for producing pretty columns. */
2528 size_t cchMaxNm = 2;
2529 size_t cchMaxSubFieldNm = 2;
2530 size_t cMaxSubFieldBits = 1;
2531 if (*pszActualPrefix == '\0')
2532 for (uint32_t iReg = 0; iReg < cRegs; iReg++)
2533 {
2534 size_t const cchName = strlen(paRegs[iReg].pszName);
2535 if (cchMaxNm < cchName)
2536 cchMaxNm = cchName;
2537 if (paRegs[iReg].u.s.fSubField)
2538 {
2539 cchMaxSubFieldNm = RT_MAX(cchMaxSubFieldNm, cchName);
2540 cMaxSubFieldBits = RT_MAX(cMaxSubFieldBits, paRegs[iReg].u.s.cBits);
2541 }
2542 }
2543
2544 /* Output the registers. */
2545 size_t cchMaxSubFieldValue = 2 + (cMaxSubFieldBits + 3) / 4;
2546 size_t cMaxSameLine = 80 / (2 + cchMaxSubFieldNm + 1 + cchMaxSubFieldValue);
2547 unsigned iSameLine = 0;
2548 for (uint32_t iReg = 0; iReg < cRegs; iReg++)
2549 {
2550 if ( !paRegs[iReg].u.s.fSubField
2551 || !paRegs[iReg].u.s.cBits)
2552 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &paRegs[iReg].Val,
2553 paRegs[iReg].enmType, true /*fSpecial*/);
2554 else
2555 rc = DBGFR3RegFormatValueEx(szValue, sizeof(szValue), &paRegs[iReg].Val, paRegs[iReg].enmType,
2556 16,
2557 (paRegs[iReg].u.s.cBits + 3) / 4,
2558 0,
2559 (paRegs[iReg].u.s.cBits == 1 ? 0 : RTSTR_F_SPECIAL) | RTSTR_F_WIDTH);
2560 if (RT_SUCCESS(rc))
2561 {
2562 if (!paRegs[iReg].u.s.fSubField)
2563 {
2564 if (iSameLine > 0)
2565 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2566 if (*pszActualPrefix == '\0')
2567 rc = DBGCCmdHlpPrintf(pCmdHlp, "%*s=%s\n", cchMaxNm, paRegs[iReg].pszName, szValue);
2568 else
2569 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, paRegs[iReg].pszName, szValue);
2570 iSameLine = 0;
2571 }
2572 else
2573 {
2574 if (*pszActualPrefix == '\0')
2575 rc = DBGCCmdHlpPrintf(pCmdHlp, " %*s=%s", cchMaxSubFieldNm, paRegs[iReg].pszName, szValue);
2576 else
2577 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s%s=%s", pszActualPrefix, paRegs[iReg].pszName, szValue);
2578 iSameLine++;
2579 if (iSameLine < cMaxSameLine)
2580 {
2581 size_t cchValue = strlen(szValue);
2582 if (cchValue < cchMaxSubFieldValue)
2583 rc = DBGCCmdHlpPrintf(pCmdHlp, "%*s", cchMaxSubFieldValue - cchValue, "");
2584 }
2585 else
2586 {
2587 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2588 iSameLine = 0;
2589 }
2590 }
2591 }
2592 else
2593 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue[Ex] failed for %s: %Rrc.\n",
2594 paRegs[iReg].pszName, rc);
2595 }
2596 if (iSameLine > 0)
2597 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2598 }
2599 else if (fAllRegs)
2600 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQueryAll failed: %Rrc.\n", rc);
2601 else if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2602 rc = DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2603 pszActualPrefix, pszRegBase);
2604 else
2605 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQueryEx failed querying '%s%s': %Rrc.\n",
2606 pszActualPrefix, pszRegBase, rc);
2607 RTStrFree(pszRegBase);
2608 RTMemTmpFree(paRegs);
2609 }
2610 }
2611 else
2612 {
2613 /*
2614 * We're about to modify the register.
2615 *
2616 * First we need to query the register type (see below).
2617 */
2618 DBGFREGVALTYPE enmType;
2619 DBGFREGVAL Value;
2620 rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2621 if (RT_FAILURE(rc))
2622 {
2623 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2624 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2625 pszActualPrefix, pszReg);
2626 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2627 pszActualPrefix, pszReg, rc);
2628 }
2629
2630 DBGCVAR NewValueTmp;
2631 PCDBGCVAR pNewValue;
2632 if (cArgs == 3)
2633 {
2634 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2635 if (strcmp(paArgs[1].u.pszString, "="))
2636 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='.");
2637 pNewValue = &paArgs[2];
2638 }
2639 else
2640 {
2641 /* Not possible to convince the parser to support both codeview and
2642 windbg syntax and make the equal sign optional. Try help it. */
2643 /** @todo make DBGCCmdHlpConvert do more with strings. */
2644 rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp);
2645 if (RT_FAILURE(rc))
2646 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol.");
2647 pNewValue = &NewValueTmp;
2648 }
2649
2650 /*
2651 * Modify the register.
2652 */
2653 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER);
2654 if (enmType != DBGFREGVALTYPE_DTR)
2655 {
2656 enmType = DBGFREGVALTYPE_U64;
2657 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64);
2658 }
2659 else
2660 {
2661 enmType = DBGFREGVALTYPE_DTR;
2662 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base);
2663 if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE)
2664 Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range;
2665 }
2666 if (RT_SUCCESS(rc))
2667 {
2668 rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType);
2669 if (RT_FAILURE(rc))
2670 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n",
2671 pszActualPrefix, pszReg, rc);
2672 if (rc != VINF_SUCCESS)
2673 DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc);
2674 }
2675 else
2676 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2677 }
2678 return rc;
2679}
2680
2681
2682/**
2683 * @callback_method_impl{FNDBGCCMD,
2684 * The 'rg'\, 'rg64' and 'rg32' commands\, worker for 'r'.}
2685 */
2686static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2687{
2688 /*
2689 * Show all registers our selves.
2690 */
2691 if (cArgs == 0)
2692 {
2693 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2694 bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64")
2695 || ( strcmp(pCmd->pszCmd, "rg32") != 0
2696 && DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu));
2697 return DBGCCmdHlpRegPrintf(pCmdHlp, pDbgc->idCpu, f64BitMode, pDbgc->fRegTerse);
2698 }
2699 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "");
2700}
2701
2702
2703/**
2704 * @callback_method_impl{FNDBGCCMD, The 'rt' command.}
2705 */
2706static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2707{
2708 NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2709
2710 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2711 pDbgc->fRegTerse = !pDbgc->fRegTerse;
2712 return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n");
2713}
2714
2715
2716/**
2717 * @callback_method_impl{FNDBGCCMD, The 'pr' and 'tr' commands.}
2718 */
2719static DECLCALLBACK(int) dbgcCmdStepTraceToggle(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2720{
2721 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2722 Assert(cArgs == 0); NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2723
2724 /* Note! windbg accepts 'r' as a flag to 'p', 'pa', 'pc', 'pt', 't',
2725 'ta', 'tc' and 'tt'. We've simplified it. */
2726 pDbgc->fStepTraceRegs = !pDbgc->fStepTraceRegs;
2727 return VINF_SUCCESS;
2728}
2729
2730
2731/**
2732 * @callback_method_impl{FNDBGCCMD, The 'p'\, 'pc'\, 'pt'\, 't'\, 'tc'\, and 'tt' commands.}
2733 */
2734static DECLCALLBACK(int) dbgcCmdStepTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2735{
2736 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2737 if (cArgs != 0)
2738 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2739 "Sorry, but the '%s' command does not currently implement any arguments.\n", pCmd->pszCmd);
2740
2741 /* The 'count' has to be implemented by DBGC, whereas the
2742 filtering is taken care of by DBGF. */
2743
2744 /*
2745 * Convert the command to DBGF_STEP_F_XXX and other API input.
2746 */
2747 //DBGFADDRESS StackPop;
2748 PDBGFADDRESS pStackPop = NULL;
2749 RTGCPTR cbStackPop = 0;
2750 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : _64K;
2751 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2752 if (pCmd->pszCmd[1] == 'c')
2753 fFlags |= DBGF_STEP_F_STOP_ON_CALL;
2754 else if (pCmd->pszCmd[1] == 't')
2755 fFlags |= DBGF_STEP_F_STOP_ON_RET;
2756 else if (pCmd->pszCmd[0] != 'p')
2757 cMaxSteps = 1;
2758 else
2759 {
2760 /** @todo consider passing RSP + 1 in for 'p' and something else sensible for
2761 * the 'pt' command. */
2762 }
2763
2764 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, NULL, pStackPop, cbStackPop, cMaxSteps);
2765 if (RT_SUCCESS(rc))
2766 pDbgc->fReady = false;
2767 else
2768 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2769
2770 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2771 return rc;
2772}
2773
2774
2775/**
2776 * @callback_method_impl{FNDBGCCMD, The 'pa' and 'ta' commands.}
2777 */
2778static DECLCALLBACK(int) dbgcCmdStepTraceTo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2779{
2780 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2781 if (cArgs != 1)
2782 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2783 "Sorry, but the '%s' command only implements a single argument at present.\n", pCmd->pszCmd);
2784 DBGFADDRESS Address;
2785 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
2786 if (RT_FAILURE(rc))
2787 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[0]);
2788
2789 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : 1;
2790 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2791 rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, &Address, NULL, 0, cMaxSteps);
2792 if (RT_SUCCESS(rc))
2793 pDbgc->fReady = false;
2794 else
2795 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2796 return rc;
2797}
2798
2799
2800/**
2801 * Helper that tries to resolve a far address to a symbol and formats it.
2802 *
2803 * @returns Pointer to symbol string on success, NULL if not resolved.
2804 * Free using RTStrFree.
2805 * @param pCmdHlp The command helper structure.
2806 * @param hAs The address space to use. NIL_RTDBGAS means no symbol resolving.
2807 * @param sel The selector part of the address.
2808 * @param off The offset part of the address.
2809 * @param pszPrefix How to prefix the symbol string.
2810 * @param pszSuffix How to suffix the symbol string.
2811 */
2812static char *dbgcCmdHlpFarAddrToSymbol(PDBGCCMDHLP pCmdHlp, RTDBGAS hAs, RTSEL sel, uint64_t off,
2813 const char *pszPrefix, const char *pszSuffix)
2814{
2815 char *pszRet = NULL;
2816 if (hAs != NIL_RTDBGAS)
2817 {
2818 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2819 DBGFADDRESS Addr;
2820 int rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr, sel, off);
2821 if (RT_SUCCESS(rc))
2822 {
2823 RTGCINTPTR offDispSym = 0;
2824 PRTDBGSYMBOL pSymbol = DBGFR3AsSymbolByAddrA(pDbgc->pUVM, hAs, &Addr,
2825 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL
2826 | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
2827 &offDispSym, NULL);
2828 if (pSymbol)
2829 {
2830 if (offDispSym == 0)
2831 pszRet = RTStrAPrintf2("%s%s%s", pszPrefix, pSymbol->szName, pszSuffix);
2832 else if (offDispSym > 0)
2833 pszRet = RTStrAPrintf2("%s%s+%llx%s", pszPrefix, pSymbol->szName, (int64_t)offDispSym, pszSuffix);
2834 else
2835 pszRet = RTStrAPrintf2("%s%s-%llx%s", pszPrefix, pSymbol->szName, -(int64_t)offDispSym, pszSuffix);
2836 RTDbgSymbolFree(pSymbol);
2837 }
2838 }
2839 }
2840 return pszRet;
2841}
2842
2843
2844/**
2845 * @callback_method_impl{FNDBGCCMD, The 'k'\, 'kg' and 'kh' commands.}
2846 */
2847static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2848{
2849 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2850
2851 /*
2852 * Figure which context we're called for and start walking that stack.
2853 */
2854 int rc;
2855 PCDBGFSTACKFRAME pFirstFrame;
2856 bool const fGuest = true;
2857 bool const fVerbose = pCmd->pszCmd[1] == 'v'
2858 || (pCmd->pszCmd[1] != '\0' && pCmd->pszCmd[2] == 'v');
2859 rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame);
2860 if (RT_FAILURE(rc))
2861 return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc);
2862
2863 /*
2864 * Print the frames.
2865 */
2866 char szTmp[1024];
2867 uint32_t fBitFlags = 0;
2868 for (PCDBGFSTACKFRAME pFrame = pFirstFrame;
2869 pFrame;
2870 pFrame = DBGFR3StackWalkNext(pFrame))
2871 {
2872 uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT);
2873 if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT)
2874 {
2875 if (fCurBitFlags != fBitFlags)
2876 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2877 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2878 pFrame->iFrame,
2879 pFrame->AddrFrame.Sel,
2880 (uint16_t)pFrame->AddrFrame.off,
2881 pFrame->AddrReturnFrame.Sel,
2882 (uint16_t)pFrame->AddrReturnFrame.off,
2883 (uint32_t)pFrame->AddrReturnPC.Sel,
2884 (uint32_t)pFrame->AddrReturnPC.off,
2885 pFrame->Args.au32[0],
2886 pFrame->Args.au32[1],
2887 pFrame->Args.au32[2],
2888 pFrame->Args.au32[3]);
2889 }
2890 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT)
2891 {
2892 if (fCurBitFlags != fBitFlags)
2893 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2894 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2895 pFrame->iFrame,
2896 (uint32_t)pFrame->AddrFrame.off,
2897 (uint32_t)pFrame->AddrReturnFrame.off,
2898 (uint32_t)pFrame->AddrReturnPC.Sel,
2899 (uint32_t)pFrame->AddrReturnPC.off,
2900 pFrame->Args.au32[0],
2901 pFrame->Args.au32[1],
2902 pFrame->Args.au32[2],
2903 pFrame->Args.au32[3]);
2904 }
2905 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT)
2906 {
2907 if (fCurBitFlags != fBitFlags)
2908 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n");
2909 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %016RX64 %04RX16:%016RX64 %016RX64",
2910 pFrame->iFrame,
2911 (uint64_t)pFrame->AddrFrame.off,
2912 pFrame->AddrReturnFrame.Sel,
2913 (uint64_t)pFrame->AddrReturnFrame.off,
2914 (uint64_t)pFrame->AddrReturnPC.off);
2915 }
2916 if (RT_FAILURE(rc))
2917 break;
2918 if (!pFrame->pSymPC)
2919 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
2920 fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT
2921 ? " %RTsel:%016RGv"
2922 : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT
2923 ? " %RTsel:%08RGv"
2924 : " %RTsel:%04RGv"
2925 , pFrame->AddrPC.Sel, pFrame->AddrPC.off);
2926 else
2927 {
2928 RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */
2929 if (offDisp > 0)
2930 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp);
2931 else if (offDisp < 0)
2932 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp);
2933 else
2934 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName);
2935 }
2936 if (RT_SUCCESS(rc) && pFrame->pLinePC)
2937 rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo);
2938 if (RT_SUCCESS(rc))
2939 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2940
2941 if (fVerbose && RT_SUCCESS(rc))
2942 {
2943 /*
2944 * Display verbose frame info.
2945 */
2946 const char *pszRetType = "invalid";
2947 switch (pFrame->enmReturnType)
2948 {
2949 case RTDBGRETURNTYPE_NEAR16: pszRetType = "retn/16"; break;
2950 case RTDBGRETURNTYPE_NEAR32: pszRetType = "retn/32"; break;
2951 case RTDBGRETURNTYPE_NEAR64: pszRetType = "retn/64"; break;
2952 case RTDBGRETURNTYPE_FAR16: pszRetType = "retf/16"; break;
2953 case RTDBGRETURNTYPE_FAR32: pszRetType = "retf/32"; break;
2954 case RTDBGRETURNTYPE_FAR64: pszRetType = "retf/64"; break;
2955 case RTDBGRETURNTYPE_IRET16: pszRetType = "iret-16"; break;
2956 case RTDBGRETURNTYPE_IRET32: pszRetType = "iret/32s"; break;
2957 case RTDBGRETURNTYPE_IRET32_PRIV: pszRetType = "iret/32p"; break;
2958 case RTDBGRETURNTYPE_IRET32_V86: pszRetType = "iret/v86"; break;
2959 case RTDBGRETURNTYPE_IRET64: pszRetType = "iret/64"; break;
2960
2961 case RTDBGRETURNTYPE_END:
2962 case RTDBGRETURNTYPE_INVALID:
2963 case RTDBGRETURNTYPE_32BIT_HACK:
2964 break;
2965 }
2966 size_t cchLine = DBGCCmdHlpPrintfLen(pCmdHlp, " %s", pszRetType);
2967 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_UNWIND_INFO)
2968 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-unwind-info");
2969 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_ODD_EVEN)
2970 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-odd-even");
2971 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_REAL_V86)
2972 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " real-v86");
2973 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_MAX_DEPTH)
2974 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " max-depth");
2975 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_TRAP_FRAME)
2976 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " trap-frame");
2977
2978 if (pFrame->cSureRegs > 0)
2979 {
2980 cchLine = 1024; /* force new line */
2981 for (uint32_t i = 0; i < pFrame->cSureRegs; i++)
2982 {
2983 if (cchLine > 80)
2984 {
2985 DBGCCmdHlpPrintf(pCmdHlp, "\n ");
2986 cchLine = 2;
2987 }
2988
2989 szTmp[0] = '\0';
2990 DBGFR3RegFormatValue(szTmp, sizeof(szTmp), &pFrame->paSureRegs[i].Value,
2991 pFrame->paSureRegs[i].enmType, false);
2992 const char *pszName = pFrame->paSureRegs[i].enmReg != DBGFREG_END
2993 ? DBGFR3RegCpuName(pUVM, pFrame->paSureRegs[i].enmReg, pFrame->paSureRegs[i].enmType)
2994 : pFrame->paSureRegs[i].pszName;
2995 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " %s=%s", pszName, szTmp);
2996 }
2997 }
2998
2999 if (RT_SUCCESS(rc))
3000 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3001 }
3002
3003 if (RT_FAILURE(rc))
3004 break;
3005
3006 fBitFlags = fCurBitFlags;
3007 }
3008
3009 DBGFR3StackWalkEnd(pFirstFrame);
3010
3011 NOREF(paArgs); NOREF(cArgs);
3012 return rc;
3013}
3014
3015
3016/**
3017 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
3018 *
3019 * @returns pfnPrintf status code.
3020 * @param pCmdHlp The DBGC command helpers.
3021 * @param pDesc The descriptor to display.
3022 * @param iEntry The descriptor entry number.
3023 * @param fHyper Whether the selector belongs to the hypervisor or not.
3024 * @param hAs Address space to use when resolving symbols.
3025 * @param pfDblEntry Where to indicate whether the entry is two entries wide.
3026 * Optional.
3027 */
3028static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs,
3029 bool *pfDblEntry)
3030{
3031 /* GUEST64 */
3032 int rc;
3033
3034 const char *pszHyper = fHyper ? " HYPER" : "";
3035 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
3036 if (pDesc->Gen.u1DescType)
3037 {
3038 static const char * const s_apszTypes[] =
3039 {
3040 "DataRO", /* 0 Read-Only */
3041 "DataRO", /* 1 Read-Only - Accessed */
3042 "DataRW", /* 2 Read/Write */
3043 "DataRW", /* 3 Read/Write - Accessed */
3044 "DownRO", /* 4 Expand-down, Read-Only */
3045 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
3046 "DownRW", /* 6 Expand-down, Read/Write */
3047 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
3048 "CodeEO", /* 8 Execute-Only */
3049 "CodeEO", /* 9 Execute-Only - Accessed */
3050 "CodeER", /* A Execute/Readable */
3051 "CodeER", /* B Execute/Readable - Accessed */
3052 "ConfE0", /* C Conforming, Execute-Only */
3053 "ConfE0", /* D Conforming, Execute-Only - Accessed */
3054 "ConfER", /* E Conforming, Execute/Readable */
3055 "ConfER" /* F Conforming, Execute/Readable - Accessed */
3056 };
3057 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
3058 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3059 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3060 uint32_t u32Base = X86DESC_BASE(pDesc);
3061 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
3062
3063 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
3064 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3065 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
3066 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
3067 }
3068 else
3069 {
3070 static const char * const s_apszTypes[] =
3071 {
3072 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
3073 "Ill-1 ", /* 1 0001 Available 16-bit TSS */
3074 "LDT ", /* 2 0010 LDT */
3075 "Ill-3 ", /* 3 0011 Busy 16-bit TSS */
3076 "Ill-4 ", /* 4 0100 16-bit Call Gate */
3077 "Ill-5 ", /* 5 0101 Task Gate */
3078 "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */
3079 "Ill-7 ", /* 7 0111 16-bit Trap Gate */
3080 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
3081 "Tss64A", /* 9 1001 Available 32-bit TSS */
3082 "Ill-A ", /* A 1010 Reserved (Illegal) */
3083 "Tss64B", /* B 1011 Busy 32-bit TSS */
3084 "Call64", /* C 1100 32-bit Call Gate */
3085 "Ill-D ", /* D 1101 Reserved (Illegal) */
3086 "Int64 ", /* E 1110 32-bit Interrupt Gate */
3087 "Trap64" /* F 1111 32-bit Trap Gate */
3088 };
3089 switch (pDesc->Gen.u4Type)
3090 {
3091 /* raw */
3092 case X86_SEL_TYPE_SYS_UNDEFINED:
3093 case X86_SEL_TYPE_SYS_UNDEFINED2:
3094 case X86_SEL_TYPE_SYS_UNDEFINED4:
3095 case X86_SEL_TYPE_SYS_UNDEFINED3:
3096 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3097 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3098 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3099 case X86_SEL_TYPE_SYS_286_INT_GATE:
3100 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
3101 case X86_SEL_TYPE_SYS_TASK_GATE:
3102 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
3103 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
3104 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3105 break;
3106
3107 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3108 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3109 case X86_SEL_TYPE_SYS_LDT:
3110 {
3111 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3112 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3113 const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " ";
3114
3115 uint64_t u64Base = X86DESC64_BASE(pDesc);
3116 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
3117
3118 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n",
3119 iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit,
3120 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig,
3121 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3122 pszHyper);
3123 if (pfDblEntry)
3124 *pfDblEntry = true;
3125 break;
3126 }
3127
3128 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3129 {
3130 unsigned cParams = pDesc->au8[4] & 0x1f;
3131 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3132 RTSEL sel = pDesc->au16[1];
3133 uint64_t off = pDesc->au16[0]
3134 | ((uint64_t)pDesc->au16[3] << 16)
3135 | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
3136 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3137 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s%s\n",
3138 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3139 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3140 RTStrFree(pszSymbol);
3141 if (pfDblEntry)
3142 *pfDblEntry = true;
3143 break;
3144 }
3145
3146 case X86_SEL_TYPE_SYS_386_INT_GATE:
3147 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3148 {
3149 RTSEL sel = pDesc->Gate.u16Sel;
3150 uint64_t off = pDesc->Gate.u16OffsetLow
3151 | ((uint64_t)pDesc->Gate.u16OffsetHigh << 16)
3152 | ((uint64_t)pDesc->Gate.u32OffsetTop << 32);
3153 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3154 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%u %s IST=%u%s%s\n",
3155 iEntry, s_apszTypes[pDesc->Gate.u4Type], sel, off,
3156 pDesc->Gate.u2Dpl, pszPresent, pDesc->Gate.u3IST, pszHyper, pszSymbol ? pszSymbol : "");
3157 RTStrFree(pszSymbol);
3158 if (pfDblEntry)
3159 *pfDblEntry = true;
3160 break;
3161 }
3162
3163 /* impossible, just it's necessary to keep gcc happy. */
3164 default:
3165 return VINF_SUCCESS;
3166 }
3167 }
3168 return rc;
3169}
3170
3171
3172/**
3173 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
3174 *
3175 * @returns pfnPrintf status code.
3176 * @param pCmdHlp The DBGC command helpers.
3177 * @param pDesc The descriptor to display.
3178 * @param iEntry The descriptor entry number.
3179 * @param fHyper Whether the selector belongs to the hypervisor or not.
3180 * @param hAs Address space to use when resolving symbols.
3181 */
3182static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs)
3183{
3184 int rc;
3185
3186 const char *pszHyper = fHyper ? " HYPER" : "";
3187 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
3188 if (pDesc->Gen.u1DescType)
3189 {
3190 static const char * const s_apszTypes[] =
3191 {
3192 "DataRO", /* 0 Read-Only */
3193 "DataRO", /* 1 Read-Only - Accessed */
3194 "DataRW", /* 2 Read/Write */
3195 "DataRW", /* 3 Read/Write - Accessed */
3196 "DownRO", /* 4 Expand-down, Read-Only */
3197 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
3198 "DownRW", /* 6 Expand-down, Read/Write */
3199 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
3200 "CodeEO", /* 8 Execute-Only */
3201 "CodeEO", /* 9 Execute-Only - Accessed */
3202 "CodeER", /* A Execute/Readable */
3203 "CodeER", /* B Execute/Readable - Accessed */
3204 "ConfE0", /* C Conforming, Execute-Only */
3205 "ConfE0", /* D Conforming, Execute-Only - Accessed */
3206 "ConfER", /* E Conforming, Execute/Readable */
3207 "ConfER" /* F Conforming, Execute/Readable - Accessed */
3208 };
3209 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
3210 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3211 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3212 uint32_t u32Base = pDesc->Gen.u16BaseLow
3213 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3214 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3215 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3216 if (pDesc->Gen.u1Granularity)
3217 cbLimit <<= GUEST_PAGE_SHIFT;
3218
3219 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
3220 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3221 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
3222 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
3223 }
3224 else
3225 {
3226 static const char * const s_apszTypes[] =
3227 {
3228 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
3229 "Tss16A", /* 1 0001 Available 16-bit TSS */
3230 "LDT ", /* 2 0010 LDT */
3231 "Tss16B", /* 3 0011 Busy 16-bit TSS */
3232 "Call16", /* 4 0100 16-bit Call Gate */
3233 "TaskG ", /* 5 0101 Task Gate */
3234 "Int16 ", /* 6 0110 16-bit Interrupt Gate */
3235 "Trap16", /* 7 0111 16-bit Trap Gate */
3236 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
3237 "Tss32A", /* 9 1001 Available 32-bit TSS */
3238 "Ill-A ", /* A 1010 Reserved (Illegal) */
3239 "Tss32B", /* B 1011 Busy 32-bit TSS */
3240 "Call32", /* C 1100 32-bit Call Gate */
3241 "Ill-D ", /* D 1101 Reserved (Illegal) */
3242 "Int32 ", /* E 1110 32-bit Interrupt Gate */
3243 "Trap32" /* F 1111 32-bit Trap Gate */
3244 };
3245 switch (pDesc->Gen.u4Type)
3246 {
3247 /* raw */
3248 case X86_SEL_TYPE_SYS_UNDEFINED:
3249 case X86_SEL_TYPE_SYS_UNDEFINED2:
3250 case X86_SEL_TYPE_SYS_UNDEFINED4:
3251 case X86_SEL_TYPE_SYS_UNDEFINED3:
3252 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
3253 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
3254 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3255 break;
3256
3257 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3258 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3259 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3260 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3261 case X86_SEL_TYPE_SYS_LDT:
3262 {
3263 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3264 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3265 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3266 uint32_t u32Base = pDesc->Gen.u16BaseLow
3267 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3268 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3269 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3270 if (pDesc->Gen.u1Granularity)
3271 cbLimit <<= GUEST_PAGE_SHIFT;
3272
3273 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n",
3274 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3275 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig,
3276 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3277 pszHyper);
3278 break;
3279 }
3280
3281 case X86_SEL_TYPE_SYS_TASK_GATE:
3282 {
3283 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n",
3284 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1],
3285 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3286 break;
3287 }
3288
3289 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3290 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3291 {
3292 unsigned cParams = pDesc->au8[4] & 0x1f;
3293 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3294 RTSEL sel = pDesc->au16[1];
3295 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3296 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3297 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s%s\n",
3298 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3299 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3300 RTStrFree(pszSymbol);
3301 break;
3302 }
3303
3304 case X86_SEL_TYPE_SYS_286_INT_GATE:
3305 case X86_SEL_TYPE_SYS_386_INT_GATE:
3306 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
3307 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3308 {
3309 RTSEL sel = pDesc->au16[1];
3310 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3311 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3312 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s%s\n",
3313 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3314 pDesc->Gen.u2Dpl, pszPresent, pszHyper, pszSymbol ? pszSymbol : "");
3315 RTStrFree(pszSymbol);
3316 break;
3317 }
3318
3319 /* impossible, just it's necessary to keep gcc happy. */
3320 default:
3321 return VINF_SUCCESS;
3322 }
3323 }
3324 return rc;
3325}
3326
3327
3328/**
3329 * @callback_method_impl{FNDBGCCMD, The 'dg'\, 'dga'\, 'dl' and 'dla' commands.}
3330 */
3331static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3332{
3333 /*
3334 * Validate input.
3335 */
3336 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3337
3338 /*
3339 * Get the CPU mode, check which command variation this is
3340 * and fix a default parameter if needed.
3341 */
3342 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3343 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
3344 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
3345 bool fGdt = pCmd->pszCmd[1] == 'g';
3346 bool fAll = pCmd->pszCmd[2] == 'a';
3347 RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT;
3348
3349 DBGCVAR Var;
3350 if (!cArgs)
3351 {
3352 cArgs = 1;
3353 paArgs = &Var;
3354 Var.enmType = DBGCVAR_TYPE_NUMBER;
3355 Var.u.u64Number = fGdt ? 0 : 4;
3356 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3357 Var.u64Range = 1024;
3358 }
3359
3360 /*
3361 * Process the arguments.
3362 */
3363 for (unsigned i = 0; i < cArgs; i++)
3364 {
3365 /*
3366 * Retrieve the selector value from the argument.
3367 * The parser may confuse pointers and numbers if more than one
3368 * argument is given, that that into account.
3369 */
3370 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType));
3371 uint64_t u64;
3372 unsigned cSels = 1;
3373 switch (paArgs[i].enmType)
3374 {
3375 case DBGCVAR_TYPE_NUMBER:
3376 u64 = paArgs[i].u.u64Number;
3377 if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE)
3378 cSels = RT_MIN(paArgs[i].u64Range, 1024);
3379 break;
3380 case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break;
3381 case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break;
3382 case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break;
3383 case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break;
3384 case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break;
3385 default: u64 = _64K; break;
3386 }
3387 if (u64 < _64K)
3388 {
3389 unsigned Sel = (RTSEL)u64;
3390
3391 /*
3392 * Dump the specified range.
3393 */
3394 bool fSingle = cSels == 1;
3395 while ( cSels-- > 0
3396 && Sel < _64K)
3397 {
3398 DBGFSELINFO SelInfo;
3399 int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
3400 if (RT_SUCCESS(rc))
3401 {
3402 if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE)
3403 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n",
3404 Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit);
3405 else if ( fAll
3406 || fSingle
3407 || SelInfo.u.Raw.Gen.u1Present)
3408 {
3409 if (enmMode == CPUMMODE_PROTECTED)
3410 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel,
3411 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL);
3412 else
3413 {
3414 bool fDblSkip = false;
3415 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel,
3416 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL, &fDblSkip);
3417 if (fDblSkip)
3418 Sel += 4;
3419 }
3420 }
3421 }
3422 else
3423 {
3424 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc);
3425 if (!fAll)
3426 return rc;
3427 }
3428 if (RT_FAILURE(rc))
3429 return rc;
3430
3431 /* next */
3432 Sel += 8;
3433 }
3434 }
3435 else
3436 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64);
3437 }
3438
3439 return VINF_SUCCESS;
3440}
3441
3442
3443/**
3444 * @callback_method_impl{FNDBGCCMD, The 'di' and 'dia' commands.}
3445 */
3446static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3447{
3448 /*
3449 * Validate input.
3450 */
3451 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3452
3453 /*
3454 * Establish some stuff like the current IDTR and CPU mode,
3455 * and fix a default parameter.
3456 */
3457 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3458 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
3459 uint16_t cbLimit = 0;
3460 uint64_t GCFlat = 0;
3461 int rc = DBGFR3RegCpuQueryXdtr(pDbgc->pUVM, pDbgc->idCpu, DBGFREG_IDTR, &GCFlat, &cbLimit);
3462 if (RT_FAILURE(rc))
3463 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3RegCpuQueryXdtr/DBGFREG_IDTR");
3464 unsigned cbEntry;
3465 switch (enmMode)
3466 {
3467 case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break;
3468 case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break;
3469 case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break;
3470 default:
3471 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode);
3472 }
3473
3474 bool fAll = pCmd->pszCmd[2] == 'a';
3475 DBGCVAR Var;
3476 if (!cArgs)
3477 {
3478 cArgs = 1;
3479 paArgs = &Var;
3480 Var.enmType = DBGCVAR_TYPE_NUMBER;
3481 Var.u.u64Number = 0;
3482 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3483 Var.u64Range = 256;
3484 }
3485
3486 /*
3487 * Process the arguments.
3488 */
3489 for (unsigned i = 0; i < cArgs; i++)
3490 {
3491 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER);
3492 if (paArgs[i].u.u64Number < 256)
3493 {
3494 RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number;
3495 unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE
3496 ? paArgs[i].u64Range
3497 : 1;
3498 bool fSingle = cInts == 1;
3499 while ( cInts-- > 0
3500 && iInt < 256)
3501 {
3502 /*
3503 * Try read it.
3504 */
3505 union
3506 {
3507 RTFAR16 Real;
3508 X86DESC Prot;
3509 X86DESC64 Long;
3510 } u;
3511 if (iInt * cbEntry + (cbEntry - 1) > cbLimit)
3512 {
3513 DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt);
3514 if (!fAll && !fSingle)
3515 return VINF_SUCCESS;
3516 }
3517 DBGCVAR AddrVar;
3518 AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT;
3519 AddrVar.u.GCFlat = GCFlat + iInt * cbEntry;
3520 AddrVar.enmRangeType = DBGCVAR_RANGE_NONE;
3521 rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL);
3522 if (RT_FAILURE(rc))
3523 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt);
3524
3525 /*
3526 * Display it.
3527 */
3528 switch (enmMode)
3529 {
3530 case CPUMMODE_REAL:
3531 {
3532 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, DBGF_AS_GLOBAL, u.Real.sel, u.Real.off, " (", ")");
3533 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16%s\n", (unsigned)iInt, u.Real, pszSymbol ? pszSymbol : "");
3534 RTStrFree(pszSymbol);
3535 break;
3536 }
3537 case CPUMMODE_PROTECTED:
3538 if (fAll || fSingle || u.Prot.Gen.u1Present)
3539 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false, DBGF_AS_GLOBAL);
3540 break;
3541 case CPUMMODE_LONG:
3542 if (fAll || fSingle || u.Long.Gen.u1Present)
3543 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, DBGF_AS_GLOBAL, NULL);
3544 break;
3545 default: break; /* to shut up gcc */
3546 }
3547 if (RT_FAILURE(rc))
3548 return rc;
3549
3550 /* next */
3551 iInt++;
3552 }
3553 }
3554 else
3555 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number);
3556 }
3557
3558 return VINF_SUCCESS;
3559}
3560
3561
3562/**
3563 * @callback_method_impl{FNDBGCCMD,
3564 * The 'da'\, 'dq'\, 'dqs'\, 'dd'\, 'dds'\, 'dw'\, 'db'\, 'dp'\, 'dps'\,
3565 * and 'du' commands.}
3566 */
3567static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3568{
3569 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3570
3571 /*
3572 * Validate input.
3573 */
3574 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3575 if (cArgs == 1)
3576 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3577 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3578
3579#define DBGC_DUMP_MEM_F_ASCII RT_BIT_32(31)
3580#define DBGC_DUMP_MEM_F_UNICODE RT_BIT_32(30)
3581#define DBGC_DUMP_MEM_F_FAR RT_BIT_32(29)
3582#define DBGC_DUMP_MEM_F_SYMBOLS RT_BIT_32(28)
3583#define DBGC_DUMP_MEM_F_SIZE UINT32_C(0x0000ffff)
3584
3585 /*
3586 * Figure out the element size.
3587 */
3588 unsigned cbElement;
3589 bool fAscii = false;
3590 bool fUnicode = false;
3591 bool fFar = false;
3592 bool fSymbols = pCmd->pszCmd[1] && pCmd->pszCmd[2] == 's';
3593 switch (pCmd->pszCmd[1])
3594 {
3595 default:
3596 case 'b': cbElement = 1; break;
3597 case 'w': cbElement = 2; break;
3598 case 'd': cbElement = 4; break;
3599 case 'q': cbElement = 8; break;
3600 case 'a':
3601 cbElement = 1;
3602 fAscii = true;
3603 break;
3604 case 'F':
3605 cbElement = 4;
3606 fFar = true;
3607 break;
3608 case 'p':
3609 cbElement = DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu) ? 8 : 4;
3610 break;
3611 case 'u':
3612 cbElement = 2;
3613 fUnicode = true;
3614 break;
3615 case '\0':
3616 fAscii = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_ASCII);
3617 fSymbols = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SYMBOLS);
3618 fUnicode = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_UNICODE);
3619 fFar = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_FAR);
3620 cbElement = pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SIZE;
3621 if (!cbElement)
3622 cbElement = 1;
3623 break;
3624 }
3625 uint32_t const cbDumpElement = cbElement
3626 | (fSymbols ? DBGC_DUMP_MEM_F_SYMBOLS : 0)
3627 | (fFar ? DBGC_DUMP_MEM_F_FAR : 0)
3628 | (fUnicode ? DBGC_DUMP_MEM_F_UNICODE : 0)
3629 | (fAscii ? DBGC_DUMP_MEM_F_ASCII : 0);
3630 pDbgc->cbDumpElement = cbDumpElement;
3631
3632 /*
3633 * Find address.
3634 */
3635 if (!cArgs)
3636 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE;
3637 else
3638 pDbgc->DumpPos = paArgs[0];
3639
3640 /*
3641 * Range.
3642 */
3643 switch (pDbgc->DumpPos.enmRangeType)
3644 {
3645 case DBGCVAR_RANGE_NONE:
3646 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3647 pDbgc->DumpPos.u64Range = 0x60;
3648 break;
3649
3650 case DBGCVAR_RANGE_ELEMENTS:
3651 if (pDbgc->DumpPos.u64Range > 2048)
3652 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n");
3653 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3654 pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range;
3655 break;
3656
3657 case DBGCVAR_RANGE_BYTES:
3658 if (pDbgc->DumpPos.u64Range > 65536)
3659 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
3660 break;
3661
3662 default:
3663 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType);
3664 }
3665
3666 pDbgc->pLastPos = &pDbgc->DumpPos;
3667
3668 /*
3669 * Do the dumping.
3670 */
3671 int cbLeft = (int)pDbgc->DumpPos.u64Range;
3672 uint8_t u16Prev = '\0';
3673 for (;;)
3674 {
3675 /*
3676 * Read memory.
3677 */
3678 char achBuffer[16];
3679 size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft);
3680 size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft);
3681 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb);
3682 if (RT_FAILURE(rc))
3683 {
3684 if (u16Prev && u16Prev != '\n')
3685 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3686 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos);
3687 }
3688
3689 /*
3690 * Display it.
3691 */
3692 memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb);
3693 if (!fAscii && !fUnicode)
3694 {
3695 DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos);
3696 unsigned i;
3697 for (i = 0; i < cb; i += cbElement)
3698 {
3699 const char *pszSpace = " ";
3700 if (cbElement <= 2 && i == 8)
3701 pszSpace = "-";
3702 switch (cbElement)
3703 {
3704 case 1:
3705 DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]);
3706 break;
3707 case 2:
3708 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]);
3709 break;
3710 case 4:
3711 if (!fFar)
3712 DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]);
3713 else
3714 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x:%04x:",
3715 pszSpace, *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3716 break;
3717 case 8:
3718 DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]);
3719 break;
3720 }
3721
3722 if (fSymbols)
3723 {
3724 /* Try lookup symbol for the above address. */
3725 DBGFADDRESS Addr;
3726 rc = VINF_SUCCESS;
3727 if (cbElement == 8)
3728 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint64_t *)&achBuffer[i]);
3729 else if (!fFar)
3730 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint32_t *)&achBuffer[i]);
3731 else
3732 rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr,
3733 *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3734 if (RT_SUCCESS(rc))
3735 {
3736 RTINTPTR offDisp;
3737 RTDBGSYMBOL Symbol;
3738 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, &Addr,
3739 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
3740 &offDisp, &Symbol, NULL);
3741 if (RT_SUCCESS(rc))
3742 {
3743 if (!offDisp)
3744 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", Symbol.szName);
3745 else if (offDisp > 0)
3746 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s + %RGv", Symbol.szName, offDisp);
3747 else
3748 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s - %RGv", Symbol.szName, -offDisp);
3749 if (Symbol.cb > 0)
3750 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)", Symbol.cb);
3751 }
3752 }
3753
3754 /* Next line prefix. */
3755 unsigned iNext = i + cbElement;
3756 if (iNext < cb)
3757 {
3758 DBGCVAR TmpPos = pDbgc->DumpPos;
3759 DBGCCmdHlpEval(pCmdHlp, &TmpPos, "(%Dv) + %x", &pDbgc->DumpPos, iNext);
3760 DBGCCmdHlpPrintf(pCmdHlp, "\n%DV:", &pDbgc->DumpPos);
3761 }
3762 }
3763 }
3764
3765 /* Chars column. */
3766 if (cbElement == 1)
3767 {
3768 while (i++ < sizeof(achBuffer))
3769 DBGCCmdHlpPrintf(pCmdHlp, " ");
3770 DBGCCmdHlpPrintf(pCmdHlp, " ");
3771 for (i = 0; i < cb; i += cbElement)
3772 {
3773 uint8_t u8 = *(uint8_t *)&achBuffer[i];
3774 if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32)
3775 DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
3776 else
3777 DBGCCmdHlpPrintf(pCmdHlp, ".");
3778 }
3779 }
3780 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3781 }
3782 else
3783 {
3784 /*
3785 * We print up to the first zero and stop there.
3786 * Only printables + '\t' and '\n' are printed.
3787 */
3788 if (!u16Prev)
3789 DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos);
3790 uint16_t u16 = '\0';
3791 unsigned i;
3792 for (i = 0; i < cb; i += cbElement)
3793 {
3794 u16Prev = u16;
3795 if (cbElement == 1)
3796 u16 = *(uint8_t *)&achBuffer[i];
3797 else
3798 u16 = *(uint16_t *)&achBuffer[i];
3799 if ( u16 < 127
3800 && ( (RT_C_IS_PRINT(u16) && u16 >= 32)
3801 || u16 == '\t'
3802 || u16 == '\n'))
3803 DBGCCmdHlpPrintf(pCmdHlp, "%c", (int)u16);
3804 else if (!u16)
3805 break;
3806 else
3807 DBGCCmdHlpPrintf(pCmdHlp, "\\x%0*x", cbElement * 2, u16);
3808 }
3809 if (u16 == '\0')
3810 cb = cbLeft = i + 1;
3811 if (cbLeft - cb <= 0 && u16Prev != '\n')
3812 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3813 }
3814
3815 /*
3816 * Advance
3817 */
3818 cbLeft -= (int)cb;
3819 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb);
3820 if (RT_FAILURE(rc))
3821 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb);
3822 if (cbLeft <= 0)
3823 break;
3824 }
3825
3826 NOREF(pCmd);
3827 return VINF_SUCCESS;
3828}
3829
3830
3831/**
3832 * Best guess at which paging mode currently applies to the guest
3833 * paging structures.
3834 *
3835 * This have to come up with a decent answer even when the guest
3836 * is in non-paged protected mode or real mode.
3837 *
3838 * @returns cr3.
3839 * @param pDbgc The DBGC instance.
3840 * @param pfPAE Where to store the page address extension indicator.
3841 * @param pfLME Where to store the long mode enabled indicator.
3842 * @param pfPSE Where to store the page size extension indicator.
3843 * @param pfPGE Where to store the page global enabled indicator.
3844 * @param pfNXE Where to store the no-execution enabled indicator.
3845 */
3846static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3847{
3848#if defined(VBOX_VMM_TARGET_ARMV8)
3849 AssertReleaseFailed();
3850 RT_NOREF(pDbgc, pfPAE, pfLME, pfPSE, pfPGE, pfNXE);
3851 *pfPAE = *pfLME = *pfPSE = *pfPGE = *pfNXE = false;
3852 return ~(RTGCPHYS)0;
3853#else
3854 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3855 RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu);
3856 *pfPSE = !!(cr4 & X86_CR4_PSE);
3857 *pfPGE = !!(cr4 & X86_CR4_PGE);
3858 if (cr4 & X86_CR4_PAE)
3859 {
3860 *pfPSE = true;
3861 *pfPAE = true;
3862 }
3863 else
3864 *pfPAE = false;
3865
3866 *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG;
3867 *pfNXE = false; /* GUEST64 GUESTNX */
3868 return CPUMGetGuestCR3(pVCpu);
3869#endif
3870}
3871
3872
3873/**
3874 * Determine the shadow paging mode.
3875 *
3876 * @returns cr3.
3877 * @param pDbgc The DBGC instance.
3878 * @param pfPAE Where to store the page address extension indicator.
3879 * @param pfLME Where to store the long mode enabled indicator.
3880 * @param pfPSE Where to store the page size extension indicator.
3881 * @param pfPGE Where to store the page global enabled indicator.
3882 * @param pfNXE Where to store the no-execution enabled indicator.
3883 */
3884static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3885{
3886#if defined(VBOX_VMM_TARGET_ARMV8)
3887 RT_NOREF(pDbgc, pfPAE, pfLME, pfPSE, pfPGE, pfNXE);
3888 AssertReleaseFailed();
3889 *pfPAE = *pfLME = *pfPSE = *pfPGE = *pfNXE = false;
3890 return ~(RTHCPHYS)0;
3891#else
3892 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3893
3894 *pfPSE = true;
3895 *pfPGE = false;
3896 switch (PGMGetShadowMode(pVCpu))
3897 {
3898 default:
3899 case PGMMODE_32_BIT:
3900 *pfPAE = *pfLME = *pfNXE = false;
3901 break;
3902 case PGMMODE_PAE:
3903 *pfLME = *pfNXE = false;
3904 *pfPAE = true;
3905 break;
3906 case PGMMODE_PAE_NX:
3907 *pfLME = false;
3908 *pfPAE = *pfNXE = true;
3909 break;
3910 case PGMMODE_AMD64:
3911 *pfNXE = false;
3912 *pfPAE = *pfLME = true;
3913 break;
3914 case PGMMODE_AMD64_NX:
3915 *pfPAE = *pfLME = *pfNXE = true;
3916 break;
3917 }
3918 return PGMGetHyperCR3(pVCpu);
3919#endif
3920}
3921
3922
3923/**
3924 * @callback_method_impl{FNDBGCCMD,
3925 * The 'dpd'\, 'dpda'\, 'dpdb'\, 'dpdg' and 'dpdh' commands.}
3926 */
3927static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3928{
3929 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3930
3931 /*
3932 * Validate input.
3933 */
3934 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3935 if (cArgs == 1 && pCmd->pszCmd[3] == 'a')
3936 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3937 if (cArgs == 1 && pCmd->pszCmd[3] != 'a')
3938 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3939 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
3940 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3941
3942 /*
3943 * Guest or shadow page directories? Get the paging parameters.
3944 */
3945 bool fGuest = pCmd->pszCmd[3] != 'h';
3946 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
3947 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
3948
3949 bool fPAE, fLME, fPSE, fPGE, fNXE;
3950 uint64_t cr3 = fGuest
3951 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
3952 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
3953 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
3954
3955 /*
3956 * Setup default argument if none was specified.
3957 * Fix address / index confusion.
3958 */
3959 DBGCVAR VarDefault;
3960 if (!cArgs)
3961 {
3962 if (pCmd->pszCmd[3] == 'a')
3963 {
3964 if (fLME || fPAE)
3965 return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n");
3966 if (fGuest)
3967 DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3);
3968 else
3969 DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3);
3970 }
3971 else
3972 DBGCVAR_INIT_GC_FLAT(&VarDefault, 0);
3973 paArgs = &VarDefault;
3974 cArgs = 1;
3975 }
3976 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
3977 {
3978 /* If it's a number (not an address), it's an index, so convert it to an address. */
3979 Assert(pCmd->pszCmd[3] != 'a');
3980 VarDefault = paArgs[0];
3981 if (fPAE)
3982 return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n");
3983 if (VarDefault.u.u64Number >= GUEST_PAGE_SIZE / cbEntry)
3984 return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", GUEST_PAGE_SIZE / cbEntry - 1);
3985 VarDefault.u.u64Number <<= X86_PD_SHIFT;
3986 VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT;
3987 paArgs = &VarDefault;
3988 }
3989
3990 /*
3991 * Locate the PDE to start displaying at.
3992 *
3993 * The 'dpda' command takes the address of a PDE, while the others are guest
3994 * virtual address which PDEs should be displayed. So, 'dpda' is rather simple
3995 * while the others require us to do all the tedious walking thru the paging
3996 * hierarchy to find the intended PDE.
3997 */
3998 unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */
3999 DBGCVAR VarGCPtr = { NULL, }; /* The GC address corresponding to the current PDE (iEntry != ~0U). */
4000 DBGCVAR VarPDEAddr; /* The address of the current PDE. */
4001 unsigned cEntries; /* The number of entries to display. */
4002 unsigned cEntriesMax; /* The max number of entries to display. */
4003 int rc;
4004 if (pCmd->pszCmd[3] == 'a')
4005 {
4006 VarPDEAddr = paArgs[0];
4007 switch (VarPDEAddr.enmRangeType)
4008 {
4009 case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break;
4010 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break;
4011 default: cEntries = 10; break;
4012 }
4013 cEntriesMax = GUEST_PAGE_SIZE / cbEntry;
4014 }
4015 else
4016 {
4017 /*
4018 * Determine the range.
4019 */
4020 switch (paArgs[0].enmRangeType)
4021 {
4022 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / GUEST_PAGE_SIZE; break;
4023 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
4024 default: cEntries = 10; break;
4025 }
4026
4027 /*
4028 * Normalize the input address, it must be a flat GC address.
4029 */
4030 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
4031 if (RT_FAILURE(rc))
4032 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
4033 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
4034 {
4035 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
4036 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
4037 }
4038 if (fPAE)
4039 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1);
4040 else
4041 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1);
4042
4043 /*
4044 * Do the paging walk until we get to the page directory.
4045 */
4046 DBGCVAR VarCur;
4047 if (fGuest)
4048 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
4049 else
4050 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
4051 if (fLME)
4052 {
4053 /* Page Map Level 4 Lookup. */
4054 /* Check if it's a valid address first? */
4055 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
4056 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
4057 X86PML4E Pml4e;
4058 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
4059 if (RT_FAILURE(rc))
4060 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
4061 if (!Pml4e.n.u1Present)
4062 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
4063
4064 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
4065 Assert(fPAE);
4066 }
4067 if (fPAE)
4068 {
4069 /* Page directory pointer table. */
4070 X86PDPE Pdpe;
4071 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
4072 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
4073 if (RT_FAILURE(rc))
4074 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
4075 if (!Pdpe.n.u1Present)
4076 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
4077
4078 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4079 VarPDEAddr = VarCur;
4080 VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
4081 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE);
4082 }
4083 else
4084 {
4085 /* 32-bit legacy - CR3 == page directory. */
4086 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK;
4087 VarPDEAddr = VarCur;
4088 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE);
4089 }
4090 cEntriesMax = (GUEST_PAGE_SIZE - iEntry) / cbEntry;
4091 }
4092
4093 /* adjust cEntries */
4094 cEntries = RT_MAX(1, cEntries);
4095 cEntries = RT_MIN(cEntries, cEntriesMax);
4096
4097 /*
4098 * The display loop.
4099 */
4100 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n",
4101 &VarPDEAddr, iEntry);
4102 do
4103 {
4104 /*
4105 * Read.
4106 */
4107 X86PDEPAE Pde;
4108 Pde.u = 0;
4109 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL);
4110 if (RT_FAILURE(rc))
4111 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr);
4112
4113 /*
4114 * Display.
4115 */
4116 if (iEntry != ~0U)
4117 {
4118 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
4119 iEntry++;
4120 }
4121 if (fPSE && Pde.b.u1Size)
4122 DBGCCmdHlpPrintf(pCmdHlp,
4123 fPAE
4124 ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4125 : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4126 Pde.u,
4127 Pde.u & X86_PDE_PAE_PG_MASK,
4128 Pde.b.u1Present ? "p " : "np",
4129 Pde.b.u1Write ? "w" : "r",
4130 Pde.b.u1User ? "u" : "s",
4131 Pde.b.u1Accessed ? "a " : "na",
4132 Pde.b.u1Dirty ? "d " : "nd",
4133 Pde.b.u3Available,
4134 Pde.b.u1Global ? (fPGE ? "g" : "G") : " ",
4135 Pde.b.u1WriteThru ? "pwt" : " ",
4136 Pde.b.u1CacheDisable ? "pcd" : " ",
4137 Pde.b.u1PAT ? "pat" : "",
4138 Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
4139 else
4140 DBGCCmdHlpPrintf(pCmdHlp,
4141 fPAE
4142 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s"
4143 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s",
4144 Pde.u,
4145 Pde.u & X86_PDE_PAE_PG_MASK,
4146 Pde.n.u1Present ? "p " : "np",
4147 Pde.n.u1Write ? "w" : "r",
4148 Pde.n.u1User ? "u" : "s",
4149 Pde.n.u1Accessed ? "a " : "na",
4150 Pde.u & RT_BIT(6) ? "6 " : " ",
4151 Pde.n.u3Available,
4152 Pde.u & RT_BIT(8) ? "8" : " ",
4153 Pde.n.u1WriteThru ? "pwt" : " ",
4154 Pde.n.u1CacheDisable ? "pcd" : " ",
4155 Pde.u & RT_BIT(7) ? "7" : "",
4156 Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
4157 if (Pde.u & UINT64_C(0x7fff000000000000))
4158 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000)));
4159 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4160 if (RT_FAILURE(rc))
4161 return rc;
4162
4163 /*
4164 * Advance.
4165 */
4166 VarPDEAddr.u.u64Number += cbEntry;
4167 if (iEntry != ~0U)
4168 VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT);
4169 } while (cEntries-- > 0);
4170
4171 return VINF_SUCCESS;
4172}
4173
4174
4175/**
4176 * @callback_method_impl{FNDBGCCMD, The 'dpdb' command.}
4177 */
4178static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4179{
4180 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4181 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]);
4182 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]);
4183 if (RT_FAILURE(rc1))
4184 return rc1;
4185 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
4186 return rc2;
4187}
4188
4189
4190/**
4191 * @callback_method_impl{FNDBGCCMD, The 'dph*' commands and main part of 'm'.}
4192 */
4193static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4194{
4195 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4196 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4197
4198 /*
4199 * Figure the context and base flags.
4200 */
4201 uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3;
4202 if (pCmd->pszCmd[0] == 'm')
4203 fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW;
4204 else if (pCmd->pszCmd[3] == '\0')
4205 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4206 else if (pCmd->pszCmd[3] == 'g')
4207 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4208 else if (pCmd->pszCmd[3] == 'h')
4209 fFlags |= DBGFPGDMP_FLAGS_SHADOW;
4210 else
4211 AssertFailed();
4212
4213 if (pDbgc->cPagingHierarchyDumps == 0)
4214 fFlags |= DBGFPGDMP_FLAGS_HEADER;
4215 pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42;
4216
4217 /*
4218 * Get the range.
4219 */
4220 PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos;
4221 RTGCPTR GCPtrFirst = NIL_RTGCPTR;
4222 int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst);
4223 if (RT_FAILURE(rc))
4224 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc);
4225
4226 uint64_t cbRange;
4227 rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, GUEST_PAGE_SIZE, GUEST_PAGE_SIZE * 8, &cbRange);
4228 if (RT_FAILURE(rc))
4229 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc);
4230
4231 RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst;
4232 if (cbRange >= GCPtrLast)
4233 GCPtrLast = RTGCPTR_MAX;
4234 else if (!cbRange)
4235 GCPtrLast = GCPtrFirst;
4236 else
4237 GCPtrLast = GCPtrFirst + cbRange - 1;
4238
4239 /*
4240 * Do we have a CR3?
4241 */
4242 uint64_t cr3 = 0;
4243 if (cArgs > 1)
4244 {
4245 if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW))
4246 return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please.");
4247 if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
4248 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]);
4249 cr3 = paArgs[1].u.u64Number;
4250 }
4251 else
4252 fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3;
4253
4254 /*
4255 * Do we have a mode?
4256 */
4257 if (cArgs > 2)
4258 {
4259 if (paArgs[2].enmType != DBGCVAR_TYPE_STRING)
4260 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]);
4261 static const struct MODETOFLAGS
4262 {
4263 const char *pszName;
4264 uint32_t fFlags;
4265 } s_aModeToFlags[] =
4266 {
4267 { "ept", DBGFPGDMP_FLAGS_EPT },
4268 { "legacy", 0 },
4269 { "legacy-np", DBGFPGDMP_FLAGS_NP },
4270 { "pse", DBGFPGDMP_FLAGS_PSE },
4271 { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP },
4272 { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE },
4273 { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP },
4274 { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE },
4275 { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP },
4276 { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME },
4277 { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP },
4278 { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE },
4279 { "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }
4280 };
4281 int i = RT_ELEMENTS(s_aModeToFlags);
4282 while (i-- > 0)
4283 if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString))
4284 {
4285 fFlags |= s_aModeToFlags[i].fFlags;
4286 break;
4287 }
4288 if (i < 0)
4289 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString);
4290 }
4291 else
4292 fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE;
4293
4294 /*
4295 * Call the worker.
4296 */
4297 rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/,
4298 DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp));
4299 if (RT_FAILURE(rc))
4300 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc);
4301 return VINF_SUCCESS;
4302}
4303
4304
4305
4306/**
4307 * @callback_method_impl{FNDBGCCMD, The 'dpg*' commands.}
4308 */
4309static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4310{
4311 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4312
4313 /*
4314 * Validate input.
4315 */
4316 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1);
4317 if (pCmd->pszCmd[3] == 'a')
4318 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
4319 else
4320 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
4321 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
4322 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4323
4324 /*
4325 * Guest or shadow page tables? Get the paging parameters.
4326 */
4327 bool fGuest = pCmd->pszCmd[3] != 'h';
4328 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
4329 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
4330
4331 bool fPAE, fLME, fPSE, fPGE, fNXE;
4332 uint64_t cr3 = fGuest
4333 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
4334 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
4335 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
4336
4337 /*
4338 * Locate the PTE to start displaying at.
4339 *
4340 * The 'dpta' command takes the address of a PTE, while the others are guest
4341 * virtual address which PTEs should be displayed. So, 'pdta' is rather simple
4342 * while the others require us to do all the tedious walking thru the paging
4343 * hierarchy to find the intended PTE.
4344 */
4345 unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */
4346 DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */
4347 DBGCVAR VarPTEAddr; /* The address of the current PTE. */
4348 unsigned cEntries; /* The number of entries to display. */
4349 unsigned cEntriesMax; /* The max number of entries to display. */
4350 int rc;
4351 if (pCmd->pszCmd[3] == 'a')
4352 {
4353 VarPTEAddr = paArgs[0];
4354 switch (VarPTEAddr.enmRangeType)
4355 {
4356 case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break;
4357 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break;
4358 default: cEntries = 10; break;
4359 }
4360 cEntriesMax = GUEST_PAGE_SIZE / cbEntry;
4361 }
4362 else
4363 {
4364 /*
4365 * Determine the range.
4366 */
4367 switch (paArgs[0].enmRangeType)
4368 {
4369 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / GUEST_PAGE_SIZE; break;
4370 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
4371 default: cEntries = 10; break;
4372 }
4373
4374 /*
4375 * Normalize the input address, it must be a flat GC address.
4376 */
4377 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
4378 if (RT_FAILURE(rc))
4379 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
4380 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
4381 {
4382 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
4383 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
4384 }
4385 VarGCPtr.u.GCFlat &= ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK;
4386
4387 /*
4388 * Do the paging walk until we get to the page table.
4389 */
4390 DBGCVAR VarCur;
4391 if (fGuest)
4392 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
4393 else
4394 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
4395 if (fLME)
4396 {
4397 /* Page Map Level 4 Lookup. */
4398 /* Check if it's a valid address first? */
4399 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
4400 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
4401 X86PML4E Pml4e;
4402 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
4403 if (RT_FAILURE(rc))
4404 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
4405 if (!Pml4e.n.u1Present)
4406 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
4407
4408 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
4409 Assert(fPAE);
4410 }
4411 if (fPAE)
4412 {
4413 /* Page directory pointer table. */
4414 X86PDPE Pdpe;
4415 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
4416 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
4417 if (RT_FAILURE(rc))
4418 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
4419 if (!Pdpe.n.u1Present)
4420 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
4421
4422 VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
4423
4424 /* Page directory (PAE). */
4425 X86PDEPAE Pde;
4426 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde);
4427 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4428 if (RT_FAILURE(rc))
4429 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4430 if (!Pde.n.u1Present)
4431 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4432 if (fPSE && Pde.n.u1Size)
4433 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4434
4435 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
4436 VarPTEAddr = VarCur;
4437 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK;
4438 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE);
4439 }
4440 else
4441 {
4442 /* Page directory (legacy). */
4443 X86PDE Pde;
4444 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde);
4445 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4446 if (RT_FAILURE(rc))
4447 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4448 if (!Pde.n.u1Present)
4449 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4450 if (fPSE && Pde.n.u1Size)
4451 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4452
4453 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK;
4454 VarPTEAddr = VarCur;
4455 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK;
4456 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE);
4457 }
4458 cEntriesMax = (GUEST_PAGE_SIZE - iEntry) / cbEntry;
4459 }
4460
4461 /* adjust cEntries */
4462 cEntries = RT_MAX(1, cEntries);
4463 cEntries = RT_MIN(cEntries, cEntriesMax);
4464
4465 /*
4466 * The display loop.
4467 */
4468 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n",
4469 &VarPTEAddr, &VarGCPtr, iEntry);
4470 do
4471 {
4472 /*
4473 * Read.
4474 */
4475 X86PTEPAE Pte;
4476 Pte.u = 0;
4477 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL);
4478 if (RT_FAILURE(rc))
4479 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr);
4480
4481 /*
4482 * Display.
4483 */
4484 if (iEntry != ~0U)
4485 {
4486 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
4487 iEntry++;
4488 }
4489 DBGCCmdHlpPrintf(pCmdHlp,
4490 fPAE
4491 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4492 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4493 Pte.u,
4494 Pte.u & X86_PTE_PAE_PG_MASK,
4495 Pte.n.u1Present ? "p " : "np",
4496 Pte.n.u1Write ? "w" : "r",
4497 Pte.n.u1User ? "u" : "s",
4498 Pte.n.u1Accessed ? "a " : "na",
4499 Pte.n.u1Dirty ? "d " : "nd",
4500 Pte.n.u3Available,
4501 Pte.n.u1Global ? (fPGE ? "g" : "G") : " ",
4502 Pte.n.u1WriteThru ? "pwt" : " ",
4503 Pte.n.u1CacheDisable ? "pcd" : " ",
4504 Pte.n.u1PAT ? "pat" : " ",
4505 Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "
4506 );
4507 if (Pte.u & UINT64_C(0x7fff000000000000))
4508 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000)));
4509 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4510 if (RT_FAILURE(rc))
4511 return rc;
4512
4513 /*
4514 * Advance.
4515 */
4516 VarPTEAddr.u.u64Number += cbEntry;
4517 if (iEntry != ~0U)
4518 VarGCPtr.u.GCFlat += GUEST_PAGE_SIZE;
4519 } while (cEntries-- > 0);
4520
4521 return VINF_SUCCESS;
4522}
4523
4524
4525/**
4526 * @callback_method_impl{FNDBGCCMD, The 'dptb' command.}
4527 */
4528static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4529{
4530 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4531 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]);
4532 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]);
4533 if (RT_FAILURE(rc1))
4534 return rc1;
4535 NOREF(pCmd); NOREF(cArgs);
4536 return rc2;
4537}
4538
4539
4540/**
4541 * @callback_method_impl{FNDBGCCMD, The 'dt' command.}
4542 */
4543static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4544{
4545 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4546 int rc;
4547
4548 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4549 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
4550 if (cArgs == 1)
4551 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING
4552 && paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL);
4553
4554 /*
4555 * Check if the command indicates the type.
4556 */
4557 enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined;
4558 if (!strcmp(pCmd->pszCmd, "dt16"))
4559 enmTssType = kTss16;
4560 else if (!strcmp(pCmd->pszCmd, "dt32"))
4561 enmTssType = kTss32;
4562 else if (!strcmp(pCmd->pszCmd, "dt64"))
4563 enmTssType = kTss64;
4564
4565 /*
4566 * We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer.
4567 */
4568 uint32_t SelTss = UINT32_MAX;
4569 DBGCVAR VarTssAddr;
4570 if (cArgs == 0)
4571 {
4572 /** @todo consider querying the hidden bits instead (missing API). */
4573 uint16_t SelTR;
4574 rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR);
4575 if (RT_FAILURE(rc))
4576 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc);
4577 DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0);
4578 SelTss = SelTR;
4579 }
4580 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
4581 {
4582 if (paArgs[0].u.u64Number < 0xffff)
4583 DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0);
4584 else
4585 {
4586 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS)
4587 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n");
4588 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number);
4589 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES)
4590 {
4591 VarTssAddr.enmRangeType = paArgs[0].enmRangeType;
4592 VarTssAddr.u64Range = paArgs[0].u64Range;
4593 }
4594 }
4595 }
4596 else
4597 VarTssAddr = paArgs[0];
4598
4599 /*
4600 * Deal with TSS:ign by means of the GDT.
4601 */
4602 if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR)
4603 {
4604 SelTss = VarTssAddr.u.GCFar.sel;
4605 DBGFSELINFO SelInfo;
4606 rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
4607 if (RT_FAILURE(rc))
4608 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n",
4609 pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc);
4610
4611 if (SelInfo.u.Raw.Gen.u1DescType)
4612 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel);
4613
4614 switch (SelInfo.u.Raw.Gen.u4Type)
4615 {
4616 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4617 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4618 if (enmTssType == kTssToBeDetermined)
4619 enmTssType = kTss16;
4620 break;
4621
4622 case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */
4623 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4624 if (enmTssType == kTssToBeDetermined)
4625 enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32;
4626 break;
4627
4628 default:
4629 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n",
4630 VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type);
4631 }
4632
4633 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase);
4634 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit));
4635 }
4636
4637 /*
4638 * Determine the TSS type if none is currently given.
4639 */
4640 if (enmTssType == kTssToBeDetermined)
4641 {
4642 if ( VarTssAddr.u64Range > 0
4643 && VarTssAddr.u64Range < sizeof(X86TSS32) - 4)
4644 enmTssType = kTss16;
4645 else
4646 {
4647 uint64_t uEfer;
4648 rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer);
4649 if ( RT_FAILURE(rc)
4650 || !(uEfer & MSR_K6_EFER_LMA) )
4651 enmTssType = kTss32;
4652 else
4653 enmTssType = kTss64;
4654 }
4655 }
4656
4657 /*
4658 * Figure the min/max sizes.
4659 * ASSUMES max TSS size is 64 KB.
4660 */
4661 uint32_t cbTssMin;
4662 uint32_t cbTssMax;
4663 switch (enmTssType)
4664 {
4665 case kTss16:
4666 cbTssMin = cbTssMax = X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN + 1;
4667 break;
4668 case kTss32:
4669 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4670 cbTssMax = _64K;
4671 break;
4672 case kTss64:
4673 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4674 cbTssMax = _64K;
4675 break;
4676 default:
4677 AssertFailedReturn(VERR_INTERNAL_ERROR);
4678 }
4679 uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0;
4680 if (cbTss == 0)
4681 cbTss = cbTssMin;
4682 else if (cbTss < cbTssMin)
4683 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n",
4684 cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range);
4685 else if (cbTss > cbTssMax)
4686 cbTss = cbTssMax;
4687 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss);
4688
4689 /*
4690 * Read the TSS into a temporary buffer.
4691 */
4692 uint8_t abBuf[_64K];
4693 size_t cbTssRead;
4694 rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead);
4695 if (RT_FAILURE(rc))
4696 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc);
4697 if (cbTssRead < cbTssMin)
4698 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n",
4699 cbTssRead, cbTssMin);
4700 if (cbTssRead < cbTss)
4701 memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead);
4702
4703
4704 /*
4705 * Format the TSS.
4706 */
4707 uint16_t offIoBitmap;
4708 switch (enmTssType)
4709 {
4710 case kTss16:
4711 {
4712 PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0];
4713 if (SelTss != UINT32_MAX)
4714 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr);
4715 else
4716 DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr);
4717 DBGCCmdHlpPrintf(pCmdHlp,
4718 "ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n"
4719 "ip=%04x sp=%04x bp=%04x\n"
4720 "cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n"
4721 "ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n"
4722 "prev=%04x ldtr=%04x\n"
4723 ,
4724 pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di,
4725 pTss->ip, pTss->sp, pTss->bp,
4726 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags,
4727 pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2,
4728 pTss->selPrev, pTss->selLdt);
4729 if (pTss->cs != 0)
4730 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip);
4731 offIoBitmap = 0;
4732 break;
4733 }
4734
4735 case kTss32:
4736 {
4737 PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0];
4738 if (SelTss != UINT32_MAX)
4739 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4740 else
4741 DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4742 DBGCCmdHlpPrintf(pCmdHlp,
4743 "eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
4744 "eip=%08x esp=%08x ebp=%08x\n"
4745 "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
4746 "ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n"
4747 "prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n"
4748 ,
4749 pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi,
4750 pTss->eip, pTss->esp, pTss->ebp,
4751 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags,
4752 pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2,
4753 pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap);
4754 if (pTss->cs != 0)
4755 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip);
4756 offIoBitmap = pTss->offIoBitmap;
4757 break;
4758 }
4759
4760 case kTss64:
4761 {
4762 PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0];
4763 if (SelTss != UINT32_MAX)
4764 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4765 else
4766 DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4767 DBGCCmdHlpPrintf(pCmdHlp,
4768 "rsp0=%016RX64 rsp1=%016RX64 rsp2=%016RX64\n"
4769 "ist1=%016RX64 ist2=%016RX64\n"
4770 "ist3=%016RX64 ist4=%016RX64\n"
4771 "ist5=%016RX64 ist6=%016RX64\n"
4772 "ist7=%016RX64 iomap=%04x\n"
4773 ,
4774 pTss->rsp0, pTss->rsp1, pTss->rsp2,
4775 pTss->ist1, pTss->ist2,
4776 pTss->ist3, pTss->ist4,
4777 pTss->ist5, pTss->ist6,
4778 pTss->ist7, pTss->offIoBitmap);
4779 offIoBitmap = pTss->offIoBitmap;
4780 break;
4781 }
4782
4783 default:
4784 AssertFailedReturn(VERR_INTERNAL_ERROR);
4785 }
4786
4787 /*
4788 * Dump the interrupt redirection bitmap.
4789 */
4790 if (enmTssType != kTss16)
4791 {
4792 if ( offIoBitmap > cbTssMin
4793 && offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */
4794 {
4795 if (offIoBitmap - cbTssMin >= 32)
4796 {
4797 DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n");
4798 uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32];
4799 uint32_t iStart = 0;
4800 bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */
4801 for (uint32_t i = 0; i < 256; i++)
4802 {
4803 bool fThis = ASMBitTest(pbIntRedirBitmap, i);
4804 if (fThis != fPrev)
4805 {
4806 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected");
4807 fPrev = fThis;
4808 iStart = i;
4809 }
4810 }
4811 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected");
4812 }
4813 else
4814 DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n",
4815 offIoBitmap - cbTssMin, offIoBitmap - cbTssMin);
4816 }
4817 else if (offIoBitmap > 0)
4818 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4819 else
4820 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n");
4821 }
4822
4823 /*
4824 * Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x68
4825 * (that applies to both 32-bit and 64-bit TSSs since their size is the same).
4826 * Note that there is always one padding byte that is not technically part of the bitmap
4827 * and "must have all bits set". It's not clear what happens when it doesn't. All ports
4828 * not covered by the bitmap are considered to be not accessible.
4829 */
4830 if (enmTssType != kTss16)
4831 {
4832 if (offIoBitmap < cbTss && offIoBitmap >= 0x68)
4833 {
4834 uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K);
4835 DBGCVAR VarAddr;
4836 DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap);
4837 DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts);
4838
4839 uint8_t const *pbIoBitmap = &abBuf[offIoBitmap];
4840 uint32_t iStart = 0;
4841 bool fPrev = ASMBitTest(pbIoBitmap, 0);
4842 uint32_t cLine = 0;
4843 for (uint32_t i = 1; i < _64K; i++)
4844 {
4845 bool fThis = i < cPorts ? ASMBitTest(pbIoBitmap, i) : true;
4846 if (fThis != fPrev)
4847 {
4848 cLine++;
4849 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1,
4850 fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " ");
4851 fPrev = fThis;
4852 iStart = i;
4853 }
4854 }
4855 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK");
4856 }
4857 else if (offIoBitmap > 0)
4858 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4859 else
4860 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n");
4861 }
4862
4863 return VINF_SUCCESS;
4864}
4865
4866
4867/**
4868 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dti' command dumper callback.}
4869 */
4870static DECLCALLBACK(int) dbgcCmdDumpTypeInfoCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4871 const char *pszType, uint32_t fTypeFlags,
4872 uint32_t cElements, void *pvUser)
4873{
4874 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4875
4876 /* Pad with spaces to match the level. */
4877 for (uint32_t i = 0; i < iLvl; i++)
4878 DBGCCmdHlpPrintf(pCmdHlp, " ");
4879
4880 size_t cbWritten = 0;
4881 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4882 while (cbWritten < 32)
4883 {
4884 /* Fill with spaces to get proper aligning. */
4885 DBGCCmdHlpPrintf(pCmdHlp, " ");
4886 cbWritten++;
4887 }
4888
4889 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4890 if (fTypeFlags & DBGFTYPEREGMEMBER_F_ARRAY)
4891 DBGCCmdHlpPrintf(pCmdHlp, "[%u] ", cElements);
4892 if (fTypeFlags & DBGFTYPEREGMEMBER_F_POINTER)
4893 DBGCCmdHlpPrintf(pCmdHlp, "Ptr ");
4894 DBGCCmdHlpPrintf(pCmdHlp, "%s\n", pszType);
4895
4896 return VINF_SUCCESS;
4897}
4898
4899
4900/**
4901 * @callback_method_impl{FNDBGCCMD, The 'dti' command.}
4902 */
4903static DECLCALLBACK(int) dbgcCmdDumpTypeInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4904{
4905 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4906 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
4907 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4908 if (cArgs == 2)
4909 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[1].enmType == DBGCVAR_TYPE_NUMBER);
4910
4911 uint32_t cLvlMax = cArgs == 2 ? (uint32_t)paArgs[1].u.u64Number : UINT32_MAX;
4912 return DBGFR3TypeDumpEx(pUVM, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
4913 dbgcCmdDumpTypeInfoCallback, pCmdHlp);
4914}
4915
4916
4917static void dbgcCmdDumpTypedValCallbackBuiltin(PDBGCCMDHLP pCmdHlp, DBGFTYPEBUILTIN enmType, size_t cbType,
4918 PDBGFTYPEVALBUF pValBuf)
4919{
4920 switch (enmType)
4921 {
4922 case DBGFTYPEBUILTIN_UINT8:
4923 DBGCCmdHlpPrintf(pCmdHlp, "%RU8", pValBuf->u8);
4924 break;
4925 case DBGFTYPEBUILTIN_INT8:
4926 DBGCCmdHlpPrintf(pCmdHlp, "%RI8", pValBuf->i8);
4927 break;
4928 case DBGFTYPEBUILTIN_UINT16:
4929 DBGCCmdHlpPrintf(pCmdHlp, "%RU16", pValBuf->u16);
4930 break;
4931 case DBGFTYPEBUILTIN_INT16:
4932 DBGCCmdHlpPrintf(pCmdHlp, "%RI16", pValBuf->i16);
4933 break;
4934 case DBGFTYPEBUILTIN_UINT32:
4935 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->u32);
4936 break;
4937 case DBGFTYPEBUILTIN_INT32:
4938 DBGCCmdHlpPrintf(pCmdHlp, "%RI32", pValBuf->i32);
4939 break;
4940 case DBGFTYPEBUILTIN_UINT64:
4941 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->u64);
4942 break;
4943 case DBGFTYPEBUILTIN_INT64:
4944 DBGCCmdHlpPrintf(pCmdHlp, "%RI64", pValBuf->i64);
4945 break;
4946 case DBGFTYPEBUILTIN_PTR32:
4947 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4948 break;
4949 case DBGFTYPEBUILTIN_PTR64:
4950 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4951 break;
4952 case DBGFTYPEBUILTIN_PTR:
4953 if (cbType == sizeof(uint32_t))
4954 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4955 else if (cbType == sizeof(uint64_t))
4956 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4957 else
4958 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported pointer width %u>", cbType);
4959 break;
4960 case DBGFTYPEBUILTIN_SIZE:
4961 if (cbType == sizeof(uint32_t))
4962 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->size);
4963 else if (cbType == sizeof(uint64_t))
4964 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->size);
4965 else
4966 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported size width %u>", cbType);
4967 break;
4968 case DBGFTYPEBUILTIN_FLOAT32:
4969 case DBGFTYPEBUILTIN_FLOAT64:
4970 case DBGFTYPEBUILTIN_COMPOUND:
4971 default:
4972 AssertMsgFailed(("Invalid built-in type: %d\n", enmType));
4973 }
4974}
4975
4976/**
4977 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dtv' command dumper callback.}
4978 */
4979static DECLCALLBACK(int) dbgcCmdDumpTypedValCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4980 DBGFTYPEBUILTIN enmType, size_t cbType,
4981 PDBGFTYPEVALBUF pValBuf, uint32_t cValBufs,
4982 void *pvUser)
4983{
4984 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4985
4986 /* Pad with spaces to match the level. */
4987 for (uint32_t i = 0; i < iLvl; i++)
4988 DBGCCmdHlpPrintf(pCmdHlp, " ");
4989
4990 size_t cbWritten = 0;
4991 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4992 while (cbWritten < 32)
4993 {
4994 /* Fill with spaces to get proper aligning. */
4995 DBGCCmdHlpPrintf(pCmdHlp, " ");
4996 cbWritten++;
4997 }
4998
4999 DBGCCmdHlpPrintf(pCmdHlp, ": ");
5000 if (cValBufs > 1)
5001 DBGCCmdHlpPrintf(pCmdHlp, "[%u] [ ", cValBufs);
5002
5003 for (uint32_t i = 0; i < cValBufs; i++)
5004 {
5005 dbgcCmdDumpTypedValCallbackBuiltin(pCmdHlp, enmType, cbType, pValBuf);
5006 if (i < cValBufs - 1)
5007 DBGCCmdHlpPrintf(pCmdHlp, " , ");
5008 pValBuf++;
5009 }
5010
5011 if (cValBufs > 1)
5012 DBGCCmdHlpPrintf(pCmdHlp, " ]");
5013 DBGCCmdHlpPrintf(pCmdHlp, "\n");
5014
5015 return VINF_SUCCESS;
5016}
5017
5018
5019/**
5020 * @callback_method_impl{FNDBGCCMD, The 'dtv' command.}
5021 */
5022static DECLCALLBACK(int) dbgcCmdDumpTypedVal(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5023{
5024 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5025 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 2 || cArgs == 3);
5026 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
5027 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISGCPOINTER(paArgs[1].enmType));
5028 if (cArgs == 3)
5029 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[2].enmType == DBGCVAR_TYPE_NUMBER);
5030
5031 /*
5032 * Make DBGF address and fix the range.
5033 */
5034 DBGFADDRESS Address;
5035 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[1], &Address);
5036 if (RT_FAILURE(rc))
5037 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[1]);
5038
5039 uint32_t cLvlMax = cArgs == 3 ? (uint32_t)paArgs[2].u.u64Number : UINT32_MAX;
5040 return DBGFR3TypeValDumpEx(pUVM, &Address, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
5041 dbgcCmdDumpTypedValCallback, pCmdHlp);
5042}
5043
5044/**
5045 * @callback_method_impl{FNDBGCCMD, The 'm' command.}
5046 */
5047static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5048{
5049 DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]);
5050 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5051 return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
5052}
5053
5054
5055/**
5056 * Converts one or more variables into a byte buffer for a
5057 * given unit size.
5058 *
5059 * @returns VBox status codes:
5060 * @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched.
5061 * @retval VERR_INTERNAL_ERROR on bad variable type, bitched.
5062 * @retval VINF_SUCCESS on success.
5063 *
5064 * @param pCmdHlp The command helper callback table.
5065 * @param pvBuf The buffer to convert into.
5066 * @param pcbBuf The buffer size on input. The size of the result on output.
5067 * @param cbUnit The unit size to apply when converting.
5068 * The high bit is used to indicate unicode string.
5069 * @param paVars The array of variables to convert.
5070 * @param cVars The number of variables.
5071 */
5072static int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars)
5073{
5074 union
5075 {
5076 uint8_t *pu8;
5077 uint16_t *pu16;
5078 uint32_t *pu32;
5079 uint64_t *pu64;
5080 } u, uEnd;
5081 u.pu8 = (uint8_t *)pvBuf;
5082 uEnd.pu8 = u.pu8 + *pcbBuf;
5083
5084 unsigned i;
5085 for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++)
5086 {
5087 switch (paVars[i].enmType)
5088 {
5089 case DBGCVAR_TYPE_GC_FAR:
5090 case DBGCVAR_TYPE_GC_FLAT:
5091 case DBGCVAR_TYPE_GC_PHYS:
5092 case DBGCVAR_TYPE_HC_FLAT:
5093 case DBGCVAR_TYPE_HC_PHYS:
5094 case DBGCVAR_TYPE_NUMBER:
5095 {
5096 uint64_t u64 = paVars[i].u.u64Number;
5097 switch (cbUnit & 0x1f)
5098 {
5099 case 1:
5100 do
5101 {
5102 *u.pu8++ = u64;
5103 u64 >>= 8;
5104 } while (u64);
5105 break;
5106 case 2:
5107 do
5108 {
5109 *u.pu16++ = u64;
5110 u64 >>= 16;
5111 } while (u64);
5112 break;
5113 case 4:
5114 *u.pu32++ = u64;
5115 u64 >>= 32;
5116 if (u64)
5117 *u.pu32++ = u64;
5118 break;
5119 case 8:
5120 *u.pu64++ = u64;
5121 break;
5122 }
5123 break;
5124 }
5125
5126 case DBGCVAR_TYPE_STRING:
5127 case DBGCVAR_TYPE_SYMBOL:
5128 {
5129 const char *psz = paVars[i].u.pszString;
5130 size_t cbString = strlen(psz);
5131 if (cbUnit & RT_BIT_32(31))
5132 {
5133 /* Explode char to unit. */
5134 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f))
5135 {
5136 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5137 return VERR_TOO_MUCH_DATA;
5138 }
5139 while (*psz)
5140 {
5141 switch (cbUnit & 0x1f)
5142 {
5143 case 1: *u.pu8++ = *psz; break;
5144 case 2: *u.pu16++ = *psz; break;
5145 case 4: *u.pu32++ = *psz; break;
5146 case 8: *u.pu64++ = *psz; break;
5147 }
5148 psz++;
5149 }
5150 }
5151 else
5152 {
5153 /* Raw copy with zero padding if the size isn't aligned. */
5154 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8))
5155 {
5156 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5157 return VERR_TOO_MUCH_DATA;
5158 }
5159
5160 size_t cbCopy = cbString & ~(cbUnit - 1);
5161 memcpy(u.pu8, psz, cbCopy);
5162 u.pu8 += cbCopy;
5163 psz += cbCopy;
5164
5165 size_t cbReminder = cbString & (cbUnit - 1);
5166 if (cbReminder)
5167 {
5168 memcpy(u.pu8, psz, cbString & (cbUnit - 1));
5169 memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder);
5170 u.pu8 += cbUnit;
5171 }
5172 }
5173 break;
5174 }
5175
5176 default:
5177 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5178 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR,
5179 "i=%d enmType=%d\n", i, paVars[i].enmType);
5180 return VERR_INTERNAL_ERROR;
5181 }
5182 }
5183 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5184 if (i != cVars)
5185 {
5186 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5187 return VERR_TOO_MUCH_DATA;
5188 }
5189 return VINF_SUCCESS;
5190}
5191
5192
5193/**
5194 * @callback_method_impl{FNDBGCCMD, The 'eb'\, 'ew'\, 'ed' and 'eq' commands.}
5195 */
5196static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5197{
5198 /*
5199 * Validate input.
5200 */
5201 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2);
5202 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
5203 for (unsigned iArg = 1; iArg < cArgs; iArg++)
5204 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER);
5205 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5206
5207 /*
5208 * Figure out the element size.
5209 */
5210 unsigned cbElement;
5211 switch (pCmd->pszCmd[1])
5212 {
5213 default:
5214 case 'b': cbElement = 1; break;
5215 case 'w': cbElement = 2; break;
5216 case 'd': cbElement = 4; break;
5217 case 'q': cbElement = 8; break;
5218 }
5219
5220 /*
5221 * Do setting.
5222 */
5223 DBGCVAR Addr = paArgs[0];
5224 for (unsigned iArg = 1;;)
5225 {
5226 size_t cbWritten;
5227 int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten);
5228 if (RT_FAILURE(rc))
5229 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr);
5230 if (cbWritten != cbElement)
5231 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement);
5232
5233 /* advance. */
5234 iArg++;
5235 if (iArg >= cArgs)
5236 break;
5237 rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement);
5238 if (RT_FAILURE(rc))
5239 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
5240 }
5241
5242 return VINF_SUCCESS;
5243}
5244
5245
5246/**
5247 * Executes the search.
5248 *
5249 * @returns VBox status code.
5250 * @param pCmdHlp The command helpers.
5251 * @param pUVM The user mode VM handle.
5252 * @param pAddress The address to start searching from. (undefined on output)
5253 * @param cbRange The address range to search. Must not wrap.
5254 * @param pabBytes The byte pattern to search for.
5255 * @param cbBytes The size of the pattern.
5256 * @param cbUnit The search unit.
5257 * @param cMaxHits The max number of hits.
5258 * @param pResult Where to store the result if it's a function invocation.
5259 */
5260static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange,
5261 const uint8_t *pabBytes, uint32_t cbBytes,
5262 uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult)
5263{
5264 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5265
5266 /*
5267 * Do the search.
5268 */
5269 uint64_t cHits = 0;
5270 for (;;)
5271 {
5272 /* search */
5273 DBGFADDRESS HitAddress;
5274 int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress);
5275 if (RT_FAILURE(rc))
5276 {
5277 if (rc != VERR_DBGF_MEM_NOT_FOUND)
5278 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n");
5279
5280 /* update the current address so we can save it (later). */
5281 pAddress->off += cbRange;
5282 pAddress->FlatPtr += cbRange;
5283 cbRange = 0;
5284 break;
5285 }
5286
5287 /* report result */
5288 DBGCVAR VarCur;
5289 rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur);
5290 if (RT_FAILURE(rc))
5291 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n");
5292 if (!pResult)
5293 pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur);
5294 else
5295 DBGCVAR_ASSIGN(pResult, &VarCur);
5296
5297 /* advance */
5298 cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr;
5299 *pAddress = HitAddress;
5300 pAddress->FlatPtr += cbBytes;
5301 pAddress->off += cbBytes;
5302 if (cbRange <= cbBytes)
5303 {
5304 cbRange = 0;
5305 break;
5306 }
5307 cbRange -= cbBytes;
5308
5309 if (++cHits >= cMaxHits)
5310 {
5311 /// @todo save the search.
5312 break;
5313 }
5314 }
5315
5316 /*
5317 * Save the search so we can resume it...
5318 */
5319 if (pDbgc->abSearch != pabBytes)
5320 {
5321 memcpy(pDbgc->abSearch, pabBytes, cbBytes);
5322 pDbgc->cbSearch = cbBytes;
5323 pDbgc->cbSearchUnit = cbUnit;
5324 }
5325 pDbgc->cMaxSearchHits = cMaxHits;
5326 pDbgc->SearchAddr = *pAddress;
5327 pDbgc->cbSearchRange = cbRange;
5328
5329 return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED;
5330}
5331
5332
5333/**
5334 * Resumes the previous search.
5335 *
5336 * @returns VBox status code.
5337 * @param pCmdHlp Pointer to the command helper functions.
5338 * @param pUVM The user mode VM handle.
5339 * @param pResult Where to store the result of a function invocation.
5340 */
5341static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult)
5342{
5343 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5344
5345 /*
5346 * Make sure there is a previous command.
5347 */
5348 if (!pDbgc->cbSearch)
5349 {
5350 DBGCCmdHlpPrintf(pCmdHlp, "Error: No previous search\n");
5351 return VERR_DBGC_COMMAND_FAILED;
5352 }
5353
5354 /*
5355 * Make range and address adjustments.
5356 */
5357 DBGFADDRESS Address = pDbgc->SearchAddr;
5358 if (Address.FlatPtr == ~(RTGCUINTPTR)0)
5359 {
5360 Address.FlatPtr -= Address.off;
5361 Address.off = 0;
5362 }
5363
5364 RTGCUINTPTR cbRange = pDbgc->cbSearchRange;
5365 if (!cbRange)
5366 cbRange = ~(RTGCUINTPTR)0;
5367 if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr)
5368 cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr;
5369
5370 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch,
5371 pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult);
5372}
5373
5374
5375/**
5376 * Search memory, worker for the 's' and 's?' functions.
5377 *
5378 * @returns VBox status code.
5379 * @param pCmdHlp Pointer to the command helper functions.
5380 * @param pUVM The user mode VM handle.
5381 * @param pAddress Where to start searching. If no range, search till end of address space.
5382 * @param cMaxHits The maximum number of hits.
5383 * @param chType The search type.
5384 * @param paPatArgs The pattern variable array.
5385 * @param cPatArgs Number of pattern variables.
5386 * @param pResult Where to store the result of a function invocation.
5387 */
5388static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType,
5389 PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult)
5390{
5391 if (pResult)
5392 DBGCVAR_INIT_GC_FLAT(pResult, 0);
5393
5394 /*
5395 * Convert the search pattern into bytes and DBGFR3MemScan can deal with.
5396 */
5397 uint32_t cbUnit;
5398 switch (chType)
5399 {
5400 case 'a':
5401 case 'b': cbUnit = 1; break;
5402 case 'u': cbUnit = 2 | RT_BIT_32(31); break;
5403 case 'w': cbUnit = 2; break;
5404 case 'd': cbUnit = 4; break;
5405 case 'q': cbUnit = 8; break;
5406 default:
5407 return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType);
5408 }
5409 uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)];
5410 uint32_t cbBytes = sizeof(abBytes);
5411 int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs);
5412 if (RT_FAILURE(rc))
5413 return VERR_DBGC_COMMAND_FAILED;
5414
5415 /*
5416 * Make DBGF address and fix the range.
5417 */
5418 DBGFADDRESS Address;
5419 rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address);
5420 if (RT_FAILURE(rc))
5421 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress);
5422
5423 RTGCUINTPTR cbRange;
5424 switch (pAddress->enmRangeType)
5425 {
5426 case DBGCVAR_RANGE_BYTES:
5427 cbRange = pAddress->u64Range;
5428 if (cbRange != pAddress->u64Range)
5429 cbRange = ~(RTGCUINTPTR)0;
5430 break;
5431
5432 case DBGCVAR_RANGE_ELEMENTS:
5433 cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit);
5434 if ( cbRange != pAddress->u64Range * cbUnit
5435 || cbRange < pAddress->u64Range)
5436 cbRange = ~(RTGCUINTPTR)0;
5437 break;
5438
5439 default:
5440 cbRange = ~(RTGCUINTPTR)0;
5441 break;
5442 }
5443 if (Address.FlatPtr + cbRange < Address.FlatPtr)
5444 cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr;
5445
5446 /*
5447 * Ok, do it.
5448 */
5449 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult);
5450}
5451
5452
5453/**
5454 * @callback_method_impl{FNDBGCCMD, The 's' command.}
5455 */
5456static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5457{
5458 RT_NOREF2(pCmd, paArgs);
5459
5460 /* check that the parser did what it's supposed to do. */
5461 //if ( cArgs <= 2
5462 // && paArgs[0].enmType != DBGCVAR_TYPE_STRING)
5463 // return DBGCCmdHlpPrintf(pCmdHlp, "parser error\n");
5464
5465 /*
5466 * Repeat previous search?
5467 */
5468 if (cArgs == 0)
5469 return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL);
5470
5471 /*
5472 * Parse arguments.
5473 */
5474
5475 return -1;
5476}
5477
5478
5479/**
5480 * @callback_method_impl{FNDBGCCMD, The 's?' command.}
5481 */
5482static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5483{
5484 /* check that the parser did what it's supposed to do. */
5485 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType));
5486 return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL);
5487}
5488
5489
5490/**
5491 * Matching function for interrupts event names.
5492 *
5493 * This parses the interrupt number and length.
5494 *
5495 * @returns True if match, false if not.
5496 * @param pPattern The user specified pattern to match.
5497 * @param pszEvtName The event name.
5498 * @param pCmdHlp Command helpers for warning about malformed stuff.
5499 * @param piFirst Where to return start interrupt number on success.
5500 * @param pcInts Where to return the number of interrupts on success.
5501 */
5502static bool dbgcEventIsMatchingInt(PCDBGCVAR pPattern, const char *pszEvtName, PDBGCCMDHLP pCmdHlp,
5503 uint8_t *piFirst, uint16_t *pcInts)
5504{
5505 /*
5506 * Ignore trailing hex digits when comparing with the event base name.
5507 */
5508 const char *pszPattern = pPattern->u.pszString;
5509 const char *pszEnd = RTStrEnd(pszPattern, RTSTR_MAX);
5510 while ( (uintptr_t)pszEnd > (uintptr_t)pszPattern
5511 && RT_C_IS_XDIGIT(pszEnd[-1]))
5512 pszEnd -= 1;
5513 if (RTStrSimplePatternNMatch(pszPattern, pszEnd - pszPattern, pszEvtName, RTSTR_MAX))
5514 {
5515 /*
5516 * Parse the index and length.
5517 */
5518 if (!*pszEnd)
5519 *piFirst = 0;
5520 else
5521 {
5522 int rc = RTStrToUInt8Full(pszEnd, 16, piFirst);
5523 if (rc != VINF_SUCCESS)
5524 {
5525 if (RT_FAILURE(rc))
5526 *piFirst = 0;
5527 DBGCCmdHlpPrintf(pCmdHlp, "Warning: %Rrc parsing '%s' - interpreting it as %#x\n", rc, pszEnd, *piFirst);
5528 }
5529 }
5530
5531 if (pPattern->enmRangeType == DBGCVAR_RANGE_NONE)
5532 *pcInts = 1;
5533 else
5534 *pcInts = RT_MAX(RT_MIN((uint16_t)pPattern->u64Range, 256 - *piFirst), 1);
5535 return true;
5536 }
5537 return false;
5538}
5539
5540
5541/**
5542 * Updates a DBGC event config.
5543 *
5544 * @returns VINF_SUCCESS or VERR_NO_MEMORY.
5545 * @param ppEvtCfg The event configuration entry to update.
5546 * @param pszCmd The new command. Leave command alone if NULL.
5547 * @param enmEvtState The new event state.
5548 * @param fChangeCmdOnly Whether to only update the command.
5549 */
5550static int dbgcEventUpdate(PDBGCEVTCFG *ppEvtCfg, const char *pszCmd, DBGCEVTSTATE enmEvtState, bool fChangeCmdOnly)
5551{
5552 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5553
5554 /*
5555 * If we've got a command string, update the command too.
5556 */
5557 if (pszCmd)
5558 {
5559 size_t cchCmd = strlen(pszCmd);
5560 if ( !cchCmd
5561 && ( !fChangeCmdOnly
5562 ? enmEvtState == kDbgcEvtState_Disabled
5563 : !pEvtCfg || pEvtCfg->enmState == kDbgcEvtState_Disabled))
5564 {
5565 /* NULL entry is fine if no command and disabled. */
5566 RTMemFree(pEvtCfg);
5567 *ppEvtCfg = NULL;
5568 }
5569 else
5570 {
5571 if (!pEvtCfg || pEvtCfg->cchCmd < cchCmd)
5572 {
5573 RTMemFree(pEvtCfg);
5574 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(RT_UOFFSETOF_DYN(DBGCEVTCFG, szCmd[cchCmd + 1]));
5575 if (!pEvtCfg)
5576 return VERR_NO_MEMORY;
5577 }
5578 pEvtCfg->enmState = enmEvtState;
5579 pEvtCfg->cchCmd = cchCmd;
5580 memcpy(pEvtCfg->szCmd, pszCmd, cchCmd + 1);
5581 }
5582 }
5583 /*
5584 * Update existing or enable new. If NULL and not enabled, we can keep it that way.
5585 */
5586 else if (pEvtCfg || enmEvtState != kDbgcEvtState_Disabled)
5587 {
5588 if (!pEvtCfg)
5589 {
5590 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(sizeof(DBGCEVTCFG));
5591 if (!pEvtCfg)
5592 return VERR_NO_MEMORY;
5593 pEvtCfg->cchCmd = 0;
5594 pEvtCfg->szCmd[0] = '\0';
5595 }
5596 pEvtCfg->enmState = enmEvtState;
5597 }
5598
5599 return VINF_SUCCESS;
5600}
5601
5602
5603/**
5604 * Record one settings change for a plain event.
5605 *
5606 * @returns The new @a cIntCfgs value.
5607 * @param paEventCfgs The event setttings array. Must have DBGFEVENT_END
5608 * entries.
5609 * @param cEventCfgs The current number of entries in @a paEventCfgs.
5610 * @param enmType The event to change the settings for.
5611 * @param enmEvtState The new event state.
5612 * @param iSxEvt Index into the g_aDbgcSxEvents array.
5613 *
5614 * @remarks We use abUnused[0] for the enmEvtState, while abUnused[1] and
5615 * abUnused[2] are used for iSxEvt.
5616 */
5617static uint32_t dbgcEventAddPlainConfig(PDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, DBGFEVENTTYPE enmType,
5618 DBGCEVTSTATE enmEvtState, uint16_t iSxEvt)
5619{
5620 uint32_t iCfg;
5621 for (iCfg = 0; iCfg < cEventCfgs; iCfg++)
5622 if (paEventCfgs[iCfg].enmType == enmType)
5623 break;
5624 if (iCfg == cEventCfgs)
5625 {
5626 Assert(cEventCfgs < DBGFEVENT_END);
5627 paEventCfgs[iCfg].enmType = enmType;
5628 cEventCfgs++;
5629 }
5630 paEventCfgs[iCfg].fEnabled = enmEvtState > kDbgcEvtState_Disabled;
5631 paEventCfgs[iCfg].abUnused[0] = enmEvtState;
5632 paEventCfgs[iCfg].abUnused[1] = (uint8_t)iSxEvt;
5633 paEventCfgs[iCfg].abUnused[2] = (uint8_t)(iSxEvt >> 8);
5634 return cEventCfgs;
5635}
5636
5637
5638/**
5639 * Record one or more interrupt event config changes.
5640 *
5641 * @returns The new @a cIntCfgs value.
5642 * @param paIntCfgs Interrupt confiruation array. Must have 256 entries.
5643 * @param cIntCfgs The current number of entries in @a paIntCfgs.
5644 * @param iInt The interrupt number to start with.
5645 * @param cInts The number of interrupts to change.
5646 * @param pszName The settings name (hwint/swint).
5647 * @param enmEvtState The new event state.
5648 * @param bIntOp The new DBGF interrupt state.
5649 */
5650static uint32_t dbgcEventAddIntConfig(PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs, uint8_t iInt, uint16_t cInts,
5651 const char *pszName, DBGCEVTSTATE enmEvtState, uint8_t bIntOp)
5652{
5653 bool const fHwInt = *pszName == 'h';
5654
5655 bIntOp |= (uint8_t)enmEvtState << 4;
5656 uint8_t const bSoftState = !fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5657 uint8_t const bHardState = fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5658
5659 while (cInts > 0)
5660 {
5661 uint32_t iCfg;
5662 for (iCfg = 0; iCfg < cIntCfgs; iCfg++)
5663 if (paIntCfgs[iCfg].iInterrupt == iInt)
5664 break;
5665 if (iCfg == cIntCfgs)
5666 break;
5667 if (fHwInt)
5668 paIntCfgs[iCfg].enmHardState = bHardState;
5669 else
5670 paIntCfgs[iCfg].enmSoftState = bSoftState;
5671 iInt++;
5672 cInts--;
5673 }
5674
5675 while (cInts > 0)
5676 {
5677 Assert(cIntCfgs < 256);
5678 paIntCfgs[cIntCfgs].iInterrupt = iInt;
5679 paIntCfgs[cIntCfgs].enmHardState = bHardState;
5680 paIntCfgs[cIntCfgs].enmSoftState = bSoftState;
5681 cIntCfgs++;
5682 iInt++;
5683 cInts--;
5684 }
5685
5686 return cIntCfgs;
5687}
5688
5689
5690/**
5691 * Applies event settings changes to DBGC and DBGF.
5692 *
5693 * @returns VBox status code (fully bitched)
5694 * @param pCmdHlp The command helpers.
5695 * @param pUVM The user mode VM handle.
5696 * @param paIntCfgs Interrupt configuration array. We use the upper 4
5697 * bits of the settings for the DBGCEVTSTATE. This
5698 * will be cleared.
5699 * @param cIntCfgs Number of interrupt configuration changes.
5700 * @param paEventCfgs The generic event configuration array. We use the
5701 * abUnused[0] member for the DBGCEVTSTATE, and
5702 * abUnused[2:1] for the g_aDbgcSxEvents index.
5703 * @param cEventCfgs The number of generic event settings changes.
5704 * @param pszCmd The commands to associate with the changed events.
5705 * If this is NULL, don't touch the command.
5706 * @param fChangeCmdOnly Whether to only change the commands (sx-).
5707 */
5708static int dbgcEventApplyChanges(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs,
5709 PCDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, const char *pszCmd, bool fChangeCmdOnly)
5710{
5711 int rc;
5712
5713 /*
5714 * Apply changes to DBGC. This can only fail with out of memory error.
5715 */
5716 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5717 if (cIntCfgs)
5718 for (uint32_t iCfg = 0; iCfg < cIntCfgs; iCfg++)
5719 {
5720 DBGCEVTSTATE enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmHardState >> 4);
5721 paIntCfgs[iCfg].enmHardState &= 0xf;
5722 if (paIntCfgs[iCfg].enmHardState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5723 {
5724 rc = dbgcEventUpdate(&pDbgc->apHardInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5725 if (RT_FAILURE(rc))
5726 return rc;
5727 }
5728
5729 enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmSoftState >> 4);
5730 paIntCfgs[iCfg].enmSoftState &= 0xf;
5731 if (paIntCfgs[iCfg].enmSoftState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5732 {
5733 rc = dbgcEventUpdate(&pDbgc->apSoftInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5734 if (RT_FAILURE(rc))
5735 return rc;
5736 }
5737 }
5738
5739 if (cEventCfgs)
5740 {
5741 for (uint32_t iCfg = 0; iCfg < cEventCfgs; iCfg++)
5742 {
5743 Assert((unsigned)paEventCfgs[iCfg].enmType < RT_ELEMENTS(pDbgc->apEventCfgs));
5744 uint16_t iSxEvt = RT_MAKE_U16(paEventCfgs[iCfg].abUnused[1], paEventCfgs[iCfg].abUnused[2]);
5745 Assert(iSxEvt < RT_ELEMENTS(g_aDbgcSxEvents));
5746 rc = dbgcEventUpdate(&pDbgc->apEventCfgs[iSxEvt], pszCmd, (DBGCEVTSTATE)paEventCfgs[iCfg].abUnused[0], fChangeCmdOnly);
5747 if (RT_FAILURE(rc))
5748 return rc;
5749 }
5750 }
5751
5752 /*
5753 * Apply changes to DBGF.
5754 */
5755 if (!fChangeCmdOnly)
5756 {
5757 if (cIntCfgs)
5758 {
5759 rc = DBGFR3InterruptConfigEx(pUVM, paIntCfgs, cIntCfgs);
5760 if (RT_FAILURE(rc))
5761 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3InterruptConfigEx: %Rrc\n", rc);
5762 }
5763 if (cEventCfgs)
5764 {
5765 rc = DBGFR3EventConfigEx(pUVM, paEventCfgs, cEventCfgs);
5766 if (RT_FAILURE(rc))
5767 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3EventConfigEx: %Rrc\n", rc);
5768 }
5769 }
5770
5771 return VINF_SUCCESS;
5772}
5773
5774
5775/**
5776 * @callback_method_impl{FNDBGCCMD, The 'sx[eni-]' commands.}
5777 */
5778static DECLCALLBACK(int) dbgcCmdEventCtrl(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5779{
5780 /*
5781 * Figure out which command this is.
5782 */
5783 uint8_t bIntOp;
5784 DBGCEVTSTATE enmEvtState;
5785 bool fChangeCmdOnly;
5786 switch (pCmd->pszCmd[2])
5787 {
5788 case 'e': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Enabled; fChangeCmdOnly = false; break;
5789 case 'n': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Notify; fChangeCmdOnly = false; break;
5790 case '-': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Invalid; fChangeCmdOnly = true; break;
5791 case 'i': bIntOp = DBGFINTERRUPTSTATE_DISABLED; enmEvtState = kDbgcEvtState_Disabled; fChangeCmdOnly = false; break;
5792 default:
5793 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "pszCmd=%s\n", pCmd->pszCmd);
5794 }
5795
5796 /*
5797 * Command option.
5798 */
5799 unsigned iArg = 0;
5800 const char *pszCmd = NULL;
5801 if ( cArgs >= iArg + 2
5802 && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5803 && paArgs[iArg + 1].enmType == DBGCVAR_TYPE_STRING
5804 && strcmp(paArgs[iArg].u.pszString, "-c") == 0)
5805 {
5806 pszCmd = paArgs[iArg + 1].u.pszString;
5807 iArg += 2;
5808 }
5809 if (fChangeCmdOnly && !pszCmd)
5810 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "The 'sx-' requires the '-c cmd' arguments.\n");
5811
5812 /*
5813 * The remaining arguments are event specifiers to which the operation should be applied.
5814 */
5815 uint32_t cIntCfgs = 0;
5816 DBGFINTERRUPTCONFIG aIntCfgs[256];
5817 uint32_t cEventCfgs = 0;
5818 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5819
5820 for (; iArg < cArgs; iArg++)
5821 {
5822 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, iArg, paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5823 || paArgs[iArg].enmType == DBGCVAR_TYPE_SYMBOL);
5824 uint32_t cHits = 0;
5825 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5826 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5827 {
5828 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5829 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5830 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5831 {
5832 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5833 enmEvtState, iEvt);
5834 cHits++;
5835 }
5836 }
5837 else
5838 {
5839 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5840 uint8_t iInt;
5841 uint16_t cInts;
5842 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5843 {
5844 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5845 enmEvtState, bIntOp);
5846 cHits++;
5847 }
5848 }
5849 if (!cHits)
5850 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5851 }
5852
5853 /*
5854 * Apply the changes.
5855 */
5856 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, pszCmd, fChangeCmdOnly);
5857}
5858
5859
5860/**
5861 * @callback_method_impl{FNDBGCCMD, The 'sxr' commands.}
5862 */
5863static DECLCALLBACK(int) dbgcCmdEventCtrlReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5864{
5865 RT_NOREF1(pCmd);
5866 uint32_t cEventCfgs = 0;
5867 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5868 uint32_t cIntCfgs = 0;
5869 DBGFINTERRUPTCONFIG aIntCfgs[256];
5870
5871 if (cArgs == 0)
5872 {
5873 /*
5874 * All events.
5875 */
5876 for (uint32_t iInt = 0; iInt < 256; iInt++)
5877 {
5878 aIntCfgs[iInt].iInterrupt = iInt;
5879 aIntCfgs[iInt].enmHardState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5880 aIntCfgs[iInt].enmSoftState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5881 }
5882 cIntCfgs = 256;
5883
5884 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5885 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5886 {
5887 aEventCfgs[cEventCfgs].enmType = g_aDbgcSxEvents[iEvt].enmType;
5888 aEventCfgs[cEventCfgs].fEnabled = g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled;
5889 aEventCfgs[cEventCfgs].abUnused[0] = g_aDbgcSxEvents[iEvt].enmDefault;
5890 aEventCfgs[cEventCfgs].abUnused[1] = (uint8_t)iEvt;
5891 aEventCfgs[cEventCfgs].abUnused[2] = (uint8_t)(iEvt >> 8);
5892 cEventCfgs++;
5893 }
5894 else
5895 {
5896 uint8_t const bState = ( g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5897 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED)
5898 | ((uint8_t)g_aDbgcSxEvents[iEvt].enmDefault << 4);
5899 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5900 for (uint32_t iInt = 0; iInt < 256; iInt++)
5901 aIntCfgs[iInt].enmHardState = bState;
5902 else
5903 for (uint32_t iInt = 0; iInt < 256; iInt++)
5904 aIntCfgs[iInt].enmSoftState = bState;
5905 }
5906 }
5907 else
5908 {
5909 /*
5910 * Selected events.
5911 */
5912 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
5913 {
5914 unsigned cHits = 0;
5915 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5916 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5917 {
5918 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5919 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5920 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5921 {
5922 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5923 g_aDbgcSxEvents[iEvt].enmDefault, iEvt);
5924 cHits++;
5925 }
5926 }
5927 else
5928 {
5929 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5930 uint8_t iInt;
5931 uint16_t cInts;
5932 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5933 {
5934 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5935 g_aDbgcSxEvents[iEvt].enmDefault,
5936 g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5937 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED);
5938 cHits++;
5939 }
5940 }
5941 if (!cHits)
5942 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5943 }
5944 }
5945
5946 /*
5947 * Apply the reset changes.
5948 */
5949 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, "", false);
5950}
5951
5952
5953/**
5954 * Used during DBGC initialization to configure events with defaults.
5955 *
5956 * @param pDbgc The DBGC instance.
5957 */
5958void dbgcEventInit(PDBGC pDbgc)
5959{
5960 if (pDbgc->pUVM)
5961 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5962}
5963
5964
5965/**
5966 * Used during DBGC termination to disable all events.
5967 *
5968 * @param pDbgc The DBGC instance.
5969 */
5970void dbgcEventTerm(PDBGC pDbgc)
5971{
5972/** @todo need to do more than just reset later. */
5973 if (pDbgc->pUVM && VMR3GetStateU(pDbgc->pUVM) < VMSTATE_DESTROYING)
5974 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5975}
5976
5977
5978static void dbgcEventDisplay(PDBGCCMDHLP pCmdHlp, const char *pszName, DBGCEVTSTATE enmDefault, PDBGCEVTCFG const *ppEvtCfg)
5979{
5980 RT_NOREF1(enmDefault);
5981 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5982
5983 const char *pszState;
5984 switch (pEvtCfg ? pEvtCfg->enmState : kDbgcEvtState_Disabled)
5985 {
5986 case kDbgcEvtState_Disabled: pszState = "ignore"; break;
5987 case kDbgcEvtState_Enabled: pszState = "enabled"; break;
5988 case kDbgcEvtState_Notify: pszState = "notify"; break;
5989 default:
5990 AssertFailed();
5991 pszState = "invalid";
5992 break;
5993 }
5994
5995 if (pEvtCfg && pEvtCfg->cchCmd > 0)
5996 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %-7s \"%s\"\n", pszName, pszState, pEvtCfg->szCmd);
5997 else
5998 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %s\n", pszName, pszState);
5999}
6000
6001
6002static void dbgcEventDisplayRange(PDBGCCMDHLP pCmdHlp, const char *pszBaseNm, DBGCEVTSTATE enmDefault,
6003 PDBGCEVTCFG const *papEvtCfgs, unsigned iCfg, unsigned cCfgs)
6004{
6005 do
6006 {
6007 PCDBGCEVTCFG pFirstCfg = papEvtCfgs[iCfg];
6008 if (pFirstCfg && pFirstCfg->enmState == kDbgcEvtState_Disabled && pFirstCfg->cchCmd == 0)
6009 pFirstCfg = NULL;
6010
6011 unsigned const iFirstCfg = iCfg;
6012 iCfg++;
6013 while (iCfg < cCfgs)
6014 {
6015 PCDBGCEVTCFG pCurCfg = papEvtCfgs[iCfg];
6016 if (pCurCfg && pCurCfg->enmState == kDbgcEvtState_Disabled && pCurCfg->cchCmd == 0)
6017 pCurCfg = NULL;
6018 if (pCurCfg != pFirstCfg)
6019 {
6020 if (!pCurCfg || !pFirstCfg)
6021 break;
6022 if (pCurCfg->enmState != pFirstCfg->enmState)
6023 break;
6024 if (pCurCfg->cchCmd != pFirstCfg->cchCmd)
6025 break;
6026 if (memcmp(pCurCfg->szCmd, pFirstCfg->szCmd, pFirstCfg->cchCmd) != 0)
6027 break;
6028 }
6029 iCfg++;
6030 }
6031
6032 char szName[16];
6033 unsigned cEntries = iCfg - iFirstCfg;
6034 if (cEntries == 1)
6035 RTStrPrintf(szName, sizeof(szName), "%s%02x", pszBaseNm, iFirstCfg);
6036 else
6037 RTStrPrintf(szName, sizeof(szName), "%s%02x L %#x", pszBaseNm, iFirstCfg, cEntries);
6038 dbgcEventDisplay(pCmdHlp, szName, enmDefault, &papEvtCfgs[iFirstCfg]);
6039
6040 cCfgs -= cEntries;
6041 } while (cCfgs > 0);
6042}
6043
6044
6045/**
6046 * @callback_method_impl{FNDBGCCMD, The 'sx' commands.}
6047 */
6048static DECLCALLBACK(int) dbgcCmdEventCtrlList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6049{
6050 RT_NOREF2(pCmd, pUVM);
6051 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6052
6053 if (cArgs == 0)
6054 {
6055 /*
6056 * All events.
6057 */
6058 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
6059 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
6060 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6061 &pDbgc->apEventCfgs[iEvt]);
6062 else if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
6063 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6064 pDbgc->apHardInts, 0, 256);
6065 else
6066 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6067 pDbgc->apSoftInts, 0, 256);
6068 }
6069 else
6070 {
6071 /*
6072 * Selected events.
6073 */
6074 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
6075 {
6076 unsigned cHits = 0;
6077 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
6078 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
6079 {
6080 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
6081 || ( g_aDbgcSxEvents[iEvt].pszAltNm
6082 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
6083 {
6084 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6085 &pDbgc->apEventCfgs[iEvt]);
6086 cHits++;
6087 }
6088 }
6089 else
6090 {
6091 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
6092 uint8_t iInt;
6093 uint16_t cInts;
6094 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
6095 {
6096 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
6097 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6098 pDbgc->apHardInts, iInt, cInts);
6099 else
6100 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6101 pDbgc->apSoftInts, iInt, cInts);
6102 cHits++;
6103 }
6104 }
6105 if (cHits == 0)
6106 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
6107 }
6108 }
6109
6110 return VINF_SUCCESS;
6111}
6112
6113
6114
6115/**
6116 * List near symbol.
6117 *
6118 * @returns VBox status code.
6119 * @param pCmdHlp Pointer to command helper functions.
6120 * @param pUVM The user mode VM handle.
6121 * @param pArg Pointer to the address or symbol to lookup.
6122 */
6123static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg)
6124{
6125 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6126
6127 RTDBGSYMBOL Symbol;
6128 int rc;
6129 if (pArg->enmType == DBGCVAR_TYPE_SYMBOL)
6130 {
6131 /*
6132 * Lookup the symbol address.
6133 */
6134 rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL);
6135 if (RT_FAILURE(rc))
6136 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString);
6137
6138 rc = DBGCCmdHlpPrintf(pCmdHlp, "%RTptr %s\n", Symbol.Value, Symbol.szName);
6139 }
6140 else
6141 {
6142 /*
6143 * Convert it to a flat GC address and lookup that address.
6144 */
6145 DBGCVAR AddrVar;
6146 rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg);
6147 if (RT_FAILURE(rc))
6148 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg);
6149
6150 RTINTPTR offDisp;
6151 DBGFADDRESS Addr;
6152 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat),
6153 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
6154 &offDisp, &Symbol, NULL);
6155 if (RT_FAILURE(rc))
6156 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat);
6157
6158 if (!offDisp)
6159 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s", &AddrVar, Symbol.szName);
6160 else if (offDisp > 0)
6161 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp);
6162 else
6163 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp);
6164 if (Symbol.cb > 0)
6165 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)\n", Symbol.cb);
6166 else
6167 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
6168 }
6169
6170 return rc;
6171}
6172
6173
6174/**
6175 * @callback_method_impl{FNDBGCCMD, The 'ln' (listnear) command.}
6176 */
6177static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6178{
6179 if (!cArgs)
6180 {
6181 /*
6182 * Current cs:eip symbol.
6183 */
6184 DBGCVAR AddrVar;
6185 const char *pszFmtExpr = "%%(cs:eip)";
6186 int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, pszFmtExpr);
6187 if (RT_FAILURE(rc))
6188 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%s\n", pszFmtExpr + 1);
6189 return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar);
6190 }
6191
6192/** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */
6193 /*
6194 * Iterate arguments.
6195 */
6196 for (unsigned iArg = 0; iArg < cArgs; iArg++)
6197 {
6198 int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]);
6199 if (RT_FAILURE(rc))
6200 return rc;
6201 }
6202
6203 NOREF(pCmd);
6204 return VINF_SUCCESS;
6205}
6206
6207
6208/**
6209 * Matches the module patters against a module name.
6210 *
6211 * @returns true if matching, otherwise false.
6212 * @param pszName The module name.
6213 * @param paArgs The module pattern argument list.
6214 * @param cArgs Number of arguments.
6215 */
6216static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs)
6217{
6218 for (uint32_t i = 0; i < cArgs; i++)
6219 if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName))
6220 return true;
6221 return false;
6222}
6223
6224
6225/**
6226 * @callback_method_impl{FNDBGCCMD, The 'ln' (list near) command.}
6227 */
6228static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6229{
6230 bool const fMappings = pCmd->pszCmd[2] == 'o';
6231 bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v';
6232 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6233
6234 /*
6235 * Iterate the modules in the current address space and print info about
6236 * those matching the input.
6237 */
6238 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6239 for (uint32_t iAs = 0;; iAs++)
6240 {
6241 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6242 uint32_t cMods = RTDbgAsModuleCount(hAs);
6243 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6244 {
6245 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6246 if (hMod != NIL_RTDBGMOD)
6247 {
6248 bool const fDeferred = RTDbgModIsDeferred(hMod);
6249 bool const fExports = RTDbgModIsExports(hMod);
6250 uint32_t const cSegs = fDeferred ? 1 : RTDbgModSegmentCount(hMod);
6251 const char * const pszName = RTDbgModName(hMod);
6252 const char * const pszImgFile = RTDbgModImageFile(hMod);
6253 const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod);
6254 const char * const pszDbgFile = RTDbgModDebugFile(hMod);
6255 if ( cArgs == 0
6256 || dbgcCmdListModuleMatch(pszName, paArgs, cArgs))
6257 {
6258 /*
6259 * Find the mapping with the lower address, preferring a full
6260 * image mapping, for the main line.
6261 */
6262 RTDBGASMAPINFO aMappings[128];
6263 uint32_t cMappings = RT_ELEMENTS(aMappings);
6264 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6265 if (RT_SUCCESS(rc))
6266 {
6267 bool fFull = false;
6268 RTUINTPTR uMin = RTUINTPTR_MAX;
6269 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6270 if ( aMappings[iMap].Address < uMin
6271 && ( !fFull
6272 || aMappings[iMap].iSeg == NIL_RTDBGSEGIDX))
6273 uMin = aMappings[iMap].Address;
6274 if (!fVerbose || !pszImgFile)
6275 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName,
6276 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6277 else
6278 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile,
6279 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6280 if (fVerbose && pszImgFileUsed)
6281 DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed);
6282 if (fVerbose && pszDbgFile)
6283 DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile);
6284 if (fVerbose)
6285 {
6286 char szTmp[64];
6287 RTTIMESPEC TimeSpec;
6288 int64_t secTs = 0;
6289 if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_TIMESTAMP_SECONDS, &secTs, sizeof(secTs), NULL)))
6290 DBGCCmdHlpPrintf(pCmdHlp, " Timestamp: %08RX64 %s\n", secTs,
6291 RTTimeSpecToString(RTTimeSpecSetSeconds(&TimeSpec, secTs), szTmp, sizeof(szTmp)));
6292 RTUUID Uuid;
6293 if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_UUID, &Uuid, sizeof(Uuid), NULL)))
6294 DBGCCmdHlpPrintf(pCmdHlp, " UUID: %RTuuid\n", &Uuid);
6295 }
6296
6297 if (fMappings)
6298 {
6299 /* sort by address first - not very efficient. */
6300 for (uint32_t i = 0; i + 1 < cMappings; i++)
6301 for (uint32_t j = i + 1; j < cMappings; j++)
6302 if (aMappings[j].Address < aMappings[i].Address)
6303 {
6304 RTDBGASMAPINFO Tmp = aMappings[j];
6305 aMappings[j] = aMappings[i];
6306 aMappings[i] = Tmp;
6307 }
6308
6309 /* print */
6310 if ( cMappings == 1
6311 && aMappings[0].iSeg == NIL_RTDBGSEGIDX
6312 && !fDeferred)
6313 {
6314 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
6315 {
6316 RTDBGSEGMENT SegInfo;
6317 rc = RTDbgModSegmentByIndex(hMod, iSeg, &SegInfo);
6318 if (RT_SUCCESS(rc))
6319 {
6320 if (SegInfo.uRva != RTUINTPTR_MAX)
6321 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6322 (RTGCUINTPTR)(aMappings[0].Address + SegInfo.uRva),
6323 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6324 else
6325 DBGCCmdHlpPrintf(pCmdHlp, " %*s %RGv #%02x %s\n",
6326 sizeof(RTGCUINTPTR)*2, "noload",
6327 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6328 }
6329 else
6330 DBGCCmdHlpPrintf(pCmdHlp, " Error query segment #%u: %Rrc\n", iSeg, rc);
6331 }
6332 }
6333 else
6334 {
6335 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6336 if (aMappings[iMap].iSeg == NIL_RTDBGSEGIDX)
6337 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv <everything>\n",
6338 (RTGCUINTPTR)aMappings[iMap].Address,
6339 (RTGCUINTPTR)RTDbgModImageSize(hMod));
6340 else if (!fDeferred)
6341 {
6342 RTDBGSEGMENT SegInfo;
6343 rc = RTDbgModSegmentByIndex(hMod, aMappings[iMap].iSeg, &SegInfo);
6344 if (RT_FAILURE(rc))
6345 {
6346 RT_ZERO(SegInfo);
6347 strcpy(SegInfo.szName, "error");
6348 }
6349 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6350 (RTGCUINTPTR)aMappings[iMap].Address,
6351 (RTGCUINTPTR)SegInfo.cb,
6352 aMappings[iMap].iSeg, SegInfo.szName);
6353 }
6354 else
6355 DBGCCmdHlpPrintf(pCmdHlp, " %RGv #%02x\n",
6356 (RTGCUINTPTR)aMappings[iMap].Address, aMappings[iMap].iSeg);
6357 }
6358 }
6359 }
6360 else
6361 DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n",
6362 sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc);
6363 /** @todo missing address space API for enumerating the mappings. */
6364 }
6365 RTDbgModRelease(hMod);
6366 }
6367 }
6368 RTDbgAsRelease(hAs);
6369
6370 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6371 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6372 break;
6373 AssertBreak(iAs == 0);
6374 hAsCurAlias = DBGF_AS_GLOBAL;
6375 }
6376
6377 NOREF(pCmd);
6378 return VINF_SUCCESS;
6379}
6380
6381
6382
6383/**
6384 * @callback_method_impl{FNDBGCCMD, The 'x' (examine symbols) command.}
6385 */
6386static DECLCALLBACK(int) dbgcCmdListSymbols(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6387{
6388 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6389 AssertReturn(paArgs[0].enmType == DBGCVAR_TYPE_STRING, VERR_DBGC_PARSE_BUG);
6390
6391 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6392
6393 /*
6394 * Allowed is either a single * to match everything or the Module!Symbol style
6395 * which requiresa ! to separate module and symbol.
6396 */
6397 bool fDumpAll = strcmp(paArgs[0].u.pszString, "*") == 0;
6398 const char *pszModule = NULL;
6399 size_t cchModule = 0;
6400 const char *pszSymbol = NULL;
6401 if (!fDumpAll)
6402 {
6403 const char *pszDelimiter = strchr(paArgs[0].u.pszString, '!');
6404 if (!pszDelimiter)
6405 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid search string '%s' for '%s'. Valid are either '*' or the form <Module>!<Symbol> where the <Module> and <Symbol> can contain wildcards",
6406 paArgs[0].u.pszString, pCmd->pszCmd);
6407
6408 pszModule = paArgs[0].u.pszString;
6409 cchModule = pszDelimiter - pszModule;
6410 pszSymbol = pszDelimiter + 1;
6411 }
6412
6413 /*
6414 * Iterate the modules in the current address space and print info about
6415 * those matching the input.
6416 */
6417 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6418 for (uint32_t iAs = 0;; iAs++)
6419 {
6420 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6421 uint32_t cMods = RTDbgAsModuleCount(hAs);
6422 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6423 {
6424 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6425 if (hMod != NIL_RTDBGMOD)
6426 {
6427 const char *pszModName = RTDbgModName(hMod);
6428 if ( fDumpAll
6429 || RTStrSimplePatternNMatch(pszModule, cchModule, pszModName, strlen(pszModName)))
6430 {
6431 RTDBGASMAPINFO aMappings[128];
6432 uint32_t cMappings = RT_ELEMENTS(aMappings);
6433 RTUINTPTR uMapping = 0;
6434
6435 /* Get the minimum mapping address of the module so we can print absolute values for the symbol later on. */
6436 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6437 if (RT_SUCCESS(rc))
6438 {
6439 uMapping = RTUINTPTR_MAX;
6440 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6441 if (aMappings[iMap].Address < uMapping)
6442 uMapping = aMappings[iMap].Address;
6443 }
6444
6445 /* Go through the symbols and print any matches. */
6446 uint32_t cSyms = RTDbgModSymbolCount(hMod);
6447 for (uint32_t iSym = 0; iSym < cSyms; iSym++)
6448 {
6449 RTDBGSYMBOL SymInfo;
6450 rc = RTDbgModSymbolByOrdinal(hMod, iSym, &SymInfo);
6451 if ( RT_SUCCESS(rc)
6452 && ( fDumpAll
6453 || RTStrSimplePatternMatch(pszSymbol, &SymInfo.szName[0])))
6454 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %s!%s\n", uMapping + RTDbgModSegmentRva(hMod, SymInfo.iSeg) + (RTGCUINTPTR)SymInfo.Value, pszModName, &SymInfo.szName[0]);
6455 }
6456 }
6457 RTDbgModRelease(hMod);
6458 }
6459 }
6460 RTDbgAsRelease(hAs);
6461
6462 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6463 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6464 break;
6465 AssertBreak(iAs == 0);
6466 hAsCurAlias = DBGF_AS_GLOBAL;
6467 }
6468
6469 RT_NOREF(pCmd);
6470 return VINF_SUCCESS;
6471}
6472
6473
6474/**
6475 * @callback_method_impl{FNDBGCCMD, The 'tflowc' (clear trace flow) command.}
6476 */
6477static DECLCALLBACK(int) dbgcCmdTraceFlowClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6478{
6479 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6480
6481 /*
6482 * Enumerate the arguments.
6483 */
6484 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6485 int rc = VINF_SUCCESS;
6486 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6487 {
6488 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6489 {
6490 /* one */
6491 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6492 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6493 {
6494 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6495 if (pFlowTrace)
6496 {
6497 rc = DBGFR3FlowTraceModRelease(pFlowTrace->hTraceFlowMod);
6498 if (RT_FAILURE(rc))
6499 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModRelease failed for flow trace module %#x", iFlowTraceMod);
6500 rc = DBGFR3FlowRelease(pFlowTrace->hFlow);
6501 if (RT_FAILURE(rc))
6502 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowRelease failed for flow trace module %#x", iFlowTraceMod);
6503 dbgcFlowTraceModDelete(pDbgc, iFlowTraceMod);
6504 }
6505 else
6506 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6507 }
6508 else
6509 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6510 }
6511 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6512 {
6513 /* all */
6514 PDBGCTFLOW pIt, pItNext;
6515 RTListForEachSafe(&pDbgc->LstTraceFlowMods, pIt, pItNext, DBGCTFLOW, NdTraceFlow)
6516 {
6517 int rc2 = DBGFR3FlowTraceModRelease(pIt->hTraceFlowMod);
6518 if (RT_FAILURE(rc2))
6519 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", pIt->iTraceFlowMod);
6520 dbgcFlowTraceModDelete(pDbgc, pIt->iTraceFlowMod);
6521 }
6522 }
6523 else
6524 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6525 }
6526 return rc;
6527}
6528
6529
6530/**
6531 * @callback_method_impl{FNDBGCCMD, The 'tflowd' (disable trace flow) command.}
6532 */
6533static DECLCALLBACK(int) dbgcCmdTraceFlowDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6534{
6535 /*
6536 * Enumerate the arguments.
6537 */
6538 RT_NOREF1(pUVM);
6539 int rc = VINF_SUCCESS;
6540 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6541 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6542 {
6543 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6544 {
6545 /* one */
6546 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6547 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6548 {
6549 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6550 if (pFlowTrace)
6551 {
6552 rc = DBGFR3FlowTraceModDisable(pFlowTrace->hTraceFlowMod);
6553 if (RT_FAILURE(rc))
6554 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", iFlowTraceMod);
6555 }
6556 else
6557 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6558 }
6559 else
6560 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
6561 }
6562 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6563 {
6564 /* all */
6565 PDBGCTFLOW pIt;
6566 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6567 {
6568 int rc2 = DBGFR3FlowTraceModDisable(pIt->hTraceFlowMod);
6569 if (RT_FAILURE(rc2))
6570 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x",
6571 pIt->iTraceFlowMod);
6572 }
6573 }
6574 else
6575 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6576 }
6577 return rc;
6578}
6579
6580
6581/**
6582 * @callback_method_impl{FNDBGCCMD, The 'tflowe' (enable trace flow) command.}
6583 */
6584static DECLCALLBACK(int) dbgcCmdTraceFlowEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6585{
6586 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6587
6588 /*
6589 * Validate input.
6590 */
6591 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6592 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 2);
6593 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
6594
6595 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
6596 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
6597
6598 /*
6599 * Check the desired mode.
6600 */
6601 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED | DBGF_DISAS_FLAGS_DEFAULT_MODE;
6602
6603 /** @todo should use DBGFADDRESS for everything */
6604
6605 /*
6606 * Find address.
6607 */
6608 if (!cArgs)
6609 {
6610 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
6611 {
6612#if defined(VBOX_VMM_TARGET_ARMV8)
6613 AssertReleaseFailed();
6614#else
6615 /** @todo Batch query CS, RIP, CPU mode and flags. */
6616 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
6617 if (CPUMIsGuestIn64BitCode(pVCpu))
6618 {
6619 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
6620 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
6621 }
6622 else
6623 {
6624 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
6625 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
6626 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
6627 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
6628 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
6629 {
6630 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
6631 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
6632 }
6633 }
6634#endif
6635
6636 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
6637 }
6638 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
6639 {
6640 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
6641 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
6642 }
6643 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
6644 }
6645 else
6646 pDbgc->DisasmPos = paArgs[0];
6647 pDbgc->pLastPos = &pDbgc->DisasmPos;
6648
6649
6650 int rc;
6651#if 0 /** @todo unused right now */
6652 /*
6653 * Convert physical and host addresses to guest addresses.
6654 */
6655 RTDBGAS hDbgAs = pDbgc->hDbgAs;
6656 switch (pDbgc->DisasmPos.enmType)
6657 {
6658 case DBGCVAR_TYPE_GC_FLAT:
6659 case DBGCVAR_TYPE_GC_FAR:
6660 break;
6661 case DBGCVAR_TYPE_GC_PHYS:
6662 hDbgAs = DBGF_AS_PHYS;
6663 /* fall thru */
6664 case DBGCVAR_TYPE_HC_FLAT:
6665 case DBGCVAR_TYPE_HC_PHYS:
6666 {
6667 DBGCVAR VarTmp;
6668 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
6669 if (RT_FAILURE(rc))
6670 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
6671 pDbgc->DisasmPos = VarTmp;
6672 break;
6673 }
6674 default: AssertFailed(); break;
6675 }
6676#endif
6677
6678 DBGFADDRESS CurAddr;
6679 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
6680 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
6681 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
6682 else
6683 {
6684 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
6685 if (RT_FAILURE(rc))
6686 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
6687 }
6688
6689 DBGFFLOW hCfg;
6690 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
6691 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
6692 if (RT_SUCCESS(rc))
6693 {
6694 /* Create a probe. */
6695 DBGFFLOWTRACEPROBE hFlowTraceProbe = NULL;
6696 DBGFFLOWTRACEPROBE hFlowTraceProbeExit = NULL;
6697 DBGFFLOWTRACEPROBEENTRY Entry;
6698 DBGFFLOWTRACEMOD hFlowTraceMod = NULL;
6699 uint32_t iTraceModId = 0;
6700
6701 RT_ZERO(Entry);
6702 Entry.enmType = DBGFFLOWTRACEPROBEENTRYTYPE_DEBUGGER;
6703
6704 rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbe);
6705 if (RT_SUCCESS(rc))
6706 rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbeExit);
6707 if (RT_SUCCESS(rc))
6708 rc = DBGFR3FlowTraceProbeEntriesAdd(hFlowTraceProbeExit, &Entry, 1 /*cEntries*/);
6709 if (RT_SUCCESS(rc))
6710 rc = DBGFR3FlowTraceModCreateFromFlowGraph(pUVM, VMCPUID_ANY, hCfg, NULL,
6711 hFlowTraceProbe, hFlowTraceProbe,
6712 hFlowTraceProbeExit, &hFlowTraceMod);
6713 if (RT_SUCCESS(rc))
6714 rc = dbgcFlowTraceModAdd(pDbgc, hFlowTraceMod, hCfg, &iTraceModId);
6715 if (RT_SUCCESS(rc))
6716 rc = DBGFR3FlowTraceModEnable(hFlowTraceMod, 0, 0);
6717 if (RT_SUCCESS(rc))
6718 DBGCCmdHlpPrintf(pCmdHlp, "Enabled execution flow tracing %u at %RGv\n",
6719 iTraceModId, CurAddr.FlatPtr);
6720
6721 if (hFlowTraceProbe)
6722 DBGFR3FlowTraceProbeRelease(hFlowTraceProbe);
6723 if (hFlowTraceProbeExit)
6724 DBGFR3FlowTraceProbeRelease(hFlowTraceProbeExit);
6725 }
6726 else
6727 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
6728
6729 NOREF(pCmd);
6730 return rc;
6731}
6732
6733
6734/**
6735 * Enumerates and prints all records contained in the given flow tarce module.
6736 *
6737 * @returns VBox status code.
6738 * @param pCmd The command.
6739 * @param pCmdHlp The command helpers.
6740 * @param hFlowTraceMod The flow trace module to print.
6741 * @param hFlow The control flow graph assoicated with the given module.
6742 * @param iFlowTraceMod The flow trace module identifier.
6743 */
6744static int dbgcCmdTraceFlowPrintOne(PDBGCCMDHLP pCmdHlp, PCDBGCCMD pCmd, DBGFFLOWTRACEMOD hFlowTraceMod,
6745 DBGFFLOW hFlow, uint32_t iFlowTraceMod)
6746{
6747 RT_NOREF(hFlow);
6748
6749 DBGFFLOWTRACEREPORT hFlowTraceReport;
6750 int rc = DBGFR3FlowTraceModQueryReport(hFlowTraceMod, &hFlowTraceReport);
6751 if (RT_SUCCESS(rc))
6752 {
6753 uint32_t cRecords = DBGFR3FlowTraceReportGetRecordCount(hFlowTraceReport);
6754 DBGCCmdHlpPrintf(pCmdHlp, "Report for flow trace module %#x (%u records):\n",
6755 iFlowTraceMod, cRecords);
6756
6757 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cRecords * sizeof(DBGCFLOWBBDUMP));
6758 if (RT_LIKELY(paDumpBb))
6759 {
6760 /* Query the basic block referenced for each record and calculate the size. */
6761 for (uint32_t i = 0; i < cRecords && RT_SUCCESS(rc); i++)
6762 {
6763 DBGFFLOWTRACERECORD hRec = NULL;
6764 rc = DBGFR3FlowTraceReportQueryRecord(hFlowTraceReport, i, &hRec);
6765 if (RT_SUCCESS(rc))
6766 {
6767 DBGFADDRESS Addr;
6768 DBGFR3FlowTraceRecordGetAddr(hRec, &Addr);
6769
6770 DBGFFLOWBB hFlowBb = NULL;
6771 rc = DBGFR3FlowQueryBbByAddress(hFlow, &Addr, &hFlowBb);
6772 if (RT_SUCCESS(rc))
6773 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[i]);
6774
6775 DBGFR3FlowTraceRecordRelease(hRec);
6776 }
6777 }
6778
6779 if (RT_SUCCESS(rc))
6780 {
6781 /* Calculate the ASCII screen dimensions and create one. */
6782 uint32_t cchWidth = 0;
6783 uint32_t cchHeight = 0;
6784 for (unsigned i = 0; i < cRecords; i++)
6785 {
6786 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
6787 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
6788 cchHeight += pDumpBb->cchHeight;
6789
6790 /* Incomplete blocks don't have a successor. */
6791 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
6792 continue;
6793
6794 cchHeight += 2; /* For the arrow down to the next basic block. */
6795 }
6796
6797
6798 DBGCSCREEN hScreen = NULL;
6799 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth, cchHeight);
6800 if (RT_SUCCESS(rc))
6801 {
6802 uint32_t uY = 0;
6803
6804 /* Dump the basic blocks and connections to the immediate successor. */
6805 for (unsigned i = 0; i < cRecords; i++)
6806 {
6807 paDumpBb[i].uStartX = (cchWidth - paDumpBb[i].cchWidth) / 2;
6808 paDumpBb[i].uStartY = uY;
6809 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
6810 uY += paDumpBb[i].cchHeight;
6811
6812 /* Incomplete blocks don't have a successor. */
6813 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
6814 continue;
6815
6816 if (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb) != DBGFFLOWBBENDTYPE_EXIT)
6817 {
6818 /* Draw the arrow down to the next block. */
6819 dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY,
6820 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
6821 uY++;
6822 dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY,
6823 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
6824 uY++;
6825 }
6826 }
6827
6828 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, false /*fUseColor*/);
6829 dbgcScreenAsciiDestroy(hScreen);
6830 }
6831 else
6832 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to create virtual screen for flow trace module %#x", iFlowTraceMod);
6833 }
6834 else
6835 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query all records of flow trace module %#x", iFlowTraceMod);
6836
6837 for (unsigned i = 0; i < cRecords; i++)
6838 {
6839 if (paDumpBb[i].hFlowBb)
6840 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
6841 }
6842
6843 RTMemTmpFree(paDumpBb);
6844 }
6845 else
6846 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to allocate memory for %u records", cRecords);
6847
6848 DBGFR3FlowTraceReportRelease(hFlowTraceReport);
6849 }
6850 else
6851 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query report for flow trace module %#x", iFlowTraceMod);
6852
6853 return rc;
6854}
6855
6856
6857/**
6858 * @callback_method_impl{FNDBGCCMD, The 'tflowp' (print trace flow) command.}
6859 */
6860static DECLCALLBACK(int) dbgcCmdTraceFlowPrint(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6861{
6862 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6863
6864 /*
6865 * Enumerate the arguments.
6866 */
6867 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6868 int rc = VINF_SUCCESS;
6869 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6870 {
6871 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6872 {
6873 /* one */
6874 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6875 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6876 {
6877 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6878 if (pFlowTrace)
6879 rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pFlowTrace->hTraceFlowMod,
6880 pFlowTrace->hFlow, pFlowTrace->iTraceFlowMod);
6881 else
6882 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6883 }
6884 else
6885 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6886 }
6887 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6888 {
6889 /* all */
6890 PDBGCTFLOW pIt;
6891 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6892 {
6893 rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pIt->hTraceFlowMod,
6894 pIt->hFlow, pIt->iTraceFlowMod);
6895 if (RT_FAILURE(rc))
6896 break;
6897 }
6898 }
6899 else
6900 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6901 }
6902 return rc;
6903}
6904
6905
6906/**
6907 * @callback_method_impl{FNDBGCCMD, The 'tflowr' (reset trace flow) command.}
6908 */
6909static DECLCALLBACK(int) dbgcCmdTraceFlowReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6910{
6911 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6912
6913 /*
6914 * Enumerate the arguments.
6915 */
6916 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6917 int rc = VINF_SUCCESS;
6918 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6919 {
6920 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6921 {
6922 /* one */
6923 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6924 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6925 {
6926 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6927 if (pFlowTrace)
6928 {
6929 rc = DBGFR3FlowTraceModClear(pFlowTrace->hTraceFlowMod);
6930 if (RT_FAILURE(rc))
6931 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", iFlowTraceMod);
6932 }
6933 else
6934 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6935 }
6936 else
6937 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6938 }
6939 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6940 {
6941 /* all */
6942 PDBGCTFLOW pIt;
6943 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6944 {
6945 rc = DBGFR3FlowTraceModClear(pIt->hTraceFlowMod);
6946 if (RT_FAILURE(rc))
6947 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", pIt->iTraceFlowMod);
6948 }
6949 }
6950 else
6951 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6952 }
6953 return rc;
6954}
6955
6956
6957
6958/**
6959 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 8-bit value.}
6960 */
6961static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6962 PDBGCVAR pResult)
6963{
6964 RT_NOREF1(pUVM);
6965 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6966 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6967 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6968
6969 uint8_t b;
6970 int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL);
6971 if (RT_FAILURE(rc))
6972 return rc;
6973 DBGCVAR_INIT_NUMBER(pResult, b);
6974
6975 NOREF(pFunc);
6976 return VINF_SUCCESS;
6977}
6978
6979
6980/**
6981 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 16-bit value.}
6982 */
6983static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6984 PDBGCVAR pResult)
6985{
6986 RT_NOREF1(pUVM);
6987 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6988 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6989 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6990
6991 uint16_t u16;
6992 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL);
6993 if (RT_FAILURE(rc))
6994 return rc;
6995 DBGCVAR_INIT_NUMBER(pResult, u16);
6996
6997 NOREF(pFunc);
6998 return VINF_SUCCESS;
6999}
7000
7001
7002/**
7003 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 32-bit value.}
7004 */
7005static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7006 PDBGCVAR pResult)
7007{
7008 RT_NOREF1(pUVM);
7009 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7010 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7011 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7012
7013 uint32_t u32;
7014 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL);
7015 if (RT_FAILURE(rc))
7016 return rc;
7017 DBGCVAR_INIT_NUMBER(pResult, u32);
7018
7019 NOREF(pFunc);
7020 return VINF_SUCCESS;
7021}
7022
7023
7024/**
7025 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 64-bit value.}
7026 */
7027static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7028 PDBGCVAR pResult)
7029{
7030 RT_NOREF1(pUVM);
7031 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7032 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7033 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7034
7035 uint64_t u64;
7036 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL);
7037 if (RT_FAILURE(rc))
7038 return rc;
7039 DBGCVAR_INIT_NUMBER(pResult, u64);
7040
7041 NOREF(pFunc);
7042 return VINF_SUCCESS;
7043}
7044
7045
7046/**
7047 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned pointer-sized value.}
7048 */
7049static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7050 PDBGCVAR pResult)
7051{
7052 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7053 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7054 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7055
7056 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
7057 if (enmMode == CPUMMODE_LONG)
7058 return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
7059 return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
7060}
7061
7062
7063/**
7064 * @callback_method_impl{FNDBGCFUNC, The hi(value) function implementation.}
7065 */
7066static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7067 PDBGCVAR pResult)
7068{
7069 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7070
7071 uint16_t uHi;
7072 switch (paArgs[0].enmType)
7073 {
7074 case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break;
7075 case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break;
7076 case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break;
7077 case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break;
7078 case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break;
7079 case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break;
7080 default:
7081 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
7082 }
7083 DBGCVAR_INIT_NUMBER(pResult, uHi);
7084 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
7085
7086 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
7087 return VINF_SUCCESS;
7088}
7089
7090
7091/**
7092 * @callback_method_impl{FNDBGCFUNC, The low(value) function implementation.}
7093 */
7094static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7095 PDBGCVAR pResult)
7096{
7097 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7098
7099 uint16_t uLow;
7100 switch (paArgs[0].enmType)
7101 {
7102 case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break;
7103 case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break;
7104 case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break;
7105 case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break;
7106 case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break;
7107 case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break;
7108 default:
7109 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
7110 }
7111 DBGCVAR_INIT_NUMBER(pResult, uLow);
7112 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
7113
7114 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
7115 return VINF_SUCCESS;
7116}
7117
7118
7119/**
7120 * @callback_method_impl{FNDBGCFUNC,The low(value) function implementation.}
7121 */
7122static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7123 PDBGCVAR pResult)
7124{
7125 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7126 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
7127 return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]);
7128}
7129
7130
7131/** Generic pointer argument wo/ range. */
7132static const DBGCVARDESC g_aArgPointerWoRange[] =
7133{
7134 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
7135 { 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." },
7136};
7137
7138/** Generic pointer or number argument. */
7139static const DBGCVARDESC g_aArgPointerNumber[] =
7140{
7141 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
7142 { 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." },
7143};
7144
7145
7146
7147/** Function descriptors for the CodeView / WinDbg emulation.
7148 * The emulation isn't attempting to be identical, only somewhat similar.
7149 */
7150const DBGCFUNC g_aFuncsCodeView[] =
7151{
7152 { "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." },
7153 { "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." },
7154 { "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." },
7155 { "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." },
7156 { "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." },
7157 { "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." },
7158 { "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." },
7159 { "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." },
7160};
7161
7162/** The number of functions in the CodeView/WinDbg emulation. */
7163const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);
7164
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette