VirtualBox

source: vbox/trunk/src/VBox/Debugger/DBGCEmulateCodeView.cpp@ 106284

Last change on this file since 106284 was 106061, checked in by vboxsync, 2 months ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 321.3 KB
Line 
1/* $Id: DBGCEmulateCodeView.cpp 106061 2024-09-16 14:03:52Z vboxsync $ */
2/** @file
3 * DBGC - Debugger Console, CodeView / WinDbg Emulation.
4 */
5
6/*
7 * Copyright (C) 2006-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_DBGC
33#include <VBox/dbg.h>
34#include <VBox/vmm/dbgf.h>
35#include <VBox/vmm/dbgfflowtrace.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/cpum.h>
38#include <VBox/dis.h>
39#include <VBox/param.h>
40#include <VBox/err.h>
41#include <VBox/log.h>
42
43#include <iprt/asm.h>
44#include <iprt/mem.h>
45#include <iprt/string.h>
46#include <iprt/assert.h>
47#include <iprt/ctype.h>
48#include <iprt/time.h>
49
50#include <stdlib.h>
51#include <stdio.h>
52
53#include "DBGCInternal.h"
54
55
56/*********************************************************************************************************************************
57* Internal Functions *
58*********************************************************************************************************************************/
59static FNDBGCCMD dbgcCmdBrkAccess;
60static FNDBGCCMD dbgcCmdBrkClear;
61static FNDBGCCMD dbgcCmdBrkDisable;
62static FNDBGCCMD dbgcCmdBrkEnable;
63static FNDBGCCMD dbgcCmdBrkList;
64static FNDBGCCMD dbgcCmdBrkSet;
65static FNDBGCCMD dbgcCmdBrkREM;
66static FNDBGCCMD dbgcCmdDumpMem;
67static FNDBGCCMD dbgcCmdDumpDT;
68static FNDBGCCMD dbgcCmdDumpIDT;
69static FNDBGCCMD dbgcCmdDumpPageDir;
70static FNDBGCCMD dbgcCmdDumpPageDirBoth;
71static FNDBGCCMD dbgcCmdDumpPageHierarchy;
72static FNDBGCCMD dbgcCmdDumpPageTable;
73static FNDBGCCMD dbgcCmdDumpPageTableBoth;
74static FNDBGCCMD dbgcCmdDumpTSS;
75static FNDBGCCMD dbgcCmdDumpTypeInfo;
76static FNDBGCCMD dbgcCmdDumpTypedVal;
77static FNDBGCCMD dbgcCmdEditMem;
78static FNDBGCCMD dbgcCmdGo;
79static FNDBGCCMD dbgcCmdGoUp;
80static FNDBGCCMD dbgcCmdListModules;
81static FNDBGCCMD dbgcCmdListNear;
82static FNDBGCCMD dbgcCmdListSource;
83static FNDBGCCMD dbgcCmdListSymbols;
84static FNDBGCCMD dbgcCmdMemoryInfo;
85static FNDBGCCMD dbgcCmdReg;
86static FNDBGCCMD dbgcCmdRegGuest;
87static FNDBGCCMD dbgcCmdRegTerse;
88static FNDBGCCMD dbgcCmdSearchMem;
89static FNDBGCCMD dbgcCmdSearchMemType;
90static FNDBGCCMD dbgcCmdStepTrace;
91static FNDBGCCMD dbgcCmdStepTraceTo;
92static FNDBGCCMD dbgcCmdStepTraceToggle;
93static FNDBGCCMD dbgcCmdEventCtrl;
94static FNDBGCCMD dbgcCmdEventCtrlList;
95static FNDBGCCMD dbgcCmdEventCtrlReset;
96static FNDBGCCMD dbgcCmdStack;
97static FNDBGCCMD dbgcCmdUnassemble;
98static FNDBGCCMD dbgcCmdUnassembleCfg;
99static FNDBGCCMD dbgcCmdTraceFlowClear;
100static FNDBGCCMD dbgcCmdTraceFlowDisable;
101static FNDBGCCMD dbgcCmdTraceFlowEnable;
102static FNDBGCCMD dbgcCmdTraceFlowPrint;
103static FNDBGCCMD dbgcCmdTraceFlowReset;
104
105
106/*********************************************************************************************************************************
107* Global Variables *
108*********************************************************************************************************************************/
109/** 'ba' arguments. */
110static const DBGCVARDESC g_aArgBrkAcc[] =
111{
112 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
113 { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." },
114 { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." },
115 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
116 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
117 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
118 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
119};
120
121
122/** 'bc', 'bd', 'be' arguments. */
123static const DBGCVARDESC g_aArgBrks[] =
124{
125 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
126 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." },
127 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." },
128};
129
130
131/** 'bp' arguments. */
132static const DBGCVARDESC g_aArgBrkSet[] =
133{
134 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
135 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
136 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
137 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
138 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
139};
140
141
142/** 'br' arguments. */
143static const DBGCVARDESC g_aArgBrkREM[] =
144{
145 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
146 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
147 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
148 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
149 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
150};
151
152
153/** 'd?' arguments. */
154static const DBGCVARDESC g_aArgDumpMem[] =
155{
156 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
157 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory. Tip: Use the L or LB operator to specify how may items or bytes to dump." },
158};
159
160
161/** 'dg', 'dga', 'dl', 'dla' arguments. */
162static const DBGCVARDESC g_aArgDumpDT[] =
163{
164 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
165 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." },
166 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." },
167};
168
169
170/** 'di', 'dia' arguments. */
171static const DBGCVARDESC g_aArgDumpIDT[] =
172{
173 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
174 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." },
175};
176
177
178/** 'dpd*' arguments. */
179static const DBGCVARDESC g_aArgDumpPD[] =
180{
181 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
182 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." },
183 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." },
184};
185
186
187/** 'dpda' arguments. */
188static const DBGCVARDESC g_aArgDumpPDAddr[] =
189{
190 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
191 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." },
192};
193
194
195/** 'dph*' arguments. */
196static const DBGCVARDESC g_aArgDumpPH[] =
197{
198 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
199 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." },
200 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." },
201 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." },
202};
203
204
205/** 'dpt?' arguments. */
206static const DBGCVARDESC g_aArgDumpPT[] =
207{
208 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
209 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." },
210};
211
212
213/** 'dpta' arguments. */
214static const DBGCVARDESC g_aArgDumpPTAddr[] =
215{
216 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
217 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." },
218};
219
220
221/** 'dt' arguments. */
222static const DBGCVARDESC g_aArgDumpTSS[] =
223{
224 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
225 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." },
226 { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." }
227};
228
229
230/** 'dti' arguments. */
231static const DBGCVARDESC g_aArgDumpTypeInfo[] =
232{
233 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
234 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to dump" },
235 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump the type information" }
236};
237
238
239/** 'dtv' arguments. */
240static const DBGCVARDESC g_aArgDumpTypedVal[] =
241{
242 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
243 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to use" },
244 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address to start dumping from." },
245 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump" }
246};
247
248
249/** 'e?' arguments. */
250static const DBGCVARDESC g_aArgEditMem[] =
251{
252 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
253 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." },
254 { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." },
255};
256
257
258/** 'g' arguments. */
259static const DBGCVARDESC g_aArgGo[] =
260{
261 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
262 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "idCpu", "CPU ID." },
263};
264
265
266/** 'lm' arguments. */
267static const DBGCVARDESC g_aArgListMods[] =
268{
269 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
270 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." },
271};
272
273
274/** 'ln' arguments. */
275static const DBGCVARDESC g_aArgListNear[] =
276{
277 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
278 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." },
279 { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." },
280};
281
282
283/** 'ls' arguments. */
284static const DBGCVARDESC g_aArgListSource[] =
285{
286 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
287 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." },
288};
289
290
291/** 'm' argument. */
292static const DBGCVARDESC g_aArgMemoryInfo[] =
293{
294 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
295 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." },
296};
297
298
299/** 'p', 'pc', 'pt', 't', 'tc' and 'tt' arguments. */
300static const DBGCVARDESC g_aArgStepTrace[] =
301{
302 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
303 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "count", "Number of instructions or source lines to step." },
304 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
305};
306
307
308/** 'pa' and 'ta' arguments. */
309static const DBGCVARDESC g_aArgStepTraceTo[] =
310{
311 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
312 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Where to stop" },
313 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
314};
315
316
317/** 'r' arguments. */
318static const DBGCVARDESC g_aArgReg[] =
319{
320 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
321 { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." },
322 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." },
323 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." },
324};
325
326
327/** 's' arguments. */
328static const DBGCVARDESC g_aArgSearchMem[] =
329{
330 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
331 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." },
332 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." },
333 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." },
334 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." },
335 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." },
336 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." },
337 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n <Hits>", "Maximum number of hits." },
338 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
339 { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
340};
341
342
343/** 's?' arguments. */
344static const DBGCVARDESC g_aArgSearchMemType[] =
345{
346 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
347 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
348 { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
349};
350
351
352/** 'sxe', 'sxn', 'sxi', 'sx-' arguments. */
353static const DBGCVARDESC g_aArgEventCtrl[] =
354{
355 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
356 { 0, 1, DBGCVAR_CAT_STRING, 0, "-c", "The -c option, requires <cmds>." },
357 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "cmds", "Command to execute on this event." },
358 { 0 /*weird*/, ~0U, DBGCVAR_CAT_STRING, 0, "event", "One or more events, 'all' refering to all events." },
359};
360
361/** 'sx' and 'sr' arguments. */
362static const DBGCVARDESC g_aArgEventCtrlOpt[] =
363{
364 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
365 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "event", "Zero or more events, 'all' refering to all events and being the default." },
366};
367
368/** 'u' arguments. */
369static const DBGCVARDESC g_aArgUnassemble[] =
370{
371 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
372 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
373};
374
375/** 'ucfg' arguments. */
376static const DBGCVARDESC g_aArgUnassembleCfg[] =
377{
378 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
379 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
380};
381
382/** 'x' arguments. */
383static const DBGCVARDESC g_aArgListSyms[] =
384{
385 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
386 { 1, 1, DBGCVAR_CAT_STRING, 0, "symbols", "The symbols to list, format is Module!Symbol with wildcards being supoprted." }
387};
388
389/** 'tflowc' arguments. */
390static const DBGCVARDESC g_aArgTraceFlowClear[] =
391{
392 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
393 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
394 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
395};
396
397/** 'tflowd' arguments. */
398static const DBGCVARDESC g_aArgTraceFlowDisable[] =
399{
400 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
401 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
402 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
403};
404
405/** 'tflowe' arguments. */
406static const DBGCVARDESC g_aArgTraceFlowEnable[] =
407{
408 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
409 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start tracing." },
410 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "<Hits>", "Maximum number of hits before the module is disabled." }
411};
412
413/** 'tflowp', 'tflowr' arguments. */
414static const DBGCVARDESC g_aArgTraceFlowPrintReset[] =
415{
416 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
417 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
418 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
419};
420
421/** Command descriptors for the CodeView / WinDbg emulation.
422 * The emulation isn't attempting to be identical, only somewhat similar.
423 */
424const DBGCCMD g_aCmdsCodeView[] =
425{
426 /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
427 { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "<access> <size> <address> [passes [max passes]] [cmds]",
428 "Sets a data access breakpoint." },
429 { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | <bp#> [bp# []]", "Deletes a set of breakpoints." },
430 { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | <bp#> [bp# []]", "Disables a set of breakpoints." },
431 { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | <bp#> [bp# []]", "Enables a set of breakpoints." },
432 { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." },
433 { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "<address> [passes [max passes]] [cmds]",
434 "Sets a breakpoint (int 3)." },
435 { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "<address> [passes [max passes]] [cmds]",
436 "Sets a recompiler specific breakpoint." },
437 { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size and type." },
438 { "dF", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16." },
439 { "dFs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16 with near symbols." },
440 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
441 { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." },
442 { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." },
443 { "dds", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as double words with near symbols." },
444 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
445 { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." },
446 { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." },
447 { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." },
448 { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." },
449 { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." },
450 { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." },
451 { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." },
452 { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." },
453 { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " },
454 { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." },
455 { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " },
456 { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." },
457 { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." },
458 { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." },
459 { "dp", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words." },
460 { "dps", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words with near symbols." },
461 { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the default context." },
462 { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps memory at given address as a page table." },
463 { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"<addr>", "Dumps page table entries of the guest and the hypervisor." },
464 { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the guest." },
465 { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the hypervisor." },
466 { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." },
467 { "dqs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as quad words with near symbols." },
468 { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." },
469 { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." },
470 { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." },
471 { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." },
472 { "dti", 1, 2, &g_aArgDumpTypeInfo[0],RT_ELEMENTS(g_aArgDumpTypeInfo), 0, dbgcCmdDumpTypeInfo,"<type> [levels]", "Dump type information." },
473 { "dtv", 2, 3, &g_aArgDumpTypedVal[0],RT_ELEMENTS(g_aArgDumpTypedVal), 0, dbgcCmdDumpTypedVal,"<type> <addr> [levels]", "Dump a memory buffer using the information in the given type." },
474 { "du", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as unicode string (little endian)." },
475 { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." },
476 /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also
477 * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */
478 { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 1-byte value to memory." },
479 { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 2-byte value to memory." },
480 { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 4-byte value to memory." },
481 { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 8-byte value to memory." },
482 { "g", 0, 1, &g_aArgGo[0], RT_ELEMENTS(g_aArgGo), 0, dbgcCmdGo, "[idCpu]", "Continue execution of all or the specified CPU. (The latter is not recommended unless you know exactly what you're doing.)" },
483 { "gu", 0, 0, NULL, 0, 0, dbgcCmdGoUp, "", "Go up - continue execution till after return." },
484 { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." },
485 { "kv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack." },
486 { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." },
487 { "kgv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack - guest." },
488 { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." },
489 { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." },
490 { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." },
491 { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." },
492 { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." },
493 { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." },
494 { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." },
495 { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "<addr>", "Display information about that piece of memory." },
496 { "p", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step over." },
497 { "pr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
498 { "pa", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Step to the given address." },
499 { "pc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next call instruction." },
500 { "pt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next return instruction." },
501 { "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set. Special 'all' register for showing all. Append a dot '.' to display sub-fields and aliases." },
502 { "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set. Special 'all' register for showing all. Append a dot '.' to display sub-fields and aliases." },
503 { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." },
504 { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." },
505 { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." },
506 { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] <range> <pattern>", "Continue last search." },
507 { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an ascii string." },
508 { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more bytes." },
509 { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more double words." },
510 { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more quad words." },
511 { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an unicode string." },
512 { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more words." },
513 { "sx", 0, ~0U, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlList, "[<event> [..]]", "Lists settings for exceptions, exits and other events. All if no filter is specified." },
514 { "sx-", 3, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "-c <cmd> <event> [..]", "Modifies the command for one or more exceptions, exits or other event. 'all' addresses all." },
515 { "sxe", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Enable: Break into the debugger on the specified exceptions, exits and other events. 'all' addresses all." },
516 { "sxn", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Notify: Display info in the debugger and continue on the specified exceptions, exits and other events. 'all' addresses all." },
517 { "sxi", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Ignore: Ignore the specified exceptions, exits and other events ('all' = all of them). Without the -c option, the guest runs like normal." },
518 { "sxr", 0, 0, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlReset, "", "Reset the settings to default for exceptions, exits and other events. All if no filter is specified." },
519 { "t", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace ." },
520 { "tflowc", 1, ~0U, &g_aArgTraceFlowClear[0], RT_ELEMENTS(g_aArgTraceFlowClear), 0, dbgcCmdTraceFlowClear, "all | <tf#> [tf# []]", "Clears trace execution flow for the given method." },
521 { "tflowd", 0, 1, &g_aArgTraceFlowDisable[0], RT_ELEMENTS(g_aArgTraceFlowDisable), 0, dbgcCmdTraceFlowDisable, "all | <tf#> [tf# []]", "Disables trace execution flow for the given method." },
522 { "tflowe", 0, 2, &g_aArgTraceFlowEnable[0], RT_ELEMENTS(g_aArgTraceFlowEnable), 0, dbgcCmdTraceFlowEnable, "<addr> <hits>", "Enable trace execution flow of the given method." },
523 { "tflowp", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowPrint, "all | <tf#> [tf# []]", "Prints the collected trace data of the given method." },
524 { "tflowr", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowReset, "all | <tf#> [tf# []]", "Resets the collected trace data of the given trace flow module." },
525 { "tr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
526 { "ta", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Trace to the given address." },
527 { "tc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next call instruction." },
528 { "tt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next return instruction." },
529 { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." },
530 { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." },
531 { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." },
532 { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." },
533 { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." },
534 { "ucfg", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph." },
535 { "ucfgc", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph with colors." },
536 { "x", 1, 1, &g_aArgListSyms[0], RT_ELEMENTS(g_aArgListSyms), 0, dbgcCmdListSymbols, "* | <Module!Symbol>", "Examine symbols." },
537};
538
539/** The number of commands in the CodeView/WinDbg emulation. */
540const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView);
541
542
543/**
544 * Selectable debug event descriptors.
545 *
546 * @remarks Sorted by DBGCSXEVT::enmType value.
547 */
548const DBGCSXEVT g_aDbgcSxEvents[] =
549{
550 { DBGFEVENT_INTERRUPT_HARDWARE, "hwint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Hardware interrupt" },
551 { DBGFEVENT_INTERRUPT_SOFTWARE, "swint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Software interrupt" },
552 { DBGFEVENT_TRIPLE_FAULT, "triplefault", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Enabled, 0, "Triple fault "},
553 { DBGFEVENT_XCPT_DE, "xcpt_de", "de", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DE (integer divide error)" },
554 { DBGFEVENT_XCPT_DB, "xcpt_db", "db", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DB (debug)" },
555 { DBGFEVENT_XCPT_02, "xcpt_02", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
556 { DBGFEVENT_XCPT_BP, "xcpt_bp", "bp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BP (breakpoint)" },
557 { DBGFEVENT_XCPT_OF, "xcpt_of", "of", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#OF (overflow (INTO))" },
558 { DBGFEVENT_XCPT_BR, "xcpt_br", "br", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BR (bound range exceeded)" },
559 { DBGFEVENT_XCPT_UD, "xcpt_ud", "ud", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#UD (undefined opcode)" },
560 { DBGFEVENT_XCPT_NM, "xcpt_nm", "nm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#NM (FPU not available)" },
561 { DBGFEVENT_XCPT_DF, "xcpt_df", "df", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DF (double fault)" },
562 { DBGFEVENT_XCPT_09, "xcpt_09", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "Coprocessor segment overrun" },
563 { DBGFEVENT_XCPT_TS, "xcpt_ts", "ts", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#TS (task switch)" },
564 { DBGFEVENT_XCPT_NP, "xcpt_np", "np", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#NP (segment not present)" },
565 { DBGFEVENT_XCPT_SS, "xcpt_ss", "ss", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SS (stack segment fault)" },
566 { DBGFEVENT_XCPT_GP, "xcpt_gp", "gp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#GP (general protection fault)" },
567 { DBGFEVENT_XCPT_PF, "xcpt_pf", "pf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#PF (page fault)" },
568 { DBGFEVENT_XCPT_0f, "xcpt_0f", "xcpt0f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
569 { DBGFEVENT_XCPT_MF, "xcpt_mf", "mf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MF (math fault)" },
570 { DBGFEVENT_XCPT_AC, "xcpt_ac", "ac", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#AC (alignment check)" },
571 { DBGFEVENT_XCPT_MC, "xcpt_mc", "mc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MC (machine check)" },
572 { DBGFEVENT_XCPT_XF, "xcpt_xf", "xf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#XF (SIMD floating-point exception)" },
573 { DBGFEVENT_XCPT_VE, "xcpt_vd", "ve", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#VE (virtualization exception)" },
574 { DBGFEVENT_XCPT_15, "xcpt_15", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
575 { DBGFEVENT_XCPT_16, "xcpt_16", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
576 { DBGFEVENT_XCPT_17, "xcpt_17", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
577 { DBGFEVENT_XCPT_18, "xcpt_18", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
578 { DBGFEVENT_XCPT_19, "xcpt_19", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
579 { DBGFEVENT_XCPT_1a, "xcpt_1a", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
580 { DBGFEVENT_XCPT_1b, "xcpt_1b", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
581 { DBGFEVENT_XCPT_1c, "xcpt_1c", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
582 { DBGFEVENT_XCPT_1d, "xcpt_1d", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
583 { DBGFEVENT_XCPT_SX, "xcpt_sx", "sx", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SX (security exception)" },
584 { DBGFEVENT_XCPT_1f, "xcpt_1f", "xcpt1f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
585 { DBGFEVENT_INSTR_HALT, "instr_halt", "hlt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
586 { DBGFEVENT_INSTR_MWAIT, "instr_mwait", "mwait", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
587 { DBGFEVENT_INSTR_MONITOR, "instr_monitor", "monitor", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
588 { DBGFEVENT_INSTR_CPUID, "instr_cpuid", "cpuid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
589 { DBGFEVENT_INSTR_INVD, "instr_invd", "invd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
590 { DBGFEVENT_INSTR_WBINVD, "instr_wbinvd", "wbinvd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
591 { DBGFEVENT_INSTR_INVLPG, "instr_invlpg", "invlpg", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
592 { DBGFEVENT_INSTR_RDTSC, "instr_rdtsc", "rdtsc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
593 { DBGFEVENT_INSTR_RDTSCP, "instr_rdtscp", "rdtscp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
594 { DBGFEVENT_INSTR_RDPMC, "instr_rdpmc", "rdpmc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
595 { DBGFEVENT_INSTR_RDMSR, "instr_rdmsr", "rdmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
596 { DBGFEVENT_INSTR_WRMSR, "instr_wrmsr", "wrmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
597 { DBGFEVENT_INSTR_CRX_READ, "instr_crx_read", "crx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
598 { DBGFEVENT_INSTR_CRX_WRITE, "instr_crx_write", "crx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
599 { DBGFEVENT_INSTR_DRX_READ, "instr_drx_read", "drx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
600 { DBGFEVENT_INSTR_DRX_WRITE, "instr_drx_write", "drx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
601 { DBGFEVENT_INSTR_PAUSE, "instr_pause", "pause", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
602 { DBGFEVENT_INSTR_XSETBV, "instr_xsetbv", "xsetbv", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
603 { DBGFEVENT_INSTR_SIDT, "instr_sidt", "sidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
604 { DBGFEVENT_INSTR_LIDT, "instr_lidt", "lidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
605 { DBGFEVENT_INSTR_SGDT, "instr_sgdt", "sgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
606 { DBGFEVENT_INSTR_LGDT, "instr_lgdt", "lgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
607 { DBGFEVENT_INSTR_SLDT, "instr_sldt", "sldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
608 { DBGFEVENT_INSTR_LLDT, "instr_lldt", "lldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
609 { DBGFEVENT_INSTR_STR, "instr_str", "str", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
610 { DBGFEVENT_INSTR_LTR, "instr_ltr", "ltr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
611 { DBGFEVENT_INSTR_GETSEC, "instr_getsec", "getsec", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
612 { DBGFEVENT_INSTR_RSM, "instr_rsm", "rsm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
613 { DBGFEVENT_INSTR_RDRAND, "instr_rdrand", "rdrand", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
614 { DBGFEVENT_INSTR_RDSEED, "instr_rdseed", "rdseed", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
615 { DBGFEVENT_INSTR_XSAVES, "instr_xsaves", "xsaves", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
616 { DBGFEVENT_INSTR_XRSTORS, "instr_xrstors", "xrstors", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
617 { DBGFEVENT_INSTR_VMM_CALL, "instr_vmm_call", "vmm_call", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
618 { DBGFEVENT_INSTR_VMX_VMCLEAR, "instr_vmx_vmclear", "vmclear", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
619 { DBGFEVENT_INSTR_VMX_VMLAUNCH, "instr_vmx_vmlaunch", "vmlaunch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
620 { DBGFEVENT_INSTR_VMX_VMPTRLD, "instr_vmx_vmptrld", "vmptrld", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
621 { DBGFEVENT_INSTR_VMX_VMPTRST, "instr_vmx_vmptrst", "vmptrst", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
622 { DBGFEVENT_INSTR_VMX_VMREAD, "instr_vmx_vmread", "vmread", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
623 { DBGFEVENT_INSTR_VMX_VMRESUME, "instr_vmx_vmresume", "vmresume", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
624 { DBGFEVENT_INSTR_VMX_VMWRITE, "instr_vmx_vmwrite", "vmwrite", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
625 { DBGFEVENT_INSTR_VMX_VMXOFF, "instr_vmx_vmxoff", "vmxoff", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
626 { DBGFEVENT_INSTR_VMX_VMXON, "instr_vmx_vmxon", "vmxon", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
627 { DBGFEVENT_INSTR_VMX_VMFUNC, "instr_vmx_vmfunc", "vmfunc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
628 { DBGFEVENT_INSTR_VMX_INVEPT, "instr_vmx_invept", "invept", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
629 { DBGFEVENT_INSTR_VMX_INVVPID, "instr_vmx_invvpid", "invvpid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
630 { DBGFEVENT_INSTR_VMX_INVPCID, "instr_vmx_invpcid", "invpcid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
631 { DBGFEVENT_INSTR_SVM_VMRUN, "instr_svm_vmrun", "vmrun", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
632 { DBGFEVENT_INSTR_SVM_VMLOAD, "instr_svm_vmload", "vmload", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
633 { DBGFEVENT_INSTR_SVM_VMSAVE, "instr_svm_vmsave", "vmsave", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
634 { DBGFEVENT_INSTR_SVM_STGI, "instr_svm_stgi", "stgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
635 { DBGFEVENT_INSTR_SVM_CLGI, "instr_svm_clgi", "clgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
636 { DBGFEVENT_EXIT_TASK_SWITCH, "exit_task_switch", "task_switch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
637 { DBGFEVENT_EXIT_HALT, "exit_halt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
638 { DBGFEVENT_EXIT_MWAIT, "exit_mwait", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
639 { DBGFEVENT_EXIT_MONITOR, "exit_monitor", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
640 { DBGFEVENT_EXIT_CPUID, "exit_cpuid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
641 { DBGFEVENT_EXIT_INVD, "exit_invd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
642 { DBGFEVENT_EXIT_WBINVD, "exit_wbinvd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
643 { DBGFEVENT_EXIT_INVLPG, "exit_invlpg", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
644 { DBGFEVENT_EXIT_RDTSC, "exit_rdtsc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
645 { DBGFEVENT_EXIT_RDTSCP, "exit_rdtscp", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
646 { DBGFEVENT_EXIT_RDPMC, "exit_rdpmc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
647 { DBGFEVENT_EXIT_RDMSR, "exit_rdmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
648 { DBGFEVENT_EXIT_WRMSR, "exit_wrmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
649 { DBGFEVENT_EXIT_CRX_READ, "exit_crx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
650 { DBGFEVENT_EXIT_CRX_WRITE, "exit_crx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
651 { DBGFEVENT_EXIT_DRX_READ, "exit_drx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
652 { DBGFEVENT_EXIT_DRX_WRITE, "exit_drx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
653 { DBGFEVENT_EXIT_PAUSE, "exit_pause", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
654 { DBGFEVENT_EXIT_XSETBV, "exit_xsetbv", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
655 { DBGFEVENT_EXIT_SIDT, "exit_sidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
656 { DBGFEVENT_EXIT_LIDT, "exit_lidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
657 { DBGFEVENT_EXIT_SGDT, "exit_sgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
658 { DBGFEVENT_EXIT_LGDT, "exit_lgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
659 { DBGFEVENT_EXIT_SLDT, "exit_sldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
660 { DBGFEVENT_EXIT_LLDT, "exit_lldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
661 { DBGFEVENT_EXIT_STR, "exit_str", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
662 { DBGFEVENT_EXIT_LTR, "exit_ltr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
663 { DBGFEVENT_EXIT_GETSEC, "exit_getsec", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
664 { DBGFEVENT_EXIT_RSM, "exit_rsm", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
665 { DBGFEVENT_EXIT_RDRAND, "exit_rdrand", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
666 { DBGFEVENT_EXIT_RDSEED, "exit_rdseed", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
667 { DBGFEVENT_EXIT_XSAVES, "exit_xsaves", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
668 { DBGFEVENT_EXIT_XRSTORS, "exit_xrstors", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
669 { DBGFEVENT_EXIT_VMM_CALL, "exit_vmm_call", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
670 { DBGFEVENT_EXIT_VMX_VMCLEAR, "exit_vmx_vmclear", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
671 { DBGFEVENT_EXIT_VMX_VMLAUNCH, "exit_vmx_vmlaunch", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
672 { DBGFEVENT_EXIT_VMX_VMPTRLD, "exit_vmx_vmptrld", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
673 { DBGFEVENT_EXIT_VMX_VMPTRST, "exit_vmx_vmptrst", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
674 { DBGFEVENT_EXIT_VMX_VMREAD, "exit_vmx_vmread", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
675 { DBGFEVENT_EXIT_VMX_VMRESUME, "exit_vmx_vmresume", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
676 { DBGFEVENT_EXIT_VMX_VMWRITE, "exit_vmx_vmwrite", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
677 { DBGFEVENT_EXIT_VMX_VMXOFF, "exit_vmx_vmxoff", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
678 { DBGFEVENT_EXIT_VMX_VMXON, "exit_vmx_vmxon", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
679 { DBGFEVENT_EXIT_VMX_VMFUNC, "exit_vmx_vmfunc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
680 { DBGFEVENT_EXIT_VMX_INVEPT, "exit_vmx_invept", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
681 { DBGFEVENT_EXIT_VMX_INVVPID, "exit_vmx_invvpid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
682 { DBGFEVENT_EXIT_VMX_INVPCID, "exit_vmx_invpcid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
683 { DBGFEVENT_EXIT_VMX_EPT_VIOLATION, "exit_vmx_ept_violation", "eptvio", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
684 { DBGFEVENT_EXIT_VMX_EPT_MISCONFIG, "exit_vmx_ept_misconfig", "eptmis", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
685 { DBGFEVENT_EXIT_VMX_VAPIC_ACCESS, "exit_vmx_vapic_access", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
686 { DBGFEVENT_EXIT_VMX_VAPIC_WRITE, "exit_vmx_vapic_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
687 { DBGFEVENT_EXIT_SVM_VMRUN, "exit_svm_vmrun", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
688 { DBGFEVENT_EXIT_SVM_VMLOAD, "exit_svm_vmload", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
689 { DBGFEVENT_EXIT_SVM_VMSAVE, "exit_svm_vmsave", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
690 { DBGFEVENT_EXIT_SVM_STGI, "exit_svm_stgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
691 { DBGFEVENT_EXIT_SVM_CLGI, "exit_svm_clgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
692 { DBGFEVENT_VMX_SPLIT_LOCK, "vmx_split_lock", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
693 { DBGFEVENT_IOPORT_UNASSIGNED, "pio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
694 { DBGFEVENT_IOPORT_UNUSED, "pio_unused", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
695 { DBGFEVENT_MEMORY_UNASSIGNED, "mmio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
696 { DBGFEVENT_MEMORY_ROM_WRITE, "rom_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
697 { DBGFEVENT_BSOD_MSR, "bsod_msr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
698 { DBGFEVENT_BSOD_EFI, "bsod_efi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
699 { DBGFEVENT_BSOD_VMMDEV, "bsod_vmmdev", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
700};
701/** Number of entries in g_aDbgcSxEvents. */
702const uint32_t g_cDbgcSxEvents = RT_ELEMENTS(g_aDbgcSxEvents);
703
704
705
706/**
707 * @callback_method_impl{FNDBGCCMD, The 'g' command.}
708 */
709static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
710{
711 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
712
713 /*
714 * Parse arguments.
715 */
716 VMCPUID idCpu = VMCPUID_ALL;
717 if (cArgs == 1)
718 {
719 VMCPUID cCpus = DBGFR3CpuGetCount(pUVM);
720 if (paArgs[0].u.u64Number >= cCpus)
721 return DBGCCmdHlpFail(pCmdHlp, pCmd, "idCpu %RU64 is out of range! Highest valid ID is %u.\n",
722 paArgs[0].u.u64Number, cCpus - 1);
723 idCpu = (VMCPUID)paArgs[0].u.u64Number;
724 }
725 else
726 Assert(cArgs == 0);
727
728 /*
729 * Try resume the VM or CPU.
730 */
731 int rc = DBGFR3Resume(pUVM, idCpu);
732 if (RT_SUCCESS(rc))
733 {
734 Assert(rc == VINF_SUCCESS || rc == VWRN_DBGF_ALREADY_RUNNING);
735 if (rc != VWRN_DBGF_ALREADY_RUNNING)
736 return VINF_SUCCESS;
737 if (idCpu == VMCPUID_ALL)
738 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running");
739 return DBGCCmdHlpFail(pCmdHlp, pCmd, "CPU %u is already running", idCpu);
740 }
741 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume");
742}
743
744
745/**
746 * @callback_method_impl{FNDBGCCMD, The 'gu' command.}
747 */
748static DECLCALLBACK(int) dbgcCmdGoUp(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
749{
750 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
751 RT_NOREF(pCmd, paArgs, cArgs);
752
753 /* The simple way out. */
754 PDBGFADDRESS pStackPop = NULL; /** @todo try set up some stack limitations */
755 RTGCPTR cbStackPop = 0;
756 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET, NULL, pStackPop, cbStackPop, _512K);
757 if (RT_SUCCESS(rc))
758 pDbgc->fReady = false;
759 else
760 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET,) failed");
761 return rc;
762}
763
764
765/**
766 * @callback_method_impl{FNDBGCCMD, The 'ba' command.}
767 */
768static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
769{
770 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
771
772 /*
773 * Interpret access type.
774 */
775 if ( !strchr("xrwi", paArgs[0].u.pszString[0])
776 || paArgs[0].u.pszString[1])
777 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'",
778 paArgs[0].u.pszString, pCmd->pszCmd);
779 uint8_t fType = 0;
780 switch (paArgs[0].u.pszString[0])
781 {
782 case 'x': fType = X86_DR7_RW_EO; break;
783 case 'r': fType = X86_DR7_RW_RW; break;
784 case 'w': fType = X86_DR7_RW_WO; break;
785 case 'i': fType = X86_DR7_RW_IO; break;
786 }
787
788 /*
789 * Validate size.
790 */
791 if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1)
792 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!",
793 paArgs[1].u.u64Number, pCmd->pszCmd);
794 switch (paArgs[1].u.u64Number)
795 {
796 case 1:
797 case 2:
798 case 4:
799 break;
800 /*case 8: - later*/
801 default:
802 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!",
803 paArgs[1].u.u64Number, pCmd->pszCmd);
804 }
805 uint8_t cb = (uint8_t)paArgs[1].u.u64Number;
806
807 /*
808 * Convert the pointer to a DBGF address.
809 */
810 DBGFADDRESS Address;
811 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address);
812 if (RT_FAILURE(rc))
813 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]);
814
815 /*
816 * Pick out the optional arguments.
817 */
818 uint64_t iHitTrigger = 0;
819 uint64_t iHitDisable = UINT64_MAX;
820 const char *pszCmds = NULL;
821 unsigned iArg = 3;
822 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
823 {
824 iHitTrigger = paArgs[iArg].u.u64Number;
825 iArg++;
826 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
827 {
828 iHitDisable = paArgs[iArg].u.u64Number;
829 iArg++;
830 }
831 }
832 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
833 {
834 pszCmds = paArgs[iArg].u.pszString;
835 iArg++;
836 }
837
838 /*
839 * Try set the breakpoint.
840 */
841 uint32_t iBp;
842 rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp);
843 if (RT_SUCCESS(rc))
844 {
845 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
846 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
847 if (RT_SUCCESS(rc))
848 return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
849 if (rc == VERR_DBGC_BP_EXISTS)
850 {
851 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
852 if (RT_SUCCESS(rc))
853 return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
854 }
855 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
856 AssertRC(rc2);
857 }
858 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr);
859}
860
861
862/**
863 * @callback_method_impl{FNDBGCCMD, The 'bc' command.}
864 */
865static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
866{
867 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
868
869 /*
870 * Enumerate the arguments.
871 */
872 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
873 int rc = VINF_SUCCESS;
874 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
875 {
876 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
877 {
878 /* one */
879 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
880 if (iBp == paArgs[iArg].u.u64Number)
881 {
882 int rc2 = DBGFR3BpClear(pUVM, iBp);
883 if (RT_FAILURE(rc2))
884 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
885 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
886 dbgcBpDelete(pDbgc, iBp);
887 }
888 else
889 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
890 }
891 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
892 {
893 /* all */
894 PDBGCBP pBp = pDbgc->pFirstBp;
895 while (pBp)
896 {
897 uint32_t iBp = pBp->iBp;
898 pBp = pBp->pNext;
899
900 int rc2 = DBGFR3BpClear(pUVM, iBp);
901 if (RT_FAILURE(rc2))
902 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
903 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
904 dbgcBpDelete(pDbgc, iBp);
905 }
906 }
907 else
908 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
909 }
910 return rc;
911}
912
913
914/**
915 * @callback_method_impl{FNDBGCCMD, The 'bd' command.}
916 */
917static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
918{
919 /*
920 * Enumerate the arguments.
921 */
922 int rc = VINF_SUCCESS;
923 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
924 {
925 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
926 {
927 /* one */
928 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
929 if (iBp == paArgs[iArg].u.u64Number)
930 {
931 rc = DBGFR3BpDisable(pUVM, iBp);
932 if (RT_FAILURE(rc))
933 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp);
934 }
935 else
936 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
937 }
938 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
939 {
940 /* all */
941 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
942 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
943 {
944 int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp);
945 if (RT_FAILURE(rc2))
946 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp);
947 }
948 }
949 else
950 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
951 }
952 return rc;
953}
954
955
956/**
957 * @callback_method_impl{FNDBGCCMD, The 'be' command.}
958 */
959static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
960{
961 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
962
963 /*
964 * Enumerate the arguments.
965 */
966 int rc = VINF_SUCCESS;
967 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
968 {
969 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
970 {
971 /* one */
972 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
973 if (iBp == paArgs[iArg].u.u64Number)
974 {
975 rc = DBGFR3BpEnable(pUVM, iBp);
976 if (RT_FAILURE(rc))
977 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp);
978 }
979 else
980 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
981 }
982 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
983 {
984 /* all */
985 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
986 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
987 {
988 int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp);
989 if (RT_FAILURE(rc2))
990 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp);
991 }
992 }
993 else
994 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
995 }
996 return rc;
997}
998
999
1000/**
1001 * Breakpoint enumeration callback function.
1002 *
1003 * @returns VBox status code. Any failure will stop the enumeration.
1004 * @param pUVM The user mode VM handle.
1005 * @param pvUser The user argument.
1006 * @param hBp The DBGF breakpoint handle.
1007 * @param pBp Pointer to the breakpoint information. (readonly)
1008 */
1009static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, DBGFBP hBp, PCDBGFBPPUB pBp)
1010{
1011 PDBGC pDbgc = (PDBGC)pvUser;
1012 PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, hBp);
1013
1014 /*
1015 * BP type and size.
1016 */
1017 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c ", hBp, DBGF_BP_PUB_IS_ENABLED(pBp) ? 'e' : 'd');
1018 bool fHasAddress = false;
1019 switch (DBGF_BP_PUB_GET_TYPE(pBp))
1020 {
1021 case DBGFBPTYPE_INT3:
1022 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " p %RGv", pBp->u.Int3.GCPtr);
1023 fHasAddress = true;
1024 break;
1025 case DBGFBPTYPE_REG:
1026 {
1027 char chType;
1028 switch (pBp->u.Reg.fType)
1029 {
1030 case X86_DR7_RW_EO: chType = 'x'; break;
1031 case X86_DR7_RW_WO: chType = 'w'; break;
1032 case X86_DR7_RW_IO: chType = 'i'; break;
1033 case X86_DR7_RW_RW: chType = 'r'; break;
1034 default: chType = '?'; break;
1035
1036 }
1037 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%d %c %RGv", pBp->u.Reg.cb, chType, pBp->u.Reg.GCPtr);
1038 fHasAddress = true;
1039 break;
1040 }
1041
1042/** @todo realign the list when I/O and MMIO breakpoint command have been added and it's possible to test this code. */
1043 case DBGFBPTYPE_PORT_IO:
1044 case DBGFBPTYPE_MMIO:
1045 {
1046 uint32_t fAccess = DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? pBp->u.PortIo.fAccess : pBp->u.Mmio.fAccess;
1047 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? " i" : " m");
1048 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1049 fAccess & DBGFBPIOACCESS_READ_MASK ? 'r' : '-',
1050 fAccess & DBGFBPIOACCESS_READ_BYTE ? '1' : '-',
1051 fAccess & DBGFBPIOACCESS_READ_WORD ? '2' : '-',
1052 fAccess & DBGFBPIOACCESS_READ_DWORD ? '4' : '-',
1053 fAccess & DBGFBPIOACCESS_READ_QWORD ? '8' : '-',
1054 fAccess & DBGFBPIOACCESS_READ_OTHER ? '+' : '-');
1055 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1056 fAccess & DBGFBPIOACCESS_WRITE_MASK ? 'w' : '-',
1057 fAccess & DBGFBPIOACCESS_WRITE_BYTE ? '1' : '-',
1058 fAccess & DBGFBPIOACCESS_WRITE_WORD ? '2' : '-',
1059 fAccess & DBGFBPIOACCESS_WRITE_DWORD ? '4' : '-',
1060 fAccess & DBGFBPIOACCESS_WRITE_QWORD ? '8' : '-',
1061 fAccess & DBGFBPIOACCESS_WRITE_OTHER ? '+' : '-');
1062 if (DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO)
1063 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04x-%04x",
1064 pBp->u.PortIo.uPort, pBp->u.PortIo.uPort + pBp->u.PortIo.cPorts - 1);
1065 else
1066 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%RGp LB %03x", pBp->u.Mmio.PhysAddr, pBp->u.Mmio.cb);
1067 break;
1068 }
1069
1070 default:
1071 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " unknown type %d!!", DBGF_BP_PUB_GET_TYPE(pBp));
1072 AssertFailed();
1073 break;
1074
1075 }
1076 if (pBp->iHitDisable == ~(uint64_t)0)
1077 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to ~0) ", pBp->cHits, pBp->iHitTrigger);
1078 else
1079 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to %04RX64)", pBp->cHits, pBp->iHitTrigger, pBp->iHitDisable);
1080
1081 /*
1082 * Try resolve the address if it has one.
1083 */
1084 if (fHasAddress)
1085 {
1086 RTDBGSYMBOL Sym;
1087 RTINTPTR off;
1088 DBGFADDRESS Addr;
1089 int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->u.GCPtr),
1090 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1091 &off, &Sym, NULL);
1092 if (RT_SUCCESS(rc))
1093 {
1094 if (!off)
1095 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName);
1096 else if (off > 0)
1097 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off);
1098 else
1099 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off);
1100 }
1101 }
1102
1103 /*
1104 * The commands.
1105 */
1106 if (pDbgcBp)
1107 {
1108 if (pDbgcBp->cchCmd)
1109 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd);
1110 else
1111 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n");
1112 }
1113 else
1114 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n");
1115
1116 return VINF_SUCCESS;
1117}
1118
1119
1120/**
1121 * @callback_method_impl{FNDBGCCMD, The 'bl' command.}
1122 */
1123static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1124{
1125 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1126 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
1127 NOREF(paArgs);
1128
1129 /*
1130 * Enumerate the breakpoints.
1131 */
1132 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1133 int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc);
1134 if (RT_FAILURE(rc))
1135 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum");
1136 return rc;
1137}
1138
1139
1140/**
1141 * @callback_method_impl{FNDBGCCMD, The 'bp' command.}
1142 */
1143static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1144{
1145 /*
1146 * Convert the pointer to a DBGF address.
1147 */
1148 DBGFADDRESS Address;
1149 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1150 if (RT_FAILURE(rc))
1151 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1152
1153 /*
1154 * Pick out the optional arguments.
1155 */
1156 uint64_t iHitTrigger = 0;
1157 uint64_t iHitDisable = UINT64_MAX;
1158 const char *pszCmds = NULL;
1159 unsigned iArg = 1;
1160 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1161 {
1162 iHitTrigger = paArgs[iArg].u.u64Number;
1163 iArg++;
1164 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1165 {
1166 iHitDisable = paArgs[iArg].u.u64Number;
1167 iArg++;
1168 }
1169 }
1170 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1171 {
1172 pszCmds = paArgs[iArg].u.pszString;
1173 iArg++;
1174 }
1175
1176 /*
1177 * Try set the breakpoint.
1178 */
1179 uint32_t iBp;
1180 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1181 rc = DBGFR3BpSetInt3(pUVM, pDbgc->idCpu, &Address, iHitTrigger, iHitDisable, &iBp);
1182 if (RT_SUCCESS(rc))
1183 {
1184 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1185 if (RT_SUCCESS(rc))
1186 return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1187 if (rc == VERR_DBGC_BP_EXISTS)
1188 {
1189 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1190 if (RT_SUCCESS(rc))
1191 return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1192 }
1193 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1194 AssertRC(rc2);
1195 }
1196 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr);
1197}
1198
1199
1200/**
1201 * @callback_method_impl{FNDBGCCMD, The 'br' command.}
1202 */
1203static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1204{
1205 /*
1206 * Convert the pointer to a DBGF address.
1207 */
1208 DBGFADDRESS Address;
1209 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1210 if (RT_FAILURE(rc))
1211 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1212
1213 /*
1214 * Pick out the optional arguments.
1215 */
1216 uint64_t iHitTrigger = 0;
1217 uint64_t iHitDisable = UINT64_MAX;
1218 const char *pszCmds = NULL;
1219 unsigned iArg = 1;
1220 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1221 {
1222 iHitTrigger = paArgs[iArg].u.u64Number;
1223 iArg++;
1224 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1225 {
1226 iHitDisable = paArgs[iArg].u.u64Number;
1227 iArg++;
1228 }
1229 }
1230 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1231 {
1232 pszCmds = paArgs[iArg].u.pszString;
1233 iArg++;
1234 }
1235
1236 /*
1237 * Try set the breakpoint.
1238 */
1239 uint32_t iBp;
1240 rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
1241 if (RT_SUCCESS(rc))
1242 {
1243 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1244 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1245 if (RT_SUCCESS(rc))
1246 return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1247 if (rc == VERR_DBGC_BP_EXISTS)
1248 {
1249 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1250 if (RT_SUCCESS(rc))
1251 return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1252 }
1253 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1254 AssertRC(rc2);
1255 }
1256 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr);
1257}
1258
1259
1260/**
1261 * Helps the unassmble ('u') command display symbols it starts at and passes.
1262 *
1263 * @param pUVM The user mode VM handle.
1264 * @param pCmdHlp The command helpers for printing via.
1265 * @param hDbgAs The address space to look up addresses in.
1266 * @param pAddress The current address.
1267 * @param pcbCallAgain Where to return the distance to the next check (in
1268 * instruction bytes).
1269 */
1270static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress,
1271 PRTUINTPTR pcbCallAgain)
1272{
1273 RTDBGSYMBOL Symbol;
1274 RTGCINTPTR offDispSym;
1275 int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1276 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1277 &offDispSym, &Symbol, NULL);
1278 if (RT_FAILURE(rc) || offDispSym > _1G)
1279 rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1280 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1281 &offDispSym, &Symbol, NULL);
1282 if (RT_SUCCESS(rc) && offDispSym < _1G)
1283 {
1284 if (!offDispSym)
1285 {
1286 DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName);
1287 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb;
1288 }
1289 else if (offDispSym > 0)
1290 {
1291 DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym);
1292 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1;
1293 }
1294 else
1295 {
1296 DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym);
1297 *pcbCallAgain = !Symbol.cb ? 64 : (RTGCUINTPTR)-offDispSym + Symbol.cb;
1298 }
1299 }
1300 else
1301 *pcbCallAgain = UINT32_MAX;
1302}
1303
1304
1305/**
1306 * @callback_method_impl{FNDBGCCMD, The 'u' command.}
1307 */
1308static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1309{
1310 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1311
1312 /*
1313 * Validate input.
1314 */
1315 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1316 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
1317 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
1318
1319 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1320 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
1321
1322 /*
1323 * Check the desired mode.
1324 */
1325 unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
1326 switch (pCmd->pszCmd[1])
1327 {
1328 default: AssertFailed(); RT_FALL_THRU();
1329 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
1330 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
1331 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
1332 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
1333 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
1334 }
1335
1336 /** @todo should use DBGFADDRESS for everything */
1337
1338 /*
1339 * Find address.
1340 */
1341 if (!cArgs)
1342 {
1343 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1344 {
1345#if defined(VBOX_VMM_TARGET_ARMV8)
1346 AssertReleaseFailed();
1347#else
1348 /** @todo Batch query CS, RIP, CPU mode and flags. */
1349 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1350 if (CPUMIsGuestIn64BitCode(pVCpu))
1351 {
1352 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
1353 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
1354 }
1355 else
1356 {
1357 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
1358 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
1359 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
1360 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
1361 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
1362 {
1363 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1364 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
1365 }
1366 }
1367#endif
1368
1369 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
1370 }
1371 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
1372 {
1373 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1374 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
1375 }
1376 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
1377 }
1378 else
1379 pDbgc->DisasmPos = paArgs[0];
1380 pDbgc->pLastPos = &pDbgc->DisasmPos;
1381
1382 /*
1383 * Range.
1384 */
1385 switch (pDbgc->DisasmPos.enmRangeType)
1386 {
1387 case DBGCVAR_RANGE_NONE:
1388 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1389 pDbgc->DisasmPos.u64Range = 10;
1390 break;
1391
1392 case DBGCVAR_RANGE_ELEMENTS:
1393 if (pDbgc->DisasmPos.u64Range > 2048)
1394 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
1395 break;
1396
1397 case DBGCVAR_RANGE_BYTES:
1398 if (pDbgc->DisasmPos.u64Range > 65536)
1399 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
1400 break;
1401
1402 default:
1403 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
1404 }
1405
1406 /*
1407 * Convert physical and host addresses to guest addresses.
1408 */
1409 RTDBGAS hDbgAs = pDbgc->hDbgAs;
1410 int rc;
1411 switch (pDbgc->DisasmPos.enmType)
1412 {
1413 case DBGCVAR_TYPE_GC_FLAT:
1414 case DBGCVAR_TYPE_GC_FAR:
1415 break;
1416 case DBGCVAR_TYPE_GC_PHYS:
1417 hDbgAs = DBGF_AS_PHYS;
1418 RT_FALL_THRU();
1419 case DBGCVAR_TYPE_HC_FLAT:
1420 case DBGCVAR_TYPE_HC_PHYS:
1421 {
1422 DBGCVAR VarTmp;
1423 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
1424 if (RT_FAILURE(rc))
1425 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
1426 pDbgc->DisasmPos = VarTmp;
1427 break;
1428 }
1429 default: AssertFailed(); break;
1430 }
1431
1432 DBGFADDRESS CurAddr;
1433 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1434 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1435 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1436 else
1437 {
1438 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1439 if (RT_FAILURE(rc))
1440 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
1441 }
1442
1443 pDbgc->fDisasm = fFlags;
1444
1445 /*
1446 * Figure out where we are and display it. Also calculate when we need to
1447 * check for a new symbol if possible.
1448 */
1449 RTGCUINTPTR cbCheckSymbol;
1450 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1451
1452 /*
1453 * Do the disassembling.
1454 */
1455 unsigned cTries = 32;
1456 int iRangeLeft = (int)pDbgc->DisasmPos.u64Range;
1457 if (iRangeLeft == 0) /* kludge for 'r'. */
1458 iRangeLeft = -1;
1459 for (;;)
1460 {
1461 /*
1462 * Disassemble the instruction.
1463 */
1464 char szDis[256];
1465 uint32_t cbInstr = 1;
1466 if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT)
1467 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags,
1468 &szDis[0], sizeof(szDis), &cbInstr);
1469 else
1470 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags,
1471 &szDis[0], sizeof(szDis), &cbInstr);
1472 if (RT_SUCCESS(rc))
1473 {
1474 /* print it */
1475 rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]);
1476 if (RT_FAILURE(rc))
1477 return rc;
1478 }
1479 else
1480 {
1481 /* bitch. */
1482 int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n");
1483 if (RT_FAILURE(rc2))
1484 return rc2;
1485 if (cTries-- > 0)
1486 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up");
1487 cbInstr = 1;
1488 }
1489
1490 /* advance */
1491 if (iRangeLeft < 0) /* 'r' */
1492 break;
1493 if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1494 iRangeLeft--;
1495 else
1496 iRangeLeft -= cbInstr;
1497 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr);
1498 if (RT_FAILURE(rc))
1499 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr);
1500 if (iRangeLeft <= 0)
1501 break;
1502 fFlags &= ~DBGF_DISAS_FLAGS_CURRENT_GUEST;
1503
1504 /* Print next symbol? */
1505 if (cbCheckSymbol <= cbInstr)
1506 {
1507 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1508 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1509 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1510 else
1511 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1512 if (RT_SUCCESS(rc))
1513 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1514 else
1515 cbCheckSymbol = UINT32_MAX;
1516 }
1517 else
1518 cbCheckSymbol -= cbInstr;
1519 }
1520
1521 NOREF(pCmd);
1522 return VINF_SUCCESS;
1523}
1524
1525
1526/**
1527 * @callback_method_impl{FNDGCSCREENBLIT}
1528 */
1529static DECLCALLBACK(int) dbgcCmdUnassembleCfgBlit(const char *psz, void *pvUser)
1530{
1531 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
1532 return DBGCCmdHlpPrintf(pCmdHlp, "%s", psz);
1533}
1534
1535
1536/**
1537 * Checks whether both addresses are equal.
1538 *
1539 * @returns true if both addresses point to the same location, false otherwise.
1540 * @param pAddr1 First address.
1541 * @param pAddr2 Second address.
1542 */
1543static bool dbgcCmdUnassembleCfgAddrEqual(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1544{
1545 return pAddr1->Sel == pAddr2->Sel
1546 && pAddr1->off == pAddr2->off;
1547}
1548
1549
1550/**
1551 * Checks whether the first given address is lower than the second one.
1552 *
1553 * @returns true if both addresses point to the same location, false otherwise.
1554 * @param pAddr1 First address.
1555 * @param pAddr2 Second address.
1556 */
1557static bool dbgcCmdUnassembleCfgAddrLower(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1558{
1559 return pAddr1->Sel == pAddr2->Sel
1560 && pAddr1->off < pAddr2->off;
1561}
1562
1563
1564/**
1565 * Calculates the size required for the given basic block including the
1566 * border and spacing on the edges.
1567 *
1568 * @param hFlowBb The basic block handle.
1569 * @param pDumpBb The dumper state to fill in for the basic block.
1570 */
1571static void dbgcCmdUnassembleCfgDumpCalcBbSize(DBGFFLOWBB hFlowBb, PDBGCFLOWBBDUMP pDumpBb)
1572{
1573 uint32_t fFlags = DBGFR3FlowBbGetFlags(hFlowBb);
1574 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(hFlowBb);
1575
1576 pDumpBb->hFlowBb = hFlowBb;
1577 pDumpBb->cchHeight = cInstr + 4; /* Include spacing and border top and bottom. */
1578 pDumpBb->cchWidth = 0;
1579 DBGFR3FlowBbGetStartAddress(hFlowBb, &pDumpBb->AddrStart);
1580
1581 DBGFFLOWBBENDTYPE enmType = DBGFR3FlowBbGetType(hFlowBb);
1582 if ( enmType == DBGFFLOWBBENDTYPE_COND
1583 || enmType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1584 || enmType == DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP)
1585 DBGFR3FlowBbGetBranchAddress(hFlowBb, &pDumpBb->AddrTarget);
1586
1587 if (fFlags & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1588 {
1589 const char *pszErr = NULL;
1590 DBGFR3FlowBbQueryError(hFlowBb, &pszErr);
1591 if (pszErr)
1592 {
1593 uint32_t cchErr = (uint32_t)strlen(pszErr);
1594
1595 pDumpBb->cchHeight++;
1596 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, cchErr);
1597 }
1598 }
1599 for (unsigned i = 0; i < cInstr; i++)
1600 {
1601 const char *pszInstr = NULL;
1602 int rc = DBGFR3FlowBbQueryInstr(hFlowBb, i, NULL, NULL, &pszInstr);
1603 AssertRC(rc);
1604
1605 uint32_t cchInstr = (uint32_t)strlen(pszInstr);
1606 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, cchInstr);
1607 }
1608 pDumpBb->cchWidth += 4; /* Include spacing and border left and right. */
1609}
1610
1611
1612/**
1613 * Dumps a top or bottom boundary line.
1614 *
1615 * @param hScreen The screen to draw to.
1616 * @param uStartX Where to start drawing the boundary.
1617 * @param uStartY Y coordinate.
1618 * @param cchWidth Width of the boundary.
1619 * @param enmColor The color to use for drawing.
1620 */
1621static void dbgcCmdUnassembleCfgDumpBbBoundary(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1622 DBGCSCREENCOLOR enmColor)
1623{
1624 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '+', enmColor);
1625 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1626 uStartY, '-', enmColor);
1627 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '+', enmColor);
1628}
1629
1630
1631/**
1632 * Dumps a spacing line between the top or bottom boundary and the actual disassembly.
1633 *
1634 * @param hScreen The screen to draw to.
1635 * @param uStartX Where to start drawing the spacing.
1636 * @param uStartY Y coordinate.
1637 * @param cchWidth Width of the spacing.
1638 * @param enmColor The color to use for drawing.
1639 */
1640static void dbgcCmdUnassembleCfgDumpBbSpacing(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1641 DBGCSCREENCOLOR enmColor)
1642{
1643 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmColor);
1644 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1645 uStartY, ' ', enmColor);
1646 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmColor);
1647}
1648
1649
1650/**
1651 * Writes a given text to the screen.
1652 *
1653 * @param hScreen The screen to draw to.
1654 * @param uStartX Where to start drawing the line.
1655 * @param uStartY Y coordinate.
1656 * @param cchWidth Maximum width of the text.
1657 * @param pszText The text to write.
1658 * @param enmTextColor The color to use for drawing the text.
1659 * @param enmBorderColor The color to use for drawing the border.
1660 */
1661static void dbgcCmdUnassembleCfgDumpBbText(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY,
1662 uint32_t cchWidth, const char *pszText,
1663 DBGCSCREENCOLOR enmTextColor, DBGCSCREENCOLOR enmBorderColor)
1664{
1665 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmBorderColor);
1666 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + 1, uStartY, ' ', enmTextColor);
1667 dbgcScreenAsciiDrawString(hScreen, uStartX + 2, uStartY, pszText, enmTextColor);
1668 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmBorderColor);
1669}
1670
1671
1672/**
1673 * Dumps one basic block using the dumper callback.
1674 *
1675 * @param pDumpBb The basic block dump state to dump.
1676 * @param hScreen The screen to draw to.
1677 */
1678static void dbgcCmdUnassembleCfgDumpBb(PDBGCFLOWBBDUMP pDumpBb, DBGCSCREEN hScreen)
1679{
1680 uint32_t uStartY = pDumpBb->uStartY;
1681 bool fError = RT_BOOL(DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR);
1682 DBGCSCREENCOLOR enmColor = fError ? DBGCSCREENCOLOR_RED_BRIGHT : DBGCSCREENCOLOR_DEFAULT;
1683
1684 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1685 uStartY++;
1686 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1687 uStartY++;
1688
1689 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(pDumpBb->hFlowBb);
1690 for (unsigned i = 0; i < cInstr; i++)
1691 {
1692 const char *pszInstr = NULL;
1693 DBGFR3FlowBbQueryInstr(pDumpBb->hFlowBb, i, NULL, NULL, &pszInstr);
1694 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY + i,
1695 pDumpBb->cchWidth, pszInstr, DBGCSCREENCOLOR_DEFAULT,
1696 enmColor);
1697 }
1698 uStartY += cInstr;
1699
1700 if (fError)
1701 {
1702 const char *pszErr = NULL;
1703 DBGFR3FlowBbQueryError(pDumpBb->hFlowBb, &pszErr);
1704 if (pszErr)
1705 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY,
1706 pDumpBb->cchWidth, pszErr, enmColor,
1707 enmColor);
1708 uStartY++;
1709 }
1710
1711 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1712 uStartY++;
1713 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1714 uStartY++;
1715}
1716
1717
1718/**
1719 * Dumps one branch table using the dumper callback.
1720 *
1721 * @param pDumpBranchTbl The basic block dump state to dump.
1722 * @param hScreen The screen to draw to.
1723 */
1724static void dbgcCmdUnassembleCfgDumpBranchTbl(PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl, DBGCSCREEN hScreen)
1725{
1726 uint32_t uStartY = pDumpBranchTbl->uStartY;
1727 DBGCSCREENCOLOR enmColor = DBGCSCREENCOLOR_CYAN_BRIGHT;
1728
1729 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1730 uStartY++;
1731 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1732 uStartY++;
1733
1734 uint32_t cSlots = DBGFR3FlowBranchTblGetSlots(pDumpBranchTbl->hFlowBranchTbl);
1735 for (unsigned i = 0; i < cSlots; i++)
1736 {
1737 DBGFADDRESS Addr;
1738 char szAddr[128];
1739
1740 RT_ZERO(szAddr);
1741 DBGFR3FlowBranchTblGetAddrAtSlot(pDumpBranchTbl->hFlowBranchTbl, i, &Addr);
1742
1743 if (Addr.Sel == DBGF_SEL_FLAT)
1744 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%RGv", Addr.FlatPtr);
1745 else
1746 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%04x:%RGv", Addr.Sel, Addr.off);
1747
1748 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBranchTbl->uStartX, uStartY + i,
1749 pDumpBranchTbl->cchWidth, &szAddr[0], DBGCSCREENCOLOR_DEFAULT,
1750 enmColor);
1751 }
1752 uStartY += cSlots;
1753
1754 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1755 uStartY++;
1756 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1757 uStartY++;
1758}
1759
1760
1761/**
1762 * Fills in the dump states for the basic blocks and branch tables.
1763 *
1764 * @param hFlowIt The control flow graph iterator handle.
1765 * @param hFlowBranchTblIt The control flow graph branch table iterator handle.
1766 * @param paDumpBb The array of basic block dump states.
1767 * @param paDumpBranchTbl The array of branch table dump states.
1768 * @param cBbs Number of basic blocks.
1769 * @param cBranchTbls Number of branch tables.
1770 */
1771static void dbgcCmdUnassembleCfgDumpCalcDimensions(DBGFFLOWIT hFlowIt, DBGFFLOWBRANCHTBLIT hFlowBranchTblIt,
1772 PDBGCFLOWBBDUMP paDumpBb, PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl,
1773 uint32_t cBbs, uint32_t cBranchTbls)
1774{
1775 RT_NOREF2(cBbs, cBranchTbls);
1776
1777 /* Calculate the sizes of each basic block first. */
1778 DBGFFLOWBB hFlowBb = DBGFR3FlowItNext(hFlowIt);
1779 uint32_t idx = 0;
1780 while (hFlowBb)
1781 {
1782 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[idx]);
1783 idx++;
1784 hFlowBb = DBGFR3FlowItNext(hFlowIt);
1785 }
1786
1787 if (paDumpBranchTbl)
1788 {
1789 idx = 0;
1790 DBGFFLOWBRANCHTBL hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1791 while (hFlowBranchTbl)
1792 {
1793 paDumpBranchTbl[idx].hFlowBranchTbl = hFlowBranchTbl;
1794 paDumpBranchTbl[idx].cchHeight = DBGFR3FlowBranchTblGetSlots(hFlowBranchTbl) + 4; /* Spacing and border. */
1795 paDumpBranchTbl[idx].cchWidth = 25 + 4; /* Spacing and border. */
1796 idx++;
1797 hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1798 }
1799 }
1800}
1801
1802/**
1803 * Dumps the given control flow graph to the output.
1804 *
1805 * @returns VBox status code.
1806 * @param hCfg The control flow graph handle.
1807 * @param fUseColor Flag whether the output should be colorized.
1808 * @param pCmdHlp The command helper callback table.
1809 */
1810static int dbgcCmdUnassembleCfgDump(DBGFFLOW hCfg, bool fUseColor, PDBGCCMDHLP pCmdHlp)
1811{
1812 int rc = VINF_SUCCESS;
1813 DBGFFLOWIT hCfgIt = NULL;
1814 DBGFFLOWBRANCHTBLIT hFlowBranchTblIt = NULL;
1815 uint32_t cBbs = DBGFR3FlowGetBbCount(hCfg);
1816 uint32_t cBranchTbls = DBGFR3FlowGetBranchTblCount(hCfg);
1817 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cBbs * sizeof(DBGCFLOWBBDUMP));
1818 PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl = NULL;
1819
1820 if (cBranchTbls)
1821 paDumpBranchTbl = (PDBGCFLOWBRANCHTBLDUMP)RTMemAllocZ(cBranchTbls * sizeof(DBGCFLOWBRANCHTBLDUMP));
1822
1823 if (RT_UNLIKELY(!paDumpBb || (!paDumpBranchTbl && cBranchTbls > 0)))
1824 rc = VERR_NO_MEMORY;
1825 if (RT_SUCCESS(rc))
1826 rc = DBGFR3FlowItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hCfgIt);
1827 if (RT_SUCCESS(rc) && cBranchTbls > 0)
1828 rc = DBGFR3FlowBranchTblItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hFlowBranchTblIt);
1829
1830 if (RT_SUCCESS(rc))
1831 {
1832 dbgcCmdUnassembleCfgDumpCalcDimensions(hCfgIt, hFlowBranchTblIt, paDumpBb, paDumpBranchTbl,
1833 cBbs, cBranchTbls);
1834
1835 /* Calculate the ASCII screen dimensions and create one. */
1836 uint32_t cchWidth = 0;
1837 uint32_t cchLeftExtra = 5;
1838 uint32_t cchRightExtra = 5;
1839 uint32_t cchHeight = 0;
1840 for (unsigned i = 0; i < cBbs; i++)
1841 {
1842 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1843 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
1844 cchHeight += pDumpBb->cchHeight;
1845
1846 /* Incomplete blocks don't have a successor. */
1847 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1848 continue;
1849
1850 switch (DBGFR3FlowBbGetType(pDumpBb->hFlowBb))
1851 {
1852 case DBGFFLOWBBENDTYPE_EXIT:
1853 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1854 break;
1855 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1856 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1857 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1858 cchLeftExtra++;
1859 else
1860 cchRightExtra++;
1861 break;
1862 case DBGFFLOWBBENDTYPE_UNCOND:
1863 cchHeight += 2; /* For the arrow down to the next basic block. */
1864 break;
1865 case DBGFFLOWBBENDTYPE_COND:
1866 cchHeight += 2; /* For the arrow down to the next basic block. */
1867 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1868 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1869 cchLeftExtra++;
1870 else
1871 cchRightExtra++;
1872 break;
1873 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1874 default:
1875 AssertFailed();
1876 }
1877 }
1878
1879 for (unsigned i = 0; i < cBranchTbls; i++)
1880 {
1881 PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl = &paDumpBranchTbl[i];
1882 cchWidth = RT_MAX(cchWidth, pDumpBranchTbl->cchWidth);
1883 cchHeight += pDumpBranchTbl->cchHeight;
1884 }
1885
1886 cchWidth += 2;
1887
1888 DBGCSCREEN hScreen = NULL;
1889 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth + cchLeftExtra + cchRightExtra, cchHeight);
1890 if (RT_SUCCESS(rc))
1891 {
1892 uint32_t uY = 0;
1893
1894 /* Dump the branch tables first. */
1895 for (unsigned i = 0; i < cBranchTbls; i++)
1896 {
1897 paDumpBranchTbl[i].uStartX = cchLeftExtra + (cchWidth - paDumpBranchTbl[i].cchWidth) / 2;
1898 paDumpBranchTbl[i].uStartY = uY;
1899 dbgcCmdUnassembleCfgDumpBranchTbl(&paDumpBranchTbl[i], hScreen);
1900 uY += paDumpBranchTbl[i].cchHeight;
1901 }
1902
1903 /* Dump the basic blocks and connections to the immediate successor. */
1904 for (unsigned i = 0; i < cBbs; i++)
1905 {
1906 paDumpBb[i].uStartX = cchLeftExtra + (cchWidth - paDumpBb[i].cchWidth) / 2;
1907 paDumpBb[i].uStartY = uY;
1908 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
1909 uY += paDumpBb[i].cchHeight;
1910
1911 /* Incomplete blocks don't have a successor. */
1912 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1913 continue;
1914
1915 switch (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb))
1916 {
1917 case DBGFFLOWBBENDTYPE_EXIT:
1918 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1919 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1920 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1921 break;
1922 case DBGFFLOWBBENDTYPE_UNCOND:
1923 /* Draw the arrow down to the next block. */
1924 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1925 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
1926 uY++;
1927 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1928 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
1929 uY++;
1930 break;
1931 case DBGFFLOWBBENDTYPE_COND:
1932 /* Draw the arrow down to the next block. */
1933 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1934 '|', DBGCSCREENCOLOR_RED_BRIGHT);
1935 uY++;
1936 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1937 'V', DBGCSCREENCOLOR_RED_BRIGHT);
1938 uY++;
1939 break;
1940 default:
1941 AssertFailed();
1942 }
1943 }
1944
1945 /* Last pass, connect all remaining branches. */
1946 uint32_t uBackConns = 0;
1947 uint32_t uFwdConns = 0;
1948 for (unsigned i = 0; i < cBbs; i++)
1949 {
1950 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1951 DBGFFLOWBBENDTYPE enmEndType = DBGFR3FlowBbGetType(pDumpBb->hFlowBb);
1952
1953 /* Incomplete blocks don't have a successor. */
1954 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1955 continue;
1956
1957 switch (enmEndType)
1958 {
1959 case DBGFFLOWBBENDTYPE_EXIT:
1960 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1961 case DBGFFLOWBBENDTYPE_UNCOND:
1962 break;
1963 case DBGFFLOWBBENDTYPE_COND:
1964 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1965 {
1966 /* Find the target first to get the coordinates. */
1967 PDBGCFLOWBBDUMP pDumpBbTgt = NULL;
1968 for (unsigned idxDumpBb = 0; idxDumpBb < cBbs; idxDumpBb++)
1969 {
1970 pDumpBbTgt = &paDumpBb[idxDumpBb];
1971 if (dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBbTgt->AddrStart))
1972 break;
1973 }
1974
1975 DBGCSCREENCOLOR enmColor = enmEndType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1976 ? DBGCSCREENCOLOR_YELLOW_BRIGHT
1977 : DBGCSCREENCOLOR_GREEN_BRIGHT;
1978
1979 /*
1980 * Use the right side for targets with higher addresses,
1981 * left when jumping backwards.
1982 */
1983 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1984 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1985 {
1986 /* Going backwards. */
1987 uint32_t uXVerLine = /*cchLeftExtra - 1 -*/ uBackConns + 1;
1988 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
1989 uBackConns++;
1990
1991 /* Draw the arrow pointing to the target block. */
1992 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX - 1, pDumpBbTgt->uStartY,
1993 '>', enmColor);
1994 /* Draw the horizontal line. */
1995 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBbTgt->uStartX - 2,
1996 pDumpBbTgt->uStartY, '-', enmColor);
1997 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
1998 enmColor);
1999 /* Draw the vertical line down to the source block. */
2000 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, pDumpBbTgt->uStartY + 1, uYHorLine - 1,
2001 '|', enmColor);
2002 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2003 /* Draw the horizontal connection between the source block and vertical part. */
2004 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBb->uStartX - 1,
2005 uYHorLine, '-', enmColor);
2006
2007 }
2008 else
2009 {
2010 /* Going forward. */
2011 uint32_t uXVerLine = cchWidth + cchLeftExtra + (cchRightExtra - uFwdConns) - 1;
2012 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
2013 uFwdConns++;
2014
2015 /* Draw the horizontal line. */
2016 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBb->uStartX + pDumpBb->cchWidth,
2017 uXVerLine - 1, uYHorLine, '-', enmColor);
2018 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2019 /* Draw the vertical line down to the target block. */
2020 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, uYHorLine + 1, pDumpBbTgt->uStartY - 1,
2021 '|', enmColor);
2022 /* Draw the horizontal connection between the target block and vertical part. */
2023 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2024 uXVerLine, pDumpBbTgt->uStartY, '-', enmColor);
2025 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
2026 enmColor);
2027 /* Draw the arrow pointing to the target block. */
2028 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2029 pDumpBbTgt->uStartY, '<', enmColor);
2030 }
2031 break;
2032 }
2033 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
2034 default:
2035 AssertFailed();
2036 }
2037 }
2038
2039 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, fUseColor);
2040 dbgcScreenAsciiDestroy(hScreen);
2041 }
2042 }
2043
2044 if (paDumpBb)
2045 {
2046 for (unsigned i = 0; i < cBbs; i++)
2047 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
2048 RTMemTmpFree(paDumpBb);
2049 }
2050
2051 if (paDumpBranchTbl)
2052 {
2053 for (unsigned i = 0; i < cBranchTbls; i++)
2054 DBGFR3FlowBranchTblRelease(paDumpBranchTbl[i].hFlowBranchTbl);
2055 RTMemTmpFree(paDumpBranchTbl);
2056 }
2057
2058 if (hCfgIt)
2059 DBGFR3FlowItDestroy(hCfgIt);
2060 if (hFlowBranchTblIt)
2061 DBGFR3FlowBranchTblItDestroy(hFlowBranchTblIt);
2062
2063 return rc;
2064}
2065
2066
2067/**
2068 * @callback_method_impl{FNDBGCCMD, The 'ucfg' command.}
2069 */
2070static DECLCALLBACK(int) dbgcCmdUnassembleCfg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2071{
2072 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2073
2074 /*
2075 * Validate input.
2076 */
2077 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2078 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
2079 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
2080
2081 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2082 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
2083
2084 /*
2085 * Check the desired mode.
2086 */
2087 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
2088 bool fUseColor = false;
2089 switch (pCmd->pszCmd[4])
2090 {
2091 default: AssertFailed(); RT_FALL_THRU();
2092 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
2093 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
2094 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
2095 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
2096 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
2097 case 'c': fUseColor = true; break;
2098 }
2099
2100 /** @todo should use DBGFADDRESS for everything */
2101
2102 /*
2103 * Find address.
2104 */
2105 if (!cArgs)
2106 {
2107 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2108 {
2109#if defined(VBOX_VMM_TARGET_ARMV8)
2110 AssertReleaseFailed();
2111#else
2112 /** @todo Batch query CS, RIP, CPU mode and flags. */
2113 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2114 if (CPUMIsGuestIn64BitCode(pVCpu))
2115 {
2116 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
2117 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
2118 }
2119 else
2120 {
2121 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
2122 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2123 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2124 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
2125 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
2126 {
2127 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2128 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
2129 }
2130 }
2131#endif
2132
2133 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
2134 }
2135 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
2136 {
2137 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2138 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
2139 }
2140 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
2141 }
2142 else
2143 pDbgc->DisasmPos = paArgs[0];
2144 pDbgc->pLastPos = &pDbgc->DisasmPos;
2145
2146 /*
2147 * Range.
2148 */
2149 switch (pDbgc->DisasmPos.enmRangeType)
2150 {
2151 case DBGCVAR_RANGE_NONE:
2152 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2153 pDbgc->DisasmPos.u64Range = 10;
2154 break;
2155
2156 case DBGCVAR_RANGE_ELEMENTS:
2157 if (pDbgc->DisasmPos.u64Range > 2048)
2158 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
2159 break;
2160
2161 case DBGCVAR_RANGE_BYTES:
2162 if (pDbgc->DisasmPos.u64Range > 65536)
2163 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
2164 break;
2165
2166 default:
2167 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
2168 }
2169
2170 int rc;
2171#if 0 /** @todo Unused right now. */
2172 /*
2173 * Convert physical and host addresses to guest addresses.
2174 */
2175 RTDBGAS hDbgAs = pDbgc->hDbgAs;
2176 switch (pDbgc->DisasmPos.enmType)
2177 {
2178 case DBGCVAR_TYPE_GC_FLAT:
2179 case DBGCVAR_TYPE_GC_FAR:
2180 break;
2181 case DBGCVAR_TYPE_GC_PHYS:
2182 hDbgAs = DBGF_AS_PHYS;
2183 RT_FALL_THRU();
2184 case DBGCVAR_TYPE_HC_FLAT:
2185 case DBGCVAR_TYPE_HC_PHYS:
2186 {
2187 DBGCVAR VarTmp;
2188 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
2189 if (RT_FAILURE(rc))
2190 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
2191 pDbgc->DisasmPos = VarTmp;
2192 break;
2193 }
2194 default: AssertFailed(); break;
2195 }
2196#endif
2197
2198 DBGFADDRESS CurAddr;
2199 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
2200 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
2201 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
2202 else
2203 {
2204 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
2205 if (RT_FAILURE(rc))
2206 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
2207 }
2208
2209 DBGFFLOW hCfg;
2210 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
2211 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
2212 if (RT_SUCCESS(rc))
2213 {
2214 /* Dump the graph. */
2215 rc = dbgcCmdUnassembleCfgDump(hCfg, fUseColor, pCmdHlp);
2216 DBGFR3FlowRelease(hCfg);
2217 }
2218 else
2219 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
2220
2221 NOREF(pCmd);
2222 return rc;
2223}
2224
2225
2226/**
2227 * @callback_method_impl{FNDBGCCMD, The 'ls' command.}
2228 */
2229static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2230{
2231 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2232
2233 /*
2234 * Validate input.
2235 */
2236 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2237 if (cArgs == 1)
2238 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2239 if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2240 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing...");
2241 if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType))
2242 return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM");
2243
2244 /*
2245 * Find address.
2246 */
2247 if (!cArgs)
2248 {
2249 if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2250 {
2251#if defined(VBOX_VMM_TARGET_ARMV8)
2252 AssertReleaseFailed();
2253#else
2254 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2255 pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR;
2256 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2257 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2258#endif
2259 }
2260 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE;
2261 }
2262 else
2263 pDbgc->SourcePos = paArgs[0];
2264 pDbgc->pLastPos = &pDbgc->SourcePos;
2265
2266 /*
2267 * Ensure the source address is flat GC.
2268 */
2269 switch (pDbgc->SourcePos.enmType)
2270 {
2271 case DBGCVAR_TYPE_GC_FLAT:
2272 break;
2273 case DBGCVAR_TYPE_GC_PHYS:
2274 case DBGCVAR_TYPE_GC_FAR:
2275 case DBGCVAR_TYPE_HC_FLAT:
2276 case DBGCVAR_TYPE_HC_PHYS:
2277 {
2278 int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos);
2279 if (RT_FAILURE(rc))
2280 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc);
2281 break;
2282 }
2283 default: AssertFailed(); break;
2284 }
2285
2286 /*
2287 * Range.
2288 */
2289 switch (pDbgc->SourcePos.enmRangeType)
2290 {
2291 case DBGCVAR_RANGE_NONE:
2292 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2293 pDbgc->SourcePos.u64Range = 10;
2294 break;
2295
2296 case DBGCVAR_RANGE_ELEMENTS:
2297 if (pDbgc->SourcePos.u64Range > 2048)
2298 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n");
2299 break;
2300
2301 case DBGCVAR_RANGE_BYTES:
2302 if (pDbgc->SourcePos.u64Range > 65536)
2303 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
2304 break;
2305
2306 default:
2307 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType);
2308 }
2309
2310 /*
2311 * Do the disassembling.
2312 */
2313 bool fFirst = 1;
2314 RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" };
2315 int iRangeLeft = (int)pDbgc->SourcePos.u64Range;
2316 if (iRangeLeft == 0) /* kludge for 'r'. */
2317 iRangeLeft = -1;
2318 for (;;)
2319 {
2320 /*
2321 * Get line info.
2322 */
2323 RTDBGLINE Line;
2324 RTGCINTPTR off;
2325 DBGFADDRESS SourcePosAddr;
2326 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr);
2327 if (RT_FAILURE(rc))
2328 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos);
2329 rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL);
2330 if (RT_FAILURE(rc))
2331 return VINF_SUCCESS;
2332
2333 unsigned cLines = 0;
2334 if (memcmp(&Line, &LinePrev, sizeof(Line)))
2335 {
2336 /*
2337 * Print filenamename
2338 */
2339 if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename))
2340 fFirst = true;
2341 if (fFirst)
2342 {
2343 rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo);
2344 if (RT_FAILURE(rc))
2345 return rc;
2346 }
2347
2348 /*
2349 * Try open the file and read the line.
2350 */
2351 FILE *phFile = fopen(Line.szFilename, "r");
2352 if (phFile)
2353 {
2354 /* Skip ahead to the desired line. */
2355 char szLine[4096];
2356 unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1;
2357 if (cBefore > 7)
2358 cBefore = 0;
2359 unsigned cLeft = Line.uLineNo - cBefore;
2360 while (cLeft > 0)
2361 {
2362 szLine[0] = '\0';
2363 if (!fgets(szLine, sizeof(szLine), phFile))
2364 break;
2365 cLeft--;
2366 }
2367 if (!cLeft)
2368 {
2369 /* print the before lines */
2370 for (;;)
2371 {
2372 size_t cch = strlen(szLine);
2373 while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) )
2374 szLine[--cch] = '\0';
2375 if (cBefore-- <= 0)
2376 break;
2377
2378 rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine);
2379 if (RT_FAILURE(rc))
2380 break;
2381 szLine[0] = '\0';
2382 const char *pszShutUpGcc = fgets(szLine, sizeof(szLine), phFile); NOREF(pszShutUpGcc);
2383 cLines++;
2384 }
2385 /* print the actual line */
2386 if (RT_SUCCESS(rc))
2387 rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine);
2388 }
2389 fclose(phFile);
2390 if (RT_FAILURE(rc))
2391 return rc;
2392 fFirst = false;
2393 }
2394 else
2395 return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename);
2396
2397 LinePrev = Line;
2398 }
2399
2400
2401 /*
2402 * Advance
2403 */
2404 if (iRangeLeft < 0) /* 'r' */
2405 break;
2406 if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
2407 iRangeLeft -= cLines;
2408 else
2409 iRangeLeft -= 1;
2410 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1);
2411 if (RT_FAILURE(rc))
2412 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1);
2413 if (iRangeLeft <= 0)
2414 break;
2415 }
2416
2417 NOREF(pCmd);
2418 return 0;
2419}
2420
2421
2422/**
2423 * @callback_method_impl{FNDBGCCMD, The 'r' command.}
2424 */
2425static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2426{
2427 return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
2428}
2429
2430
2431/**
2432 * @callback_method_impl{FNDBGCCMD, Common worker for the dbgcCmdReg*()
2433 * commands.}
2434 */
2435static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs,
2436 const char *pszPrefix)
2437{
2438 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2439 int rc;
2440 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3);
2441 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING
2442 || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL);
2443
2444 /*
2445 * Parse the register name and kind.
2446 */
2447 bool const fAllRegs = strcmp(paArgs[0].u.pszString, "all") == 0;
2448 const char *pszReg = paArgs[0].u.pszString;
2449 if (*pszReg == '@')
2450 pszReg++;
2451 VMCPUID idCpu = pDbgc->idCpu;
2452 if (*pszPrefix)
2453 idCpu |= DBGFREG_HYPER_VMCPUID;
2454 if (*pszReg == '.')
2455 {
2456 pszReg++;
2457 idCpu |= DBGFREG_HYPER_VMCPUID;
2458 }
2459 const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : "";
2460 if (cArgs == 1)
2461 {
2462 /*
2463 * Show the register.
2464 *
2465 * If it ends with a '.' or '.*', we'll show any subfields and aliases as
2466 * well. This is a special VBox twist.
2467 */
2468 size_t cchReg = strlen(pszReg);
2469 size_t cchSuffix = 0;
2470 if (cchReg >= 2 && pszReg[cchReg - 1] == '.')
2471 cchSuffix = 1;
2472 else if (cchReg >= 3 && pszReg[cchReg - 1] == '*' && pszReg[cchReg - 2] == '.')
2473 cchSuffix = 2;
2474
2475 char szValue[160];
2476 if (!cchSuffix && !fAllRegs)
2477 {
2478 DBGFREGVALTYPE enmType;
2479 DBGFREGVAL Value;
2480 rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2481 if (RT_FAILURE(rc))
2482 {
2483 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2484 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2485 pszActualPrefix, pszReg);
2486 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2487 pszActualPrefix, pszReg, rc);
2488 }
2489
2490 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/);
2491 if (RT_SUCCESS(rc))
2492 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue);
2493 else
2494 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2495 }
2496 else
2497 {
2498 /*
2499 * Register + aliases + subfields OR 'all'.
2500 */
2501 /* Duplicate the register specifier sans suffix. */
2502 char *pszRegBase = RTStrDupN(pszReg, cchReg - cchSuffix);
2503 AssertReturn(pszRegBase, VERR_NO_STR_MEMORY);
2504
2505 /* Make a rough guess on how many entires we need, or query it in the case of 'all'. */
2506 size_t cRegsAlloc = 128;
2507 if (fAllRegs)
2508 DBGFR3RegNmQueryAllCount(pUVM, &cRegsAlloc);
2509 PDBGFREGENTRYNM paRegs = (PDBGFREGENTRYNM)RTMemTmpAlloc(sizeof(paRegs[0]) * cRegsAlloc);
2510 AssertReturnStmt(paRegs, RTStrFree(pszRegBase), VERR_NO_TMP_MEMORY);
2511 size_t cRegs = cRegsAlloc;
2512
2513 /* Query the registers.*/
2514 if (fAllRegs)
2515 rc = DBGFR3RegNmQueryAll(pUVM, paRegs, cRegs);
2516 else
2517 rc = DBGFR3RegNmQueryEx(pUVM, idCpu, pszRegBase, DBGFR3REG_QUERY_EX_F_SUBFIELDS | DBGFR3REG_QUERY_EX_F_ALIASES,
2518 paRegs, &cRegs);
2519 if (rc == VERR_BUFFER_OVERFLOW && !fAllRegs)
2520 {
2521 RTMemTmpFree(paRegs);
2522 cRegsAlloc = cRegs;
2523 paRegs = (PDBGFREGENTRYNM)RTMemTmpAlloc(sizeof(paRegs[0]) * cRegsAlloc);
2524 AssertReturnStmt(paRegs, RTStrFree(pszRegBase), VERR_NO_TMP_MEMORY);
2525 rc = DBGFR3RegNmQueryEx(pUVM, idCpu, pszRegBase,
2526 DBGFR3REG_QUERY_EX_F_SUBFIELDS | DBGFR3REG_QUERY_EX_F_ALIASES, paRegs, &cRegs);
2527 }
2528 if (RT_SUCCESS(rc))
2529 {
2530 /* Find max lengths and sizes for producing pretty columns. */
2531 size_t cchMaxNm = 2;
2532 size_t cchMaxSubFieldNm = 2;
2533 size_t cMaxSubFieldBits = 1;
2534 if (*pszActualPrefix == '\0')
2535 for (uint32_t iReg = 0; iReg < cRegs; iReg++)
2536 {
2537 size_t const cchName = strlen(paRegs[iReg].pszName);
2538 if (cchMaxNm < cchName)
2539 cchMaxNm = cchName;
2540 if (paRegs[iReg].u.s.fSubField)
2541 {
2542 cchMaxSubFieldNm = RT_MAX(cchMaxSubFieldNm, cchName);
2543 cMaxSubFieldBits = RT_MAX(cMaxSubFieldBits, paRegs[iReg].u.s.cBits);
2544 }
2545 }
2546
2547 /* Output the registers. */
2548 size_t cchMaxSubFieldValue = 2 + (cMaxSubFieldBits + 3) / 4;
2549 size_t cMaxSameLine = 80 / (2 + cchMaxSubFieldNm + 1 + cchMaxSubFieldValue);
2550 unsigned iSameLine = 0;
2551 for (uint32_t iReg = 0; iReg < cRegs; iReg++)
2552 {
2553 if ( !paRegs[iReg].u.s.fSubField
2554 || !paRegs[iReg].u.s.cBits)
2555 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &paRegs[iReg].Val,
2556 paRegs[iReg].enmType, true /*fSpecial*/);
2557 else
2558 rc = DBGFR3RegFormatValueEx(szValue, sizeof(szValue), &paRegs[iReg].Val, paRegs[iReg].enmType,
2559 16,
2560 (paRegs[iReg].u.s.cBits + 3) / 4,
2561 0,
2562 (paRegs[iReg].u.s.cBits == 1 ? 0 : RTSTR_F_SPECIAL) | RTSTR_F_WIDTH);
2563 if (RT_SUCCESS(rc))
2564 {
2565 if (!paRegs[iReg].u.s.fSubField)
2566 {
2567 if (iSameLine > 0)
2568 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2569 if (RT_SUCCESS(rc))
2570 {
2571 if (*pszActualPrefix == '\0')
2572 rc = DBGCCmdHlpPrintf(pCmdHlp, "%*s=%s\n", cchMaxNm, paRegs[iReg].pszName, szValue);
2573 else
2574 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, paRegs[iReg].pszName, szValue);
2575 }
2576 iSameLine = 0;
2577 }
2578 else
2579 {
2580 if (*pszActualPrefix == '\0')
2581 rc = DBGCCmdHlpPrintf(pCmdHlp, " %*s=%s", cchMaxSubFieldNm, paRegs[iReg].pszName, szValue);
2582 else
2583 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s%s=%s", pszActualPrefix, paRegs[iReg].pszName, szValue);
2584 iSameLine++;
2585 if (iSameLine < cMaxSameLine)
2586 {
2587 size_t cchValue = strlen(szValue);
2588 if (cchValue < cchMaxSubFieldValue)
2589 rc = DBGCCmdHlpPrintf(pCmdHlp, "%*s", cchMaxSubFieldValue - cchValue, "");
2590 }
2591 else
2592 {
2593 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2594 iSameLine = 0;
2595 }
2596 }
2597 }
2598 else
2599 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue[Ex] failed for %s: %Rrc.\n",
2600 paRegs[iReg].pszName, rc);
2601 }
2602 if (iSameLine > 0)
2603 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2604 }
2605 else if (fAllRegs)
2606 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQueryAll failed: %Rrc.\n", rc);
2607 else if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2608 rc = DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2609 pszActualPrefix, pszRegBase);
2610 else
2611 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQueryEx failed querying '%s%s': %Rrc.\n",
2612 pszActualPrefix, pszRegBase, rc);
2613 RTStrFree(pszRegBase);
2614 RTMemTmpFree(paRegs);
2615 }
2616 }
2617 else
2618 {
2619 /*
2620 * We're about to modify the register.
2621 *
2622 * First we need to query the register type (see below).
2623 */
2624 DBGFREGVALTYPE enmType;
2625 DBGFREGVAL Value;
2626 rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2627 if (RT_FAILURE(rc))
2628 {
2629 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2630 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2631 pszActualPrefix, pszReg);
2632 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2633 pszActualPrefix, pszReg, rc);
2634 }
2635
2636 DBGCVAR NewValueTmp;
2637 PCDBGCVAR pNewValue;
2638 if (cArgs == 3)
2639 {
2640 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2641 if (strcmp(paArgs[1].u.pszString, "="))
2642 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='.");
2643 pNewValue = &paArgs[2];
2644 }
2645 else
2646 {
2647 /* Not possible to convince the parser to support both codeview and
2648 windbg syntax and make the equal sign optional. Try help it. */
2649 /** @todo make DBGCCmdHlpConvert do more with strings. */
2650 rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp);
2651 if (RT_FAILURE(rc))
2652 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol.");
2653 pNewValue = &NewValueTmp;
2654 }
2655
2656 /*
2657 * Modify the register.
2658 */
2659 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER);
2660 if (enmType != DBGFREGVALTYPE_DTR)
2661 {
2662 enmType = DBGFREGVALTYPE_U64;
2663 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64);
2664 }
2665 else
2666 {
2667 enmType = DBGFREGVALTYPE_DTR;
2668 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base);
2669 if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE)
2670 Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range;
2671 }
2672 if (RT_SUCCESS(rc))
2673 {
2674 rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType);
2675 if (RT_FAILURE(rc))
2676 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n",
2677 pszActualPrefix, pszReg, rc);
2678 if (rc != VINF_SUCCESS)
2679 DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc);
2680 }
2681 else
2682 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2683 }
2684 return rc;
2685}
2686
2687
2688/**
2689 * @callback_method_impl{FNDBGCCMD,
2690 * The 'rg'\, 'rg64' and 'rg32' commands\, worker for 'r'.}
2691 */
2692static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2693{
2694 /*
2695 * Show all registers our selves.
2696 */
2697 if (cArgs == 0)
2698 {
2699 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2700 bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64")
2701 || ( strcmp(pCmd->pszCmd, "rg32") != 0
2702 && DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu));
2703 return DBGCCmdHlpRegPrintf(pCmdHlp, pDbgc->idCpu, f64BitMode, pDbgc->fRegTerse);
2704 }
2705 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "");
2706}
2707
2708
2709/**
2710 * @callback_method_impl{FNDBGCCMD, The 'rt' command.}
2711 */
2712static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2713{
2714 NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2715
2716 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2717 pDbgc->fRegTerse = !pDbgc->fRegTerse;
2718 return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n");
2719}
2720
2721
2722/**
2723 * @callback_method_impl{FNDBGCCMD, The 'pr' and 'tr' commands.}
2724 */
2725static DECLCALLBACK(int) dbgcCmdStepTraceToggle(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2726{
2727 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2728 Assert(cArgs == 0); NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2729
2730 /* Note! windbg accepts 'r' as a flag to 'p', 'pa', 'pc', 'pt', 't',
2731 'ta', 'tc' and 'tt'. We've simplified it. */
2732 pDbgc->fStepTraceRegs = !pDbgc->fStepTraceRegs;
2733 return VINF_SUCCESS;
2734}
2735
2736
2737/**
2738 * @callback_method_impl{FNDBGCCMD, The 'p'\, 'pc'\, 'pt'\, 't'\, 'tc'\, and 'tt' commands.}
2739 */
2740static DECLCALLBACK(int) dbgcCmdStepTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2741{
2742 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2743 if (cArgs != 0)
2744 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2745 "Sorry, but the '%s' command does not currently implement any arguments.\n", pCmd->pszCmd);
2746
2747 /* The 'count' has to be implemented by DBGC, whereas the
2748 filtering is taken care of by DBGF. */
2749
2750 /*
2751 * Convert the command to DBGF_STEP_F_XXX and other API input.
2752 */
2753 //DBGFADDRESS StackPop;
2754 PDBGFADDRESS pStackPop = NULL;
2755 RTGCPTR cbStackPop = 0;
2756 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : _64K;
2757 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2758 if (pCmd->pszCmd[1] == 'c')
2759 fFlags |= DBGF_STEP_F_STOP_ON_CALL;
2760 else if (pCmd->pszCmd[1] == 't')
2761 fFlags |= DBGF_STEP_F_STOP_ON_RET;
2762 else if (pCmd->pszCmd[0] != 'p')
2763 cMaxSteps = 1;
2764 else
2765 {
2766 /** @todo consider passing RSP + 1 in for 'p' and something else sensible for
2767 * the 'pt' command. */
2768 }
2769
2770 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, NULL, pStackPop, cbStackPop, cMaxSteps);
2771 if (RT_SUCCESS(rc))
2772 pDbgc->fReady = false;
2773 else
2774 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2775
2776 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2777 return rc;
2778}
2779
2780
2781/**
2782 * @callback_method_impl{FNDBGCCMD, The 'pa' and 'ta' commands.}
2783 */
2784static DECLCALLBACK(int) dbgcCmdStepTraceTo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2785{
2786 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2787 if (cArgs != 1)
2788 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2789 "Sorry, but the '%s' command only implements a single argument at present.\n", pCmd->pszCmd);
2790 DBGFADDRESS Address;
2791 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
2792 if (RT_FAILURE(rc))
2793 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[0]);
2794
2795 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : 1;
2796 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2797 rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, &Address, NULL, 0, cMaxSteps);
2798 if (RT_SUCCESS(rc))
2799 pDbgc->fReady = false;
2800 else
2801 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2802 return rc;
2803}
2804
2805
2806/**
2807 * Helper that tries to resolve a far address to a symbol and formats it.
2808 *
2809 * @returns Pointer to symbol string on success, NULL if not resolved.
2810 * Free using RTStrFree.
2811 * @param pCmdHlp The command helper structure.
2812 * @param hAs The address space to use. NIL_RTDBGAS means no symbol resolving.
2813 * @param sel The selector part of the address.
2814 * @param off The offset part of the address.
2815 * @param pszPrefix How to prefix the symbol string.
2816 * @param pszSuffix How to suffix the symbol string.
2817 */
2818static char *dbgcCmdHlpFarAddrToSymbol(PDBGCCMDHLP pCmdHlp, RTDBGAS hAs, RTSEL sel, uint64_t off,
2819 const char *pszPrefix, const char *pszSuffix)
2820{
2821 char *pszRet = NULL;
2822 if (hAs != NIL_RTDBGAS)
2823 {
2824 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2825 DBGFADDRESS Addr;
2826 int rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr, sel, off);
2827 if (RT_SUCCESS(rc))
2828 {
2829 RTGCINTPTR offDispSym = 0;
2830 PRTDBGSYMBOL pSymbol = DBGFR3AsSymbolByAddrA(pDbgc->pUVM, hAs, &Addr,
2831 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL
2832 | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
2833 &offDispSym, NULL);
2834 if (pSymbol)
2835 {
2836 if (offDispSym == 0)
2837 pszRet = RTStrAPrintf2("%s%s%s", pszPrefix, pSymbol->szName, pszSuffix);
2838 else if (offDispSym > 0)
2839 pszRet = RTStrAPrintf2("%s%s+%llx%s", pszPrefix, pSymbol->szName, (int64_t)offDispSym, pszSuffix);
2840 else
2841 pszRet = RTStrAPrintf2("%s%s-%llx%s", pszPrefix, pSymbol->szName, -(int64_t)offDispSym, pszSuffix);
2842 RTDbgSymbolFree(pSymbol);
2843 }
2844 }
2845 }
2846 return pszRet;
2847}
2848
2849
2850/**
2851 * @callback_method_impl{FNDBGCCMD, The 'k'\, 'kg' and 'kh' commands.}
2852 */
2853static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2854{
2855 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2856
2857 /*
2858 * Figure which context we're called for and start walking that stack.
2859 */
2860 int rc;
2861 PCDBGFSTACKFRAME pFirstFrame;
2862 bool const fGuest = true;
2863 bool const fVerbose = pCmd->pszCmd[1] == 'v'
2864 || (pCmd->pszCmd[1] != '\0' && pCmd->pszCmd[2] == 'v');
2865 rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame);
2866 if (RT_FAILURE(rc))
2867 return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc);
2868
2869 /*
2870 * Print the frames.
2871 */
2872 char szTmp[1024];
2873 uint32_t fBitFlags = 0;
2874 for (PCDBGFSTACKFRAME pFrame = pFirstFrame;
2875 pFrame;
2876 pFrame = DBGFR3StackWalkNext(pFrame))
2877 {
2878 uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT);
2879 if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT)
2880 {
2881 if (fCurBitFlags != fBitFlags)
2882 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2883 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2884 pFrame->iFrame,
2885 pFrame->AddrFrame.Sel,
2886 (uint16_t)pFrame->AddrFrame.off,
2887 pFrame->AddrReturnFrame.Sel,
2888 (uint16_t)pFrame->AddrReturnFrame.off,
2889 (uint32_t)pFrame->AddrReturnPC.Sel,
2890 (uint32_t)pFrame->AddrReturnPC.off,
2891 pFrame->Args.au32[0],
2892 pFrame->Args.au32[1],
2893 pFrame->Args.au32[2],
2894 pFrame->Args.au32[3]);
2895 }
2896 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT)
2897 {
2898 if (fCurBitFlags != fBitFlags)
2899 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2900 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2901 pFrame->iFrame,
2902 (uint32_t)pFrame->AddrFrame.off,
2903 (uint32_t)pFrame->AddrReturnFrame.off,
2904 (uint32_t)pFrame->AddrReturnPC.Sel,
2905 (uint32_t)pFrame->AddrReturnPC.off,
2906 pFrame->Args.au32[0],
2907 pFrame->Args.au32[1],
2908 pFrame->Args.au32[2],
2909 pFrame->Args.au32[3]);
2910 }
2911 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT)
2912 {
2913 if (fCurBitFlags != fBitFlags)
2914 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n");
2915 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %016RX64 %04RX16:%016RX64 %016RX64",
2916 pFrame->iFrame,
2917 (uint64_t)pFrame->AddrFrame.off,
2918 pFrame->AddrReturnFrame.Sel,
2919 (uint64_t)pFrame->AddrReturnFrame.off,
2920 (uint64_t)pFrame->AddrReturnPC.off);
2921 }
2922 if (RT_FAILURE(rc))
2923 break;
2924 if (!pFrame->pSymPC)
2925 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
2926 fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT
2927 ? " %RTsel:%016RGv"
2928 : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT
2929 ? " %RTsel:%08RGv"
2930 : " %RTsel:%04RGv"
2931 , pFrame->AddrPC.Sel, pFrame->AddrPC.off);
2932 else
2933 {
2934 RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */
2935 if (offDisp > 0)
2936 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp);
2937 else if (offDisp < 0)
2938 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp);
2939 else
2940 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName);
2941 }
2942 if (RT_SUCCESS(rc) && pFrame->pLinePC)
2943 rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo);
2944 if (RT_SUCCESS(rc))
2945 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2946
2947 if (fVerbose && RT_SUCCESS(rc))
2948 {
2949 /*
2950 * Display verbose frame info.
2951 */
2952 const char *pszRetType = "invalid";
2953 switch (pFrame->enmReturnType)
2954 {
2955 case RTDBGRETURNTYPE_NEAR16: pszRetType = "retn/16"; break;
2956 case RTDBGRETURNTYPE_NEAR32: pszRetType = "retn/32"; break;
2957 case RTDBGRETURNTYPE_NEAR64: pszRetType = "retn/64"; break;
2958 case RTDBGRETURNTYPE_FAR16: pszRetType = "retf/16"; break;
2959 case RTDBGRETURNTYPE_FAR32: pszRetType = "retf/32"; break;
2960 case RTDBGRETURNTYPE_FAR64: pszRetType = "retf/64"; break;
2961 case RTDBGRETURNTYPE_IRET16: pszRetType = "iret-16"; break;
2962 case RTDBGRETURNTYPE_IRET32: pszRetType = "iret/32s"; break;
2963 case RTDBGRETURNTYPE_IRET32_PRIV: pszRetType = "iret/32p"; break;
2964 case RTDBGRETURNTYPE_IRET32_V86: pszRetType = "iret/v86"; break;
2965 case RTDBGRETURNTYPE_IRET64: pszRetType = "iret/64"; break;
2966
2967 case RTDBGRETURNTYPE_END:
2968 case RTDBGRETURNTYPE_INVALID:
2969 case RTDBGRETURNTYPE_32BIT_HACK:
2970 break;
2971 }
2972 size_t cchLine = DBGCCmdHlpPrintfLen(pCmdHlp, " %s", pszRetType);
2973 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_UNWIND_INFO)
2974 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-unwind-info");
2975 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_ODD_EVEN)
2976 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-odd-even");
2977 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_REAL_V86)
2978 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " real-v86");
2979 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_MAX_DEPTH)
2980 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " max-depth");
2981 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_TRAP_FRAME)
2982 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " trap-frame");
2983
2984 if (pFrame->cSureRegs > 0)
2985 {
2986 cchLine = 1024; /* force new line */
2987 for (uint32_t i = 0; i < pFrame->cSureRegs; i++)
2988 {
2989 if (cchLine > 80)
2990 {
2991 DBGCCmdHlpPrintf(pCmdHlp, "\n ");
2992 cchLine = 2;
2993 }
2994
2995 szTmp[0] = '\0';
2996 DBGFR3RegFormatValue(szTmp, sizeof(szTmp), &pFrame->paSureRegs[i].Value,
2997 pFrame->paSureRegs[i].enmType, false);
2998 const char *pszName = pFrame->paSureRegs[i].enmReg != DBGFREG_END
2999 ? DBGFR3RegCpuName(pUVM, pFrame->paSureRegs[i].enmReg, pFrame->paSureRegs[i].enmType)
3000 : pFrame->paSureRegs[i].pszName;
3001 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " %s=%s", pszName, szTmp);
3002 }
3003 }
3004
3005 if (RT_SUCCESS(rc))
3006 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3007 }
3008
3009 if (RT_FAILURE(rc))
3010 break;
3011
3012 fBitFlags = fCurBitFlags;
3013 }
3014
3015 DBGFR3StackWalkEnd(pFirstFrame);
3016
3017 NOREF(paArgs); NOREF(cArgs);
3018 return rc;
3019}
3020
3021
3022/**
3023 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
3024 *
3025 * @returns pfnPrintf status code.
3026 * @param pCmdHlp The DBGC command helpers.
3027 * @param pDesc The descriptor to display.
3028 * @param iEntry The descriptor entry number.
3029 * @param fHyper Whether the selector belongs to the hypervisor or not.
3030 * @param hAs Address space to use when resolving symbols.
3031 * @param pfDblEntry Where to indicate whether the entry is two entries wide.
3032 * Optional.
3033 */
3034static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs,
3035 bool *pfDblEntry)
3036{
3037 /* GUEST64 */
3038 int rc;
3039
3040 const char *pszHyper = fHyper ? " HYPER" : "";
3041 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
3042 if (pDesc->Gen.u1DescType)
3043 {
3044 static const char * const s_apszTypes[] =
3045 {
3046 "DataRO", /* 0 Read-Only */
3047 "DataRO", /* 1 Read-Only - Accessed */
3048 "DataRW", /* 2 Read/Write */
3049 "DataRW", /* 3 Read/Write - Accessed */
3050 "DownRO", /* 4 Expand-down, Read-Only */
3051 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
3052 "DownRW", /* 6 Expand-down, Read/Write */
3053 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
3054 "CodeEO", /* 8 Execute-Only */
3055 "CodeEO", /* 9 Execute-Only - Accessed */
3056 "CodeER", /* A Execute/Readable */
3057 "CodeER", /* B Execute/Readable - Accessed */
3058 "ConfE0", /* C Conforming, Execute-Only */
3059 "ConfE0", /* D Conforming, Execute-Only - Accessed */
3060 "ConfER", /* E Conforming, Execute/Readable */
3061 "ConfER" /* F Conforming, Execute/Readable - Accessed */
3062 };
3063 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
3064 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3065 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3066 uint32_t u32Base = X86DESC_BASE(pDesc);
3067 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
3068
3069 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
3070 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3071 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
3072 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
3073 }
3074 else
3075 {
3076 static const char * const s_apszTypes[] =
3077 {
3078 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
3079 "Ill-1 ", /* 1 0001 Available 16-bit TSS */
3080 "LDT ", /* 2 0010 LDT */
3081 "Ill-3 ", /* 3 0011 Busy 16-bit TSS */
3082 "Ill-4 ", /* 4 0100 16-bit Call Gate */
3083 "Ill-5 ", /* 5 0101 Task Gate */
3084 "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */
3085 "Ill-7 ", /* 7 0111 16-bit Trap Gate */
3086 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
3087 "Tss64A", /* 9 1001 Available 32-bit TSS */
3088 "Ill-A ", /* A 1010 Reserved (Illegal) */
3089 "Tss64B", /* B 1011 Busy 32-bit TSS */
3090 "Call64", /* C 1100 32-bit Call Gate */
3091 "Ill-D ", /* D 1101 Reserved (Illegal) */
3092 "Int64 ", /* E 1110 32-bit Interrupt Gate */
3093 "Trap64" /* F 1111 32-bit Trap Gate */
3094 };
3095 switch (pDesc->Gen.u4Type)
3096 {
3097 /* raw */
3098 case X86_SEL_TYPE_SYS_UNDEFINED:
3099 case X86_SEL_TYPE_SYS_UNDEFINED2:
3100 case X86_SEL_TYPE_SYS_UNDEFINED4:
3101 case X86_SEL_TYPE_SYS_UNDEFINED3:
3102 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3103 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3104 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3105 case X86_SEL_TYPE_SYS_286_INT_GATE:
3106 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
3107 case X86_SEL_TYPE_SYS_TASK_GATE:
3108 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
3109 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
3110 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3111 break;
3112
3113 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3114 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3115 case X86_SEL_TYPE_SYS_LDT:
3116 {
3117 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3118 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3119 const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " ";
3120
3121 uint64_t u64Base = X86DESC64_BASE(pDesc);
3122 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
3123
3124 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n",
3125 iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit,
3126 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig,
3127 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3128 pszHyper);
3129 if (pfDblEntry)
3130 *pfDblEntry = true;
3131 break;
3132 }
3133
3134 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3135 {
3136 unsigned cParams = pDesc->au8[4] & 0x1f;
3137 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3138 RTSEL sel = pDesc->au16[1];
3139 uint64_t off = pDesc->au16[0]
3140 | ((uint64_t)pDesc->au16[3] << 16)
3141 | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
3142 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3143 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s%s\n",
3144 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3145 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3146 RTStrFree(pszSymbol);
3147 if (pfDblEntry)
3148 *pfDblEntry = true;
3149 break;
3150 }
3151
3152 case X86_SEL_TYPE_SYS_386_INT_GATE:
3153 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3154 {
3155 RTSEL sel = pDesc->Gate.u16Sel;
3156 uint64_t off = pDesc->Gate.u16OffsetLow
3157 | ((uint64_t)pDesc->Gate.u16OffsetHigh << 16)
3158 | ((uint64_t)pDesc->Gate.u32OffsetTop << 32);
3159 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3160 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%u %s IST=%u%s%s\n",
3161 iEntry, s_apszTypes[pDesc->Gate.u4Type], sel, off,
3162 pDesc->Gate.u2Dpl, pszPresent, pDesc->Gate.u3IST, pszHyper, pszSymbol ? pszSymbol : "");
3163 RTStrFree(pszSymbol);
3164 if (pfDblEntry)
3165 *pfDblEntry = true;
3166 break;
3167 }
3168
3169 /* impossible, just it's necessary to keep gcc happy. */
3170 default:
3171 return VINF_SUCCESS;
3172 }
3173 }
3174 return rc;
3175}
3176
3177
3178/**
3179 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
3180 *
3181 * @returns pfnPrintf status code.
3182 * @param pCmdHlp The DBGC command helpers.
3183 * @param pDesc The descriptor to display.
3184 * @param iEntry The descriptor entry number.
3185 * @param fHyper Whether the selector belongs to the hypervisor or not.
3186 * @param hAs Address space to use when resolving symbols.
3187 */
3188static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs)
3189{
3190 int rc;
3191
3192 const char *pszHyper = fHyper ? " HYPER" : "";
3193 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
3194 if (pDesc->Gen.u1DescType)
3195 {
3196 static const char * const s_apszTypes[] =
3197 {
3198 "DataRO", /* 0 Read-Only */
3199 "DataRO", /* 1 Read-Only - Accessed */
3200 "DataRW", /* 2 Read/Write */
3201 "DataRW", /* 3 Read/Write - Accessed */
3202 "DownRO", /* 4 Expand-down, Read-Only */
3203 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
3204 "DownRW", /* 6 Expand-down, Read/Write */
3205 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
3206 "CodeEO", /* 8 Execute-Only */
3207 "CodeEO", /* 9 Execute-Only - Accessed */
3208 "CodeER", /* A Execute/Readable */
3209 "CodeER", /* B Execute/Readable - Accessed */
3210 "ConfE0", /* C Conforming, Execute-Only */
3211 "ConfE0", /* D Conforming, Execute-Only - Accessed */
3212 "ConfER", /* E Conforming, Execute/Readable */
3213 "ConfER" /* F Conforming, Execute/Readable - Accessed */
3214 };
3215 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
3216 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3217 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3218 uint32_t u32Base = pDesc->Gen.u16BaseLow
3219 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3220 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3221 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3222 if (pDesc->Gen.u1Granularity)
3223 cbLimit <<= GUEST_PAGE_SHIFT;
3224
3225 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
3226 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3227 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
3228 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
3229 }
3230 else
3231 {
3232 static const char * const s_apszTypes[] =
3233 {
3234 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
3235 "Tss16A", /* 1 0001 Available 16-bit TSS */
3236 "LDT ", /* 2 0010 LDT */
3237 "Tss16B", /* 3 0011 Busy 16-bit TSS */
3238 "Call16", /* 4 0100 16-bit Call Gate */
3239 "TaskG ", /* 5 0101 Task Gate */
3240 "Int16 ", /* 6 0110 16-bit Interrupt Gate */
3241 "Trap16", /* 7 0111 16-bit Trap Gate */
3242 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
3243 "Tss32A", /* 9 1001 Available 32-bit TSS */
3244 "Ill-A ", /* A 1010 Reserved (Illegal) */
3245 "Tss32B", /* B 1011 Busy 32-bit TSS */
3246 "Call32", /* C 1100 32-bit Call Gate */
3247 "Ill-D ", /* D 1101 Reserved (Illegal) */
3248 "Int32 ", /* E 1110 32-bit Interrupt Gate */
3249 "Trap32" /* F 1111 32-bit Trap Gate */
3250 };
3251 switch (pDesc->Gen.u4Type)
3252 {
3253 /* raw */
3254 case X86_SEL_TYPE_SYS_UNDEFINED:
3255 case X86_SEL_TYPE_SYS_UNDEFINED2:
3256 case X86_SEL_TYPE_SYS_UNDEFINED4:
3257 case X86_SEL_TYPE_SYS_UNDEFINED3:
3258 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
3259 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
3260 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3261 break;
3262
3263 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3264 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3265 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3266 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3267 case X86_SEL_TYPE_SYS_LDT:
3268 {
3269 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3270 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3271 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3272 uint32_t u32Base = pDesc->Gen.u16BaseLow
3273 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3274 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3275 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3276 if (pDesc->Gen.u1Granularity)
3277 cbLimit <<= GUEST_PAGE_SHIFT;
3278
3279 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n",
3280 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3281 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig,
3282 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3283 pszHyper);
3284 break;
3285 }
3286
3287 case X86_SEL_TYPE_SYS_TASK_GATE:
3288 {
3289 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n",
3290 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1],
3291 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3292 break;
3293 }
3294
3295 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3296 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3297 {
3298 unsigned cParams = pDesc->au8[4] & 0x1f;
3299 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3300 RTSEL sel = pDesc->au16[1];
3301 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3302 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3303 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s%s\n",
3304 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3305 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3306 RTStrFree(pszSymbol);
3307 break;
3308 }
3309
3310 case X86_SEL_TYPE_SYS_286_INT_GATE:
3311 case X86_SEL_TYPE_SYS_386_INT_GATE:
3312 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
3313 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3314 {
3315 RTSEL sel = pDesc->au16[1];
3316 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3317 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3318 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s%s\n",
3319 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3320 pDesc->Gen.u2Dpl, pszPresent, pszHyper, pszSymbol ? pszSymbol : "");
3321 RTStrFree(pszSymbol);
3322 break;
3323 }
3324
3325 /* impossible, just it's necessary to keep gcc happy. */
3326 default:
3327 return VINF_SUCCESS;
3328 }
3329 }
3330 return rc;
3331}
3332
3333
3334/**
3335 * @callback_method_impl{FNDBGCCMD, The 'dg'\, 'dga'\, 'dl' and 'dla' commands.}
3336 */
3337static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3338{
3339 /*
3340 * Validate input.
3341 */
3342 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3343
3344 /*
3345 * Get the CPU mode, check which command variation this is
3346 * and fix a default parameter if needed.
3347 */
3348 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3349 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
3350 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
3351 bool fGdt = pCmd->pszCmd[1] == 'g';
3352 bool fAll = pCmd->pszCmd[2] == 'a';
3353 RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT;
3354
3355 DBGCVAR Var;
3356 if (!cArgs)
3357 {
3358 cArgs = 1;
3359 paArgs = &Var;
3360 Var.enmType = DBGCVAR_TYPE_NUMBER;
3361 Var.u.u64Number = fGdt ? 0 : 4;
3362 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3363 Var.u64Range = 1024;
3364 }
3365
3366 /*
3367 * Process the arguments.
3368 */
3369 for (unsigned i = 0; i < cArgs; i++)
3370 {
3371 /*
3372 * Retrieve the selector value from the argument.
3373 * The parser may confuse pointers and numbers if more than one
3374 * argument is given, that that into account.
3375 */
3376 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType));
3377 uint64_t u64;
3378 unsigned cSels = 1;
3379 switch (paArgs[i].enmType)
3380 {
3381 case DBGCVAR_TYPE_NUMBER:
3382 u64 = paArgs[i].u.u64Number;
3383 if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE)
3384 cSels = RT_MIN(paArgs[i].u64Range, 1024);
3385 break;
3386 case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break;
3387 case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break;
3388 case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break;
3389 case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break;
3390 case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break;
3391 default: u64 = _64K; break;
3392 }
3393 if (u64 < _64K)
3394 {
3395 unsigned Sel = (RTSEL)u64;
3396
3397 /*
3398 * Dump the specified range.
3399 */
3400 bool fSingle = cSels == 1;
3401 while ( cSels-- > 0
3402 && Sel < _64K)
3403 {
3404 DBGFSELINFO SelInfo;
3405 int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
3406 if (RT_SUCCESS(rc))
3407 {
3408 if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE)
3409 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n",
3410 Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit);
3411 else if ( fAll
3412 || fSingle
3413 || SelInfo.u.Raw.Gen.u1Present)
3414 {
3415 if (enmMode == CPUMMODE_PROTECTED)
3416 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel,
3417 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL);
3418 else
3419 {
3420 bool fDblSkip = false;
3421 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel,
3422 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL, &fDblSkip);
3423 if (fDblSkip)
3424 Sel += 4;
3425 }
3426 }
3427 }
3428 else
3429 {
3430 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc);
3431 if (!fAll)
3432 return rc;
3433 }
3434 if (RT_FAILURE(rc))
3435 return rc;
3436
3437 /* next */
3438 Sel += 8;
3439 }
3440 }
3441 else
3442 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64);
3443 }
3444
3445 return VINF_SUCCESS;
3446}
3447
3448
3449/**
3450 * @callback_method_impl{FNDBGCCMD, The 'di' and 'dia' commands.}
3451 */
3452static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3453{
3454 /*
3455 * Validate input.
3456 */
3457 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3458
3459 /*
3460 * Establish some stuff like the current IDTR and CPU mode,
3461 * and fix a default parameter.
3462 */
3463 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3464 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
3465 uint16_t cbLimit = 0;
3466 uint64_t GCFlat = 0;
3467 int rc = DBGFR3RegCpuQueryXdtr(pDbgc->pUVM, pDbgc->idCpu, DBGFREG_IDTR, &GCFlat, &cbLimit);
3468 if (RT_FAILURE(rc))
3469 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3RegCpuQueryXdtr/DBGFREG_IDTR");
3470 unsigned cbEntry;
3471 switch (enmMode)
3472 {
3473 case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break;
3474 case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break;
3475 case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break;
3476 default:
3477 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode);
3478 }
3479
3480 bool fAll = pCmd->pszCmd[2] == 'a';
3481 DBGCVAR Var;
3482 if (!cArgs)
3483 {
3484 cArgs = 1;
3485 paArgs = &Var;
3486 Var.enmType = DBGCVAR_TYPE_NUMBER;
3487 Var.u.u64Number = 0;
3488 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3489 Var.u64Range = 256;
3490 }
3491
3492 /*
3493 * Process the arguments.
3494 */
3495 for (unsigned i = 0; i < cArgs; i++)
3496 {
3497 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER);
3498 if (paArgs[i].u.u64Number < 256)
3499 {
3500 RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number;
3501 unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE
3502 ? paArgs[i].u64Range
3503 : 1;
3504 bool fSingle = cInts == 1;
3505 while ( cInts-- > 0
3506 && iInt < 256)
3507 {
3508 /*
3509 * Try read it.
3510 */
3511 union
3512 {
3513 RTFAR16 Real;
3514 X86DESC Prot;
3515 X86DESC64 Long;
3516 } u;
3517 if (iInt * cbEntry + (cbEntry - 1) > cbLimit)
3518 {
3519 DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt);
3520 if (!fAll && !fSingle)
3521 return VINF_SUCCESS;
3522 }
3523 DBGCVAR AddrVar;
3524 AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT;
3525 AddrVar.u.GCFlat = GCFlat + iInt * cbEntry;
3526 AddrVar.enmRangeType = DBGCVAR_RANGE_NONE;
3527 rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL);
3528 if (RT_FAILURE(rc))
3529 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt);
3530
3531 /*
3532 * Display it.
3533 */
3534 switch (enmMode)
3535 {
3536 case CPUMMODE_REAL:
3537 {
3538 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, DBGF_AS_GLOBAL, u.Real.sel, u.Real.off, " (", ")");
3539 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16%s\n", (unsigned)iInt, u.Real, pszSymbol ? pszSymbol : "");
3540 RTStrFree(pszSymbol);
3541 break;
3542 }
3543 case CPUMMODE_PROTECTED:
3544 if (fAll || fSingle || u.Prot.Gen.u1Present)
3545 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false, DBGF_AS_GLOBAL);
3546 break;
3547 case CPUMMODE_LONG:
3548 if (fAll || fSingle || u.Long.Gen.u1Present)
3549 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, DBGF_AS_GLOBAL, NULL);
3550 break;
3551 default: break; /* to shut up gcc */
3552 }
3553 if (RT_FAILURE(rc))
3554 return rc;
3555
3556 /* next */
3557 iInt++;
3558 }
3559 }
3560 else
3561 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number);
3562 }
3563
3564 return VINF_SUCCESS;
3565}
3566
3567
3568/**
3569 * @callback_method_impl{FNDBGCCMD,
3570 * The 'da'\, 'dq'\, 'dqs'\, 'dd'\, 'dds'\, 'dw'\, 'db'\, 'dp'\, 'dps'\,
3571 * and 'du' commands.}
3572 */
3573static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3574{
3575 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3576
3577 /*
3578 * Validate input.
3579 */
3580 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3581 if (cArgs == 1)
3582 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3583 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3584
3585#define DBGC_DUMP_MEM_F_ASCII RT_BIT_32(31)
3586#define DBGC_DUMP_MEM_F_UNICODE RT_BIT_32(30)
3587#define DBGC_DUMP_MEM_F_FAR RT_BIT_32(29)
3588#define DBGC_DUMP_MEM_F_SYMBOLS RT_BIT_32(28)
3589#define DBGC_DUMP_MEM_F_SIZE UINT32_C(0x0000ffff)
3590
3591 /*
3592 * Figure out the element size.
3593 */
3594 unsigned cbElement;
3595 bool fAscii = false;
3596 bool fUnicode = false;
3597 bool fFar = false;
3598 bool fSymbols = pCmd->pszCmd[1] && pCmd->pszCmd[2] == 's';
3599 switch (pCmd->pszCmd[1])
3600 {
3601 default:
3602 case 'b': cbElement = 1; break;
3603 case 'w': cbElement = 2; break;
3604 case 'd': cbElement = 4; break;
3605 case 'q': cbElement = 8; break;
3606 case 'a':
3607 cbElement = 1;
3608 fAscii = true;
3609 break;
3610 case 'F':
3611 cbElement = 4;
3612 fFar = true;
3613 break;
3614 case 'p':
3615 cbElement = DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu) ? 8 : 4;
3616 break;
3617 case 'u':
3618 cbElement = 2;
3619 fUnicode = true;
3620 break;
3621 case '\0':
3622 fAscii = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_ASCII);
3623 fSymbols = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SYMBOLS);
3624 fUnicode = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_UNICODE);
3625 fFar = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_FAR);
3626 cbElement = pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SIZE;
3627 if (!cbElement)
3628 cbElement = 1;
3629 break;
3630 }
3631 uint32_t const cbDumpElement = cbElement
3632 | (fSymbols ? DBGC_DUMP_MEM_F_SYMBOLS : 0)
3633 | (fFar ? DBGC_DUMP_MEM_F_FAR : 0)
3634 | (fUnicode ? DBGC_DUMP_MEM_F_UNICODE : 0)
3635 | (fAscii ? DBGC_DUMP_MEM_F_ASCII : 0);
3636 pDbgc->cbDumpElement = cbDumpElement;
3637
3638 /*
3639 * Find address.
3640 */
3641 if (!cArgs)
3642 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE;
3643 else
3644 pDbgc->DumpPos = paArgs[0];
3645
3646 /*
3647 * Range.
3648 */
3649 switch (pDbgc->DumpPos.enmRangeType)
3650 {
3651 case DBGCVAR_RANGE_NONE:
3652 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3653 pDbgc->DumpPos.u64Range = 0x60;
3654 break;
3655
3656 case DBGCVAR_RANGE_ELEMENTS:
3657 if (pDbgc->DumpPos.u64Range > 2048)
3658 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n");
3659 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3660 pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range;
3661 break;
3662
3663 case DBGCVAR_RANGE_BYTES:
3664 if (pDbgc->DumpPos.u64Range > 65536)
3665 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
3666 break;
3667
3668 default:
3669 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType);
3670 }
3671
3672 pDbgc->pLastPos = &pDbgc->DumpPos;
3673
3674 /*
3675 * Do the dumping.
3676 */
3677 int cbLeft = (int)pDbgc->DumpPos.u64Range;
3678 uint8_t u16Prev = '\0';
3679 for (;;)
3680 {
3681 /*
3682 * Read memory.
3683 */
3684 char achBuffer[16];
3685 size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft);
3686 size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft);
3687 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb);
3688 if (RT_FAILURE(rc))
3689 {
3690 if (u16Prev && u16Prev != '\n')
3691 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3692 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos);
3693 }
3694
3695 /*
3696 * Display it.
3697 */
3698 memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb);
3699 if (!fAscii && !fUnicode)
3700 {
3701 DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos);
3702 unsigned i;
3703 for (i = 0; i < cb; i += cbElement)
3704 {
3705 const char *pszSpace = " ";
3706 if (cbElement <= 2 && i == 8)
3707 pszSpace = "-";
3708 switch (cbElement)
3709 {
3710 case 1:
3711 DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]);
3712 break;
3713 case 2:
3714 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]);
3715 break;
3716 case 4:
3717 if (!fFar)
3718 DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]);
3719 else
3720 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x:%04x:",
3721 pszSpace, *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3722 break;
3723 case 8:
3724 DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]);
3725 break;
3726 }
3727
3728 if (fSymbols)
3729 {
3730 /* Try lookup symbol for the above address. */
3731 DBGFADDRESS Addr;
3732 rc = VINF_SUCCESS;
3733 if (cbElement == 8)
3734 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint64_t *)&achBuffer[i]);
3735 else if (!fFar)
3736 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint32_t *)&achBuffer[i]);
3737 else
3738 rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr,
3739 *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3740 if (RT_SUCCESS(rc))
3741 {
3742 RTINTPTR offDisp;
3743 RTDBGSYMBOL Symbol;
3744 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, &Addr,
3745 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
3746 &offDisp, &Symbol, NULL);
3747 if (RT_SUCCESS(rc))
3748 {
3749 if (!offDisp)
3750 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", Symbol.szName);
3751 else if (offDisp > 0)
3752 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s + %RGv", Symbol.szName, offDisp);
3753 else
3754 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s - %RGv", Symbol.szName, -offDisp);
3755 if ( RT_SUCCESS(rc)
3756 && Symbol.cb > 0)
3757 DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)", Symbol.cb);
3758 }
3759 }
3760
3761 /* Next line prefix. */
3762 unsigned iNext = i + cbElement;
3763 if (iNext < cb)
3764 {
3765 DBGCVAR TmpPos = pDbgc->DumpPos;
3766 DBGCCmdHlpEval(pCmdHlp, &TmpPos, "(%Dv) + %x", &pDbgc->DumpPos, iNext);
3767 DBGCCmdHlpPrintf(pCmdHlp, "\n%DV:", &pDbgc->DumpPos);
3768 }
3769 }
3770 }
3771
3772 /* Chars column. */
3773 if (cbElement == 1)
3774 {
3775 while (i++ < sizeof(achBuffer))
3776 DBGCCmdHlpPrintf(pCmdHlp, " ");
3777 DBGCCmdHlpPrintf(pCmdHlp, " ");
3778 for (i = 0; i < cb; i += cbElement)
3779 {
3780 uint8_t u8 = *(uint8_t *)&achBuffer[i];
3781 if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32)
3782 DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
3783 else
3784 DBGCCmdHlpPrintf(pCmdHlp, ".");
3785 }
3786 }
3787 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3788 if (RT_FAILURE(rc))
3789 return rc;
3790 }
3791 else
3792 {
3793 /*
3794 * We print up to the first zero and stop there.
3795 * Only printables + '\t' and '\n' are printed.
3796 */
3797 if (!u16Prev)
3798 DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos);
3799 uint16_t u16 = '\0';
3800 unsigned i;
3801 for (i = 0; i < cb; i += cbElement)
3802 {
3803 u16Prev = u16;
3804 if (cbElement == 1)
3805 u16 = *(uint8_t *)&achBuffer[i];
3806 else
3807 u16 = *(uint16_t *)&achBuffer[i];
3808 if ( u16 < 127
3809 && ( (RT_C_IS_PRINT(u16) && u16 >= 32)
3810 || u16 == '\t'
3811 || u16 == '\n'))
3812 DBGCCmdHlpPrintf(pCmdHlp, "%c", (int)u16);
3813 else if (!u16)
3814 break;
3815 else
3816 DBGCCmdHlpPrintf(pCmdHlp, "\\x%0*x", cbElement * 2, u16);
3817 }
3818 if (u16 == '\0')
3819 cb = cbLeft = i + 1;
3820 if (cbLeft - cb <= 0 && u16Prev != '\n')
3821 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3822 }
3823
3824 /*
3825 * Advance
3826 */
3827 cbLeft -= (int)cb;
3828 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb);
3829 if (RT_FAILURE(rc))
3830 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb);
3831 if (cbLeft <= 0)
3832 break;
3833 }
3834
3835 NOREF(pCmd);
3836 return VINF_SUCCESS;
3837}
3838
3839
3840/**
3841 * Best guess at which paging mode currently applies to the guest
3842 * paging structures.
3843 *
3844 * This have to come up with a decent answer even when the guest
3845 * is in non-paged protected mode or real mode.
3846 *
3847 * @returns cr3.
3848 * @param pDbgc The DBGC instance.
3849 * @param pfPAE Where to store the page address extension indicator.
3850 * @param pfLME Where to store the long mode enabled indicator.
3851 * @param pfPSE Where to store the page size extension indicator.
3852 * @param pfPGE Where to store the page global enabled indicator.
3853 * @param pfNXE Where to store the no-execution enabled indicator.
3854 */
3855static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3856{
3857#if defined(VBOX_VMM_TARGET_ARMV8)
3858 AssertReleaseFailed();
3859 RT_NOREF(pDbgc, pfPAE, pfLME, pfPSE, pfPGE, pfNXE);
3860 *pfPAE = *pfLME = *pfPSE = *pfPGE = *pfNXE = false;
3861 return ~(RTGCPHYS)0;
3862#else
3863 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3864 RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu);
3865 *pfPSE = !!(cr4 & X86_CR4_PSE);
3866 *pfPGE = !!(cr4 & X86_CR4_PGE);
3867 if (cr4 & X86_CR4_PAE)
3868 {
3869 *pfPSE = true;
3870 *pfPAE = true;
3871 }
3872 else
3873 *pfPAE = false;
3874
3875 *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG;
3876 *pfNXE = false; /* GUEST64 GUESTNX */
3877 return CPUMGetGuestCR3(pVCpu);
3878#endif
3879}
3880
3881
3882/**
3883 * Determine the shadow paging mode.
3884 *
3885 * @returns cr3.
3886 * @param pDbgc The DBGC instance.
3887 * @param pfPAE Where to store the page address extension indicator.
3888 * @param pfLME Where to store the long mode enabled indicator.
3889 * @param pfPSE Where to store the page size extension indicator.
3890 * @param pfPGE Where to store the page global enabled indicator.
3891 * @param pfNXE Where to store the no-execution enabled indicator.
3892 */
3893static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3894{
3895#if defined(VBOX_VMM_TARGET_ARMV8)
3896 RT_NOREF(pDbgc, pfPAE, pfLME, pfPSE, pfPGE, pfNXE);
3897 AssertReleaseFailed();
3898 *pfPAE = *pfLME = *pfPSE = *pfPGE = *pfNXE = false;
3899 return ~(RTHCPHYS)0;
3900#else
3901 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3902
3903 *pfPSE = true;
3904 *pfPGE = false;
3905 switch (PGMGetShadowMode(pVCpu))
3906 {
3907 default:
3908 case PGMMODE_32_BIT:
3909 *pfPAE = *pfLME = *pfNXE = false;
3910 break;
3911 case PGMMODE_PAE:
3912 *pfLME = *pfNXE = false;
3913 *pfPAE = true;
3914 break;
3915 case PGMMODE_PAE_NX:
3916 *pfLME = false;
3917 *pfPAE = *pfNXE = true;
3918 break;
3919 case PGMMODE_AMD64:
3920 *pfNXE = false;
3921 *pfPAE = *pfLME = true;
3922 break;
3923 case PGMMODE_AMD64_NX:
3924 *pfPAE = *pfLME = *pfNXE = true;
3925 break;
3926 }
3927 return PGMGetHyperCR3(pVCpu);
3928#endif
3929}
3930
3931
3932/**
3933 * @callback_method_impl{FNDBGCCMD,
3934 * The 'dpd'\, 'dpda'\, 'dpdb'\, 'dpdg' and 'dpdh' commands.}
3935 */
3936static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3937{
3938 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3939
3940 /*
3941 * Validate input.
3942 */
3943 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3944 if (cArgs == 1 && pCmd->pszCmd[3] == 'a')
3945 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3946 if (cArgs == 1 && pCmd->pszCmd[3] != 'a')
3947 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3948 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
3949 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3950
3951 /*
3952 * Guest or shadow page directories? Get the paging parameters.
3953 */
3954 bool fGuest = pCmd->pszCmd[3] != 'h';
3955 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
3956 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
3957
3958 bool fPAE, fLME, fPSE, fPGE, fNXE;
3959 uint64_t cr3 = fGuest
3960 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
3961 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
3962 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
3963
3964 /*
3965 * Setup default argument if none was specified.
3966 * Fix address / index confusion.
3967 */
3968 DBGCVAR VarDefault;
3969 if (!cArgs)
3970 {
3971 if (pCmd->pszCmd[3] == 'a')
3972 {
3973 if (fLME || fPAE)
3974 return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n");
3975 if (fGuest)
3976 DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3);
3977 else
3978 DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3);
3979 }
3980 else
3981 DBGCVAR_INIT_GC_FLAT(&VarDefault, 0);
3982 paArgs = &VarDefault;
3983 //cArgs = 1; Unused
3984 }
3985 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
3986 {
3987 /* If it's a number (not an address), it's an index, so convert it to an address. */
3988 Assert(pCmd->pszCmd[3] != 'a');
3989 VarDefault = paArgs[0];
3990 if (fPAE)
3991 return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n");
3992 if (VarDefault.u.u64Number >= GUEST_PAGE_SIZE / cbEntry)
3993 return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", GUEST_PAGE_SIZE / cbEntry - 1);
3994 VarDefault.u.u64Number <<= X86_PD_SHIFT;
3995 VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT;
3996 paArgs = &VarDefault;
3997 }
3998
3999 /*
4000 * Locate the PDE to start displaying at.
4001 *
4002 * The 'dpda' command takes the address of a PDE, while the others are guest
4003 * virtual address which PDEs should be displayed. So, 'dpda' is rather simple
4004 * while the others require us to do all the tedious walking thru the paging
4005 * hierarchy to find the intended PDE.
4006 */
4007 unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */
4008 DBGCVAR VarGCPtr = { NULL, }; /* The GC address corresponding to the current PDE (iEntry != ~0U). */
4009 DBGCVAR VarPDEAddr; /* The address of the current PDE. */
4010 unsigned cEntries; /* The number of entries to display. */
4011 unsigned cEntriesMax; /* The max number of entries to display. */
4012 int rc;
4013 if (pCmd->pszCmd[3] == 'a')
4014 {
4015 VarPDEAddr = paArgs[0];
4016 switch (VarPDEAddr.enmRangeType)
4017 {
4018 case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break;
4019 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break;
4020 default: cEntries = 10; break;
4021 }
4022 cEntriesMax = GUEST_PAGE_SIZE / cbEntry;
4023 }
4024 else
4025 {
4026 /*
4027 * Determine the range.
4028 */
4029 switch (paArgs[0].enmRangeType)
4030 {
4031 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / GUEST_PAGE_SIZE; break;
4032 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
4033 default: cEntries = 10; break;
4034 }
4035
4036 /*
4037 * Normalize the input address, it must be a flat GC address.
4038 */
4039 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
4040 if (RT_FAILURE(rc))
4041 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
4042 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
4043 {
4044 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
4045 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
4046 }
4047 if (fPAE)
4048 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1);
4049 else
4050 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1);
4051
4052 /*
4053 * Do the paging walk until we get to the page directory.
4054 */
4055 DBGCVAR VarCur;
4056 if (fGuest)
4057 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
4058 else
4059 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
4060 if (fLME)
4061 {
4062 /* Page Map Level 4 Lookup. */
4063 /* Check if it's a valid address first? */
4064 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
4065 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
4066 X86PML4E Pml4e;
4067 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
4068 if (RT_FAILURE(rc))
4069 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
4070 if (!Pml4e.n.u1Present)
4071 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
4072
4073 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
4074 Assert(fPAE);
4075 }
4076 if (fPAE)
4077 {
4078 /* Page directory pointer table. */
4079 X86PDPE Pdpe;
4080 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
4081 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
4082 if (RT_FAILURE(rc))
4083 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
4084 if (!Pdpe.n.u1Present)
4085 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
4086
4087 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4088 VarPDEAddr = VarCur;
4089 VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
4090 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE);
4091 }
4092 else
4093 {
4094 /* 32-bit legacy - CR3 == page directory. */
4095 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK;
4096 VarPDEAddr = VarCur;
4097 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE);
4098 }
4099 cEntriesMax = (GUEST_PAGE_SIZE - iEntry) / cbEntry;
4100 }
4101
4102 /* adjust cEntries */
4103 cEntries = RT_MAX(1, cEntries);
4104 cEntries = RT_MIN(cEntries, cEntriesMax);
4105
4106 /*
4107 * The display loop.
4108 */
4109 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n",
4110 &VarPDEAddr, iEntry);
4111 do
4112 {
4113 /*
4114 * Read.
4115 */
4116 X86PDEPAE Pde;
4117 Pde.u = 0;
4118 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL);
4119 if (RT_FAILURE(rc))
4120 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr);
4121
4122 /*
4123 * Display.
4124 */
4125 if (iEntry != ~0U)
4126 {
4127 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
4128 iEntry++;
4129 }
4130 if (fPSE && Pde.b.u1Size)
4131 DBGCCmdHlpPrintf(pCmdHlp,
4132 fPAE
4133 ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4134 : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4135 Pde.u,
4136 Pde.u & X86_PDE_PAE_PG_MASK,
4137 Pde.b.u1Present ? "p " : "np",
4138 Pde.b.u1Write ? "w" : "r",
4139 Pde.b.u1User ? "u" : "s",
4140 Pde.b.u1Accessed ? "a " : "na",
4141 Pde.b.u1Dirty ? "d " : "nd",
4142 Pde.b.u3Available,
4143 Pde.b.u1Global ? (fPGE ? "g" : "G") : " ",
4144 Pde.b.u1WriteThru ? "pwt" : " ",
4145 Pde.b.u1CacheDisable ? "pcd" : " ",
4146 Pde.b.u1PAT ? "pat" : "",
4147 Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
4148 else
4149 DBGCCmdHlpPrintf(pCmdHlp,
4150 fPAE
4151 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s"
4152 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s",
4153 Pde.u,
4154 Pde.u & X86_PDE_PAE_PG_MASK,
4155 Pde.n.u1Present ? "p " : "np",
4156 Pde.n.u1Write ? "w" : "r",
4157 Pde.n.u1User ? "u" : "s",
4158 Pde.n.u1Accessed ? "a " : "na",
4159 Pde.u & RT_BIT(6) ? "6 " : " ",
4160 Pde.n.u3Available,
4161 Pde.u & RT_BIT(8) ? "8" : " ",
4162 Pde.n.u1WriteThru ? "pwt" : " ",
4163 Pde.n.u1CacheDisable ? "pcd" : " ",
4164 Pde.u & RT_BIT(7) ? "7" : "",
4165 Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
4166 if (Pde.u & UINT64_C(0x7fff000000000000))
4167 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000)));
4168 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4169 if (RT_FAILURE(rc))
4170 return rc;
4171
4172 /*
4173 * Advance.
4174 */
4175 VarPDEAddr.u.u64Number += cbEntry;
4176 if (iEntry != ~0U)
4177 VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT);
4178 } while (cEntries-- > 0);
4179
4180 return VINF_SUCCESS;
4181}
4182
4183
4184/**
4185 * @callback_method_impl{FNDBGCCMD, The 'dpdb' command.}
4186 */
4187static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4188{
4189 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4190 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]);
4191 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]);
4192 if (RT_FAILURE(rc1))
4193 return rc1;
4194 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
4195 return rc2;
4196}
4197
4198
4199/**
4200 * @callback_method_impl{FNDBGCCMD, The 'dph*' commands and main part of 'm'.}
4201 */
4202static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4203{
4204 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4205 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4206
4207 /*
4208 * Figure the context and base flags.
4209 */
4210 uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3;
4211 if (pCmd->pszCmd[0] == 'm')
4212 fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW;
4213 else if (pCmd->pszCmd[3] == '\0')
4214 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4215 else if (pCmd->pszCmd[3] == 'g')
4216 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4217 else if (pCmd->pszCmd[3] == 'h')
4218 fFlags |= DBGFPGDMP_FLAGS_SHADOW;
4219 else
4220 AssertFailed();
4221
4222 if (pDbgc->cPagingHierarchyDumps == 0)
4223 fFlags |= DBGFPGDMP_FLAGS_HEADER;
4224 pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42;
4225
4226 /*
4227 * Get the range.
4228 */
4229 PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos;
4230 RTGCPTR GCPtrFirst = NIL_RTGCPTR;
4231 int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst);
4232 if (RT_FAILURE(rc))
4233 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc);
4234
4235 uint64_t cbRange;
4236 rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, GUEST_PAGE_SIZE, GUEST_PAGE_SIZE * 8, &cbRange);
4237 if (RT_FAILURE(rc))
4238 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc);
4239
4240 RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst;
4241 if (cbRange >= GCPtrLast)
4242 GCPtrLast = RTGCPTR_MAX;
4243 else if (!cbRange)
4244 GCPtrLast = GCPtrFirst;
4245 else
4246 GCPtrLast = GCPtrFirst + cbRange - 1;
4247
4248 /*
4249 * Do we have a CR3?
4250 */
4251 uint64_t cr3 = 0;
4252 if (cArgs > 1)
4253 {
4254 if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW))
4255 return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please.");
4256 if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
4257 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]);
4258 cr3 = paArgs[1].u.u64Number;
4259 }
4260 else
4261 fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3;
4262
4263 /*
4264 * Do we have a mode?
4265 */
4266 if (cArgs > 2)
4267 {
4268 if (paArgs[2].enmType != DBGCVAR_TYPE_STRING)
4269 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]);
4270 static const struct MODETOFLAGS
4271 {
4272 const char *pszName;
4273 uint32_t fFlags;
4274 } s_aModeToFlags[] =
4275 {
4276 { "ept", DBGFPGDMP_FLAGS_EPT },
4277 { "legacy", 0 },
4278 { "legacy-np", DBGFPGDMP_FLAGS_NP },
4279 { "pse", DBGFPGDMP_FLAGS_PSE },
4280 { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP },
4281 { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE },
4282 { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP },
4283 { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE },
4284 { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP },
4285 { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME },
4286 { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP },
4287 { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE },
4288 { "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }
4289 };
4290 int i = RT_ELEMENTS(s_aModeToFlags);
4291 while (i-- > 0)
4292 if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString))
4293 {
4294 fFlags |= s_aModeToFlags[i].fFlags;
4295 break;
4296 }
4297 if (i < 0)
4298 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString);
4299 }
4300 else
4301 fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE;
4302
4303 /*
4304 * Call the worker.
4305 */
4306 rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/,
4307 DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp));
4308 if (RT_FAILURE(rc))
4309 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc);
4310 return VINF_SUCCESS;
4311}
4312
4313
4314
4315/**
4316 * @callback_method_impl{FNDBGCCMD, The 'dpg*' commands.}
4317 */
4318static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4319{
4320 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4321
4322 /*
4323 * Validate input.
4324 */
4325 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1);
4326 if (pCmd->pszCmd[3] == 'a')
4327 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
4328 else
4329 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
4330 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
4331 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4332
4333 /*
4334 * Guest or shadow page tables? Get the paging parameters.
4335 */
4336 bool fGuest = pCmd->pszCmd[3] != 'h';
4337 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
4338 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
4339
4340 bool fPAE, fLME, fPSE, fPGE, fNXE;
4341 uint64_t cr3 = fGuest
4342 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
4343 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
4344 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
4345
4346 /*
4347 * Locate the PTE to start displaying at.
4348 *
4349 * The 'dpta' command takes the address of a PTE, while the others are guest
4350 * virtual address which PTEs should be displayed. So, 'pdta' is rather simple
4351 * while the others require us to do all the tedious walking thru the paging
4352 * hierarchy to find the intended PTE.
4353 */
4354 unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */
4355 DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */
4356 DBGCVAR VarPTEAddr; /* The address of the current PTE. */
4357 unsigned cEntries; /* The number of entries to display. */
4358 unsigned cEntriesMax; /* The max number of entries to display. */
4359 int rc;
4360 if (pCmd->pszCmd[3] == 'a')
4361 {
4362 VarPTEAddr = paArgs[0];
4363 switch (VarPTEAddr.enmRangeType)
4364 {
4365 case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break;
4366 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break;
4367 default: cEntries = 10; break;
4368 }
4369 cEntriesMax = GUEST_PAGE_SIZE / cbEntry;
4370 }
4371 else
4372 {
4373 /*
4374 * Determine the range.
4375 */
4376 switch (paArgs[0].enmRangeType)
4377 {
4378 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / GUEST_PAGE_SIZE; break;
4379 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
4380 default: cEntries = 10; break;
4381 }
4382
4383 /*
4384 * Normalize the input address, it must be a flat GC address.
4385 */
4386 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
4387 if (RT_FAILURE(rc))
4388 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
4389 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
4390 {
4391 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
4392 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
4393 }
4394 VarGCPtr.u.GCFlat &= ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK;
4395
4396 /*
4397 * Do the paging walk until we get to the page table.
4398 */
4399 DBGCVAR VarCur;
4400 if (fGuest)
4401 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
4402 else
4403 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
4404 if (fLME)
4405 {
4406 /* Page Map Level 4 Lookup. */
4407 /* Check if it's a valid address first? */
4408 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
4409 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
4410 X86PML4E Pml4e;
4411 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
4412 if (RT_FAILURE(rc))
4413 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
4414 if (!Pml4e.n.u1Present)
4415 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
4416
4417 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
4418 Assert(fPAE);
4419 }
4420 if (fPAE)
4421 {
4422 /* Page directory pointer table. */
4423 X86PDPE Pdpe;
4424 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
4425 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
4426 if (RT_FAILURE(rc))
4427 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
4428 if (!Pdpe.n.u1Present)
4429 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
4430
4431 VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
4432
4433 /* Page directory (PAE). */
4434 X86PDEPAE Pde;
4435 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde);
4436 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4437 if (RT_FAILURE(rc))
4438 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4439 if (!Pde.n.u1Present)
4440 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4441 if (fPSE && Pde.n.u1Size)
4442 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4443
4444 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
4445 VarPTEAddr = VarCur;
4446 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK;
4447 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE);
4448 }
4449 else
4450 {
4451 /* Page directory (legacy). */
4452 X86PDE Pde;
4453 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde);
4454 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4455 if (RT_FAILURE(rc))
4456 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4457 if (!Pde.n.u1Present)
4458 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4459 if (fPSE && Pde.n.u1Size)
4460 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4461
4462 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK;
4463 VarPTEAddr = VarCur;
4464 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK;
4465 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE);
4466 }
4467 cEntriesMax = (GUEST_PAGE_SIZE - iEntry) / cbEntry;
4468 }
4469
4470 /* adjust cEntries */
4471 cEntries = RT_MAX(1, cEntries);
4472 cEntries = RT_MIN(cEntries, cEntriesMax);
4473
4474 /*
4475 * The display loop.
4476 */
4477 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n",
4478 &VarPTEAddr, &VarGCPtr, iEntry);
4479 do
4480 {
4481 /*
4482 * Read.
4483 */
4484 X86PTEPAE Pte;
4485 Pte.u = 0;
4486 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL);
4487 if (RT_FAILURE(rc))
4488 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr);
4489
4490 /*
4491 * Display.
4492 */
4493 if (iEntry != ~0U)
4494 {
4495 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
4496 iEntry++;
4497 }
4498 DBGCCmdHlpPrintf(pCmdHlp,
4499 fPAE
4500 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4501 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4502 Pte.u,
4503 Pte.u & X86_PTE_PAE_PG_MASK,
4504 Pte.n.u1Present ? "p " : "np",
4505 Pte.n.u1Write ? "w" : "r",
4506 Pte.n.u1User ? "u" : "s",
4507 Pte.n.u1Accessed ? "a " : "na",
4508 Pte.n.u1Dirty ? "d " : "nd",
4509 Pte.n.u3Available,
4510 Pte.n.u1Global ? (fPGE ? "g" : "G") : " ",
4511 Pte.n.u1WriteThru ? "pwt" : " ",
4512 Pte.n.u1CacheDisable ? "pcd" : " ",
4513 Pte.n.u1PAT ? "pat" : " ",
4514 Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "
4515 );
4516 if (Pte.u & UINT64_C(0x7fff000000000000))
4517 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000)));
4518 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4519 if (RT_FAILURE(rc))
4520 return rc;
4521
4522 /*
4523 * Advance.
4524 */
4525 VarPTEAddr.u.u64Number += cbEntry;
4526 if (iEntry != ~0U)
4527 VarGCPtr.u.GCFlat += GUEST_PAGE_SIZE;
4528 } while (cEntries-- > 0);
4529
4530 return VINF_SUCCESS;
4531}
4532
4533
4534/**
4535 * @callback_method_impl{FNDBGCCMD, The 'dptb' command.}
4536 */
4537static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4538{
4539 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4540 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]);
4541 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]);
4542 if (RT_FAILURE(rc1))
4543 return rc1;
4544 NOREF(pCmd); NOREF(cArgs);
4545 return rc2;
4546}
4547
4548
4549/**
4550 * @callback_method_impl{FNDBGCCMD, The 'dt' command.}
4551 */
4552static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4553{
4554 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4555 int rc;
4556
4557 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4558 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
4559 if (cArgs == 1)
4560 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING
4561 && paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL);
4562
4563 /*
4564 * Check if the command indicates the type.
4565 */
4566 enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined;
4567 if (!strcmp(pCmd->pszCmd, "dt16"))
4568 enmTssType = kTss16;
4569 else if (!strcmp(pCmd->pszCmd, "dt32"))
4570 enmTssType = kTss32;
4571 else if (!strcmp(pCmd->pszCmd, "dt64"))
4572 enmTssType = kTss64;
4573
4574 /*
4575 * We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer.
4576 */
4577 uint32_t SelTss = UINT32_MAX;
4578 DBGCVAR VarTssAddr;
4579 if (cArgs == 0)
4580 {
4581 /** @todo consider querying the hidden bits instead (missing API). */
4582 uint16_t SelTR;
4583 rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR);
4584 if (RT_FAILURE(rc))
4585 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc);
4586 DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0);
4587 SelTss = SelTR;
4588 }
4589 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
4590 {
4591 if (paArgs[0].u.u64Number < 0xffff)
4592 DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0);
4593 else
4594 {
4595 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS)
4596 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n");
4597 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number);
4598 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES)
4599 {
4600 VarTssAddr.enmRangeType = paArgs[0].enmRangeType;
4601 VarTssAddr.u64Range = paArgs[0].u64Range;
4602 }
4603 }
4604 }
4605 else
4606 VarTssAddr = paArgs[0];
4607
4608 /*
4609 * Deal with TSS:ign by means of the GDT.
4610 */
4611 if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR)
4612 {
4613 SelTss = VarTssAddr.u.GCFar.sel;
4614 DBGFSELINFO SelInfo;
4615 rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
4616 if (RT_FAILURE(rc))
4617 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n",
4618 pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc);
4619
4620 if (SelInfo.u.Raw.Gen.u1DescType)
4621 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel);
4622
4623 switch (SelInfo.u.Raw.Gen.u4Type)
4624 {
4625 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4626 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4627 if (enmTssType == kTssToBeDetermined)
4628 enmTssType = kTss16;
4629 break;
4630
4631 case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */
4632 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4633 if (enmTssType == kTssToBeDetermined)
4634 enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32;
4635 break;
4636
4637 default:
4638 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n",
4639 VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type);
4640 }
4641
4642 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase);
4643 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit));
4644 }
4645
4646 /*
4647 * Determine the TSS type if none is currently given.
4648 */
4649 if (enmTssType == kTssToBeDetermined)
4650 {
4651 if ( VarTssAddr.u64Range > 0
4652 && VarTssAddr.u64Range < sizeof(X86TSS32) - 4)
4653 enmTssType = kTss16;
4654 else
4655 {
4656 uint64_t uEfer;
4657 rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer);
4658 if ( RT_FAILURE(rc)
4659 || !(uEfer & MSR_K6_EFER_LMA) )
4660 enmTssType = kTss32;
4661 else
4662 enmTssType = kTss64;
4663 }
4664 }
4665
4666 /*
4667 * Figure the min/max sizes.
4668 * ASSUMES max TSS size is 64 KB.
4669 */
4670 uint32_t cbTssMin;
4671 uint32_t cbTssMax;
4672 switch (enmTssType)
4673 {
4674 case kTss16:
4675 cbTssMin = cbTssMax = X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN + 1;
4676 break;
4677 case kTss32:
4678 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4679 cbTssMax = _64K;
4680 break;
4681 case kTss64:
4682 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4683 cbTssMax = _64K;
4684 break;
4685 default:
4686 AssertFailedReturn(VERR_INTERNAL_ERROR);
4687 }
4688 uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0;
4689 if (cbTss == 0)
4690 cbTss = cbTssMin;
4691 else if (cbTss < cbTssMin)
4692 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n",
4693 cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range);
4694 else if (cbTss > cbTssMax)
4695 cbTss = cbTssMax;
4696 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss);
4697
4698 /*
4699 * Read the TSS into a temporary buffer.
4700 */
4701 uint8_t abBuf[_64K];
4702 size_t cbTssRead;
4703 rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead);
4704 if (RT_FAILURE(rc))
4705 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc);
4706 if (cbTssRead < cbTssMin)
4707 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n",
4708 cbTssRead, cbTssMin);
4709 if (cbTssRead < cbTss)
4710 memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead);
4711
4712
4713 /*
4714 * Format the TSS.
4715 */
4716 uint16_t offIoBitmap;
4717 switch (enmTssType)
4718 {
4719 case kTss16:
4720 {
4721 PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0];
4722 if (SelTss != UINT32_MAX)
4723 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr);
4724 else
4725 DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr);
4726 DBGCCmdHlpPrintf(pCmdHlp,
4727 "ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n"
4728 "ip=%04x sp=%04x bp=%04x\n"
4729 "cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n"
4730 "ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n"
4731 "prev=%04x ldtr=%04x\n"
4732 ,
4733 pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di,
4734 pTss->ip, pTss->sp, pTss->bp,
4735 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags,
4736 pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2,
4737 pTss->selPrev, pTss->selLdt);
4738 if (pTss->cs != 0)
4739 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip);
4740 offIoBitmap = 0;
4741 break;
4742 }
4743
4744 case kTss32:
4745 {
4746 PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0];
4747 if (SelTss != UINT32_MAX)
4748 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4749 else
4750 DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4751 DBGCCmdHlpPrintf(pCmdHlp,
4752 "eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
4753 "eip=%08x esp=%08x ebp=%08x\n"
4754 "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
4755 "ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n"
4756 "prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n"
4757 ,
4758 pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi,
4759 pTss->eip, pTss->esp, pTss->ebp,
4760 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags,
4761 pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2,
4762 pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap);
4763 if (pTss->cs != 0)
4764 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip);
4765 offIoBitmap = pTss->offIoBitmap;
4766 break;
4767 }
4768
4769 case kTss64:
4770 {
4771 PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0];
4772 if (SelTss != UINT32_MAX)
4773 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4774 else
4775 DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4776 DBGCCmdHlpPrintf(pCmdHlp,
4777 "rsp0=%016RX64 rsp1=%016RX64 rsp2=%016RX64\n"
4778 "ist1=%016RX64 ist2=%016RX64\n"
4779 "ist3=%016RX64 ist4=%016RX64\n"
4780 "ist5=%016RX64 ist6=%016RX64\n"
4781 "ist7=%016RX64 iomap=%04x\n"
4782 ,
4783 pTss->rsp0, pTss->rsp1, pTss->rsp2,
4784 pTss->ist1, pTss->ist2,
4785 pTss->ist3, pTss->ist4,
4786 pTss->ist5, pTss->ist6,
4787 pTss->ist7, pTss->offIoBitmap);
4788 offIoBitmap = pTss->offIoBitmap;
4789 break;
4790 }
4791
4792 default:
4793 AssertFailedReturn(VERR_INTERNAL_ERROR);
4794 }
4795
4796 /*
4797 * Dump the interrupt redirection bitmap.
4798 */
4799 if (enmTssType != kTss16)
4800 {
4801 if ( offIoBitmap > cbTssMin
4802 && offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */
4803 {
4804 if (offIoBitmap - cbTssMin >= 32)
4805 {
4806 DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n");
4807 uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32];
4808 uint32_t iStart = 0;
4809 bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */
4810 for (uint32_t i = 0; i < 256; i++)
4811 {
4812 bool fThis = ASMBitTest(pbIntRedirBitmap, i);
4813 if (fThis != fPrev)
4814 {
4815 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected");
4816 fPrev = fThis;
4817 iStart = i;
4818 }
4819 }
4820 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected");
4821 }
4822 else
4823 DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n",
4824 offIoBitmap - cbTssMin, offIoBitmap - cbTssMin);
4825 }
4826 else if (offIoBitmap > 0)
4827 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4828 else
4829 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n");
4830 }
4831
4832 /*
4833 * Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x68
4834 * (that applies to both 32-bit and 64-bit TSSs since their size is the same).
4835 * Note that there is always one padding byte that is not technically part of the bitmap
4836 * and "must have all bits set". It's not clear what happens when it doesn't. All ports
4837 * not covered by the bitmap are considered to be not accessible.
4838 */
4839 if (enmTssType != kTss16)
4840 {
4841 if (offIoBitmap < cbTss && offIoBitmap >= 0x68)
4842 {
4843 uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K);
4844 DBGCVAR VarAddr;
4845 DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap);
4846 DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts);
4847
4848 uint8_t const *pbIoBitmap = &abBuf[offIoBitmap];
4849 uint32_t iStart = 0;
4850 bool fPrev = ASMBitTest(pbIoBitmap, 0);
4851 uint32_t cLine = 0;
4852 for (uint32_t i = 1; i < _64K; i++)
4853 {
4854 bool fThis = i < cPorts ? ASMBitTest(pbIoBitmap, i) : true;
4855 if (fThis != fPrev)
4856 {
4857 cLine++;
4858 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1,
4859 fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " ");
4860 fPrev = fThis;
4861 iStart = i;
4862 }
4863 }
4864 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK");
4865 }
4866 else if (offIoBitmap > 0)
4867 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4868 else
4869 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n");
4870 }
4871
4872 return VINF_SUCCESS;
4873}
4874
4875
4876/**
4877 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dti' command dumper callback.}
4878 */
4879static DECLCALLBACK(int) dbgcCmdDumpTypeInfoCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4880 const char *pszType, uint32_t fTypeFlags,
4881 uint32_t cElements, void *pvUser)
4882{
4883 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4884
4885 /* Pad with spaces to match the level. */
4886 for (uint32_t i = 0; i < iLvl; i++)
4887 DBGCCmdHlpPrintf(pCmdHlp, " ");
4888
4889 size_t cbWritten = 0;
4890 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4891 while (cbWritten < 32)
4892 {
4893 /* Fill with spaces to get proper aligning. */
4894 DBGCCmdHlpPrintf(pCmdHlp, " ");
4895 cbWritten++;
4896 }
4897
4898 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4899 if (fTypeFlags & DBGFTYPEREGMEMBER_F_ARRAY)
4900 DBGCCmdHlpPrintf(pCmdHlp, "[%u] ", cElements);
4901 if (fTypeFlags & DBGFTYPEREGMEMBER_F_POINTER)
4902 DBGCCmdHlpPrintf(pCmdHlp, "Ptr ");
4903 DBGCCmdHlpPrintf(pCmdHlp, "%s\n", pszType);
4904
4905 return VINF_SUCCESS;
4906}
4907
4908
4909/**
4910 * @callback_method_impl{FNDBGCCMD, The 'dti' command.}
4911 */
4912static DECLCALLBACK(int) dbgcCmdDumpTypeInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4913{
4914 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4915 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
4916 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4917 if (cArgs == 2)
4918 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[1].enmType == DBGCVAR_TYPE_NUMBER);
4919
4920 uint32_t cLvlMax = cArgs == 2 ? (uint32_t)paArgs[1].u.u64Number : UINT32_MAX;
4921 return DBGFR3TypeDumpEx(pUVM, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
4922 dbgcCmdDumpTypeInfoCallback, pCmdHlp);
4923}
4924
4925
4926static void dbgcCmdDumpTypedValCallbackBuiltin(PDBGCCMDHLP pCmdHlp, DBGFTYPEBUILTIN enmType, size_t cbType,
4927 PDBGFTYPEVALBUF pValBuf)
4928{
4929 switch (enmType)
4930 {
4931 case DBGFTYPEBUILTIN_UINT8:
4932 DBGCCmdHlpPrintf(pCmdHlp, "%RU8", pValBuf->u8);
4933 break;
4934 case DBGFTYPEBUILTIN_INT8:
4935 DBGCCmdHlpPrintf(pCmdHlp, "%RI8", pValBuf->i8);
4936 break;
4937 case DBGFTYPEBUILTIN_UINT16:
4938 DBGCCmdHlpPrintf(pCmdHlp, "%RU16", pValBuf->u16);
4939 break;
4940 case DBGFTYPEBUILTIN_INT16:
4941 DBGCCmdHlpPrintf(pCmdHlp, "%RI16", pValBuf->i16);
4942 break;
4943 case DBGFTYPEBUILTIN_UINT32:
4944 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->u32);
4945 break;
4946 case DBGFTYPEBUILTIN_INT32:
4947 DBGCCmdHlpPrintf(pCmdHlp, "%RI32", pValBuf->i32);
4948 break;
4949 case DBGFTYPEBUILTIN_UINT64:
4950 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->u64);
4951 break;
4952 case DBGFTYPEBUILTIN_INT64:
4953 DBGCCmdHlpPrintf(pCmdHlp, "%RI64", pValBuf->i64);
4954 break;
4955 case DBGFTYPEBUILTIN_PTR32:
4956 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4957 break;
4958 case DBGFTYPEBUILTIN_PTR64:
4959 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4960 break;
4961 case DBGFTYPEBUILTIN_PTR:
4962 if (cbType == sizeof(uint32_t))
4963 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4964 else if (cbType == sizeof(uint64_t))
4965 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4966 else
4967 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported pointer width %u>", cbType);
4968 break;
4969 case DBGFTYPEBUILTIN_SIZE:
4970 if (cbType == sizeof(uint32_t))
4971 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->size);
4972 else if (cbType == sizeof(uint64_t))
4973 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->size);
4974 else
4975 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported size width %u>", cbType);
4976 break;
4977 case DBGFTYPEBUILTIN_FLOAT32:
4978 case DBGFTYPEBUILTIN_FLOAT64:
4979 case DBGFTYPEBUILTIN_COMPOUND:
4980 default:
4981 AssertMsgFailed(("Invalid built-in type: %d\n", enmType));
4982 }
4983}
4984
4985/**
4986 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dtv' command dumper callback.}
4987 */
4988static DECLCALLBACK(int) dbgcCmdDumpTypedValCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4989 DBGFTYPEBUILTIN enmType, size_t cbType,
4990 PDBGFTYPEVALBUF pValBuf, uint32_t cValBufs,
4991 void *pvUser)
4992{
4993 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4994
4995 /* Pad with spaces to match the level. */
4996 for (uint32_t i = 0; i < iLvl; i++)
4997 DBGCCmdHlpPrintf(pCmdHlp, " ");
4998
4999 size_t cbWritten = 0;
5000 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
5001 while (cbWritten < 32)
5002 {
5003 /* Fill with spaces to get proper aligning. */
5004 DBGCCmdHlpPrintf(pCmdHlp, " ");
5005 cbWritten++;
5006 }
5007
5008 DBGCCmdHlpPrintf(pCmdHlp, ": ");
5009 if (cValBufs > 1)
5010 DBGCCmdHlpPrintf(pCmdHlp, "[%u] [ ", cValBufs);
5011
5012 for (uint32_t i = 0; i < cValBufs; i++)
5013 {
5014 dbgcCmdDumpTypedValCallbackBuiltin(pCmdHlp, enmType, cbType, pValBuf);
5015 if (i < cValBufs - 1)
5016 DBGCCmdHlpPrintf(pCmdHlp, " , ");
5017 pValBuf++;
5018 }
5019
5020 if (cValBufs > 1)
5021 DBGCCmdHlpPrintf(pCmdHlp, " ]");
5022 DBGCCmdHlpPrintf(pCmdHlp, "\n");
5023
5024 return VINF_SUCCESS;
5025}
5026
5027
5028/**
5029 * @callback_method_impl{FNDBGCCMD, The 'dtv' command.}
5030 */
5031static DECLCALLBACK(int) dbgcCmdDumpTypedVal(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5032{
5033 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5034 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 2 || cArgs == 3);
5035 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
5036 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISGCPOINTER(paArgs[1].enmType));
5037 if (cArgs == 3)
5038 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[2].enmType == DBGCVAR_TYPE_NUMBER);
5039
5040 /*
5041 * Make DBGF address and fix the range.
5042 */
5043 DBGFADDRESS Address;
5044 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[1], &Address);
5045 if (RT_FAILURE(rc))
5046 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[1]);
5047
5048 uint32_t cLvlMax = cArgs == 3 ? (uint32_t)paArgs[2].u.u64Number : UINT32_MAX;
5049 return DBGFR3TypeValDumpEx(pUVM, &Address, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
5050 dbgcCmdDumpTypedValCallback, pCmdHlp);
5051}
5052
5053/**
5054 * @callback_method_impl{FNDBGCCMD, The 'm' command.}
5055 */
5056static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5057{
5058 DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]);
5059 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5060 return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
5061}
5062
5063
5064/**
5065 * Converts one or more variables into a byte buffer for a
5066 * given unit size.
5067 *
5068 * @returns VBox status codes:
5069 * @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched.
5070 * @retval VERR_INTERNAL_ERROR on bad variable type, bitched.
5071 * @retval VINF_SUCCESS on success.
5072 *
5073 * @param pCmdHlp The command helper callback table.
5074 * @param pvBuf The buffer to convert into.
5075 * @param pcbBuf The buffer size on input. The size of the result on output.
5076 * @param cbUnit The unit size to apply when converting.
5077 * The high bit is used to indicate unicode string.
5078 * @param paVars The array of variables to convert.
5079 * @param cVars The number of variables.
5080 */
5081static int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars)
5082{
5083 union
5084 {
5085 uint8_t *pu8;
5086 uint16_t *pu16;
5087 uint32_t *pu32;
5088 uint64_t *pu64;
5089 } u, uEnd;
5090 u.pu8 = (uint8_t *)pvBuf;
5091 uEnd.pu8 = u.pu8 + *pcbBuf;
5092
5093 unsigned i;
5094 for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++)
5095 {
5096 switch (paVars[i].enmType)
5097 {
5098 case DBGCVAR_TYPE_GC_FAR:
5099 case DBGCVAR_TYPE_GC_FLAT:
5100 case DBGCVAR_TYPE_GC_PHYS:
5101 case DBGCVAR_TYPE_HC_FLAT:
5102 case DBGCVAR_TYPE_HC_PHYS:
5103 case DBGCVAR_TYPE_NUMBER:
5104 {
5105 uint64_t u64 = paVars[i].u.u64Number;
5106 switch (cbUnit & 0x1f)
5107 {
5108 case 1:
5109 do
5110 {
5111 *u.pu8++ = u64;
5112 u64 >>= 8;
5113 } while (u64);
5114 break;
5115 case 2:
5116 do
5117 {
5118 *u.pu16++ = u64;
5119 u64 >>= 16;
5120 } while (u64);
5121 break;
5122 case 4:
5123 *u.pu32++ = u64;
5124 u64 >>= 32;
5125 if (u64)
5126 *u.pu32++ = u64;
5127 break;
5128 case 8:
5129 *u.pu64++ = u64;
5130 break;
5131 }
5132 break;
5133 }
5134
5135 case DBGCVAR_TYPE_STRING:
5136 case DBGCVAR_TYPE_SYMBOL:
5137 {
5138 const char *psz = paVars[i].u.pszString;
5139 size_t cbString = strlen(psz);
5140 if (cbUnit & RT_BIT_32(31))
5141 {
5142 /* Explode char to unit. */
5143 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f))
5144 {
5145 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5146 return VERR_TOO_MUCH_DATA;
5147 }
5148 while (*psz)
5149 {
5150 switch (cbUnit & 0x1f)
5151 {
5152 case 1: *u.pu8++ = *psz; break;
5153 case 2: *u.pu16++ = *psz; break;
5154 case 4: *u.pu32++ = *psz; break;
5155 case 8: *u.pu64++ = *psz; break;
5156 }
5157 psz++;
5158 }
5159 }
5160 else
5161 {
5162 /* Raw copy with zero padding if the size isn't aligned. */
5163 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8))
5164 {
5165 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5166 return VERR_TOO_MUCH_DATA;
5167 }
5168
5169 size_t cbCopy = cbString & ~(cbUnit - 1);
5170 memcpy(u.pu8, psz, cbCopy);
5171 u.pu8 += cbCopy;
5172 psz += cbCopy;
5173
5174 size_t cbReminder = cbString & (cbUnit - 1);
5175 if (cbReminder)
5176 {
5177 memcpy(u.pu8, psz, cbString & (cbUnit - 1));
5178 memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder);
5179 u.pu8 += cbUnit;
5180 }
5181 }
5182 break;
5183 }
5184
5185 default:
5186 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5187 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR,
5188 "i=%d enmType=%d\n", i, paVars[i].enmType);
5189 return VERR_INTERNAL_ERROR;
5190 }
5191 }
5192 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5193 if (i != cVars)
5194 {
5195 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5196 return VERR_TOO_MUCH_DATA;
5197 }
5198 return VINF_SUCCESS;
5199}
5200
5201
5202/**
5203 * @callback_method_impl{FNDBGCCMD, The 'eb'\, 'ew'\, 'ed' and 'eq' commands.}
5204 */
5205static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5206{
5207 /*
5208 * Validate input.
5209 */
5210 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2);
5211 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
5212 for (unsigned iArg = 1; iArg < cArgs; iArg++)
5213 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER);
5214 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5215
5216 /*
5217 * Figure out the element size.
5218 */
5219 unsigned cbElement;
5220 switch (pCmd->pszCmd[1])
5221 {
5222 default:
5223 case 'b': cbElement = 1; break;
5224 case 'w': cbElement = 2; break;
5225 case 'd': cbElement = 4; break;
5226 case 'q': cbElement = 8; break;
5227 }
5228
5229 /*
5230 * Do setting.
5231 */
5232 DBGCVAR Addr = paArgs[0];
5233 for (unsigned iArg = 1;;)
5234 {
5235 size_t cbWritten;
5236 int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten);
5237 if (RT_FAILURE(rc))
5238 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr);
5239 if (cbWritten != cbElement)
5240 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement);
5241
5242 /* advance. */
5243 iArg++;
5244 if (iArg >= cArgs)
5245 break;
5246 rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement);
5247 if (RT_FAILURE(rc))
5248 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
5249 }
5250
5251 return VINF_SUCCESS;
5252}
5253
5254
5255/**
5256 * Executes the search.
5257 *
5258 * @returns VBox status code.
5259 * @param pCmdHlp The command helpers.
5260 * @param pUVM The user mode VM handle.
5261 * @param pAddress The address to start searching from. (undefined on output)
5262 * @param cbRange The address range to search. Must not wrap.
5263 * @param pabBytes The byte pattern to search for.
5264 * @param cbBytes The size of the pattern.
5265 * @param cbUnit The search unit.
5266 * @param cMaxHits The max number of hits.
5267 * @param pResult Where to store the result if it's a function invocation.
5268 */
5269static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange,
5270 const uint8_t *pabBytes, uint32_t cbBytes,
5271 uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult)
5272{
5273 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5274
5275 /*
5276 * Do the search.
5277 */
5278 uint64_t cHits = 0;
5279 for (;;)
5280 {
5281 /* search */
5282 DBGFADDRESS HitAddress;
5283 int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress);
5284 if (RT_FAILURE(rc))
5285 {
5286 if (rc != VERR_DBGF_MEM_NOT_FOUND)
5287 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n");
5288
5289 /* update the current address so we can save it (later). */
5290 pAddress->off += cbRange;
5291 pAddress->FlatPtr += cbRange;
5292 cbRange = 0;
5293 break;
5294 }
5295
5296 /* report result */
5297 DBGCVAR VarCur;
5298 rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur);
5299 if (RT_FAILURE(rc))
5300 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n");
5301 if (!pResult)
5302 pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur);
5303 else
5304 DBGCVAR_ASSIGN(pResult, &VarCur);
5305
5306 /* advance */
5307 cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr;
5308 *pAddress = HitAddress;
5309 pAddress->FlatPtr += cbBytes;
5310 pAddress->off += cbBytes;
5311 if (cbRange <= cbBytes)
5312 {
5313 cbRange = 0;
5314 break;
5315 }
5316 cbRange -= cbBytes;
5317
5318 if (++cHits >= cMaxHits)
5319 {
5320 /// @todo save the search.
5321 break;
5322 }
5323 }
5324
5325 /*
5326 * Save the search so we can resume it...
5327 */
5328 if (pDbgc->abSearch != pabBytes)
5329 {
5330 memcpy(pDbgc->abSearch, pabBytes, cbBytes);
5331 pDbgc->cbSearch = cbBytes;
5332 pDbgc->cbSearchUnit = cbUnit;
5333 }
5334 pDbgc->cMaxSearchHits = cMaxHits;
5335 pDbgc->SearchAddr = *pAddress;
5336 pDbgc->cbSearchRange = cbRange;
5337
5338 return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED;
5339}
5340
5341
5342/**
5343 * Resumes the previous search.
5344 *
5345 * @returns VBox status code.
5346 * @param pCmdHlp Pointer to the command helper functions.
5347 * @param pUVM The user mode VM handle.
5348 * @param pResult Where to store the result of a function invocation.
5349 */
5350static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult)
5351{
5352 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5353
5354 /*
5355 * Make sure there is a previous command.
5356 */
5357 if (!pDbgc->cbSearch)
5358 {
5359 DBGCCmdHlpPrintf(pCmdHlp, "Error: No previous search\n");
5360 return VERR_DBGC_COMMAND_FAILED;
5361 }
5362
5363 /*
5364 * Make range and address adjustments.
5365 */
5366 DBGFADDRESS Address = pDbgc->SearchAddr;
5367 if (Address.FlatPtr == ~(RTGCUINTPTR)0)
5368 {
5369 Address.FlatPtr -= Address.off;
5370 Address.off = 0;
5371 }
5372
5373 RTGCUINTPTR cbRange = pDbgc->cbSearchRange;
5374 if (!cbRange)
5375 cbRange = ~(RTGCUINTPTR)0;
5376 if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr)
5377 cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr;
5378
5379 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch,
5380 pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult);
5381}
5382
5383
5384/**
5385 * Search memory, worker for the 's' and 's?' functions.
5386 *
5387 * @returns VBox status code.
5388 * @param pCmdHlp Pointer to the command helper functions.
5389 * @param pUVM The user mode VM handle.
5390 * @param pAddress Where to start searching. If no range, search till end of address space.
5391 * @param cMaxHits The maximum number of hits.
5392 * @param chType The search type.
5393 * @param paPatArgs The pattern variable array.
5394 * @param cPatArgs Number of pattern variables.
5395 * @param pResult Where to store the result of a function invocation.
5396 */
5397static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType,
5398 PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult)
5399{
5400 if (pResult)
5401 DBGCVAR_INIT_GC_FLAT(pResult, 0);
5402
5403 /*
5404 * Convert the search pattern into bytes and DBGFR3MemScan can deal with.
5405 */
5406 uint32_t cbUnit;
5407 switch (chType)
5408 {
5409 case 'a':
5410 case 'b': cbUnit = 1; break;
5411 case 'u': cbUnit = 2 | RT_BIT_32(31); break;
5412 case 'w': cbUnit = 2; break;
5413 case 'd': cbUnit = 4; break;
5414 case 'q': cbUnit = 8; break;
5415 default:
5416 return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType);
5417 }
5418 uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)];
5419 uint32_t cbBytes = sizeof(abBytes);
5420 int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs);
5421 if (RT_FAILURE(rc))
5422 return VERR_DBGC_COMMAND_FAILED;
5423
5424 /*
5425 * Make DBGF address and fix the range.
5426 */
5427 DBGFADDRESS Address;
5428 rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address);
5429 if (RT_FAILURE(rc))
5430 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress);
5431
5432 RTGCUINTPTR cbRange;
5433 switch (pAddress->enmRangeType)
5434 {
5435 case DBGCVAR_RANGE_BYTES:
5436 cbRange = pAddress->u64Range;
5437 if (cbRange != pAddress->u64Range)
5438 cbRange = ~(RTGCUINTPTR)0;
5439 break;
5440
5441 case DBGCVAR_RANGE_ELEMENTS:
5442 cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit);
5443 if ( cbRange != pAddress->u64Range * cbUnit
5444 || cbRange < pAddress->u64Range)
5445 cbRange = ~(RTGCUINTPTR)0;
5446 break;
5447
5448 default:
5449 cbRange = ~(RTGCUINTPTR)0;
5450 break;
5451 }
5452 if (Address.FlatPtr + cbRange < Address.FlatPtr)
5453 cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr;
5454
5455 /*
5456 * Ok, do it.
5457 */
5458 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult);
5459}
5460
5461
5462/**
5463 * @callback_method_impl{FNDBGCCMD, The 's' command.}
5464 */
5465static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5466{
5467 RT_NOREF2(pCmd, paArgs);
5468
5469 /* check that the parser did what it's supposed to do. */
5470 //if ( cArgs <= 2
5471 // && paArgs[0].enmType != DBGCVAR_TYPE_STRING)
5472 // return DBGCCmdHlpPrintf(pCmdHlp, "parser error\n");
5473
5474 /*
5475 * Repeat previous search?
5476 */
5477 if (cArgs == 0)
5478 return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL);
5479
5480 /*
5481 * Parse arguments.
5482 */
5483
5484 return -1;
5485}
5486
5487
5488/**
5489 * @callback_method_impl{FNDBGCCMD, The 's?' command.}
5490 */
5491static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5492{
5493 /* check that the parser did what it's supposed to do. */
5494 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType));
5495 return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL);
5496}
5497
5498
5499/**
5500 * Matching function for interrupts event names.
5501 *
5502 * This parses the interrupt number and length.
5503 *
5504 * @returns True if match, false if not.
5505 * @param pPattern The user specified pattern to match.
5506 * @param pszEvtName The event name.
5507 * @param pCmdHlp Command helpers for warning about malformed stuff.
5508 * @param piFirst Where to return start interrupt number on success.
5509 * @param pcInts Where to return the number of interrupts on success.
5510 */
5511static bool dbgcEventIsMatchingInt(PCDBGCVAR pPattern, const char *pszEvtName, PDBGCCMDHLP pCmdHlp,
5512 uint8_t *piFirst, uint16_t *pcInts)
5513{
5514 /*
5515 * Ignore trailing hex digits when comparing with the event base name.
5516 */
5517 const char *pszPattern = pPattern->u.pszString;
5518 const char *pszEnd = RTStrEnd(pszPattern, RTSTR_MAX);
5519 while ( (uintptr_t)pszEnd > (uintptr_t)pszPattern
5520 && RT_C_IS_XDIGIT(pszEnd[-1]))
5521 pszEnd -= 1;
5522 if (RTStrSimplePatternNMatch(pszPattern, pszEnd - pszPattern, pszEvtName, RTSTR_MAX))
5523 {
5524 /*
5525 * Parse the index and length.
5526 */
5527 if (!*pszEnd)
5528 *piFirst = 0;
5529 else
5530 {
5531 int rc = RTStrToUInt8Full(pszEnd, 16, piFirst);
5532 if (rc != VINF_SUCCESS)
5533 {
5534 if (RT_FAILURE(rc))
5535 *piFirst = 0;
5536 DBGCCmdHlpPrintf(pCmdHlp, "Warning: %Rrc parsing '%s' - interpreting it as %#x\n", rc, pszEnd, *piFirst);
5537 }
5538 }
5539
5540 if (pPattern->enmRangeType == DBGCVAR_RANGE_NONE)
5541 *pcInts = 1;
5542 else
5543 *pcInts = RT_MAX(RT_MIN((uint16_t)pPattern->u64Range, 256 - *piFirst), 1);
5544 return true;
5545 }
5546 return false;
5547}
5548
5549
5550/**
5551 * Updates a DBGC event config.
5552 *
5553 * @returns VINF_SUCCESS or VERR_NO_MEMORY.
5554 * @param ppEvtCfg The event configuration entry to update.
5555 * @param pszCmd The new command. Leave command alone if NULL.
5556 * @param enmEvtState The new event state.
5557 * @param fChangeCmdOnly Whether to only update the command.
5558 */
5559static int dbgcEventUpdate(PDBGCEVTCFG *ppEvtCfg, const char *pszCmd, DBGCEVTSTATE enmEvtState, bool fChangeCmdOnly)
5560{
5561 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5562
5563 /*
5564 * If we've got a command string, update the command too.
5565 */
5566 if (pszCmd)
5567 {
5568 size_t cchCmd = strlen(pszCmd);
5569 if ( !cchCmd
5570 && ( !fChangeCmdOnly
5571 ? enmEvtState == kDbgcEvtState_Disabled
5572 : !pEvtCfg || pEvtCfg->enmState == kDbgcEvtState_Disabled))
5573 {
5574 /* NULL entry is fine if no command and disabled. */
5575 RTMemFree(pEvtCfg);
5576 *ppEvtCfg = NULL;
5577 }
5578 else
5579 {
5580 if (!pEvtCfg || pEvtCfg->cchCmd < cchCmd)
5581 {
5582 RTMemFree(pEvtCfg);
5583 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(RT_UOFFSETOF_DYN(DBGCEVTCFG, szCmd[cchCmd + 1]));
5584 if (!pEvtCfg)
5585 return VERR_NO_MEMORY;
5586 }
5587 pEvtCfg->enmState = enmEvtState;
5588 pEvtCfg->cchCmd = cchCmd;
5589 memcpy(pEvtCfg->szCmd, pszCmd, cchCmd + 1);
5590 }
5591 }
5592 /*
5593 * Update existing or enable new. If NULL and not enabled, we can keep it that way.
5594 */
5595 else if (pEvtCfg || enmEvtState != kDbgcEvtState_Disabled)
5596 {
5597 if (!pEvtCfg)
5598 {
5599 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(sizeof(DBGCEVTCFG));
5600 if (!pEvtCfg)
5601 return VERR_NO_MEMORY;
5602 pEvtCfg->cchCmd = 0;
5603 pEvtCfg->szCmd[0] = '\0';
5604 }
5605 pEvtCfg->enmState = enmEvtState;
5606 }
5607
5608 return VINF_SUCCESS;
5609}
5610
5611
5612/**
5613 * Record one settings change for a plain event.
5614 *
5615 * @returns The new @a cIntCfgs value.
5616 * @param paEventCfgs The event setttings array. Must have DBGFEVENT_END
5617 * entries.
5618 * @param cEventCfgs The current number of entries in @a paEventCfgs.
5619 * @param enmType The event to change the settings for.
5620 * @param enmEvtState The new event state.
5621 * @param iSxEvt Index into the g_aDbgcSxEvents array.
5622 *
5623 * @remarks We use abUnused[0] for the enmEvtState, while abUnused[1] and
5624 * abUnused[2] are used for iSxEvt.
5625 */
5626static uint32_t dbgcEventAddPlainConfig(PDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, DBGFEVENTTYPE enmType,
5627 DBGCEVTSTATE enmEvtState, uint16_t iSxEvt)
5628{
5629 uint32_t iCfg;
5630 for (iCfg = 0; iCfg < cEventCfgs; iCfg++)
5631 if (paEventCfgs[iCfg].enmType == enmType)
5632 break;
5633 if (iCfg == cEventCfgs)
5634 {
5635 Assert(cEventCfgs < DBGFEVENT_END);
5636 paEventCfgs[iCfg].enmType = enmType;
5637 cEventCfgs++;
5638 }
5639 paEventCfgs[iCfg].fEnabled = enmEvtState > kDbgcEvtState_Disabled;
5640 paEventCfgs[iCfg].abUnused[0] = enmEvtState;
5641 paEventCfgs[iCfg].abUnused[1] = (uint8_t)iSxEvt;
5642 paEventCfgs[iCfg].abUnused[2] = (uint8_t)(iSxEvt >> 8);
5643 return cEventCfgs;
5644}
5645
5646
5647/**
5648 * Record one or more interrupt event config changes.
5649 *
5650 * @returns The new @a cIntCfgs value.
5651 * @param paIntCfgs Interrupt confiruation array. Must have 256 entries.
5652 * @param cIntCfgs The current number of entries in @a paIntCfgs.
5653 * @param iInt The interrupt number to start with.
5654 * @param cInts The number of interrupts to change.
5655 * @param pszName The settings name (hwint/swint).
5656 * @param enmEvtState The new event state.
5657 * @param bIntOp The new DBGF interrupt state.
5658 */
5659static uint32_t dbgcEventAddIntConfig(PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs, uint8_t iInt, uint16_t cInts,
5660 const char *pszName, DBGCEVTSTATE enmEvtState, uint8_t bIntOp)
5661{
5662 bool const fHwInt = *pszName == 'h';
5663
5664 bIntOp |= (uint8_t)enmEvtState << 4;
5665 uint8_t const bSoftState = !fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5666 uint8_t const bHardState = fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5667
5668 while (cInts > 0)
5669 {
5670 uint32_t iCfg;
5671 for (iCfg = 0; iCfg < cIntCfgs; iCfg++)
5672 if (paIntCfgs[iCfg].iInterrupt == iInt)
5673 break;
5674 if (iCfg == cIntCfgs)
5675 break;
5676 if (fHwInt)
5677 paIntCfgs[iCfg].enmHardState = bHardState;
5678 else
5679 paIntCfgs[iCfg].enmSoftState = bSoftState;
5680 iInt++;
5681 cInts--;
5682 }
5683
5684 while (cInts > 0)
5685 {
5686 Assert(cIntCfgs < 256);
5687 paIntCfgs[cIntCfgs].iInterrupt = iInt;
5688 paIntCfgs[cIntCfgs].enmHardState = bHardState;
5689 paIntCfgs[cIntCfgs].enmSoftState = bSoftState;
5690 cIntCfgs++;
5691 iInt++;
5692 cInts--;
5693 }
5694
5695 return cIntCfgs;
5696}
5697
5698
5699/**
5700 * Applies event settings changes to DBGC and DBGF.
5701 *
5702 * @returns VBox status code (fully bitched)
5703 * @param pCmdHlp The command helpers.
5704 * @param pUVM The user mode VM handle.
5705 * @param paIntCfgs Interrupt configuration array. We use the upper 4
5706 * bits of the settings for the DBGCEVTSTATE. This
5707 * will be cleared.
5708 * @param cIntCfgs Number of interrupt configuration changes.
5709 * @param paEventCfgs The generic event configuration array. We use the
5710 * abUnused[0] member for the DBGCEVTSTATE, and
5711 * abUnused[2:1] for the g_aDbgcSxEvents index.
5712 * @param cEventCfgs The number of generic event settings changes.
5713 * @param pszCmd The commands to associate with the changed events.
5714 * If this is NULL, don't touch the command.
5715 * @param fChangeCmdOnly Whether to only change the commands (sx-).
5716 */
5717static int dbgcEventApplyChanges(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs,
5718 PCDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, const char *pszCmd, bool fChangeCmdOnly)
5719{
5720 int rc;
5721
5722 /*
5723 * Apply changes to DBGC. This can only fail with out of memory error.
5724 */
5725 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5726 if (cIntCfgs)
5727 for (uint32_t iCfg = 0; iCfg < cIntCfgs; iCfg++)
5728 {
5729 DBGCEVTSTATE enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmHardState >> 4);
5730 paIntCfgs[iCfg].enmHardState &= 0xf;
5731 if (paIntCfgs[iCfg].enmHardState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5732 {
5733 rc = dbgcEventUpdate(&pDbgc->apHardInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5734 if (RT_FAILURE(rc))
5735 return rc;
5736 }
5737
5738 enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmSoftState >> 4);
5739 paIntCfgs[iCfg].enmSoftState &= 0xf;
5740 if (paIntCfgs[iCfg].enmSoftState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5741 {
5742 rc = dbgcEventUpdate(&pDbgc->apSoftInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5743 if (RT_FAILURE(rc))
5744 return rc;
5745 }
5746 }
5747
5748 if (cEventCfgs)
5749 {
5750 for (uint32_t iCfg = 0; iCfg < cEventCfgs; iCfg++)
5751 {
5752 Assert((unsigned)paEventCfgs[iCfg].enmType < RT_ELEMENTS(pDbgc->apEventCfgs));
5753 uint16_t iSxEvt = RT_MAKE_U16(paEventCfgs[iCfg].abUnused[1], paEventCfgs[iCfg].abUnused[2]);
5754 Assert(iSxEvt < RT_ELEMENTS(g_aDbgcSxEvents));
5755 rc = dbgcEventUpdate(&pDbgc->apEventCfgs[iSxEvt], pszCmd, (DBGCEVTSTATE)paEventCfgs[iCfg].abUnused[0], fChangeCmdOnly);
5756 if (RT_FAILURE(rc))
5757 return rc;
5758 }
5759 }
5760
5761 /*
5762 * Apply changes to DBGF.
5763 */
5764 if (!fChangeCmdOnly)
5765 {
5766 if (cIntCfgs)
5767 {
5768 rc = DBGFR3InterruptConfigEx(pUVM, paIntCfgs, cIntCfgs);
5769 if (RT_FAILURE(rc))
5770 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3InterruptConfigEx: %Rrc\n", rc);
5771 }
5772 if (cEventCfgs)
5773 {
5774 rc = DBGFR3EventConfigEx(pUVM, paEventCfgs, cEventCfgs);
5775 if (RT_FAILURE(rc))
5776 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3EventConfigEx: %Rrc\n", rc);
5777 }
5778 }
5779
5780 return VINF_SUCCESS;
5781}
5782
5783
5784/**
5785 * @callback_method_impl{FNDBGCCMD, The 'sx[eni-]' commands.}
5786 */
5787static DECLCALLBACK(int) dbgcCmdEventCtrl(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5788{
5789 /*
5790 * Figure out which command this is.
5791 */
5792 uint8_t bIntOp;
5793 DBGCEVTSTATE enmEvtState;
5794 bool fChangeCmdOnly;
5795 switch (pCmd->pszCmd[2])
5796 {
5797 case 'e': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Enabled; fChangeCmdOnly = false; break;
5798 case 'n': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Notify; fChangeCmdOnly = false; break;
5799 case '-': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Invalid; fChangeCmdOnly = true; break;
5800 case 'i': bIntOp = DBGFINTERRUPTSTATE_DISABLED; enmEvtState = kDbgcEvtState_Disabled; fChangeCmdOnly = false; break;
5801 default:
5802 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "pszCmd=%s\n", pCmd->pszCmd);
5803 }
5804
5805 /*
5806 * Command option.
5807 */
5808 unsigned iArg = 0;
5809 const char *pszCmd = NULL;
5810 if ( cArgs >= iArg + 2
5811 && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5812 && paArgs[iArg + 1].enmType == DBGCVAR_TYPE_STRING
5813 && strcmp(paArgs[iArg].u.pszString, "-c") == 0)
5814 {
5815 pszCmd = paArgs[iArg + 1].u.pszString;
5816 iArg += 2;
5817 }
5818 if (fChangeCmdOnly && !pszCmd)
5819 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "The 'sx-' requires the '-c cmd' arguments.\n");
5820
5821 /*
5822 * The remaining arguments are event specifiers to which the operation should be applied.
5823 */
5824 uint32_t cIntCfgs = 0;
5825 DBGFINTERRUPTCONFIG aIntCfgs[256];
5826 uint32_t cEventCfgs = 0;
5827 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5828
5829 for (; iArg < cArgs; iArg++)
5830 {
5831 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, iArg, paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5832 || paArgs[iArg].enmType == DBGCVAR_TYPE_SYMBOL);
5833 uint32_t cHits = 0;
5834 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5835 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5836 {
5837 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5838 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5839 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5840 {
5841 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5842 enmEvtState, iEvt);
5843 cHits++;
5844 }
5845 }
5846 else
5847 {
5848 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5849 uint8_t iInt;
5850 uint16_t cInts;
5851 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5852 {
5853 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5854 enmEvtState, bIntOp);
5855 cHits++;
5856 }
5857 }
5858 if (!cHits)
5859 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5860 }
5861
5862 /*
5863 * Apply the changes.
5864 */
5865 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, pszCmd, fChangeCmdOnly);
5866}
5867
5868
5869/**
5870 * @callback_method_impl{FNDBGCCMD, The 'sxr' commands.}
5871 */
5872static DECLCALLBACK(int) dbgcCmdEventCtrlReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5873{
5874 RT_NOREF1(pCmd);
5875 uint32_t cEventCfgs = 0;
5876 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5877 uint32_t cIntCfgs = 0;
5878 DBGFINTERRUPTCONFIG aIntCfgs[256];
5879
5880 if (cArgs == 0)
5881 {
5882 /*
5883 * All events.
5884 */
5885 for (uint32_t iInt = 0; iInt < 256; iInt++)
5886 {
5887 aIntCfgs[iInt].iInterrupt = iInt;
5888 aIntCfgs[iInt].enmHardState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5889 aIntCfgs[iInt].enmSoftState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5890 }
5891 cIntCfgs = 256;
5892
5893 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5894 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5895 {
5896 aEventCfgs[cEventCfgs].enmType = g_aDbgcSxEvents[iEvt].enmType;
5897 aEventCfgs[cEventCfgs].fEnabled = g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled;
5898 aEventCfgs[cEventCfgs].abUnused[0] = g_aDbgcSxEvents[iEvt].enmDefault;
5899 aEventCfgs[cEventCfgs].abUnused[1] = (uint8_t)iEvt;
5900 aEventCfgs[cEventCfgs].abUnused[2] = (uint8_t)(iEvt >> 8);
5901 cEventCfgs++;
5902 }
5903 else
5904 {
5905 uint8_t const bState = ( g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5906 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED)
5907 | ((uint8_t)g_aDbgcSxEvents[iEvt].enmDefault << 4);
5908 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5909 for (uint32_t iInt = 0; iInt < 256; iInt++)
5910 aIntCfgs[iInt].enmHardState = bState;
5911 else
5912 for (uint32_t iInt = 0; iInt < 256; iInt++)
5913 aIntCfgs[iInt].enmSoftState = bState;
5914 }
5915 }
5916 else
5917 {
5918 /*
5919 * Selected events.
5920 */
5921 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
5922 {
5923 unsigned cHits = 0;
5924 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5925 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5926 {
5927 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5928 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5929 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5930 {
5931 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5932 g_aDbgcSxEvents[iEvt].enmDefault, iEvt);
5933 cHits++;
5934 }
5935 }
5936 else
5937 {
5938 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5939 uint8_t iInt;
5940 uint16_t cInts;
5941 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5942 {
5943 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5944 g_aDbgcSxEvents[iEvt].enmDefault,
5945 g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5946 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED);
5947 cHits++;
5948 }
5949 }
5950 if (!cHits)
5951 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5952 }
5953 }
5954
5955 /*
5956 * Apply the reset changes.
5957 */
5958 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, "", false);
5959}
5960
5961
5962/**
5963 * Used during DBGC initialization to configure events with defaults.
5964 *
5965 * @param pDbgc The DBGC instance.
5966 */
5967void dbgcEventInit(PDBGC pDbgc)
5968{
5969 if (pDbgc->pUVM)
5970 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5971}
5972
5973
5974/**
5975 * Used during DBGC termination to disable all events.
5976 *
5977 * @param pDbgc The DBGC instance.
5978 */
5979void dbgcEventTerm(PDBGC pDbgc)
5980{
5981/** @todo need to do more than just reset later. */
5982 if (pDbgc->pUVM && VMR3GetStateU(pDbgc->pUVM) < VMSTATE_DESTROYING)
5983 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5984}
5985
5986
5987static void dbgcEventDisplay(PDBGCCMDHLP pCmdHlp, const char *pszName, DBGCEVTSTATE enmDefault, PDBGCEVTCFG const *ppEvtCfg)
5988{
5989 RT_NOREF1(enmDefault);
5990 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5991
5992 const char *pszState;
5993 switch (pEvtCfg ? pEvtCfg->enmState : kDbgcEvtState_Disabled)
5994 {
5995 case kDbgcEvtState_Disabled: pszState = "ignore"; break;
5996 case kDbgcEvtState_Enabled: pszState = "enabled"; break;
5997 case kDbgcEvtState_Notify: pszState = "notify"; break;
5998 default:
5999 AssertFailed();
6000 pszState = "invalid";
6001 break;
6002 }
6003
6004 if (pEvtCfg && pEvtCfg->cchCmd > 0)
6005 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %-7s \"%s\"\n", pszName, pszState, pEvtCfg->szCmd);
6006 else
6007 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %s\n", pszName, pszState);
6008}
6009
6010
6011static void dbgcEventDisplayRange(PDBGCCMDHLP pCmdHlp, const char *pszBaseNm, DBGCEVTSTATE enmDefault,
6012 PDBGCEVTCFG const *papEvtCfgs, unsigned iCfg, unsigned cCfgs)
6013{
6014 do
6015 {
6016 PCDBGCEVTCFG pFirstCfg = papEvtCfgs[iCfg];
6017 if (pFirstCfg && pFirstCfg->enmState == kDbgcEvtState_Disabled && pFirstCfg->cchCmd == 0)
6018 pFirstCfg = NULL;
6019
6020 unsigned const iFirstCfg = iCfg;
6021 iCfg++;
6022 while (iCfg < cCfgs)
6023 {
6024 PCDBGCEVTCFG pCurCfg = papEvtCfgs[iCfg];
6025 if (pCurCfg && pCurCfg->enmState == kDbgcEvtState_Disabled && pCurCfg->cchCmd == 0)
6026 pCurCfg = NULL;
6027 if (pCurCfg != pFirstCfg)
6028 {
6029 if (!pCurCfg || !pFirstCfg)
6030 break;
6031 if (pCurCfg->enmState != pFirstCfg->enmState)
6032 break;
6033 if (pCurCfg->cchCmd != pFirstCfg->cchCmd)
6034 break;
6035 if (memcmp(pCurCfg->szCmd, pFirstCfg->szCmd, pFirstCfg->cchCmd) != 0)
6036 break;
6037 }
6038 iCfg++;
6039 }
6040
6041 char szName[16];
6042 unsigned cEntries = iCfg - iFirstCfg;
6043 if (cEntries == 1)
6044 RTStrPrintf(szName, sizeof(szName), "%s%02x", pszBaseNm, iFirstCfg);
6045 else
6046 RTStrPrintf(szName, sizeof(szName), "%s%02x L %#x", pszBaseNm, iFirstCfg, cEntries);
6047 dbgcEventDisplay(pCmdHlp, szName, enmDefault, &papEvtCfgs[iFirstCfg]);
6048
6049 cCfgs -= cEntries;
6050 } while (cCfgs > 0);
6051}
6052
6053
6054/**
6055 * @callback_method_impl{FNDBGCCMD, The 'sx' commands.}
6056 */
6057static DECLCALLBACK(int) dbgcCmdEventCtrlList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6058{
6059 RT_NOREF2(pCmd, pUVM);
6060 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6061
6062 if (cArgs == 0)
6063 {
6064 /*
6065 * All events.
6066 */
6067 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
6068 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
6069 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6070 &pDbgc->apEventCfgs[iEvt]);
6071 else if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
6072 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6073 pDbgc->apHardInts, 0, 256);
6074 else
6075 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6076 pDbgc->apSoftInts, 0, 256);
6077 }
6078 else
6079 {
6080 /*
6081 * Selected events.
6082 */
6083 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
6084 {
6085 unsigned cHits = 0;
6086 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
6087 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
6088 {
6089 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
6090 || ( g_aDbgcSxEvents[iEvt].pszAltNm
6091 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
6092 {
6093 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6094 &pDbgc->apEventCfgs[iEvt]);
6095 cHits++;
6096 }
6097 }
6098 else
6099 {
6100 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
6101 uint8_t iInt;
6102 uint16_t cInts;
6103 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
6104 {
6105 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
6106 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6107 pDbgc->apHardInts, iInt, cInts);
6108 else
6109 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
6110 pDbgc->apSoftInts, iInt, cInts);
6111 cHits++;
6112 }
6113 }
6114 if (cHits == 0)
6115 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
6116 }
6117 }
6118
6119 return VINF_SUCCESS;
6120}
6121
6122
6123
6124/**
6125 * List near symbol.
6126 *
6127 * @returns VBox status code.
6128 * @param pCmdHlp Pointer to command helper functions.
6129 * @param pUVM The user mode VM handle.
6130 * @param pArg Pointer to the address or symbol to lookup.
6131 */
6132static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg)
6133{
6134 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6135
6136 RTDBGSYMBOL Symbol;
6137 int rc;
6138 if (pArg->enmType == DBGCVAR_TYPE_SYMBOL)
6139 {
6140 /*
6141 * Lookup the symbol address.
6142 */
6143 rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL);
6144 if (RT_FAILURE(rc))
6145 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString);
6146
6147 rc = DBGCCmdHlpPrintf(pCmdHlp, "%RTptr %s\n", Symbol.Value, Symbol.szName);
6148 }
6149 else
6150 {
6151 /*
6152 * Convert it to a flat GC address and lookup that address.
6153 */
6154 DBGCVAR AddrVar;
6155 rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg);
6156 if (RT_FAILURE(rc))
6157 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg);
6158
6159 RTINTPTR offDisp;
6160 DBGFADDRESS Addr;
6161 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat),
6162 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
6163 &offDisp, &Symbol, NULL);
6164 if (RT_FAILURE(rc))
6165 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat);
6166
6167 if (!offDisp)
6168 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s", &AddrVar, Symbol.szName);
6169 else if (offDisp > 0)
6170 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp);
6171 else
6172 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp);
6173 if (RT_SUCCESS(rc))
6174 {
6175 if (Symbol.cb > 0)
6176 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)\n", Symbol.cb);
6177 else
6178 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
6179 }
6180 }
6181
6182 return rc;
6183}
6184
6185
6186/**
6187 * @callback_method_impl{FNDBGCCMD, The 'ln' (listnear) command.}
6188 */
6189static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6190{
6191 if (!cArgs)
6192 {
6193 /*
6194 * Current cs:eip symbol.
6195 */
6196 DBGCVAR AddrVar;
6197 const char *pszFmtExpr = "%%(cs:eip)";
6198 int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, pszFmtExpr);
6199 if (RT_FAILURE(rc))
6200 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%s\n", pszFmtExpr + 1);
6201 return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar);
6202 }
6203
6204/** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */
6205 /*
6206 * Iterate arguments.
6207 */
6208 for (unsigned iArg = 0; iArg < cArgs; iArg++)
6209 {
6210 int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]);
6211 if (RT_FAILURE(rc))
6212 return rc;
6213 }
6214
6215 NOREF(pCmd);
6216 return VINF_SUCCESS;
6217}
6218
6219
6220/**
6221 * Matches the module patters against a module name.
6222 *
6223 * @returns true if matching, otherwise false.
6224 * @param pszName The module name.
6225 * @param paArgs The module pattern argument list.
6226 * @param cArgs Number of arguments.
6227 */
6228static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs)
6229{
6230 for (uint32_t i = 0; i < cArgs; i++)
6231 if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName))
6232 return true;
6233 return false;
6234}
6235
6236
6237/**
6238 * @callback_method_impl{FNDBGCCMD, The 'ln' (list near) command.}
6239 */
6240static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6241{
6242 bool const fMappings = pCmd->pszCmd[2] == 'o';
6243 bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v';
6244 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6245
6246 /*
6247 * Iterate the modules in the current address space and print info about
6248 * those matching the input.
6249 */
6250 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6251 for (uint32_t iAs = 0;; iAs++)
6252 {
6253 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6254 uint32_t cMods = RTDbgAsModuleCount(hAs);
6255 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6256 {
6257 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6258 if (hMod != NIL_RTDBGMOD)
6259 {
6260 bool const fDeferred = RTDbgModIsDeferred(hMod);
6261 bool const fExports = RTDbgModIsExports(hMod);
6262 uint32_t const cSegs = fDeferred ? 1 : RTDbgModSegmentCount(hMod);
6263 const char * const pszName = RTDbgModName(hMod);
6264 const char * const pszImgFile = RTDbgModImageFile(hMod);
6265 const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod);
6266 const char * const pszDbgFile = RTDbgModDebugFile(hMod);
6267 if ( cArgs == 0
6268 || dbgcCmdListModuleMatch(pszName, paArgs, cArgs))
6269 {
6270 /*
6271 * Find the mapping with the lower address, preferring a full
6272 * image mapping, for the main line.
6273 */
6274 RTDBGASMAPINFO aMappings[128];
6275 uint32_t cMappings = RT_ELEMENTS(aMappings);
6276 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6277 if (RT_SUCCESS(rc))
6278 {
6279 bool fFull = false;
6280 RTUINTPTR uMin = RTUINTPTR_MAX;
6281 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6282 if ( aMappings[iMap].Address < uMin
6283 && ( !fFull
6284 || aMappings[iMap].iSeg == NIL_RTDBGSEGIDX))
6285 uMin = aMappings[iMap].Address;
6286 if (!fVerbose || !pszImgFile)
6287 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName,
6288 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6289 else
6290 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile,
6291 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6292 if (fVerbose && pszImgFileUsed)
6293 DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed);
6294 if (fVerbose && pszDbgFile)
6295 DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile);
6296 if (fVerbose)
6297 {
6298 char szTmp[64];
6299 RTTIMESPEC TimeSpec;
6300 int64_t secTs = 0;
6301 if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_TIMESTAMP_SECONDS, &secTs, sizeof(secTs), NULL)))
6302 DBGCCmdHlpPrintf(pCmdHlp, " Timestamp: %08RX64 %s\n", secTs,
6303 RTTimeSpecToString(RTTimeSpecSetSeconds(&TimeSpec, secTs), szTmp, sizeof(szTmp)));
6304 RTUUID Uuid;
6305 if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_UUID, &Uuid, sizeof(Uuid), NULL)))
6306 DBGCCmdHlpPrintf(pCmdHlp, " UUID: %RTuuid\n", &Uuid);
6307 }
6308
6309 if (fMappings)
6310 {
6311 /* sort by address first - not very efficient. */
6312 for (uint32_t i = 0; i + 1 < cMappings; i++)
6313 for (uint32_t j = i + 1; j < cMappings; j++)
6314 if (aMappings[j].Address < aMappings[i].Address)
6315 {
6316 RTDBGASMAPINFO Tmp = aMappings[j];
6317 aMappings[j] = aMappings[i];
6318 aMappings[i] = Tmp;
6319 }
6320
6321 /* print */
6322 if ( cMappings == 1
6323 && aMappings[0].iSeg == NIL_RTDBGSEGIDX
6324 && !fDeferred)
6325 {
6326 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
6327 {
6328 RTDBGSEGMENT SegInfo;
6329 rc = RTDbgModSegmentByIndex(hMod, iSeg, &SegInfo);
6330 if (RT_SUCCESS(rc))
6331 {
6332 if (SegInfo.uRva != RTUINTPTR_MAX)
6333 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6334 (RTGCUINTPTR)(aMappings[0].Address + SegInfo.uRva),
6335 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6336 else
6337 DBGCCmdHlpPrintf(pCmdHlp, " %*s %RGv #%02x %s\n",
6338 sizeof(RTGCUINTPTR)*2, "noload",
6339 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6340 }
6341 else
6342 DBGCCmdHlpPrintf(pCmdHlp, " Error query segment #%u: %Rrc\n", iSeg, rc);
6343 }
6344 }
6345 else
6346 {
6347 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6348 if (aMappings[iMap].iSeg == NIL_RTDBGSEGIDX)
6349 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv <everything>\n",
6350 (RTGCUINTPTR)aMappings[iMap].Address,
6351 (RTGCUINTPTR)RTDbgModImageSize(hMod));
6352 else if (!fDeferred)
6353 {
6354 RTDBGSEGMENT SegInfo;
6355 rc = RTDbgModSegmentByIndex(hMod, aMappings[iMap].iSeg, &SegInfo);
6356 if (RT_FAILURE(rc))
6357 {
6358 RT_ZERO(SegInfo);
6359 strcpy(SegInfo.szName, "error");
6360 }
6361 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6362 (RTGCUINTPTR)aMappings[iMap].Address,
6363 (RTGCUINTPTR)SegInfo.cb,
6364 aMappings[iMap].iSeg, SegInfo.szName);
6365 }
6366 else
6367 DBGCCmdHlpPrintf(pCmdHlp, " %RGv #%02x\n",
6368 (RTGCUINTPTR)aMappings[iMap].Address, aMappings[iMap].iSeg);
6369 }
6370 }
6371 }
6372 else
6373 DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n",
6374 sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc);
6375 /** @todo missing address space API for enumerating the mappings. */
6376 }
6377 RTDbgModRelease(hMod);
6378 }
6379 }
6380 RTDbgAsRelease(hAs);
6381
6382 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6383 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6384 break;
6385 AssertBreak(iAs == 0);
6386 hAsCurAlias = DBGF_AS_GLOBAL;
6387 }
6388
6389 NOREF(pCmd);
6390 return VINF_SUCCESS;
6391}
6392
6393
6394
6395/**
6396 * @callback_method_impl{FNDBGCCMD, The 'x' (examine symbols) command.}
6397 */
6398static DECLCALLBACK(int) dbgcCmdListSymbols(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6399{
6400 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6401 AssertReturn(paArgs[0].enmType == DBGCVAR_TYPE_STRING, VERR_DBGC_PARSE_BUG);
6402
6403 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6404
6405 /*
6406 * Allowed is either a single * to match everything or the Module!Symbol style
6407 * which requiresa ! to separate module and symbol.
6408 */
6409 bool fDumpAll = strcmp(paArgs[0].u.pszString, "*") == 0;
6410 const char *pszModule = NULL;
6411 size_t cchModule = 0;
6412 const char *pszSymbol = NULL;
6413 if (!fDumpAll)
6414 {
6415 const char *pszDelimiter = strchr(paArgs[0].u.pszString, '!');
6416 if (!pszDelimiter)
6417 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid search string '%s' for '%s'. Valid are either '*' or the form <Module>!<Symbol> where the <Module> and <Symbol> can contain wildcards",
6418 paArgs[0].u.pszString, pCmd->pszCmd);
6419
6420 pszModule = paArgs[0].u.pszString;
6421 cchModule = pszDelimiter - pszModule;
6422 pszSymbol = pszDelimiter + 1;
6423 }
6424
6425 /*
6426 * Iterate the modules in the current address space and print info about
6427 * those matching the input.
6428 */
6429 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6430 for (uint32_t iAs = 0;; iAs++)
6431 {
6432 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6433 uint32_t cMods = RTDbgAsModuleCount(hAs);
6434 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6435 {
6436 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6437 if (hMod != NIL_RTDBGMOD)
6438 {
6439 const char *pszModName = RTDbgModName(hMod);
6440 if ( fDumpAll
6441 || RTStrSimplePatternNMatch(pszModule, cchModule, pszModName, strlen(pszModName)))
6442 {
6443 RTDBGASMAPINFO aMappings[128];
6444 uint32_t cMappings = RT_ELEMENTS(aMappings);
6445 RTUINTPTR uMapping = 0;
6446
6447 /* Get the minimum mapping address of the module so we can print absolute values for the symbol later on. */
6448 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6449 if (RT_SUCCESS(rc))
6450 {
6451 uMapping = RTUINTPTR_MAX;
6452 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6453 if (aMappings[iMap].Address < uMapping)
6454 uMapping = aMappings[iMap].Address;
6455 }
6456
6457 /* Go through the symbols and print any matches. */
6458 uint32_t cSyms = RTDbgModSymbolCount(hMod);
6459 for (uint32_t iSym = 0; iSym < cSyms; iSym++)
6460 {
6461 RTDBGSYMBOL SymInfo;
6462 rc = RTDbgModSymbolByOrdinal(hMod, iSym, &SymInfo);
6463 if ( RT_SUCCESS(rc)
6464 && ( fDumpAll
6465 || RTStrSimplePatternMatch(pszSymbol, &SymInfo.szName[0])))
6466 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %s!%s\n", uMapping + RTDbgModSegmentRva(hMod, SymInfo.iSeg) + (RTGCUINTPTR)SymInfo.Value, pszModName, &SymInfo.szName[0]);
6467 }
6468 }
6469 RTDbgModRelease(hMod);
6470 }
6471 }
6472 RTDbgAsRelease(hAs);
6473
6474 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6475 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6476 break;
6477 AssertBreak(iAs == 0);
6478 hAsCurAlias = DBGF_AS_GLOBAL;
6479 }
6480
6481 RT_NOREF(pCmd);
6482 return VINF_SUCCESS;
6483}
6484
6485
6486/**
6487 * @callback_method_impl{FNDBGCCMD, The 'tflowc' (clear trace flow) command.}
6488 */
6489static DECLCALLBACK(int) dbgcCmdTraceFlowClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6490{
6491 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6492
6493 /*
6494 * Enumerate the arguments.
6495 */
6496 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6497 int rc = VINF_SUCCESS;
6498 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6499 {
6500 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6501 {
6502 /* one */
6503 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6504 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6505 {
6506 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6507 if (pFlowTrace)
6508 {
6509 rc = DBGFR3FlowTraceModRelease(pFlowTrace->hTraceFlowMod);
6510 if (RT_FAILURE(rc))
6511 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModRelease failed for flow trace module %#x", iFlowTraceMod);
6512 rc = DBGFR3FlowRelease(pFlowTrace->hFlow);
6513 if (RT_FAILURE(rc))
6514 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowRelease failed for flow trace module %#x", iFlowTraceMod);
6515 dbgcFlowTraceModDelete(pDbgc, iFlowTraceMod);
6516 }
6517 else
6518 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6519 }
6520 else
6521 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6522 }
6523 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6524 {
6525 /* all */
6526 PDBGCTFLOW pIt, pItNext;
6527 RTListForEachSafe(&pDbgc->LstTraceFlowMods, pIt, pItNext, DBGCTFLOW, NdTraceFlow)
6528 {
6529 int rc2 = DBGFR3FlowTraceModRelease(pIt->hTraceFlowMod);
6530 if (RT_FAILURE(rc2))
6531 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", pIt->iTraceFlowMod);
6532 dbgcFlowTraceModDelete(pDbgc, pIt->iTraceFlowMod);
6533 }
6534 }
6535 else
6536 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6537 }
6538 return rc;
6539}
6540
6541
6542/**
6543 * @callback_method_impl{FNDBGCCMD, The 'tflowd' (disable trace flow) command.}
6544 */
6545static DECLCALLBACK(int) dbgcCmdTraceFlowDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6546{
6547 /*
6548 * Enumerate the arguments.
6549 */
6550 RT_NOREF1(pUVM);
6551 int rc = VINF_SUCCESS;
6552 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6553 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6554 {
6555 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6556 {
6557 /* one */
6558 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6559 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6560 {
6561 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6562 if (pFlowTrace)
6563 {
6564 rc = DBGFR3FlowTraceModDisable(pFlowTrace->hTraceFlowMod);
6565 if (RT_FAILURE(rc))
6566 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", iFlowTraceMod);
6567 }
6568 else
6569 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6570 }
6571 else
6572 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
6573 }
6574 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6575 {
6576 /* all */
6577 PDBGCTFLOW pIt;
6578 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6579 {
6580 int rc2 = DBGFR3FlowTraceModDisable(pIt->hTraceFlowMod);
6581 if (RT_FAILURE(rc2))
6582 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x",
6583 pIt->iTraceFlowMod);
6584 }
6585 }
6586 else
6587 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6588 }
6589 return rc;
6590}
6591
6592
6593/**
6594 * @callback_method_impl{FNDBGCCMD, The 'tflowe' (enable trace flow) command.}
6595 */
6596static DECLCALLBACK(int) dbgcCmdTraceFlowEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6597{
6598 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6599
6600 /*
6601 * Validate input.
6602 */
6603 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6604 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 2);
6605 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
6606
6607 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
6608 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
6609
6610 /*
6611 * Check the desired mode.
6612 */
6613 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED | DBGF_DISAS_FLAGS_DEFAULT_MODE;
6614
6615 /** @todo should use DBGFADDRESS for everything */
6616
6617 /*
6618 * Find address.
6619 */
6620 if (!cArgs)
6621 {
6622 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
6623 {
6624#if defined(VBOX_VMM_TARGET_ARMV8)
6625 AssertReleaseFailed();
6626#else
6627 /** @todo Batch query CS, RIP, CPU mode and flags. */
6628 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
6629 if (CPUMIsGuestIn64BitCode(pVCpu))
6630 {
6631 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
6632 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
6633 }
6634 else
6635 {
6636 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
6637 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
6638 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
6639 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
6640 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
6641 {
6642 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
6643 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
6644 }
6645 }
6646#endif
6647
6648 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
6649 }
6650 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
6651 {
6652 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
6653 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
6654 }
6655 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
6656 }
6657 else
6658 pDbgc->DisasmPos = paArgs[0];
6659 pDbgc->pLastPos = &pDbgc->DisasmPos;
6660
6661
6662 int rc;
6663#if 0 /** @todo unused right now */
6664 /*
6665 * Convert physical and host addresses to guest addresses.
6666 */
6667 RTDBGAS hDbgAs = pDbgc->hDbgAs;
6668 switch (pDbgc->DisasmPos.enmType)
6669 {
6670 case DBGCVAR_TYPE_GC_FLAT:
6671 case DBGCVAR_TYPE_GC_FAR:
6672 break;
6673 case DBGCVAR_TYPE_GC_PHYS:
6674 hDbgAs = DBGF_AS_PHYS;
6675 /* fall thru */
6676 case DBGCVAR_TYPE_HC_FLAT:
6677 case DBGCVAR_TYPE_HC_PHYS:
6678 {
6679 DBGCVAR VarTmp;
6680 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
6681 if (RT_FAILURE(rc))
6682 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
6683 pDbgc->DisasmPos = VarTmp;
6684 break;
6685 }
6686 default: AssertFailed(); break;
6687 }
6688#endif
6689
6690 DBGFADDRESS CurAddr;
6691 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
6692 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
6693 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
6694 else
6695 {
6696 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
6697 if (RT_FAILURE(rc))
6698 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
6699 }
6700
6701 DBGFFLOW hCfg;
6702 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
6703 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
6704 if (RT_SUCCESS(rc))
6705 {
6706 /* Create a probe. */
6707 DBGFFLOWTRACEPROBE hFlowTraceProbe = NULL;
6708 DBGFFLOWTRACEPROBE hFlowTraceProbeExit = NULL;
6709 DBGFFLOWTRACEPROBEENTRY Entry;
6710 DBGFFLOWTRACEMOD hFlowTraceMod = NULL;
6711 uint32_t iTraceModId = 0;
6712
6713 RT_ZERO(Entry);
6714 Entry.enmType = DBGFFLOWTRACEPROBEENTRYTYPE_DEBUGGER;
6715
6716 rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbe);
6717 if (RT_SUCCESS(rc))
6718 rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbeExit);
6719 if (RT_SUCCESS(rc))
6720 rc = DBGFR3FlowTraceProbeEntriesAdd(hFlowTraceProbeExit, &Entry, 1 /*cEntries*/);
6721 if (RT_SUCCESS(rc))
6722 rc = DBGFR3FlowTraceModCreateFromFlowGraph(pUVM, VMCPUID_ANY, hCfg, NULL,
6723 hFlowTraceProbe, hFlowTraceProbe,
6724 hFlowTraceProbeExit, &hFlowTraceMod);
6725 if (RT_SUCCESS(rc))
6726 rc = dbgcFlowTraceModAdd(pDbgc, hFlowTraceMod, hCfg, &iTraceModId);
6727 if (RT_SUCCESS(rc))
6728 rc = DBGFR3FlowTraceModEnable(hFlowTraceMod, 0, 0);
6729 if (RT_SUCCESS(rc))
6730 DBGCCmdHlpPrintf(pCmdHlp, "Enabled execution flow tracing %u at %RGv\n",
6731 iTraceModId, CurAddr.FlatPtr);
6732
6733 if (hFlowTraceProbe)
6734 DBGFR3FlowTraceProbeRelease(hFlowTraceProbe);
6735 if (hFlowTraceProbeExit)
6736 DBGFR3FlowTraceProbeRelease(hFlowTraceProbeExit);
6737 }
6738 else
6739 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
6740
6741 NOREF(pCmd);
6742 return rc;
6743}
6744
6745
6746/**
6747 * Enumerates and prints all records contained in the given flow tarce module.
6748 *
6749 * @returns VBox status code.
6750 * @param pCmd The command.
6751 * @param pCmdHlp The command helpers.
6752 * @param hFlowTraceMod The flow trace module to print.
6753 * @param hFlow The control flow graph assoicated with the given module.
6754 * @param iFlowTraceMod The flow trace module identifier.
6755 */
6756static int dbgcCmdTraceFlowPrintOne(PDBGCCMDHLP pCmdHlp, PCDBGCCMD pCmd, DBGFFLOWTRACEMOD hFlowTraceMod,
6757 DBGFFLOW hFlow, uint32_t iFlowTraceMod)
6758{
6759 RT_NOREF(hFlow);
6760
6761 DBGFFLOWTRACEREPORT hFlowTraceReport;
6762 int rc = DBGFR3FlowTraceModQueryReport(hFlowTraceMod, &hFlowTraceReport);
6763 if (RT_SUCCESS(rc))
6764 {
6765 uint32_t cRecords = DBGFR3FlowTraceReportGetRecordCount(hFlowTraceReport);
6766 DBGCCmdHlpPrintf(pCmdHlp, "Report for flow trace module %#x (%u records):\n",
6767 iFlowTraceMod, cRecords);
6768
6769 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cRecords * sizeof(DBGCFLOWBBDUMP));
6770 if (RT_LIKELY(paDumpBb))
6771 {
6772 /* Query the basic block referenced for each record and calculate the size. */
6773 for (uint32_t i = 0; i < cRecords && RT_SUCCESS(rc); i++)
6774 {
6775 DBGFFLOWTRACERECORD hRec = NULL;
6776 rc = DBGFR3FlowTraceReportQueryRecord(hFlowTraceReport, i, &hRec);
6777 if (RT_SUCCESS(rc))
6778 {
6779 DBGFADDRESS Addr;
6780 DBGFR3FlowTraceRecordGetAddr(hRec, &Addr);
6781
6782 DBGFFLOWBB hFlowBb = NULL;
6783 rc = DBGFR3FlowQueryBbByAddress(hFlow, &Addr, &hFlowBb);
6784 if (RT_SUCCESS(rc))
6785 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[i]);
6786
6787 DBGFR3FlowTraceRecordRelease(hRec);
6788 }
6789 }
6790
6791 if (RT_SUCCESS(rc))
6792 {
6793 /* Calculate the ASCII screen dimensions and create one. */
6794 uint32_t cchWidth = 0;
6795 uint32_t cchHeight = 0;
6796 for (unsigned i = 0; i < cRecords; i++)
6797 {
6798 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
6799 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
6800 cchHeight += pDumpBb->cchHeight;
6801
6802 /* Incomplete blocks don't have a successor. */
6803 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
6804 continue;
6805
6806 cchHeight += 2; /* For the arrow down to the next basic block. */
6807 }
6808
6809
6810 DBGCSCREEN hScreen = NULL;
6811 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth, cchHeight);
6812 if (RT_SUCCESS(rc))
6813 {
6814 uint32_t uY = 0;
6815
6816 /* Dump the basic blocks and connections to the immediate successor. */
6817 for (unsigned i = 0; i < cRecords; i++)
6818 {
6819 paDumpBb[i].uStartX = (cchWidth - paDumpBb[i].cchWidth) / 2;
6820 paDumpBb[i].uStartY = uY;
6821 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
6822 uY += paDumpBb[i].cchHeight;
6823
6824 /* Incomplete blocks don't have a successor. */
6825 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
6826 continue;
6827
6828 if (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb) != DBGFFLOWBBENDTYPE_EXIT)
6829 {
6830 /* Draw the arrow down to the next block. */
6831 dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY,
6832 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
6833 uY++;
6834 dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY,
6835 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
6836 uY++;
6837 }
6838 }
6839
6840 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, false /*fUseColor*/);
6841 dbgcScreenAsciiDestroy(hScreen);
6842 }
6843 else
6844 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to create virtual screen for flow trace module %#x", iFlowTraceMod);
6845 }
6846 else
6847 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query all records of flow trace module %#x", iFlowTraceMod);
6848
6849 for (unsigned i = 0; i < cRecords; i++)
6850 {
6851 if (paDumpBb[i].hFlowBb)
6852 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
6853 }
6854
6855 RTMemTmpFree(paDumpBb);
6856 }
6857 else
6858 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to allocate memory for %u records", cRecords);
6859
6860 DBGFR3FlowTraceReportRelease(hFlowTraceReport);
6861 }
6862 else
6863 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query report for flow trace module %#x", iFlowTraceMod);
6864
6865 return rc;
6866}
6867
6868
6869/**
6870 * @callback_method_impl{FNDBGCCMD, The 'tflowp' (print trace flow) command.}
6871 */
6872static DECLCALLBACK(int) dbgcCmdTraceFlowPrint(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6873{
6874 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6875
6876 /*
6877 * Enumerate the arguments.
6878 */
6879 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6880 int rc = VINF_SUCCESS;
6881 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6882 {
6883 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6884 {
6885 /* one */
6886 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6887 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6888 {
6889 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6890 if (pFlowTrace)
6891 rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pFlowTrace->hTraceFlowMod,
6892 pFlowTrace->hFlow, pFlowTrace->iTraceFlowMod);
6893 else
6894 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6895 }
6896 else
6897 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6898 }
6899 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6900 {
6901 /* all */
6902 PDBGCTFLOW pIt;
6903 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6904 {
6905 rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pIt->hTraceFlowMod,
6906 pIt->hFlow, pIt->iTraceFlowMod);
6907 if (RT_FAILURE(rc))
6908 break;
6909 }
6910 }
6911 else
6912 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6913 }
6914 return rc;
6915}
6916
6917
6918/**
6919 * @callback_method_impl{FNDBGCCMD, The 'tflowr' (reset trace flow) command.}
6920 */
6921static DECLCALLBACK(int) dbgcCmdTraceFlowReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6922{
6923 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6924
6925 /*
6926 * Enumerate the arguments.
6927 */
6928 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6929 int rc = VINF_SUCCESS;
6930 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6931 {
6932 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6933 {
6934 /* one */
6935 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6936 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6937 {
6938 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6939 if (pFlowTrace)
6940 {
6941 rc = DBGFR3FlowTraceModClear(pFlowTrace->hTraceFlowMod);
6942 if (RT_FAILURE(rc))
6943 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", iFlowTraceMod);
6944 }
6945 else
6946 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6947 }
6948 else
6949 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6950 }
6951 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6952 {
6953 /* all */
6954 PDBGCTFLOW pIt;
6955 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6956 {
6957 rc = DBGFR3FlowTraceModClear(pIt->hTraceFlowMod);
6958 if (RT_FAILURE(rc))
6959 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", pIt->iTraceFlowMod);
6960 }
6961 }
6962 else
6963 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6964 }
6965 return rc;
6966}
6967
6968
6969
6970/**
6971 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 8-bit value.}
6972 */
6973static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6974 PDBGCVAR pResult)
6975{
6976 RT_NOREF1(pUVM);
6977 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6978 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6979 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6980
6981 uint8_t b;
6982 int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL);
6983 if (RT_FAILURE(rc))
6984 return rc;
6985 DBGCVAR_INIT_NUMBER(pResult, b);
6986
6987 NOREF(pFunc);
6988 return VINF_SUCCESS;
6989}
6990
6991
6992/**
6993 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 16-bit value.}
6994 */
6995static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6996 PDBGCVAR pResult)
6997{
6998 RT_NOREF1(pUVM);
6999 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7000 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7001 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7002
7003 uint16_t u16;
7004 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL);
7005 if (RT_FAILURE(rc))
7006 return rc;
7007 DBGCVAR_INIT_NUMBER(pResult, u16);
7008
7009 NOREF(pFunc);
7010 return VINF_SUCCESS;
7011}
7012
7013
7014/**
7015 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 32-bit value.}
7016 */
7017static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7018 PDBGCVAR pResult)
7019{
7020 RT_NOREF1(pUVM);
7021 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7022 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7023 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7024
7025 uint32_t u32;
7026 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL);
7027 if (RT_FAILURE(rc))
7028 return rc;
7029 DBGCVAR_INIT_NUMBER(pResult, u32);
7030
7031 NOREF(pFunc);
7032 return VINF_SUCCESS;
7033}
7034
7035
7036/**
7037 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 64-bit value.}
7038 */
7039static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7040 PDBGCVAR pResult)
7041{
7042 RT_NOREF1(pUVM);
7043 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7044 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7045 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7046
7047 uint64_t u64;
7048 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL);
7049 if (RT_FAILURE(rc))
7050 return rc;
7051 DBGCVAR_INIT_NUMBER(pResult, u64);
7052
7053 NOREF(pFunc);
7054 return VINF_SUCCESS;
7055}
7056
7057
7058/**
7059 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned pointer-sized value.}
7060 */
7061static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7062 PDBGCVAR pResult)
7063{
7064 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7065 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
7066 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
7067
7068 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
7069 if (enmMode == CPUMMODE_LONG)
7070 return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
7071 return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
7072}
7073
7074
7075/**
7076 * @callback_method_impl{FNDBGCFUNC, The hi(value) function implementation.}
7077 */
7078static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7079 PDBGCVAR pResult)
7080{
7081 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7082
7083 uint16_t uHi;
7084 switch (paArgs[0].enmType)
7085 {
7086 case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break;
7087 case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break;
7088 case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break;
7089 case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break;
7090 case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break;
7091 case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break;
7092 default:
7093 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
7094 }
7095 DBGCVAR_INIT_NUMBER(pResult, uHi);
7096 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
7097
7098 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
7099 return VINF_SUCCESS;
7100}
7101
7102
7103/**
7104 * @callback_method_impl{FNDBGCFUNC, The low(value) function implementation.}
7105 */
7106static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7107 PDBGCVAR pResult)
7108{
7109 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7110
7111 uint16_t uLow;
7112 switch (paArgs[0].enmType)
7113 {
7114 case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break;
7115 case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break;
7116 case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break;
7117 case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break;
7118 case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break;
7119 case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break;
7120 default:
7121 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
7122 }
7123 DBGCVAR_INIT_NUMBER(pResult, uLow);
7124 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
7125
7126 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
7127 return VINF_SUCCESS;
7128}
7129
7130
7131/**
7132 * @callback_method_impl{FNDBGCFUNC,The low(value) function implementation.}
7133 */
7134static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
7135 PDBGCVAR pResult)
7136{
7137 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
7138 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
7139 return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]);
7140}
7141
7142
7143/** Generic pointer argument wo/ range. */
7144static const DBGCVARDESC g_aArgPointerWoRange[] =
7145{
7146 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
7147 { 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." },
7148};
7149
7150/** Generic pointer or number argument. */
7151static const DBGCVARDESC g_aArgPointerNumber[] =
7152{
7153 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
7154 { 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." },
7155};
7156
7157
7158
7159/** Function descriptors for the CodeView / WinDbg emulation.
7160 * The emulation isn't attempting to be identical, only somewhat similar.
7161 */
7162const DBGCFUNC g_aFuncsCodeView[] =
7163{
7164 { "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." },
7165 { "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." },
7166 { "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." },
7167 { "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." },
7168 { "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." },
7169 { "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." },
7170 { "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." },
7171 { "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." },
7172};
7173
7174/** The number of functions in the CodeView/WinDbg emulation. */
7175const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);
7176
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette