VirtualBox

source: vbox/trunk/src/VBox/Debugger/DBGCEmulateCodeView.cpp@ 64637

Last change on this file since 64637 was 64592, checked in by vboxsync, 8 years ago

Debugger/CodeView: Fix for the no branch tables existing case

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 274.3 KB
Line 
1/* $Id: DBGCEmulateCodeView.cpp 64592 2016-11-06 19:17:52Z vboxsync $ */
2/** @file
3 * DBGC - Debugger Console, CodeView / WinDbg Emulation.
4 */
5
6/*
7 * Copyright (C) 2006-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DBGC
23#include <VBox/dbg.h>
24#include <VBox/vmm/dbgf.h>
25#include <VBox/vmm/pgm.h>
26#include <VBox/vmm/cpum.h>
27#include <VBox/dis.h>
28#include <VBox/param.h>
29#include <VBox/err.h>
30#include <VBox/log.h>
31
32#include <iprt/asm.h>
33#include <iprt/mem.h>
34#include <iprt/string.h>
35#include <iprt/assert.h>
36#include <iprt/ctype.h>
37
38#include <stdlib.h>
39#include <stdio.h>
40
41#include "DBGCInternal.h"
42
43
44/*********************************************************************************************************************************
45* Internal Functions *
46*********************************************************************************************************************************/
47static FNDBGCCMD dbgcCmdBrkAccess;
48static FNDBGCCMD dbgcCmdBrkClear;
49static FNDBGCCMD dbgcCmdBrkDisable;
50static FNDBGCCMD dbgcCmdBrkEnable;
51static FNDBGCCMD dbgcCmdBrkList;
52static FNDBGCCMD dbgcCmdBrkSet;
53static FNDBGCCMD dbgcCmdBrkREM;
54static FNDBGCCMD dbgcCmdDumpMem;
55static FNDBGCCMD dbgcCmdDumpDT;
56static FNDBGCCMD dbgcCmdDumpIDT;
57static FNDBGCCMD dbgcCmdDumpPageDir;
58static FNDBGCCMD dbgcCmdDumpPageDirBoth;
59static FNDBGCCMD dbgcCmdDumpPageHierarchy;
60static FNDBGCCMD dbgcCmdDumpPageTable;
61static FNDBGCCMD dbgcCmdDumpPageTableBoth;
62static FNDBGCCMD dbgcCmdDumpTSS;
63static FNDBGCCMD dbgcCmdDumpTypeInfo;
64static FNDBGCCMD dbgcCmdDumpTypedVal;
65static FNDBGCCMD dbgcCmdEditMem;
66static FNDBGCCMD dbgcCmdGo;
67static FNDBGCCMD dbgcCmdListModules;
68static FNDBGCCMD dbgcCmdListNear;
69static FNDBGCCMD dbgcCmdListSource;
70static FNDBGCCMD dbgcCmdMemoryInfo;
71static FNDBGCCMD dbgcCmdReg;
72static FNDBGCCMD dbgcCmdRegGuest;
73static FNDBGCCMD dbgcCmdRegHyper;
74static FNDBGCCMD dbgcCmdRegTerse;
75static FNDBGCCMD dbgcCmdSearchMem;
76static FNDBGCCMD dbgcCmdSearchMemType;
77static FNDBGCCMD dbgcCmdEventCtrl;
78static FNDBGCCMD dbgcCmdEventCtrlList;
79static FNDBGCCMD dbgcCmdEventCtrlReset;
80static FNDBGCCMD dbgcCmdStack;
81static FNDBGCCMD dbgcCmdTrace;
82static FNDBGCCMD dbgcCmdUnassemble;
83static FNDBGCCMD dbgcCmdUnassembleCfg;
84
85
86/*********************************************************************************************************************************
87* Global Variables *
88*********************************************************************************************************************************/
89/** 'ba' arguments. */
90static const DBGCVARDESC g_aArgBrkAcc[] =
91{
92 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
93 { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." },
94 { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." },
95 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
96 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
97 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
98 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
99};
100
101
102/** 'bc', 'bd', 'be' arguments. */
103static const DBGCVARDESC g_aArgBrks[] =
104{
105 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
106 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." },
107 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." },
108};
109
110
111/** 'bp' arguments. */
112static const DBGCVARDESC g_aArgBrkSet[] =
113{
114 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
115 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
116 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
117 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
118 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
119};
120
121
122/** 'br' arguments. */
123static const DBGCVARDESC g_aArgBrkREM[] =
124{
125 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
126 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
127 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
128 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
129 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
130};
131
132
133/** 'd?' arguments. */
134static const DBGCVARDESC g_aArgDumpMem[] =
135{
136 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
137 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory." },
138};
139
140
141/** 'dg', 'dga', 'dl', 'dla' arguments. */
142static const DBGCVARDESC g_aArgDumpDT[] =
143{
144 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
145 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." },
146 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." },
147};
148
149
150/** 'di', 'dia' arguments. */
151static const DBGCVARDESC g_aArgDumpIDT[] =
152{
153 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
154 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." },
155};
156
157
158/** 'dpd*' arguments. */
159static const DBGCVARDESC g_aArgDumpPD[] =
160{
161 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
162 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." },
163 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." },
164};
165
166
167/** 'dpda' arguments. */
168static const DBGCVARDESC g_aArgDumpPDAddr[] =
169{
170 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
171 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." },
172};
173
174
175/** 'dph*' arguments. */
176static const DBGCVARDESC g_aArgDumpPH[] =
177{
178 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
179 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." },
180 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." },
181 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." },
182};
183
184
185/** 'dpt?' arguments. */
186static const DBGCVARDESC g_aArgDumpPT[] =
187{
188 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
189 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." },
190};
191
192
193/** 'dpta' arguments. */
194static const DBGCVARDESC g_aArgDumpPTAddr[] =
195{
196 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
197 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." },
198};
199
200
201/** 'dt' arguments. */
202static const DBGCVARDESC g_aArgDumpTSS[] =
203{
204 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
205 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." },
206 { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." }
207};
208
209
210/** 'dti' arguments. */
211static const DBGCVARDESC g_aArgDumpTypeInfo[] =
212{
213 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
214 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to dump" },
215 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump the type information" }
216};
217
218
219/** 'dtv' arguments. */
220static const DBGCVARDESC g_aArgDumpTypedVal[] =
221{
222 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
223 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to use" },
224 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address to start dumping from." },
225 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump" }
226};
227
228
229/** 'e?' arguments. */
230static const DBGCVARDESC g_aArgEditMem[] =
231{
232 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
233 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." },
234 { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." },
235};
236
237
238/** 'lm' arguments. */
239static const DBGCVARDESC g_aArgListMods[] =
240{
241 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
242 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." },
243};
244
245
246/** 'ln' arguments. */
247static const DBGCVARDESC g_aArgListNear[] =
248{
249 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
250 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." },
251 { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." },
252};
253
254
255/** 'ls' arguments. */
256static const DBGCVARDESC g_aArgListSource[] =
257{
258 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
259 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." },
260};
261
262
263/** 'm' argument. */
264static const DBGCVARDESC g_aArgMemoryInfo[] =
265{
266 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
267 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." },
268};
269
270
271/** 'r' arguments. */
272static const DBGCVARDESC g_aArgReg[] =
273{
274 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
275 { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." },
276 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." },
277 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." },
278};
279
280
281/** 's' arguments. */
282static const DBGCVARDESC g_aArgSearchMem[] =
283{
284 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
285 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." },
286 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." },
287 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." },
288 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." },
289 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." },
290 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." },
291 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n <Hits>", "Maximum number of hits." },
292 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
293 { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
294};
295
296
297/** 's?' arguments. */
298static const DBGCVARDESC g_aArgSearchMemType[] =
299{
300 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
301 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
302 { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
303};
304
305
306/** 'sxe', 'sxn', 'sxi', 'sx-' arguments. */
307static const DBGCVARDESC g_aArgEventCtrl[] =
308{
309 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
310 { 0, 1, DBGCVAR_CAT_STRING, 0, "-c", "The -c option, requires <cmds>." },
311 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "cmds", "Command to execute on this event." },
312 { 0 /*weird*/, ~0U, DBGCVAR_CAT_STRING, 0, "event", "One or more events, 'all' refering to all events." },
313};
314
315/** 'sx' and 'sr' arguments. */
316static const DBGCVARDESC g_aArgEventCtrlOpt[] =
317{
318 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
319 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "event", "Zero or more events, 'all' refering to all events and being the default." },
320};
321
322/** 'u' arguments. */
323static const DBGCVARDESC g_aArgUnassemble[] =
324{
325 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
326 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
327};
328
329/** 'ucfg' arguments. */
330static const DBGCVARDESC g_aArgUnassembleCfg[] =
331{
332 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
333 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
334};
335
336
337/** Command descriptors for the CodeView / WinDbg emulation.
338 * The emulation isn't attempting to be identical, only somewhat similar.
339 */
340const DBGCCMD g_aCmdsCodeView[] =
341{
342 /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
343 { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "<access> <size> <address> [passes [max passes]] [cmds]",
344 "Sets a data access breakpoint." },
345 { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | <bp#> [bp# []]", "Deletes a set of breakpoints." },
346 { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | <bp#> [bp# []]", "Disables a set of breakpoints." },
347 { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | <bp#> [bp# []]", "Enables a set of breakpoints." },
348 { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." },
349 { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "<address> [passes [max passes]] [cmds]",
350 "Sets a breakpoint (int 3)." },
351 { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "<address> [passes [max passes]] [cmds]",
352 "Sets a recompiler specific breakpoint." },
353 { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size." },
354 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
355 { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." },
356 { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." },
357 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
358 { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." },
359 { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." },
360 { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." },
361 { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." },
362 { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." },
363 { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." },
364 { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." },
365 { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." },
366 { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " },
367 { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." },
368 { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " },
369 { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." },
370 { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." },
371 { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." },
372 { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the default context." },
373 { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps memory at given address as a page table." },
374 { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"<addr>", "Dumps page table entries of the guest and the hypervisor." },
375 { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the guest." },
376 { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the hypervisor." },
377 { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." },
378 { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." },
379 { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." },
380 { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." },
381 { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." },
382 { "dti", 1, 2, &g_aArgDumpTypeInfo[0],RT_ELEMENTS(g_aArgDumpTypeInfo), 0, dbgcCmdDumpTypeInfo,"<type> [levels]", "Dump type information." },
383 { "dtv", 2, 3, &g_aArgDumpTypedVal[0],RT_ELEMENTS(g_aArgDumpTypedVal), 0, dbgcCmdDumpTypedVal,"<type> <addr> [levels]", "Dump a memory buffer using the information in the given type." },
384 { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." },
385 /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also
386 * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */
387 { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 1-byte value to memory." },
388 { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 2-byte value to memory." },
389 { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 4-byte value to memory." },
390 { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 8-byte value to memory." },
391 { "g", 0, 0, NULL, 0, 0, dbgcCmdGo, "", "Continue execution." },
392 { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." },
393 { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." },
394 { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." },
395 { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." },
396 { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." },
397 { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." },
398 { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." },
399 { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." },
400 { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." },
401 { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "<addr>", "Display information about that piece of memory." },
402 { "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set." },
403 { "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set." },
404 { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." },
405 { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." },
406 { "rh", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegHyper, "[reg [[=] newval]]", "Show or set register(s) - hypervisor reg set." },
407 { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." },
408 { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] <range> <pattern>", "Continue last search." },
409 { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an ascii string." },
410 { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more bytes." },
411 { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more double words." },
412 { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more quad words." },
413 { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an unicode string." },
414 { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more words." },
415 { "sx", 0, ~0U, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlList, "[<event> [..]]", "Lists settings for exceptions, exits and other events. All if no filter is specified." },
416 { "sx-", 3, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "-c <cmd> <event> [..]", "Modifies the command for one or more exceptions, exits or other event. 'all' addresses all." },
417 { "sxe", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Enable: Break into the debugger on the specified exceptions, exits and other events. 'all' addresses all." },
418 { "sxn", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Notify: Display info in the debugger and continue on the specified exceptions, exits and other events. 'all' addresses all." },
419 { "sxi", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Ignore: Ignore the specified exceptions, exits and other events ('all' = all of them). Without the -c option, the guest runs like normal." },
420 { "sxr", 0, 0, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlReset, "", "Reset the settings to default for exceptions, exits and other events. All if no filter is specified." },
421 { "t", 0, 0, NULL, 0, 0, dbgcCmdTrace, "", "Instruction trace (step into)." },
422 { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." },
423 { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." },
424 { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." },
425 { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." },
426 { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." },
427 { "ucfg", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph." },
428 { "ucfgc", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph with colors." },
429};
430
431/** The number of commands in the CodeView/WinDbg emulation. */
432const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView);
433
434
435/**
436 * Selectable debug event descriptors.
437 *
438 * @remarks Sorted by DBGCSXEVT::enmType value.
439 */
440const DBGCSXEVT g_aDbgcSxEvents[] =
441{
442 { DBGFEVENT_INTERRUPT_HARDWARE, "hwint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Hardware interrupt" },
443 { DBGFEVENT_INTERRUPT_SOFTWARE, "swint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Software interrupt" },
444 { DBGFEVENT_TRIPLE_FAULT, "triplefault", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Enabled, 0, "Triple fault "},
445 { DBGFEVENT_XCPT_DE, "xcpt_de", "de", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DE (integer divide error)" },
446 { DBGFEVENT_XCPT_DB, "xcpt_db", "db", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DB (debug)" },
447 { DBGFEVENT_XCPT_02, "xcpt_02", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
448 { DBGFEVENT_XCPT_BP, "xcpt_bp", "bp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BP (breakpoint)" },
449 { DBGFEVENT_XCPT_OF, "xcpt_of", "of", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#OF (overflow (INTO))" },
450 { DBGFEVENT_XCPT_BR, "xcpt_br", "br", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BR (bound range exceeded)" },
451 { DBGFEVENT_XCPT_UD, "xcpt_ud", "ud", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#UD (undefined opcode)" },
452 { DBGFEVENT_XCPT_NM, "xcpt_nm", "nm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#NM (FPU not available)" },
453 { DBGFEVENT_XCPT_DF, "xcpt_df", "df", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DF (double fault)" },
454 { DBGFEVENT_XCPT_09, "xcpt_09", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "Coprocessor segment overrun" },
455 { DBGFEVENT_XCPT_TS, "xcpt_ts", "ts", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#TS (task switch)" },
456 { DBGFEVENT_XCPT_NP, "xcpt_np", "np", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#NP (segment not present)" },
457 { DBGFEVENT_XCPT_SS, "xcpt_ss", "ss", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SS (stack segment fault)" },
458 { DBGFEVENT_XCPT_GP, "xcpt_gp", "gp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#GP (general protection fault)" },
459 { DBGFEVENT_XCPT_PF, "xcpt_pf", "pf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#PF (page fault)" },
460 { DBGFEVENT_XCPT_0f, "xcpt_0f", "xcpt0f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
461 { DBGFEVENT_XCPT_MF, "xcpt_mf", "mf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MF (math fault)" },
462 { DBGFEVENT_XCPT_AC, "xcpt_ac", "ac", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#AC (alignment check)" },
463 { DBGFEVENT_XCPT_MC, "xcpt_mc", "mc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MC (machine check)" },
464 { DBGFEVENT_XCPT_XF, "xcpt_xf", "xf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#XF (SIMD floating-point exception)" },
465 { DBGFEVENT_XCPT_VE, "xcpt_vd", "ve", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#VE (virtualization exception)" },
466 { DBGFEVENT_XCPT_15, "xcpt_15", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
467 { DBGFEVENT_XCPT_16, "xcpt_16", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
468 { DBGFEVENT_XCPT_17, "xcpt_17", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
469 { DBGFEVENT_XCPT_18, "xcpt_18", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
470 { DBGFEVENT_XCPT_19, "xcpt_19", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
471 { DBGFEVENT_XCPT_1a, "xcpt_1a", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
472 { DBGFEVENT_XCPT_1b, "xcpt_1b", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
473 { DBGFEVENT_XCPT_1c, "xcpt_1c", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
474 { DBGFEVENT_XCPT_1d, "xcpt_1d", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
475 { DBGFEVENT_XCPT_SX, "xcpt_sx", "sx", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SX (security exception)" },
476 { DBGFEVENT_XCPT_1f, "xcpt_1f", "xcpt1f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
477 { DBGFEVENT_INSTR_HALT, "instr_halt", "hlt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
478 { DBGFEVENT_INSTR_MWAIT, "instr_mwait", "mwait", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
479 { DBGFEVENT_INSTR_MONITOR, "instr_monitor", "monitor", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
480 { DBGFEVENT_INSTR_CPUID, "instr_cpuid", "cpuid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
481 { DBGFEVENT_INSTR_INVD, "instr_invd", "invd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
482 { DBGFEVENT_INSTR_WBINVD, "instr_wbinvd", "wbinvd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
483 { DBGFEVENT_INSTR_INVLPG, "instr_invlpg", "invlpg", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
484 { DBGFEVENT_INSTR_RDTSC, "instr_rdtsc", "rdtsc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
485 { DBGFEVENT_INSTR_RDTSCP, "instr_rdtscp", "rdtscp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
486 { DBGFEVENT_INSTR_RDPMC, "instr_rdpmc", "rdpmc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
487 { DBGFEVENT_INSTR_RDMSR, "instr_rdmsr", "rdmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
488 { DBGFEVENT_INSTR_WRMSR, "instr_wrmsr", "wrmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
489 { DBGFEVENT_INSTR_CRX_READ, "instr_crx_read", "crx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
490 { DBGFEVENT_INSTR_CRX_WRITE, "instr_crx_write", "crx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
491 { DBGFEVENT_INSTR_DRX_READ, "instr_drx_read", "drx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
492 { DBGFEVENT_INSTR_DRX_WRITE, "instr_drx_write", "drx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
493 { DBGFEVENT_INSTR_PAUSE, "instr_pause", "pause", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
494 { DBGFEVENT_INSTR_XSETBV, "instr_xsetbv", "xsetbv", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
495 { DBGFEVENT_INSTR_SIDT, "instr_sidt", "sidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
496 { DBGFEVENT_INSTR_LIDT, "instr_lidt", "lidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
497 { DBGFEVENT_INSTR_SGDT, "instr_sgdt", "sgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
498 { DBGFEVENT_INSTR_LGDT, "instr_lgdt", "lgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
499 { DBGFEVENT_INSTR_SLDT, "instr_sldt", "sldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
500 { DBGFEVENT_INSTR_LLDT, "instr_lldt", "lldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
501 { DBGFEVENT_INSTR_STR, "instr_str", "str", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
502 { DBGFEVENT_INSTR_LTR, "instr_ltr", "ltr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
503 { DBGFEVENT_INSTR_GETSEC, "instr_getsec", "getsec", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
504 { DBGFEVENT_INSTR_RSM, "instr_rsm", "rsm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
505 { DBGFEVENT_INSTR_RDRAND, "instr_rdrand", "rdrand", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
506 { DBGFEVENT_INSTR_RDSEED, "instr_rdseed", "rdseed", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
507 { DBGFEVENT_INSTR_XSAVES, "instr_xsaves", "xsaves", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
508 { DBGFEVENT_INSTR_XRSTORS, "instr_xrstors", "xrstors", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
509 { DBGFEVENT_INSTR_VMM_CALL, "instr_vmm_call", "vmm_call", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
510 { DBGFEVENT_INSTR_VMX_VMCLEAR, "instr_vmx_vmclear", "vmclear", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
511 { DBGFEVENT_INSTR_VMX_VMLAUNCH, "instr_vmx_vmlaunch", "vmlaunch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
512 { DBGFEVENT_INSTR_VMX_VMPTRLD, "instr_vmx_vmptrld", "vmptrld", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
513 { DBGFEVENT_INSTR_VMX_VMPTRST, "instr_vmx_vmptrst", "vmptrst", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
514 { DBGFEVENT_INSTR_VMX_VMREAD, "instr_vmx_vmread", "vmread", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
515 { DBGFEVENT_INSTR_VMX_VMRESUME, "instr_vmx_vmresume", "vmresume", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
516 { DBGFEVENT_INSTR_VMX_VMWRITE, "instr_vmx_vmwrite", "vmwrite", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
517 { DBGFEVENT_INSTR_VMX_VMXOFF, "instr_vmx_vmxoff", "vmxoff", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
518 { DBGFEVENT_INSTR_VMX_VMXON, "instr_vmx_vmxon", "vmxon", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
519 { DBGFEVENT_INSTR_VMX_VMFUNC, "instr_vmx_vmfunc", "vmfunc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
520 { DBGFEVENT_INSTR_VMX_INVEPT, "instr_vmx_invept", "invept", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
521 { DBGFEVENT_INSTR_VMX_INVVPID, "instr_vmx_invvpid", "invvpid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
522 { DBGFEVENT_INSTR_VMX_INVPCID, "instr_vmx_invpcid", "invpcid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
523 { DBGFEVENT_INSTR_SVM_VMRUN, "instr_svm_vmrun", "vmrun", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
524 { DBGFEVENT_INSTR_SVM_VMLOAD, "instr_svm_vmload", "vmload", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
525 { DBGFEVENT_INSTR_SVM_VMSAVE, "instr_svm_vmsave", "vmsave", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
526 { DBGFEVENT_INSTR_SVM_STGI, "instr_svm_stgi", "stgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
527 { DBGFEVENT_INSTR_SVM_CLGI, "instr_svm_clgi", "clgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
528 { DBGFEVENT_EXIT_TASK_SWITCH, "exit_task_switch", "task_switch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
529 { DBGFEVENT_EXIT_HALT, "exit_halt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
530 { DBGFEVENT_EXIT_MWAIT, "exit_mwait", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
531 { DBGFEVENT_EXIT_MONITOR, "exit_monitor", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
532 { DBGFEVENT_EXIT_CPUID, "exit_cpuid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
533 { DBGFEVENT_EXIT_INVD, "exit_invd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
534 { DBGFEVENT_EXIT_WBINVD, "exit_wbinvd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
535 { DBGFEVENT_EXIT_INVLPG, "exit_invlpg", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
536 { DBGFEVENT_EXIT_RDTSC, "exit_rdtsc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
537 { DBGFEVENT_EXIT_RDTSCP, "exit_rdtscp", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
538 { DBGFEVENT_EXIT_RDPMC, "exit_rdpmc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
539 { DBGFEVENT_EXIT_RDMSR, "exit_rdmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
540 { DBGFEVENT_EXIT_WRMSR, "exit_wrmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
541 { DBGFEVENT_EXIT_CRX_READ, "exit_crx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
542 { DBGFEVENT_EXIT_CRX_WRITE, "exit_crx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
543 { DBGFEVENT_EXIT_DRX_READ, "exit_drx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
544 { DBGFEVENT_EXIT_DRX_WRITE, "exit_drx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
545 { DBGFEVENT_EXIT_PAUSE, "exit_pause", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
546 { DBGFEVENT_EXIT_XSETBV, "exit_xsetbv", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
547 { DBGFEVENT_EXIT_SIDT, "exit_sidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
548 { DBGFEVENT_EXIT_LIDT, "exit_lidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
549 { DBGFEVENT_EXIT_SGDT, "exit_sgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
550 { DBGFEVENT_EXIT_LGDT, "exit_lgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
551 { DBGFEVENT_EXIT_SLDT, "exit_sldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
552 { DBGFEVENT_EXIT_LLDT, "exit_lldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
553 { DBGFEVENT_EXIT_STR, "exit_str", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
554 { DBGFEVENT_EXIT_LTR, "exit_ltr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
555 { DBGFEVENT_EXIT_GETSEC, "exit_getsec", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
556 { DBGFEVENT_EXIT_RSM, "exit_rsm", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
557 { DBGFEVENT_EXIT_RDRAND, "exit_rdrand", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
558 { DBGFEVENT_EXIT_RDSEED, "exit_rdseed", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
559 { DBGFEVENT_EXIT_XSAVES, "exit_xsaves", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
560 { DBGFEVENT_EXIT_XRSTORS, "exit_xrstors", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
561 { DBGFEVENT_EXIT_VMM_CALL, "exit_vmm_call", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
562 { DBGFEVENT_EXIT_VMX_VMCLEAR, "exit_vmx_vmclear", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
563 { DBGFEVENT_EXIT_VMX_VMLAUNCH, "exit_vmx_vmlaunch", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
564 { DBGFEVENT_EXIT_VMX_VMPTRLD, "exit_vmx_vmptrld", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
565 { DBGFEVENT_EXIT_VMX_VMPTRST, "exit_vmx_vmptrst", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
566 { DBGFEVENT_EXIT_VMX_VMREAD, "exit_vmx_vmread", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
567 { DBGFEVENT_EXIT_VMX_VMRESUME, "exit_vmx_vmresume", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
568 { DBGFEVENT_EXIT_VMX_VMWRITE, "exit_vmx_vmwrite", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
569 { DBGFEVENT_EXIT_VMX_VMXOFF, "exit_vmx_vmxoff", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
570 { DBGFEVENT_EXIT_VMX_VMXON, "exit_vmx_vmxon", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
571 { DBGFEVENT_EXIT_VMX_VMFUNC, "exit_vmx_vmfunc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
572 { DBGFEVENT_EXIT_VMX_INVEPT, "exit_vmx_invept", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
573 { DBGFEVENT_EXIT_VMX_INVVPID, "exit_vmx_invvpid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
574 { DBGFEVENT_EXIT_VMX_INVPCID, "exit_vmx_invpcid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
575 { DBGFEVENT_EXIT_VMX_EPT_VIOLATION, "exit_vmx_ept_violation", "eptvio", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
576 { DBGFEVENT_EXIT_VMX_EPT_MISCONFIG, "exit_vmx_ept_misconfig", "eptmis", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
577 { DBGFEVENT_EXIT_VMX_VAPIC_ACCESS, "exit_vmx_vapic_access", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
578 { DBGFEVENT_EXIT_VMX_VAPIC_WRITE, "exit_vmx_vapic_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
579 { DBGFEVENT_EXIT_SVM_VMRUN, "exit_svm_vmrun", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
580 { DBGFEVENT_EXIT_SVM_VMLOAD, "exit_svm_vmload", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
581 { DBGFEVENT_EXIT_SVM_VMSAVE, "exit_svm_vmsave", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
582 { DBGFEVENT_EXIT_SVM_STGI, "exit_svm_stgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
583 { DBGFEVENT_EXIT_SVM_CLGI, "exit_svm_clgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
584 { DBGFEVENT_IOPORT_UNASSIGNED, "pio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
585 { DBGFEVENT_IOPORT_UNUSED, "pio_unused", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
586 { DBGFEVENT_MEMORY_UNASSIGNED, "mmio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
587 { DBGFEVENT_MEMORY_ROM_WRITE, "rom_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
588 { DBGFEVENT_BSOD_MSR, "bsod_msr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
589 { DBGFEVENT_BSOD_EFI, "bsod_efi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
590};
591/** Number of entries in g_aDbgcSxEvents. */
592const uint32_t g_cDbgcSxEvents = RT_ELEMENTS(g_aDbgcSxEvents);
593
594
595
596/**
597 * @callback_method_impl{FNDBGCCMD, The 'go' command.}
598 */
599static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
600{
601 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
602
603 /*
604 * Check if the VM is halted or not before trying to resume it.
605 */
606 if (!DBGFR3IsHalted(pUVM))
607 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running");
608
609 int rc = DBGFR3Resume(pUVM);
610 if (RT_FAILURE(rc))
611 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume");
612
613 NOREF(paArgs); NOREF(cArgs);
614 return VINF_SUCCESS;
615}
616
617
618/**
619 * @callback_method_impl{FNDBGCCMD, The 'ba' command.}
620 */
621static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
622{
623 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
624
625 /*
626 * Interpret access type.
627 */
628 if ( !strchr("xrwi", paArgs[0].u.pszString[0])
629 || paArgs[0].u.pszString[1])
630 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'",
631 paArgs[0].u.pszString, pCmd->pszCmd);
632 uint8_t fType = 0;
633 switch (paArgs[0].u.pszString[0])
634 {
635 case 'x': fType = X86_DR7_RW_EO; break;
636 case 'r': fType = X86_DR7_RW_RW; break;
637 case 'w': fType = X86_DR7_RW_WO; break;
638 case 'i': fType = X86_DR7_RW_IO; break;
639 }
640
641 /*
642 * Validate size.
643 */
644 if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1)
645 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!",
646 paArgs[1].u.u64Number, pCmd->pszCmd);
647 switch (paArgs[1].u.u64Number)
648 {
649 case 1:
650 case 2:
651 case 4:
652 break;
653 /*case 8: - later*/
654 default:
655 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!",
656 paArgs[1].u.u64Number, pCmd->pszCmd);
657 }
658 uint8_t cb = (uint8_t)paArgs[1].u.u64Number;
659
660 /*
661 * Convert the pointer to a DBGF address.
662 */
663 DBGFADDRESS Address;
664 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address);
665 if (RT_FAILURE(rc))
666 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]);
667
668 /*
669 * Pick out the optional arguments.
670 */
671 uint64_t iHitTrigger = 0;
672 uint64_t iHitDisable = UINT64_MAX;
673 const char *pszCmds = NULL;
674 unsigned iArg = 3;
675 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
676 {
677 iHitTrigger = paArgs[iArg].u.u64Number;
678 iArg++;
679 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
680 {
681 iHitDisable = paArgs[iArg].u.u64Number;
682 iArg++;
683 }
684 }
685 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
686 {
687 pszCmds = paArgs[iArg].u.pszString;
688 iArg++;
689 }
690
691 /*
692 * Try set the breakpoint.
693 */
694 uint32_t iBp;
695 rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp);
696 if (RT_SUCCESS(rc))
697 {
698 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
699 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
700 if (RT_SUCCESS(rc))
701 return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
702 if (rc == VERR_DBGC_BP_EXISTS)
703 {
704 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
705 if (RT_SUCCESS(rc))
706 return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
707 }
708 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
709 AssertRC(rc2);
710 }
711 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr);
712}
713
714
715/**
716 * @callback_method_impl{FNDBGCCMD, The 'bc' command.}
717 */
718static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
719{
720 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
721
722 /*
723 * Enumerate the arguments.
724 */
725 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
726 int rc = VINF_SUCCESS;
727 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
728 {
729 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
730 {
731 /* one */
732 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
733 if (iBp == paArgs[iArg].u.u64Number)
734 {
735 int rc2 = DBGFR3BpClear(pUVM, iBp);
736 if (RT_FAILURE(rc2))
737 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
738 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
739 dbgcBpDelete(pDbgc, iBp);
740 }
741 else
742 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
743 }
744 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
745 {
746 /* all */
747 PDBGCBP pBp = pDbgc->pFirstBp;
748 while (pBp)
749 {
750 uint32_t iBp = pBp->iBp;
751 pBp = pBp->pNext;
752
753 int rc2 = DBGFR3BpClear(pUVM, iBp);
754 if (RT_FAILURE(rc2))
755 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
756 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
757 dbgcBpDelete(pDbgc, iBp);
758 }
759 }
760 else
761 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
762 }
763 return rc;
764}
765
766
767/**
768 * @callback_method_impl{FNDBGCCMD, The 'bd' command.}
769 */
770static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
771{
772 /*
773 * Enumerate the arguments.
774 */
775 int rc = VINF_SUCCESS;
776 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
777 {
778 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
779 {
780 /* one */
781 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
782 if (iBp == paArgs[iArg].u.u64Number)
783 {
784 rc = DBGFR3BpDisable(pUVM, iBp);
785 if (RT_FAILURE(rc))
786 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp);
787 }
788 else
789 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
790 }
791 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
792 {
793 /* all */
794 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
795 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
796 {
797 int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp);
798 if (RT_FAILURE(rc2))
799 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp);
800 }
801 }
802 else
803 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
804 }
805 return rc;
806}
807
808
809/**
810 * @callback_method_impl{FNDBGCCMD, The 'be' command.}
811 */
812static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
813{
814 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
815
816 /*
817 * Enumerate the arguments.
818 */
819 int rc = VINF_SUCCESS;
820 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
821 {
822 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
823 {
824 /* one */
825 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
826 if (iBp == paArgs[iArg].u.u64Number)
827 {
828 rc = DBGFR3BpEnable(pUVM, iBp);
829 if (RT_FAILURE(rc))
830 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp);
831 }
832 else
833 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
834 }
835 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
836 {
837 /* all */
838 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
839 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
840 {
841 int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp);
842 if (RT_FAILURE(rc2))
843 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp);
844 }
845 }
846 else
847 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
848 }
849 return rc;
850}
851
852
853/**
854 * Breakpoint enumeration callback function.
855 *
856 * @returns VBox status code. Any failure will stop the enumeration.
857 * @param pUVM The user mode VM handle.
858 * @param pvUser The user argument.
859 * @param pBp Pointer to the breakpoint information. (readonly)
860 */
861static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, PCDBGFBP pBp)
862{
863 PDBGC pDbgc = (PDBGC)pvUser;
864 PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, pBp->iBp);
865
866 /*
867 * BP type and size.
868 */
869 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c ", pBp->iBp, pBp->fEnabled ? 'e' : 'd');
870 bool fHasAddress = false;
871 switch (pBp->enmType)
872 {
873 case DBGFBPTYPE_INT3:
874 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " p %RGv", pBp->u.Int3.GCPtr);
875 fHasAddress = true;
876 break;
877 case DBGFBPTYPE_REG:
878 {
879 char chType;
880 switch (pBp->u.Reg.fType)
881 {
882 case X86_DR7_RW_EO: chType = 'x'; break;
883 case X86_DR7_RW_WO: chType = 'w'; break;
884 case X86_DR7_RW_IO: chType = 'i'; break;
885 case X86_DR7_RW_RW: chType = 'r'; break;
886 default: chType = '?'; break;
887
888 }
889 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%d %c %RGv", pBp->u.Reg.cb, chType, pBp->u.Reg.GCPtr);
890 fHasAddress = true;
891 break;
892 }
893
894 case DBGFBPTYPE_REM:
895 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " r %RGv", pBp->u.Rem.GCPtr);
896 fHasAddress = true;
897 break;
898
899/** @todo realign the list when I/O and MMIO breakpoint command have been added and it's possible to test this code. */
900 case DBGFBPTYPE_PORT_IO:
901 case DBGFBPTYPE_MMIO:
902 {
903 uint32_t fAccess = pBp->enmType == DBGFBPTYPE_PORT_IO ? pBp->u.PortIo.fAccess : pBp->u.Mmio.fAccess;
904 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, pBp->enmType == DBGFBPTYPE_PORT_IO ? " i" : " m");
905 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
906 fAccess & DBGFBPIOACCESS_READ_MASK ? 'r' : '-',
907 fAccess & DBGFBPIOACCESS_READ_BYTE ? '1' : '-',
908 fAccess & DBGFBPIOACCESS_READ_WORD ? '2' : '-',
909 fAccess & DBGFBPIOACCESS_READ_DWORD ? '4' : '-',
910 fAccess & DBGFBPIOACCESS_READ_QWORD ? '8' : '-',
911 fAccess & DBGFBPIOACCESS_READ_OTHER ? '+' : '-');
912 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
913 fAccess & DBGFBPIOACCESS_WRITE_MASK ? 'w' : '-',
914 fAccess & DBGFBPIOACCESS_WRITE_BYTE ? '1' : '-',
915 fAccess & DBGFBPIOACCESS_WRITE_WORD ? '2' : '-',
916 fAccess & DBGFBPIOACCESS_WRITE_DWORD ? '4' : '-',
917 fAccess & DBGFBPIOACCESS_WRITE_QWORD ? '8' : '-',
918 fAccess & DBGFBPIOACCESS_WRITE_OTHER ? '+' : '-');
919 if (pBp->enmType == DBGFBPTYPE_PORT_IO)
920 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04x-%04x",
921 pBp->u.PortIo.uPort, pBp->u.PortIo.uPort + pBp->u.PortIo.cPorts - 1);
922 else
923 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%RGp LB %03x", pBp->u.Mmio.PhysAddr, pBp->u.Mmio.cb);
924 break;
925 }
926
927 default:
928 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " unknown type %d!!", pBp->enmType);
929 AssertFailed();
930 break;
931
932 }
933 if (pBp->iHitDisable == ~(uint64_t)0)
934 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to ~0) ", pBp->cHits, pBp->iHitTrigger);
935 else
936 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to %04RX64)", pBp->cHits, pBp->iHitTrigger, pBp->iHitDisable);
937
938 /*
939 * Try resolve the address if it has one.
940 */
941 if (fHasAddress)
942 {
943 RTDBGSYMBOL Sym;
944 RTINTPTR off;
945 DBGFADDRESS Addr;
946 int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->u.GCPtr),
947 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &off, &Sym, NULL);
948 if (RT_SUCCESS(rc))
949 {
950 if (!off)
951 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName);
952 else if (off > 0)
953 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off);
954 else
955 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off);
956 }
957 }
958
959 /*
960 * The commands.
961 */
962 if (pDbgcBp)
963 {
964 if (pDbgcBp->cchCmd)
965 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd);
966 else
967 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n");
968 }
969 else
970 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n");
971
972 return VINF_SUCCESS;
973}
974
975
976/**
977 * @callback_method_impl{FNDBGCCMD, The 'bl' command.}
978 */
979static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
980{
981 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
982 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
983 NOREF(paArgs);
984
985 /*
986 * Enumerate the breakpoints.
987 */
988 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
989 int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc);
990 if (RT_FAILURE(rc))
991 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum");
992 return rc;
993}
994
995
996/**
997 * @callback_method_impl{FNDBGCCMD, The 'bp' command.}
998 */
999static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1000{
1001 /*
1002 * Convert the pointer to a DBGF address.
1003 */
1004 DBGFADDRESS Address;
1005 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1006 if (RT_FAILURE(rc))
1007 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1008
1009 /*
1010 * Pick out the optional arguments.
1011 */
1012 uint64_t iHitTrigger = 0;
1013 uint64_t iHitDisable = UINT64_MAX;
1014 const char *pszCmds = NULL;
1015 unsigned iArg = 1;
1016 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1017 {
1018 iHitTrigger = paArgs[iArg].u.u64Number;
1019 iArg++;
1020 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1021 {
1022 iHitDisable = paArgs[iArg].u.u64Number;
1023 iArg++;
1024 }
1025 }
1026 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1027 {
1028 pszCmds = paArgs[iArg].u.pszString;
1029 iArg++;
1030 }
1031
1032 /*
1033 * Try set the breakpoint.
1034 */
1035 uint32_t iBp;
1036 rc = DBGFR3BpSet(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
1037 if (RT_SUCCESS(rc))
1038 {
1039 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1040 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1041 if (RT_SUCCESS(rc))
1042 return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1043 if (rc == VERR_DBGC_BP_EXISTS)
1044 {
1045 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1046 if (RT_SUCCESS(rc))
1047 return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1048 }
1049 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1050 AssertRC(rc2);
1051 }
1052 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr);
1053}
1054
1055
1056/**
1057 * @callback_method_impl{FNDBGCCMD, The 'br' command.}
1058 */
1059static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1060{
1061 /*
1062 * Convert the pointer to a DBGF address.
1063 */
1064 DBGFADDRESS Address;
1065 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1066 if (RT_FAILURE(rc))
1067 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1068
1069 /*
1070 * Pick out the optional arguments.
1071 */
1072 uint64_t iHitTrigger = 0;
1073 uint64_t iHitDisable = UINT64_MAX;
1074 const char *pszCmds = NULL;
1075 unsigned iArg = 1;
1076 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1077 {
1078 iHitTrigger = paArgs[iArg].u.u64Number;
1079 iArg++;
1080 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1081 {
1082 iHitDisable = paArgs[iArg].u.u64Number;
1083 iArg++;
1084 }
1085 }
1086 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1087 {
1088 pszCmds = paArgs[iArg].u.pszString;
1089 iArg++;
1090 }
1091
1092 /*
1093 * Try set the breakpoint.
1094 */
1095 uint32_t iBp;
1096 rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
1097 if (RT_SUCCESS(rc))
1098 {
1099 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1100 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1101 if (RT_SUCCESS(rc))
1102 return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1103 if (rc == VERR_DBGC_BP_EXISTS)
1104 {
1105 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1106 if (RT_SUCCESS(rc))
1107 return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1108 }
1109 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1110 AssertRC(rc2);
1111 }
1112 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr);
1113}
1114
1115
1116/**
1117 * Helps the unassmble ('u') command display symbols it starts at and passes.
1118 *
1119 * @param pUVM The user mode VM handle.
1120 * @param pCmdHlp The command helpers for printing via.
1121 * @param hDbgAs The address space to look up addresses in.
1122 * @param pAddress The current address.
1123 * @param pcbCallAgain Where to return the distance to the next check (in
1124 * instruction bytes).
1125 */
1126static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress,
1127 PRTUINTPTR pcbCallAgain)
1128{
1129 RTDBGSYMBOL Symbol;
1130 RTGCINTPTR offDispSym;
1131 int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress, RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &offDispSym, &Symbol, NULL);
1132 if (RT_FAILURE(rc) || offDispSym > _1G)
1133 rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress, RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL, &offDispSym, &Symbol, NULL);
1134 if (RT_SUCCESS(rc) && offDispSym < _1G)
1135 {
1136 if (!offDispSym)
1137 {
1138 DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName);
1139 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb;
1140 }
1141 else if (offDispSym > 0)
1142 {
1143 DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym);
1144 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1;
1145 }
1146 else
1147 {
1148 DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym);
1149 *pcbCallAgain = !Symbol.cb ? 64 : (RTGCUINTPTR)-offDispSym + Symbol.cb;
1150 }
1151 }
1152 else
1153 *pcbCallAgain = UINT32_MAX;
1154}
1155
1156
1157/**
1158 * @callback_method_impl{FNDBGCCMD, The 'u' command.}
1159 */
1160static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1161{
1162 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1163
1164 /*
1165 * Validate input.
1166 */
1167 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1168 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
1169 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
1170
1171 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1172 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
1173
1174 /*
1175 * Check the desired mode.
1176 */
1177 unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
1178 switch (pCmd->pszCmd[1])
1179 {
1180 default: AssertFailed();
1181 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
1182 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
1183 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
1184 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
1185 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
1186 }
1187
1188 /** @todo should use DBGFADDRESS for everything */
1189
1190 /*
1191 * Find address.
1192 */
1193 if (!cArgs)
1194 {
1195 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1196 {
1197 /** @todo Batch query CS, RIP, CPU mode and flags. */
1198 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1199 if ( pDbgc->fRegCtxGuest
1200 && CPUMIsGuestIn64BitCode(pVCpu))
1201 {
1202 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
1203 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
1204 }
1205 else
1206 {
1207 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
1208 pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu);
1209 pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu);
1210 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
1211 && pDbgc->fRegCtxGuest
1212 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
1213 {
1214 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1215 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
1216 }
1217 }
1218
1219 if (pDbgc->fRegCtxGuest)
1220 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
1221 else
1222 fFlags |= DBGF_DISAS_FLAGS_CURRENT_HYPER | DBGF_DISAS_FLAGS_HYPER;
1223 }
1224 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
1225 {
1226 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1227 fFlags |= pDbgc->fDisasm & (DBGF_DISAS_FLAGS_MODE_MASK | DBGF_DISAS_FLAGS_HYPER);
1228 }
1229 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
1230 }
1231 else
1232 pDbgc->DisasmPos = paArgs[0];
1233 pDbgc->pLastPos = &pDbgc->DisasmPos;
1234
1235 /*
1236 * Range.
1237 */
1238 switch (pDbgc->DisasmPos.enmRangeType)
1239 {
1240 case DBGCVAR_RANGE_NONE:
1241 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1242 pDbgc->DisasmPos.u64Range = 10;
1243 break;
1244
1245 case DBGCVAR_RANGE_ELEMENTS:
1246 if (pDbgc->DisasmPos.u64Range > 2048)
1247 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
1248 break;
1249
1250 case DBGCVAR_RANGE_BYTES:
1251 if (pDbgc->DisasmPos.u64Range > 65536)
1252 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
1253 break;
1254
1255 default:
1256 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
1257 }
1258
1259 /*
1260 * Convert physical and host addresses to guest addresses.
1261 */
1262 RTDBGAS hDbgAs = pDbgc->hDbgAs;
1263 int rc;
1264 switch (pDbgc->DisasmPos.enmType)
1265 {
1266 case DBGCVAR_TYPE_GC_FLAT:
1267 case DBGCVAR_TYPE_GC_FAR:
1268 break;
1269 case DBGCVAR_TYPE_GC_PHYS:
1270 hDbgAs = DBGF_AS_PHYS;
1271 case DBGCVAR_TYPE_HC_FLAT:
1272 case DBGCVAR_TYPE_HC_PHYS:
1273 {
1274 DBGCVAR VarTmp;
1275 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
1276 if (RT_FAILURE(rc))
1277 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
1278 pDbgc->DisasmPos = VarTmp;
1279 break;
1280 }
1281 default: AssertFailed(); break;
1282 }
1283
1284 DBGFADDRESS CurAddr;
1285 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1286 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1287 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1288 else
1289 {
1290 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1291 if (RT_FAILURE(rc))
1292 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
1293 }
1294
1295 if (CurAddr.fFlags & DBGFADDRESS_FLAGS_HMA)
1296 fFlags |= DBGF_DISAS_FLAGS_HYPER; /* This crap is due to not using DBGFADDRESS as DBGFR3Disas* input. */
1297 pDbgc->fDisasm = fFlags;
1298
1299 /*
1300 * Figure out where we are and display it. Also calculate when we need to
1301 * check for a new symbol if possible.
1302 */
1303 RTGCUINTPTR cbCheckSymbol;
1304 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1305
1306 /*
1307 * Do the disassembling.
1308 */
1309 unsigned cTries = 32;
1310 int iRangeLeft = (int)pDbgc->DisasmPos.u64Range;
1311 if (iRangeLeft == 0) /* kludge for 'r'. */
1312 iRangeLeft = -1;
1313 for (;;)
1314 {
1315 /*
1316 * Disassemble the instruction.
1317 */
1318 char szDis[256];
1319 uint32_t cbInstr = 1;
1320 if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT)
1321 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags,
1322 &szDis[0], sizeof(szDis), &cbInstr);
1323 else
1324 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags,
1325 &szDis[0], sizeof(szDis), &cbInstr);
1326 if (RT_SUCCESS(rc))
1327 {
1328 /* print it */
1329 rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]);
1330 if (RT_FAILURE(rc))
1331 return rc;
1332 }
1333 else
1334 {
1335 /* bitch. */
1336 int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n");
1337 if (RT_FAILURE(rc2))
1338 return rc2;
1339 if (cTries-- > 0)
1340 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up");
1341 cbInstr = 1;
1342 }
1343
1344 /* advance */
1345 if (iRangeLeft < 0) /* 'r' */
1346 break;
1347 if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1348 iRangeLeft--;
1349 else
1350 iRangeLeft -= cbInstr;
1351 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr);
1352 if (RT_FAILURE(rc))
1353 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr);
1354 if (iRangeLeft <= 0)
1355 break;
1356 fFlags &= ~(DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_CURRENT_HYPER);
1357
1358 /* Print next symbol? */
1359 if (cbCheckSymbol <= cbInstr)
1360 {
1361 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1362 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1363 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1364 else
1365 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1366 if (RT_SUCCESS(rc))
1367 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1368 else
1369 cbCheckSymbol = UINT32_MAX;
1370 }
1371 else
1372 cbCheckSymbol -= cbInstr;
1373 }
1374
1375 NOREF(pCmd);
1376 return VINF_SUCCESS;
1377}
1378
1379
1380/**
1381 * @callback_method_impl{FNDGCSCREENBLIT}
1382 */
1383static DECLCALLBACK(int) dbgcCmdUnassembleCfgBlit(const char *psz, void *pvUser)
1384{
1385 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
1386 return DBGCCmdHlpPrintf(pCmdHlp, "%s", psz);
1387}
1388
1389
1390/**
1391 * Checks whether both addresses are equal.
1392 *
1393 * @returns true if both addresses point to the same location, false otherwise.
1394 * @param pAddr1 First address.
1395 * @param pAddr2 Second address.
1396 */
1397static bool dbgcCmdUnassembleCfgAddrEqual(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1398{
1399 return pAddr1->Sel == pAddr2->Sel
1400 && pAddr1->off == pAddr2->off;
1401}
1402
1403
1404/**
1405 * Checks whether the first given address is lower than the second one.
1406 *
1407 * @returns true if both addresses point to the same location, false otherwise.
1408 * @param pAddr1 First address.
1409 * @param pAddr2 Second address.
1410 */
1411static bool dbgcCmdUnassembleCfgAddrLower(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1412{
1413 return pAddr1->Sel == pAddr2->Sel
1414 && pAddr1->off < pAddr2->off;
1415}
1416
1417
1418/**
1419 * Calculates the size required for the given basic block including the
1420 * border and spacing on the edges.
1421 *
1422 * @returns nothing.
1423 * @param hFlowBb The basic block handle.
1424 * @param pDumpBb The dumper state to fill in for the basic block.
1425 */
1426static void dbgcCmdUnassembleCfgDumpCalcBbSize(DBGFFLOWBB hFlowBb, PDBGCFLOWBBDUMP pDumpBb)
1427{
1428 uint32_t fFlags = DBGFR3FlowBbGetFlags(hFlowBb);
1429 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(hFlowBb);
1430
1431 pDumpBb->hFlowBb = hFlowBb;
1432 pDumpBb->cchHeight = cInstr + 4; /* Include spacing and border top and bottom. */
1433 pDumpBb->cchWidth = 0;
1434 DBGFR3FlowBbGetStartAddress(hFlowBb, &pDumpBb->AddrStart);
1435
1436 DBGFFLOWBBENDTYPE enmType = DBGFR3FlowBbGetType(hFlowBb);
1437 if ( enmType == DBGFFLOWBBENDTYPE_COND
1438 || enmType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1439 || enmType == DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP)
1440 DBGFR3FlowBbGetBranchAddress(hFlowBb, &pDumpBb->AddrTarget);
1441
1442 if (fFlags & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1443 {
1444 const char *pszErr = NULL;
1445 DBGFR3FlowBbQueryError(hFlowBb, &pszErr);
1446 if (pszErr)
1447 {
1448 pDumpBb->cchHeight++;
1449 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszErr));
1450 }
1451 }
1452 for (unsigned i = 0; i < cInstr; i++)
1453 {
1454 const char *pszInstr = NULL;
1455 int rc = DBGFR3FlowBbQueryInstr(hFlowBb, i, NULL, NULL, &pszInstr);
1456 AssertRC(rc);
1457 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszInstr));
1458 }
1459 pDumpBb->cchWidth += 4; /* Include spacing and border left and right. */
1460}
1461
1462
1463/**
1464 * Dumps a top or bottom boundary line.
1465 *
1466 * @returns nothing.
1467 * @param hScreen The screen to draw to.
1468 * @param uStartX Where to start drawing the boundary.
1469 * @param uStartY Y coordinate.
1470 * @param cchWidth Width of the boundary.
1471 * @param enmColor The color to use for drawing.
1472 */
1473static void dbgcCmdUnassembleCfgDumpBbBoundary(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1474 DBGCSCREENCOLOR enmColor)
1475{
1476 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '+', enmColor);
1477 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1478 uStartY, '-', enmColor);
1479 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '+', enmColor);
1480}
1481
1482
1483/**
1484 * Dumps a spacing line between the top or bottom boundary and the actual disassembly.
1485 *
1486 * @returns nothing.
1487 * @param hScreen The screen to draw to.
1488 * @param uStartX Where to start drawing the spacing.
1489 * @param uStartY Y coordinate.
1490 * @param cchWidth Width of the spacing.
1491 * @param enmColor The color to use for drawing.
1492 */
1493static void dbgcCmdUnassembleCfgDumpBbSpacing(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1494 DBGCSCREENCOLOR enmColor)
1495{
1496 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmColor);
1497 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1498 uStartY, ' ', enmColor);
1499 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmColor);
1500}
1501
1502
1503/**
1504 * Writes a given text to the screen.
1505 *
1506 * @returns nothing.
1507 * @param hScreen The screen to draw to.
1508 * @param uStartX Where to start drawing the line.
1509 * @param uStartY Y coordinate.
1510 * @param cchWidth Maximum width of the text.
1511 * @param pszText The text to write.
1512 * @param enmTextColor The color to use for drawing the text.
1513 * @param enmBorderColor The color to use for drawing the border.
1514 */
1515static void dbgcCmdUnassembleCfgDumpBbText(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY,
1516 uint32_t cchWidth, const char *pszText,
1517 DBGCSCREENCOLOR enmTextColor, DBGCSCREENCOLOR enmBorderColor)
1518{
1519 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmBorderColor);
1520 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + 1, uStartY, ' ', enmTextColor);
1521 dbgcScreenAsciiDrawString(hScreen, uStartX + 2, uStartY, pszText, enmTextColor);
1522 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmBorderColor);
1523}
1524
1525
1526/**
1527 * Dumps one basic block using the dumper callback.
1528 *
1529 * @returns nothing.
1530 * @param pDumpBb The basic block dump state to dump.
1531 * @param hScreen The screen to draw to.
1532 */
1533static void dbgcCmdUnassembleCfgDumpBb(PDBGCFLOWBBDUMP pDumpBb, DBGCSCREEN hScreen)
1534{
1535 uint32_t uStartY = pDumpBb->uStartY;
1536 bool fError = RT_BOOL(DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR);
1537 DBGCSCREENCOLOR enmColor = fError ? DBGCSCREENCOLOR_RED_BRIGHT : DBGCSCREENCOLOR_DEFAULT;
1538
1539 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1540 uStartY++;
1541 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1542 uStartY++;
1543
1544 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(pDumpBb->hFlowBb);
1545 for (unsigned i = 0; i < cInstr; i++)
1546 {
1547 const char *pszInstr = NULL;
1548 DBGFR3FlowBbQueryInstr(pDumpBb->hFlowBb, i, NULL, NULL, &pszInstr);
1549 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY + i,
1550 pDumpBb->cchWidth, pszInstr, DBGCSCREENCOLOR_DEFAULT,
1551 enmColor);
1552 }
1553 uStartY += cInstr;
1554
1555 if (fError)
1556 {
1557 const char *pszErr = NULL;
1558 DBGFR3FlowBbQueryError(pDumpBb->hFlowBb, &pszErr);
1559 if (pszErr)
1560 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY,
1561 pDumpBb->cchWidth, pszErr, enmColor,
1562 enmColor);
1563 uStartY++;
1564 }
1565
1566 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1567 uStartY++;
1568 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1569 uStartY++;
1570}
1571
1572
1573/**
1574 * Dumps one branch table using the dumper callback.
1575 *
1576 * @returns nothing.
1577 * @param pDumpBb The basic block dump state to dump.
1578 * @param hScreen The screen to draw to.
1579 */
1580static void dbgcCmdUnassembleCfgDumpBranchTbl(PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl, DBGCSCREEN hScreen)
1581{
1582 uint32_t uStartY = pDumpBranchTbl->uStartY;
1583 DBGCSCREENCOLOR enmColor = DBGCSCREENCOLOR_CYAN_BRIGHT;
1584
1585 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1586 uStartY++;
1587 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1588 uStartY++;
1589
1590 uint32_t cSlots = DBGFR3FlowBranchTblGetSlots(pDumpBranchTbl->hFlowBranchTbl);
1591 for (unsigned i = 0; i < cSlots; i++)
1592 {
1593 DBGFADDRESS Addr;
1594 char szAddr[128];
1595
1596 RT_ZERO(szAddr);
1597 DBGFR3FlowBranchTblGetAddrAtSlot(pDumpBranchTbl->hFlowBranchTbl, i, &Addr);
1598
1599 if (Addr.Sel == DBGF_SEL_FLAT)
1600 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%RGv", Addr.FlatPtr);
1601 else
1602 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%04x:%RGv", Addr.Sel, Addr.off);
1603
1604 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBranchTbl->uStartX, uStartY + i,
1605 pDumpBranchTbl->cchWidth, &szAddr[0], DBGCSCREENCOLOR_DEFAULT,
1606 enmColor);
1607 }
1608 uStartY += cSlots;
1609
1610 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1611 uStartY++;
1612 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1613 uStartY++;
1614}
1615
1616
1617/**
1618 * Fills in the dump states for the basic blocks and branch tables.
1619 *
1620 * @returns VBox status code.
1621 * @param hFlowIt The control flow graph iterator handle.
1622 * @param hFlowBranchTblIt The control flow graph branch table iterator handle.
1623 * @param paDumpBb The array of basic block dump states.
1624 * @param paDumpBranchTbl The array of branch table dump states.
1625 * @param cBbs Number of basic blocks.
1626 * @param cBranchTbls Number of branch tables.
1627 */
1628static int dbgcCmdUnassembleCfgDumpCalcDimensions(DBGFFLOWIT hFlowIt, DBGFFLOWBRANCHTBLIT hFlowBranchTblIt,
1629 PDBGCFLOWBBDUMP paDumpBb, PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl,
1630 uint32_t cBbs, uint32_t cBranchTbls)
1631{
1632 RT_NOREF2(cBbs, cBranchTbls);
1633
1634 /* Calculate the sizes of each basic block first. */
1635 DBGFFLOWBB hFlowBb = DBGFR3FlowItNext(hFlowIt);
1636 uint32_t idx = 0;
1637 while (hFlowBb)
1638 {
1639 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[idx]);
1640 idx++;
1641 hFlowBb = DBGFR3FlowItNext(hFlowIt);
1642 }
1643
1644 if (paDumpBranchTbl)
1645 {
1646 idx = 0;
1647 DBGFFLOWBRANCHTBL hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1648 while (hFlowBranchTbl)
1649 {
1650 paDumpBranchTbl[idx].hFlowBranchTbl = hFlowBranchTbl;
1651 paDumpBranchTbl[idx].cchHeight = DBGFR3FlowBranchTblGetSlots(hFlowBranchTbl) + 4; /* Spacing and border. */
1652 paDumpBranchTbl[idx].cchWidth = 25 + 4; /* Spacing and border. */
1653 idx++;
1654 hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1655 }
1656 }
1657
1658 return VINF_SUCCESS;
1659}
1660
1661/**
1662 * Dumps the given control flow graph to the output.
1663 *
1664 * @returns VBox status code.
1665 * @param hCfg The control flow graph handle.
1666 * @param fUseColor Flag whether the output should be colorized.
1667 * @param pCmdHlp The command helper callback table.
1668 */
1669static int dbgcCmdUnassembleCfgDump(DBGFFLOW hCfg, bool fUseColor, PDBGCCMDHLP pCmdHlp)
1670{
1671 int rc = VINF_SUCCESS;
1672 DBGFFLOWIT hCfgIt = NULL;
1673 DBGFFLOWBRANCHTBLIT hFlowBranchTblIt = NULL;
1674 uint32_t cBbs = DBGFR3FlowGetBbCount(hCfg);
1675 uint32_t cBranchTbls = DBGFR3FlowGetBranchTblCount(hCfg);
1676 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cBbs * sizeof(DBGCFLOWBBDUMP));
1677 PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl = NULL;
1678
1679 if (cBranchTbls)
1680 paDumpBranchTbl = (PDBGCFLOWBRANCHTBLDUMP)RTMemAllocZ(cBranchTbls * sizeof(DBGCFLOWBRANCHTBLDUMP));
1681
1682 if (RT_UNLIKELY(!paDumpBb || (!paDumpBranchTbl && cBranchTbls > 0)))
1683 rc = VERR_NO_MEMORY;
1684 if (RT_SUCCESS(rc))
1685 rc = DBGFR3FlowItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hCfgIt);
1686 if (RT_SUCCESS(rc) && cBranchTbls > 0)
1687 rc = DBGFR3FlowBranchTblItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hFlowBranchTblIt);
1688
1689 if (RT_SUCCESS(rc))
1690 {
1691 rc = dbgcCmdUnassembleCfgDumpCalcDimensions(hCfgIt, hFlowBranchTblIt, paDumpBb, paDumpBranchTbl,
1692 cBbs, cBranchTbls);
1693
1694 /* Calculate the ASCII screen dimensions and create one. */
1695 uint32_t cchWidth = 0;
1696 uint32_t cchLeftExtra = 5;
1697 uint32_t cchRightExtra = 5;
1698 uint32_t cchHeight = 0;
1699 for (unsigned i = 0; i < cBbs; i++)
1700 {
1701 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1702 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
1703 cchHeight += pDumpBb->cchHeight;
1704
1705 /* Incomplete blocks don't have a successor. */
1706 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1707 continue;
1708
1709 switch (DBGFR3FlowBbGetType(pDumpBb->hFlowBb))
1710 {
1711 case DBGFFLOWBBENDTYPE_EXIT:
1712 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1713 break;
1714 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1715 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1716 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1717 cchLeftExtra++;
1718 else
1719 cchRightExtra++;
1720 break;
1721 case DBGFFLOWBBENDTYPE_UNCOND:
1722 cchHeight += 2; /* For the arrow down to the next basic block. */
1723 break;
1724 case DBGFFLOWBBENDTYPE_COND:
1725 cchHeight += 2; /* For the arrow down to the next basic block. */
1726 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1727 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1728 cchLeftExtra++;
1729 else
1730 cchRightExtra++;
1731 break;
1732 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1733 default:
1734 AssertFailed();
1735 }
1736 }
1737
1738 for (unsigned i = 0; i < cBranchTbls; i++)
1739 {
1740 PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl = &paDumpBranchTbl[i];
1741 cchWidth = RT_MAX(cchWidth, pDumpBranchTbl->cchWidth);
1742 cchHeight += pDumpBranchTbl->cchHeight;
1743 }
1744
1745 cchWidth += 2;
1746
1747 DBGCSCREEN hScreen = NULL;
1748 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth + cchLeftExtra + cchRightExtra, cchHeight);
1749 if (RT_SUCCESS(rc))
1750 {
1751 uint32_t uY = 0;
1752
1753 /* Dump the branch tables first. */
1754 for (unsigned i = 0; i < cBranchTbls; i++)
1755 {
1756 paDumpBranchTbl[i].uStartX = cchLeftExtra + (cchWidth - paDumpBranchTbl[i].cchWidth) / 2;
1757 paDumpBranchTbl[i].uStartY = uY;
1758 dbgcCmdUnassembleCfgDumpBranchTbl(&paDumpBranchTbl[i], hScreen);
1759 uY += paDumpBranchTbl[i].cchHeight;
1760 }
1761
1762 /* Dump the basic blocks and connections to the immediate successor. */
1763 for (unsigned i = 0; i < cBbs; i++)
1764 {
1765 paDumpBb[i].uStartX = cchLeftExtra + (cchWidth - paDumpBb[i].cchWidth) / 2;
1766 paDumpBb[i].uStartY = uY;
1767 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
1768 uY += paDumpBb[i].cchHeight;
1769
1770 /* Incomplete blocks don't have a successor. */
1771 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1772 continue;
1773
1774 switch (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb))
1775 {
1776 case DBGFFLOWBBENDTYPE_EXIT:
1777 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1778 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1779 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1780 break;
1781 case DBGFFLOWBBENDTYPE_UNCOND:
1782 /* Draw the arrow down to the next block. */
1783 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1784 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
1785 uY++;
1786 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1787 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
1788 uY++;
1789 break;
1790 case DBGFFLOWBBENDTYPE_COND:
1791 /* Draw the arrow down to the next block. */
1792 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1793 '|', DBGCSCREENCOLOR_RED_BRIGHT);
1794 uY++;
1795 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1796 'V', DBGCSCREENCOLOR_RED_BRIGHT);
1797 uY++;
1798 break;
1799 default:
1800 AssertFailed();
1801 }
1802 }
1803
1804 /* Last pass, connect all remaining branches. */
1805 uint32_t uBackConns = 0;
1806 uint32_t uFwdConns = 0;
1807 for (unsigned i = 0; i < cBbs; i++)
1808 {
1809 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1810 DBGFFLOWBBENDTYPE enmEndType = DBGFR3FlowBbGetType(pDumpBb->hFlowBb);
1811
1812 /* Incomplete blocks don't have a successor. */
1813 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1814 continue;
1815
1816 switch (enmEndType)
1817 {
1818 case DBGFFLOWBBENDTYPE_EXIT:
1819 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1820 case DBGFFLOWBBENDTYPE_UNCOND:
1821 break;
1822 case DBGFFLOWBBENDTYPE_COND:
1823 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1824 {
1825 /* Find the target first to get the coordinates. */
1826 PDBGCFLOWBBDUMP pDumpBbTgt = NULL;
1827 for (unsigned idxDumpBb = 0; idxDumpBb < cBbs; idxDumpBb++)
1828 {
1829 pDumpBbTgt = &paDumpBb[idxDumpBb];
1830 if (dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBbTgt->AddrStart))
1831 break;
1832 }
1833
1834 DBGCSCREENCOLOR enmColor = enmEndType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1835 ? DBGCSCREENCOLOR_YELLOW_BRIGHT
1836 : DBGCSCREENCOLOR_GREEN_BRIGHT;
1837
1838 /*
1839 * Use the right side for targets with higher addresses,
1840 * left when jumping backwards.
1841 */
1842 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1843 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1844 {
1845 /* Going backwards. */
1846 uint32_t uXVerLine = /*cchLeftExtra - 1 -*/ uBackConns + 1;
1847 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
1848 uBackConns++;
1849
1850 /* Draw the arrow pointing to the target block. */
1851 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX - 1, pDumpBbTgt->uStartY,
1852 '>', enmColor);
1853 /* Draw the horizontal line. */
1854 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBbTgt->uStartX - 2,
1855 pDumpBbTgt->uStartY, '-', enmColor);
1856 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
1857 enmColor);
1858 /* Draw the vertical line down to the source block. */
1859 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, pDumpBbTgt->uStartY + 1, uYHorLine - 1,
1860 '|', enmColor);
1861 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
1862 /* Draw the horizontal connection between the source block and vertical part. */
1863 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBb->uStartX - 1,
1864 uYHorLine, '-', enmColor);
1865
1866 }
1867 else
1868 {
1869 /* Going forward. */
1870 uint32_t uXVerLine = cchWidth + cchLeftExtra + (cchRightExtra - uFwdConns) - 1;
1871 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
1872 uFwdConns++;
1873
1874 /* Draw the horizontal line. */
1875 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBb->uStartX + pDumpBb->cchWidth,
1876 uXVerLine - 1, uYHorLine, '-', enmColor);
1877 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
1878 /* Draw the vertical line down to the target block. */
1879 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, uYHorLine + 1, pDumpBbTgt->uStartY - 1,
1880 '|', enmColor);
1881 /* Draw the horizontal connection between the target block and vertical part. */
1882 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
1883 uXVerLine, pDumpBbTgt->uStartY, '-', enmColor);
1884 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
1885 enmColor);
1886 /* Draw the arrow pointing to the target block. */
1887 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
1888 pDumpBbTgt->uStartY, '<', enmColor);
1889 }
1890 break;
1891 }
1892 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1893 default:
1894 AssertFailed();
1895 }
1896 }
1897
1898 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, fUseColor);
1899 dbgcScreenAsciiDestroy(hScreen);
1900 }
1901 }
1902
1903 if (paDumpBb)
1904 {
1905 for (unsigned i = 0; i < cBbs; i++)
1906 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
1907 RTMemTmpFree(paDumpBb);
1908 }
1909
1910 if (paDumpBranchTbl)
1911 {
1912 for (unsigned i = 0; i < cBranchTbls; i++)
1913 DBGFR3FlowBranchTblRelease(paDumpBranchTbl[i].hFlowBranchTbl);
1914 RTMemTmpFree(paDumpBranchTbl);
1915 }
1916
1917 if (hCfgIt)
1918 DBGFR3FlowItDestroy(hCfgIt);
1919 if (hFlowBranchTblIt)
1920 DBGFR3FlowBranchTblItDestroy(hFlowBranchTblIt);
1921
1922 return rc;
1923}
1924
1925
1926/**
1927 * @callback_method_impl{FNDBGCCMD, The 'ucfg' command.}
1928 */
1929static DECLCALLBACK(int) dbgcCmdUnassembleCfg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1930{
1931 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1932
1933 /*
1934 * Validate input.
1935 */
1936 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1937 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
1938 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
1939
1940 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1941 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
1942
1943 /*
1944 * Check the desired mode.
1945 */
1946 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
1947 bool fUseColor = false;
1948 switch (pCmd->pszCmd[4])
1949 {
1950 default: AssertFailed();
1951 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
1952 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
1953 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
1954 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
1955 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
1956 case 'c': fUseColor = true; break;
1957 }
1958
1959 /** @todo should use DBGFADDRESS for everything */
1960
1961 /*
1962 * Find address.
1963 */
1964 if (!cArgs)
1965 {
1966 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1967 {
1968 /** @todo Batch query CS, RIP, CPU mode and flags. */
1969 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1970 if ( pDbgc->fRegCtxGuest
1971 && CPUMIsGuestIn64BitCode(pVCpu))
1972 {
1973 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
1974 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
1975 }
1976 else
1977 {
1978 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
1979 pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu);
1980 pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu);
1981 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
1982 && pDbgc->fRegCtxGuest
1983 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
1984 {
1985 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1986 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
1987 }
1988 }
1989
1990 if (pDbgc->fRegCtxGuest)
1991 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
1992 else
1993 fFlags |= DBGF_DISAS_FLAGS_CURRENT_HYPER | DBGF_DISAS_FLAGS_HYPER;
1994 }
1995 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
1996 {
1997 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1998 fFlags |= pDbgc->fDisasm & (DBGF_DISAS_FLAGS_MODE_MASK | DBGF_DISAS_FLAGS_HYPER);
1999 }
2000 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
2001 }
2002 else
2003 pDbgc->DisasmPos = paArgs[0];
2004 pDbgc->pLastPos = &pDbgc->DisasmPos;
2005
2006 /*
2007 * Range.
2008 */
2009 switch (pDbgc->DisasmPos.enmRangeType)
2010 {
2011 case DBGCVAR_RANGE_NONE:
2012 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2013 pDbgc->DisasmPos.u64Range = 10;
2014 break;
2015
2016 case DBGCVAR_RANGE_ELEMENTS:
2017 if (pDbgc->DisasmPos.u64Range > 2048)
2018 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
2019 break;
2020
2021 case DBGCVAR_RANGE_BYTES:
2022 if (pDbgc->DisasmPos.u64Range > 65536)
2023 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
2024 break;
2025
2026 default:
2027 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
2028 }
2029
2030 /*
2031 * Convert physical and host addresses to guest addresses.
2032 */
2033 RTDBGAS hDbgAs = pDbgc->hDbgAs;
2034 int rc;
2035 switch (pDbgc->DisasmPos.enmType)
2036 {
2037 case DBGCVAR_TYPE_GC_FLAT:
2038 case DBGCVAR_TYPE_GC_FAR:
2039 break;
2040 case DBGCVAR_TYPE_GC_PHYS:
2041 hDbgAs = DBGF_AS_PHYS;
2042 case DBGCVAR_TYPE_HC_FLAT:
2043 case DBGCVAR_TYPE_HC_PHYS:
2044 {
2045 DBGCVAR VarTmp;
2046 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
2047 if (RT_FAILURE(rc))
2048 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
2049 pDbgc->DisasmPos = VarTmp;
2050 break;
2051 }
2052 default: AssertFailed(); break;
2053 }
2054
2055 DBGFADDRESS CurAddr;
2056 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
2057 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
2058 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
2059 else
2060 {
2061 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
2062 if (RT_FAILURE(rc))
2063 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
2064 }
2065
2066 DBGFFLOW hCfg;
2067 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
2068 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
2069 if (RT_SUCCESS(rc))
2070 {
2071 /* Dump the graph. */
2072 rc = dbgcCmdUnassembleCfgDump(hCfg, fUseColor, pCmdHlp);
2073 DBGFR3FlowRelease(hCfg);
2074 }
2075 else
2076 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
2077
2078 NOREF(pCmd);
2079 return rc;
2080}
2081
2082
2083/**
2084 * @callback_method_impl{FNDBGCCMD, The 'ls' command.}
2085 */
2086static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2087{
2088 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2089
2090 /*
2091 * Validate input.
2092 */
2093 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2094 if (cArgs == 1)
2095 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2096 if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2097 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing...");
2098 if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType))
2099 return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM");
2100
2101 /*
2102 * Find address.
2103 */
2104 if (!cArgs)
2105 {
2106 if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2107 {
2108 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2109 pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR;
2110 pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu);
2111 pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu);
2112 }
2113 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE;
2114 }
2115 else
2116 pDbgc->SourcePos = paArgs[0];
2117 pDbgc->pLastPos = &pDbgc->SourcePos;
2118
2119 /*
2120 * Ensure the source address is flat GC.
2121 */
2122 switch (pDbgc->SourcePos.enmType)
2123 {
2124 case DBGCVAR_TYPE_GC_FLAT:
2125 break;
2126 case DBGCVAR_TYPE_GC_PHYS:
2127 case DBGCVAR_TYPE_GC_FAR:
2128 case DBGCVAR_TYPE_HC_FLAT:
2129 case DBGCVAR_TYPE_HC_PHYS:
2130 {
2131 int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos);
2132 if (RT_FAILURE(rc))
2133 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc);
2134 break;
2135 }
2136 default: AssertFailed(); break;
2137 }
2138
2139 /*
2140 * Range.
2141 */
2142 switch (pDbgc->SourcePos.enmRangeType)
2143 {
2144 case DBGCVAR_RANGE_NONE:
2145 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2146 pDbgc->SourcePos.u64Range = 10;
2147 break;
2148
2149 case DBGCVAR_RANGE_ELEMENTS:
2150 if (pDbgc->SourcePos.u64Range > 2048)
2151 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n");
2152 break;
2153
2154 case DBGCVAR_RANGE_BYTES:
2155 if (pDbgc->SourcePos.u64Range > 65536)
2156 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
2157 break;
2158
2159 default:
2160 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType);
2161 }
2162
2163 /*
2164 * Do the disassembling.
2165 */
2166 bool fFirst = 1;
2167 RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" };
2168 int iRangeLeft = (int)pDbgc->SourcePos.u64Range;
2169 if (iRangeLeft == 0) /* kludge for 'r'. */
2170 iRangeLeft = -1;
2171 for (;;)
2172 {
2173 /*
2174 * Get line info.
2175 */
2176 RTDBGLINE Line;
2177 RTGCINTPTR off;
2178 DBGFADDRESS SourcePosAddr;
2179 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr);
2180 if (RT_FAILURE(rc))
2181 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos);
2182 rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL);
2183 if (RT_FAILURE(rc))
2184 return VINF_SUCCESS;
2185
2186 unsigned cLines = 0;
2187 if (memcmp(&Line, &LinePrev, sizeof(Line)))
2188 {
2189 /*
2190 * Print filenamename
2191 */
2192 if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename))
2193 fFirst = true;
2194 if (fFirst)
2195 {
2196 rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo);
2197 if (RT_FAILURE(rc))
2198 return rc;
2199 }
2200
2201 /*
2202 * Try open the file and read the line.
2203 */
2204 FILE *phFile = fopen(Line.szFilename, "r");
2205 if (phFile)
2206 {
2207 /* Skip ahead to the desired line. */
2208 char szLine[4096];
2209 unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1;
2210 if (cBefore > 7)
2211 cBefore = 0;
2212 unsigned cLeft = Line.uLineNo - cBefore;
2213 while (cLeft > 0)
2214 {
2215 szLine[0] = '\0';
2216 if (!fgets(szLine, sizeof(szLine), phFile))
2217 break;
2218 cLeft--;
2219 }
2220 if (!cLeft)
2221 {
2222 /* print the before lines */
2223 for (;;)
2224 {
2225 size_t cch = strlen(szLine);
2226 while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) )
2227 szLine[--cch] = '\0';
2228 if (cBefore-- <= 0)
2229 break;
2230
2231 rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine);
2232 szLine[0] = '\0';
2233 const char *pszShutUpGcc = fgets(szLine, sizeof(szLine), phFile); NOREF(pszShutUpGcc);
2234 cLines++;
2235 }
2236 /* print the actual line */
2237 rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine);
2238 }
2239 fclose(phFile);
2240 if (RT_FAILURE(rc))
2241 return rc;
2242 fFirst = false;
2243 }
2244 else
2245 return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename);
2246
2247 LinePrev = Line;
2248 }
2249
2250
2251 /*
2252 * Advance
2253 */
2254 if (iRangeLeft < 0) /* 'r' */
2255 break;
2256 if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
2257 iRangeLeft -= cLines;
2258 else
2259 iRangeLeft -= 1;
2260 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1);
2261 if (RT_FAILURE(rc))
2262 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1);
2263 if (iRangeLeft <= 0)
2264 break;
2265 }
2266
2267 NOREF(pCmd);
2268 return 0;
2269}
2270
2271
2272/**
2273 * @callback_method_impl{FNDBGCCMD, The 'r' command.}
2274 */
2275static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2276{
2277 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2278 if (!pDbgc->fRegCtxGuest)
2279 return dbgcCmdRegHyper(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
2280 return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
2281}
2282
2283
2284/**
2285 * @callback_method_impl{FNDBGCCMD, Common worker for the dbgcCmdReg*()
2286 * commands.}
2287 */
2288static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs,
2289 const char *pszPrefix)
2290{
2291 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2292 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3);
2293 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING
2294 || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL);
2295
2296 /*
2297 * Parse the register name and kind.
2298 */
2299 const char *pszReg = paArgs[0].u.pszString;
2300 if (*pszReg == '@')
2301 pszReg++;
2302 VMCPUID idCpu = pDbgc->idCpu;
2303 if (*pszPrefix)
2304 idCpu |= DBGFREG_HYPER_VMCPUID;
2305 if (*pszReg == '.')
2306 {
2307 pszReg++;
2308 idCpu |= DBGFREG_HYPER_VMCPUID;
2309 }
2310 const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : "";
2311
2312 /*
2313 * Query the register type & value (the setter needs the type).
2314 */
2315 DBGFREGVALTYPE enmType;
2316 DBGFREGVAL Value;
2317 int rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2318 if (RT_FAILURE(rc))
2319 {
2320 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2321 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2322 pszActualPrefix, pszReg);
2323 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2324 pszActualPrefix, pszReg, rc);
2325 }
2326 if (cArgs == 1)
2327 {
2328 /*
2329 * Show the register.
2330 */
2331 char szValue[160];
2332 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/);
2333 if (RT_SUCCESS(rc))
2334 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue);
2335 else
2336 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2337 }
2338 else
2339 {
2340 DBGCVAR NewValueTmp;
2341 PCDBGCVAR pNewValue;
2342 if (cArgs == 3)
2343 {
2344 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2345 if (strcmp(paArgs[1].u.pszString, "="))
2346 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='.");
2347 pNewValue = &paArgs[2];
2348 }
2349 else
2350 {
2351 /* Not possible to convince the parser to support both codeview and
2352 windbg syntax and make the equal sign optional. Try help it. */
2353 /** @todo make DBGCCmdHlpConvert do more with strings. */
2354 rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp);
2355 if (RT_FAILURE(rc))
2356 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol.");
2357 pNewValue = &NewValueTmp;
2358 }
2359
2360 /*
2361 * Modify the register.
2362 */
2363 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER);
2364 if (enmType != DBGFREGVALTYPE_DTR)
2365 {
2366 enmType = DBGFREGVALTYPE_U64;
2367 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64);
2368 }
2369 else
2370 {
2371 enmType = DBGFREGVALTYPE_DTR;
2372 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base);
2373 if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE)
2374 Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range;
2375 }
2376 if (RT_SUCCESS(rc))
2377 {
2378 rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType);
2379 if (RT_FAILURE(rc))
2380 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n",
2381 pszActualPrefix, pszReg, rc);
2382 if (rc != VINF_SUCCESS)
2383 DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc);
2384 }
2385 else
2386 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2387 }
2388 return rc;
2389}
2390
2391
2392/**
2393 * @callback_method_impl{FNDBGCCMD,
2394 * The 'rg'\, 'rg64' and 'rg32' commands\, worker for 'r'.}
2395 */
2396static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2397{
2398 /*
2399 * Show all registers our selves.
2400 */
2401 if (cArgs == 0)
2402 {
2403 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2404 bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64")
2405 || ( strcmp(pCmd->pszCmd, "rg32") != 0
2406 && DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu));
2407 char szDisAndRegs[8192];
2408 int rc;
2409
2410 if (pDbgc->fRegTerse)
2411 {
2412 if (f64BitMode)
2413 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, &szDisAndRegs[0], sizeof(szDisAndRegs),
2414 "u %016VR{rip} L 0\n"
2415 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
2416 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
2417 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
2418 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
2419 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
2420 "cs=%04VR{cs} ds=%04VR{ds} es=%04VR{es} fs=%04VR{fs} gs=%04VR{gs} ss=%04VR{ss} rflags=%08VR{rflags}\n");
2421 else
2422 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, szDisAndRegs, sizeof(szDisAndRegs),
2423 "u %04VR{cs}:%08VR{eip} L 0\n"
2424 "eax=%08VR{eax} ebx=%08VR{ebx} ecx=%08VR{ecx} edx=%08VR{edx} esi=%08VR{esi} edi=%08VR{edi}\n"
2425 "eip=%08VR{eip} esp=%08VR{esp} ebp=%08VR{ebp} %VRF{eflags}\n"
2426 "cs=%04VR{cs} ds=%04VR{ds} es=%04VR{es} fs=%04VR{fs} gs=%04VR{gs} ss=%04VR{ss} eflags=%08VR{eflags}\n");
2427 }
2428 else
2429 {
2430 if (f64BitMode)
2431 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, &szDisAndRegs[0], sizeof(szDisAndRegs),
2432 "u %016VR{rip} L 0\n"
2433 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
2434 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
2435 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
2436 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
2437 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
2438 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
2439 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
2440 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
2441 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
2442 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
2443 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
2444 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
2445 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
2446 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
2447 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
2448 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
2449 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
2450 " efer=%016VR{efer}\n"
2451 " pat=%016VR{pat}\n"
2452 " sf_mask=%016VR{sf_mask}\n"
2453 "krnl_gs_base=%016VR{krnl_gs_base}\n"
2454 " lstar=%016VR{lstar}\n"
2455 " star=%016VR{star} cstar=%016VR{cstar}\n"
2456 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
2457 );
2458 else
2459 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, szDisAndRegs, sizeof(szDisAndRegs),
2460 "u %04VR{cs}:%08VR{eip} L 0\n"
2461 "eax=%08VR{eax} ebx=%08VR{ebx} ecx=%08VR{ecx} edx=%08VR{edx} esi=%08VR{esi} edi=%08VR{edi}\n"
2462 "eip=%08VR{eip} esp=%08VR{esp} ebp=%08VR{ebp} %VRF{eflags}\n"
2463 "cs={%04VR{cs} base=%08VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} dr0=%08VR{dr0} dr1=%08VR{dr1}\n"
2464 "ds={%04VR{ds} base=%08VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} dr2=%08VR{dr2} dr3=%08VR{dr3}\n"
2465 "es={%04VR{es} base=%08VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} dr6=%08VR{dr6} dr7=%08VR{dr7}\n"
2466 "fs={%04VR{fs} base=%08VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr0=%08VR{cr0} cr2=%08VR{cr2}\n"
2467 "gs={%04VR{gs} base=%08VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr3=%08VR{cr3} cr4=%08VR{cr4}\n"
2468 "ss={%04VR{ss} base=%08VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}} cr8=%08VR{cr8}\n"
2469 "gdtr=%08VR{gdtr_base}:%04VR{gdtr_lim} idtr=%08VR{idtr_base}:%04VR{idtr_lim} eflags=%08VR{eflags}\n"
2470 "ldtr={%04VR{ldtr} base=%08VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%04VR{ldtr_attr}}\n"
2471 "tr ={%04VR{tr} base=%08VR{tr_base} limit=%08VR{tr_lim} flags=%04VR{tr_attr}}\n"
2472 "sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
2473 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
2474 );
2475 }
2476 if (RT_FAILURE(rc))
2477 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegPrintf failed");
2478 char *pszRegs = strchr(szDisAndRegs, '\n');
2479 *pszRegs++ = '\0';
2480 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s", pszRegs);
2481
2482 /*
2483 * Disassemble one instruction at cs:[r|e]ip.
2484 */
2485 if (!f64BitMode && strstr(pszRegs, " vm ")) /* a big ugly... */
2486 return pCmdHlp->pfnExec(pCmdHlp, "uv86 %s", szDisAndRegs + 2);
2487 return pCmdHlp->pfnExec(pCmdHlp, "%s", szDisAndRegs);
2488 }
2489 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "");
2490}
2491
2492
2493/**
2494 * @callback_method_impl{FNDBGCCMD, The 'rh' command.}
2495 */
2496static DECLCALLBACK(int) dbgcCmdRegHyper(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2497{
2498 /*
2499 * Show all registers our selves.
2500 */
2501 if (cArgs == 0)
2502 {
2503 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2504 char szDisAndRegs[8192];
2505 int rc;
2506
2507 if (pDbgc->fRegTerse)
2508 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu | DBGFREG_HYPER_VMCPUID, szDisAndRegs, sizeof(szDisAndRegs),
2509 "u %VR{cs}:%VR{eip} L 0\n"
2510 ".eax=%08VR{eax} .ebx=%08VR{ebx} .ecx=%08VR{ecx} .edx=%08VR{edx} .esi=%08VR{esi} .edi=%08VR{edi}\n"
2511 ".eip=%08VR{eip} .esp=%08VR{esp} .ebp=%08VR{ebp} .%VRF{eflags}\n"
2512 ".cs=%04VR{cs} .ds=%04VR{ds} .es=%04VR{es} .fs=%04VR{fs} .gs=%04VR{gs} .ss=%04VR{ss} .eflags=%08VR{eflags}\n");
2513 else
2514 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu | DBGFREG_HYPER_VMCPUID, szDisAndRegs, sizeof(szDisAndRegs),
2515 "u %04VR{cs}:%08VR{eip} L 0\n"
2516 ".eax=%08VR{eax} .ebx=%08VR{ebx} .ecx=%08VR{ecx} .edx=%08VR{edx} .esi=%08VR{esi} .edi=%08VR{edi}\n"
2517 ".eip=%08VR{eip} .esp=%08VR{esp} .ebp=%08VR{ebp} .%VRF{eflags}\n"
2518 ".cs={%04VR{cs} base=%08VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} .dr0=%08VR{dr0} .dr1=%08VR{dr1}\n"
2519 ".ds={%04VR{ds} base=%08VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} .dr2=%08VR{dr2} .dr3=%08VR{dr3}\n"
2520 ".es={%04VR{es} base=%08VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} .dr6=%08VR{dr6} .dr6=%08VR{dr6}\n"
2521 ".fs={%04VR{fs} base=%08VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} .cr3=%016VR{cr3}\n"
2522 ".gs={%04VR{gs} base=%08VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}}\n"
2523 ".ss={%04VR{ss} base=%08VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
2524 ".gdtr=%08VR{gdtr_base}:%04VR{gdtr_lim} .idtr=%08VR{idtr_base}:%04VR{idtr_lim} .eflags=%08VR{eflags}\n"
2525 ".ldtr={%04VR{ldtr} base=%08VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%04VR{ldtr_attr}}\n"
2526 ".tr ={%04VR{tr} base=%08VR{tr_base} limit=%08VR{tr_lim} flags=%04VR{tr_attr}}\n"
2527 );
2528 if (RT_FAILURE(rc))
2529 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegPrintf failed");
2530 char *pszRegs = strchr(szDisAndRegs, '\n');
2531 *pszRegs++ = '\0';
2532 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s", pszRegs);
2533
2534 /*
2535 * Disassemble one instruction at cs:[r|e]ip.
2536 */
2537 return pCmdHlp->pfnExec(pCmdHlp, "%s", szDisAndRegs);
2538 }
2539 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, ".");
2540}
2541
2542
2543/**
2544 * @callback_method_impl{FNDBGCCMD, The 'rt' command.}
2545 */
2546static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2547{
2548 NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2549
2550 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2551 pDbgc->fRegTerse = !pDbgc->fRegTerse;
2552 return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n");
2553}
2554
2555
2556/**
2557 * @callback_method_impl{FNDBGCCMD, The 't' command.}
2558 */
2559static DECLCALLBACK(int) dbgcCmdTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2560{
2561 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2562
2563 int rc = DBGFR3Step(pUVM, pDbgc->idCpu);
2564 if (RT_SUCCESS(rc))
2565 pDbgc->fReady = false;
2566 else
2567 rc = pDbgc->CmdHlp.pfnVBoxError(&pDbgc->CmdHlp, rc, "When trying to single step VM %p\n", pDbgc->pVM);
2568
2569 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2570 return rc;
2571}
2572
2573
2574/**
2575 * @callback_method_impl{FNDBGCCMD, The 'k'\, 'kg' and 'kh' commands.}
2576 */
2577static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2578{
2579 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2580
2581 /*
2582 * Figure which context we're called for and start walking that stack.
2583 */
2584 int rc;
2585 PCDBGFSTACKFRAME pFirstFrame;
2586 bool const fGuest = pCmd->pszCmd[1] == 'g'
2587 || (!pCmd->pszCmd[1] && pDbgc->fRegCtxGuest);
2588 rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame);
2589 if (RT_FAILURE(rc))
2590 return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc);
2591
2592 /*
2593 * Print header.
2594 * 12345678 12345678 0023:87654321 12345678 87654321 12345678 87654321 symbol
2595 */
2596 uint32_t fBitFlags = 0;
2597 for (PCDBGFSTACKFRAME pFrame = pFirstFrame;
2598 pFrame;
2599 pFrame = DBGFR3StackWalkNext(pFrame))
2600 {
2601 uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT);
2602 if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT)
2603 {
2604 if (fCurBitFlags != fBitFlags)
2605 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2606 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2607 pFrame->AddrFrame.Sel,
2608 (uint16_t)pFrame->AddrFrame.off,
2609 pFrame->AddrReturnFrame.Sel,
2610 (uint16_t)pFrame->AddrReturnFrame.off,
2611 (uint32_t)pFrame->AddrReturnPC.Sel,
2612 (uint32_t)pFrame->AddrReturnPC.off,
2613 pFrame->Args.au32[0],
2614 pFrame->Args.au32[1],
2615 pFrame->Args.au32[2],
2616 pFrame->Args.au32[3]);
2617 }
2618 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT)
2619 {
2620 if (fCurBitFlags != fBitFlags)
2621 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2622 rc = DBGCCmdHlpPrintf(pCmdHlp, "%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2623 (uint32_t)pFrame->AddrFrame.off,
2624 (uint32_t)pFrame->AddrReturnFrame.off,
2625 (uint32_t)pFrame->AddrReturnPC.Sel,
2626 (uint32_t)pFrame->AddrReturnPC.off,
2627 pFrame->Args.au32[0],
2628 pFrame->Args.au32[1],
2629 pFrame->Args.au32[2],
2630 pFrame->Args.au32[3]);
2631 }
2632 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT)
2633 {
2634 if (fCurBitFlags != fBitFlags)
2635 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n");
2636 rc = DBGCCmdHlpPrintf(pCmdHlp, "%016RX64 %04RX16:%016RX64 %016RX64",
2637 (uint64_t)pFrame->AddrFrame.off,
2638 pFrame->AddrReturnFrame.Sel,
2639 (uint64_t)pFrame->AddrReturnFrame.off,
2640 (uint64_t)pFrame->AddrReturnPC.off);
2641 }
2642 if (RT_FAILURE(rc))
2643 break;
2644 if (!pFrame->pSymPC)
2645 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
2646 fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT
2647 ? " %RTsel:%016RGv"
2648 : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT
2649 ? " %RTsel:%08RGv"
2650 : " %RTsel:%04RGv"
2651 , pFrame->AddrPC.Sel, pFrame->AddrPC.off);
2652 else
2653 {
2654 RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */
2655 if (offDisp > 0)
2656 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp);
2657 else if (offDisp < 0)
2658 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp);
2659 else
2660 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName);
2661 }
2662 if (RT_SUCCESS(rc) && pFrame->pLinePC)
2663 rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo);
2664 if (RT_SUCCESS(rc))
2665 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2666 if (RT_FAILURE(rc))
2667 break;
2668
2669 fBitFlags = fCurBitFlags;
2670 }
2671
2672 DBGFR3StackWalkEnd(pFirstFrame);
2673
2674 NOREF(paArgs); NOREF(cArgs);
2675 return rc;
2676}
2677
2678
2679static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, bool *pfDblEntry)
2680{
2681 /* GUEST64 */
2682 int rc;
2683
2684 const char *pszHyper = fHyper ? " HYPER" : "";
2685 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
2686 if (pDesc->Gen.u1DescType)
2687 {
2688 static const char * const s_apszTypes[] =
2689 {
2690 "DataRO", /* 0 Read-Only */
2691 "DataRO", /* 1 Read-Only - Accessed */
2692 "DataRW", /* 2 Read/Write */
2693 "DataRW", /* 3 Read/Write - Accessed */
2694 "DownRO", /* 4 Expand-down, Read-Only */
2695 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
2696 "DownRW", /* 6 Expand-down, Read/Write */
2697 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
2698 "CodeEO", /* 8 Execute-Only */
2699 "CodeEO", /* 9 Execute-Only - Accessed */
2700 "CodeER", /* A Execute/Readable */
2701 "CodeER", /* B Execute/Readable - Accessed */
2702 "ConfE0", /* C Conforming, Execute-Only */
2703 "ConfE0", /* D Conforming, Execute-Only - Accessed */
2704 "ConfER", /* E Conforming, Execute/Readable */
2705 "ConfER" /* F Conforming, Execute/Readable - Accessed */
2706 };
2707 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
2708 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
2709 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2710 uint32_t u32Base = X86DESC_BASE(pDesc);
2711 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
2712
2713 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
2714 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
2715 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
2716 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
2717 }
2718 else
2719 {
2720 static const char * const s_apszTypes[] =
2721 {
2722 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
2723 "Ill-1 ", /* 1 0001 Available 16-bit TSS */
2724 "LDT ", /* 2 0010 LDT */
2725 "Ill-3 ", /* 3 0011 Busy 16-bit TSS */
2726 "Ill-4 ", /* 4 0100 16-bit Call Gate */
2727 "Ill-5 ", /* 5 0101 Task Gate */
2728 "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */
2729 "Ill-7 ", /* 7 0111 16-bit Trap Gate */
2730 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
2731 "Tss64A", /* 9 1001 Available 32-bit TSS */
2732 "Ill-A ", /* A 1010 Reserved (Illegal) */
2733 "Tss64B", /* B 1011 Busy 32-bit TSS */
2734 "Call64", /* C 1100 32-bit Call Gate */
2735 "Ill-D ", /* D 1101 Reserved (Illegal) */
2736 "Int64 ", /* E 1110 32-bit Interrupt Gate */
2737 "Trap64" /* F 1111 32-bit Trap Gate */
2738 };
2739 switch (pDesc->Gen.u4Type)
2740 {
2741 /* raw */
2742 case X86_SEL_TYPE_SYS_UNDEFINED:
2743 case X86_SEL_TYPE_SYS_UNDEFINED2:
2744 case X86_SEL_TYPE_SYS_UNDEFINED4:
2745 case X86_SEL_TYPE_SYS_UNDEFINED3:
2746 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
2747 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
2748 case X86_SEL_TYPE_SYS_286_CALL_GATE:
2749 case X86_SEL_TYPE_SYS_286_INT_GATE:
2750 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
2751 case X86_SEL_TYPE_SYS_TASK_GATE:
2752 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
2753 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
2754 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
2755 break;
2756
2757 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
2758 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
2759 case X86_SEL_TYPE_SYS_LDT:
2760 {
2761 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
2762 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2763 const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " ";
2764
2765 uint64_t u64Base = X86DESC64_BASE(pDesc);
2766 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
2767
2768 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n",
2769 iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit,
2770 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig,
2771 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
2772 pszHyper);
2773 if (pfDblEntry)
2774 *pfDblEntry = true;
2775 break;
2776 }
2777
2778 case X86_SEL_TYPE_SYS_386_CALL_GATE:
2779 {
2780 unsigned cParams = pDesc->au8[4] & 0x1f;
2781 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
2782 RTSEL sel = pDesc->au16[1];
2783 uint64_t off = pDesc->au16[0]
2784 | ((uint64_t)pDesc->au16[3] << 16)
2785 | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
2786 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s\n",
2787 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
2788 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper);
2789 if (pfDblEntry)
2790 *pfDblEntry = true;
2791 break;
2792 }
2793
2794 case X86_SEL_TYPE_SYS_386_INT_GATE:
2795 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
2796 {
2797 RTSEL sel = pDesc->Gate.u16Sel;
2798 uint64_t off = pDesc->Gate.u16OffsetLow
2799 | ((uint64_t)pDesc->Gate.u16OffsetHigh << 16)
2800 | ((uint64_t)pDesc->Gate.u32OffsetTop << 32);
2801 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%u %s IST=%u%s\n",
2802 iEntry, s_apszTypes[pDesc->Gate.u4Type], sel, off,
2803 pDesc->Gate.u2Dpl, pszPresent, pDesc->Gate.u3IST, pszHyper);
2804 if (pfDblEntry)
2805 *pfDblEntry = true;
2806 break;
2807 }
2808
2809 /* impossible, just it's necessary to keep gcc happy. */
2810 default:
2811 return VINF_SUCCESS;
2812 }
2813 }
2814 return VINF_SUCCESS;
2815}
2816
2817
2818/**
2819 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
2820 *
2821 * @returns pfnPrintf status code.
2822 * @param pCmdHlp The DBGC command helpers.
2823 * @param pDesc The descriptor to display.
2824 * @param iEntry The descriptor entry number.
2825 * @param fHyper Whether the selector belongs to the hypervisor or not.
2826 */
2827static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper)
2828{
2829 int rc;
2830
2831 const char *pszHyper = fHyper ? " HYPER" : "";
2832 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
2833 if (pDesc->Gen.u1DescType)
2834 {
2835 static const char * const s_apszTypes[] =
2836 {
2837 "DataRO", /* 0 Read-Only */
2838 "DataRO", /* 1 Read-Only - Accessed */
2839 "DataRW", /* 2 Read/Write */
2840 "DataRW", /* 3 Read/Write - Accessed */
2841 "DownRO", /* 4 Expand-down, Read-Only */
2842 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
2843 "DownRW", /* 6 Expand-down, Read/Write */
2844 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
2845 "CodeEO", /* 8 Execute-Only */
2846 "CodeEO", /* 9 Execute-Only - Accessed */
2847 "CodeER", /* A Execute/Readable */
2848 "CodeER", /* B Execute/Readable - Accessed */
2849 "ConfE0", /* C Conforming, Execute-Only */
2850 "ConfE0", /* D Conforming, Execute-Only - Accessed */
2851 "ConfER", /* E Conforming, Execute/Readable */
2852 "ConfER" /* F Conforming, Execute/Readable - Accessed */
2853 };
2854 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
2855 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
2856 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2857 uint32_t u32Base = pDesc->Gen.u16BaseLow
2858 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
2859 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
2860 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
2861 if (pDesc->Gen.u1Granularity)
2862 cbLimit <<= PAGE_SHIFT;
2863
2864 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
2865 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
2866 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
2867 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
2868 }
2869 else
2870 {
2871 static const char * const s_apszTypes[] =
2872 {
2873 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
2874 "Tss16A", /* 1 0001 Available 16-bit TSS */
2875 "LDT ", /* 2 0010 LDT */
2876 "Tss16B", /* 3 0011 Busy 16-bit TSS */
2877 "Call16", /* 4 0100 16-bit Call Gate */
2878 "TaskG ", /* 5 0101 Task Gate */
2879 "Int16 ", /* 6 0110 16-bit Interrupt Gate */
2880 "Trap16", /* 7 0111 16-bit Trap Gate */
2881 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
2882 "Tss32A", /* 9 1001 Available 32-bit TSS */
2883 "Ill-A ", /* A 1010 Reserved (Illegal) */
2884 "Tss32B", /* B 1011 Busy 32-bit TSS */
2885 "Call32", /* C 1100 32-bit Call Gate */
2886 "Ill-D ", /* D 1101 Reserved (Illegal) */
2887 "Int32 ", /* E 1110 32-bit Interrupt Gate */
2888 "Trap32" /* F 1111 32-bit Trap Gate */
2889 };
2890 switch (pDesc->Gen.u4Type)
2891 {
2892 /* raw */
2893 case X86_SEL_TYPE_SYS_UNDEFINED:
2894 case X86_SEL_TYPE_SYS_UNDEFINED2:
2895 case X86_SEL_TYPE_SYS_UNDEFINED4:
2896 case X86_SEL_TYPE_SYS_UNDEFINED3:
2897 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
2898 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
2899 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
2900 break;
2901
2902 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
2903 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
2904 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
2905 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
2906 case X86_SEL_TYPE_SYS_LDT:
2907 {
2908 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
2909 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
2910 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2911 uint32_t u32Base = pDesc->Gen.u16BaseLow
2912 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
2913 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
2914 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
2915 if (pDesc->Gen.u1Granularity)
2916 cbLimit <<= PAGE_SHIFT;
2917
2918 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n",
2919 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
2920 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig,
2921 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
2922 pszHyper);
2923 break;
2924 }
2925
2926 case X86_SEL_TYPE_SYS_TASK_GATE:
2927 {
2928 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n",
2929 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1],
2930 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
2931 break;
2932 }
2933
2934 case X86_SEL_TYPE_SYS_286_CALL_GATE:
2935 case X86_SEL_TYPE_SYS_386_CALL_GATE:
2936 {
2937 unsigned cParams = pDesc->au8[4] & 0x1f;
2938 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
2939 RTSEL sel = pDesc->au16[1];
2940 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
2941 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s\n",
2942 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
2943 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper);
2944 break;
2945 }
2946
2947 case X86_SEL_TYPE_SYS_286_INT_GATE:
2948 case X86_SEL_TYPE_SYS_386_INT_GATE:
2949 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
2950 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
2951 {
2952 RTSEL sel = pDesc->au16[1];
2953 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
2954 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s\n",
2955 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
2956 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
2957 break;
2958 }
2959
2960 /* impossible, just it's necessary to keep gcc happy. */
2961 default:
2962 return VINF_SUCCESS;
2963 }
2964 }
2965 return rc;
2966}
2967
2968
2969/**
2970 * @callback_method_impl{FNDBGCCMD, The 'dg'\, 'dga'\, 'dl' and 'dla' commands.}
2971 */
2972static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2973{
2974 /*
2975 * Validate input.
2976 */
2977 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2978
2979 /*
2980 * Get the CPU mode, check which command variation this is
2981 * and fix a default parameter if needed.
2982 */
2983 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2984 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2985 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
2986 bool fGdt = pCmd->pszCmd[1] == 'g';
2987 bool fAll = pCmd->pszCmd[2] == 'a';
2988 RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT;
2989
2990 DBGCVAR Var;
2991 if (!cArgs)
2992 {
2993 cArgs = 1;
2994 paArgs = &Var;
2995 Var.enmType = DBGCVAR_TYPE_NUMBER;
2996 Var.u.u64Number = 0;
2997 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2998 Var.u64Range = 1024;
2999 }
3000
3001 /*
3002 * Process the arguments.
3003 */
3004 for (unsigned i = 0; i < cArgs; i++)
3005 {
3006 /*
3007 * Retrieve the selector value from the argument.
3008 * The parser may confuse pointers and numbers if more than one
3009 * argument is given, that that into account.
3010 */
3011 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType));
3012 uint64_t u64;
3013 unsigned cSels = 1;
3014 switch (paArgs[i].enmType)
3015 {
3016 case DBGCVAR_TYPE_NUMBER:
3017 u64 = paArgs[i].u.u64Number;
3018 if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE)
3019 cSels = RT_MIN(paArgs[i].u64Range, 1024);
3020 break;
3021 case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break;
3022 case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break;
3023 case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break;
3024 case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break;
3025 case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break;
3026 default: u64 = _64K; break;
3027 }
3028 if (u64 < _64K)
3029 {
3030 unsigned Sel = (RTSEL)u64;
3031
3032 /*
3033 * Dump the specified range.
3034 */
3035 bool fSingle = cSels == 1;
3036 while ( cSels-- > 0
3037 && Sel < _64K)
3038 {
3039 DBGFSELINFO SelInfo;
3040 int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
3041 if (RT_SUCCESS(rc))
3042 {
3043 if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE)
3044 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n",
3045 Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit);
3046 else if ( fAll
3047 || fSingle
3048 || SelInfo.u.Raw.Gen.u1Present)
3049 {
3050 if (enmMode == CPUMMODE_PROTECTED)
3051 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel, !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER));
3052 else
3053 {
3054 bool fDblSkip = false;
3055 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel, !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), &fDblSkip);
3056 if (fDblSkip)
3057 Sel += 4;
3058 }
3059 }
3060 }
3061 else
3062 {
3063 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc);
3064 if (!fAll)
3065 return rc;
3066 }
3067 if (RT_FAILURE(rc))
3068 return rc;
3069
3070 /* next */
3071 Sel += 8;
3072 }
3073 }
3074 else
3075 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64);
3076 }
3077
3078 return VINF_SUCCESS;
3079}
3080
3081
3082/**
3083 * @callback_method_impl{FNDBGCCMD, The 'di' and 'dia' commands.}
3084 */
3085static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3086{
3087 /*
3088 * Validate input.
3089 */
3090 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3091
3092 /*
3093 * Establish some stuff like the current IDTR and CPU mode,
3094 * and fix a default parameter.
3095 */
3096 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3097 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
3098 uint16_t cbLimit;
3099 RTGCUINTPTR GCPtrBase = CPUMGetGuestIDTR(pVCpu, &cbLimit);
3100 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
3101 unsigned cbEntry;
3102 switch (enmMode)
3103 {
3104 case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break;
3105 case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break;
3106 case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break;
3107 default:
3108 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode);
3109 }
3110
3111 bool fAll = pCmd->pszCmd[2] == 'a';
3112 DBGCVAR Var;
3113 if (!cArgs)
3114 {
3115 cArgs = 1;
3116 paArgs = &Var;
3117 Var.enmType = DBGCVAR_TYPE_NUMBER;
3118 Var.u.u64Number = 0;
3119 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3120 Var.u64Range = 256;
3121 }
3122
3123 /*
3124 * Process the arguments.
3125 */
3126 for (unsigned i = 0; i < cArgs; i++)
3127 {
3128 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER);
3129 if (paArgs[i].u.u64Number < 256)
3130 {
3131 RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number;
3132 unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE
3133 ? paArgs[i].u64Range
3134 : 1;
3135 bool fSingle = cInts == 1;
3136 while ( cInts-- > 0
3137 && iInt < 256)
3138 {
3139 /*
3140 * Try read it.
3141 */
3142 union
3143 {
3144 RTFAR16 Real;
3145 X86DESC Prot;
3146 X86DESC64 Long;
3147 } u;
3148 if (iInt * cbEntry + (cbEntry - 1) > cbLimit)
3149 {
3150 DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt);
3151 if (!fAll && !fSingle)
3152 return VINF_SUCCESS;
3153 }
3154 DBGCVAR AddrVar;
3155 AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT;
3156 AddrVar.u.GCFlat = GCPtrBase + iInt * cbEntry;
3157 AddrVar.enmRangeType = DBGCVAR_RANGE_NONE;
3158 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL);
3159 if (RT_FAILURE(rc))
3160 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt);
3161
3162 /*
3163 * Display it.
3164 */
3165 switch (enmMode)
3166 {
3167 case CPUMMODE_REAL:
3168 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16\n", (unsigned)iInt, u.Real);
3169 /** @todo resolve 16:16 IDTE to a symbol */
3170 break;
3171 case CPUMMODE_PROTECTED:
3172 if (fAll || fSingle || u.Prot.Gen.u1Present)
3173 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false);
3174 break;
3175 case CPUMMODE_LONG:
3176 if (fAll || fSingle || u.Long.Gen.u1Present)
3177 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, NULL);
3178 break;
3179 default: break; /* to shut up gcc */
3180 }
3181 if (RT_FAILURE(rc))
3182 return rc;
3183
3184 /* next */
3185 iInt++;
3186 }
3187 }
3188 else
3189 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number);
3190 }
3191
3192 return VINF_SUCCESS;
3193}
3194
3195
3196/**
3197 * @callback_method_impl{FNDBGCCMD,
3198 * The 'da'\, 'dq'\, 'dd'\, 'dw' and 'db' commands.}
3199 */
3200static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3201{
3202 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3203
3204 /*
3205 * Validate input.
3206 */
3207 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3208 if (cArgs == 1)
3209 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3210 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3211
3212 /*
3213 * Figure out the element size.
3214 */
3215 unsigned cbElement;
3216 bool fAscii = false;
3217 switch (pCmd->pszCmd[1])
3218 {
3219 default:
3220 case 'b': cbElement = 1; break;
3221 case 'w': cbElement = 2; break;
3222 case 'd': cbElement = 4; break;
3223 case 'q': cbElement = 8; break;
3224 case 'a':
3225 cbElement = 1;
3226 fAscii = true;
3227 break;
3228 case '\0':
3229 fAscii = !!(pDbgc->cbDumpElement & 0x80000000);
3230 cbElement = pDbgc->cbDumpElement & 0x7fffffff;
3231 if (!cbElement)
3232 cbElement = 1;
3233 break;
3234 }
3235
3236 /*
3237 * Find address.
3238 */
3239 if (!cArgs)
3240 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE;
3241 else
3242 pDbgc->DumpPos = paArgs[0];
3243
3244 /*
3245 * Range.
3246 */
3247 switch (pDbgc->DumpPos.enmRangeType)
3248 {
3249 case DBGCVAR_RANGE_NONE:
3250 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3251 pDbgc->DumpPos.u64Range = 0x60;
3252 break;
3253
3254 case DBGCVAR_RANGE_ELEMENTS:
3255 if (pDbgc->DumpPos.u64Range > 2048)
3256 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n");
3257 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3258 pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range;
3259 break;
3260
3261 case DBGCVAR_RANGE_BYTES:
3262 if (pDbgc->DumpPos.u64Range > 65536)
3263 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
3264 break;
3265
3266 default:
3267 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType);
3268 }
3269
3270 pDbgc->pLastPos = &pDbgc->DumpPos;
3271
3272 /*
3273 * Do the dumping.
3274 */
3275 pDbgc->cbDumpElement = cbElement | (fAscii << 31);
3276 int cbLeft = (int)pDbgc->DumpPos.u64Range;
3277 uint8_t u8Prev = '\0';
3278 for (;;)
3279 {
3280 /*
3281 * Read memory.
3282 */
3283 char achBuffer[16];
3284 size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft);
3285 size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft);
3286 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb);
3287 if (RT_FAILURE(rc))
3288 {
3289 if (u8Prev && u8Prev != '\n')
3290 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3291 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos);
3292 }
3293
3294 /*
3295 * Display it.
3296 */
3297 memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb);
3298 if (!fAscii)
3299 {
3300 DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos);
3301 unsigned i;
3302 for (i = 0; i < cb; i += cbElement)
3303 {
3304 const char *pszSpace = " ";
3305 if (cbElement <= 2 && i == 8 && !fAscii)
3306 pszSpace = "-";
3307 switch (cbElement)
3308 {
3309 case 1: DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]); break;
3310 case 2: DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]); break;
3311 case 4: DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]); break;
3312 case 8: DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]); break;
3313 }
3314 }
3315
3316 /* chars column */
3317 if (pDbgc->cbDumpElement == 1)
3318 {
3319 while (i++ < sizeof(achBuffer))
3320 DBGCCmdHlpPrintf(pCmdHlp, " ");
3321 DBGCCmdHlpPrintf(pCmdHlp, " ");
3322 for (i = 0; i < cb; i += cbElement)
3323 {
3324 uint8_t u8 = *(uint8_t *)&achBuffer[i];
3325 if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32)
3326 DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
3327 else
3328 DBGCCmdHlpPrintf(pCmdHlp, ".");
3329 }
3330 }
3331 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3332 }
3333 else
3334 {
3335 /*
3336 * We print up to the first zero and stop there.
3337 * Only printables + '\t' and '\n' are printed.
3338 */
3339 if (!u8Prev)
3340 DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos);
3341 uint8_t u8 = '\0';
3342 unsigned i;
3343 for (i = 0; i < cb; i++)
3344 {
3345 u8Prev = u8;
3346 u8 = *(uint8_t *)&achBuffer[i];
3347 if ( u8 < 127
3348 && ( (RT_C_IS_PRINT(u8) && u8 >= 32)
3349 || u8 == '\t'
3350 || u8 == '\n'))
3351 DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
3352 else if (!u8)
3353 break;
3354 else
3355 DBGCCmdHlpPrintf(pCmdHlp, "\\x%x", u8);
3356 }
3357 if (u8 == '\0')
3358 cb = cbLeft = i + 1;
3359 if (cbLeft - cb <= 0 && u8Prev != '\n')
3360 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3361 }
3362
3363 /*
3364 * Advance
3365 */
3366 cbLeft -= (int)cb;
3367 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb);
3368 if (RT_FAILURE(rc))
3369 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb);
3370 if (cbLeft <= 0)
3371 break;
3372 }
3373
3374 NOREF(pCmd);
3375 return VINF_SUCCESS;
3376}
3377
3378
3379/**
3380 * Best guess at which paging mode currently applies to the guest
3381 * paging structures.
3382 *
3383 * This have to come up with a decent answer even when the guest
3384 * is in non-paged protected mode or real mode.
3385 *
3386 * @returns cr3.
3387 * @param pDbgc The DBGC instance.
3388 * @param pfPAE Where to store the page address extension indicator.
3389 * @param pfLME Where to store the long mode enabled indicator.
3390 * @param pfPSE Where to store the page size extension indicator.
3391 * @param pfPGE Where to store the page global enabled indicator.
3392 * @param pfNXE Where to store the no-execution enabled indicator.
3393 */
3394static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3395{
3396 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3397 RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu);
3398 *pfPSE = !!(cr4 & X86_CR4_PSE);
3399 *pfPGE = !!(cr4 & X86_CR4_PGE);
3400 if (cr4 & X86_CR4_PAE)
3401 {
3402 *pfPSE = true;
3403 *pfPAE = true;
3404 }
3405 else
3406 *pfPAE = false;
3407
3408 *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG;
3409 *pfNXE = false; /* GUEST64 GUESTNX */
3410 return CPUMGetGuestCR3(pVCpu);
3411}
3412
3413
3414/**
3415 * Determine the shadow paging mode.
3416 *
3417 * @returns cr3.
3418 * @param pDbgc The DBGC instance.
3419 * @param pfPAE Where to store the page address extension indicator.
3420 * @param pfLME Where to store the long mode enabled indicator.
3421 * @param pfPSE Where to store the page size extension indicator.
3422 * @param pfPGE Where to store the page global enabled indicator.
3423 * @param pfNXE Where to store the no-execution enabled indicator.
3424 */
3425static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3426{
3427 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3428
3429 *pfPSE = true;
3430 *pfPGE = false;
3431 switch (PGMGetShadowMode(pVCpu))
3432 {
3433 default:
3434 case PGMMODE_32_BIT:
3435 *pfPAE = *pfLME = *pfNXE = false;
3436 break;
3437 case PGMMODE_PAE:
3438 *pfLME = *pfNXE = false;
3439 *pfPAE = true;
3440 break;
3441 case PGMMODE_PAE_NX:
3442 *pfLME = false;
3443 *pfPAE = *pfNXE = true;
3444 break;
3445 case PGMMODE_AMD64:
3446 *pfNXE = false;
3447 *pfPAE = *pfLME = true;
3448 break;
3449 case PGMMODE_AMD64_NX:
3450 *pfPAE = *pfLME = *pfNXE = true;
3451 break;
3452 }
3453 return PGMGetHyperCR3(pVCpu);
3454}
3455
3456
3457/**
3458 * @callback_method_impl{FNDBGCCMD,
3459 * The 'dpd'\, 'dpda'\, 'dpdb'\, 'dpdg' and 'dpdh' commands.}
3460 */
3461static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3462{
3463 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3464
3465 /*
3466 * Validate input.
3467 */
3468 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3469 if (cArgs == 1 && pCmd->pszCmd[3] == 'a')
3470 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3471 if (cArgs == 1 && pCmd->pszCmd[3] != 'a')
3472 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3473 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
3474 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3475
3476 /*
3477 * Guest or shadow page directories? Get the paging parameters.
3478 */
3479 bool fGuest = pCmd->pszCmd[3] != 'h';
3480 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
3481 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3482 ? pDbgc->fRegCtxGuest
3483 : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
3484
3485 bool fPAE, fLME, fPSE, fPGE, fNXE;
3486 uint64_t cr3 = fGuest
3487 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
3488 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
3489 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
3490
3491 /*
3492 * Setup default argument if none was specified.
3493 * Fix address / index confusion.
3494 */
3495 DBGCVAR VarDefault;
3496 if (!cArgs)
3497 {
3498 if (pCmd->pszCmd[3] == 'a')
3499 {
3500 if (fLME || fPAE)
3501 return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n");
3502 if (fGuest)
3503 DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3);
3504 else
3505 DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3);
3506 }
3507 else
3508 DBGCVAR_INIT_GC_FLAT(&VarDefault, 0);
3509 paArgs = &VarDefault;
3510 cArgs = 1;
3511 }
3512 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
3513 {
3514 /* If it's a number (not an address), it's an index, so convert it to an address. */
3515 Assert(pCmd->pszCmd[3] != 'a');
3516 VarDefault = paArgs[0];
3517 if (fPAE)
3518 return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n");
3519 if (VarDefault.u.u64Number >= PAGE_SIZE / cbEntry)
3520 return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", PAGE_SIZE / cbEntry - 1);
3521 VarDefault.u.u64Number <<= X86_PD_SHIFT;
3522 VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT;
3523 paArgs = &VarDefault;
3524 }
3525
3526 /*
3527 * Locate the PDE to start displaying at.
3528 *
3529 * The 'dpda' command takes the address of a PDE, while the others are guest
3530 * virtual address which PDEs should be displayed. So, 'dpda' is rather simple
3531 * while the others require us to do all the tedious walking thru the paging
3532 * hierarchy to find the intended PDE.
3533 */
3534 unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */
3535 DBGCVAR VarGCPtr = { NULL, }; /* The GC address corresponding to the current PDE (iEntry != ~0U). */
3536 DBGCVAR VarPDEAddr; /* The address of the current PDE. */
3537 unsigned cEntries; /* The number of entries to display. */
3538 unsigned cEntriesMax; /* The max number of entries to display. */
3539 int rc;
3540 if (pCmd->pszCmd[3] == 'a')
3541 {
3542 VarPDEAddr = paArgs[0];
3543 switch (VarPDEAddr.enmRangeType)
3544 {
3545 case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break;
3546 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break;
3547 default: cEntries = 10; break;
3548 }
3549 cEntriesMax = PAGE_SIZE / cbEntry;
3550 }
3551 else
3552 {
3553 /*
3554 * Determine the range.
3555 */
3556 switch (paArgs[0].enmRangeType)
3557 {
3558 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
3559 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
3560 default: cEntries = 10; break;
3561 }
3562
3563 /*
3564 * Normalize the input address, it must be a flat GC address.
3565 */
3566 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
3567 if (RT_FAILURE(rc))
3568 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
3569 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
3570 {
3571 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
3572 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
3573 }
3574 if (fPAE)
3575 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1);
3576 else
3577 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1);
3578
3579 /*
3580 * Do the paging walk until we get to the page directory.
3581 */
3582 DBGCVAR VarCur;
3583 if (fGuest)
3584 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
3585 else
3586 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
3587 if (fLME)
3588 {
3589 /* Page Map Level 4 Lookup. */
3590 /* Check if it's a valid address first? */
3591 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
3592 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
3593 X86PML4E Pml4e;
3594 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
3595 if (RT_FAILURE(rc))
3596 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
3597 if (!Pml4e.n.u1Present)
3598 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
3599
3600 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
3601 Assert(fPAE);
3602 }
3603 if (fPAE)
3604 {
3605 /* Page directory pointer table. */
3606 X86PDPE Pdpe;
3607 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
3608 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
3609 if (RT_FAILURE(rc))
3610 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
3611 if (!Pdpe.n.u1Present)
3612 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
3613
3614 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3615 VarPDEAddr = VarCur;
3616 VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
3617 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE);
3618 }
3619 else
3620 {
3621 /* 32-bit legacy - CR3 == page directory. */
3622 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK;
3623 VarPDEAddr = VarCur;
3624 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE);
3625 }
3626 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
3627 }
3628
3629 /* adjust cEntries */
3630 cEntries = RT_MAX(1, cEntries);
3631 cEntries = RT_MIN(cEntries, cEntriesMax);
3632
3633 /*
3634 * The display loop.
3635 */
3636 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n",
3637 &VarPDEAddr, iEntry);
3638 do
3639 {
3640 /*
3641 * Read.
3642 */
3643 X86PDEPAE Pde;
3644 Pde.u = 0;
3645 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL);
3646 if (RT_FAILURE(rc))
3647 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr);
3648
3649 /*
3650 * Display.
3651 */
3652 if (iEntry != ~0U)
3653 {
3654 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
3655 iEntry++;
3656 }
3657 if (fPSE && Pde.b.u1Size)
3658 DBGCCmdHlpPrintf(pCmdHlp,
3659 fPAE
3660 ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
3661 : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
3662 Pde.u,
3663 Pde.u & X86_PDE_PAE_PG_MASK,
3664 Pde.b.u1Present ? "p " : "np",
3665 Pde.b.u1Write ? "w" : "r",
3666 Pde.b.u1User ? "u" : "s",
3667 Pde.b.u1Accessed ? "a " : "na",
3668 Pde.b.u1Dirty ? "d " : "nd",
3669 Pde.b.u3Available,
3670 Pde.b.u1Global ? (fPGE ? "g" : "G") : " ",
3671 Pde.b.u1WriteThru ? "pwt" : " ",
3672 Pde.b.u1CacheDisable ? "pcd" : " ",
3673 Pde.b.u1PAT ? "pat" : "",
3674 Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
3675 else
3676 DBGCCmdHlpPrintf(pCmdHlp,
3677 fPAE
3678 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s"
3679 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s",
3680 Pde.u,
3681 Pde.u & X86_PDE_PAE_PG_MASK,
3682 Pde.n.u1Present ? "p " : "np",
3683 Pde.n.u1Write ? "w" : "r",
3684 Pde.n.u1User ? "u" : "s",
3685 Pde.n.u1Accessed ? "a " : "na",
3686 Pde.u & RT_BIT(6) ? "6 " : " ",
3687 Pde.n.u3Available,
3688 Pde.u & RT_BIT(8) ? "8" : " ",
3689 Pde.n.u1WriteThru ? "pwt" : " ",
3690 Pde.n.u1CacheDisable ? "pcd" : " ",
3691 Pde.u & RT_BIT(7) ? "7" : "",
3692 Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
3693 if (Pde.u & UINT64_C(0x7fff000000000000))
3694 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000)));
3695 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3696 if (RT_FAILURE(rc))
3697 return rc;
3698
3699 /*
3700 * Advance.
3701 */
3702 VarPDEAddr.u.u64Number += cbEntry;
3703 if (iEntry != ~0U)
3704 VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT);
3705 } while (cEntries-- > 0);
3706
3707 return VINF_SUCCESS;
3708}
3709
3710
3711/**
3712 * @callback_method_impl{FNDBGCCMD, The 'dpdb' command.}
3713 */
3714static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3715{
3716 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3717 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]);
3718 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]);
3719 if (RT_FAILURE(rc1))
3720 return rc1;
3721 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3722 return rc2;
3723}
3724
3725
3726/**
3727 * @callback_method_impl{FNDBGCCMD, The 'dph*' commands and main part of 'm'.}
3728 */
3729static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3730{
3731 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3732 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3733
3734 /*
3735 * Figure the context and base flags.
3736 */
3737 uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3;
3738 if (pCmd->pszCmd[0] == 'm')
3739 fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW;
3740 else if (pCmd->pszCmd[3] == '\0')
3741 fFlags |= pDbgc->fRegCtxGuest ? DBGFPGDMP_FLAGS_GUEST : DBGFPGDMP_FLAGS_SHADOW;
3742 else if (pCmd->pszCmd[3] == 'g')
3743 fFlags |= DBGFPGDMP_FLAGS_GUEST;
3744 else if (pCmd->pszCmd[3] == 'h')
3745 fFlags |= DBGFPGDMP_FLAGS_SHADOW;
3746 else
3747 AssertFailed();
3748
3749 if (pDbgc->cPagingHierarchyDumps == 0)
3750 fFlags |= DBGFPGDMP_FLAGS_HEADER;
3751 pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42;
3752
3753 /*
3754 * Get the range.
3755 */
3756 PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos;
3757 RTGCPTR GCPtrFirst = NIL_RTGCPTR;
3758 int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst);
3759 if (RT_FAILURE(rc))
3760 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc);
3761
3762 uint64_t cbRange;
3763 rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, PAGE_SIZE, PAGE_SIZE * 8, &cbRange);
3764 if (RT_FAILURE(rc))
3765 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc);
3766
3767 RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst;
3768 if (cbRange >= GCPtrLast)
3769 GCPtrLast = RTGCPTR_MAX;
3770 else if (!cbRange)
3771 GCPtrLast = GCPtrFirst;
3772 else
3773 GCPtrLast = GCPtrFirst + cbRange - 1;
3774
3775 /*
3776 * Do we have a CR3?
3777 */
3778 uint64_t cr3 = 0;
3779 if (cArgs > 1)
3780 {
3781 if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW))
3782 return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please.");
3783 if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
3784 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]);
3785 cr3 = paArgs[1].u.u64Number;
3786 }
3787 else
3788 fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3;
3789
3790 /*
3791 * Do we have a mode?
3792 */
3793 if (cArgs > 2)
3794 {
3795 if (paArgs[2].enmType != DBGCVAR_TYPE_STRING)
3796 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]);
3797 static const struct MODETOFLAGS
3798 {
3799 const char *pszName;
3800 uint32_t fFlags;
3801 } s_aModeToFlags[] =
3802 {
3803 { "ept", DBGFPGDMP_FLAGS_EPT },
3804 { "legacy", 0 },
3805 { "legacy-np", DBGFPGDMP_FLAGS_NP },
3806 { "pse", DBGFPGDMP_FLAGS_PSE },
3807 { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP },
3808 { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE },
3809 { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP },
3810 { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE },
3811 { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP },
3812 { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME },
3813 { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP },
3814 { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE },
3815 { "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }
3816 };
3817 int i = RT_ELEMENTS(s_aModeToFlags);
3818 while (i-- > 0)
3819 if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString))
3820 {
3821 fFlags |= s_aModeToFlags[i].fFlags;
3822 break;
3823 }
3824 if (i < 0)
3825 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString);
3826 }
3827 else
3828 fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE;
3829
3830 /*
3831 * Call the worker.
3832 */
3833 rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/,
3834 DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp));
3835 if (RT_FAILURE(rc))
3836 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc);
3837 return VINF_SUCCESS;
3838}
3839
3840
3841
3842/**
3843 * @callback_method_impl{FNDBGCCMD, The 'dpg*' commands.}
3844 */
3845static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3846{
3847 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3848
3849 /*
3850 * Validate input.
3851 */
3852 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1);
3853 if (pCmd->pszCmd[3] == 'a')
3854 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3855 else
3856 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3857 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
3858 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3859
3860 /*
3861 * Guest or shadow page tables? Get the paging parameters.
3862 */
3863 bool fGuest = pCmd->pszCmd[3] != 'h';
3864 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
3865 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3866 ? pDbgc->fRegCtxGuest
3867 : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
3868
3869 bool fPAE, fLME, fPSE, fPGE, fNXE;
3870 uint64_t cr3 = fGuest
3871 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
3872 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
3873 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
3874
3875 /*
3876 * Locate the PTE to start displaying at.
3877 *
3878 * The 'dpta' command takes the address of a PTE, while the others are guest
3879 * virtual address which PTEs should be displayed. So, 'pdta' is rather simple
3880 * while the others require us to do all the tedious walking thru the paging
3881 * hierarchy to find the intended PTE.
3882 */
3883 unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */
3884 DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */
3885 DBGCVAR VarPTEAddr; /* The address of the current PTE. */
3886 unsigned cEntries; /* The number of entries to display. */
3887 unsigned cEntriesMax; /* The max number of entries to display. */
3888 int rc;
3889 if (pCmd->pszCmd[3] == 'a')
3890 {
3891 VarPTEAddr = paArgs[0];
3892 switch (VarPTEAddr.enmRangeType)
3893 {
3894 case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break;
3895 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break;
3896 default: cEntries = 10; break;
3897 }
3898 cEntriesMax = PAGE_SIZE / cbEntry;
3899 }
3900 else
3901 {
3902 /*
3903 * Determine the range.
3904 */
3905 switch (paArgs[0].enmRangeType)
3906 {
3907 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
3908 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
3909 default: cEntries = 10; break;
3910 }
3911
3912 /*
3913 * Normalize the input address, it must be a flat GC address.
3914 */
3915 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
3916 if (RT_FAILURE(rc))
3917 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
3918 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
3919 {
3920 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
3921 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
3922 }
3923 VarGCPtr.u.GCFlat &= ~(RTGCPTR)PAGE_OFFSET_MASK;
3924
3925 /*
3926 * Do the paging walk until we get to the page table.
3927 */
3928 DBGCVAR VarCur;
3929 if (fGuest)
3930 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
3931 else
3932 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
3933 if (fLME)
3934 {
3935 /* Page Map Level 4 Lookup. */
3936 /* Check if it's a valid address first? */
3937 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
3938 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
3939 X86PML4E Pml4e;
3940 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
3941 if (RT_FAILURE(rc))
3942 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
3943 if (!Pml4e.n.u1Present)
3944 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
3945
3946 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
3947 Assert(fPAE);
3948 }
3949 if (fPAE)
3950 {
3951 /* Page directory pointer table. */
3952 X86PDPE Pdpe;
3953 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
3954 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
3955 if (RT_FAILURE(rc))
3956 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
3957 if (!Pdpe.n.u1Present)
3958 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
3959
3960 VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
3961
3962 /* Page directory (PAE). */
3963 X86PDEPAE Pde;
3964 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde);
3965 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
3966 if (RT_FAILURE(rc))
3967 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
3968 if (!Pde.n.u1Present)
3969 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
3970 if (fPSE && Pde.n.u1Size)
3971 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
3972
3973 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
3974 VarPTEAddr = VarCur;
3975 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK;
3976 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE);
3977 }
3978 else
3979 {
3980 /* Page directory (legacy). */
3981 X86PDE Pde;
3982 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde);
3983 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
3984 if (RT_FAILURE(rc))
3985 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
3986 if (!Pde.n.u1Present)
3987 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
3988 if (fPSE && Pde.n.u1Size)
3989 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
3990
3991 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK;
3992 VarPTEAddr = VarCur;
3993 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK;
3994 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE);
3995 }
3996 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
3997 }
3998
3999 /* adjust cEntries */
4000 cEntries = RT_MAX(1, cEntries);
4001 cEntries = RT_MIN(cEntries, cEntriesMax);
4002
4003 /*
4004 * The display loop.
4005 */
4006 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n",
4007 &VarPTEAddr, &VarGCPtr, iEntry);
4008 do
4009 {
4010 /*
4011 * Read.
4012 */
4013 X86PTEPAE Pte;
4014 Pte.u = 0;
4015 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL);
4016 if (RT_FAILURE(rc))
4017 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr);
4018
4019 /*
4020 * Display.
4021 */
4022 if (iEntry != ~0U)
4023 {
4024 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
4025 iEntry++;
4026 }
4027 DBGCCmdHlpPrintf(pCmdHlp,
4028 fPAE
4029 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4030 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4031 Pte.u,
4032 Pte.u & X86_PTE_PAE_PG_MASK,
4033 Pte.n.u1Present ? "p " : "np",
4034 Pte.n.u1Write ? "w" : "r",
4035 Pte.n.u1User ? "u" : "s",
4036 Pte.n.u1Accessed ? "a " : "na",
4037 Pte.n.u1Dirty ? "d " : "nd",
4038 Pte.n.u3Available,
4039 Pte.n.u1Global ? (fPGE ? "g" : "G") : " ",
4040 Pte.n.u1WriteThru ? "pwt" : " ",
4041 Pte.n.u1CacheDisable ? "pcd" : " ",
4042 Pte.n.u1PAT ? "pat" : " ",
4043 Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "
4044 );
4045 if (Pte.u & UINT64_C(0x7fff000000000000))
4046 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000)));
4047 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4048 if (RT_FAILURE(rc))
4049 return rc;
4050
4051 /*
4052 * Advance.
4053 */
4054 VarPTEAddr.u.u64Number += cbEntry;
4055 if (iEntry != ~0U)
4056 VarGCPtr.u.GCFlat += PAGE_SIZE;
4057 } while (cEntries-- > 0);
4058
4059 return VINF_SUCCESS;
4060}
4061
4062
4063/**
4064 * @callback_method_impl{FNDBGCCMD, The 'dptb' command.}
4065 */
4066static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4067{
4068 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4069 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]);
4070 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]);
4071 if (RT_FAILURE(rc1))
4072 return rc1;
4073 NOREF(pCmd); NOREF(cArgs);
4074 return rc2;
4075}
4076
4077
4078/**
4079 * @callback_method_impl{FNDBGCCMD, The 'dt' command.}
4080 */
4081static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4082{
4083 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4084 int rc;
4085
4086 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4087 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
4088 if (cArgs == 1)
4089 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING
4090 && paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL);
4091
4092 /*
4093 * Check if the command indicates the type.
4094 */
4095 enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined;
4096 if (!strcmp(pCmd->pszCmd, "dt16"))
4097 enmTssType = kTss16;
4098 else if (!strcmp(pCmd->pszCmd, "dt32"))
4099 enmTssType = kTss32;
4100 else if (!strcmp(pCmd->pszCmd, "dt64"))
4101 enmTssType = kTss64;
4102
4103 /*
4104 * We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer.
4105 */
4106 uint32_t SelTss = UINT32_MAX;
4107 DBGCVAR VarTssAddr;
4108 if (cArgs == 0)
4109 {
4110 /** @todo consider querying the hidden bits instead (missing API). */
4111 uint16_t SelTR;
4112 rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR);
4113 if (RT_FAILURE(rc))
4114 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc);
4115 DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0);
4116 SelTss = SelTR;
4117 }
4118 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
4119 {
4120 if (paArgs[0].u.u64Number < 0xffff)
4121 DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0);
4122 else
4123 {
4124 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS)
4125 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n");
4126 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number);
4127 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES)
4128 {
4129 VarTssAddr.enmRangeType = paArgs[0].enmRangeType;
4130 VarTssAddr.u64Range = paArgs[0].u64Range;
4131 }
4132 }
4133 }
4134 else
4135 VarTssAddr = paArgs[0];
4136
4137 /*
4138 * Deal with TSS:ign by means of the GDT.
4139 */
4140 if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR)
4141 {
4142 SelTss = VarTssAddr.u.GCFar.sel;
4143 DBGFSELINFO SelInfo;
4144 rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
4145 if (RT_FAILURE(rc))
4146 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n",
4147 pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc);
4148
4149 if (SelInfo.u.Raw.Gen.u1DescType)
4150 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel);
4151
4152 switch (SelInfo.u.Raw.Gen.u4Type)
4153 {
4154 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4155 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4156 if (enmTssType == kTssToBeDetermined)
4157 enmTssType = kTss16;
4158 break;
4159
4160 case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */
4161 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4162 if (enmTssType == kTssToBeDetermined)
4163 enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32;
4164 break;
4165
4166 default:
4167 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n",
4168 VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type);
4169 }
4170
4171 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase);
4172 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit));
4173 }
4174
4175 /*
4176 * Determine the TSS type if none is currently given.
4177 */
4178 if (enmTssType == kTssToBeDetermined)
4179 {
4180 if ( VarTssAddr.u64Range > 0
4181 && VarTssAddr.u64Range < sizeof(X86TSS32) - 4)
4182 enmTssType = kTss16;
4183 else
4184 {
4185 uint64_t uEfer;
4186 rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer);
4187 if ( RT_FAILURE(rc)
4188 || !(uEfer & MSR_K6_EFER_LMA) )
4189 enmTssType = kTss32;
4190 else
4191 enmTssType = kTss64;
4192 }
4193 }
4194
4195 /*
4196 * Figure the min/max sizes.
4197 * ASSUMES max TSS size is 64 KB.
4198 */
4199 uint32_t cbTssMin;
4200 uint32_t cbTssMax;
4201 switch (enmTssType)
4202 {
4203 case kTss16:
4204 cbTssMin = cbTssMax = X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN + 1;
4205 break;
4206 case kTss32:
4207 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4208 cbTssMax = _64K;
4209 break;
4210 case kTss64:
4211 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4212 cbTssMax = _64K;
4213 break;
4214 default:
4215 AssertFailedReturn(VERR_INTERNAL_ERROR);
4216 }
4217 uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0;
4218 if (cbTss == 0)
4219 cbTss = cbTssMin;
4220 else if (cbTss < cbTssMin)
4221 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n",
4222 cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range);
4223 else if (cbTss > cbTssMax)
4224 cbTss = cbTssMax;
4225 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss);
4226
4227 /*
4228 * Read the TSS into a temporary buffer.
4229 */
4230 uint8_t abBuf[_64K];
4231 size_t cbTssRead;
4232 rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead);
4233 if (RT_FAILURE(rc))
4234 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc);
4235 if (cbTssRead < cbTssMin)
4236 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n",
4237 cbTssRead, cbTssMin);
4238 if (cbTssRead < cbTss)
4239 memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead);
4240
4241
4242 /*
4243 * Format the TSS.
4244 */
4245 uint16_t offIoBitmap;
4246 switch (enmTssType)
4247 {
4248 case kTss16:
4249 {
4250 PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0];
4251 if (SelTss != UINT32_MAX)
4252 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr);
4253 else
4254 DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr);
4255 DBGCCmdHlpPrintf(pCmdHlp,
4256 "ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n"
4257 "ip=%04x sp=%04x bp=%04x\n"
4258 "cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n"
4259 "ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n"
4260 "prev=%04x ldtr=%04x\n"
4261 ,
4262 pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di,
4263 pTss->ip, pTss->sp, pTss->bp,
4264 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags,
4265 pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2,
4266 pTss->selPrev, pTss->selLdt);
4267 if (pTss->cs != 0)
4268 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip);
4269 offIoBitmap = 0;
4270 break;
4271 }
4272
4273 case kTss32:
4274 {
4275 PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0];
4276 if (SelTss != UINT32_MAX)
4277 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4278 else
4279 DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4280 DBGCCmdHlpPrintf(pCmdHlp,
4281 "eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
4282 "eip=%08x esp=%08x ebp=%08x\n"
4283 "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
4284 "ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n"
4285 "prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n"
4286 ,
4287 pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi,
4288 pTss->eip, pTss->esp, pTss->ebp,
4289 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags,
4290 pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2,
4291 pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap);
4292 if (pTss->cs != 0)
4293 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip);
4294 offIoBitmap = pTss->offIoBitmap;
4295 break;
4296 }
4297
4298 case kTss64:
4299 {
4300 PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0];
4301 if (SelTss != UINT32_MAX)
4302 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4303 else
4304 DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4305 DBGCCmdHlpPrintf(pCmdHlp,
4306 "rsp0=%016RX16 rsp1=%016RX16 rsp2=%016RX16\n"
4307 "ist1=%016RX16 ist2=%016RX16\n"
4308 "ist3=%016RX16 ist4=%016RX16\n"
4309 "ist5=%016RX16 ist6=%016RX16\n"
4310 "ist7=%016RX16 iomap=%04x\n"
4311 ,
4312 pTss->rsp0, pTss->rsp1, pTss->rsp2,
4313 pTss->ist1, pTss->ist2,
4314 pTss->ist3, pTss->ist4,
4315 pTss->ist5, pTss->ist6,
4316 pTss->ist7, pTss->offIoBitmap);
4317 offIoBitmap = pTss->offIoBitmap;
4318 break;
4319 }
4320
4321 default:
4322 AssertFailedReturn(VERR_INTERNAL_ERROR);
4323 }
4324
4325 /*
4326 * Dump the interrupt redirection bitmap.
4327 */
4328 if (enmTssType != kTss16)
4329 {
4330 if ( offIoBitmap > cbTssMin
4331 && offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */
4332 {
4333 if (offIoBitmap - cbTssMin >= 32)
4334 {
4335 DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n");
4336 uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32];
4337 uint32_t iStart = 0;
4338 bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */
4339 for (uint32_t i = 0; i < 256; i++)
4340 {
4341 bool fThis = ASMBitTest(pbIntRedirBitmap, i);
4342 if (fThis != fPrev)
4343 {
4344 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected");
4345 fPrev = fThis;
4346 iStart = i;
4347 }
4348 }
4349 if (iStart != 255)
4350 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected");
4351 }
4352 else
4353 DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n",
4354 offIoBitmap - cbTssMin, offIoBitmap - cbTssMin);
4355 }
4356 else if (offIoBitmap > 0)
4357 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4358 else
4359 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n");
4360 }
4361
4362 /*
4363 * Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x64
4364 * (that applies to both 32-bit and 64-bit TSSs since their size is the same).
4365 */
4366 if (enmTssType != kTss16)
4367 {
4368 if (offIoBitmap < cbTss && offIoBitmap >= 0x64)
4369 {
4370 uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K);
4371 DBGCVAR VarAddr;
4372 DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap);
4373 DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts);
4374
4375 uint8_t const *pbIoBitmap = &abBuf[offIoBitmap];
4376 uint32_t iStart = 0;
4377 bool fPrev = ASMBitTest(pbIoBitmap, 0);
4378 uint32_t cLine = 0;
4379 for (uint32_t i = 1; i < cPorts; i++)
4380 {
4381 bool fThis = ASMBitTest(pbIoBitmap, i);
4382 if (fThis != fPrev)
4383 {
4384 cLine++;
4385 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1,
4386 fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " ");
4387 fPrev = fThis;
4388 iStart = i;
4389 }
4390 }
4391 if (iStart != _64K-1)
4392 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK");
4393 }
4394 else if (offIoBitmap > 0)
4395 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4396 else
4397 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n");
4398 }
4399
4400 return VINF_SUCCESS;
4401}
4402
4403
4404/**
4405 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dti' command dumper callback.}
4406 */
4407static DECLCALLBACK(int) dbgcCmdDumpTypeInfoCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4408 const char *pszType, uint32_t fTypeFlags,
4409 uint32_t cElements, void *pvUser)
4410{
4411 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4412
4413 /* Pad with spaces to match the level. */
4414 for (uint32_t i = 0; i < iLvl; i++)
4415 DBGCCmdHlpPrintf(pCmdHlp, " ");
4416
4417 size_t cbWritten = 0;
4418 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4419 while (cbWritten < 32)
4420 {
4421 /* Fill with spaces to get proper aligning. */
4422 DBGCCmdHlpPrintf(pCmdHlp, " ");
4423 cbWritten++;
4424 }
4425
4426 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4427 if (fTypeFlags & DBGFTYPEREGMEMBER_F_ARRAY)
4428 DBGCCmdHlpPrintf(pCmdHlp, "[%u] ", cElements);
4429 if (fTypeFlags & DBGFTYPEREGMEMBER_F_POINTER)
4430 DBGCCmdHlpPrintf(pCmdHlp, "Ptr ");
4431 DBGCCmdHlpPrintf(pCmdHlp, "%s\n", pszType);
4432
4433 return VINF_SUCCESS;
4434}
4435
4436
4437/**
4438 * @callback_method_impl{FNDBGCCMD, The 'dti' command.}
4439 */
4440static DECLCALLBACK(int) dbgcCmdDumpTypeInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4441{
4442 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4443 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
4444 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4445 if (cArgs == 2)
4446 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[1].enmType == DBGCVAR_TYPE_NUMBER);
4447
4448 uint32_t cLvlMax = cArgs == 2 ? (uint32_t)paArgs[1].u.u64Number : UINT32_MAX;
4449 return DBGFR3TypeDumpEx(pUVM, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
4450 dbgcCmdDumpTypeInfoCallback, pCmdHlp);
4451}
4452
4453
4454static void dbgcCmdDumpTypedValCallbackBuiltin(PDBGCCMDHLP pCmdHlp, DBGFTYPEBUILTIN enmType, size_t cbType,
4455 PDBGFTYPEVALBUF pValBuf)
4456{
4457 switch (enmType)
4458 {
4459 case DBGFTYPEBUILTIN_UINT8:
4460 DBGCCmdHlpPrintf(pCmdHlp, "%RU8", pValBuf->u8);
4461 break;
4462 case DBGFTYPEBUILTIN_INT8:
4463 DBGCCmdHlpPrintf(pCmdHlp, "%RI8", pValBuf->i8);
4464 break;
4465 case DBGFTYPEBUILTIN_UINT16:
4466 DBGCCmdHlpPrintf(pCmdHlp, "%RU16", pValBuf->u16);
4467 break;
4468 case DBGFTYPEBUILTIN_INT16:
4469 DBGCCmdHlpPrintf(pCmdHlp, "%RI16", pValBuf->i16);
4470 break;
4471 case DBGFTYPEBUILTIN_UINT32:
4472 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->u32);
4473 break;
4474 case DBGFTYPEBUILTIN_INT32:
4475 DBGCCmdHlpPrintf(pCmdHlp, "%RI32", pValBuf->i32);
4476 break;
4477 case DBGFTYPEBUILTIN_UINT64:
4478 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->u64);
4479 break;
4480 case DBGFTYPEBUILTIN_INT64:
4481 DBGCCmdHlpPrintf(pCmdHlp, "%RI64", pValBuf->i64);
4482 break;
4483 case DBGFTYPEBUILTIN_PTR32:
4484 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4485 break;
4486 case DBGFTYPEBUILTIN_PTR64:
4487 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4488 break;
4489 case DBGFTYPEBUILTIN_PTR:
4490 if (cbType == sizeof(uint32_t))
4491 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4492 else if (cbType == sizeof(uint64_t))
4493 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4494 else
4495 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported pointer width %u>", cbType);
4496 break;
4497 case DBGFTYPEBUILTIN_SIZE:
4498 if (cbType == sizeof(uint32_t))
4499 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->size);
4500 else if (cbType == sizeof(uint64_t))
4501 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->size);
4502 else
4503 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported size width %u>", cbType);
4504 break;
4505 case DBGFTYPEBUILTIN_FLOAT32:
4506 case DBGFTYPEBUILTIN_FLOAT64:
4507 case DBGFTYPEBUILTIN_COMPOUND:
4508 default:
4509 AssertMsgFailed(("Invalid built-in type: %d\n", enmType));
4510 }
4511}
4512
4513/**
4514 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dtv' command dumper callback.}
4515 */
4516static DECLCALLBACK(int) dbgcCmdDumpTypedValCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4517 DBGFTYPEBUILTIN enmType, size_t cbType,
4518 PDBGFTYPEVALBUF pValBuf, uint32_t cValBufs,
4519 void *pvUser)
4520{
4521 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4522
4523 /* Pad with spaces to match the level. */
4524 for (uint32_t i = 0; i < iLvl; i++)
4525 DBGCCmdHlpPrintf(pCmdHlp, " ");
4526
4527 size_t cbWritten = 0;
4528 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4529 while (cbWritten < 32)
4530 {
4531 /* Fill with spaces to get proper aligning. */
4532 DBGCCmdHlpPrintf(pCmdHlp, " ");
4533 cbWritten++;
4534 }
4535
4536 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4537 if (cValBufs > 1)
4538 DBGCCmdHlpPrintf(pCmdHlp, "[%u] [ ", cValBufs);
4539
4540 for (uint32_t i = 0; i < cValBufs; i++)
4541 {
4542 dbgcCmdDumpTypedValCallbackBuiltin(pCmdHlp, enmType, cbType, pValBuf);
4543 if (i < cValBufs - 1)
4544 DBGCCmdHlpPrintf(pCmdHlp, " , ");
4545 pValBuf++;
4546 }
4547
4548 if (cValBufs > 1)
4549 DBGCCmdHlpPrintf(pCmdHlp, " ]");
4550 DBGCCmdHlpPrintf(pCmdHlp, "\n");
4551
4552 return VINF_SUCCESS;
4553}
4554
4555
4556/**
4557 * @callback_method_impl{FNDBGCCMD, The 'dtv' command.}
4558 */
4559static DECLCALLBACK(int) dbgcCmdDumpTypedVal(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4560{
4561 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4562 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 2 || cArgs == 3);
4563 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4564 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISGCPOINTER(paArgs[1].enmType));
4565 if (cArgs == 3)
4566 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[2].enmType == DBGCVAR_TYPE_NUMBER);
4567
4568 /*
4569 * Make DBGF address and fix the range.
4570 */
4571 DBGFADDRESS Address;
4572 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[1], &Address);
4573 if (RT_FAILURE(rc))
4574 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[1]);
4575
4576 uint32_t cLvlMax = cArgs == 3 ? (uint32_t)paArgs[2].u.u64Number : UINT32_MAX;
4577 return DBGFR3TypeValDumpEx(pUVM, &Address, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
4578 dbgcCmdDumpTypedValCallback, pCmdHlp);
4579}
4580
4581/**
4582 * @callback_method_impl{FNDBGCCMD, The 'm' command.}
4583 */
4584static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4585{
4586 DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]);
4587 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4588 return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
4589}
4590
4591
4592/**
4593 * Converts one or more variables into a byte buffer for a
4594 * given unit size.
4595 *
4596 * @returns VBox status codes:
4597 * @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched.
4598 * @retval VERR_INTERNAL_ERROR on bad variable type, bitched.
4599 * @retval VINF_SUCCESS on success.
4600 *
4601 * @param pvBuf The buffer to convert into.
4602 * @param pcbBuf The buffer size on input. The size of the result on output.
4603 * @param cbUnit The unit size to apply when converting.
4604 * The high bit is used to indicate unicode string.
4605 * @param paVars The array of variables to convert.
4606 * @param cVars The number of variables.
4607 */
4608int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars)
4609{
4610 union
4611 {
4612 uint8_t *pu8;
4613 uint16_t *pu16;
4614 uint32_t *pu32;
4615 uint64_t *pu64;
4616 } u, uEnd;
4617 u.pu8 = (uint8_t *)pvBuf;
4618 uEnd.pu8 = u.pu8 + *pcbBuf;
4619
4620 unsigned i;
4621 for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++)
4622 {
4623 switch (paVars[i].enmType)
4624 {
4625 case DBGCVAR_TYPE_GC_FAR:
4626 case DBGCVAR_TYPE_GC_FLAT:
4627 case DBGCVAR_TYPE_GC_PHYS:
4628 case DBGCVAR_TYPE_HC_FLAT:
4629 case DBGCVAR_TYPE_HC_PHYS:
4630 case DBGCVAR_TYPE_NUMBER:
4631 {
4632 uint64_t u64 = paVars[i].u.u64Number;
4633 switch (cbUnit & 0x1f)
4634 {
4635 case 1:
4636 do
4637 {
4638 *u.pu8++ = u64;
4639 u64 >>= 8;
4640 } while (u64);
4641 break;
4642 case 2:
4643 do
4644 {
4645 *u.pu16++ = u64;
4646 u64 >>= 16;
4647 } while (u64);
4648 break;
4649 case 4:
4650 *u.pu32++ = u64;
4651 u64 >>= 32;
4652 if (u64)
4653 *u.pu32++ = u64;
4654 break;
4655 case 8:
4656 *u.pu64++ = u64;
4657 break;
4658 }
4659 break;
4660 }
4661
4662 case DBGCVAR_TYPE_STRING:
4663 case DBGCVAR_TYPE_SYMBOL:
4664 {
4665 const char *psz = paVars[i].u.pszString;
4666 size_t cbString = strlen(psz);
4667 if (cbUnit & RT_BIT_32(31))
4668 {
4669 /* Explode char to unit. */
4670 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f))
4671 {
4672 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
4673 return VERR_TOO_MUCH_DATA;
4674 }
4675 while (*psz)
4676 {
4677 switch (cbUnit & 0x1f)
4678 {
4679 case 1: *u.pu8++ = *psz; break;
4680 case 2: *u.pu16++ = *psz; break;
4681 case 4: *u.pu32++ = *psz; break;
4682 case 8: *u.pu64++ = *psz; break;
4683 }
4684 psz++;
4685 }
4686 }
4687 else
4688 {
4689 /* Raw copy with zero padding if the size isn't aligned. */
4690 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8))
4691 {
4692 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
4693 return VERR_TOO_MUCH_DATA;
4694 }
4695
4696 size_t cbCopy = cbString & ~(cbUnit - 1);
4697 memcpy(u.pu8, psz, cbCopy);
4698 u.pu8 += cbCopy;
4699 psz += cbCopy;
4700
4701 size_t cbReminder = cbString & (cbUnit - 1);
4702 if (cbReminder)
4703 {
4704 memcpy(u.pu8, psz, cbString & (cbUnit - 1));
4705 memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder);
4706 u.pu8 += cbUnit;
4707 }
4708 }
4709 break;
4710 }
4711
4712 default:
4713 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
4714 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR,
4715 "i=%d enmType=%d\n", i, paVars[i].enmType);
4716 return VERR_INTERNAL_ERROR;
4717 }
4718 }
4719 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
4720 if (i != cVars)
4721 {
4722 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
4723 return VERR_TOO_MUCH_DATA;
4724 }
4725 return VINF_SUCCESS;
4726}
4727
4728
4729/**
4730 * @callback_method_impl{FNDBGCCMD, The 'eb'\, 'ew'\, 'ed' and 'eq' commands.}
4731 */
4732static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4733{
4734 /*
4735 * Validate input.
4736 */
4737 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2);
4738 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
4739 for (unsigned iArg = 1; iArg < cArgs; iArg++)
4740 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER);
4741 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4742
4743 /*
4744 * Figure out the element size.
4745 */
4746 unsigned cbElement;
4747 switch (pCmd->pszCmd[1])
4748 {
4749 default:
4750 case 'b': cbElement = 1; break;
4751 case 'w': cbElement = 2; break;
4752 case 'd': cbElement = 4; break;
4753 case 'q': cbElement = 8; break;
4754 }
4755
4756 /*
4757 * Do setting.
4758 */
4759 DBGCVAR Addr = paArgs[0];
4760 for (unsigned iArg = 1;;)
4761 {
4762 size_t cbWritten;
4763 int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten);
4764 if (RT_FAILURE(rc))
4765 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr);
4766 if (cbWritten != cbElement)
4767 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement);
4768
4769 /* advance. */
4770 iArg++;
4771 if (iArg >= cArgs)
4772 break;
4773 rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement);
4774 if (RT_FAILURE(rc))
4775 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
4776 }
4777
4778 return VINF_SUCCESS;
4779}
4780
4781
4782/**
4783 * Executes the search.
4784 *
4785 * @returns VBox status code.
4786 * @param pCmdHlp The command helpers.
4787 * @param pUVM The user mode VM handle.
4788 * @param pAddress The address to start searching from. (undefined on output)
4789 * @param cbRange The address range to search. Must not wrap.
4790 * @param pabBytes The byte pattern to search for.
4791 * @param cbBytes The size of the pattern.
4792 * @param cbUnit The search unit.
4793 * @param cMaxHits The max number of hits.
4794 * @param pResult Where to store the result if it's a function invocation.
4795 */
4796static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange,
4797 const uint8_t *pabBytes, uint32_t cbBytes,
4798 uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult)
4799{
4800 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4801
4802 /*
4803 * Do the search.
4804 */
4805 uint64_t cHits = 0;
4806 for (;;)
4807 {
4808 /* search */
4809 DBGFADDRESS HitAddress;
4810 int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress);
4811 if (RT_FAILURE(rc))
4812 {
4813 if (rc != VERR_DBGF_MEM_NOT_FOUND)
4814 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n");
4815
4816 /* update the current address so we can save it (later). */
4817 pAddress->off += cbRange;
4818 pAddress->FlatPtr += cbRange;
4819 cbRange = 0;
4820 break;
4821 }
4822
4823 /* report result */
4824 DBGCVAR VarCur;
4825 rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur);
4826 if (RT_FAILURE(rc))
4827 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n");
4828 if (!pResult)
4829 pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur);
4830 else
4831 DBGCVAR_ASSIGN(pResult, &VarCur);
4832
4833 /* advance */
4834 cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr;
4835 *pAddress = HitAddress;
4836 pAddress->FlatPtr += cbBytes;
4837 pAddress->off += cbBytes;
4838 if (cbRange <= cbBytes)
4839 {
4840 cbRange = 0;
4841 break;
4842 }
4843 cbRange -= cbBytes;
4844
4845 if (++cHits >= cMaxHits)
4846 {
4847 /// @todo save the search.
4848 break;
4849 }
4850 }
4851
4852 /*
4853 * Save the search so we can resume it...
4854 */
4855 if (pDbgc->abSearch != pabBytes)
4856 {
4857 memcpy(pDbgc->abSearch, pabBytes, cbBytes);
4858 pDbgc->cbSearch = cbBytes;
4859 pDbgc->cbSearchUnit = cbUnit;
4860 }
4861 pDbgc->cMaxSearchHits = cMaxHits;
4862 pDbgc->SearchAddr = *pAddress;
4863 pDbgc->cbSearchRange = cbRange;
4864
4865 return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED;
4866}
4867
4868
4869/**
4870 * Resumes the previous search.
4871 *
4872 * @returns VBox status code.
4873 * @param pCmdHlp Pointer to the command helper functions.
4874 * @param pUVM The user mode VM handle.
4875 * @param pResult Where to store the result of a function invocation.
4876 */
4877static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult)
4878{
4879 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4880
4881 /*
4882 * Make sure there is a previous command.
4883 */
4884 if (!pDbgc->cbSearch)
4885 {
4886 DBGCCmdHlpPrintf(pCmdHlp, "Error: No previous search\n");
4887 return VERR_DBGC_COMMAND_FAILED;
4888 }
4889
4890 /*
4891 * Make range and address adjustments.
4892 */
4893 DBGFADDRESS Address = pDbgc->SearchAddr;
4894 if (Address.FlatPtr == ~(RTGCUINTPTR)0)
4895 {
4896 Address.FlatPtr -= Address.off;
4897 Address.off = 0;
4898 }
4899
4900 RTGCUINTPTR cbRange = pDbgc->cbSearchRange;
4901 if (!cbRange)
4902 cbRange = ~(RTGCUINTPTR)0;
4903 if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr)
4904 cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr;
4905
4906 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch,
4907 pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult);
4908}
4909
4910
4911/**
4912 * Search memory, worker for the 's' and 's?' functions.
4913 *
4914 * @returns VBox status code.
4915 * @param pCmdHlp Pointer to the command helper functions.
4916 * @param pUVM The user mode VM handle.
4917 * @param pAddress Where to start searching. If no range, search till end of address space.
4918 * @param cMaxHits The maximum number of hits.
4919 * @param chType The search type.
4920 * @param paPatArgs The pattern variable array.
4921 * @param cPatArgs Number of pattern variables.
4922 * @param pResult Where to store the result of a function invocation.
4923 */
4924static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType,
4925 PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult)
4926{
4927 if (pResult)
4928 DBGCVAR_INIT_GC_FLAT(pResult, 0);
4929
4930 /*
4931 * Convert the search pattern into bytes and DBGFR3MemScan can deal with.
4932 */
4933 uint32_t cbUnit;
4934 switch (chType)
4935 {
4936 case 'a':
4937 case 'b': cbUnit = 1; break;
4938 case 'u': cbUnit = 2 | RT_BIT_32(31); break;
4939 case 'w': cbUnit = 2; break;
4940 case 'd': cbUnit = 4; break;
4941 case 'q': cbUnit = 8; break;
4942 default:
4943 return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType);
4944 }
4945 uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)];
4946 uint32_t cbBytes = sizeof(abBytes);
4947 int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs);
4948 if (RT_FAILURE(rc))
4949 return VERR_DBGC_COMMAND_FAILED;
4950
4951 /*
4952 * Make DBGF address and fix the range.
4953 */
4954 DBGFADDRESS Address;
4955 rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address);
4956 if (RT_FAILURE(rc))
4957 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress);
4958
4959 RTGCUINTPTR cbRange;
4960 switch (pAddress->enmRangeType)
4961 {
4962 case DBGCVAR_RANGE_BYTES:
4963 cbRange = pAddress->u64Range;
4964 if (cbRange != pAddress->u64Range)
4965 cbRange = ~(RTGCUINTPTR)0;
4966 break;
4967
4968 case DBGCVAR_RANGE_ELEMENTS:
4969 cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit);
4970 if ( cbRange != pAddress->u64Range * cbUnit
4971 || cbRange < pAddress->u64Range)
4972 cbRange = ~(RTGCUINTPTR)0;
4973 break;
4974
4975 default:
4976 cbRange = ~(RTGCUINTPTR)0;
4977 break;
4978 }
4979 if (Address.FlatPtr + cbRange < Address.FlatPtr)
4980 cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr;
4981
4982 /*
4983 * Ok, do it.
4984 */
4985 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult);
4986}
4987
4988
4989/**
4990 * @callback_method_impl{FNDBGCCMD, The 's' command.}
4991 */
4992static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4993{
4994 RT_NOREF2(pCmd, paArgs);
4995
4996 /* check that the parser did what it's supposed to do. */
4997 //if ( cArgs <= 2
4998 // && paArgs[0].enmType != DBGCVAR_TYPE_STRING)
4999 // return DBGCCmdHlpPrintf(pCmdHlp, "parser error\n");
5000
5001 /*
5002 * Repeat previous search?
5003 */
5004 if (cArgs == 0)
5005 return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL);
5006
5007 /*
5008 * Parse arguments.
5009 */
5010
5011 return -1;
5012}
5013
5014
5015/**
5016 * @callback_method_impl{FNDBGCCMD, The 's?' command.}
5017 */
5018static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5019{
5020 /* check that the parser did what it's supposed to do. */
5021 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType));
5022 return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL);
5023}
5024
5025
5026/**
5027 * Matching function for interrupts event names.
5028 *
5029 * This parses the interrupt number and length.
5030 *
5031 * @returns True if match, false if not.
5032 * @param pPattern The user specified pattern to match.
5033 * @param pszEvtName The event name.
5034 * @param pCmdHlp Command helpers for warning about malformed stuff.
5035 * @param piFirst Where to return start interrupt number on success.
5036 * @param pcInts Where to return the number of interrupts on success.
5037 */
5038static bool dbgcEventIsMatchingInt(PCDBGCVAR pPattern, const char *pszEvtName, PDBGCCMDHLP pCmdHlp,
5039 uint8_t *piFirst, uint16_t *pcInts)
5040{
5041 /*
5042 * Ignore trailing hex digits when comparing with the event base name.
5043 */
5044 const char *pszPattern = pPattern->u.pszString;
5045 const char *pszEnd = RTStrEnd(pszPattern, RTSTR_MAX);
5046 while ( (uintptr_t)pszEnd > (uintptr_t)pszPattern
5047 && RT_C_IS_XDIGIT(pszEnd[-1]))
5048 pszEnd -= 1;
5049 if (RTStrSimplePatternNMatch(pszPattern, pszEnd - pszPattern, pszEvtName, RTSTR_MAX))
5050 {
5051 /*
5052 * Parse the index and length.
5053 */
5054 if (!*pszEnd)
5055 *piFirst = 0;
5056 else
5057 {
5058 int rc = RTStrToUInt8Full(pszEnd, 16, piFirst);
5059 if (rc != VINF_SUCCESS)
5060 {
5061 if (RT_FAILURE(rc))
5062 *piFirst = 0;
5063 DBGCCmdHlpPrintf(pCmdHlp, "Warning: %Rrc parsing '%s' - interpreting it as %#x\n", rc, pszEnd, *piFirst);
5064 }
5065 }
5066
5067 if (pPattern->enmRangeType == DBGCVAR_RANGE_NONE)
5068 *pcInts = 1;
5069 else
5070 *pcInts = RT_MAX(RT_MIN((uint16_t)pPattern->u64Range, 256 - *piFirst), 1);
5071 return true;
5072 }
5073 return false;
5074}
5075
5076
5077/**
5078 * Updates a DBGC event config.
5079 *
5080 * @returns VINF_SUCCESS or VERR_NO_MEMORY.
5081 * @param ppEvtCfg The event configuration entry to update.
5082 * @param pszCmd The new command. Leave command alone if NULL.
5083 * @param enmEvtState The new event state.
5084 * @param fChangeCmdOnly Whether to only update the command.
5085 */
5086static int dbgcEventUpdate(PDBGCEVTCFG *ppEvtCfg, const char *pszCmd, DBGCEVTSTATE enmEvtState, bool fChangeCmdOnly)
5087{
5088 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5089
5090 /*
5091 * If we've got a command string, update the command too.
5092 */
5093 if (pszCmd)
5094 {
5095 size_t cchCmd = strlen(pszCmd);
5096 if ( !cchCmd
5097 && ( !fChangeCmdOnly
5098 ? enmEvtState == kDbgcEvtState_Disabled
5099 : !pEvtCfg || pEvtCfg->enmState == kDbgcEvtState_Disabled))
5100 {
5101 /* NULL entry is fine if no command and disabled. */
5102 RTMemFree(pEvtCfg);
5103 *ppEvtCfg = NULL;
5104 }
5105 else
5106 {
5107 if (!pEvtCfg || pEvtCfg->cchCmd < cchCmd)
5108 {
5109 RTMemFree(pEvtCfg);
5110 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(RT_OFFSETOF(DBGCEVTCFG, szCmd[cchCmd + 1]));
5111 if (!pEvtCfg)
5112 return VERR_NO_MEMORY;
5113 }
5114 pEvtCfg->enmState = enmEvtState;
5115 pEvtCfg->cchCmd = cchCmd;
5116 memcpy(pEvtCfg->szCmd, pszCmd, cchCmd + 1);
5117 }
5118 }
5119 /*
5120 * Update existing or enable new. If NULL and not enabled, we can keep it that way.
5121 */
5122 else if (pEvtCfg || enmEvtState != kDbgcEvtState_Disabled)
5123 {
5124 if (!pEvtCfg)
5125 {
5126 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(sizeof(DBGCEVTCFG));
5127 if (!pEvtCfg)
5128 return VERR_NO_MEMORY;
5129 pEvtCfg->cchCmd = 0;
5130 pEvtCfg->szCmd[0] = '\0';
5131 }
5132 pEvtCfg->enmState = enmEvtState;
5133 }
5134
5135 return VINF_SUCCESS;
5136}
5137
5138
5139/**
5140 * Record one settings change for a plain event.
5141 *
5142 * @returns The new @a cIntCfgs value.
5143 * @param paEventCfgs The event setttings array. Must have DBGFEVENT_END
5144 * entries.
5145 * @param cEventCfgs The current number of entries in @a paEventCfgs.
5146 * @param enmType The event to change the settings for.
5147 * @param enmEvtState The new event state.
5148 * @param iSxEvt Index into the g_aDbgcSxEvents array.
5149 *
5150 * @remarks We use abUnused[0] for the enmEvtState, while abUnused[1] and
5151 * abUnused[2] are used for iSxEvt.
5152 */
5153static uint32_t dbgcEventAddPlainConfig(PDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, DBGFEVENTTYPE enmType,
5154 DBGCEVTSTATE enmEvtState, uint16_t iSxEvt)
5155{
5156 uint32_t iCfg;
5157 for (iCfg = 0; iCfg < cEventCfgs; iCfg++)
5158 if (paEventCfgs[iCfg].enmType == enmType)
5159 break;
5160 if (iCfg == cEventCfgs)
5161 {
5162 Assert(cEventCfgs < DBGFEVENT_END);
5163 paEventCfgs[iCfg].enmType = enmType;
5164 cEventCfgs++;
5165 }
5166 paEventCfgs[iCfg].fEnabled = enmEvtState > kDbgcEvtState_Disabled;
5167 paEventCfgs[iCfg].abUnused[0] = enmEvtState;
5168 paEventCfgs[iCfg].abUnused[1] = (uint8_t)iSxEvt;
5169 paEventCfgs[iCfg].abUnused[2] = (uint8_t)(iSxEvt >> 8);
5170 return cEventCfgs;
5171}
5172
5173
5174/**
5175 * Record one or more interrupt event config changes.
5176 *
5177 * @returns The new @a cIntCfgs value.
5178 * @param paIntCfgs Interrupt confiruation array. Must have 256 entries.
5179 * @param cIntCfgs The current number of entries in @a paIntCfgs.
5180 * @param iInt The interrupt number to start with.
5181 * @param cInts The number of interrupts to change.
5182 * @param pszName The settings name (hwint/swint).
5183 * @param enmEvtState The new event state.
5184 * @param bIntOp The new DBGF interrupt state.
5185 */
5186static uint32_t dbgcEventAddIntConfig(PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs, uint8_t iInt, uint16_t cInts,
5187 const char *pszName, DBGCEVTSTATE enmEvtState, uint8_t bIntOp)
5188{
5189 bool const fHwInt = *pszName == 'h';
5190
5191 bIntOp |= (uint8_t)enmEvtState << 4;
5192 uint8_t const bSoftState = !fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5193 uint8_t const bHardState = fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5194
5195 while (cInts > 0)
5196 {
5197 uint32_t iCfg;
5198 for (iCfg = 0; iCfg < cIntCfgs; iCfg++)
5199 if (paIntCfgs[iCfg].iInterrupt == iInt)
5200 break;
5201 if (iCfg == cIntCfgs)
5202 break;
5203 if (fHwInt)
5204 paIntCfgs[iCfg].enmHardState = bHardState;
5205 else
5206 paIntCfgs[iCfg].enmSoftState = bSoftState;
5207 iInt++;
5208 cInts--;
5209 }
5210
5211 while (cInts > 0)
5212 {
5213 Assert(cIntCfgs < 256);
5214 paIntCfgs[cIntCfgs].iInterrupt = iInt;
5215 paIntCfgs[cIntCfgs].enmHardState = bHardState;
5216 paIntCfgs[cIntCfgs].enmSoftState = bSoftState;
5217 cIntCfgs++;
5218 iInt++;
5219 cInts--;
5220 }
5221
5222 return cIntCfgs;
5223}
5224
5225
5226/**
5227 * Applies event settings changes to DBGC and DBGF.
5228 *
5229 * @returns VBox status code (fully bitched)
5230 * @param pCmdHlp The command helpers.
5231 * @param pUVM The user mode VM handle.
5232 * @param paIntCfgs Interrupt configuration array. We use the upper 4
5233 * bits of the settings for the DBGCEVTSTATE. This
5234 * will be cleared.
5235 * @param cIntCfgs Number of interrupt configuration changes.
5236 * @param paEventCfgs The generic event configuration array. We use the
5237 * abUnused[0] member for the DBGCEVTSTATE, and
5238 * abUnused[2:1] for the g_aDbgcSxEvents index.
5239 * @param cEventCfgs The number of generic event settings changes.
5240 * @param pszCmd The commands to associate with the changed events.
5241 * If this is NULL, don't touch the command.
5242 * @param fChangeCmdOnly Whether to only change the commands (sx-).
5243 */
5244static int dbgcEventApplyChanges(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs,
5245 PCDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, const char *pszCmd, bool fChangeCmdOnly)
5246{
5247 int rc;
5248
5249 /*
5250 * Apply changes to DBGC. This can only fail with out of memory error.
5251 */
5252 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5253 if (cIntCfgs)
5254 for (uint32_t iCfg = 0; iCfg < cIntCfgs; iCfg++)
5255 {
5256 DBGCEVTSTATE enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmHardState >> 4);
5257 paIntCfgs[iCfg].enmHardState &= 0xf;
5258 if (paIntCfgs[iCfg].enmHardState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5259 {
5260 rc = dbgcEventUpdate(&pDbgc->apHardInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5261 if (RT_FAILURE(rc))
5262 return rc;
5263 }
5264
5265 enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmSoftState >> 4);
5266 paIntCfgs[iCfg].enmSoftState &= 0xf;
5267 if (paIntCfgs[iCfg].enmSoftState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5268 {
5269 rc = dbgcEventUpdate(&pDbgc->apSoftInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5270 if (RT_FAILURE(rc))
5271 return rc;
5272 }
5273 }
5274
5275 if (cEventCfgs)
5276 {
5277 for (uint32_t iCfg = 0; iCfg < cEventCfgs; iCfg++)
5278 {
5279 Assert((unsigned)paEventCfgs[iCfg].enmType < RT_ELEMENTS(pDbgc->apEventCfgs));
5280 uint16_t iSxEvt = RT_MAKE_U16(paEventCfgs[iCfg].abUnused[1], paEventCfgs[iCfg].abUnused[2]);
5281 Assert(iSxEvt < RT_ELEMENTS(g_aDbgcSxEvents));
5282 rc = dbgcEventUpdate(&pDbgc->apEventCfgs[iSxEvt], pszCmd, (DBGCEVTSTATE)paEventCfgs[iCfg].abUnused[0], fChangeCmdOnly);
5283 if (RT_FAILURE(rc))
5284 return rc;
5285 }
5286 }
5287
5288 /*
5289 * Apply changes to DBGF.
5290 */
5291 if (!fChangeCmdOnly)
5292 {
5293 if (cIntCfgs)
5294 {
5295 rc = DBGFR3InterruptConfigEx(pUVM, paIntCfgs, cIntCfgs);
5296 if (RT_FAILURE(rc))
5297 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3InterruptConfigEx: %Rrc\n", rc);
5298 }
5299 if (cEventCfgs)
5300 {
5301 rc = DBGFR3EventConfigEx(pUVM, paEventCfgs, cEventCfgs);
5302 if (RT_FAILURE(rc))
5303 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3EventConfigEx: %Rrc\n", rc);
5304 }
5305 }
5306
5307 return VINF_SUCCESS;
5308}
5309
5310
5311/**
5312 * @callback_method_impl{FNDBGCCMD, The 'sx[eni-]' commands.}
5313 */
5314static DECLCALLBACK(int) dbgcCmdEventCtrl(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5315{
5316 /*
5317 * Figure out which command this is.
5318 */
5319 uint8_t bIntOp;
5320 DBGCEVTSTATE enmEvtState;
5321 bool fChangeCmdOnly;
5322 switch (pCmd->pszCmd[2])
5323 {
5324 case 'e': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Enabled; fChangeCmdOnly = false; break;
5325 case 'n': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Notify; fChangeCmdOnly = false; break;
5326 case '-': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Invalid; fChangeCmdOnly = true; break;
5327 case 'i': bIntOp = DBGFINTERRUPTSTATE_DISABLED; enmEvtState = kDbgcEvtState_Disabled; fChangeCmdOnly = false; break;
5328 default:
5329 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "pszCmd=%s\n", pCmd->pszCmd);
5330 }
5331
5332 /*
5333 * Command option.
5334 */
5335 unsigned iArg = 0;
5336 const char *pszCmd = NULL;
5337 if ( cArgs >= iArg + 2
5338 && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5339 && paArgs[iArg + 1].enmType == DBGCVAR_TYPE_STRING
5340 && strcmp(paArgs[iArg].u.pszString, "-c") == 0)
5341 {
5342 pszCmd = paArgs[iArg + 1].u.pszString;
5343 iArg += 2;
5344 }
5345 if (fChangeCmdOnly && !pszCmd)
5346 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "The 'sx-' requires the '-c cmd' arguments.\n");
5347
5348 /*
5349 * The remaining arguments are event specifiers to which the operation should be applied.
5350 */
5351 uint32_t cIntCfgs = 0;
5352 DBGFINTERRUPTCONFIG aIntCfgs[256];
5353 uint32_t cEventCfgs = 0;
5354 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5355
5356 for (; iArg < cArgs; iArg++)
5357 {
5358 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, iArg, paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5359 || paArgs[iArg].enmType == DBGCVAR_TYPE_SYMBOL);
5360 uint32_t cHits = 0;
5361 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5362 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5363 {
5364 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5365 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5366 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5367 {
5368 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5369 enmEvtState, iEvt);
5370 cHits++;
5371 }
5372 }
5373 else
5374 {
5375 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5376 uint8_t iInt;
5377 uint16_t cInts;
5378 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5379 {
5380 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5381 enmEvtState, bIntOp);
5382 cHits++;
5383 }
5384 }
5385 if (!cHits)
5386 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5387 }
5388
5389 /*
5390 * Apply the changes.
5391 */
5392 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, pszCmd, fChangeCmdOnly);
5393}
5394
5395
5396/**
5397 * @callback_method_impl{FNDBGCCMD, The 'sxr' commands.}
5398 */
5399static DECLCALLBACK(int) dbgcCmdEventCtrlReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5400{
5401 RT_NOREF1(pCmd);
5402 uint32_t cEventCfgs = 0;
5403 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5404 uint32_t cIntCfgs = 0;
5405 DBGFINTERRUPTCONFIG aIntCfgs[256];
5406
5407 if (cArgs == 0)
5408 {
5409 /*
5410 * All events.
5411 */
5412 for (uint32_t iInt = 0; iInt < 256; iInt++)
5413 {
5414 aIntCfgs[iInt].iInterrupt = iInt;
5415 aIntCfgs[iInt].enmHardState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5416 aIntCfgs[iInt].enmSoftState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5417 }
5418 cIntCfgs = 256;
5419
5420 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5421 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5422 {
5423 aEventCfgs[cEventCfgs].enmType = g_aDbgcSxEvents[iEvt].enmType;
5424 aEventCfgs[cEventCfgs].fEnabled = g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled;
5425 aEventCfgs[cEventCfgs].abUnused[0] = g_aDbgcSxEvents[iEvt].enmDefault;
5426 aEventCfgs[cEventCfgs].abUnused[1] = (uint8_t)iEvt;
5427 aEventCfgs[cEventCfgs].abUnused[2] = (uint8_t)(iEvt >> 8);
5428 cEventCfgs++;
5429 }
5430 else
5431 {
5432 uint8_t const bState = ( g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5433 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED)
5434 | ((uint8_t)g_aDbgcSxEvents[iEvt].enmDefault << 4);
5435 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5436 for (uint32_t iInt = 0; iInt < 256; iInt++)
5437 aIntCfgs[iInt].enmHardState = bState;
5438 else
5439 for (uint32_t iInt = 0; iInt < 256; iInt++)
5440 aIntCfgs[iInt].enmSoftState = bState;
5441 }
5442 }
5443 else
5444 {
5445 /*
5446 * Selected events.
5447 */
5448 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
5449 {
5450 unsigned cHits = 0;
5451 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5452 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5453 {
5454 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5455 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5456 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5457 {
5458 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5459 g_aDbgcSxEvents[iEvt].enmDefault, iEvt);
5460 cHits++;
5461 }
5462 }
5463 else
5464 {
5465 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5466 uint8_t iInt;
5467 uint16_t cInts;
5468 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5469 {
5470 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5471 g_aDbgcSxEvents[iEvt].enmDefault,
5472 g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5473 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED);
5474 cHits++;
5475 }
5476 }
5477 if (!cHits)
5478 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5479 }
5480 }
5481
5482 /*
5483 * Apply the reset changes.
5484 */
5485 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, "", false);
5486}
5487
5488
5489/**
5490 * Used during DBGC initialization to configure events with defaults.
5491 *
5492 * @returns VBox status code.
5493 * @param pDbgc The DBGC instance.
5494 */
5495void dbgcEventInit(PDBGC pDbgc)
5496{
5497 if (pDbgc->pUVM)
5498 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5499}
5500
5501
5502/**
5503 * Used during DBGC termination to disable all events.
5504 *
5505 * @param pDbgc The DBGC instance.
5506 */
5507void dbgcEventTerm(PDBGC pDbgc)
5508{
5509/** @todo need to do more than just reset later. */
5510 if (pDbgc->pUVM && VMR3GetStateU(pDbgc->pUVM) < VMSTATE_DESTROYING)
5511 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5512}
5513
5514
5515static void dbgcEventDisplay(PDBGCCMDHLP pCmdHlp, const char *pszName, DBGCEVTSTATE enmDefault, PDBGCEVTCFG const *ppEvtCfg)
5516{
5517 RT_NOREF1(enmDefault);
5518 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5519
5520 const char *pszState;
5521 switch (pEvtCfg ? pEvtCfg->enmState : kDbgcEvtState_Disabled)
5522 {
5523 case kDbgcEvtState_Disabled: pszState = "ignore"; break;
5524 case kDbgcEvtState_Enabled: pszState = "enabled"; break;
5525 case kDbgcEvtState_Notify: pszState = "notify"; break;
5526 default:
5527 AssertFailed();
5528 pszState = "invalid";
5529 break;
5530 }
5531
5532 if (pEvtCfg && pEvtCfg->cchCmd > 0)
5533 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %-7s \"%s\"\n", pszName, pszState, pEvtCfg->szCmd);
5534 else
5535 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %s\n", pszName, pszState);
5536}
5537
5538
5539static void dbgcEventDisplayRange(PDBGCCMDHLP pCmdHlp, const char *pszBaseNm, DBGCEVTSTATE enmDefault,
5540 PDBGCEVTCFG const *papEvtCfgs, unsigned iCfg, unsigned cCfgs)
5541{
5542 do
5543 {
5544 PCDBGCEVTCFG pFirstCfg = papEvtCfgs[iCfg];
5545 if (pFirstCfg && pFirstCfg->enmState == kDbgcEvtState_Disabled && pFirstCfg->cchCmd == 0)
5546 pFirstCfg = NULL;
5547
5548 unsigned const iFirstCfg = iCfg;
5549 iCfg++;
5550 while (iCfg < cCfgs)
5551 {
5552 PCDBGCEVTCFG pCurCfg = papEvtCfgs[iCfg];
5553 if (pCurCfg && pCurCfg->enmState == kDbgcEvtState_Disabled && pCurCfg->cchCmd == 0)
5554 pCurCfg = NULL;
5555 if (pCurCfg != pFirstCfg)
5556 {
5557 if (!pCurCfg || !pFirstCfg)
5558 break;
5559 if (pCurCfg->enmState != pFirstCfg->enmState)
5560 break;
5561 if (pCurCfg->cchCmd != pFirstCfg->cchCmd)
5562 break;
5563 if (memcmp(pCurCfg->szCmd, pFirstCfg->szCmd, pFirstCfg->cchCmd) != 0)
5564 break;
5565 }
5566 iCfg++;
5567 }
5568
5569 char szName[16];
5570 unsigned cEntries = iCfg - iFirstCfg;
5571 if (cEntries == 1)
5572 RTStrPrintf(szName, sizeof(szName), "%s%02x", pszBaseNm, iFirstCfg);
5573 else
5574 RTStrPrintf(szName, sizeof(szName), "%s%02x L %#x", pszBaseNm, iFirstCfg, cEntries);
5575 dbgcEventDisplay(pCmdHlp, szName, enmDefault, &papEvtCfgs[iFirstCfg]);
5576
5577 cCfgs -= cEntries;
5578 } while (cCfgs > 0);
5579}
5580
5581
5582/**
5583 * @callback_method_impl{FNDBGCCMD, The 'sx' commands.}
5584 */
5585static DECLCALLBACK(int) dbgcCmdEventCtrlList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5586{
5587 RT_NOREF2(pCmd, pUVM);
5588 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5589
5590 if (cArgs == 0)
5591 {
5592 /*
5593 * All events.
5594 */
5595 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5596 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5597 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5598 &pDbgc->apEventCfgs[iEvt]);
5599 else if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5600 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5601 pDbgc->apHardInts, 0, 256);
5602 else
5603 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5604 pDbgc->apSoftInts, 0, 256);
5605 }
5606 else
5607 {
5608 /*
5609 * Selected events.
5610 */
5611 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
5612 {
5613 unsigned cHits = 0;
5614 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5615 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5616 {
5617 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5618 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5619 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5620 {
5621 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5622 &pDbgc->apEventCfgs[iEvt]);
5623 cHits++;
5624 }
5625 }
5626 else
5627 {
5628 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5629 uint8_t iInt;
5630 uint16_t cInts;
5631 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5632 {
5633 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5634 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5635 pDbgc->apHardInts, iInt, cInts);
5636 else
5637 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5638 pDbgc->apSoftInts, iInt, cInts);
5639 cHits++;
5640 }
5641 }
5642 if (cHits == 0)
5643 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5644 }
5645 }
5646
5647 return VINF_SUCCESS;
5648}
5649
5650
5651
5652/**
5653 * List near symbol.
5654 *
5655 * @returns VBox status code.
5656 * @param pCmdHlp Pointer to command helper functions.
5657 * @param pUVM The user mode VM handle.
5658 * @param pArg Pointer to the address or symbol to lookup.
5659 */
5660static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg)
5661{
5662 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5663
5664 RTDBGSYMBOL Symbol;
5665 int rc;
5666 if (pArg->enmType == DBGCVAR_TYPE_SYMBOL)
5667 {
5668 /*
5669 * Lookup the symbol address.
5670 */
5671 rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL);
5672 if (RT_FAILURE(rc))
5673 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString);
5674
5675 rc = DBGCCmdHlpPrintf(pCmdHlp, "%RTptr %s\n", Symbol.Value, Symbol.szName);
5676 }
5677 else
5678 {
5679 /*
5680 * Convert it to a flat GC address and lookup that address.
5681 */
5682 DBGCVAR AddrVar;
5683 rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg);
5684 if (RT_FAILURE(rc))
5685 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg);
5686
5687 RTINTPTR offDisp;
5688 DBGFADDRESS Addr;
5689 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat),
5690 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &offDisp, &Symbol, NULL);
5691 if (RT_FAILURE(rc))
5692 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3ASymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat);
5693
5694 if (!offDisp)
5695 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s", &AddrVar, Symbol.szName);
5696 else if (offDisp > 0)
5697 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp);
5698 else
5699 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp);
5700 if (Symbol.cb > 0)
5701 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)\n", Symbol.cb);
5702 else
5703 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
5704 }
5705
5706 return rc;
5707}
5708
5709
5710/**
5711 * @callback_method_impl{FNDBGCCMD, The 'ln' (listnear) command.}
5712 */
5713static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5714{
5715 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5716 if (!cArgs)
5717 {
5718 /*
5719 * Current cs:eip symbol.
5720 */
5721 DBGCVAR AddrVar;
5722 const char *pszFmtExpr = pDbgc->fRegCtxGuest ? "%%(cs:eip)" : "%%(.cs:.eip)";
5723 int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, pszFmtExpr);
5724 if (RT_FAILURE(rc))
5725 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%s\n", pszFmtExpr + 1);
5726 return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar);
5727 }
5728
5729/** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */
5730 /*
5731 * Iterate arguments.
5732 */
5733 for (unsigned iArg = 0; iArg < cArgs; iArg++)
5734 {
5735 int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]);
5736 if (RT_FAILURE(rc))
5737 return rc;
5738 }
5739
5740 NOREF(pCmd);
5741 return VINF_SUCCESS;
5742}
5743
5744
5745/**
5746 * Matches the module patters against a module name.
5747 *
5748 * @returns true if matching, otherwise false.
5749 * @param pszName The module name.
5750 * @param paArgs The module pattern argument list.
5751 * @param cArgs Number of arguments.
5752 */
5753static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs)
5754{
5755 for (uint32_t i = 0; i < cArgs; i++)
5756 if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName))
5757 return true;
5758 return false;
5759}
5760
5761
5762/**
5763 * @callback_method_impl{FNDBGCCMD, The 'ln' (list near) command.}
5764 */
5765static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5766{
5767 bool const fMappings = pCmd->pszCmd[2] == 'o';
5768 bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v';
5769 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5770
5771 /*
5772 * Iterate the modules in the current address space and print info about
5773 * those matching the input.
5774 */
5775 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, pDbgc->hDbgAs);
5776 uint32_t cMods = RTDbgAsModuleCount(hAs);
5777 for (uint32_t iMod = 0; iMod < cMods; iMod++)
5778 {
5779 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
5780 if (hMod != NIL_RTDBGMOD)
5781 {
5782 bool const fDeferred = RTDbgModIsDeferred(hMod);
5783 bool const fExports = RTDbgModIsExports(hMod);
5784 uint32_t const cSegs = fDeferred ? 1 : RTDbgModSegmentCount(hMod);
5785 const char * const pszName = RTDbgModName(hMod);
5786 const char * const pszImgFile = RTDbgModImageFile(hMod);
5787 const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod);
5788 const char * const pszDbgFile = RTDbgModDebugFile(hMod);
5789 if ( cArgs == 0
5790 || dbgcCmdListModuleMatch(pszName, paArgs, cArgs))
5791 {
5792 /*
5793 * Find the mapping with the lower address, preferring a full
5794 * image mapping, for the main line.
5795 */
5796 RTDBGASMAPINFO aMappings[128];
5797 uint32_t cMappings = RT_ELEMENTS(aMappings);
5798 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
5799 if (RT_SUCCESS(rc))
5800 {
5801 bool fFull = false;
5802 RTUINTPTR uMin = RTUINTPTR_MAX;
5803 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
5804 if ( aMappings[iMap].Address < uMin
5805 && ( !fFull
5806 || aMappings[iMap].iSeg == NIL_RTDBGSEGIDX))
5807 uMin = aMappings[iMap].Address;
5808 if (!fVerbose || !pszImgFile)
5809 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName,
5810 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
5811 else
5812 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile,
5813 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
5814 if (fVerbose && pszImgFileUsed)
5815 DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed);
5816 if (fVerbose && pszDbgFile)
5817 DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile);
5818
5819 if (fMappings)
5820 {
5821 /* sort by address first - not very efficient. */
5822 for (uint32_t i = 0; i + 1 < cMappings; i++)
5823 for (uint32_t j = i + 1; j < cMappings; j++)
5824 if (aMappings[j].Address < aMappings[i].Address)
5825 {
5826 RTDBGASMAPINFO Tmp = aMappings[j];
5827 aMappings[j] = aMappings[i];
5828 aMappings[i] = Tmp;
5829 }
5830
5831 /* print */
5832 if ( cMappings == 1
5833 && aMappings[0].iSeg == NIL_RTDBGSEGIDX
5834 && !fDeferred)
5835 {
5836 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
5837 {
5838 RTDBGSEGMENT SegInfo;
5839 rc = RTDbgModSegmentByIndex(hMod, iSeg, &SegInfo);
5840 if (RT_SUCCESS(rc))
5841 {
5842 if (SegInfo.uRva != RTUINTPTR_MAX)
5843 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
5844 (RTGCUINTPTR)(aMappings[0].Address + SegInfo.uRva),
5845 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
5846 else
5847 DBGCCmdHlpPrintf(pCmdHlp, " %*s %RGv #%02x %s\n",
5848 sizeof(RTGCUINTPTR)*2, "noload",
5849 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
5850 }
5851 else
5852 DBGCCmdHlpPrintf(pCmdHlp, " Error query segment #%u: %Rrc\n", iSeg, rc);
5853 }
5854 }
5855 else
5856 {
5857 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
5858 if (aMappings[iMap].iSeg == NIL_RTDBGSEGIDX)
5859 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv <everything>\n",
5860 (RTGCUINTPTR)aMappings[iMap].Address,
5861 (RTGCUINTPTR)RTDbgModImageSize(hMod));
5862 else if (!fDeferred)
5863 {
5864 RTDBGSEGMENT SegInfo;
5865 rc = RTDbgModSegmentByIndex(hMod, aMappings[iMap].iSeg, &SegInfo);
5866 if (RT_FAILURE(rc))
5867 {
5868 RT_ZERO(SegInfo);
5869 strcpy(SegInfo.szName, "error");
5870 }
5871 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
5872 (RTGCUINTPTR)aMappings[iMap].Address,
5873 (RTGCUINTPTR)SegInfo.cb,
5874 aMappings[iMap].iSeg, SegInfo.szName);
5875 }
5876 else
5877 DBGCCmdHlpPrintf(pCmdHlp, " %RGv #%02x\n",
5878 (RTGCUINTPTR)aMappings[iMap].Address, aMappings[iMap].iSeg);
5879 }
5880 }
5881 }
5882 else
5883 DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n",
5884 sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc);
5885 /** @todo missing address space API for enumerating the mappings. */
5886 }
5887 RTDbgModRelease(hMod);
5888 }
5889 }
5890 RTDbgAsRelease(hAs);
5891
5892 NOREF(pCmd);
5893 return VINF_SUCCESS;
5894}
5895
5896
5897
5898/**
5899 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 8-bit value.}
5900 */
5901static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
5902 PDBGCVAR pResult)
5903{
5904 RT_NOREF1(pUVM);
5905 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
5906 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
5907 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
5908
5909 uint8_t b;
5910 int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL);
5911 if (RT_FAILURE(rc))
5912 return rc;
5913 DBGCVAR_INIT_NUMBER(pResult, b);
5914
5915 NOREF(pFunc);
5916 return VINF_SUCCESS;
5917}
5918
5919
5920/**
5921 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 16-bit value.}
5922 */
5923static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
5924 PDBGCVAR pResult)
5925{
5926 RT_NOREF1(pUVM);
5927 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
5928 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
5929 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
5930
5931 uint16_t u16;
5932 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL);
5933 if (RT_FAILURE(rc))
5934 return rc;
5935 DBGCVAR_INIT_NUMBER(pResult, u16);
5936
5937 NOREF(pFunc);
5938 return VINF_SUCCESS;
5939}
5940
5941
5942/**
5943 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 32-bit value.}
5944 */
5945static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
5946 PDBGCVAR pResult)
5947{
5948 RT_NOREF1(pUVM);
5949 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
5950 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
5951 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
5952
5953 uint32_t u32;
5954 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL);
5955 if (RT_FAILURE(rc))
5956 return rc;
5957 DBGCVAR_INIT_NUMBER(pResult, u32);
5958
5959 NOREF(pFunc);
5960 return VINF_SUCCESS;
5961}
5962
5963
5964/**
5965 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 64-bit value.}
5966 */
5967static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
5968 PDBGCVAR pResult)
5969{
5970 RT_NOREF1(pUVM);
5971 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
5972 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
5973 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
5974
5975 uint64_t u64;
5976 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL);
5977 if (RT_FAILURE(rc))
5978 return rc;
5979 DBGCVAR_INIT_NUMBER(pResult, u64);
5980
5981 NOREF(pFunc);
5982 return VINF_SUCCESS;
5983}
5984
5985
5986/**
5987 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned pointer-sized value.}
5988 */
5989static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
5990 PDBGCVAR pResult)
5991{
5992 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
5993 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
5994 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
5995
5996 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
5997 if (enmMode == CPUMMODE_LONG)
5998 return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
5999 return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
6000}
6001
6002
6003/**
6004 * @callback_method_impl{FNDBGCFUNC, The hi(value) function implementation.}
6005 */
6006static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6007 PDBGCVAR pResult)
6008{
6009 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6010
6011 uint16_t uHi;
6012 switch (paArgs[0].enmType)
6013 {
6014 case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break;
6015 case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break;
6016 case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break;
6017 case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break;
6018 case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break;
6019 case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break;
6020 default:
6021 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
6022 }
6023 DBGCVAR_INIT_NUMBER(pResult, uHi);
6024 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
6025
6026 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
6027 return VINF_SUCCESS;
6028}
6029
6030
6031/**
6032 * @callback_method_impl{FNDBGCFUNC, The low(value) function implementation.}
6033 */
6034static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6035 PDBGCVAR pResult)
6036{
6037 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6038
6039 uint16_t uLow;
6040 switch (paArgs[0].enmType)
6041 {
6042 case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break;
6043 case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break;
6044 case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break;
6045 case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break;
6046 case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break;
6047 case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break;
6048 default:
6049 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
6050 }
6051 DBGCVAR_INIT_NUMBER(pResult, uLow);
6052 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
6053
6054 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
6055 return VINF_SUCCESS;
6056}
6057
6058
6059/**
6060 * @callback_method_impl{FNDBGCFUNC,The low(value) function implementation.}
6061 */
6062static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6063 PDBGCVAR pResult)
6064{
6065 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6066 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
6067 return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]);
6068}
6069
6070
6071/** Generic pointer argument wo/ range. */
6072static const DBGCVARDESC g_aArgPointerWoRange[] =
6073{
6074 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
6075 { 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." },
6076};
6077
6078/** Generic pointer or number argument. */
6079static const DBGCVARDESC g_aArgPointerNumber[] =
6080{
6081 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
6082 { 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." },
6083};
6084
6085
6086
6087/** Function descriptors for the CodeView / WinDbg emulation.
6088 * The emulation isn't attempting to be identical, only somewhat similar.
6089 */
6090const DBGCFUNC g_aFuncsCodeView[] =
6091{
6092 { "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." },
6093 { "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." },
6094 { "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." },
6095 { "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." },
6096 { "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." },
6097 { "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." },
6098 { "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." },
6099 { "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." },
6100};
6101
6102/** The number of functions in the CodeView/WinDbg emulation. */
6103const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);
6104
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette