VirtualBox

source: vbox/trunk/src/VBox/Debugger/DBGCEmulateCodeView.cpp@ 61636

Last change on this file since 61636 was 61628, checked in by vboxsync, 9 years ago

DBGF: Added bsod_msr event, stubbed bsod_efi event. Since we cannot return VINF_EM_DBG_EVENT from an MSR handler, VMCPU_FF_DBGF was introduced as an alternative.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 236.1 KB
Line 
1/* $Id: DBGCEmulateCodeView.cpp 61628 2016-06-09 17:52:51Z vboxsync $ */
2/** @file
3 * DBGC - Debugger Console, CodeView / WinDbg Emulation.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DBGC
23#include <VBox/dbg.h>
24#include <VBox/vmm/dbgf.h>
25#include <VBox/vmm/pgm.h>
26#include <VBox/vmm/cpum.h>
27#include <VBox/dis.h>
28#include <VBox/param.h>
29#include <VBox/err.h>
30#include <VBox/log.h>
31
32#include <iprt/asm.h>
33#include <iprt/mem.h>
34#include <iprt/string.h>
35#include <iprt/assert.h>
36#include <iprt/ctype.h>
37
38#include <stdlib.h>
39#include <stdio.h>
40
41#include "DBGCInternal.h"
42
43
44/*********************************************************************************************************************************
45* Internal Functions *
46*********************************************************************************************************************************/
47static FNDBGCCMD dbgcCmdBrkAccess;
48static FNDBGCCMD dbgcCmdBrkClear;
49static FNDBGCCMD dbgcCmdBrkDisable;
50static FNDBGCCMD dbgcCmdBrkEnable;
51static FNDBGCCMD dbgcCmdBrkList;
52static FNDBGCCMD dbgcCmdBrkSet;
53static FNDBGCCMD dbgcCmdBrkREM;
54static FNDBGCCMD dbgcCmdDumpMem;
55static FNDBGCCMD dbgcCmdDumpDT;
56static FNDBGCCMD dbgcCmdDumpIDT;
57static FNDBGCCMD dbgcCmdDumpPageDir;
58static FNDBGCCMD dbgcCmdDumpPageDirBoth;
59static FNDBGCCMD dbgcCmdDumpPageHierarchy;
60static FNDBGCCMD dbgcCmdDumpPageTable;
61static FNDBGCCMD dbgcCmdDumpPageTableBoth;
62static FNDBGCCMD dbgcCmdDumpTSS;
63static FNDBGCCMD dbgcCmdEditMem;
64static FNDBGCCMD dbgcCmdGo;
65static FNDBGCCMD dbgcCmdListModules;
66static FNDBGCCMD dbgcCmdListNear;
67static FNDBGCCMD dbgcCmdListSource;
68static FNDBGCCMD dbgcCmdMemoryInfo;
69static FNDBGCCMD dbgcCmdReg;
70static FNDBGCCMD dbgcCmdRegGuest;
71static FNDBGCCMD dbgcCmdRegHyper;
72static FNDBGCCMD dbgcCmdRegTerse;
73static FNDBGCCMD dbgcCmdSearchMem;
74static FNDBGCCMD dbgcCmdSearchMemType;
75static FNDBGCCMD dbgcCmdEventCtrl;
76static FNDBGCCMD dbgcCmdEventCtrlList;
77static FNDBGCCMD dbgcCmdEventCtrlReset;
78static FNDBGCCMD dbgcCmdStack;
79static FNDBGCCMD dbgcCmdTrace;
80static FNDBGCCMD dbgcCmdUnassemble;
81
82
83/*********************************************************************************************************************************
84* Global Variables *
85*********************************************************************************************************************************/
86/** 'ba' arguments. */
87static const DBGCVARDESC g_aArgBrkAcc[] =
88{
89 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
90 { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." },
91 { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." },
92 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
93 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
94 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
95 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
96};
97
98
99/** 'bc', 'bd', 'be' arguments. */
100static const DBGCVARDESC g_aArgBrks[] =
101{
102 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
103 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." },
104 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." },
105};
106
107
108/** 'bp' arguments. */
109static const DBGCVARDESC g_aArgBrkSet[] =
110{
111 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
112 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
113 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
114 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
115 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
116};
117
118
119/** 'br' arguments. */
120static const DBGCVARDESC g_aArgBrkREM[] =
121{
122 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
123 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
124 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
125 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
126 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
127};
128
129
130/** 'd?' arguments. */
131static const DBGCVARDESC g_aArgDumpMem[] =
132{
133 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
134 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory." },
135};
136
137
138/** 'dg', 'dga', 'dl', 'dla' arguments. */
139static const DBGCVARDESC g_aArgDumpDT[] =
140{
141 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
142 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." },
143 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." },
144};
145
146
147/** 'di', 'dia' arguments. */
148static const DBGCVARDESC g_aArgDumpIDT[] =
149{
150 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
151 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." },
152};
153
154
155/** 'dpd*' arguments. */
156static const DBGCVARDESC g_aArgDumpPD[] =
157{
158 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
159 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." },
160 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." },
161};
162
163
164/** 'dpda' arguments. */
165static const DBGCVARDESC g_aArgDumpPDAddr[] =
166{
167 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
168 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." },
169};
170
171
172/** 'dph*' arguments. */
173static const DBGCVARDESC g_aArgDumpPH[] =
174{
175 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
176 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." },
177 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." },
178 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." },
179};
180
181
182/** 'dpt?' arguments. */
183static const DBGCVARDESC g_aArgDumpPT[] =
184{
185 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
186 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." },
187};
188
189
190/** 'dpta' arguments. */
191static const DBGCVARDESC g_aArgDumpPTAddr[] =
192{
193 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
194 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." },
195};
196
197
198/** 'dt' arguments. */
199static const DBGCVARDESC g_aArgDumpTSS[] =
200{
201 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
202 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." },
203 { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." }
204};
205
206
207/** 'e?' arguments. */
208static const DBGCVARDESC g_aArgEditMem[] =
209{
210 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
211 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." },
212 { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." },
213};
214
215
216/** 'lm' arguments. */
217static const DBGCVARDESC g_aArgListMods[] =
218{
219 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
220 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." },
221};
222
223
224/** 'ln' arguments. */
225static const DBGCVARDESC g_aArgListNear[] =
226{
227 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
228 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." },
229 { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." },
230};
231
232
233/** 'ls' arguments. */
234static const DBGCVARDESC g_aArgListSource[] =
235{
236 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
237 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." },
238};
239
240
241/** 'm' argument. */
242static const DBGCVARDESC g_aArgMemoryInfo[] =
243{
244 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
245 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." },
246};
247
248
249/** 'r' arguments. */
250static const DBGCVARDESC g_aArgReg[] =
251{
252 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
253 { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." },
254 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." },
255 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." },
256};
257
258
259/** 's' arguments. */
260static const DBGCVARDESC g_aArgSearchMem[] =
261{
262 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
263 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." },
264 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." },
265 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." },
266 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." },
267 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." },
268 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." },
269 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n <Hits>", "Maximum number of hits." },
270 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
271 { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
272};
273
274
275/** 's?' arguments. */
276static const DBGCVARDESC g_aArgSearchMemType[] =
277{
278 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
279 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
280 { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
281};
282
283
284/** 'sxe', 'sxn', 'sxi', 'sx-' arguments. */
285static const DBGCVARDESC g_aArgEventCtrl[] =
286{
287 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
288 { 0, 1, DBGCVAR_CAT_STRING, 0, "-c", "The -c option, requires <cmds>." },
289 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "cmds", "Command to execute on this event." },
290 { 0 /*weird*/, ~0U, DBGCVAR_CAT_STRING, 0, "event", "One or more events, 'all' refering to all events." },
291};
292
293/** 'sx' and 'sr' arguments. */
294static const DBGCVARDESC g_aArgEventCtrlOpt[] =
295{
296 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
297 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "event", "Zero or more events, 'all' refering to all events and being the default." },
298};
299
300/** 'u' arguments. */
301static const DBGCVARDESC g_aArgUnassemble[] =
302{
303 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
304 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
305};
306
307
308/** Command descriptors for the CodeView / WinDbg emulation.
309 * The emulation isn't attempting to be identical, only somewhat similar.
310 */
311const DBGCCMD g_aCmdsCodeView[] =
312{
313 /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
314 { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "<access> <size> <address> [passes [max passes]] [cmds]",
315 "Sets a data access breakpoint." },
316 { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | <bp#> [bp# []]", "Deletes a set of breakpoints." },
317 { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | <bp#> [bp# []]", "Disables a set of breakpoints." },
318 { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | <bp#> [bp# []]", "Enables a set of breakpoints." },
319 { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." },
320 { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "<address> [passes [max passes]] [cmds]",
321 "Sets a breakpoint (int 3)." },
322 { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "<address> [passes [max passes]] [cmds]",
323 "Sets a recompiler specific breakpoint." },
324 { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size." },
325 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
326 { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." },
327 { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." },
328 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
329 { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." },
330 { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." },
331 { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." },
332 { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." },
333 { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." },
334 { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." },
335 { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." },
336 { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." },
337 { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " },
338 { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." },
339 { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " },
340 { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." },
341 { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." },
342 { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." },
343 { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the default context." },
344 { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps memory at given address as a page table." },
345 { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"<addr>", "Dumps page table entries of the guest and the hypervisor." },
346 { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the guest." },
347 { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the hypervisor." },
348 { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." },
349 { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." },
350 { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." },
351 { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." },
352 { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." },
353 { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." },
354 /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also
355 * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */
356 { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 1-byte value to memory." },
357 { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 2-byte value to memory." },
358 { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 4-byte value to memory." },
359 { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 8-byte value to memory." },
360 { "g", 0, 0, NULL, 0, 0, dbgcCmdGo, "", "Continue execution." },
361 { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." },
362 { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." },
363 { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." },
364 { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." },
365 { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." },
366 { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." },
367 { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." },
368 { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." },
369 { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." },
370 { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "<addr>", "Display information about that piece of memory." },
371 { "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set." },
372 { "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set." },
373 { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." },
374 { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." },
375 { "rh", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegHyper, "[reg [[=] newval]]", "Show or set register(s) - hypervisor reg set." },
376 { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." },
377 { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] <range> <pattern>", "Continue last search." },
378 { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an ascii string." },
379 { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more bytes." },
380 { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more double words." },
381 { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more quad words." },
382 { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an unicode string." },
383 { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more words." },
384 { "sx", 0, ~0U, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlList, "[<event> [..]]", "Lists settings for exceptions, exits and other events. All if no filter is specified." },
385 { "sx-", 3, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "-c <cmd> <event> [..]", "Modifies the command for one or more exceptions, exits or other event. 'all' addresses all." },
386 { "sxe", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Enable: Break into the debugger on the specified exceptions, exits and other events. 'all' addresses all." },
387 { "sxn", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Notify: Display info in the debugger and continue on the specified exceptions, exits and other events. 'all' addresses all." },
388 { "sxi", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Ignore: Ignore the specified exceptions, exits and other events ('all' = all of them). Without the -c option, the guest runs like normal." },
389 { "sxr", 0, 0, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlReset, "", "Reset the settings to default for exceptions, exits and other events. All if no filter is specified." },
390 { "t", 0, 0, NULL, 0, 0, dbgcCmdTrace, "", "Instruction trace (step into)." },
391 { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." },
392 { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." },
393 { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." },
394 { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." },
395 { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." },
396};
397
398/** The number of commands in the CodeView/WinDbg emulation. */
399const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView);
400
401
402/**
403 * Selectable debug event descriptors.
404 *
405 * @remarks Sorted by DBGCSXEVT::enmType value.
406 */
407const DBGCSXEVT g_aDbgcSxEvents[] =
408{
409 { DBGFEVENT_INTERRUPT_HARDWARE, "hwint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Hardware interrupt" },
410 { DBGFEVENT_INTERRUPT_SOFTWARE, "swint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Software interrupt" },
411 { DBGFEVENT_TRIPLE_FAULT, "triplefault", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Enabled, 0, "Triple fault "},
412 { DBGFEVENT_XCPT_DE, "xcpt_de", "de", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DE (integer divide error)" },
413 { DBGFEVENT_XCPT_DB, "xcpt_db", "db", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DB (debug)" },
414 { DBGFEVENT_XCPT_02, "xcpt_02", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
415 { DBGFEVENT_XCPT_BP, "xcpt_bp", "bp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BP (breakpoint)" },
416 { DBGFEVENT_XCPT_OF, "xcpt_of", "of", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#OF (overflow (INTO))" },
417 { DBGFEVENT_XCPT_BR, "xcpt_br", "br", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BR (bound range exceeded)" },
418 { DBGFEVENT_XCPT_UD, "xcpt_ud", "ud", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#UD (undefined opcode)" },
419 { DBGFEVENT_XCPT_NM, "xcpt_nm", "nm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#NM (FPU not available)" },
420 { DBGFEVENT_XCPT_DF, "xcpt_df", "df", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DF (double fault)" },
421 { DBGFEVENT_XCPT_09, "xcpt_09", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "Coprocessor segment overrun" },
422 { DBGFEVENT_XCPT_TS, "xcpt_ts", "ts", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#TS (task switch)" },
423 { DBGFEVENT_XCPT_NP, "xcpt_np", "np", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#NP (segment not present)" },
424 { DBGFEVENT_XCPT_SS, "xcpt_ss", "ss", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SS (stack segment fault)" },
425 { DBGFEVENT_XCPT_GP, "xcpt_gp", "gp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#GP (general protection fault)" },
426 { DBGFEVENT_XCPT_PF, "xcpt_pf", "pf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#PF (page fault)" },
427 { DBGFEVENT_XCPT_0f, "xcpt_0f", "xcpt0f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
428 { DBGFEVENT_XCPT_MF, "xcpt_mf", "mf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MF (math fault)" },
429 { DBGFEVENT_XCPT_AC, "xcpt_ac", "ac", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#AC (alignment check)" },
430 { DBGFEVENT_XCPT_MC, "xcpt_mc", "mc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MC (machine check)" },
431 { DBGFEVENT_XCPT_XF, "xcpt_xf", "xf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#XF (SIMD floating-point exception)" },
432 { DBGFEVENT_XCPT_VE, "xcpt_vd", "ve", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#VE (virtualization exception)" },
433 { DBGFEVENT_XCPT_15, "xcpt_15", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
434 { DBGFEVENT_XCPT_16, "xcpt_16", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
435 { DBGFEVENT_XCPT_17, "xcpt_17", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
436 { DBGFEVENT_XCPT_18, "xcpt_18", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
437 { DBGFEVENT_XCPT_19, "xcpt_19", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
438 { DBGFEVENT_XCPT_1a, "xcpt_1a", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
439 { DBGFEVENT_XCPT_1b, "xcpt_1b", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
440 { DBGFEVENT_XCPT_1c, "xcpt_1c", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
441 { DBGFEVENT_XCPT_1d, "xcpt_1d", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
442 { DBGFEVENT_XCPT_SX, "xcpt_sx", "sx", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SX (security exception)" },
443 { DBGFEVENT_XCPT_1f, "xcpt_1f", "xcpt1f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
444 { DBGFEVENT_INSTR_HALT, "instr_halt", "hlt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
445 { DBGFEVENT_INSTR_MWAIT, "instr_mwait", "mwait", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
446 { DBGFEVENT_INSTR_MONITOR, "instr_monitor", "monitor", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
447 { DBGFEVENT_INSTR_CPUID, "instr_cpuid", "cpuid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
448 { DBGFEVENT_INSTR_INVD, "instr_invd", "invd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
449 { DBGFEVENT_INSTR_WBINVD, "instr_wbinvd", "wbinvd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
450 { DBGFEVENT_INSTR_INVLPG, "instr_invlpg", "invlpg", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
451 { DBGFEVENT_INSTR_RDTSC, "instr_rdtsc", "rdtsc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
452 { DBGFEVENT_INSTR_RDTSCP, "instr_rdtscp", "rdtscp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
453 { DBGFEVENT_INSTR_RDPMC, "instr_rdpmc", "rdpmc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
454 { DBGFEVENT_INSTR_RDMSR, "instr_rdmsr", "rdmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
455 { DBGFEVENT_INSTR_WRMSR, "instr_wrmsr", "wrmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
456 { DBGFEVENT_INSTR_CRX_READ, "instr_crx_read", "crx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
457 { DBGFEVENT_INSTR_CRX_WRITE, "instr_crx_write", "crx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
458 { DBGFEVENT_INSTR_DRX_READ, "instr_drx_read", "drx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
459 { DBGFEVENT_INSTR_DRX_WRITE, "instr_drx_write", "drx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
460 { DBGFEVENT_INSTR_PAUSE, "instr_pause", "pause", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
461 { DBGFEVENT_INSTR_XSETBV, "instr_xsetbv", "xsetbv", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
462 { DBGFEVENT_INSTR_SIDT, "instr_sidt", "sidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
463 { DBGFEVENT_INSTR_LIDT, "instr_lidt", "lidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
464 { DBGFEVENT_INSTR_SGDT, "instr_sgdt", "sgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
465 { DBGFEVENT_INSTR_LGDT, "instr_lgdt", "lgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
466 { DBGFEVENT_INSTR_SLDT, "instr_sldt", "sldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
467 { DBGFEVENT_INSTR_LLDT, "instr_lldt", "lldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
468 { DBGFEVENT_INSTR_STR, "instr_str", "str", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
469 { DBGFEVENT_INSTR_LTR, "instr_ltr", "ltr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
470 { DBGFEVENT_INSTR_GETSEC, "instr_getsec", "getsec", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
471 { DBGFEVENT_INSTR_RSM, "instr_rsm", "rsm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
472 { DBGFEVENT_INSTR_RDRAND, "instr_rdrand", "rdrand", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
473 { DBGFEVENT_INSTR_RDSEED, "instr_rdseed", "rdseed", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
474 { DBGFEVENT_INSTR_XSAVES, "instr_xsaves", "xsaves", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
475 { DBGFEVENT_INSTR_XRSTORS, "instr_xrstors", "xrstors", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
476 { DBGFEVENT_INSTR_VMM_CALL, "instr_vmm_call", "vmm_call", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
477 { DBGFEVENT_INSTR_VMX_VMCLEAR, "instr_vmx_vmclear", "vmclear", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
478 { DBGFEVENT_INSTR_VMX_VMLAUNCH, "instr_vmx_vmlaunch", "vmlaunch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
479 { DBGFEVENT_INSTR_VMX_VMPTRLD, "instr_vmx_vmptrld", "vmptrld", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
480 { DBGFEVENT_INSTR_VMX_VMPTRST, "instr_vmx_vmptrst", "vmptrst", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
481 { DBGFEVENT_INSTR_VMX_VMREAD, "instr_vmx_vmread", "vmread", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
482 { DBGFEVENT_INSTR_VMX_VMRESUME, "instr_vmx_vmresume", "vmresume", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
483 { DBGFEVENT_INSTR_VMX_VMWRITE, "instr_vmx_vmwrite", "vmwrite", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
484 { DBGFEVENT_INSTR_VMX_VMXOFF, "instr_vmx_vmxoff", "vmxoff", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
485 { DBGFEVENT_INSTR_VMX_VMXON, "instr_vmx_vmxon", "vmxon", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
486 { DBGFEVENT_INSTR_VMX_VMFUNC, "instr_vmx_vmfunc", "vmfunc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
487 { DBGFEVENT_INSTR_VMX_INVEPT, "instr_vmx_invept", "invept", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
488 { DBGFEVENT_INSTR_VMX_INVVPID, "instr_vmx_invvpid", "invvpid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
489 { DBGFEVENT_INSTR_VMX_INVPCID, "instr_vmx_invpcid", "invpcid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
490 { DBGFEVENT_INSTR_SVM_VMRUN, "instr_svm_vmrun", "vmrun", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
491 { DBGFEVENT_INSTR_SVM_VMLOAD, "instr_svm_vmload", "vmload", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
492 { DBGFEVENT_INSTR_SVM_VMSAVE, "instr_svm_vmsave", "vmsave", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
493 { DBGFEVENT_INSTR_SVM_STGI, "instr_svm_stgi", "stgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
494 { DBGFEVENT_INSTR_SVM_CLGI, "instr_svm_clgi", "clgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
495 { DBGFEVENT_EXIT_TASK_SWITCH, "exit_task_switch", "task_switch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
496 { DBGFEVENT_EXIT_HALT, "exit_halt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
497 { DBGFEVENT_EXIT_MWAIT, "exit_mwait", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
498 { DBGFEVENT_EXIT_MONITOR, "exit_monitor", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
499 { DBGFEVENT_EXIT_CPUID, "exit_cpuid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
500 { DBGFEVENT_EXIT_INVD, "exit_invd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
501 { DBGFEVENT_EXIT_WBINVD, "exit_wbinvd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
502 { DBGFEVENT_EXIT_INVLPG, "exit_invlpg", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
503 { DBGFEVENT_EXIT_RDTSC, "exit_rdtsc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
504 { DBGFEVENT_EXIT_RDTSCP, "exit_rdtscp", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
505 { DBGFEVENT_EXIT_RDPMC, "exit_rdpmc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
506 { DBGFEVENT_EXIT_RDMSR, "exit_rdmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
507 { DBGFEVENT_EXIT_WRMSR, "exit_wrmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
508 { DBGFEVENT_EXIT_CRX_READ, "exit_crx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
509 { DBGFEVENT_EXIT_CRX_WRITE, "exit_crx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
510 { DBGFEVENT_EXIT_DRX_READ, "exit_drx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
511 { DBGFEVENT_EXIT_DRX_WRITE, "exit_drx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
512 { DBGFEVENT_EXIT_PAUSE, "exit_pause", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
513 { DBGFEVENT_EXIT_XSETBV, "exit_xsetbv", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
514 { DBGFEVENT_EXIT_SIDT, "exit_sidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
515 { DBGFEVENT_EXIT_LIDT, "exit_lidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
516 { DBGFEVENT_EXIT_SGDT, "exit_sgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
517 { DBGFEVENT_EXIT_LGDT, "exit_lgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
518 { DBGFEVENT_EXIT_SLDT, "exit_sldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
519 { DBGFEVENT_EXIT_LLDT, "exit_lldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
520 { DBGFEVENT_EXIT_STR, "exit_str", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
521 { DBGFEVENT_EXIT_LTR, "exit_ltr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
522 { DBGFEVENT_EXIT_GETSEC, "exit_getsec", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
523 { DBGFEVENT_EXIT_RSM, "exit_rsm", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
524 { DBGFEVENT_EXIT_RDRAND, "exit_rdrand", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
525 { DBGFEVENT_EXIT_RDSEED, "exit_rdseed", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
526 { DBGFEVENT_EXIT_XSAVES, "exit_xsaves", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
527 { DBGFEVENT_EXIT_XRSTORS, "exit_xrstors", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
528 { DBGFEVENT_EXIT_VMM_CALL, "exit_vmm_call", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
529 { DBGFEVENT_EXIT_VMX_VMCLEAR, "exit_vmx_vmclear", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
530 { DBGFEVENT_EXIT_VMX_VMLAUNCH, "exit_vmx_vmlaunch", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
531 { DBGFEVENT_EXIT_VMX_VMPTRLD, "exit_vmx_vmptrld", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
532 { DBGFEVENT_EXIT_VMX_VMPTRST, "exit_vmx_vmptrst", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
533 { DBGFEVENT_EXIT_VMX_VMREAD, "exit_vmx_vmread", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
534 { DBGFEVENT_EXIT_VMX_VMRESUME, "exit_vmx_vmresume", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
535 { DBGFEVENT_EXIT_VMX_VMWRITE, "exit_vmx_vmwrite", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
536 { DBGFEVENT_EXIT_VMX_VMXOFF, "exit_vmx_vmxoff", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
537 { DBGFEVENT_EXIT_VMX_VMXON, "exit_vmx_vmxon", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
538 { DBGFEVENT_EXIT_VMX_VMFUNC, "exit_vmx_vmfunc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
539 { DBGFEVENT_EXIT_VMX_INVEPT, "exit_vmx_invept", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
540 { DBGFEVENT_EXIT_VMX_INVVPID, "exit_vmx_invvpid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
541 { DBGFEVENT_EXIT_VMX_INVPCID, "exit_vmx_invpcid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
542 { DBGFEVENT_EXIT_VMX_EPT_VIOLATION, "exit_vmx_ept_violation", "eptvio", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
543 { DBGFEVENT_EXIT_VMX_EPT_MISCONFIG, "exit_vmx_ept_misconfig", "eptmis", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
544 { DBGFEVENT_EXIT_VMX_VAPIC_ACCESS, "exit_vmx_vapic_access", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
545 { DBGFEVENT_EXIT_VMX_VAPIC_WRITE, "exit_vmx_vapic_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
546 { DBGFEVENT_EXIT_SVM_VMRUN, "exit_svm_vmrun", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
547 { DBGFEVENT_EXIT_SVM_VMLOAD, "exit_svm_vmload", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
548 { DBGFEVENT_EXIT_SVM_VMSAVE, "exit_svm_vmsave", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
549 { DBGFEVENT_EXIT_SVM_STGI, "exit_svm_stgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
550 { DBGFEVENT_EXIT_SVM_CLGI, "exit_svm_clgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
551 { DBGFEVENT_IOPORT_UNASSIGNED, "pio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
552 { DBGFEVENT_IOPORT_UNUSED, "pio_unused", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
553 { DBGFEVENT_MEMORY_UNASSIGNED, "mmio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
554 { DBGFEVENT_MEMORY_ROM_WRITE, "rom_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
555 { DBGFEVENT_BSOD_MSR, "bsod_msr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
556 { DBGFEVENT_BSOD_EFI, "bsod_efi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
557};
558/** Number of entries in g_aDbgcSxEvents. */
559const uint32_t g_cDbgcSxEvents = RT_ELEMENTS(g_aDbgcSxEvents);
560
561
562
563/**
564 * @callback_method_impl{FNDBGCCMD, The 'go' command.}
565 */
566static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
567{
568 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
569
570 /*
571 * Check if the VM is halted or not before trying to resume it.
572 */
573 if (!DBGFR3IsHalted(pUVM))
574 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running");
575
576 int rc = DBGFR3Resume(pUVM);
577 if (RT_FAILURE(rc))
578 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume");
579
580 NOREF(paArgs); NOREF(cArgs);
581 return VINF_SUCCESS;
582}
583
584
585/**
586 * @callback_method_impl{FNDBGCCMD, The 'ba' command.}
587 */
588static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
589{
590 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
591
592 /*
593 * Interpret access type.
594 */
595 if ( !strchr("xrwi", paArgs[0].u.pszString[0])
596 || paArgs[0].u.pszString[1])
597 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'",
598 paArgs[0].u.pszString, pCmd->pszCmd);
599 uint8_t fType = 0;
600 switch (paArgs[0].u.pszString[0])
601 {
602 case 'x': fType = X86_DR7_RW_EO; break;
603 case 'r': fType = X86_DR7_RW_RW; break;
604 case 'w': fType = X86_DR7_RW_WO; break;
605 case 'i': fType = X86_DR7_RW_IO; break;
606 }
607
608 /*
609 * Validate size.
610 */
611 if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1)
612 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!",
613 paArgs[1].u.u64Number, pCmd->pszCmd);
614 switch (paArgs[1].u.u64Number)
615 {
616 case 1:
617 case 2:
618 case 4:
619 break;
620 /*case 8: - later*/
621 default:
622 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!",
623 paArgs[1].u.u64Number, pCmd->pszCmd);
624 }
625 uint8_t cb = (uint8_t)paArgs[1].u.u64Number;
626
627 /*
628 * Convert the pointer to a DBGF address.
629 */
630 DBGFADDRESS Address;
631 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address);
632 if (RT_FAILURE(rc))
633 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]);
634
635 /*
636 * Pick out the optional arguments.
637 */
638 uint64_t iHitTrigger = 0;
639 uint64_t iHitDisable = ~0;
640 const char *pszCmds = NULL;
641 unsigned iArg = 3;
642 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
643 {
644 iHitTrigger = paArgs[iArg].u.u64Number;
645 iArg++;
646 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
647 {
648 iHitDisable = paArgs[iArg].u.u64Number;
649 iArg++;
650 }
651 }
652 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
653 {
654 pszCmds = paArgs[iArg].u.pszString;
655 iArg++;
656 }
657
658 /*
659 * Try set the breakpoint.
660 */
661 uint32_t iBp;
662 rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp);
663 if (RT_SUCCESS(rc))
664 {
665 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
666 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
667 if (RT_SUCCESS(rc))
668 return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
669 if (rc == VERR_DBGC_BP_EXISTS)
670 {
671 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
672 if (RT_SUCCESS(rc))
673 return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
674 }
675 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
676 AssertRC(rc2);
677 }
678 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr);
679}
680
681
682/**
683 * @callback_method_impl{FNDBGCCMD, The 'bc' command.}
684 */
685static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
686{
687 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
688
689 /*
690 * Enumerate the arguments.
691 */
692 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
693 int rc = VINF_SUCCESS;
694 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
695 {
696 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
697 {
698 /* one */
699 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
700 if (iBp == paArgs[iArg].u.u64Number)
701 {
702 int rc2 = DBGFR3BpClear(pUVM, iBp);
703 if (RT_FAILURE(rc2))
704 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
705 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
706 dbgcBpDelete(pDbgc, iBp);
707 }
708 else
709 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
710 }
711 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
712 {
713 /* all */
714 PDBGCBP pBp = pDbgc->pFirstBp;
715 while (pBp)
716 {
717 uint32_t iBp = pBp->iBp;
718 pBp = pBp->pNext;
719
720 int rc2 = DBGFR3BpClear(pUVM, iBp);
721 if (RT_FAILURE(rc2))
722 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
723 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
724 dbgcBpDelete(pDbgc, iBp);
725 }
726 }
727 else
728 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
729 }
730 return rc;
731}
732
733
734/**
735 * @callback_method_impl{FNDBGCCMD, The 'bd' command.}
736 */
737static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
738{
739 /*
740 * Enumerate the arguments.
741 */
742 int rc = VINF_SUCCESS;
743 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
744 {
745 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
746 {
747 /* one */
748 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
749 if (iBp == paArgs[iArg].u.u64Number)
750 {
751 rc = DBGFR3BpDisable(pUVM, iBp);
752 if (RT_FAILURE(rc))
753 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp);
754 }
755 else
756 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
757 }
758 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
759 {
760 /* all */
761 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
762 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
763 {
764 int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp);
765 if (RT_FAILURE(rc2))
766 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp);
767 }
768 }
769 else
770 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
771 }
772 return rc;
773}
774
775
776/**
777 * @callback_method_impl{FNDBGCCMD, The 'be' command.}
778 */
779static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
780{
781 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
782
783 /*
784 * Enumerate the arguments.
785 */
786 int rc = VINF_SUCCESS;
787 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
788 {
789 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
790 {
791 /* one */
792 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
793 if (iBp == paArgs[iArg].u.u64Number)
794 {
795 rc = DBGFR3BpEnable(pUVM, iBp);
796 if (RT_FAILURE(rc))
797 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp);
798 }
799 else
800 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
801 }
802 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
803 {
804 /* all */
805 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
806 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
807 {
808 int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp);
809 if (RT_FAILURE(rc2))
810 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp);
811 }
812 }
813 else
814 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
815 }
816 return rc;
817}
818
819
820/**
821 * Breakpoint enumeration callback function.
822 *
823 * @returns VBox status code. Any failure will stop the enumeration.
824 * @param pUVM The user mode VM handle.
825 * @param pvUser The user argument.
826 * @param pBp Pointer to the breakpoint information. (readonly)
827 */
828static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, PCDBGFBP pBp)
829{
830 PDBGC pDbgc = (PDBGC)pvUser;
831 PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, pBp->iBp);
832
833 /*
834 * BP type and size.
835 */
836 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c ", pBp->iBp, pBp->fEnabled ? 'e' : 'd');
837 bool fHasAddress = false;
838 switch (pBp->enmType)
839 {
840 case DBGFBPTYPE_INT3:
841 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " p %RGv", pBp->u.Int3.GCPtr);
842 fHasAddress = true;
843 break;
844 case DBGFBPTYPE_REG:
845 {
846 char chType;
847 switch (pBp->u.Reg.fType)
848 {
849 case X86_DR7_RW_EO: chType = 'x'; break;
850 case X86_DR7_RW_WO: chType = 'w'; break;
851 case X86_DR7_RW_IO: chType = 'i'; break;
852 case X86_DR7_RW_RW: chType = 'r'; break;
853 default: chType = '?'; break;
854
855 }
856 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%d %c %RGv", pBp->u.Reg.cb, chType, pBp->u.Reg.GCPtr);
857 fHasAddress = true;
858 break;
859 }
860
861 case DBGFBPTYPE_REM:
862 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " r %RGv", pBp->u.Rem.GCPtr);
863 fHasAddress = true;
864 break;
865
866/** @todo realign the list when I/O and MMIO breakpoint command have been added and it's possible to test this code. */
867 case DBGFBPTYPE_PORT_IO:
868 case DBGFBPTYPE_MMIO:
869 {
870 uint32_t fAccess = pBp->enmType == DBGFBPTYPE_PORT_IO ? pBp->u.PortIo.fAccess : pBp->u.Mmio.fAccess;
871 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, pBp->enmType == DBGFBPTYPE_PORT_IO ? " i" : " m");
872 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
873 fAccess & DBGFBPIOACCESS_READ_MASK ? 'r' : '-',
874 fAccess & DBGFBPIOACCESS_READ_BYTE ? '1' : '-',
875 fAccess & DBGFBPIOACCESS_READ_WORD ? '2' : '-',
876 fAccess & DBGFBPIOACCESS_READ_DWORD ? '4' : '-',
877 fAccess & DBGFBPIOACCESS_READ_QWORD ? '8' : '-',
878 fAccess & DBGFBPIOACCESS_READ_OTHER ? '+' : '-');
879 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
880 fAccess & DBGFBPIOACCESS_WRITE_MASK ? 'w' : '-',
881 fAccess & DBGFBPIOACCESS_WRITE_BYTE ? '1' : '-',
882 fAccess & DBGFBPIOACCESS_WRITE_WORD ? '2' : '-',
883 fAccess & DBGFBPIOACCESS_WRITE_DWORD ? '4' : '-',
884 fAccess & DBGFBPIOACCESS_WRITE_QWORD ? '8' : '-',
885 fAccess & DBGFBPIOACCESS_WRITE_OTHER ? '+' : '-');
886 if (pBp->enmType == DBGFBPTYPE_PORT_IO)
887 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04x-%04x",
888 pBp->u.PortIo.uPort, pBp->u.PortIo.uPort + pBp->u.PortIo.cPorts - 1);
889 else
890 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%RGp LB %03x", pBp->u.Mmio.PhysAddr, pBp->u.Mmio.cb);
891 break;
892 }
893
894 default:
895 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " unknown type %d!!", pBp->enmType);
896 AssertFailed();
897 break;
898
899 }
900 if (pBp->iHitDisable == ~(uint64_t)0)
901 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to ~0) ", pBp->cHits, pBp->iHitTrigger);
902 else
903 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to %04RX64)", pBp->cHits, pBp->iHitTrigger, pBp->iHitDisable);
904
905 /*
906 * Try resolve the address if it has one.
907 */
908 if (fHasAddress)
909 {
910 RTDBGSYMBOL Sym;
911 RTINTPTR off;
912 DBGFADDRESS Addr;
913 int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->u.GCPtr),
914 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &off, &Sym, NULL);
915 if (RT_SUCCESS(rc))
916 {
917 if (!off)
918 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName);
919 else if (off > 0)
920 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off);
921 else
922 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off);
923 }
924 }
925
926 /*
927 * The commands.
928 */
929 if (pDbgcBp)
930 {
931 if (pDbgcBp->cchCmd)
932 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd);
933 else
934 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n");
935 }
936 else
937 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n");
938
939 return VINF_SUCCESS;
940}
941
942
943/**
944 * @callback_method_impl{FNDBGCCMD, The 'bl' command.}
945 */
946static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
947{
948 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
949 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
950 NOREF(paArgs);
951
952 /*
953 * Enumerate the breakpoints.
954 */
955 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
956 int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc);
957 if (RT_FAILURE(rc))
958 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum");
959 return rc;
960}
961
962
963/**
964 * @callback_method_impl{FNDBGCCMD, The 'bp' command.}
965 */
966static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
967{
968 /*
969 * Convert the pointer to a DBGF address.
970 */
971 DBGFADDRESS Address;
972 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
973 if (RT_FAILURE(rc))
974 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
975
976 /*
977 * Pick out the optional arguments.
978 */
979 uint64_t iHitTrigger = 0;
980 uint64_t iHitDisable = ~0;
981 const char *pszCmds = NULL;
982 unsigned iArg = 1;
983 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
984 {
985 iHitTrigger = paArgs[iArg].u.u64Number;
986 iArg++;
987 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
988 {
989 iHitDisable = paArgs[iArg].u.u64Number;
990 iArg++;
991 }
992 }
993 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
994 {
995 pszCmds = paArgs[iArg].u.pszString;
996 iArg++;
997 }
998
999 /*
1000 * Try set the breakpoint.
1001 */
1002 uint32_t iBp;
1003 rc = DBGFR3BpSet(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
1004 if (RT_SUCCESS(rc))
1005 {
1006 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1007 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1008 if (RT_SUCCESS(rc))
1009 return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1010 if (rc == VERR_DBGC_BP_EXISTS)
1011 {
1012 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1013 if (RT_SUCCESS(rc))
1014 return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1015 }
1016 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1017 AssertRC(rc2);
1018 }
1019 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr);
1020}
1021
1022
1023/**
1024 * @callback_method_impl{FNDBGCCMD, The 'br' command.}
1025 */
1026static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1027{
1028 /*
1029 * Convert the pointer to a DBGF address.
1030 */
1031 DBGFADDRESS Address;
1032 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1033 if (RT_FAILURE(rc))
1034 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1035
1036 /*
1037 * Pick out the optional arguments.
1038 */
1039 uint64_t iHitTrigger = 0;
1040 uint64_t iHitDisable = ~0;
1041 const char *pszCmds = NULL;
1042 unsigned iArg = 1;
1043 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1044 {
1045 iHitTrigger = paArgs[iArg].u.u64Number;
1046 iArg++;
1047 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1048 {
1049 iHitDisable = paArgs[iArg].u.u64Number;
1050 iArg++;
1051 }
1052 }
1053 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1054 {
1055 pszCmds = paArgs[iArg].u.pszString;
1056 iArg++;
1057 }
1058
1059 /*
1060 * Try set the breakpoint.
1061 */
1062 uint32_t iBp;
1063 rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
1064 if (RT_SUCCESS(rc))
1065 {
1066 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1067 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1068 if (RT_SUCCESS(rc))
1069 return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1070 if (rc == VERR_DBGC_BP_EXISTS)
1071 {
1072 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1073 if (RT_SUCCESS(rc))
1074 return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1075 }
1076 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1077 AssertRC(rc2);
1078 }
1079 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr);
1080}
1081
1082
1083/**
1084 * Helps the unassmble ('u') command display symbols it starts at and passes.
1085 *
1086 * @param pUVM The user mode VM handle.
1087 * @param pCmdHlp The command helpers for printing via.
1088 * @param hDbgAs The address space to look up addresses in.
1089 * @param pAddress The current address.
1090 * @param pcbCallAgain Where to return the distance to the next check (in
1091 * instruction bytes).
1092 */
1093static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress,
1094 PRTUINTPTR pcbCallAgain)
1095{
1096 RTDBGSYMBOL Symbol;
1097 RTGCINTPTR offDispSym;
1098 int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress, RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &offDispSym, &Symbol, NULL);
1099 if (RT_FAILURE(rc) || offDispSym > _1G)
1100 rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress, RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL, &offDispSym, &Symbol, NULL);
1101 if (RT_SUCCESS(rc) && offDispSym < _1G)
1102 {
1103 if (!offDispSym)
1104 {
1105 DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName);
1106 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb;
1107 }
1108 else if (offDispSym > 0)
1109 {
1110 DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym);
1111 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1;
1112 }
1113 else
1114 {
1115 DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym);
1116 *pcbCallAgain = !Symbol.cb ? 64 : (RTGCUINTPTR)-offDispSym + Symbol.cb;
1117 }
1118 }
1119 else
1120 *pcbCallAgain = UINT32_MAX;
1121}
1122
1123
1124/**
1125 * @callback_method_impl{FNDBGCCMD, The 'u' command.}
1126 */
1127static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1128{
1129 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1130
1131 /*
1132 * Validate input.
1133 */
1134 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1135 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
1136 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
1137
1138 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1139 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
1140
1141 /*
1142 * Check the desired mode.
1143 */
1144 unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
1145 switch (pCmd->pszCmd[1])
1146 {
1147 default: AssertFailed();
1148 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
1149 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
1150 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
1151 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
1152 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
1153 }
1154
1155 /** @todo should use DBGFADDRESS for everything */
1156
1157 /*
1158 * Find address.
1159 */
1160 if (!cArgs)
1161 {
1162 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1163 {
1164 /** @todo Batch query CS, RIP, CPU mode and flags. */
1165 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1166 if ( pDbgc->fRegCtxGuest
1167 && CPUMIsGuestIn64BitCode(pVCpu))
1168 {
1169 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
1170 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
1171 }
1172 else
1173 {
1174 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
1175 pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu);
1176 pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu);
1177 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
1178 && pDbgc->fRegCtxGuest
1179 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
1180 {
1181 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1182 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
1183 }
1184 }
1185
1186 if (pDbgc->fRegCtxGuest)
1187 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
1188 else
1189 fFlags |= DBGF_DISAS_FLAGS_CURRENT_HYPER | DBGF_DISAS_FLAGS_HYPER;
1190 }
1191 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
1192 {
1193 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1194 fFlags |= pDbgc->fDisasm & (DBGF_DISAS_FLAGS_MODE_MASK | DBGF_DISAS_FLAGS_HYPER);
1195 }
1196 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
1197 }
1198 else
1199 pDbgc->DisasmPos = paArgs[0];
1200 pDbgc->pLastPos = &pDbgc->DisasmPos;
1201
1202 /*
1203 * Range.
1204 */
1205 switch (pDbgc->DisasmPos.enmRangeType)
1206 {
1207 case DBGCVAR_RANGE_NONE:
1208 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1209 pDbgc->DisasmPos.u64Range = 10;
1210 break;
1211
1212 case DBGCVAR_RANGE_ELEMENTS:
1213 if (pDbgc->DisasmPos.u64Range > 2048)
1214 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
1215 break;
1216
1217 case DBGCVAR_RANGE_BYTES:
1218 if (pDbgc->DisasmPos.u64Range > 65536)
1219 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
1220 break;
1221
1222 default:
1223 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
1224 }
1225
1226 /*
1227 * Convert physical and host addresses to guest addresses.
1228 */
1229 RTDBGAS hDbgAs = pDbgc->hDbgAs;
1230 int rc;
1231 switch (pDbgc->DisasmPos.enmType)
1232 {
1233 case DBGCVAR_TYPE_GC_FLAT:
1234 case DBGCVAR_TYPE_GC_FAR:
1235 break;
1236 case DBGCVAR_TYPE_GC_PHYS:
1237 hDbgAs = DBGF_AS_PHYS;
1238 case DBGCVAR_TYPE_HC_FLAT:
1239 case DBGCVAR_TYPE_HC_PHYS:
1240 {
1241 DBGCVAR VarTmp;
1242 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
1243 if (RT_FAILURE(rc))
1244 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
1245 pDbgc->DisasmPos = VarTmp;
1246 break;
1247 }
1248 default: AssertFailed(); break;
1249 }
1250
1251 DBGFADDRESS CurAddr;
1252 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1253 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1254 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1255 else
1256 {
1257 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1258 if (RT_FAILURE(rc))
1259 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
1260 }
1261
1262 if (CurAddr.fFlags & DBGFADDRESS_FLAGS_HMA)
1263 fFlags |= DBGF_DISAS_FLAGS_HYPER; /* This crap is due to not using DBGFADDRESS as DBGFR3Disas* input. */
1264 pDbgc->fDisasm = fFlags;
1265
1266 /*
1267 * Figure out where we are and display it. Also calculate when we need to
1268 * check for a new symbol if possible.
1269 */
1270 RTGCUINTPTR cbCheckSymbol;
1271 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1272
1273 /*
1274 * Do the disassembling.
1275 */
1276 unsigned cTries = 32;
1277 int iRangeLeft = (int)pDbgc->DisasmPos.u64Range;
1278 if (iRangeLeft == 0) /* kludge for 'r'. */
1279 iRangeLeft = -1;
1280 for (;;)
1281 {
1282 /*
1283 * Disassemble the instruction.
1284 */
1285 char szDis[256];
1286 uint32_t cbInstr = 1;
1287 if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT)
1288 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags,
1289 &szDis[0], sizeof(szDis), &cbInstr);
1290 else
1291 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags,
1292 &szDis[0], sizeof(szDis), &cbInstr);
1293 if (RT_SUCCESS(rc))
1294 {
1295 /* print it */
1296 rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]);
1297 if (RT_FAILURE(rc))
1298 return rc;
1299 }
1300 else
1301 {
1302 /* bitch. */
1303 int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n");
1304 if (RT_FAILURE(rc2))
1305 return rc2;
1306 if (cTries-- > 0)
1307 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up");
1308 cbInstr = 1;
1309 }
1310
1311 /* advance */
1312 if (iRangeLeft < 0) /* 'r' */
1313 break;
1314 if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1315 iRangeLeft--;
1316 else
1317 iRangeLeft -= cbInstr;
1318 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr);
1319 if (RT_FAILURE(rc))
1320 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr);
1321 if (iRangeLeft <= 0)
1322 break;
1323 fFlags &= ~(DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_CURRENT_HYPER);
1324
1325 /* Print next symbol? */
1326 if (cbCheckSymbol <= cbInstr)
1327 {
1328 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1329 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1330 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1331 else
1332 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1333 if (RT_SUCCESS(rc))
1334 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1335 else
1336 cbCheckSymbol = UINT32_MAX;
1337 }
1338 else
1339 cbCheckSymbol -= cbInstr;
1340 }
1341
1342 NOREF(pCmd);
1343 return VINF_SUCCESS;
1344}
1345
1346
1347/**
1348 * @callback_method_impl{FNDBGCCMD, The 'ls' command.}
1349 */
1350static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1351{
1352 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1353
1354 /*
1355 * Validate input.
1356 */
1357 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
1358 if (cArgs == 1)
1359 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
1360 if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
1361 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing...");
1362 if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType))
1363 return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM");
1364
1365 /*
1366 * Find address.
1367 */
1368 if (!cArgs)
1369 {
1370 if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
1371 {
1372 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1373 pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR;
1374 pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu);
1375 pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu);
1376 }
1377 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE;
1378 }
1379 else
1380 pDbgc->SourcePos = paArgs[0];
1381 pDbgc->pLastPos = &pDbgc->SourcePos;
1382
1383 /*
1384 * Ensure the source address is flat GC.
1385 */
1386 switch (pDbgc->SourcePos.enmType)
1387 {
1388 case DBGCVAR_TYPE_GC_FLAT:
1389 break;
1390 case DBGCVAR_TYPE_GC_PHYS:
1391 case DBGCVAR_TYPE_GC_FAR:
1392 case DBGCVAR_TYPE_HC_FLAT:
1393 case DBGCVAR_TYPE_HC_PHYS:
1394 {
1395 int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos);
1396 if (RT_FAILURE(rc))
1397 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc);
1398 break;
1399 }
1400 default: AssertFailed(); break;
1401 }
1402
1403 /*
1404 * Range.
1405 */
1406 switch (pDbgc->SourcePos.enmRangeType)
1407 {
1408 case DBGCVAR_RANGE_NONE:
1409 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1410 pDbgc->SourcePos.u64Range = 10;
1411 break;
1412
1413 case DBGCVAR_RANGE_ELEMENTS:
1414 if (pDbgc->SourcePos.u64Range > 2048)
1415 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n");
1416 break;
1417
1418 case DBGCVAR_RANGE_BYTES:
1419 if (pDbgc->SourcePos.u64Range > 65536)
1420 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
1421 break;
1422
1423 default:
1424 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType);
1425 }
1426
1427 /*
1428 * Do the disassembling.
1429 */
1430 bool fFirst = 1;
1431 RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" };
1432 int iRangeLeft = (int)pDbgc->SourcePos.u64Range;
1433 if (iRangeLeft == 0) /* kludge for 'r'. */
1434 iRangeLeft = -1;
1435 for (;;)
1436 {
1437 /*
1438 * Get line info.
1439 */
1440 RTDBGLINE Line;
1441 RTGCINTPTR off;
1442 DBGFADDRESS SourcePosAddr;
1443 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr);
1444 if (RT_FAILURE(rc))
1445 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos);
1446 rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL);
1447 if (RT_FAILURE(rc))
1448 return VINF_SUCCESS;
1449
1450 unsigned cLines = 0;
1451 if (memcmp(&Line, &LinePrev, sizeof(Line)))
1452 {
1453 /*
1454 * Print filenamename
1455 */
1456 if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename))
1457 fFirst = true;
1458 if (fFirst)
1459 {
1460 rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo);
1461 if (RT_FAILURE(rc))
1462 return rc;
1463 }
1464
1465 /*
1466 * Try open the file and read the line.
1467 */
1468 FILE *phFile = fopen(Line.szFilename, "r");
1469 if (phFile)
1470 {
1471 /* Skip ahead to the desired line. */
1472 char szLine[4096];
1473 unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1;
1474 if (cBefore > 7)
1475 cBefore = 0;
1476 unsigned cLeft = Line.uLineNo - cBefore;
1477 while (cLeft > 0)
1478 {
1479 szLine[0] = '\0';
1480 if (!fgets(szLine, sizeof(szLine), phFile))
1481 break;
1482 cLeft--;
1483 }
1484 if (!cLeft)
1485 {
1486 /* print the before lines */
1487 for (;;)
1488 {
1489 size_t cch = strlen(szLine);
1490 while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) )
1491 szLine[--cch] = '\0';
1492 if (cBefore-- <= 0)
1493 break;
1494
1495 rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine);
1496 szLine[0] = '\0';
1497 (void)fgets(szLine, sizeof(szLine), phFile);
1498 cLines++;
1499 }
1500 /* print the actual line */
1501 rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine);
1502 }
1503 fclose(phFile);
1504 if (RT_FAILURE(rc))
1505 return rc;
1506 fFirst = false;
1507 }
1508 else
1509 return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename);
1510
1511 LinePrev = Line;
1512 }
1513
1514
1515 /*
1516 * Advance
1517 */
1518 if (iRangeLeft < 0) /* 'r' */
1519 break;
1520 if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1521 iRangeLeft -= cLines;
1522 else
1523 iRangeLeft -= 1;
1524 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1);
1525 if (RT_FAILURE(rc))
1526 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1);
1527 if (iRangeLeft <= 0)
1528 break;
1529 }
1530
1531 NOREF(pCmd);
1532 return 0;
1533}
1534
1535
1536/**
1537 * @callback_method_impl{FNDBGCCMD, The 'r' command.}
1538 */
1539static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1540{
1541 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1542 if (!pDbgc->fRegCtxGuest)
1543 return dbgcCmdRegHyper(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
1544 return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
1545}
1546
1547
1548/**
1549 * @callback_method_impl{FNDBGCCMD, Common worker for the dbgcCmdReg*()
1550 * commands.}
1551 */
1552static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs,
1553 const char *pszPrefix)
1554{
1555 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1556 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3);
1557 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING
1558 || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL);
1559
1560 /*
1561 * Parse the register name and kind.
1562 */
1563 const char *pszReg = paArgs[0].u.pszString;
1564 if (*pszReg == '@')
1565 pszReg++;
1566 VMCPUID idCpu = pDbgc->idCpu;
1567 if (*pszPrefix)
1568 idCpu |= DBGFREG_HYPER_VMCPUID;
1569 if (*pszReg == '.')
1570 {
1571 pszReg++;
1572 idCpu |= DBGFREG_HYPER_VMCPUID;
1573 }
1574 const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : "";
1575
1576 /*
1577 * Query the register type & value (the setter needs the type).
1578 */
1579 DBGFREGVALTYPE enmType;
1580 DBGFREGVAL Value;
1581 int rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
1582 if (RT_FAILURE(rc))
1583 {
1584 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
1585 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
1586 pszActualPrefix, pszReg);
1587 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
1588 pszActualPrefix, pszReg, rc);
1589 }
1590 if (cArgs == 1)
1591 {
1592 /*
1593 * Show the register.
1594 */
1595 char szValue[160];
1596 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/);
1597 if (RT_SUCCESS(rc))
1598 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue);
1599 else
1600 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
1601 }
1602 else
1603 {
1604 DBGCVAR NewValueTmp;
1605 PCDBGCVAR pNewValue;
1606 if (cArgs == 3)
1607 {
1608 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
1609 if (strcmp(paArgs[1].u.pszString, "="))
1610 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='.");
1611 pNewValue = &paArgs[2];
1612 }
1613 else
1614 {
1615 /* Not possible to convince the parser to support both codeview and
1616 windbg syntax and make the equal sign optional. Try help it. */
1617 /** @todo make DBGCCmdHlpConvert do more with strings. */
1618 rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp);
1619 if (RT_FAILURE(rc))
1620 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol.");
1621 pNewValue = &NewValueTmp;
1622 }
1623
1624 /*
1625 * Modify the register.
1626 */
1627 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER);
1628 if (enmType != DBGFREGVALTYPE_DTR)
1629 {
1630 enmType = DBGFREGVALTYPE_U64;
1631 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64);
1632 }
1633 else
1634 {
1635 enmType = DBGFREGVALTYPE_DTR;
1636 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base);
1637 if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE)
1638 Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range;
1639 }
1640 if (RT_SUCCESS(rc))
1641 {
1642 rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType);
1643 if (RT_FAILURE(rc))
1644 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n",
1645 pszActualPrefix, pszReg, rc);
1646 if (rc != VINF_SUCCESS)
1647 DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc);
1648 }
1649 else
1650 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
1651 }
1652 return rc;
1653}
1654
1655
1656/**
1657 * @callback_method_impl{FNDBGCCMD,
1658 * The 'rg'\, 'rg64' and 'rg32' commands\, worker for 'r'.}
1659 */
1660static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1661{
1662 /*
1663 * Show all registers our selves.
1664 */
1665 if (cArgs == 0)
1666 {
1667 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1668 bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64")
1669 || ( strcmp(pCmd->pszCmd, "rg32") != 0
1670 && DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu));
1671 char szDisAndRegs[8192];
1672 int rc;
1673
1674 if (pDbgc->fRegTerse)
1675 {
1676 if (f64BitMode)
1677 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, &szDisAndRegs[0], sizeof(szDisAndRegs),
1678 "u %016VR{rip} L 0\n"
1679 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
1680 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
1681 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
1682 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
1683 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
1684 "cs=%04VR{cs} ds=%04VR{ds} es=%04VR{es} fs=%04VR{fs} gs=%04VR{gs} ss=%04VR{ss} rflags=%08VR{rflags}\n");
1685 else
1686 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, szDisAndRegs, sizeof(szDisAndRegs),
1687 "u %04VR{cs}:%08VR{eip} L 0\n"
1688 "eax=%08VR{eax} ebx=%08VR{ebx} ecx=%08VR{ecx} edx=%08VR{edx} esi=%08VR{esi} edi=%08VR{edi}\n"
1689 "eip=%08VR{eip} esp=%08VR{esp} ebp=%08VR{ebp} %VRF{eflags}\n"
1690 "cs=%04VR{cs} ds=%04VR{ds} es=%04VR{es} fs=%04VR{fs} gs=%04VR{gs} ss=%04VR{ss} eflags=%08VR{eflags}\n");
1691 }
1692 else
1693 {
1694 if (f64BitMode)
1695 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, &szDisAndRegs[0], sizeof(szDisAndRegs),
1696 "u %016VR{rip} L 0\n"
1697 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
1698 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
1699 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
1700 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
1701 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
1702 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
1703 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
1704 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
1705 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
1706 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
1707 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
1708 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
1709 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
1710 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
1711 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
1712 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
1713 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
1714 " efer=%016VR{efer}\n"
1715 " pat=%016VR{pat}\n"
1716 " sf_mask=%016VR{sf_mask}\n"
1717 "krnl_gs_base=%016VR{krnl_gs_base}\n"
1718 " lstar=%016VR{lstar}\n"
1719 " star=%016VR{star} cstar=%016VR{cstar}\n"
1720 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
1721 );
1722 else
1723 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, szDisAndRegs, sizeof(szDisAndRegs),
1724 "u %04VR{cs}:%08VR{eip} L 0\n"
1725 "eax=%08VR{eax} ebx=%08VR{ebx} ecx=%08VR{ecx} edx=%08VR{edx} esi=%08VR{esi} edi=%08VR{edi}\n"
1726 "eip=%08VR{eip} esp=%08VR{esp} ebp=%08VR{ebp} %VRF{eflags}\n"
1727 "cs={%04VR{cs} base=%08VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} dr0=%08VR{dr0} dr1=%08VR{dr1}\n"
1728 "ds={%04VR{ds} base=%08VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} dr2=%08VR{dr2} dr3=%08VR{dr3}\n"
1729 "es={%04VR{es} base=%08VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} dr6=%08VR{dr6} dr7=%08VR{dr7}\n"
1730 "fs={%04VR{fs} base=%08VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr0=%08VR{cr0} cr2=%08VR{cr2}\n"
1731 "gs={%04VR{gs} base=%08VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr3=%08VR{cr3} cr4=%08VR{cr4}\n"
1732 "ss={%04VR{ss} base=%08VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}} cr8=%08VR{cr8}\n"
1733 "gdtr=%08VR{gdtr_base}:%04VR{gdtr_lim} idtr=%08VR{idtr_base}:%04VR{idtr_lim} eflags=%08VR{eflags}\n"
1734 "ldtr={%04VR{ldtr} base=%08VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%04VR{ldtr_attr}}\n"
1735 "tr ={%04VR{tr} base=%08VR{tr_base} limit=%08VR{tr_lim} flags=%04VR{tr_attr}}\n"
1736 "sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
1737 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
1738 );
1739 }
1740 if (RT_FAILURE(rc))
1741 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegPrintf failed");
1742 char *pszRegs = strchr(szDisAndRegs, '\n');
1743 *pszRegs++ = '\0';
1744 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s", pszRegs);
1745
1746 /*
1747 * Disassemble one instruction at cs:[r|e]ip.
1748 */
1749 if (!f64BitMode && strstr(pszRegs, " vm ")) /* a big ugly... */
1750 return pCmdHlp->pfnExec(pCmdHlp, "uv86 %s", szDisAndRegs + 2);
1751 return pCmdHlp->pfnExec(pCmdHlp, "%s", szDisAndRegs);
1752 }
1753 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "");
1754}
1755
1756
1757/**
1758 * @callback_method_impl{FNDBGCCMD, The 'rh' command.}
1759 */
1760static DECLCALLBACK(int) dbgcCmdRegHyper(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1761{
1762 /*
1763 * Show all registers our selves.
1764 */
1765 if (cArgs == 0)
1766 {
1767 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1768 char szDisAndRegs[8192];
1769 int rc;
1770
1771 if (pDbgc->fRegTerse)
1772 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu | DBGFREG_HYPER_VMCPUID, szDisAndRegs, sizeof(szDisAndRegs),
1773 "u %VR{cs}:%VR{eip} L 0\n"
1774 ".eax=%08VR{eax} .ebx=%08VR{ebx} .ecx=%08VR{ecx} .edx=%08VR{edx} .esi=%08VR{esi} .edi=%08VR{edi}\n"
1775 ".eip=%08VR{eip} .esp=%08VR{esp} .ebp=%08VR{ebp} .%VRF{eflags}\n"
1776 ".cs=%04VR{cs} .ds=%04VR{ds} .es=%04VR{es} .fs=%04VR{fs} .gs=%04VR{gs} .ss=%04VR{ss} .eflags=%08VR{eflags}\n");
1777 else
1778 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu | DBGFREG_HYPER_VMCPUID, szDisAndRegs, sizeof(szDisAndRegs),
1779 "u %04VR{cs}:%08VR{eip} L 0\n"
1780 ".eax=%08VR{eax} .ebx=%08VR{ebx} .ecx=%08VR{ecx} .edx=%08VR{edx} .esi=%08VR{esi} .edi=%08VR{edi}\n"
1781 ".eip=%08VR{eip} .esp=%08VR{esp} .ebp=%08VR{ebp} .%VRF{eflags}\n"
1782 ".cs={%04VR{cs} base=%08VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} .dr0=%08VR{dr0} .dr1=%08VR{dr1}\n"
1783 ".ds={%04VR{ds} base=%08VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} .dr2=%08VR{dr2} .dr3=%08VR{dr3}\n"
1784 ".es={%04VR{es} base=%08VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} .dr6=%08VR{dr6} .dr6=%08VR{dr6}\n"
1785 ".fs={%04VR{fs} base=%08VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} .cr3=%016VR{cr3}\n"
1786 ".gs={%04VR{gs} base=%08VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}}\n"
1787 ".ss={%04VR{ss} base=%08VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
1788 ".gdtr=%08VR{gdtr_base}:%04VR{gdtr_lim} .idtr=%08VR{idtr_base}:%04VR{idtr_lim} .eflags=%08VR{eflags}\n"
1789 ".ldtr={%04VR{ldtr} base=%08VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%04VR{ldtr_attr}}\n"
1790 ".tr ={%04VR{tr} base=%08VR{tr_base} limit=%08VR{tr_lim} flags=%04VR{tr_attr}}\n"
1791 );
1792 if (RT_FAILURE(rc))
1793 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegPrintf failed");
1794 char *pszRegs = strchr(szDisAndRegs, '\n');
1795 *pszRegs++ = '\0';
1796 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s", pszRegs);
1797
1798 /*
1799 * Disassemble one instruction at cs:[r|e]ip.
1800 */
1801 return pCmdHlp->pfnExec(pCmdHlp, "%s", szDisAndRegs);
1802 }
1803 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, ".");
1804}
1805
1806
1807/**
1808 * @callback_method_impl{FNDBGCCMD, The 'rt' command.}
1809 */
1810static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1811{
1812 NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
1813
1814 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1815 pDbgc->fRegTerse = !pDbgc->fRegTerse;
1816 return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n");
1817}
1818
1819
1820/**
1821 * @callback_method_impl{FNDBGCCMD, The 't' command.}
1822 */
1823static DECLCALLBACK(int) dbgcCmdTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1824{
1825 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1826
1827 int rc = DBGFR3Step(pUVM, pDbgc->idCpu);
1828 if (RT_SUCCESS(rc))
1829 pDbgc->fReady = false;
1830 else
1831 rc = pDbgc->CmdHlp.pfnVBoxError(&pDbgc->CmdHlp, rc, "When trying to single step VM %p\n", pDbgc->pVM);
1832
1833 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
1834 return rc;
1835}
1836
1837
1838/**
1839 * @callback_method_impl{FNDBGCCMD, The 'k'\, 'kg' and 'kh' commands.}
1840 */
1841static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1842{
1843 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1844
1845 /*
1846 * Figure which context we're called for and start walking that stack.
1847 */
1848 int rc;
1849 PCDBGFSTACKFRAME pFirstFrame;
1850 bool const fGuest = pCmd->pszCmd[1] == 'g'
1851 || (!pCmd->pszCmd[1] && pDbgc->fRegCtxGuest);
1852 rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame);
1853 if (RT_FAILURE(rc))
1854 return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc);
1855
1856 /*
1857 * Print header.
1858 * 12345678 12345678 0023:87654321 12345678 87654321 12345678 87654321 symbol
1859 */
1860 uint32_t fBitFlags = 0;
1861 for (PCDBGFSTACKFRAME pFrame = pFirstFrame;
1862 pFrame;
1863 pFrame = DBGFR3StackWalkNext(pFrame))
1864 {
1865 uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT);
1866 if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT)
1867 {
1868 if (fCurBitFlags != fBitFlags)
1869 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
1870 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
1871 pFrame->AddrFrame.Sel,
1872 (uint16_t)pFrame->AddrFrame.off,
1873 pFrame->AddrReturnFrame.Sel,
1874 (uint16_t)pFrame->AddrReturnFrame.off,
1875 (uint32_t)pFrame->AddrReturnPC.Sel,
1876 (uint32_t)pFrame->AddrReturnPC.off,
1877 pFrame->Args.au32[0],
1878 pFrame->Args.au32[1],
1879 pFrame->Args.au32[2],
1880 pFrame->Args.au32[3]);
1881 }
1882 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT)
1883 {
1884 if (fCurBitFlags != fBitFlags)
1885 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
1886 rc = DBGCCmdHlpPrintf(pCmdHlp, "%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
1887 (uint32_t)pFrame->AddrFrame.off,
1888 (uint32_t)pFrame->AddrReturnFrame.off,
1889 (uint32_t)pFrame->AddrReturnPC.Sel,
1890 (uint32_t)pFrame->AddrReturnPC.off,
1891 pFrame->Args.au32[0],
1892 pFrame->Args.au32[1],
1893 pFrame->Args.au32[2],
1894 pFrame->Args.au32[3]);
1895 }
1896 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT)
1897 {
1898 if (fCurBitFlags != fBitFlags)
1899 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n");
1900 rc = DBGCCmdHlpPrintf(pCmdHlp, "%016RX64 %04RX16:%016RX64 %016RX64",
1901 (uint64_t)pFrame->AddrFrame.off,
1902 pFrame->AddrReturnFrame.Sel,
1903 (uint64_t)pFrame->AddrReturnFrame.off,
1904 (uint64_t)pFrame->AddrReturnPC.off);
1905 }
1906 if (RT_FAILURE(rc))
1907 break;
1908 if (!pFrame->pSymPC)
1909 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
1910 fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT
1911 ? " %RTsel:%016RGv"
1912 : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT
1913 ? " %RTsel:%08RGv"
1914 : " %RTsel:%04RGv"
1915 , pFrame->AddrPC.Sel, pFrame->AddrPC.off);
1916 else
1917 {
1918 RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */
1919 if (offDisp > 0)
1920 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp);
1921 else if (offDisp < 0)
1922 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp);
1923 else
1924 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName);
1925 }
1926 if (RT_SUCCESS(rc) && pFrame->pLinePC)
1927 rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo);
1928 if (RT_SUCCESS(rc))
1929 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
1930 if (RT_FAILURE(rc))
1931 break;
1932
1933 fBitFlags = fCurBitFlags;
1934 }
1935
1936 DBGFR3StackWalkEnd(pFirstFrame);
1937
1938 NOREF(paArgs); NOREF(cArgs);
1939 return rc;
1940}
1941
1942
1943static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, bool *pfDblEntry)
1944{
1945 /* GUEST64 */
1946 int rc;
1947
1948 const char *pszHyper = fHyper ? " HYPER" : "";
1949 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
1950 if (pDesc->Gen.u1DescType)
1951 {
1952 static const char * const s_apszTypes[] =
1953 {
1954 "DataRO", /* 0 Read-Only */
1955 "DataRO", /* 1 Read-Only - Accessed */
1956 "DataRW", /* 2 Read/Write */
1957 "DataRW", /* 3 Read/Write - Accessed */
1958 "DownRO", /* 4 Expand-down, Read-Only */
1959 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
1960 "DownRW", /* 6 Expand-down, Read/Write */
1961 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
1962 "CodeEO", /* 8 Execute-Only */
1963 "CodeEO", /* 9 Execute-Only - Accessed */
1964 "CodeER", /* A Execute/Readable */
1965 "CodeER", /* B Execute/Readable - Accessed */
1966 "ConfE0", /* C Conforming, Execute-Only */
1967 "ConfE0", /* D Conforming, Execute-Only - Accessed */
1968 "ConfER", /* E Conforming, Execute/Readable */
1969 "ConfER" /* F Conforming, Execute/Readable - Accessed */
1970 };
1971 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
1972 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
1973 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
1974 uint32_t u32Base = X86DESC_BASE(pDesc);
1975 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
1976
1977 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
1978 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
1979 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
1980 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
1981 }
1982 else
1983 {
1984 static const char * const s_apszTypes[] =
1985 {
1986 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
1987 "Ill-1 ", /* 1 0001 Available 16-bit TSS */
1988 "LDT ", /* 2 0010 LDT */
1989 "Ill-3 ", /* 3 0011 Busy 16-bit TSS */
1990 "Ill-4 ", /* 4 0100 16-bit Call Gate */
1991 "Ill-5 ", /* 5 0101 Task Gate */
1992 "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */
1993 "Ill-7 ", /* 7 0111 16-bit Trap Gate */
1994 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
1995 "Tss64A", /* 9 1001 Available 32-bit TSS */
1996 "Ill-A ", /* A 1010 Reserved (Illegal) */
1997 "Tss64B", /* B 1011 Busy 32-bit TSS */
1998 "Call64", /* C 1100 32-bit Call Gate */
1999 "Ill-D ", /* D 1101 Reserved (Illegal) */
2000 "Int64 ", /* E 1110 32-bit Interrupt Gate */
2001 "Trap64" /* F 1111 32-bit Trap Gate */
2002 };
2003 switch (pDesc->Gen.u4Type)
2004 {
2005 /* raw */
2006 case X86_SEL_TYPE_SYS_UNDEFINED:
2007 case X86_SEL_TYPE_SYS_UNDEFINED2:
2008 case X86_SEL_TYPE_SYS_UNDEFINED4:
2009 case X86_SEL_TYPE_SYS_UNDEFINED3:
2010 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
2011 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
2012 case X86_SEL_TYPE_SYS_286_CALL_GATE:
2013 case X86_SEL_TYPE_SYS_286_INT_GATE:
2014 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
2015 case X86_SEL_TYPE_SYS_TASK_GATE:
2016 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
2017 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
2018 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
2019 break;
2020
2021 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
2022 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
2023 case X86_SEL_TYPE_SYS_LDT:
2024 {
2025 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
2026 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2027 const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " ";
2028
2029 uint64_t u64Base = X86DESC64_BASE(pDesc);
2030 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
2031
2032 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n",
2033 iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit,
2034 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig,
2035 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
2036 pszHyper);
2037 if (pfDblEntry)
2038 *pfDblEntry = true;
2039 break;
2040 }
2041
2042 case X86_SEL_TYPE_SYS_386_CALL_GATE:
2043 {
2044 unsigned cParams = pDesc->au8[4] & 0x1f;
2045 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
2046 RTSEL sel = pDesc->au16[1];
2047 uint64_t off = pDesc->au16[0]
2048 | ((uint64_t)pDesc->au16[3] << 16)
2049 | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
2050 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s\n",
2051 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
2052 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper);
2053 if (pfDblEntry)
2054 *pfDblEntry = true;
2055 break;
2056 }
2057
2058 case X86_SEL_TYPE_SYS_386_INT_GATE:
2059 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
2060 {
2061 RTSEL sel = pDesc->Gate.u16Sel;
2062 uint64_t off = pDesc->Gate.u16OffsetLow
2063 | ((uint64_t)pDesc->Gate.u16OffsetHigh << 16)
2064 | ((uint64_t)pDesc->Gate.u32OffsetTop << 32);
2065 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%u %s IST=%u%s\n",
2066 iEntry, s_apszTypes[pDesc->Gate.u4Type], sel, off,
2067 pDesc->Gate.u2Dpl, pszPresent, pDesc->Gate.u3IST, pszHyper);
2068 if (pfDblEntry)
2069 *pfDblEntry = true;
2070 break;
2071 }
2072
2073 /* impossible, just it's necessary to keep gcc happy. */
2074 default:
2075 return VINF_SUCCESS;
2076 }
2077 }
2078 return VINF_SUCCESS;
2079}
2080
2081
2082/**
2083 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
2084 *
2085 * @returns pfnPrintf status code.
2086 * @param pCmdHlp The DBGC command helpers.
2087 * @param pDesc The descriptor to display.
2088 * @param iEntry The descriptor entry number.
2089 * @param fHyper Whether the selector belongs to the hypervisor or not.
2090 */
2091static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper)
2092{
2093 int rc;
2094
2095 const char *pszHyper = fHyper ? " HYPER" : "";
2096 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
2097 if (pDesc->Gen.u1DescType)
2098 {
2099 static const char * const s_apszTypes[] =
2100 {
2101 "DataRO", /* 0 Read-Only */
2102 "DataRO", /* 1 Read-Only - Accessed */
2103 "DataRW", /* 2 Read/Write */
2104 "DataRW", /* 3 Read/Write - Accessed */
2105 "DownRO", /* 4 Expand-down, Read-Only */
2106 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
2107 "DownRW", /* 6 Expand-down, Read/Write */
2108 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
2109 "CodeEO", /* 8 Execute-Only */
2110 "CodeEO", /* 9 Execute-Only - Accessed */
2111 "CodeER", /* A Execute/Readable */
2112 "CodeER", /* B Execute/Readable - Accessed */
2113 "ConfE0", /* C Conforming, Execute-Only */
2114 "ConfE0", /* D Conforming, Execute-Only - Accessed */
2115 "ConfER", /* E Conforming, Execute/Readable */
2116 "ConfER" /* F Conforming, Execute/Readable - Accessed */
2117 };
2118 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
2119 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
2120 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2121 uint32_t u32Base = pDesc->Gen.u16BaseLow
2122 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
2123 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
2124 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
2125 if (pDesc->Gen.u1Granularity)
2126 cbLimit <<= PAGE_SHIFT;
2127
2128 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
2129 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
2130 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
2131 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
2132 }
2133 else
2134 {
2135 static const char * const s_apszTypes[] =
2136 {
2137 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
2138 "Tss16A", /* 1 0001 Available 16-bit TSS */
2139 "LDT ", /* 2 0010 LDT */
2140 "Tss16B", /* 3 0011 Busy 16-bit TSS */
2141 "Call16", /* 4 0100 16-bit Call Gate */
2142 "TaskG ", /* 5 0101 Task Gate */
2143 "Int16 ", /* 6 0110 16-bit Interrupt Gate */
2144 "Trap16", /* 7 0111 16-bit Trap Gate */
2145 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
2146 "Tss32A", /* 9 1001 Available 32-bit TSS */
2147 "Ill-A ", /* A 1010 Reserved (Illegal) */
2148 "Tss32B", /* B 1011 Busy 32-bit TSS */
2149 "Call32", /* C 1100 32-bit Call Gate */
2150 "Ill-D ", /* D 1101 Reserved (Illegal) */
2151 "Int32 ", /* E 1110 32-bit Interrupt Gate */
2152 "Trap32" /* F 1111 32-bit Trap Gate */
2153 };
2154 switch (pDesc->Gen.u4Type)
2155 {
2156 /* raw */
2157 case X86_SEL_TYPE_SYS_UNDEFINED:
2158 case X86_SEL_TYPE_SYS_UNDEFINED2:
2159 case X86_SEL_TYPE_SYS_UNDEFINED4:
2160 case X86_SEL_TYPE_SYS_UNDEFINED3:
2161 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
2162 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
2163 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
2164 break;
2165
2166 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
2167 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
2168 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
2169 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
2170 case X86_SEL_TYPE_SYS_LDT:
2171 {
2172 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
2173 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
2174 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2175 uint32_t u32Base = pDesc->Gen.u16BaseLow
2176 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
2177 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
2178 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
2179 if (pDesc->Gen.u1Granularity)
2180 cbLimit <<= PAGE_SHIFT;
2181
2182 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n",
2183 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
2184 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig,
2185 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
2186 pszHyper);
2187 break;
2188 }
2189
2190 case X86_SEL_TYPE_SYS_TASK_GATE:
2191 {
2192 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n",
2193 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1],
2194 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
2195 break;
2196 }
2197
2198 case X86_SEL_TYPE_SYS_286_CALL_GATE:
2199 case X86_SEL_TYPE_SYS_386_CALL_GATE:
2200 {
2201 unsigned cParams = pDesc->au8[4] & 0x1f;
2202 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
2203 RTSEL sel = pDesc->au16[1];
2204 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
2205 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s\n",
2206 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
2207 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper);
2208 break;
2209 }
2210
2211 case X86_SEL_TYPE_SYS_286_INT_GATE:
2212 case X86_SEL_TYPE_SYS_386_INT_GATE:
2213 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
2214 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
2215 {
2216 RTSEL sel = pDesc->au16[1];
2217 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
2218 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s\n",
2219 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
2220 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
2221 break;
2222 }
2223
2224 /* impossible, just it's necessary to keep gcc happy. */
2225 default:
2226 return VINF_SUCCESS;
2227 }
2228 }
2229 return rc;
2230}
2231
2232
2233/**
2234 * @callback_method_impl{FNDBGCCMD, The 'dg'\, 'dga'\, 'dl' and 'dla' commands.}
2235 */
2236static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2237{
2238 /*
2239 * Validate input.
2240 */
2241 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2242
2243 /*
2244 * Get the CPU mode, check which command variation this is
2245 * and fix a default parameter if needed.
2246 */
2247 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2248 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2249 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
2250 bool fGdt = pCmd->pszCmd[1] == 'g';
2251 bool fAll = pCmd->pszCmd[2] == 'a';
2252 RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT;
2253
2254 DBGCVAR Var;
2255 if (!cArgs)
2256 {
2257 cArgs = 1;
2258 paArgs = &Var;
2259 Var.enmType = DBGCVAR_TYPE_NUMBER;
2260 Var.u.u64Number = 0;
2261 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2262 Var.u64Range = 1024;
2263 }
2264
2265 /*
2266 * Process the arguments.
2267 */
2268 for (unsigned i = 0; i < cArgs; i++)
2269 {
2270 /*
2271 * Retrieve the selector value from the argument.
2272 * The parser may confuse pointers and numbers if more than one
2273 * argument is given, that that into account.
2274 */
2275 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType));
2276 uint64_t u64;
2277 unsigned cSels = 1;
2278 switch (paArgs[i].enmType)
2279 {
2280 case DBGCVAR_TYPE_NUMBER:
2281 u64 = paArgs[i].u.u64Number;
2282 if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE)
2283 cSels = RT_MIN(paArgs[i].u64Range, 1024);
2284 break;
2285 case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break;
2286 case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break;
2287 case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break;
2288 case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break;
2289 case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break;
2290 default: u64 = _64K; break;
2291 }
2292 if (u64 < _64K)
2293 {
2294 unsigned Sel = (RTSEL)u64;
2295
2296 /*
2297 * Dump the specified range.
2298 */
2299 bool fSingle = cSels == 1;
2300 while ( cSels-- > 0
2301 && Sel < _64K)
2302 {
2303 DBGFSELINFO SelInfo;
2304 int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
2305 if (RT_SUCCESS(rc))
2306 {
2307 if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE)
2308 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n",
2309 Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit);
2310 else if ( fAll
2311 || fSingle
2312 || SelInfo.u.Raw.Gen.u1Present)
2313 {
2314 if (enmMode == CPUMMODE_PROTECTED)
2315 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel, !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER));
2316 else
2317 {
2318 bool fDblSkip = false;
2319 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel, !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), &fDblSkip);
2320 if (fDblSkip)
2321 Sel += 4;
2322 }
2323 }
2324 }
2325 else
2326 {
2327 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc);
2328 if (!fAll)
2329 return rc;
2330 }
2331 if (RT_FAILURE(rc))
2332 return rc;
2333
2334 /* next */
2335 Sel += 8;
2336 }
2337 }
2338 else
2339 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64);
2340 }
2341
2342 return VINF_SUCCESS;
2343}
2344
2345
2346/**
2347 * @callback_method_impl{FNDBGCCMD, The 'di' and 'dia' commands.}
2348 */
2349static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2350{
2351 /*
2352 * Validate input.
2353 */
2354 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2355
2356 /*
2357 * Establish some stuff like the current IDTR and CPU mode,
2358 * and fix a default parameter.
2359 */
2360 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2361 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2362 uint16_t cbLimit;
2363 RTGCUINTPTR GCPtrBase = CPUMGetGuestIDTR(pVCpu, &cbLimit);
2364 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
2365 unsigned cbEntry;
2366 switch (enmMode)
2367 {
2368 case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break;
2369 case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break;
2370 case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break;
2371 default:
2372 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode);
2373 }
2374
2375 bool fAll = pCmd->pszCmd[2] == 'a';
2376 DBGCVAR Var;
2377 if (!cArgs)
2378 {
2379 cArgs = 1;
2380 paArgs = &Var;
2381 Var.enmType = DBGCVAR_TYPE_NUMBER;
2382 Var.u.u64Number = 0;
2383 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2384 Var.u64Range = 256;
2385 }
2386
2387 /*
2388 * Process the arguments.
2389 */
2390 for (unsigned i = 0; i < cArgs; i++)
2391 {
2392 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER);
2393 if (paArgs[i].u.u64Number < 256)
2394 {
2395 RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number;
2396 unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE
2397 ? paArgs[i].u64Range
2398 : 1;
2399 bool fSingle = cInts == 1;
2400 while ( cInts-- > 0
2401 && iInt < 256)
2402 {
2403 /*
2404 * Try read it.
2405 */
2406 union
2407 {
2408 RTFAR16 Real;
2409 X86DESC Prot;
2410 X86DESC64 Long;
2411 } u;
2412 if (iInt * cbEntry + (cbEntry - 1) > cbLimit)
2413 {
2414 DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt);
2415 if (!fAll && !fSingle)
2416 return VINF_SUCCESS;
2417 }
2418 DBGCVAR AddrVar;
2419 AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT;
2420 AddrVar.u.GCFlat = GCPtrBase + iInt * cbEntry;
2421 AddrVar.enmRangeType = DBGCVAR_RANGE_NONE;
2422 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL);
2423 if (RT_FAILURE(rc))
2424 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt);
2425
2426 /*
2427 * Display it.
2428 */
2429 switch (enmMode)
2430 {
2431 case CPUMMODE_REAL:
2432 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16\n", (unsigned)iInt, u.Real);
2433 /** @todo resolve 16:16 IDTE to a symbol */
2434 break;
2435 case CPUMMODE_PROTECTED:
2436 if (fAll || fSingle || u.Prot.Gen.u1Present)
2437 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false);
2438 break;
2439 case CPUMMODE_LONG:
2440 if (fAll || fSingle || u.Long.Gen.u1Present)
2441 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, NULL);
2442 break;
2443 default: break; /* to shut up gcc */
2444 }
2445 if (RT_FAILURE(rc))
2446 return rc;
2447
2448 /* next */
2449 iInt++;
2450 }
2451 }
2452 else
2453 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number);
2454 }
2455
2456 return VINF_SUCCESS;
2457}
2458
2459
2460/**
2461 * @callback_method_impl{FNDBGCCMD,
2462 * The 'da'\, 'dq'\, 'dd'\, 'dw' and 'db' commands.}
2463 */
2464static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2465{
2466 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2467
2468 /*
2469 * Validate input.
2470 */
2471 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2472 if (cArgs == 1)
2473 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2474 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2475
2476 /*
2477 * Figure out the element size.
2478 */
2479 unsigned cbElement;
2480 bool fAscii = false;
2481 switch (pCmd->pszCmd[1])
2482 {
2483 default:
2484 case 'b': cbElement = 1; break;
2485 case 'w': cbElement = 2; break;
2486 case 'd': cbElement = 4; break;
2487 case 'q': cbElement = 8; break;
2488 case 'a':
2489 cbElement = 1;
2490 fAscii = true;
2491 break;
2492 case '\0':
2493 fAscii = !!(pDbgc->cbDumpElement & 0x80000000);
2494 cbElement = pDbgc->cbDumpElement & 0x7fffffff;
2495 if (!cbElement)
2496 cbElement = 1;
2497 break;
2498 }
2499
2500 /*
2501 * Find address.
2502 */
2503 if (!cArgs)
2504 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE;
2505 else
2506 pDbgc->DumpPos = paArgs[0];
2507
2508 /*
2509 * Range.
2510 */
2511 switch (pDbgc->DumpPos.enmRangeType)
2512 {
2513 case DBGCVAR_RANGE_NONE:
2514 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
2515 pDbgc->DumpPos.u64Range = 0x60;
2516 break;
2517
2518 case DBGCVAR_RANGE_ELEMENTS:
2519 if (pDbgc->DumpPos.u64Range > 2048)
2520 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n");
2521 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
2522 pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range;
2523 break;
2524
2525 case DBGCVAR_RANGE_BYTES:
2526 if (pDbgc->DumpPos.u64Range > 65536)
2527 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
2528 break;
2529
2530 default:
2531 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType);
2532 }
2533
2534 pDbgc->pLastPos = &pDbgc->DumpPos;
2535
2536 /*
2537 * Do the dumping.
2538 */
2539 pDbgc->cbDumpElement = cbElement | (fAscii << 31);
2540 int cbLeft = (int)pDbgc->DumpPos.u64Range;
2541 uint8_t u8Prev = '\0';
2542 for (;;)
2543 {
2544 /*
2545 * Read memory.
2546 */
2547 char achBuffer[16];
2548 size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft);
2549 size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft);
2550 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb);
2551 if (RT_FAILURE(rc))
2552 {
2553 if (u8Prev && u8Prev != '\n')
2554 DBGCCmdHlpPrintf(pCmdHlp, "\n");
2555 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos);
2556 }
2557
2558 /*
2559 * Display it.
2560 */
2561 memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb);
2562 if (!fAscii)
2563 {
2564 DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos);
2565 unsigned i;
2566 for (i = 0; i < cb; i += cbElement)
2567 {
2568 const char *pszSpace = " ";
2569 if (cbElement <= 2 && i == 8 && !fAscii)
2570 pszSpace = "-";
2571 switch (cbElement)
2572 {
2573 case 1: DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]); break;
2574 case 2: DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]); break;
2575 case 4: DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]); break;
2576 case 8: DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]); break;
2577 }
2578 }
2579
2580 /* chars column */
2581 if (pDbgc->cbDumpElement == 1)
2582 {
2583 while (i++ < sizeof(achBuffer))
2584 DBGCCmdHlpPrintf(pCmdHlp, " ");
2585 DBGCCmdHlpPrintf(pCmdHlp, " ");
2586 for (i = 0; i < cb; i += cbElement)
2587 {
2588 uint8_t u8 = *(uint8_t *)&achBuffer[i];
2589 if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32)
2590 DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
2591 else
2592 DBGCCmdHlpPrintf(pCmdHlp, ".");
2593 }
2594 }
2595 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2596 }
2597 else
2598 {
2599 /*
2600 * We print up to the first zero and stop there.
2601 * Only printables + '\t' and '\n' are printed.
2602 */
2603 if (!u8Prev)
2604 DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos);
2605 uint8_t u8 = '\0';
2606 unsigned i;
2607 for (i = 0; i < cb; i++)
2608 {
2609 u8Prev = u8;
2610 u8 = *(uint8_t *)&achBuffer[i];
2611 if ( u8 < 127
2612 && ( (RT_C_IS_PRINT(u8) && u8 >= 32)
2613 || u8 == '\t'
2614 || u8 == '\n'))
2615 DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
2616 else if (!u8)
2617 break;
2618 else
2619 DBGCCmdHlpPrintf(pCmdHlp, "\\x%x", u8);
2620 }
2621 if (u8 == '\0')
2622 cb = cbLeft = i + 1;
2623 if (cbLeft - cb <= 0 && u8Prev != '\n')
2624 DBGCCmdHlpPrintf(pCmdHlp, "\n");
2625 }
2626
2627 /*
2628 * Advance
2629 */
2630 cbLeft -= (int)cb;
2631 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb);
2632 if (RT_FAILURE(rc))
2633 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb);
2634 if (cbLeft <= 0)
2635 break;
2636 }
2637
2638 NOREF(pCmd);
2639 return VINF_SUCCESS;
2640}
2641
2642
2643/**
2644 * Best guess at which paging mode currently applies to the guest
2645 * paging structures.
2646 *
2647 * This have to come up with a decent answer even when the guest
2648 * is in non-paged protected mode or real mode.
2649 *
2650 * @returns cr3.
2651 * @param pDbgc The DBGC instance.
2652 * @param pfPAE Where to store the page address extension indicator.
2653 * @param pfLME Where to store the long mode enabled indicator.
2654 * @param pfPSE Where to store the page size extension indicator.
2655 * @param pfPGE Where to store the page global enabled indicator.
2656 * @param pfNXE Where to store the no-execution enabled indicator.
2657 */
2658static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
2659{
2660 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
2661 RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu);
2662 *pfPSE = !!(cr4 & X86_CR4_PSE);
2663 *pfPGE = !!(cr4 & X86_CR4_PGE);
2664 if (cr4 & X86_CR4_PAE)
2665 {
2666 *pfPSE = true;
2667 *pfPAE = true;
2668 }
2669 else
2670 *pfPAE = false;
2671
2672 *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG;
2673 *pfNXE = false; /* GUEST64 GUESTNX */
2674 return CPUMGetGuestCR3(pVCpu);
2675}
2676
2677
2678/**
2679 * Determine the shadow paging mode.
2680 *
2681 * @returns cr3.
2682 * @param pDbgc The DBGC instance.
2683 * @param pfPAE Where to store the page address extension indicator.
2684 * @param pfLME Where to store the long mode enabled indicator.
2685 * @param pfPSE Where to store the page size extension indicator.
2686 * @param pfPGE Where to store the page global enabled indicator.
2687 * @param pfNXE Where to store the no-execution enabled indicator.
2688 */
2689static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
2690{
2691 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
2692
2693 *pfPSE = true;
2694 *pfPGE = false;
2695 switch (PGMGetShadowMode(pVCpu))
2696 {
2697 default:
2698 case PGMMODE_32_BIT:
2699 *pfPAE = *pfLME = *pfNXE = false;
2700 break;
2701 case PGMMODE_PAE:
2702 *pfLME = *pfNXE = false;
2703 *pfPAE = true;
2704 break;
2705 case PGMMODE_PAE_NX:
2706 *pfLME = false;
2707 *pfPAE = *pfNXE = true;
2708 break;
2709 case PGMMODE_AMD64:
2710 *pfNXE = false;
2711 *pfPAE = *pfLME = true;
2712 break;
2713 case PGMMODE_AMD64_NX:
2714 *pfPAE = *pfLME = *pfNXE = true;
2715 break;
2716 }
2717 return PGMGetHyperCR3(pVCpu);
2718}
2719
2720
2721/**
2722 * @callback_method_impl{FNDBGCCMD,
2723 * The 'dpd'\, 'dpda'\, 'dpdb'\, 'dpdg' and 'dpdh' commands.}
2724 */
2725static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2726{
2727 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2728
2729 /*
2730 * Validate input.
2731 */
2732 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2733 if (cArgs == 1 && pCmd->pszCmd[3] == 'a')
2734 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2735 if (cArgs == 1 && pCmd->pszCmd[3] != 'a')
2736 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
2737 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
2738 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2739
2740 /*
2741 * Guest or shadow page directories? Get the paging parameters.
2742 */
2743 bool fGuest = pCmd->pszCmd[3] != 'h';
2744 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
2745 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
2746 ? pDbgc->fRegCtxGuest
2747 : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
2748
2749 bool fPAE, fLME, fPSE, fPGE, fNXE;
2750 uint64_t cr3 = fGuest
2751 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
2752 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
2753 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
2754
2755 /*
2756 * Setup default argument if none was specified.
2757 * Fix address / index confusion.
2758 */
2759 DBGCVAR VarDefault;
2760 if (!cArgs)
2761 {
2762 if (pCmd->pszCmd[3] == 'a')
2763 {
2764 if (fLME || fPAE)
2765 return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n");
2766 if (fGuest)
2767 DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3);
2768 else
2769 DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3);
2770 }
2771 else
2772 DBGCVAR_INIT_GC_FLAT(&VarDefault, 0);
2773 paArgs = &VarDefault;
2774 cArgs = 1;
2775 }
2776 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
2777 {
2778 /* If it's a number (not an address), it's an index, so convert it to an address. */
2779 Assert(pCmd->pszCmd[3] != 'a');
2780 VarDefault = paArgs[0];
2781 if (fPAE)
2782 return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n");
2783 if (VarDefault.u.u64Number >= PAGE_SIZE / cbEntry)
2784 return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", PAGE_SIZE / cbEntry - 1);
2785 VarDefault.u.u64Number <<= X86_PD_SHIFT;
2786 VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT;
2787 paArgs = &VarDefault;
2788 }
2789
2790 /*
2791 * Locate the PDE to start displaying at.
2792 *
2793 * The 'dpda' command takes the address of a PDE, while the others are guest
2794 * virtual address which PDEs should be displayed. So, 'dpda' is rather simple
2795 * while the others require us to do all the tedious walking thru the paging
2796 * hierarchy to find the intended PDE.
2797 */
2798 unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */
2799 DBGCVAR VarGCPtr; /* The GC address corresponding to the current PDE (iEntry != ~0U). */
2800 DBGCVAR VarPDEAddr; /* The address of the current PDE. */
2801 unsigned cEntries; /* The number of entries to display. */
2802 unsigned cEntriesMax; /* The max number of entries to display. */
2803 int rc;
2804 if (pCmd->pszCmd[3] == 'a')
2805 {
2806 VarPDEAddr = paArgs[0];
2807 switch (VarPDEAddr.enmRangeType)
2808 {
2809 case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break;
2810 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break;
2811 default: cEntries = 10; break;
2812 }
2813 cEntriesMax = PAGE_SIZE / cbEntry;
2814 }
2815 else
2816 {
2817 /*
2818 * Determine the range.
2819 */
2820 switch (paArgs[0].enmRangeType)
2821 {
2822 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
2823 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
2824 default: cEntries = 10; break;
2825 }
2826
2827 /*
2828 * Normalize the input address, it must be a flat GC address.
2829 */
2830 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
2831 if (RT_FAILURE(rc))
2832 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
2833 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
2834 {
2835 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
2836 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
2837 }
2838 if (fPAE)
2839 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1);
2840 else
2841 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1);
2842
2843 /*
2844 * Do the paging walk until we get to the page directory.
2845 */
2846 DBGCVAR VarCur;
2847 if (fGuest)
2848 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
2849 else
2850 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
2851 if (fLME)
2852 {
2853 /* Page Map Level 4 Lookup. */
2854 /* Check if it's a valid address first? */
2855 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
2856 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
2857 X86PML4E Pml4e;
2858 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
2859 if (RT_FAILURE(rc))
2860 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
2861 if (!Pml4e.n.u1Present)
2862 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
2863
2864 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
2865 Assert(fPAE);
2866 }
2867 if (fPAE)
2868 {
2869 /* Page directory pointer table. */
2870 X86PDPE Pdpe;
2871 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
2872 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
2873 if (RT_FAILURE(rc))
2874 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
2875 if (!Pdpe.n.u1Present)
2876 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
2877
2878 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
2879 VarPDEAddr = VarCur;
2880 VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
2881 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE);
2882 }
2883 else
2884 {
2885 /* 32-bit legacy - CR3 == page directory. */
2886 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK;
2887 VarPDEAddr = VarCur;
2888 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE);
2889 }
2890 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
2891 }
2892
2893 /* adjust cEntries */
2894 cEntries = RT_MAX(1, cEntries);
2895 cEntries = RT_MIN(cEntries, cEntriesMax);
2896
2897 /*
2898 * The display loop.
2899 */
2900 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n",
2901 &VarPDEAddr, iEntry);
2902 do
2903 {
2904 /*
2905 * Read.
2906 */
2907 X86PDEPAE Pde;
2908 Pde.u = 0;
2909 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL);
2910 if (RT_FAILURE(rc))
2911 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr);
2912
2913 /*
2914 * Display.
2915 */
2916 if (iEntry != ~0U)
2917 {
2918 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
2919 iEntry++;
2920 }
2921 if (fPSE && Pde.b.u1Size)
2922 DBGCCmdHlpPrintf(pCmdHlp,
2923 fPAE
2924 ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
2925 : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
2926 Pde.u,
2927 Pde.u & X86_PDE_PAE_PG_MASK,
2928 Pde.b.u1Present ? "p " : "np",
2929 Pde.b.u1Write ? "w" : "r",
2930 Pde.b.u1User ? "u" : "s",
2931 Pde.b.u1Accessed ? "a " : "na",
2932 Pde.b.u1Dirty ? "d " : "nd",
2933 Pde.b.u3Available,
2934 Pde.b.u1Global ? (fPGE ? "g" : "G") : " ",
2935 Pde.b.u1WriteThru ? "pwt" : " ",
2936 Pde.b.u1CacheDisable ? "pcd" : " ",
2937 Pde.b.u1PAT ? "pat" : "",
2938 Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
2939 else
2940 DBGCCmdHlpPrintf(pCmdHlp,
2941 fPAE
2942 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s"
2943 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s",
2944 Pde.u,
2945 Pde.u & X86_PDE_PAE_PG_MASK,
2946 Pde.n.u1Present ? "p " : "np",
2947 Pde.n.u1Write ? "w" : "r",
2948 Pde.n.u1User ? "u" : "s",
2949 Pde.n.u1Accessed ? "a " : "na",
2950 Pde.u & RT_BIT(6) ? "6 " : " ",
2951 Pde.n.u3Available,
2952 Pde.u & RT_BIT(8) ? "8" : " ",
2953 Pde.n.u1WriteThru ? "pwt" : " ",
2954 Pde.n.u1CacheDisable ? "pcd" : " ",
2955 Pde.u & RT_BIT(7) ? "7" : "",
2956 Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
2957 if (Pde.u & UINT64_C(0x7fff000000000000))
2958 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000)));
2959 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2960 if (RT_FAILURE(rc))
2961 return rc;
2962
2963 /*
2964 * Advance.
2965 */
2966 VarPDEAddr.u.u64Number += cbEntry;
2967 if (iEntry != ~0U)
2968 VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT);
2969 } while (cEntries-- > 0);
2970
2971 return VINF_SUCCESS;
2972}
2973
2974
2975/**
2976 * @callback_method_impl{FNDBGCCMD, The 'dpdb' command.}
2977 */
2978static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2979{
2980 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2981 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]);
2982 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]);
2983 if (RT_FAILURE(rc1))
2984 return rc1;
2985 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2986 return rc2;
2987}
2988
2989
2990/**
2991 * @callback_method_impl{FNDBGCCMD, The 'dph*' commands and main part of 'm'.}
2992 */
2993static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2994{
2995 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2996 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2997
2998 /*
2999 * Figure the context and base flags.
3000 */
3001 uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3;
3002 if (pCmd->pszCmd[0] == 'm')
3003 fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW;
3004 else if (pCmd->pszCmd[3] == '\0')
3005 fFlags |= pDbgc->fRegCtxGuest ? DBGFPGDMP_FLAGS_GUEST : DBGFPGDMP_FLAGS_SHADOW;
3006 else if (pCmd->pszCmd[3] == 'g')
3007 fFlags |= DBGFPGDMP_FLAGS_GUEST;
3008 else if (pCmd->pszCmd[3] == 'h')
3009 fFlags |= DBGFPGDMP_FLAGS_SHADOW;
3010 else
3011 AssertFailed();
3012
3013 if (pDbgc->cPagingHierarchyDumps == 0)
3014 fFlags |= DBGFPGDMP_FLAGS_HEADER;
3015 pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42;
3016
3017 /*
3018 * Get the range.
3019 */
3020 PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos;
3021 RTGCPTR GCPtrFirst = NIL_RTGCPTR;
3022 int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst);
3023 if (RT_FAILURE(rc))
3024 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc);
3025
3026 uint64_t cbRange;
3027 rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, PAGE_SIZE, PAGE_SIZE * 8, &cbRange);
3028 if (RT_FAILURE(rc))
3029 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc);
3030
3031 RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst;
3032 if (cbRange >= GCPtrLast)
3033 GCPtrLast = RTGCPTR_MAX;
3034 else if (!cbRange)
3035 GCPtrLast = GCPtrFirst;
3036 else
3037 GCPtrLast = GCPtrFirst + cbRange - 1;
3038
3039 /*
3040 * Do we have a CR3?
3041 */
3042 uint64_t cr3 = 0;
3043 if (cArgs > 1)
3044 {
3045 if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW))
3046 return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please.");
3047 if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
3048 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]);
3049 cr3 = paArgs[1].u.u64Number;
3050 }
3051 else
3052 fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3;
3053
3054 /*
3055 * Do we have a mode?
3056 */
3057 if (cArgs > 2)
3058 {
3059 if (paArgs[2].enmType != DBGCVAR_TYPE_STRING)
3060 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]);
3061 static const struct MODETOFLAGS
3062 {
3063 const char *pszName;
3064 uint32_t fFlags;
3065 } s_aModeToFlags[] =
3066 {
3067 { "ept", DBGFPGDMP_FLAGS_EPT },
3068 { "legacy", 0 },
3069 { "legacy-np", DBGFPGDMP_FLAGS_NP },
3070 { "pse", DBGFPGDMP_FLAGS_PSE },
3071 { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP },
3072 { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE },
3073 { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP },
3074 { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE },
3075 { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP },
3076 { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME },
3077 { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP },
3078 { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE },
3079 { "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }
3080 };
3081 int i = RT_ELEMENTS(s_aModeToFlags);
3082 while (i-- > 0)
3083 if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString))
3084 {
3085 fFlags |= s_aModeToFlags[i].fFlags;
3086 break;
3087 }
3088 if (i < 0)
3089 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString);
3090 }
3091 else
3092 fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE;
3093
3094 /*
3095 * Call the worker.
3096 */
3097 rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/,
3098 DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp));
3099 if (RT_FAILURE(rc))
3100 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc);
3101 return VINF_SUCCESS;
3102}
3103
3104
3105
3106/**
3107 * @callback_method_impl{FNDBGCCMD, The 'dpg*' commands.}
3108 */
3109static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3110{
3111 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3112
3113 /*
3114 * Validate input.
3115 */
3116 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1);
3117 if (pCmd->pszCmd[3] == 'a')
3118 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3119 else
3120 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3121 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
3122 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3123
3124 /*
3125 * Guest or shadow page tables? Get the paging parameters.
3126 */
3127 bool fGuest = pCmd->pszCmd[3] != 'h';
3128 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
3129 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3130 ? pDbgc->fRegCtxGuest
3131 : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
3132
3133 bool fPAE, fLME, fPSE, fPGE, fNXE;
3134 uint64_t cr3 = fGuest
3135 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
3136 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
3137 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
3138
3139 /*
3140 * Locate the PTE to start displaying at.
3141 *
3142 * The 'dpta' command takes the address of a PTE, while the others are guest
3143 * virtual address which PTEs should be displayed. So, 'pdta' is rather simple
3144 * while the others require us to do all the tedious walking thru the paging
3145 * hierarchy to find the intended PTE.
3146 */
3147 unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */
3148 DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */
3149 DBGCVAR VarPTEAddr; /* The address of the current PTE. */
3150 unsigned cEntries; /* The number of entries to display. */
3151 unsigned cEntriesMax; /* The max number of entries to display. */
3152 int rc;
3153 if (pCmd->pszCmd[3] == 'a')
3154 {
3155 VarPTEAddr = paArgs[0];
3156 switch (VarPTEAddr.enmRangeType)
3157 {
3158 case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break;
3159 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break;
3160 default: cEntries = 10; break;
3161 }
3162 cEntriesMax = PAGE_SIZE / cbEntry;
3163 }
3164 else
3165 {
3166 /*
3167 * Determine the range.
3168 */
3169 switch (paArgs[0].enmRangeType)
3170 {
3171 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
3172 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
3173 default: cEntries = 10; break;
3174 }
3175
3176 /*
3177 * Normalize the input address, it must be a flat GC address.
3178 */
3179 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
3180 if (RT_FAILURE(rc))
3181 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
3182 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
3183 {
3184 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
3185 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
3186 }
3187 VarGCPtr.u.GCFlat &= ~(RTGCPTR)PAGE_OFFSET_MASK;
3188
3189 /*
3190 * Do the paging walk until we get to the page table.
3191 */
3192 DBGCVAR VarCur;
3193 if (fGuest)
3194 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
3195 else
3196 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
3197 if (fLME)
3198 {
3199 /* Page Map Level 4 Lookup. */
3200 /* Check if it's a valid address first? */
3201 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
3202 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
3203 X86PML4E Pml4e;
3204 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
3205 if (RT_FAILURE(rc))
3206 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
3207 if (!Pml4e.n.u1Present)
3208 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
3209
3210 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
3211 Assert(fPAE);
3212 }
3213 if (fPAE)
3214 {
3215 /* Page directory pointer table. */
3216 X86PDPE Pdpe;
3217 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
3218 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
3219 if (RT_FAILURE(rc))
3220 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
3221 if (!Pdpe.n.u1Present)
3222 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
3223
3224 VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
3225
3226 /* Page directory (PAE). */
3227 X86PDEPAE Pde;
3228 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde);
3229 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
3230 if (RT_FAILURE(rc))
3231 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
3232 if (!Pde.n.u1Present)
3233 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
3234 if (fPSE && Pde.n.u1Size)
3235 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
3236
3237 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
3238 VarPTEAddr = VarCur;
3239 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK;
3240 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE);
3241 }
3242 else
3243 {
3244 /* Page directory (legacy). */
3245 X86PDE Pde;
3246 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde);
3247 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
3248 if (RT_FAILURE(rc))
3249 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
3250 if (!Pde.n.u1Present)
3251 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
3252 if (fPSE && Pde.n.u1Size)
3253 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
3254
3255 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK;
3256 VarPTEAddr = VarCur;
3257 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK;
3258 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE);
3259 }
3260 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
3261 }
3262
3263 /* adjust cEntries */
3264 cEntries = RT_MAX(1, cEntries);
3265 cEntries = RT_MIN(cEntries, cEntriesMax);
3266
3267 /*
3268 * The display loop.
3269 */
3270 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n",
3271 &VarPTEAddr, &VarGCPtr, iEntry);
3272 do
3273 {
3274 /*
3275 * Read.
3276 */
3277 X86PTEPAE Pte;
3278 Pte.u = 0;
3279 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL);
3280 if (RT_FAILURE(rc))
3281 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr);
3282
3283 /*
3284 * Display.
3285 */
3286 if (iEntry != ~0U)
3287 {
3288 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
3289 iEntry++;
3290 }
3291 DBGCCmdHlpPrintf(pCmdHlp,
3292 fPAE
3293 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
3294 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
3295 Pte.u,
3296 Pte.u & X86_PTE_PAE_PG_MASK,
3297 Pte.n.u1Present ? "p " : "np",
3298 Pte.n.u1Write ? "w" : "r",
3299 Pte.n.u1User ? "u" : "s",
3300 Pte.n.u1Accessed ? "a " : "na",
3301 Pte.n.u1Dirty ? "d " : "nd",
3302 Pte.n.u3Available,
3303 Pte.n.u1Global ? (fPGE ? "g" : "G") : " ",
3304 Pte.n.u1WriteThru ? "pwt" : " ",
3305 Pte.n.u1CacheDisable ? "pcd" : " ",
3306 Pte.n.u1PAT ? "pat" : " ",
3307 Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "
3308 );
3309 if (Pte.u & UINT64_C(0x7fff000000000000))
3310 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000)));
3311 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3312 if (RT_FAILURE(rc))
3313 return rc;
3314
3315 /*
3316 * Advance.
3317 */
3318 VarPTEAddr.u.u64Number += cbEntry;
3319 if (iEntry != ~0U)
3320 VarGCPtr.u.GCFlat += PAGE_SIZE;
3321 } while (cEntries-- > 0);
3322
3323 return VINF_SUCCESS;
3324}
3325
3326
3327/**
3328 * @callback_method_impl{FNDBGCCMD, The 'dptb' command.}
3329 */
3330static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3331{
3332 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3333 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]);
3334 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]);
3335 if (RT_FAILURE(rc1))
3336 return rc1;
3337 NOREF(pCmd); NOREF(cArgs);
3338 return rc2;
3339}
3340
3341
3342/**
3343 * @callback_method_impl{FNDBGCCMD, The 'dt' command.}
3344 */
3345static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3346{
3347 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3348 int rc;
3349
3350 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3351 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3352 if (cArgs == 1)
3353 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING
3354 && paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL);
3355
3356 /*
3357 * Check if the command indicates the type.
3358 */
3359 enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined;
3360 if (!strcmp(pCmd->pszCmd, "dt16"))
3361 enmTssType = kTss16;
3362 else if (!strcmp(pCmd->pszCmd, "dt32"))
3363 enmTssType = kTss32;
3364 else if (!strcmp(pCmd->pszCmd, "dt64"))
3365 enmTssType = kTss64;
3366
3367 /*
3368 * We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer.
3369 */
3370 uint32_t SelTss = UINT32_MAX;
3371 DBGCVAR VarTssAddr;
3372 if (cArgs == 0)
3373 {
3374 /** @todo consider querying the hidden bits instead (missing API). */
3375 uint16_t SelTR;
3376 rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR);
3377 if (RT_FAILURE(rc))
3378 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc);
3379 DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0);
3380 SelTss = SelTR;
3381 }
3382 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
3383 {
3384 if (paArgs[0].u.u64Number < 0xffff)
3385 DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0);
3386 else
3387 {
3388 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS)
3389 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n");
3390 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number);
3391 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES)
3392 {
3393 VarTssAddr.enmRangeType = paArgs[0].enmRangeType;
3394 VarTssAddr.u64Range = paArgs[0].u64Range;
3395 }
3396 }
3397 }
3398 else
3399 VarTssAddr = paArgs[0];
3400
3401 /*
3402 * Deal with TSS:ign by means of the GDT.
3403 */
3404 if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR)
3405 {
3406 SelTss = VarTssAddr.u.GCFar.sel;
3407 DBGFSELINFO SelInfo;
3408 rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
3409 if (RT_FAILURE(rc))
3410 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n",
3411 pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc);
3412
3413 if (SelInfo.u.Raw.Gen.u1DescType)
3414 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel);
3415
3416 switch (SelInfo.u.Raw.Gen.u4Type)
3417 {
3418 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3419 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3420 if (enmTssType == kTssToBeDetermined)
3421 enmTssType = kTss16;
3422 break;
3423
3424 case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */
3425 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3426 if (enmTssType == kTssToBeDetermined)
3427 enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32;
3428 break;
3429
3430 default:
3431 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n",
3432 VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type);
3433 }
3434
3435 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase);
3436 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit));
3437 }
3438
3439 /*
3440 * Determine the TSS type if none is currently given.
3441 */
3442 if (enmTssType == kTssToBeDetermined)
3443 {
3444 if ( VarTssAddr.u64Range > 0
3445 && VarTssAddr.u64Range < sizeof(X86TSS32) - 4)
3446 enmTssType = kTss16;
3447 else
3448 {
3449 uint64_t uEfer;
3450 rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer);
3451 if ( RT_FAILURE(rc)
3452 || !(uEfer & MSR_K6_EFER_LMA) )
3453 enmTssType = kTss32;
3454 else
3455 enmTssType = kTss64;
3456 }
3457 }
3458
3459 /*
3460 * Figure the min/max sizes.
3461 * ASSUMES max TSS size is 64 KB.
3462 */
3463 uint32_t cbTssMin;
3464 uint32_t cbTssMax;
3465 switch (enmTssType)
3466 {
3467 case kTss16:
3468 cbTssMin = cbTssMax = X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN + 1;
3469 break;
3470 case kTss32:
3471 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
3472 cbTssMax = _64K;
3473 break;
3474 case kTss64:
3475 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
3476 cbTssMax = _64K;
3477 break;
3478 default:
3479 AssertFailedReturn(VERR_INTERNAL_ERROR);
3480 }
3481 uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0;
3482 if (cbTss == 0)
3483 cbTss = cbTssMin;
3484 else if (cbTss < cbTssMin)
3485 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n",
3486 cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range);
3487 else if (cbTss > cbTssMax)
3488 cbTss = cbTssMax;
3489 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss);
3490
3491 /*
3492 * Read the TSS into a temporary buffer.
3493 */
3494 uint8_t abBuf[_64K];
3495 size_t cbTssRead;
3496 rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead);
3497 if (RT_FAILURE(rc))
3498 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc);
3499 if (cbTssRead < cbTssMin)
3500 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n",
3501 cbTssRead, cbTssMin);
3502 if (cbTssRead < cbTss)
3503 memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead);
3504
3505
3506 /*
3507 * Format the TSS.
3508 */
3509 uint16_t offIoBitmap;
3510 switch (enmTssType)
3511 {
3512 case kTss16:
3513 {
3514 PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0];
3515 if (SelTss != UINT32_MAX)
3516 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr);
3517 else
3518 DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr);
3519 DBGCCmdHlpPrintf(pCmdHlp,
3520 "ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n"
3521 "ip=%04x sp=%04x bp=%04x\n"
3522 "cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n"
3523 "ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n"
3524 "prev=%04x ldtr=%04x\n"
3525 ,
3526 pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di,
3527 pTss->ip, pTss->sp, pTss->bp,
3528 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags,
3529 pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2,
3530 pTss->selPrev, pTss->selLdt);
3531 if (pTss->cs != 0)
3532 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip);
3533 offIoBitmap = 0;
3534 break;
3535 }
3536
3537 case kTss32:
3538 {
3539 PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0];
3540 if (SelTss != UINT32_MAX)
3541 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
3542 else
3543 DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
3544 DBGCCmdHlpPrintf(pCmdHlp,
3545 "eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
3546 "eip=%08x esp=%08x ebp=%08x\n"
3547 "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
3548 "ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n"
3549 "prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n"
3550 ,
3551 pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi,
3552 pTss->eip, pTss->esp, pTss->ebp,
3553 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags,
3554 pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2,
3555 pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap);
3556 if (pTss->cs != 0)
3557 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip);
3558 offIoBitmap = pTss->offIoBitmap;
3559 break;
3560 }
3561
3562 case kTss64:
3563 {
3564 PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0];
3565 if (SelTss != UINT32_MAX)
3566 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
3567 else
3568 DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
3569 DBGCCmdHlpPrintf(pCmdHlp,
3570 "rsp0=%016RX16 rsp1=%016RX16 rsp2=%016RX16\n"
3571 "ist1=%016RX16 ist2=%016RX16\n"
3572 "ist3=%016RX16 ist4=%016RX16\n"
3573 "ist5=%016RX16 ist6=%016RX16\n"
3574 "ist7=%016RX16 iomap=%04x\n"
3575 ,
3576 pTss->rsp0, pTss->rsp1, pTss->rsp2,
3577 pTss->ist1, pTss->ist2,
3578 pTss->ist3, pTss->ist4,
3579 pTss->ist5, pTss->ist6,
3580 pTss->ist7, pTss->offIoBitmap);
3581 offIoBitmap = pTss->offIoBitmap;
3582 break;
3583 }
3584
3585 default:
3586 AssertFailedReturn(VERR_INTERNAL_ERROR);
3587 }
3588
3589 /*
3590 * Dump the interrupt redirection bitmap.
3591 */
3592 if (enmTssType != kTss16)
3593 {
3594 if ( offIoBitmap > cbTssMin
3595 && offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */
3596 {
3597 if (offIoBitmap - cbTssMin >= 32)
3598 {
3599 DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n");
3600 uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32];
3601 uint32_t iStart = 0;
3602 bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */
3603 for (uint32_t i = 0; i < 256; i++)
3604 {
3605 bool fThis = ASMBitTest(pbIntRedirBitmap, i);
3606 if (fThis != fPrev)
3607 {
3608 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected");
3609 fPrev = fThis;
3610 iStart = i;
3611 }
3612 }
3613 if (iStart != 255)
3614 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected");
3615 }
3616 else
3617 DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n",
3618 offIoBitmap - cbTssMin, offIoBitmap - cbTssMin);
3619 }
3620 else if (offIoBitmap > 0)
3621 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap);
3622 else
3623 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n");
3624 }
3625
3626 /*
3627 * Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x64
3628 * (that applies to both 32-bit and 64-bit TSSs since their size is the same).
3629 */
3630 if (enmTssType != kTss16)
3631 {
3632 if (offIoBitmap < cbTss && offIoBitmap >= 0x64)
3633 {
3634 uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K);
3635 DBGCVAR VarAddr;
3636 DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap);
3637 DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts);
3638
3639 uint8_t const *pbIoBitmap = &abBuf[offIoBitmap];
3640 uint32_t iStart = 0;
3641 bool fPrev = ASMBitTest(pbIoBitmap, 0);
3642 uint32_t cLine = 0;
3643 for (uint32_t i = 1; i < cPorts; i++)
3644 {
3645 bool fThis = ASMBitTest(pbIoBitmap, i);
3646 if (fThis != fPrev)
3647 {
3648 cLine++;
3649 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1,
3650 fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " ");
3651 fPrev = fThis;
3652 iStart = i;
3653 }
3654 }
3655 if (iStart != _64K-1)
3656 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK");
3657 }
3658 else if (offIoBitmap > 0)
3659 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap);
3660 else
3661 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n");
3662 }
3663
3664 return VINF_SUCCESS;
3665}
3666
3667
3668/**
3669 * @callback_method_impl{FNDBGCCMD, The 'm' command.}
3670 */
3671static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3672{
3673 DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]);
3674 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3675 return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
3676}
3677
3678
3679/**
3680 * Converts one or more variables into a byte buffer for a
3681 * given unit size.
3682 *
3683 * @returns VBox status codes:
3684 * @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched.
3685 * @retval VERR_INTERNAL_ERROR on bad variable type, bitched.
3686 * @retval VINF_SUCCESS on success.
3687 *
3688 * @param pvBuf The buffer to convert into.
3689 * @param pcbBuf The buffer size on input. The size of the result on output.
3690 * @param cbUnit The unit size to apply when converting.
3691 * The high bit is used to indicate unicode string.
3692 * @param paVars The array of variables to convert.
3693 * @param cVars The number of variables.
3694 */
3695int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars)
3696{
3697 union
3698 {
3699 uint8_t *pu8;
3700 uint16_t *pu16;
3701 uint32_t *pu32;
3702 uint64_t *pu64;
3703 } u, uEnd;
3704 u.pu8 = (uint8_t *)pvBuf;
3705 uEnd.pu8 = u.pu8 + *pcbBuf;
3706
3707 unsigned i;
3708 for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++)
3709 {
3710 switch (paVars[i].enmType)
3711 {
3712 case DBGCVAR_TYPE_GC_FAR:
3713 case DBGCVAR_TYPE_GC_FLAT:
3714 case DBGCVAR_TYPE_GC_PHYS:
3715 case DBGCVAR_TYPE_HC_FLAT:
3716 case DBGCVAR_TYPE_HC_PHYS:
3717 case DBGCVAR_TYPE_NUMBER:
3718 {
3719 uint64_t u64 = paVars[i].u.u64Number;
3720 switch (cbUnit & 0x1f)
3721 {
3722 case 1:
3723 do
3724 {
3725 *u.pu8++ = u64;
3726 u64 >>= 8;
3727 } while (u64);
3728 break;
3729 case 2:
3730 do
3731 {
3732 *u.pu16++ = u64;
3733 u64 >>= 16;
3734 } while (u64);
3735 break;
3736 case 4:
3737 *u.pu32++ = u64;
3738 u64 >>= 32;
3739 if (u64)
3740 *u.pu32++ = u64;
3741 break;
3742 case 8:
3743 *u.pu64++ = u64;
3744 break;
3745 }
3746 break;
3747 }
3748
3749 case DBGCVAR_TYPE_STRING:
3750 case DBGCVAR_TYPE_SYMBOL:
3751 {
3752 const char *psz = paVars[i].u.pszString;
3753 size_t cbString = strlen(psz);
3754 if (cbUnit & RT_BIT_32(31))
3755 {
3756 /* Explode char to unit. */
3757 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f))
3758 {
3759 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
3760 return VERR_TOO_MUCH_DATA;
3761 }
3762 while (*psz)
3763 {
3764 switch (cbUnit & 0x1f)
3765 {
3766 case 1: *u.pu8++ = *psz; break;
3767 case 2: *u.pu16++ = *psz; break;
3768 case 4: *u.pu32++ = *psz; break;
3769 case 8: *u.pu64++ = *psz; break;
3770 }
3771 psz++;
3772 }
3773 }
3774 else
3775 {
3776 /* Raw copy with zero padding if the size isn't aligned. */
3777 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8))
3778 {
3779 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
3780 return VERR_TOO_MUCH_DATA;
3781 }
3782
3783 size_t cbCopy = cbString & ~(cbUnit - 1);
3784 memcpy(u.pu8, psz, cbCopy);
3785 u.pu8 += cbCopy;
3786 psz += cbCopy;
3787
3788 size_t cbReminder = cbString & (cbUnit - 1);
3789 if (cbReminder)
3790 {
3791 memcpy(u.pu8, psz, cbString & (cbUnit - 1));
3792 memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder);
3793 u.pu8 += cbUnit;
3794 }
3795 }
3796 break;
3797 }
3798
3799 default:
3800 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
3801 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR,
3802 "i=%d enmType=%d\n", i, paVars[i].enmType);
3803 return VERR_INTERNAL_ERROR;
3804 }
3805 }
3806 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
3807 if (i != cVars)
3808 {
3809 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
3810 return VERR_TOO_MUCH_DATA;
3811 }
3812 return VINF_SUCCESS;
3813}
3814
3815
3816/**
3817 * @callback_method_impl{FNDBGCCMD, The 'eb'\, 'ew'\, 'ed' and 'eq' commands.}
3818 */
3819static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3820{
3821 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3822 unsigned iArg;
3823
3824 /*
3825 * Validate input.
3826 */
3827 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2);
3828 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3829 for (iArg = 1; iArg < cArgs; iArg++)
3830 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER);
3831 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3832
3833 /*
3834 * Figure out the element size.
3835 */
3836 unsigned cbElement;
3837 switch (pCmd->pszCmd[1])
3838 {
3839 default:
3840 case 'b': cbElement = 1; break;
3841 case 'w': cbElement = 2; break;
3842 case 'd': cbElement = 4; break;
3843 case 'q': cbElement = 8; break;
3844 }
3845
3846 /*
3847 * Do setting.
3848 */
3849 DBGCVAR Addr = paArgs[0];
3850 for (iArg = 1;;)
3851 {
3852 size_t cbWritten;
3853 int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten);
3854 if (RT_FAILURE(rc))
3855 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr);
3856 if (cbWritten != cbElement)
3857 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement);
3858
3859 /* advance. */
3860 iArg++;
3861 if (iArg >= cArgs)
3862 break;
3863 rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement);
3864 if (RT_FAILURE(rc))
3865 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
3866 }
3867
3868 return VINF_SUCCESS;
3869}
3870
3871
3872/**
3873 * Executes the search.
3874 *
3875 * @returns VBox status code.
3876 * @param pCmdHlp The command helpers.
3877 * @param pUVM The user mode VM handle.
3878 * @param pAddress The address to start searching from. (undefined on output)
3879 * @param cbRange The address range to search. Must not wrap.
3880 * @param pabBytes The byte pattern to search for.
3881 * @param cbBytes The size of the pattern.
3882 * @param cbUnit The search unit.
3883 * @param cMaxHits The max number of hits.
3884 * @param pResult Where to store the result if it's a function invocation.
3885 */
3886static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange,
3887 const uint8_t *pabBytes, uint32_t cbBytes,
3888 uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult)
3889{
3890 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3891
3892 /*
3893 * Do the search.
3894 */
3895 uint64_t cHits = 0;
3896 for (;;)
3897 {
3898 /* search */
3899 DBGFADDRESS HitAddress;
3900 int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress);
3901 if (RT_FAILURE(rc))
3902 {
3903 if (rc != VERR_DBGF_MEM_NOT_FOUND)
3904 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n");
3905
3906 /* update the current address so we can save it (later). */
3907 pAddress->off += cbRange;
3908 pAddress->FlatPtr += cbRange;
3909 cbRange = 0;
3910 break;
3911 }
3912
3913 /* report result */
3914 DBGCVAR VarCur;
3915 rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur);
3916 if (RT_FAILURE(rc))
3917 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n");
3918 if (!pResult)
3919 pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur);
3920 else
3921 DBGCVAR_ASSIGN(pResult, &VarCur);
3922
3923 /* advance */
3924 cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr;
3925 *pAddress = HitAddress;
3926 pAddress->FlatPtr += cbBytes;
3927 pAddress->off += cbBytes;
3928 if (cbRange <= cbBytes)
3929 {
3930 cbRange = 0;
3931 break;
3932 }
3933 cbRange -= cbBytes;
3934
3935 if (++cHits >= cMaxHits)
3936 {
3937 /// @todo save the search.
3938 break;
3939 }
3940 }
3941
3942 /*
3943 * Save the search so we can resume it...
3944 */
3945 if (pDbgc->abSearch != pabBytes)
3946 {
3947 memcpy(pDbgc->abSearch, pabBytes, cbBytes);
3948 pDbgc->cbSearch = cbBytes;
3949 pDbgc->cbSearchUnit = cbUnit;
3950 }
3951 pDbgc->cMaxSearchHits = cMaxHits;
3952 pDbgc->SearchAddr = *pAddress;
3953 pDbgc->cbSearchRange = cbRange;
3954
3955 return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED;
3956}
3957
3958
3959/**
3960 * Resumes the previous search.
3961 *
3962 * @returns VBox status code.
3963 * @param pCmdHlp Pointer to the command helper functions.
3964 * @param pUVM The user mode VM handle.
3965 * @param pResult Where to store the result of a function invocation.
3966 */
3967static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult)
3968{
3969 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3970
3971 /*
3972 * Make sure there is a previous command.
3973 */
3974 if (!pDbgc->cbSearch)
3975 {
3976 DBGCCmdHlpPrintf(pCmdHlp, "Error: No previous search\n");
3977 return VERR_DBGC_COMMAND_FAILED;
3978 }
3979
3980 /*
3981 * Make range and address adjustments.
3982 */
3983 DBGFADDRESS Address = pDbgc->SearchAddr;
3984 if (Address.FlatPtr == ~(RTGCUINTPTR)0)
3985 {
3986 Address.FlatPtr -= Address.off;
3987 Address.off = 0;
3988 }
3989
3990 RTGCUINTPTR cbRange = pDbgc->cbSearchRange;
3991 if (!cbRange)
3992 cbRange = ~(RTGCUINTPTR)0;
3993 if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr)
3994 cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr;
3995
3996 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch,
3997 pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult);
3998}
3999
4000
4001/**
4002 * Search memory, worker for the 's' and 's?' functions.
4003 *
4004 * @returns VBox status code.
4005 * @param pCmdHlp Pointer to the command helper functions.
4006 * @param pUVM The user mode VM handle.
4007 * @param pAddress Where to start searching. If no range, search till end of address space.
4008 * @param cMaxHits The maximum number of hits.
4009 * @param chType The search type.
4010 * @param paPatArgs The pattern variable array.
4011 * @param cPatArgs Number of pattern variables.
4012 * @param pResult Where to store the result of a function invocation.
4013 */
4014static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType,
4015 PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult)
4016{
4017 if (pResult)
4018 DBGCVAR_INIT_GC_FLAT(pResult, 0);
4019
4020 /*
4021 * Convert the search pattern into bytes and DBGFR3MemScan can deal with.
4022 */
4023 uint32_t cbUnit;
4024 switch (chType)
4025 {
4026 case 'a':
4027 case 'b': cbUnit = 1; break;
4028 case 'u': cbUnit = 2 | RT_BIT_32(31); break;
4029 case 'w': cbUnit = 2; break;
4030 case 'd': cbUnit = 4; break;
4031 case 'q': cbUnit = 8; break;
4032 default:
4033 return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType);
4034 }
4035 uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)];
4036 uint32_t cbBytes = sizeof(abBytes);
4037 int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs);
4038 if (RT_FAILURE(rc))
4039 return VERR_DBGC_COMMAND_FAILED;
4040
4041 /*
4042 * Make DBGF address and fix the range.
4043 */
4044 DBGFADDRESS Address;
4045 rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address);
4046 if (RT_FAILURE(rc))
4047 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress);
4048
4049 RTGCUINTPTR cbRange;
4050 switch (pAddress->enmRangeType)
4051 {
4052 case DBGCVAR_RANGE_BYTES:
4053 cbRange = pAddress->u64Range;
4054 if (cbRange != pAddress->u64Range)
4055 cbRange = ~(RTGCUINTPTR)0;
4056 break;
4057
4058 case DBGCVAR_RANGE_ELEMENTS:
4059 cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit);
4060 if ( cbRange != pAddress->u64Range * cbUnit
4061 || cbRange < pAddress->u64Range)
4062 cbRange = ~(RTGCUINTPTR)0;
4063 break;
4064
4065 default:
4066 cbRange = ~(RTGCUINTPTR)0;
4067 break;
4068 }
4069 if (Address.FlatPtr + cbRange < Address.FlatPtr)
4070 cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr;
4071
4072 /*
4073 * Ok, do it.
4074 */
4075 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult);
4076}
4077
4078
4079/**
4080 * @callback_method_impl{FNDBGCCMD, The 's' command.}
4081 */
4082static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4083{
4084 /* check that the parser did what it's supposed to do. */
4085 //if ( cArgs <= 2
4086 // && paArgs[0].enmType != DBGCVAR_TYPE_STRING)
4087 // return DBGCCmdHlpPrintf(pCmdHlp, "parser error\n");
4088
4089 /*
4090 * Repeat previous search?
4091 */
4092 if (cArgs == 0)
4093 return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL);
4094
4095 /*
4096 * Parse arguments.
4097 */
4098
4099 return -1;
4100}
4101
4102
4103/**
4104 * @callback_method_impl{FNDBGCCMD, The 's?' command.}
4105 */
4106static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4107{
4108 /* check that the parser did what it's supposed to do. */
4109 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType));
4110 return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL);
4111}
4112
4113
4114/**
4115 * Matching function for interrupts event names.
4116 *
4117 * This parses the interrupt number and length.
4118 *
4119 * @returns True if match, false if not.
4120 * @param pPattern The user specified pattern to match.
4121 * @param pszEvtName The event name.
4122 * @param pCmdHlp Command helpers for warning about malformed stuff.
4123 * @param piFirst Where to return start interrupt number on success.
4124 * @param pcInts Where to return the number of interrupts on success.
4125 */
4126static bool dbgcEventIsMatchingInt(PCDBGCVAR pPattern, const char *pszEvtName, PDBGCCMDHLP pCmdHlp,
4127 uint8_t *piFirst, uint16_t *pcInts)
4128{
4129 /*
4130 * Ignore trailing hex digits when comparing with the event base name.
4131 */
4132 const char *pszPattern = pPattern->u.pszString;
4133 const char *pszEnd = RTStrEnd(pszPattern, RTSTR_MAX);
4134 while ( (uintptr_t)pszEnd > (uintptr_t)pszPattern
4135 && RT_C_IS_XDIGIT(pszEnd[-1]))
4136 pszEnd -= 1;
4137 if (RTStrSimplePatternNMatch(pszPattern, pszEnd - pszPattern, pszEvtName, RTSTR_MAX))
4138 {
4139 /*
4140 * Parse the index and length.
4141 */
4142 if (!*pszEnd)
4143 *piFirst = 0;
4144 else
4145 {
4146 int rc = RTStrToUInt8Full(pszEnd, 16, piFirst);
4147 if (rc != VINF_SUCCESS)
4148 {
4149 if (RT_FAILURE(rc))
4150 *piFirst = 0;
4151 DBGCCmdHlpPrintf(pCmdHlp, "Warning: %Rrc parsing '%s' - interpreting it as %#x\n", rc, pszEnd, *piFirst);
4152 }
4153 }
4154
4155 if (pPattern->enmRangeType == DBGCVAR_RANGE_NONE)
4156 *pcInts = 1;
4157 else
4158 *pcInts = RT_MAX(RT_MIN((uint16_t)pPattern->u64Range, 256 - *piFirst), 1);
4159 return true;
4160 }
4161 return false;
4162}
4163
4164
4165/**
4166 * Updates a DBGC event config.
4167 *
4168 * @returns VINF_SUCCESS or VERR_NO_MEMORY.
4169 * @param ppEvtCfg The event configuration entry to update.
4170 * @param pszCmd The new command. Leave command alone if NULL.
4171 * @param enmEvtState The new event state.
4172 * @param fChangeCmdOnly Whether to only update the command.
4173 */
4174static int dbgcEventUpdate(PDBGCEVTCFG *ppEvtCfg, const char *pszCmd, DBGCEVTSTATE enmEvtState, bool fChangeCmdOnly)
4175{
4176 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
4177
4178 /*
4179 * If we've got a command string, update the command too.
4180 */
4181 if (pszCmd)
4182 {
4183 size_t cchCmd = strlen(pszCmd);
4184 if ( !cchCmd
4185 && ( !fChangeCmdOnly
4186 ? enmEvtState == kDbgcEvtState_Disabled
4187 : !pEvtCfg || pEvtCfg->enmState == kDbgcEvtState_Disabled))
4188 {
4189 /* NULL entry is fine if no command and disabled. */
4190 RTMemFree(pEvtCfg);
4191 *ppEvtCfg = NULL;
4192 }
4193 else
4194 {
4195 if (!pEvtCfg || pEvtCfg->cchCmd < cchCmd)
4196 {
4197 RTMemFree(pEvtCfg);
4198 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(RT_OFFSETOF(DBGCEVTCFG, szCmd[cchCmd + 1]));
4199 if (!pEvtCfg)
4200 return VERR_NO_MEMORY;
4201 }
4202 pEvtCfg->enmState = enmEvtState;
4203 pEvtCfg->cchCmd = cchCmd;
4204 memcpy(pEvtCfg->szCmd, pszCmd, cchCmd + 1);
4205 }
4206 }
4207 /*
4208 * Update existing or enable new. If NULL and not enabled, we can keep it that way.
4209 */
4210 else if (pEvtCfg || enmEvtState != kDbgcEvtState_Disabled)
4211 {
4212 if (!pEvtCfg)
4213 {
4214 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(sizeof(DBGCEVTCFG));
4215 if (!pEvtCfg)
4216 return VERR_NO_MEMORY;
4217 pEvtCfg->cchCmd = 0;
4218 pEvtCfg->szCmd[0] = '\0';
4219 }
4220 pEvtCfg->enmState = enmEvtState;
4221 }
4222
4223 return VINF_SUCCESS;
4224}
4225
4226
4227/**
4228 * Record one settings change for a plain event.
4229 *
4230 * @returns The new @a cIntCfgs value.
4231 * @param paEventCfgs The event setttings array. Must have DBGFEVENT_END
4232 * entries.
4233 * @param cEventCfgs The current number of entries in @a paEventCfgs.
4234 * @param enmType The event to change the settings for.
4235 * @param enmEvtState The new event state.
4236 * @param iSxEvt Index into the g_aDbgcSxEvents array.
4237 *
4238 * @remarks We use abUnused[0] for the enmEvtState, while abUnused[1] and
4239 * abUnused[2] are used for iSxEvt.
4240 */
4241static uint32_t dbgcEventAddPlainConfig(PDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, DBGFEVENTTYPE enmType,
4242 DBGCEVTSTATE enmEvtState, uint16_t iSxEvt)
4243{
4244 uint32_t iCfg;
4245 for (iCfg = 0; iCfg < cEventCfgs; iCfg++)
4246 if (paEventCfgs[iCfg].enmType == enmType)
4247 break;
4248 if (iCfg == cEventCfgs)
4249 {
4250 Assert(cEventCfgs < DBGFEVENT_END);
4251 paEventCfgs[iCfg].enmType = enmType;
4252 cEventCfgs++;
4253 }
4254 paEventCfgs[iCfg].fEnabled = enmEvtState > kDbgcEvtState_Disabled;
4255 paEventCfgs[iCfg].abUnused[0] = enmEvtState;
4256 paEventCfgs[iCfg].abUnused[1] = (uint8_t)iSxEvt;
4257 paEventCfgs[iCfg].abUnused[2] = (uint8_t)(iSxEvt >> 8);
4258 return cEventCfgs;
4259}
4260
4261
4262/**
4263 * Record one or more interrupt event config changes.
4264 *
4265 * @returns The new @a cIntCfgs value.
4266 * @param paIntCfgs Interrupt confiruation array. Must have 256 entries.
4267 * @param cIntCfgs The current number of entries in @a paIntCfgs.
4268 * @param iInt The interrupt number to start with.
4269 * @param cInts The number of interrupts to change.
4270 * @param pszName The settings name (hwint/swint).
4271 * @param enmEvtState The new event state.
4272 * @param bIntOp The new DBGF interrupt state.
4273 */
4274static uint32_t dbgcEventAddIntConfig(PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs, uint8_t iInt, uint16_t cInts,
4275 const char *pszName, DBGCEVTSTATE enmEvtState, uint8_t bIntOp)
4276{
4277 bool const fHwInt = *pszName == 'h';
4278
4279 bIntOp |= (uint8_t)enmEvtState << 4;
4280 uint8_t const bSoftState = !fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
4281 uint8_t const bHardState = fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
4282
4283 while (cInts > 0)
4284 {
4285 uint32_t iCfg;
4286 for (iCfg = 0; iCfg < cIntCfgs; iCfg++)
4287 if (paIntCfgs[iCfg].iInterrupt == iInt)
4288 break;
4289 if (iCfg == cIntCfgs)
4290 break;
4291 if (fHwInt)
4292 paIntCfgs[iCfg].enmHardState = bHardState;
4293 else
4294 paIntCfgs[iCfg].enmSoftState = bSoftState;
4295 iInt++;
4296 cInts--;
4297 }
4298
4299 while (cInts > 0)
4300 {
4301 Assert(cIntCfgs < 256);
4302 paIntCfgs[cIntCfgs].iInterrupt = iInt;
4303 paIntCfgs[cIntCfgs].enmHardState = bHardState;
4304 paIntCfgs[cIntCfgs].enmSoftState = bSoftState;
4305 cIntCfgs++;
4306 iInt++;
4307 cInts--;
4308 }
4309
4310 return cIntCfgs;
4311}
4312
4313
4314/**
4315 * Applies event settings changes to DBGC and DBGF.
4316 *
4317 * @returns VBox status code (fully bitched)
4318 * @param pCmdHlp The command helpers.
4319 * @param pUVM The user mode VM handle.
4320 * @param paIntCfgs Interrupt configuration array. We use the upper 4
4321 * bits of the settings for the DBGCEVTSTATE. This
4322 * will be cleared.
4323 * @param cIntCfgs Number of interrupt configuration changes.
4324 * @param paEventCfgs The generic event configuration array. We use the
4325 * abUnused[0] member for the DBGCEVTSTATE, and
4326 * abUnused[2:1] for the g_aDbgcSxEvents index.
4327 * @param cEventCfgs The number of generic event settings changes.
4328 * @param pszCmd The commands to associate with the changed events.
4329 * If this is NULL, don't touch the command.
4330 * @param fChangeCmdOnly Whether to only change the commands (sx-).
4331 */
4332static int dbgcEventApplyChanges(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs,
4333 PCDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, const char *pszCmd, bool fChangeCmdOnly)
4334{
4335 int rc;
4336
4337 /*
4338 * Apply changes to DBGC. This can only fail with out of memory error.
4339 */
4340 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4341 if (cIntCfgs)
4342 for (uint32_t iCfg = 0; iCfg < cIntCfgs; iCfg++)
4343 {
4344 DBGCEVTSTATE enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmHardState >> 4);
4345 paIntCfgs[iCfg].enmHardState &= 0xf;
4346 if (paIntCfgs[iCfg].enmHardState != DBGFINTERRUPTSTATE_DONT_TOUCH)
4347 {
4348 rc = dbgcEventUpdate(&pDbgc->apHardInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
4349 if (RT_FAILURE(rc))
4350 return rc;
4351 }
4352
4353 enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmSoftState >> 4);
4354 paIntCfgs[iCfg].enmSoftState &= 0xf;
4355 if (paIntCfgs[iCfg].enmSoftState != DBGFINTERRUPTSTATE_DONT_TOUCH)
4356 {
4357 rc = dbgcEventUpdate(&pDbgc->apSoftInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
4358 if (RT_FAILURE(rc))
4359 return rc;
4360 }
4361 }
4362
4363 if (cEventCfgs)
4364 {
4365 for (uint32_t iCfg = 0; iCfg < cEventCfgs; iCfg++)
4366 {
4367 Assert((unsigned)paEventCfgs[iCfg].enmType < RT_ELEMENTS(pDbgc->apEventCfgs));
4368 uint16_t iSxEvt = RT_MAKE_U16(paEventCfgs[iCfg].abUnused[1], paEventCfgs[iCfg].abUnused[2]);
4369 Assert(iSxEvt < RT_ELEMENTS(g_aDbgcSxEvents));
4370 rc = dbgcEventUpdate(&pDbgc->apEventCfgs[iSxEvt], pszCmd, (DBGCEVTSTATE)paEventCfgs[iCfg].abUnused[0], fChangeCmdOnly);
4371 if (RT_FAILURE(rc))
4372 return rc;
4373 }
4374 }
4375
4376 /*
4377 * Apply changes to DBGF.
4378 */
4379 if (!fChangeCmdOnly)
4380 {
4381 if (cIntCfgs)
4382 {
4383 rc = DBGFR3InterruptConfigEx(pUVM, paIntCfgs, cIntCfgs);
4384 if (RT_FAILURE(rc))
4385 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3InterruptConfigEx: %Rrc\n", rc);
4386 }
4387 if (cEventCfgs)
4388 {
4389 rc = DBGFR3EventConfigEx(pUVM, paEventCfgs, cEventCfgs);
4390 if (RT_FAILURE(rc))
4391 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3EventConfigEx: %Rrc\n", rc);
4392 }
4393 }
4394
4395 return VINF_SUCCESS;
4396}
4397
4398
4399/**
4400 * @callback_method_impl{FNDBGCCMD, The 'sx[eni-]' commands.}
4401 */
4402static DECLCALLBACK(int) dbgcCmdEventCtrl(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4403{
4404 /*
4405 * Figure out which command this is.
4406 */
4407 uint8_t bIntOp;
4408 DBGCEVTSTATE enmEvtState;
4409 bool fChangeCmdOnly;
4410 switch (pCmd->pszCmd[2])
4411 {
4412 case 'e': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Enabled; fChangeCmdOnly = false; break;
4413 case 'n': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Notify; fChangeCmdOnly = false; break;
4414 case '-': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Invalid; fChangeCmdOnly = true; break;
4415 case 'i': bIntOp = DBGFINTERRUPTSTATE_DISABLED; enmEvtState = kDbgcEvtState_Disabled; fChangeCmdOnly = false; break;
4416 default:
4417 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "pszCmd=%s\n", pCmd->pszCmd);
4418 }
4419
4420 /*
4421 * Command option.
4422 */
4423 unsigned iArg = 0;
4424 const char *pszCmd = NULL;
4425 if ( cArgs >= iArg + 2
4426 && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
4427 && paArgs[iArg + 1].enmType == DBGCVAR_TYPE_STRING
4428 && strcmp(paArgs[iArg].u.pszString, "-c") == 0)
4429 {
4430 pszCmd = paArgs[iArg + 1].u.pszString;
4431 iArg += 2;
4432 }
4433 if (fChangeCmdOnly && !pszCmd)
4434 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "The 'sx-' requires the '-c cmd' arguments.\n");
4435
4436 /*
4437 * The remaining arguments are event specifiers to which the operation should be applied.
4438 */
4439 uint32_t cIntCfgs = 0;
4440 DBGFINTERRUPTCONFIG aIntCfgs[256];
4441 uint32_t cEventCfgs = 0;
4442 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
4443
4444 for (; iArg < cArgs; iArg++)
4445 {
4446 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, iArg, paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
4447 || paArgs[iArg].enmType == DBGCVAR_TYPE_SYMBOL);
4448 uint32_t cHits = 0;
4449 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
4450 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
4451 {
4452 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
4453 || ( g_aDbgcSxEvents[iEvt].pszAltNm
4454 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
4455 {
4456 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
4457 enmEvtState, iEvt);
4458 cHits++;
4459 }
4460 }
4461 else
4462 {
4463 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
4464 uint8_t iInt;
4465 uint16_t cInts;
4466 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
4467 {
4468 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
4469 enmEvtState, bIntOp);
4470 cHits++;
4471 }
4472 }
4473 if (!cHits)
4474 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
4475 }
4476
4477 /*
4478 * Apply the changes.
4479 */
4480 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, pszCmd, fChangeCmdOnly);
4481}
4482
4483
4484/**
4485 * @callback_method_impl{FNDBGCCMD, The 'sxr' commands.}
4486 */
4487static DECLCALLBACK(int) dbgcCmdEventCtrlReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4488{
4489 uint32_t cEventCfgs = 0;
4490 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
4491 uint32_t cIntCfgs = 0;
4492 DBGFINTERRUPTCONFIG aIntCfgs[256];
4493
4494 if (cArgs == 0)
4495 {
4496 /*
4497 * All events.
4498 */
4499 for (uint32_t iInt = 0; iInt < 256; iInt++)
4500 {
4501 aIntCfgs[iInt].iInterrupt = iInt;
4502 aIntCfgs[iInt].enmHardState = DBGFINTERRUPTSTATE_DONT_TOUCH;
4503 aIntCfgs[iInt].enmSoftState = DBGFINTERRUPTSTATE_DONT_TOUCH;
4504 }
4505 cIntCfgs = 256;
4506
4507 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
4508 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
4509 {
4510 aEventCfgs[cEventCfgs].enmType = g_aDbgcSxEvents[iEvt].enmType;
4511 aEventCfgs[cEventCfgs].fEnabled = g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled;
4512 aEventCfgs[cEventCfgs].abUnused[0] = g_aDbgcSxEvents[iEvt].enmDefault;
4513 aEventCfgs[cEventCfgs].abUnused[1] = (uint8_t)iEvt;
4514 aEventCfgs[cEventCfgs].abUnused[2] = (uint8_t)(iEvt >> 8);
4515 cEventCfgs++;
4516 }
4517 else
4518 {
4519 uint8_t const bState = ( g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
4520 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED)
4521 | ((uint8_t)g_aDbgcSxEvents[iEvt].enmDefault << 4);
4522 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
4523 for (uint32_t iInt = 0; iInt < 256; iInt++)
4524 aIntCfgs[iInt].enmHardState = bState;
4525 else
4526 for (uint32_t iInt = 0; iInt < 256; iInt++)
4527 aIntCfgs[iInt].enmSoftState = bState;
4528 }
4529 }
4530 else
4531 {
4532 /*
4533 * Selected events.
4534 */
4535 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
4536 {
4537 unsigned cHits = 0;
4538 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
4539 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
4540 {
4541 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
4542 || ( g_aDbgcSxEvents[iEvt].pszAltNm
4543 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
4544 {
4545 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
4546 g_aDbgcSxEvents[iEvt].enmDefault, iEvt);
4547 cHits++;
4548 }
4549 }
4550 else
4551 {
4552 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
4553 uint8_t iInt;
4554 uint16_t cInts;
4555 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
4556 {
4557 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
4558 g_aDbgcSxEvents[iEvt].enmDefault,
4559 g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
4560 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED);
4561 cHits++;
4562 }
4563 }
4564 if (!cHits)
4565 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
4566 }
4567 }
4568
4569 /*
4570 * Apply the reset changes.
4571 */
4572 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, "", false);
4573}
4574
4575
4576/**
4577 * Used during DBGC initialization to configure events with defaults.
4578 *
4579 * @returns VBox status code.
4580 * @param pDbgc The DBGC instance.
4581 */
4582void dbgcEventInit(PDBGC pDbgc)
4583{
4584 if (pDbgc->pUVM)
4585 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
4586}
4587
4588
4589/**
4590 * Used during DBGC termination to disable all events.
4591 *
4592 * @param pDbgc The DBGC instance.
4593 */
4594void dbgcEventTerm(PDBGC pDbgc)
4595{
4596/** @todo need to do more than just reset later. */
4597 if (pDbgc->pUVM && VMR3GetStateU(pDbgc->pUVM) < VMSTATE_DESTROYING)
4598 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
4599}
4600
4601
4602static void dbgcEventDisplay(PDBGCCMDHLP pCmdHlp, const char *pszName, DBGCEVTSTATE enmDefault, PDBGCEVTCFG const *ppEvtCfg)
4603{
4604 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
4605
4606 const char *pszState;
4607 switch (pEvtCfg ? pEvtCfg->enmState : kDbgcEvtState_Disabled)
4608 {
4609 case kDbgcEvtState_Disabled: pszState = "ignore"; break;
4610 case kDbgcEvtState_Enabled: pszState = "enabled"; break;
4611 case kDbgcEvtState_Notify: pszState = "notify"; break;
4612 default:
4613 AssertFailed();
4614 pszState = "invalid";
4615 break;
4616 }
4617
4618 if (pEvtCfg && pEvtCfg->cchCmd > 0)
4619 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %-7s \"%s\"\n", pszName, pszState, pEvtCfg->szCmd);
4620 else
4621 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %s\n", pszName, pszState);
4622}
4623
4624
4625static void dbgcEventDisplayRange(PDBGCCMDHLP pCmdHlp, const char *pszBaseNm, DBGCEVTSTATE enmDefault,
4626 PDBGCEVTCFG const *papEvtCfgs, unsigned iCfg, unsigned cCfgs)
4627{
4628 do
4629 {
4630 PCDBGCEVTCFG pFirstCfg = papEvtCfgs[iCfg];
4631 if (pFirstCfg && pFirstCfg->enmState == kDbgcEvtState_Disabled && pFirstCfg->cchCmd == 0)
4632 pFirstCfg = NULL;
4633
4634 unsigned const iFirstCfg = iCfg;
4635 iCfg++;
4636 while (iCfg < cCfgs)
4637 {
4638 PCDBGCEVTCFG pCurCfg = papEvtCfgs[iCfg];
4639 if (pCurCfg && pCurCfg->enmState == kDbgcEvtState_Disabled && pCurCfg->cchCmd == 0)
4640 pCurCfg = NULL;
4641 if (pCurCfg != pFirstCfg)
4642 {
4643 if (!pCurCfg || !pFirstCfg)
4644 break;
4645 if (pCurCfg->enmState != pFirstCfg->enmState)
4646 break;
4647 if (pCurCfg->cchCmd != pFirstCfg->cchCmd)
4648 break;
4649 if (memcmp(pCurCfg->szCmd, pFirstCfg->szCmd, pFirstCfg->cchCmd) != 0)
4650 break;
4651 }
4652 iCfg++;
4653 }
4654
4655 char szName[16];
4656 unsigned cEntries = iCfg - iFirstCfg;
4657 if (cEntries == 1)
4658 RTStrPrintf(szName, sizeof(szName), "%s%02x", pszBaseNm, iFirstCfg);
4659 else
4660 RTStrPrintf(szName, sizeof(szName), "%s%02x L %#x", pszBaseNm, iFirstCfg, cEntries);
4661 dbgcEventDisplay(pCmdHlp, szName, enmDefault, &papEvtCfgs[iFirstCfg]);
4662
4663 cCfgs -= cEntries;
4664 } while (cCfgs > 0);
4665}
4666
4667
4668/**
4669 * @callback_method_impl{FNDBGCCMD, The 'sx' commands.}
4670 */
4671static DECLCALLBACK(int) dbgcCmdEventCtrlList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4672{
4673 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4674
4675 if (cArgs == 0)
4676 {
4677 /*
4678 * All events.
4679 */
4680 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
4681 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
4682 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
4683 &pDbgc->apEventCfgs[iEvt]);
4684 else if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
4685 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
4686 pDbgc->apHardInts, 0, 256);
4687 else
4688 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
4689 pDbgc->apSoftInts, 0, 256);
4690 }
4691 else
4692 {
4693 /*
4694 * Selected events.
4695 */
4696 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
4697 {
4698 unsigned cHits = 0;
4699 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
4700 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
4701 {
4702 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
4703 || ( g_aDbgcSxEvents[iEvt].pszAltNm
4704 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
4705 {
4706 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
4707 &pDbgc->apEventCfgs[iEvt]);
4708 cHits++;
4709 }
4710 }
4711 else
4712 {
4713 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
4714 uint8_t iInt;
4715 uint16_t cInts;
4716 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
4717 {
4718 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
4719 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
4720 pDbgc->apHardInts, iInt, cInts);
4721 else
4722 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
4723 pDbgc->apSoftInts, iInt, cInts);
4724 cHits++;
4725 }
4726 }
4727 if (cHits == 0)
4728 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
4729 }
4730 }
4731
4732 return VINF_SUCCESS;
4733}
4734
4735
4736
4737/**
4738 * List near symbol.
4739 *
4740 * @returns VBox status code.
4741 * @param pCmdHlp Pointer to command helper functions.
4742 * @param pUVM The user mode VM handle.
4743 * @param pArg Pointer to the address or symbol to lookup.
4744 */
4745static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg)
4746{
4747 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4748
4749 RTDBGSYMBOL Symbol;
4750 int rc;
4751 if (pArg->enmType == DBGCVAR_TYPE_SYMBOL)
4752 {
4753 /*
4754 * Lookup the symbol address.
4755 */
4756 rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL);
4757 if (RT_FAILURE(rc))
4758 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString);
4759
4760 rc = DBGCCmdHlpPrintf(pCmdHlp, "%RTptr %s\n", Symbol.Value, Symbol.szName);
4761 }
4762 else
4763 {
4764 /*
4765 * Convert it to a flat GC address and lookup that address.
4766 */
4767 DBGCVAR AddrVar;
4768 rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg);
4769 if (RT_FAILURE(rc))
4770 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg);
4771
4772 RTINTPTR offDisp;
4773 DBGFADDRESS Addr;
4774 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat),
4775 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &offDisp, &Symbol, NULL);
4776 if (RT_FAILURE(rc))
4777 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3ASymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat);
4778
4779 if (!offDisp)
4780 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s", &AddrVar, Symbol.szName);
4781 else if (offDisp > 0)
4782 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp);
4783 else
4784 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp);
4785 if (Symbol.cb > 0)
4786 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)\n", Symbol.cb);
4787 else
4788 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4789 }
4790
4791 return rc;
4792}
4793
4794
4795/**
4796 * @callback_method_impl{FNDBGCCMD, The 'ln' (listnear) command.}
4797 */
4798static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4799{
4800 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4801 if (!cArgs)
4802 {
4803 /*
4804 * Current cs:eip symbol.
4805 */
4806 DBGCVAR AddrVar;
4807 const char *pszFmtExpr = pDbgc->fRegCtxGuest ? "%%(cs:eip)" : "%%(.cs:.eip)";
4808 int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, pszFmtExpr);
4809 if (RT_FAILURE(rc))
4810 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%s\n", pszFmtExpr + 1);
4811 return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar);
4812 }
4813
4814/** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */
4815 /*
4816 * Iterate arguments.
4817 */
4818 for (unsigned iArg = 0; iArg < cArgs; iArg++)
4819 {
4820 int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]);
4821 if (RT_FAILURE(rc))
4822 return rc;
4823 }
4824
4825 NOREF(pCmd);
4826 return VINF_SUCCESS;
4827}
4828
4829
4830/**
4831 * Matches the module patters against a module name.
4832 *
4833 * @returns true if matching, otherwise false.
4834 * @param pszName The module name.
4835 * @param paArgs The module pattern argument list.
4836 * @param cArgs Number of arguments.
4837 */
4838static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs)
4839{
4840 for (uint32_t i = 0; i < cArgs; i++)
4841 if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName))
4842 return true;
4843 return false;
4844}
4845
4846
4847/**
4848 * @callback_method_impl{FNDBGCCMD, The 'ln' (list near) command.}
4849 */
4850static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4851{
4852 bool const fMappings = pCmd->pszCmd[2] == 'o';
4853 bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v';
4854 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4855
4856 /*
4857 * Iterate the modules in the current address space and print info about
4858 * those matching the input.
4859 */
4860 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, pDbgc->hDbgAs);
4861 uint32_t cMods = RTDbgAsModuleCount(hAs);
4862 for (uint32_t iMod = 0; iMod < cMods; iMod++)
4863 {
4864 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
4865 if (hMod != NIL_RTDBGMOD)
4866 {
4867 bool const fDeferred = RTDbgModIsDeferred(hMod);
4868 bool const fExports = RTDbgModIsExports(hMod);
4869 uint32_t const cSegs = fDeferred ? 1 : RTDbgModSegmentCount(hMod);
4870 const char * const pszName = RTDbgModName(hMod);
4871 const char * const pszImgFile = RTDbgModImageFile(hMod);
4872 const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod);
4873 const char * const pszDbgFile = RTDbgModDebugFile(hMod);
4874 if ( cArgs == 0
4875 || dbgcCmdListModuleMatch(pszName, paArgs, cArgs))
4876 {
4877 /*
4878 * Find the mapping with the lower address, preferring a full
4879 * image mapping, for the main line.
4880 */
4881 RTDBGASMAPINFO aMappings[128];
4882 uint32_t cMappings = RT_ELEMENTS(aMappings);
4883 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
4884 if (RT_SUCCESS(rc))
4885 {
4886 bool fFull = false;
4887 RTUINTPTR uMin = RTUINTPTR_MAX;
4888 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
4889 if ( aMappings[iMap].Address < uMin
4890 && ( !fFull
4891 || aMappings[iMap].iSeg == NIL_RTDBGSEGIDX))
4892 uMin = aMappings[iMap].Address;
4893 if (!fVerbose || !pszImgFile)
4894 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName,
4895 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
4896 else
4897 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile,
4898 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
4899 if (fVerbose && pszImgFileUsed)
4900 DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed);
4901 if (fVerbose && pszDbgFile)
4902 DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile);
4903
4904 if (fMappings)
4905 {
4906 /* sort by address first - not very efficient. */
4907 for (uint32_t i = 0; i + 1 < cMappings; i++)
4908 for (uint32_t j = i + 1; j < cMappings; j++)
4909 if (aMappings[j].Address < aMappings[i].Address)
4910 {
4911 RTDBGASMAPINFO Tmp = aMappings[j];
4912 aMappings[j] = aMappings[i];
4913 aMappings[i] = Tmp;
4914 }
4915
4916 /* print */
4917 if ( cMappings == 1
4918 && aMappings[0].iSeg == NIL_RTDBGSEGIDX
4919 && !fDeferred)
4920 {
4921 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
4922 {
4923 RTDBGSEGMENT SegInfo;
4924 rc = RTDbgModSegmentByIndex(hMod, iSeg, &SegInfo);
4925 if (RT_SUCCESS(rc))
4926 {
4927 if (SegInfo.uRva != RTUINTPTR_MAX)
4928 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
4929 (RTGCUINTPTR)(aMappings[0].Address + SegInfo.uRva),
4930 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
4931 else
4932 DBGCCmdHlpPrintf(pCmdHlp, " %*s %RGv #%02x %s\n",
4933 sizeof(RTGCUINTPTR)*2, "noload",
4934 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
4935 }
4936 else
4937 DBGCCmdHlpPrintf(pCmdHlp, " Error query segment #%u: %Rrc\n", iSeg, rc);
4938 }
4939 }
4940 else
4941 {
4942 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
4943 if (aMappings[iMap].iSeg == NIL_RTDBGSEGIDX)
4944 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv <everything>\n",
4945 (RTGCUINTPTR)aMappings[iMap].Address,
4946 (RTGCUINTPTR)RTDbgModImageSize(hMod));
4947 else if (!fDeferred)
4948 {
4949 RTDBGSEGMENT SegInfo;
4950 rc = RTDbgModSegmentByIndex(hMod, aMappings[iMap].iSeg, &SegInfo);
4951 if (RT_FAILURE(rc))
4952 {
4953 RT_ZERO(SegInfo);
4954 strcpy(SegInfo.szName, "error");
4955 }
4956 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
4957 (RTGCUINTPTR)aMappings[iMap].Address,
4958 (RTGCUINTPTR)SegInfo.cb,
4959 aMappings[iMap].iSeg, SegInfo.szName);
4960 }
4961 else
4962 DBGCCmdHlpPrintf(pCmdHlp, " %RGv #%02x\n",
4963 (RTGCUINTPTR)aMappings[iMap].Address, aMappings[iMap].iSeg);
4964 }
4965 }
4966 }
4967 else
4968 DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n",
4969 sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc);
4970 /** @todo missing address space API for enumerating the mappings. */
4971 }
4972 RTDbgModRelease(hMod);
4973 }
4974 }
4975 RTDbgAsRelease(hAs);
4976
4977 NOREF(pCmd);
4978 return VINF_SUCCESS;
4979}
4980
4981
4982
4983/**
4984 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 8-bit value.}
4985 */
4986static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
4987 PDBGCVAR pResult)
4988{
4989 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
4990 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
4991 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
4992
4993 uint8_t b;
4994 int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL);
4995 if (RT_FAILURE(rc))
4996 return rc;
4997 DBGCVAR_INIT_NUMBER(pResult, b);
4998
4999 NOREF(pFunc);
5000 return VINF_SUCCESS;
5001}
5002
5003
5004/**
5005 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 16-bit value.}
5006 */
5007static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
5008 PDBGCVAR pResult)
5009{
5010 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
5011 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
5012 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
5013
5014 uint16_t u16;
5015 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL);
5016 if (RT_FAILURE(rc))
5017 return rc;
5018 DBGCVAR_INIT_NUMBER(pResult, u16);
5019
5020 NOREF(pFunc);
5021 return VINF_SUCCESS;
5022}
5023
5024
5025/**
5026 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 32-bit value.}
5027 */
5028static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
5029 PDBGCVAR pResult)
5030{
5031 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
5032 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
5033 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
5034
5035 uint32_t u32;
5036 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL);
5037 if (RT_FAILURE(rc))
5038 return rc;
5039 DBGCVAR_INIT_NUMBER(pResult, u32);
5040
5041 NOREF(pFunc);
5042 return VINF_SUCCESS;
5043}
5044
5045
5046/**
5047 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 64-bit value.}
5048 */
5049static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
5050 PDBGCVAR pResult)
5051{
5052 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
5053 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
5054 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
5055
5056 uint64_t u64;
5057 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL);
5058 if (RT_FAILURE(rc))
5059 return rc;
5060 DBGCVAR_INIT_NUMBER(pResult, u64);
5061
5062 NOREF(pFunc);
5063 return VINF_SUCCESS;
5064}
5065
5066
5067/**
5068 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned pointer-sized value.}
5069 */
5070static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
5071 PDBGCVAR pResult)
5072{
5073 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
5074 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
5075 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
5076
5077 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
5078 if (enmMode == CPUMMODE_LONG)
5079 return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
5080 return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
5081}
5082
5083
5084/**
5085 * @callback_method_impl{FNDBGCFUNC, The hi(value) function implementation.}
5086 */
5087static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
5088 PDBGCVAR pResult)
5089{
5090 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
5091
5092 uint16_t uHi;
5093 switch (paArgs[0].enmType)
5094 {
5095 case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break;
5096 case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break;
5097 case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break;
5098 case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break;
5099 case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break;
5100 case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break;
5101 default:
5102 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
5103 }
5104 DBGCVAR_INIT_NUMBER(pResult, uHi);
5105 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
5106
5107 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
5108 return VINF_SUCCESS;
5109}
5110
5111
5112/**
5113 * @callback_method_impl{FNDBGCFUNC, The low(value) function implementation.}
5114 */
5115static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
5116 PDBGCVAR pResult)
5117{
5118 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
5119
5120 uint16_t uLow;
5121 switch (paArgs[0].enmType)
5122 {
5123 case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break;
5124 case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break;
5125 case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break;
5126 case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break;
5127 case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break;
5128 case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break;
5129 default:
5130 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
5131 }
5132 DBGCVAR_INIT_NUMBER(pResult, uLow);
5133 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
5134
5135 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
5136 return VINF_SUCCESS;
5137}
5138
5139
5140/**
5141 * @callback_method_impl{FNDBGCFUNC,The low(value) function implementation.}
5142 */
5143static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
5144 PDBGCVAR pResult)
5145{
5146 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
5147 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
5148 return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]);
5149}
5150
5151
5152/** Generic pointer argument wo/ range. */
5153static const DBGCVARDESC g_aArgPointerWoRange[] =
5154{
5155 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
5156 { 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." },
5157};
5158
5159/** Generic pointer or number argument. */
5160static const DBGCVARDESC g_aArgPointerNumber[] =
5161{
5162 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
5163 { 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." },
5164};
5165
5166
5167
5168/** Function descriptors for the CodeView / WinDbg emulation.
5169 * The emulation isn't attempting to be identical, only somewhat similar.
5170 */
5171const DBGCFUNC g_aFuncsCodeView[] =
5172{
5173 { "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." },
5174 { "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." },
5175 { "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." },
5176 { "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." },
5177 { "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." },
5178 { "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." },
5179 { "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." },
5180 { "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." },
5181};
5182
5183/** The number of functions in the CodeView/WinDbg emulation. */
5184const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);
5185
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette