VirtualBox

source: vbox/trunk/src/VBox/Debugger/DBGCEmulateCodeView.cpp@ 73449

Last change on this file since 73449 was 73449, checked in by vboxsync, 7 years ago

DBGC: Display recovered non-volatile registers in the 'kv' and 'kgv' commands. [build fix]

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 294.1 KB
Line 
1/* $Id: DBGCEmulateCodeView.cpp 73449 2018-08-02 11:28:32Z vboxsync $ */
2/** @file
3 * DBGC - Debugger Console, CodeView / WinDbg Emulation.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DBGC
23#include <VBox/dbg.h>
24#include <VBox/vmm/dbgf.h>
25#include <VBox/vmm/pgm.h>
26#include <VBox/vmm/cpum.h>
27#include <VBox/dis.h>
28#include <VBox/param.h>
29#include <VBox/err.h>
30#include <VBox/log.h>
31
32#include <iprt/asm.h>
33#include <iprt/mem.h>
34#include <iprt/string.h>
35#include <iprt/assert.h>
36#include <iprt/ctype.h>
37
38#include <stdlib.h>
39#include <stdio.h>
40
41#include "DBGCInternal.h"
42
43
44/*********************************************************************************************************************************
45* Internal Functions *
46*********************************************************************************************************************************/
47static FNDBGCCMD dbgcCmdBrkAccess;
48static FNDBGCCMD dbgcCmdBrkClear;
49static FNDBGCCMD dbgcCmdBrkDisable;
50static FNDBGCCMD dbgcCmdBrkEnable;
51static FNDBGCCMD dbgcCmdBrkList;
52static FNDBGCCMD dbgcCmdBrkSet;
53static FNDBGCCMD dbgcCmdBrkREM;
54static FNDBGCCMD dbgcCmdDumpMem;
55static FNDBGCCMD dbgcCmdDumpDT;
56static FNDBGCCMD dbgcCmdDumpIDT;
57static FNDBGCCMD dbgcCmdDumpPageDir;
58static FNDBGCCMD dbgcCmdDumpPageDirBoth;
59static FNDBGCCMD dbgcCmdDumpPageHierarchy;
60static FNDBGCCMD dbgcCmdDumpPageTable;
61static FNDBGCCMD dbgcCmdDumpPageTableBoth;
62static FNDBGCCMD dbgcCmdDumpTSS;
63static FNDBGCCMD dbgcCmdDumpTypeInfo;
64static FNDBGCCMD dbgcCmdDumpTypedVal;
65static FNDBGCCMD dbgcCmdEditMem;
66static FNDBGCCMD dbgcCmdGo;
67static FNDBGCCMD dbgcCmdGoUp;
68static FNDBGCCMD dbgcCmdListModules;
69static FNDBGCCMD dbgcCmdListNear;
70static FNDBGCCMD dbgcCmdListSource;
71static FNDBGCCMD dbgcCmdMemoryInfo;
72static FNDBGCCMD dbgcCmdReg;
73static FNDBGCCMD dbgcCmdRegGuest;
74static FNDBGCCMD dbgcCmdRegHyper;
75static FNDBGCCMD dbgcCmdRegTerse;
76static FNDBGCCMD dbgcCmdSearchMem;
77static FNDBGCCMD dbgcCmdSearchMemType;
78static FNDBGCCMD dbgcCmdStepTrace;
79static FNDBGCCMD dbgcCmdStepTraceTo;
80static FNDBGCCMD dbgcCmdStepTraceToggle;
81static FNDBGCCMD dbgcCmdEventCtrl;
82static FNDBGCCMD dbgcCmdEventCtrlList;
83static FNDBGCCMD dbgcCmdEventCtrlReset;
84static FNDBGCCMD dbgcCmdStack;
85static FNDBGCCMD dbgcCmdUnassemble;
86static FNDBGCCMD dbgcCmdUnassembleCfg;
87
88
89/*********************************************************************************************************************************
90* Global Variables *
91*********************************************************************************************************************************/
92/** 'ba' arguments. */
93static const DBGCVARDESC g_aArgBrkAcc[] =
94{
95 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
96 { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." },
97 { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." },
98 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
99 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
100 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
101 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
102};
103
104
105/** 'bc', 'bd', 'be' arguments. */
106static const DBGCVARDESC g_aArgBrks[] =
107{
108 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
109 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." },
110 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." },
111};
112
113
114/** 'bp' arguments. */
115static const DBGCVARDESC g_aArgBrkSet[] =
116{
117 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
118 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
119 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
120 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
121 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
122};
123
124
125/** 'br' arguments. */
126static const DBGCVARDESC g_aArgBrkREM[] =
127{
128 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
129 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
130 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
131 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
132 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
133};
134
135
136/** 'd?' arguments. */
137static const DBGCVARDESC g_aArgDumpMem[] =
138{
139 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
140 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory." },
141};
142
143
144/** 'dg', 'dga', 'dl', 'dla' arguments. */
145static const DBGCVARDESC g_aArgDumpDT[] =
146{
147 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
148 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." },
149 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." },
150};
151
152
153/** 'di', 'dia' arguments. */
154static const DBGCVARDESC g_aArgDumpIDT[] =
155{
156 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
157 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." },
158};
159
160
161/** 'dpd*' arguments. */
162static const DBGCVARDESC g_aArgDumpPD[] =
163{
164 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
165 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." },
166 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." },
167};
168
169
170/** 'dpda' arguments. */
171static const DBGCVARDESC g_aArgDumpPDAddr[] =
172{
173 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
174 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." },
175};
176
177
178/** 'dph*' arguments. */
179static const DBGCVARDESC g_aArgDumpPH[] =
180{
181 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
182 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." },
183 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." },
184 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." },
185};
186
187
188/** 'dpt?' arguments. */
189static const DBGCVARDESC g_aArgDumpPT[] =
190{
191 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
192 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." },
193};
194
195
196/** 'dpta' arguments. */
197static const DBGCVARDESC g_aArgDumpPTAddr[] =
198{
199 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
200 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." },
201};
202
203
204/** 'dt' arguments. */
205static const DBGCVARDESC g_aArgDumpTSS[] =
206{
207 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
208 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." },
209 { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." }
210};
211
212
213/** 'dti' arguments. */
214static const DBGCVARDESC g_aArgDumpTypeInfo[] =
215{
216 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
217 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to dump" },
218 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump the type information" }
219};
220
221
222/** 'dtv' arguments. */
223static const DBGCVARDESC g_aArgDumpTypedVal[] =
224{
225 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
226 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to use" },
227 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address to start dumping from." },
228 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump" }
229};
230
231
232/** 'e?' arguments. */
233static const DBGCVARDESC g_aArgEditMem[] =
234{
235 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
236 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." },
237 { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." },
238};
239
240
241/** 'lm' arguments. */
242static const DBGCVARDESC g_aArgListMods[] =
243{
244 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
245 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." },
246};
247
248
249/** 'ln' arguments. */
250static const DBGCVARDESC g_aArgListNear[] =
251{
252 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
253 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." },
254 { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." },
255};
256
257
258/** 'ls' arguments. */
259static const DBGCVARDESC g_aArgListSource[] =
260{
261 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
262 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." },
263};
264
265
266/** 'm' argument. */
267static const DBGCVARDESC g_aArgMemoryInfo[] =
268{
269 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
270 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." },
271};
272
273
274/** 'p', 'pc', 'pt', 't', 'tc' and 'tt' arguments. */
275static const DBGCVARDESC g_aArgStepTrace[] =
276{
277 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
278 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "count", "Number of instructions or source lines to step." },
279 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
280};
281
282
283/** 'pa' and 'ta' arguments. */
284static const DBGCVARDESC g_aArgStepTraceTo[] =
285{
286 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
287 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Where to stop" },
288 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
289};
290
291
292/** 'r' arguments. */
293static const DBGCVARDESC g_aArgReg[] =
294{
295 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
296 { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." },
297 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." },
298 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." },
299};
300
301
302/** 's' arguments. */
303static const DBGCVARDESC g_aArgSearchMem[] =
304{
305 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
306 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." },
307 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." },
308 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." },
309 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." },
310 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." },
311 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." },
312 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n <Hits>", "Maximum number of hits." },
313 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
314 { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
315};
316
317
318/** 's?' arguments. */
319static const DBGCVARDESC g_aArgSearchMemType[] =
320{
321 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
322 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
323 { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
324};
325
326
327/** 'sxe', 'sxn', 'sxi', 'sx-' arguments. */
328static const DBGCVARDESC g_aArgEventCtrl[] =
329{
330 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
331 { 0, 1, DBGCVAR_CAT_STRING, 0, "-c", "The -c option, requires <cmds>." },
332 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "cmds", "Command to execute on this event." },
333 { 0 /*weird*/, ~0U, DBGCVAR_CAT_STRING, 0, "event", "One or more events, 'all' refering to all events." },
334};
335
336/** 'sx' and 'sr' arguments. */
337static const DBGCVARDESC g_aArgEventCtrlOpt[] =
338{
339 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
340 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "event", "Zero or more events, 'all' refering to all events and being the default." },
341};
342
343/** 'u' arguments. */
344static const DBGCVARDESC g_aArgUnassemble[] =
345{
346 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
347 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
348};
349
350/** 'ucfg' arguments. */
351static const DBGCVARDESC g_aArgUnassembleCfg[] =
352{
353 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
354 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
355};
356
357
358/** Command descriptors for the CodeView / WinDbg emulation.
359 * The emulation isn't attempting to be identical, only somewhat similar.
360 */
361const DBGCCMD g_aCmdsCodeView[] =
362{
363 /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
364 { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "<access> <size> <address> [passes [max passes]] [cmds]",
365 "Sets a data access breakpoint." },
366 { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | <bp#> [bp# []]", "Deletes a set of breakpoints." },
367 { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | <bp#> [bp# []]", "Disables a set of breakpoints." },
368 { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | <bp#> [bp# []]", "Enables a set of breakpoints." },
369 { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." },
370 { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "<address> [passes [max passes]] [cmds]",
371 "Sets a breakpoint (int 3)." },
372 { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "<address> [passes [max passes]] [cmds]",
373 "Sets a recompiler specific breakpoint." },
374 { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size and type." },
375 { "dF", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16." },
376 { "dFs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16 with near symbols." },
377 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
378 { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." },
379 { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." },
380 { "dds", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as double words with near symbols." },
381 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
382 { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." },
383 { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." },
384 { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." },
385 { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." },
386 { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." },
387 { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." },
388 { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." },
389 { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." },
390 { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " },
391 { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." },
392 { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " },
393 { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." },
394 { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." },
395 { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." },
396 { "dp", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words." },
397 { "dps", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words with near symbols." },
398 { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the default context." },
399 { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps memory at given address as a page table." },
400 { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"<addr>", "Dumps page table entries of the guest and the hypervisor." },
401 { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the guest." },
402 { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the hypervisor." },
403 { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." },
404 { "dqs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as quad words with near symbols." },
405 { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." },
406 { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." },
407 { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." },
408 { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." },
409 { "dti", 1, 2, &g_aArgDumpTypeInfo[0],RT_ELEMENTS(g_aArgDumpTypeInfo), 0, dbgcCmdDumpTypeInfo,"<type> [levels]", "Dump type information." },
410 { "dtv", 2, 3, &g_aArgDumpTypedVal[0],RT_ELEMENTS(g_aArgDumpTypedVal), 0, dbgcCmdDumpTypedVal,"<type> <addr> [levels]", "Dump a memory buffer using the information in the given type." },
411 { "du", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as unicode string (little endian)." },
412 { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." },
413 /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also
414 * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */
415 { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 1-byte value to memory." },
416 { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 2-byte value to memory." },
417 { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 4-byte value to memory." },
418 { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 8-byte value to memory." },
419 { "g", 0, 0, NULL, 0, 0, dbgcCmdGo, "", "Continue execution." },
420 { "gu", 0, 0, NULL, 0, 0, dbgcCmdGoUp, "", "Go up - continue execution till after return." },
421 { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." },
422 { "kv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack." },
423 { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." },
424 { "kgv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack - guest." },
425 { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." },
426 { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." },
427 { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." },
428 { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." },
429 { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." },
430 { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." },
431 { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." },
432 { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "<addr>", "Display information about that piece of memory." },
433 { "p", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step over." },
434 { "pr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
435 { "pa", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Step to the given address." },
436 { "pc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next call instruction." },
437 { "pt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next return instruction." },
438 { "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set." },
439 { "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set." },
440 { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." },
441 { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." },
442 { "rh", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegHyper, "[reg [[=] newval]]", "Show or set register(s) - hypervisor reg set." },
443 { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." },
444 { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] <range> <pattern>", "Continue last search." },
445 { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an ascii string." },
446 { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more bytes." },
447 { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more double words." },
448 { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more quad words." },
449 { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an unicode string." },
450 { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more words." },
451 { "sx", 0, ~0U, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlList, "[<event> [..]]", "Lists settings for exceptions, exits and other events. All if no filter is specified." },
452 { "sx-", 3, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "-c <cmd> <event> [..]", "Modifies the command for one or more exceptions, exits or other event. 'all' addresses all." },
453 { "sxe", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Enable: Break into the debugger on the specified exceptions, exits and other events. 'all' addresses all." },
454 { "sxn", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Notify: Display info in the debugger and continue on the specified exceptions, exits and other events. 'all' addresses all." },
455 { "sxi", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Ignore: Ignore the specified exceptions, exits and other events ('all' = all of them). Without the -c option, the guest runs like normal." },
456 { "sxr", 0, 0, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlReset, "", "Reset the settings to default for exceptions, exits and other events. All if no filter is specified." },
457 { "t", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace ." },
458 { "tr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
459 { "ta", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Trace to the given address." },
460 { "tc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next call instruction." },
461 { "tt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next return instruction." },
462 { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." },
463 { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." },
464 { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." },
465 { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." },
466 { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." },
467 { "ucfg", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph." },
468 { "ucfgc", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph with colors." },
469};
470
471/** The number of commands in the CodeView/WinDbg emulation. */
472const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView);
473
474
475/**
476 * Selectable debug event descriptors.
477 *
478 * @remarks Sorted by DBGCSXEVT::enmType value.
479 */
480const DBGCSXEVT g_aDbgcSxEvents[] =
481{
482 { DBGFEVENT_INTERRUPT_HARDWARE, "hwint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Hardware interrupt" },
483 { DBGFEVENT_INTERRUPT_SOFTWARE, "swint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Software interrupt" },
484 { DBGFEVENT_TRIPLE_FAULT, "triplefault", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Enabled, 0, "Triple fault "},
485 { DBGFEVENT_XCPT_DE, "xcpt_de", "de", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DE (integer divide error)" },
486 { DBGFEVENT_XCPT_DB, "xcpt_db", "db", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DB (debug)" },
487 { DBGFEVENT_XCPT_02, "xcpt_02", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
488 { DBGFEVENT_XCPT_BP, "xcpt_bp", "bp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BP (breakpoint)" },
489 { DBGFEVENT_XCPT_OF, "xcpt_of", "of", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#OF (overflow (INTO))" },
490 { DBGFEVENT_XCPT_BR, "xcpt_br", "br", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BR (bound range exceeded)" },
491 { DBGFEVENT_XCPT_UD, "xcpt_ud", "ud", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#UD (undefined opcode)" },
492 { DBGFEVENT_XCPT_NM, "xcpt_nm", "nm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#NM (FPU not available)" },
493 { DBGFEVENT_XCPT_DF, "xcpt_df", "df", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DF (double fault)" },
494 { DBGFEVENT_XCPT_09, "xcpt_09", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "Coprocessor segment overrun" },
495 { DBGFEVENT_XCPT_TS, "xcpt_ts", "ts", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#TS (task switch)" },
496 { DBGFEVENT_XCPT_NP, "xcpt_np", "np", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#NP (segment not present)" },
497 { DBGFEVENT_XCPT_SS, "xcpt_ss", "ss", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SS (stack segment fault)" },
498 { DBGFEVENT_XCPT_GP, "xcpt_gp", "gp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#GP (general protection fault)" },
499 { DBGFEVENT_XCPT_PF, "xcpt_pf", "pf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#PF (page fault)" },
500 { DBGFEVENT_XCPT_0f, "xcpt_0f", "xcpt0f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
501 { DBGFEVENT_XCPT_MF, "xcpt_mf", "mf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MF (math fault)" },
502 { DBGFEVENT_XCPT_AC, "xcpt_ac", "ac", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#AC (alignment check)" },
503 { DBGFEVENT_XCPT_MC, "xcpt_mc", "mc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MC (machine check)" },
504 { DBGFEVENT_XCPT_XF, "xcpt_xf", "xf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#XF (SIMD floating-point exception)" },
505 { DBGFEVENT_XCPT_VE, "xcpt_vd", "ve", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#VE (virtualization exception)" },
506 { DBGFEVENT_XCPT_15, "xcpt_15", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
507 { DBGFEVENT_XCPT_16, "xcpt_16", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
508 { DBGFEVENT_XCPT_17, "xcpt_17", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
509 { DBGFEVENT_XCPT_18, "xcpt_18", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
510 { DBGFEVENT_XCPT_19, "xcpt_19", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
511 { DBGFEVENT_XCPT_1a, "xcpt_1a", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
512 { DBGFEVENT_XCPT_1b, "xcpt_1b", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
513 { DBGFEVENT_XCPT_1c, "xcpt_1c", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
514 { DBGFEVENT_XCPT_1d, "xcpt_1d", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
515 { DBGFEVENT_XCPT_SX, "xcpt_sx", "sx", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SX (security exception)" },
516 { DBGFEVENT_XCPT_1f, "xcpt_1f", "xcpt1f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
517 { DBGFEVENT_INSTR_HALT, "instr_halt", "hlt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
518 { DBGFEVENT_INSTR_MWAIT, "instr_mwait", "mwait", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
519 { DBGFEVENT_INSTR_MONITOR, "instr_monitor", "monitor", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
520 { DBGFEVENT_INSTR_CPUID, "instr_cpuid", "cpuid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
521 { DBGFEVENT_INSTR_INVD, "instr_invd", "invd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
522 { DBGFEVENT_INSTR_WBINVD, "instr_wbinvd", "wbinvd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
523 { DBGFEVENT_INSTR_INVLPG, "instr_invlpg", "invlpg", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
524 { DBGFEVENT_INSTR_RDTSC, "instr_rdtsc", "rdtsc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
525 { DBGFEVENT_INSTR_RDTSCP, "instr_rdtscp", "rdtscp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
526 { DBGFEVENT_INSTR_RDPMC, "instr_rdpmc", "rdpmc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
527 { DBGFEVENT_INSTR_RDMSR, "instr_rdmsr", "rdmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
528 { DBGFEVENT_INSTR_WRMSR, "instr_wrmsr", "wrmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
529 { DBGFEVENT_INSTR_CRX_READ, "instr_crx_read", "crx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
530 { DBGFEVENT_INSTR_CRX_WRITE, "instr_crx_write", "crx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
531 { DBGFEVENT_INSTR_DRX_READ, "instr_drx_read", "drx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
532 { DBGFEVENT_INSTR_DRX_WRITE, "instr_drx_write", "drx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
533 { DBGFEVENT_INSTR_PAUSE, "instr_pause", "pause", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
534 { DBGFEVENT_INSTR_XSETBV, "instr_xsetbv", "xsetbv", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
535 { DBGFEVENT_INSTR_SIDT, "instr_sidt", "sidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
536 { DBGFEVENT_INSTR_LIDT, "instr_lidt", "lidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
537 { DBGFEVENT_INSTR_SGDT, "instr_sgdt", "sgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
538 { DBGFEVENT_INSTR_LGDT, "instr_lgdt", "lgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
539 { DBGFEVENT_INSTR_SLDT, "instr_sldt", "sldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
540 { DBGFEVENT_INSTR_LLDT, "instr_lldt", "lldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
541 { DBGFEVENT_INSTR_STR, "instr_str", "str", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
542 { DBGFEVENT_INSTR_LTR, "instr_ltr", "ltr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
543 { DBGFEVENT_INSTR_GETSEC, "instr_getsec", "getsec", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
544 { DBGFEVENT_INSTR_RSM, "instr_rsm", "rsm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
545 { DBGFEVENT_INSTR_RDRAND, "instr_rdrand", "rdrand", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
546 { DBGFEVENT_INSTR_RDSEED, "instr_rdseed", "rdseed", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
547 { DBGFEVENT_INSTR_XSAVES, "instr_xsaves", "xsaves", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
548 { DBGFEVENT_INSTR_XRSTORS, "instr_xrstors", "xrstors", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
549 { DBGFEVENT_INSTR_VMM_CALL, "instr_vmm_call", "vmm_call", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
550 { DBGFEVENT_INSTR_VMX_VMCLEAR, "instr_vmx_vmclear", "vmclear", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
551 { DBGFEVENT_INSTR_VMX_VMLAUNCH, "instr_vmx_vmlaunch", "vmlaunch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
552 { DBGFEVENT_INSTR_VMX_VMPTRLD, "instr_vmx_vmptrld", "vmptrld", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
553 { DBGFEVENT_INSTR_VMX_VMPTRST, "instr_vmx_vmptrst", "vmptrst", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
554 { DBGFEVENT_INSTR_VMX_VMREAD, "instr_vmx_vmread", "vmread", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
555 { DBGFEVENT_INSTR_VMX_VMRESUME, "instr_vmx_vmresume", "vmresume", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
556 { DBGFEVENT_INSTR_VMX_VMWRITE, "instr_vmx_vmwrite", "vmwrite", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
557 { DBGFEVENT_INSTR_VMX_VMXOFF, "instr_vmx_vmxoff", "vmxoff", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
558 { DBGFEVENT_INSTR_VMX_VMXON, "instr_vmx_vmxon", "vmxon", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
559 { DBGFEVENT_INSTR_VMX_VMFUNC, "instr_vmx_vmfunc", "vmfunc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
560 { DBGFEVENT_INSTR_VMX_INVEPT, "instr_vmx_invept", "invept", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
561 { DBGFEVENT_INSTR_VMX_INVVPID, "instr_vmx_invvpid", "invvpid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
562 { DBGFEVENT_INSTR_VMX_INVPCID, "instr_vmx_invpcid", "invpcid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
563 { DBGFEVENT_INSTR_SVM_VMRUN, "instr_svm_vmrun", "vmrun", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
564 { DBGFEVENT_INSTR_SVM_VMLOAD, "instr_svm_vmload", "vmload", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
565 { DBGFEVENT_INSTR_SVM_VMSAVE, "instr_svm_vmsave", "vmsave", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
566 { DBGFEVENT_INSTR_SVM_STGI, "instr_svm_stgi", "stgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
567 { DBGFEVENT_INSTR_SVM_CLGI, "instr_svm_clgi", "clgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
568 { DBGFEVENT_EXIT_TASK_SWITCH, "exit_task_switch", "task_switch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
569 { DBGFEVENT_EXIT_HALT, "exit_halt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
570 { DBGFEVENT_EXIT_MWAIT, "exit_mwait", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
571 { DBGFEVENT_EXIT_MONITOR, "exit_monitor", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
572 { DBGFEVENT_EXIT_CPUID, "exit_cpuid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
573 { DBGFEVENT_EXIT_INVD, "exit_invd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
574 { DBGFEVENT_EXIT_WBINVD, "exit_wbinvd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
575 { DBGFEVENT_EXIT_INVLPG, "exit_invlpg", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
576 { DBGFEVENT_EXIT_RDTSC, "exit_rdtsc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
577 { DBGFEVENT_EXIT_RDTSCP, "exit_rdtscp", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
578 { DBGFEVENT_EXIT_RDPMC, "exit_rdpmc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
579 { DBGFEVENT_EXIT_RDMSR, "exit_rdmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
580 { DBGFEVENT_EXIT_WRMSR, "exit_wrmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
581 { DBGFEVENT_EXIT_CRX_READ, "exit_crx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
582 { DBGFEVENT_EXIT_CRX_WRITE, "exit_crx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
583 { DBGFEVENT_EXIT_DRX_READ, "exit_drx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
584 { DBGFEVENT_EXIT_DRX_WRITE, "exit_drx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
585 { DBGFEVENT_EXIT_PAUSE, "exit_pause", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
586 { DBGFEVENT_EXIT_XSETBV, "exit_xsetbv", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
587 { DBGFEVENT_EXIT_SIDT, "exit_sidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
588 { DBGFEVENT_EXIT_LIDT, "exit_lidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
589 { DBGFEVENT_EXIT_SGDT, "exit_sgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
590 { DBGFEVENT_EXIT_LGDT, "exit_lgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
591 { DBGFEVENT_EXIT_SLDT, "exit_sldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
592 { DBGFEVENT_EXIT_LLDT, "exit_lldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
593 { DBGFEVENT_EXIT_STR, "exit_str", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
594 { DBGFEVENT_EXIT_LTR, "exit_ltr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
595 { DBGFEVENT_EXIT_GETSEC, "exit_getsec", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
596 { DBGFEVENT_EXIT_RSM, "exit_rsm", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
597 { DBGFEVENT_EXIT_RDRAND, "exit_rdrand", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
598 { DBGFEVENT_EXIT_RDSEED, "exit_rdseed", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
599 { DBGFEVENT_EXIT_XSAVES, "exit_xsaves", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
600 { DBGFEVENT_EXIT_XRSTORS, "exit_xrstors", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
601 { DBGFEVENT_EXIT_VMM_CALL, "exit_vmm_call", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
602 { DBGFEVENT_EXIT_VMX_VMCLEAR, "exit_vmx_vmclear", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
603 { DBGFEVENT_EXIT_VMX_VMLAUNCH, "exit_vmx_vmlaunch", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
604 { DBGFEVENT_EXIT_VMX_VMPTRLD, "exit_vmx_vmptrld", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
605 { DBGFEVENT_EXIT_VMX_VMPTRST, "exit_vmx_vmptrst", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
606 { DBGFEVENT_EXIT_VMX_VMREAD, "exit_vmx_vmread", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
607 { DBGFEVENT_EXIT_VMX_VMRESUME, "exit_vmx_vmresume", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
608 { DBGFEVENT_EXIT_VMX_VMWRITE, "exit_vmx_vmwrite", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
609 { DBGFEVENT_EXIT_VMX_VMXOFF, "exit_vmx_vmxoff", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
610 { DBGFEVENT_EXIT_VMX_VMXON, "exit_vmx_vmxon", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
611 { DBGFEVENT_EXIT_VMX_VMFUNC, "exit_vmx_vmfunc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
612 { DBGFEVENT_EXIT_VMX_INVEPT, "exit_vmx_invept", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
613 { DBGFEVENT_EXIT_VMX_INVVPID, "exit_vmx_invvpid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
614 { DBGFEVENT_EXIT_VMX_INVPCID, "exit_vmx_invpcid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
615 { DBGFEVENT_EXIT_VMX_EPT_VIOLATION, "exit_vmx_ept_violation", "eptvio", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
616 { DBGFEVENT_EXIT_VMX_EPT_MISCONFIG, "exit_vmx_ept_misconfig", "eptmis", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
617 { DBGFEVENT_EXIT_VMX_VAPIC_ACCESS, "exit_vmx_vapic_access", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
618 { DBGFEVENT_EXIT_VMX_VAPIC_WRITE, "exit_vmx_vapic_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
619 { DBGFEVENT_EXIT_SVM_VMRUN, "exit_svm_vmrun", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
620 { DBGFEVENT_EXIT_SVM_VMLOAD, "exit_svm_vmload", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
621 { DBGFEVENT_EXIT_SVM_VMSAVE, "exit_svm_vmsave", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
622 { DBGFEVENT_EXIT_SVM_STGI, "exit_svm_stgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
623 { DBGFEVENT_EXIT_SVM_CLGI, "exit_svm_clgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
624 { DBGFEVENT_IOPORT_UNASSIGNED, "pio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
625 { DBGFEVENT_IOPORT_UNUSED, "pio_unused", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
626 { DBGFEVENT_MEMORY_UNASSIGNED, "mmio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
627 { DBGFEVENT_MEMORY_ROM_WRITE, "rom_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
628 { DBGFEVENT_BSOD_MSR, "bsod_msr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
629 { DBGFEVENT_BSOD_EFI, "bsod_efi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
630 { DBGFEVENT_BSOD_VMMDEV, "bsod_vmmdev", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
631};
632/** Number of entries in g_aDbgcSxEvents. */
633const uint32_t g_cDbgcSxEvents = RT_ELEMENTS(g_aDbgcSxEvents);
634
635
636
637/**
638 * @callback_method_impl{FNDBGCCMD, The 'g' command.}
639 */
640static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
641{
642 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
643
644 /*
645 * Check if the VM is halted or not before trying to resume it.
646 */
647 if (!DBGFR3IsHalted(pUVM))
648 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running");
649
650 int rc = DBGFR3Resume(pUVM);
651 if (RT_FAILURE(rc))
652 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume");
653
654 NOREF(paArgs); NOREF(cArgs);
655 return VINF_SUCCESS;
656}
657
658
659/**
660 * @callback_method_impl{FNDBGCCMD, The 'gu' command.}
661 */
662static DECLCALLBACK(int) dbgcCmdGoUp(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
663{
664 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
665 RT_NOREF(pCmd, paArgs, cArgs);
666
667 /* The simple way out. */
668 PDBGFADDRESS pStackPop = NULL; /** @todo try set up some stack limitations */
669 RTGCPTR cbStackPop = 0;
670 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET, NULL, pStackPop, cbStackPop, _512K);
671 if (RT_SUCCESS(rc))
672 pDbgc->fReady = false;
673 else
674 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET,) failed");
675 return rc;
676}
677
678
679/**
680 * @callback_method_impl{FNDBGCCMD, The 'ba' command.}
681 */
682static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
683{
684 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
685
686 /*
687 * Interpret access type.
688 */
689 if ( !strchr("xrwi", paArgs[0].u.pszString[0])
690 || paArgs[0].u.pszString[1])
691 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'",
692 paArgs[0].u.pszString, pCmd->pszCmd);
693 uint8_t fType = 0;
694 switch (paArgs[0].u.pszString[0])
695 {
696 case 'x': fType = X86_DR7_RW_EO; break;
697 case 'r': fType = X86_DR7_RW_RW; break;
698 case 'w': fType = X86_DR7_RW_WO; break;
699 case 'i': fType = X86_DR7_RW_IO; break;
700 }
701
702 /*
703 * Validate size.
704 */
705 if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1)
706 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!",
707 paArgs[1].u.u64Number, pCmd->pszCmd);
708 switch (paArgs[1].u.u64Number)
709 {
710 case 1:
711 case 2:
712 case 4:
713 break;
714 /*case 8: - later*/
715 default:
716 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!",
717 paArgs[1].u.u64Number, pCmd->pszCmd);
718 }
719 uint8_t cb = (uint8_t)paArgs[1].u.u64Number;
720
721 /*
722 * Convert the pointer to a DBGF address.
723 */
724 DBGFADDRESS Address;
725 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address);
726 if (RT_FAILURE(rc))
727 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]);
728
729 /*
730 * Pick out the optional arguments.
731 */
732 uint64_t iHitTrigger = 0;
733 uint64_t iHitDisable = UINT64_MAX;
734 const char *pszCmds = NULL;
735 unsigned iArg = 3;
736 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
737 {
738 iHitTrigger = paArgs[iArg].u.u64Number;
739 iArg++;
740 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
741 {
742 iHitDisable = paArgs[iArg].u.u64Number;
743 iArg++;
744 }
745 }
746 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
747 {
748 pszCmds = paArgs[iArg].u.pszString;
749 iArg++;
750 }
751
752 /*
753 * Try set the breakpoint.
754 */
755 uint32_t iBp;
756 rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp);
757 if (RT_SUCCESS(rc))
758 {
759 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
760 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
761 if (RT_SUCCESS(rc))
762 return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
763 if (rc == VERR_DBGC_BP_EXISTS)
764 {
765 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
766 if (RT_SUCCESS(rc))
767 return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
768 }
769 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
770 AssertRC(rc2);
771 }
772 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr);
773}
774
775
776/**
777 * @callback_method_impl{FNDBGCCMD, The 'bc' command.}
778 */
779static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
780{
781 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
782
783 /*
784 * Enumerate the arguments.
785 */
786 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
787 int rc = VINF_SUCCESS;
788 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
789 {
790 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
791 {
792 /* one */
793 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
794 if (iBp == paArgs[iArg].u.u64Number)
795 {
796 int rc2 = DBGFR3BpClear(pUVM, iBp);
797 if (RT_FAILURE(rc2))
798 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
799 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
800 dbgcBpDelete(pDbgc, iBp);
801 }
802 else
803 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
804 }
805 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
806 {
807 /* all */
808 PDBGCBP pBp = pDbgc->pFirstBp;
809 while (pBp)
810 {
811 uint32_t iBp = pBp->iBp;
812 pBp = pBp->pNext;
813
814 int rc2 = DBGFR3BpClear(pUVM, iBp);
815 if (RT_FAILURE(rc2))
816 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
817 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
818 dbgcBpDelete(pDbgc, iBp);
819 }
820 }
821 else
822 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
823 }
824 return rc;
825}
826
827
828/**
829 * @callback_method_impl{FNDBGCCMD, The 'bd' command.}
830 */
831static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
832{
833 /*
834 * Enumerate the arguments.
835 */
836 int rc = VINF_SUCCESS;
837 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
838 {
839 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
840 {
841 /* one */
842 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
843 if (iBp == paArgs[iArg].u.u64Number)
844 {
845 rc = DBGFR3BpDisable(pUVM, iBp);
846 if (RT_FAILURE(rc))
847 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp);
848 }
849 else
850 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
851 }
852 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
853 {
854 /* all */
855 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
856 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
857 {
858 int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp);
859 if (RT_FAILURE(rc2))
860 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp);
861 }
862 }
863 else
864 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
865 }
866 return rc;
867}
868
869
870/**
871 * @callback_method_impl{FNDBGCCMD, The 'be' command.}
872 */
873static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
874{
875 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
876
877 /*
878 * Enumerate the arguments.
879 */
880 int rc = VINF_SUCCESS;
881 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
882 {
883 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
884 {
885 /* one */
886 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
887 if (iBp == paArgs[iArg].u.u64Number)
888 {
889 rc = DBGFR3BpEnable(pUVM, iBp);
890 if (RT_FAILURE(rc))
891 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp);
892 }
893 else
894 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
895 }
896 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
897 {
898 /* all */
899 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
900 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
901 {
902 int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp);
903 if (RT_FAILURE(rc2))
904 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp);
905 }
906 }
907 else
908 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
909 }
910 return rc;
911}
912
913
914/**
915 * Breakpoint enumeration callback function.
916 *
917 * @returns VBox status code. Any failure will stop the enumeration.
918 * @param pUVM The user mode VM handle.
919 * @param pvUser The user argument.
920 * @param pBp Pointer to the breakpoint information. (readonly)
921 */
922static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, PCDBGFBP pBp)
923{
924 PDBGC pDbgc = (PDBGC)pvUser;
925 PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, pBp->iBp);
926
927 /*
928 * BP type and size.
929 */
930 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c ", pBp->iBp, pBp->fEnabled ? 'e' : 'd');
931 bool fHasAddress = false;
932 switch (pBp->enmType)
933 {
934 case DBGFBPTYPE_INT3:
935 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " p %RGv", pBp->u.Int3.GCPtr);
936 fHasAddress = true;
937 break;
938 case DBGFBPTYPE_REG:
939 {
940 char chType;
941 switch (pBp->u.Reg.fType)
942 {
943 case X86_DR7_RW_EO: chType = 'x'; break;
944 case X86_DR7_RW_WO: chType = 'w'; break;
945 case X86_DR7_RW_IO: chType = 'i'; break;
946 case X86_DR7_RW_RW: chType = 'r'; break;
947 default: chType = '?'; break;
948
949 }
950 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%d %c %RGv", pBp->u.Reg.cb, chType, pBp->u.Reg.GCPtr);
951 fHasAddress = true;
952 break;
953 }
954
955 case DBGFBPTYPE_REM:
956 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " r %RGv", pBp->u.Rem.GCPtr);
957 fHasAddress = true;
958 break;
959
960/** @todo realign the list when I/O and MMIO breakpoint command have been added and it's possible to test this code. */
961 case DBGFBPTYPE_PORT_IO:
962 case DBGFBPTYPE_MMIO:
963 {
964 uint32_t fAccess = pBp->enmType == DBGFBPTYPE_PORT_IO ? pBp->u.PortIo.fAccess : pBp->u.Mmio.fAccess;
965 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, pBp->enmType == DBGFBPTYPE_PORT_IO ? " i" : " m");
966 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
967 fAccess & DBGFBPIOACCESS_READ_MASK ? 'r' : '-',
968 fAccess & DBGFBPIOACCESS_READ_BYTE ? '1' : '-',
969 fAccess & DBGFBPIOACCESS_READ_WORD ? '2' : '-',
970 fAccess & DBGFBPIOACCESS_READ_DWORD ? '4' : '-',
971 fAccess & DBGFBPIOACCESS_READ_QWORD ? '8' : '-',
972 fAccess & DBGFBPIOACCESS_READ_OTHER ? '+' : '-');
973 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
974 fAccess & DBGFBPIOACCESS_WRITE_MASK ? 'w' : '-',
975 fAccess & DBGFBPIOACCESS_WRITE_BYTE ? '1' : '-',
976 fAccess & DBGFBPIOACCESS_WRITE_WORD ? '2' : '-',
977 fAccess & DBGFBPIOACCESS_WRITE_DWORD ? '4' : '-',
978 fAccess & DBGFBPIOACCESS_WRITE_QWORD ? '8' : '-',
979 fAccess & DBGFBPIOACCESS_WRITE_OTHER ? '+' : '-');
980 if (pBp->enmType == DBGFBPTYPE_PORT_IO)
981 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04x-%04x",
982 pBp->u.PortIo.uPort, pBp->u.PortIo.uPort + pBp->u.PortIo.cPorts - 1);
983 else
984 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%RGp LB %03x", pBp->u.Mmio.PhysAddr, pBp->u.Mmio.cb);
985 break;
986 }
987
988 default:
989 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " unknown type %d!!", pBp->enmType);
990 AssertFailed();
991 break;
992
993 }
994 if (pBp->iHitDisable == ~(uint64_t)0)
995 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to ~0) ", pBp->cHits, pBp->iHitTrigger);
996 else
997 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to %04RX64)", pBp->cHits, pBp->iHitTrigger, pBp->iHitDisable);
998
999 /*
1000 * Try resolve the address if it has one.
1001 */
1002 if (fHasAddress)
1003 {
1004 RTDBGSYMBOL Sym;
1005 RTINTPTR off;
1006 DBGFADDRESS Addr;
1007 int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->u.GCPtr),
1008 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1009 &off, &Sym, NULL);
1010 if (RT_SUCCESS(rc))
1011 {
1012 if (!off)
1013 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName);
1014 else if (off > 0)
1015 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off);
1016 else
1017 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off);
1018 }
1019 }
1020
1021 /*
1022 * The commands.
1023 */
1024 if (pDbgcBp)
1025 {
1026 if (pDbgcBp->cchCmd)
1027 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd);
1028 else
1029 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n");
1030 }
1031 else
1032 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n");
1033
1034 return VINF_SUCCESS;
1035}
1036
1037
1038/**
1039 * @callback_method_impl{FNDBGCCMD, The 'bl' command.}
1040 */
1041static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1042{
1043 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1044 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
1045 NOREF(paArgs);
1046
1047 /*
1048 * Enumerate the breakpoints.
1049 */
1050 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1051 int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc);
1052 if (RT_FAILURE(rc))
1053 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum");
1054 return rc;
1055}
1056
1057
1058/**
1059 * @callback_method_impl{FNDBGCCMD, The 'bp' command.}
1060 */
1061static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1062{
1063 /*
1064 * Convert the pointer to a DBGF address.
1065 */
1066 DBGFADDRESS Address;
1067 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1068 if (RT_FAILURE(rc))
1069 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1070
1071 /*
1072 * Pick out the optional arguments.
1073 */
1074 uint64_t iHitTrigger = 0;
1075 uint64_t iHitDisable = UINT64_MAX;
1076 const char *pszCmds = NULL;
1077 unsigned iArg = 1;
1078 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1079 {
1080 iHitTrigger = paArgs[iArg].u.u64Number;
1081 iArg++;
1082 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1083 {
1084 iHitDisable = paArgs[iArg].u.u64Number;
1085 iArg++;
1086 }
1087 }
1088 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1089 {
1090 pszCmds = paArgs[iArg].u.pszString;
1091 iArg++;
1092 }
1093
1094 /*
1095 * Try set the breakpoint.
1096 */
1097 uint32_t iBp;
1098 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1099 rc = DBGFR3BpSetInt3(pUVM, pDbgc->idCpu, &Address, iHitTrigger, iHitDisable, &iBp);
1100 if (RT_SUCCESS(rc))
1101 {
1102 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1103 if (RT_SUCCESS(rc))
1104 return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1105 if (rc == VERR_DBGC_BP_EXISTS)
1106 {
1107 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1108 if (RT_SUCCESS(rc))
1109 return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1110 }
1111 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1112 AssertRC(rc2);
1113 }
1114 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr);
1115}
1116
1117
1118/**
1119 * @callback_method_impl{FNDBGCCMD, The 'br' command.}
1120 */
1121static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1122{
1123 /*
1124 * Convert the pointer to a DBGF address.
1125 */
1126 DBGFADDRESS Address;
1127 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1128 if (RT_FAILURE(rc))
1129 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1130
1131 /*
1132 * Pick out the optional arguments.
1133 */
1134 uint64_t iHitTrigger = 0;
1135 uint64_t iHitDisable = UINT64_MAX;
1136 const char *pszCmds = NULL;
1137 unsigned iArg = 1;
1138 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1139 {
1140 iHitTrigger = paArgs[iArg].u.u64Number;
1141 iArg++;
1142 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1143 {
1144 iHitDisable = paArgs[iArg].u.u64Number;
1145 iArg++;
1146 }
1147 }
1148 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1149 {
1150 pszCmds = paArgs[iArg].u.pszString;
1151 iArg++;
1152 }
1153
1154 /*
1155 * Try set the breakpoint.
1156 */
1157 uint32_t iBp;
1158 rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
1159 if (RT_SUCCESS(rc))
1160 {
1161 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1162 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1163 if (RT_SUCCESS(rc))
1164 return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1165 if (rc == VERR_DBGC_BP_EXISTS)
1166 {
1167 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1168 if (RT_SUCCESS(rc))
1169 return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1170 }
1171 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1172 AssertRC(rc2);
1173 }
1174 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr);
1175}
1176
1177
1178/**
1179 * Helps the unassmble ('u') command display symbols it starts at and passes.
1180 *
1181 * @param pUVM The user mode VM handle.
1182 * @param pCmdHlp The command helpers for printing via.
1183 * @param hDbgAs The address space to look up addresses in.
1184 * @param pAddress The current address.
1185 * @param pcbCallAgain Where to return the distance to the next check (in
1186 * instruction bytes).
1187 */
1188static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress,
1189 PRTUINTPTR pcbCallAgain)
1190{
1191 RTDBGSYMBOL Symbol;
1192 RTGCINTPTR offDispSym;
1193 int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1194 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1195 &offDispSym, &Symbol, NULL);
1196 if (RT_FAILURE(rc) || offDispSym > _1G)
1197 rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1198 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1199 &offDispSym, &Symbol, NULL);
1200 if (RT_SUCCESS(rc) && offDispSym < _1G)
1201 {
1202 if (!offDispSym)
1203 {
1204 DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName);
1205 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb;
1206 }
1207 else if (offDispSym > 0)
1208 {
1209 DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym);
1210 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1;
1211 }
1212 else
1213 {
1214 DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym);
1215 *pcbCallAgain = !Symbol.cb ? 64 : (RTGCUINTPTR)-offDispSym + Symbol.cb;
1216 }
1217 }
1218 else
1219 *pcbCallAgain = UINT32_MAX;
1220}
1221
1222
1223/**
1224 * @callback_method_impl{FNDBGCCMD, The 'u' command.}
1225 */
1226static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1227{
1228 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1229
1230 /*
1231 * Validate input.
1232 */
1233 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1234 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
1235 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
1236
1237 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1238 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
1239
1240 /*
1241 * Check the desired mode.
1242 */
1243 unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
1244 switch (pCmd->pszCmd[1])
1245 {
1246 default: AssertFailed(); RT_FALL_THRU();
1247 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
1248 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
1249 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
1250 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
1251 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
1252 }
1253
1254 /** @todo should use DBGFADDRESS for everything */
1255
1256 /*
1257 * Find address.
1258 */
1259 if (!cArgs)
1260 {
1261 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1262 {
1263 /** @todo Batch query CS, RIP, CPU mode and flags. */
1264 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1265 if ( pDbgc->fRegCtxGuest
1266 && CPUMIsGuestIn64BitCode(pVCpu))
1267 {
1268 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
1269 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
1270 }
1271 else
1272 {
1273 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
1274 pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu);
1275 pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu);
1276 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
1277 && pDbgc->fRegCtxGuest
1278 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
1279 {
1280 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1281 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
1282 }
1283 }
1284
1285 if (pDbgc->fRegCtxGuest)
1286 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
1287 else
1288 fFlags |= DBGF_DISAS_FLAGS_CURRENT_HYPER | DBGF_DISAS_FLAGS_HYPER;
1289 }
1290 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
1291 {
1292 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1293 fFlags |= pDbgc->fDisasm & (DBGF_DISAS_FLAGS_MODE_MASK | DBGF_DISAS_FLAGS_HYPER);
1294 }
1295 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
1296 }
1297 else
1298 pDbgc->DisasmPos = paArgs[0];
1299 pDbgc->pLastPos = &pDbgc->DisasmPos;
1300
1301 /*
1302 * Range.
1303 */
1304 switch (pDbgc->DisasmPos.enmRangeType)
1305 {
1306 case DBGCVAR_RANGE_NONE:
1307 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1308 pDbgc->DisasmPos.u64Range = 10;
1309 break;
1310
1311 case DBGCVAR_RANGE_ELEMENTS:
1312 if (pDbgc->DisasmPos.u64Range > 2048)
1313 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
1314 break;
1315
1316 case DBGCVAR_RANGE_BYTES:
1317 if (pDbgc->DisasmPos.u64Range > 65536)
1318 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
1319 break;
1320
1321 default:
1322 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
1323 }
1324
1325 /*
1326 * Convert physical and host addresses to guest addresses.
1327 */
1328 RTDBGAS hDbgAs = pDbgc->hDbgAs;
1329 int rc;
1330 switch (pDbgc->DisasmPos.enmType)
1331 {
1332 case DBGCVAR_TYPE_GC_FLAT:
1333 case DBGCVAR_TYPE_GC_FAR:
1334 break;
1335 case DBGCVAR_TYPE_GC_PHYS:
1336 hDbgAs = DBGF_AS_PHYS;
1337 RT_FALL_THRU();
1338 case DBGCVAR_TYPE_HC_FLAT:
1339 case DBGCVAR_TYPE_HC_PHYS:
1340 {
1341 DBGCVAR VarTmp;
1342 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
1343 if (RT_FAILURE(rc))
1344 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
1345 pDbgc->DisasmPos = VarTmp;
1346 break;
1347 }
1348 default: AssertFailed(); break;
1349 }
1350
1351 DBGFADDRESS CurAddr;
1352 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1353 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1354 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1355 else
1356 {
1357 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1358 if (RT_FAILURE(rc))
1359 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
1360 }
1361
1362 if (CurAddr.fFlags & DBGFADDRESS_FLAGS_HMA)
1363 fFlags |= DBGF_DISAS_FLAGS_HYPER; /* This crap is due to not using DBGFADDRESS as DBGFR3Disas* input. */
1364 pDbgc->fDisasm = fFlags;
1365
1366 /*
1367 * Figure out where we are and display it. Also calculate when we need to
1368 * check for a new symbol if possible.
1369 */
1370 RTGCUINTPTR cbCheckSymbol;
1371 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1372
1373 /*
1374 * Do the disassembling.
1375 */
1376 unsigned cTries = 32;
1377 int iRangeLeft = (int)pDbgc->DisasmPos.u64Range;
1378 if (iRangeLeft == 0) /* kludge for 'r'. */
1379 iRangeLeft = -1;
1380 for (;;)
1381 {
1382 /*
1383 * Disassemble the instruction.
1384 */
1385 char szDis[256];
1386 uint32_t cbInstr = 1;
1387 if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT)
1388 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags,
1389 &szDis[0], sizeof(szDis), &cbInstr);
1390 else
1391 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags,
1392 &szDis[0], sizeof(szDis), &cbInstr);
1393 if (RT_SUCCESS(rc))
1394 {
1395 /* print it */
1396 rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]);
1397 if (RT_FAILURE(rc))
1398 return rc;
1399 }
1400 else
1401 {
1402 /* bitch. */
1403 int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n");
1404 if (RT_FAILURE(rc2))
1405 return rc2;
1406 if (cTries-- > 0)
1407 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up");
1408 cbInstr = 1;
1409 }
1410
1411 /* advance */
1412 if (iRangeLeft < 0) /* 'r' */
1413 break;
1414 if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1415 iRangeLeft--;
1416 else
1417 iRangeLeft -= cbInstr;
1418 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr);
1419 if (RT_FAILURE(rc))
1420 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr);
1421 if (iRangeLeft <= 0)
1422 break;
1423 fFlags &= ~(DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_CURRENT_HYPER);
1424
1425 /* Print next symbol? */
1426 if (cbCheckSymbol <= cbInstr)
1427 {
1428 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1429 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1430 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1431 else
1432 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1433 if (RT_SUCCESS(rc))
1434 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1435 else
1436 cbCheckSymbol = UINT32_MAX;
1437 }
1438 else
1439 cbCheckSymbol -= cbInstr;
1440 }
1441
1442 NOREF(pCmd);
1443 return VINF_SUCCESS;
1444}
1445
1446
1447/**
1448 * @callback_method_impl{FNDGCSCREENBLIT}
1449 */
1450static DECLCALLBACK(int) dbgcCmdUnassembleCfgBlit(const char *psz, void *pvUser)
1451{
1452 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
1453 return DBGCCmdHlpPrintf(pCmdHlp, "%s", psz);
1454}
1455
1456
1457/**
1458 * Checks whether both addresses are equal.
1459 *
1460 * @returns true if both addresses point to the same location, false otherwise.
1461 * @param pAddr1 First address.
1462 * @param pAddr2 Second address.
1463 */
1464static bool dbgcCmdUnassembleCfgAddrEqual(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1465{
1466 return pAddr1->Sel == pAddr2->Sel
1467 && pAddr1->off == pAddr2->off;
1468}
1469
1470
1471/**
1472 * Checks whether the first given address is lower than the second one.
1473 *
1474 * @returns true if both addresses point to the same location, false otherwise.
1475 * @param pAddr1 First address.
1476 * @param pAddr2 Second address.
1477 */
1478static bool dbgcCmdUnassembleCfgAddrLower(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1479{
1480 return pAddr1->Sel == pAddr2->Sel
1481 && pAddr1->off < pAddr2->off;
1482}
1483
1484
1485/**
1486 * Calculates the size required for the given basic block including the
1487 * border and spacing on the edges.
1488 *
1489 * @returns nothing.
1490 * @param hFlowBb The basic block handle.
1491 * @param pDumpBb The dumper state to fill in for the basic block.
1492 */
1493static void dbgcCmdUnassembleCfgDumpCalcBbSize(DBGFFLOWBB hFlowBb, PDBGCFLOWBBDUMP pDumpBb)
1494{
1495 uint32_t fFlags = DBGFR3FlowBbGetFlags(hFlowBb);
1496 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(hFlowBb);
1497
1498 pDumpBb->hFlowBb = hFlowBb;
1499 pDumpBb->cchHeight = cInstr + 4; /* Include spacing and border top and bottom. */
1500 pDumpBb->cchWidth = 0;
1501 DBGFR3FlowBbGetStartAddress(hFlowBb, &pDumpBb->AddrStart);
1502
1503 DBGFFLOWBBENDTYPE enmType = DBGFR3FlowBbGetType(hFlowBb);
1504 if ( enmType == DBGFFLOWBBENDTYPE_COND
1505 || enmType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1506 || enmType == DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP)
1507 DBGFR3FlowBbGetBranchAddress(hFlowBb, &pDumpBb->AddrTarget);
1508
1509 if (fFlags & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1510 {
1511 const char *pszErr = NULL;
1512 DBGFR3FlowBbQueryError(hFlowBb, &pszErr);
1513 if (pszErr)
1514 {
1515 pDumpBb->cchHeight++;
1516 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszErr));
1517 }
1518 }
1519 for (unsigned i = 0; i < cInstr; i++)
1520 {
1521 const char *pszInstr = NULL;
1522 int rc = DBGFR3FlowBbQueryInstr(hFlowBb, i, NULL, NULL, &pszInstr);
1523 AssertRC(rc);
1524 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszInstr));
1525 }
1526 pDumpBb->cchWidth += 4; /* Include spacing and border left and right. */
1527}
1528
1529
1530/**
1531 * Dumps a top or bottom boundary line.
1532 *
1533 * @returns nothing.
1534 * @param hScreen The screen to draw to.
1535 * @param uStartX Where to start drawing the boundary.
1536 * @param uStartY Y coordinate.
1537 * @param cchWidth Width of the boundary.
1538 * @param enmColor The color to use for drawing.
1539 */
1540static void dbgcCmdUnassembleCfgDumpBbBoundary(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1541 DBGCSCREENCOLOR enmColor)
1542{
1543 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '+', enmColor);
1544 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1545 uStartY, '-', enmColor);
1546 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '+', enmColor);
1547}
1548
1549
1550/**
1551 * Dumps a spacing line between the top or bottom boundary and the actual disassembly.
1552 *
1553 * @returns nothing.
1554 * @param hScreen The screen to draw to.
1555 * @param uStartX Where to start drawing the spacing.
1556 * @param uStartY Y coordinate.
1557 * @param cchWidth Width of the spacing.
1558 * @param enmColor The color to use for drawing.
1559 */
1560static void dbgcCmdUnassembleCfgDumpBbSpacing(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1561 DBGCSCREENCOLOR enmColor)
1562{
1563 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmColor);
1564 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1565 uStartY, ' ', enmColor);
1566 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmColor);
1567}
1568
1569
1570/**
1571 * Writes a given text to the screen.
1572 *
1573 * @returns nothing.
1574 * @param hScreen The screen to draw to.
1575 * @param uStartX Where to start drawing the line.
1576 * @param uStartY Y coordinate.
1577 * @param cchWidth Maximum width of the text.
1578 * @param pszText The text to write.
1579 * @param enmTextColor The color to use for drawing the text.
1580 * @param enmBorderColor The color to use for drawing the border.
1581 */
1582static void dbgcCmdUnassembleCfgDumpBbText(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY,
1583 uint32_t cchWidth, const char *pszText,
1584 DBGCSCREENCOLOR enmTextColor, DBGCSCREENCOLOR enmBorderColor)
1585{
1586 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmBorderColor);
1587 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + 1, uStartY, ' ', enmTextColor);
1588 dbgcScreenAsciiDrawString(hScreen, uStartX + 2, uStartY, pszText, enmTextColor);
1589 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmBorderColor);
1590}
1591
1592
1593/**
1594 * Dumps one basic block using the dumper callback.
1595 *
1596 * @returns nothing.
1597 * @param pDumpBb The basic block dump state to dump.
1598 * @param hScreen The screen to draw to.
1599 */
1600static void dbgcCmdUnassembleCfgDumpBb(PDBGCFLOWBBDUMP pDumpBb, DBGCSCREEN hScreen)
1601{
1602 uint32_t uStartY = pDumpBb->uStartY;
1603 bool fError = RT_BOOL(DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR);
1604 DBGCSCREENCOLOR enmColor = fError ? DBGCSCREENCOLOR_RED_BRIGHT : DBGCSCREENCOLOR_DEFAULT;
1605
1606 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1607 uStartY++;
1608 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1609 uStartY++;
1610
1611 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(pDumpBb->hFlowBb);
1612 for (unsigned i = 0; i < cInstr; i++)
1613 {
1614 const char *pszInstr = NULL;
1615 DBGFR3FlowBbQueryInstr(pDumpBb->hFlowBb, i, NULL, NULL, &pszInstr);
1616 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY + i,
1617 pDumpBb->cchWidth, pszInstr, DBGCSCREENCOLOR_DEFAULT,
1618 enmColor);
1619 }
1620 uStartY += cInstr;
1621
1622 if (fError)
1623 {
1624 const char *pszErr = NULL;
1625 DBGFR3FlowBbQueryError(pDumpBb->hFlowBb, &pszErr);
1626 if (pszErr)
1627 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY,
1628 pDumpBb->cchWidth, pszErr, enmColor,
1629 enmColor);
1630 uStartY++;
1631 }
1632
1633 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1634 uStartY++;
1635 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1636 uStartY++;
1637}
1638
1639
1640/**
1641 * Dumps one branch table using the dumper callback.
1642 *
1643 * @returns nothing.
1644 * @param pDumpBranchTbl The basic block dump state to dump.
1645 * @param hScreen The screen to draw to.
1646 */
1647static void dbgcCmdUnassembleCfgDumpBranchTbl(PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl, DBGCSCREEN hScreen)
1648{
1649 uint32_t uStartY = pDumpBranchTbl->uStartY;
1650 DBGCSCREENCOLOR enmColor = DBGCSCREENCOLOR_CYAN_BRIGHT;
1651
1652 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1653 uStartY++;
1654 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1655 uStartY++;
1656
1657 uint32_t cSlots = DBGFR3FlowBranchTblGetSlots(pDumpBranchTbl->hFlowBranchTbl);
1658 for (unsigned i = 0; i < cSlots; i++)
1659 {
1660 DBGFADDRESS Addr;
1661 char szAddr[128];
1662
1663 RT_ZERO(szAddr);
1664 DBGFR3FlowBranchTblGetAddrAtSlot(pDumpBranchTbl->hFlowBranchTbl, i, &Addr);
1665
1666 if (Addr.Sel == DBGF_SEL_FLAT)
1667 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%RGv", Addr.FlatPtr);
1668 else
1669 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%04x:%RGv", Addr.Sel, Addr.off);
1670
1671 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBranchTbl->uStartX, uStartY + i,
1672 pDumpBranchTbl->cchWidth, &szAddr[0], DBGCSCREENCOLOR_DEFAULT,
1673 enmColor);
1674 }
1675 uStartY += cSlots;
1676
1677 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1678 uStartY++;
1679 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1680 uStartY++;
1681}
1682
1683
1684/**
1685 * Fills in the dump states for the basic blocks and branch tables.
1686 *
1687 * @returns VBox status code.
1688 * @param hFlowIt The control flow graph iterator handle.
1689 * @param hFlowBranchTblIt The control flow graph branch table iterator handle.
1690 * @param paDumpBb The array of basic block dump states.
1691 * @param paDumpBranchTbl The array of branch table dump states.
1692 * @param cBbs Number of basic blocks.
1693 * @param cBranchTbls Number of branch tables.
1694 */
1695static int dbgcCmdUnassembleCfgDumpCalcDimensions(DBGFFLOWIT hFlowIt, DBGFFLOWBRANCHTBLIT hFlowBranchTblIt,
1696 PDBGCFLOWBBDUMP paDumpBb, PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl,
1697 uint32_t cBbs, uint32_t cBranchTbls)
1698{
1699 RT_NOREF2(cBbs, cBranchTbls);
1700
1701 /* Calculate the sizes of each basic block first. */
1702 DBGFFLOWBB hFlowBb = DBGFR3FlowItNext(hFlowIt);
1703 uint32_t idx = 0;
1704 while (hFlowBb)
1705 {
1706 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[idx]);
1707 idx++;
1708 hFlowBb = DBGFR3FlowItNext(hFlowIt);
1709 }
1710
1711 if (paDumpBranchTbl)
1712 {
1713 idx = 0;
1714 DBGFFLOWBRANCHTBL hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1715 while (hFlowBranchTbl)
1716 {
1717 paDumpBranchTbl[idx].hFlowBranchTbl = hFlowBranchTbl;
1718 paDumpBranchTbl[idx].cchHeight = DBGFR3FlowBranchTblGetSlots(hFlowBranchTbl) + 4; /* Spacing and border. */
1719 paDumpBranchTbl[idx].cchWidth = 25 + 4; /* Spacing and border. */
1720 idx++;
1721 hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1722 }
1723 }
1724
1725 return VINF_SUCCESS;
1726}
1727
1728/**
1729 * Dumps the given control flow graph to the output.
1730 *
1731 * @returns VBox status code.
1732 * @param hCfg The control flow graph handle.
1733 * @param fUseColor Flag whether the output should be colorized.
1734 * @param pCmdHlp The command helper callback table.
1735 */
1736static int dbgcCmdUnassembleCfgDump(DBGFFLOW hCfg, bool fUseColor, PDBGCCMDHLP pCmdHlp)
1737{
1738 int rc = VINF_SUCCESS;
1739 DBGFFLOWIT hCfgIt = NULL;
1740 DBGFFLOWBRANCHTBLIT hFlowBranchTblIt = NULL;
1741 uint32_t cBbs = DBGFR3FlowGetBbCount(hCfg);
1742 uint32_t cBranchTbls = DBGFR3FlowGetBranchTblCount(hCfg);
1743 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cBbs * sizeof(DBGCFLOWBBDUMP));
1744 PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl = NULL;
1745
1746 if (cBranchTbls)
1747 paDumpBranchTbl = (PDBGCFLOWBRANCHTBLDUMP)RTMemAllocZ(cBranchTbls * sizeof(DBGCFLOWBRANCHTBLDUMP));
1748
1749 if (RT_UNLIKELY(!paDumpBb || (!paDumpBranchTbl && cBranchTbls > 0)))
1750 rc = VERR_NO_MEMORY;
1751 if (RT_SUCCESS(rc))
1752 rc = DBGFR3FlowItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hCfgIt);
1753 if (RT_SUCCESS(rc) && cBranchTbls > 0)
1754 rc = DBGFR3FlowBranchTblItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hFlowBranchTblIt);
1755
1756 if (RT_SUCCESS(rc))
1757 {
1758 rc = dbgcCmdUnassembleCfgDumpCalcDimensions(hCfgIt, hFlowBranchTblIt, paDumpBb, paDumpBranchTbl,
1759 cBbs, cBranchTbls);
1760
1761 /* Calculate the ASCII screen dimensions and create one. */
1762 uint32_t cchWidth = 0;
1763 uint32_t cchLeftExtra = 5;
1764 uint32_t cchRightExtra = 5;
1765 uint32_t cchHeight = 0;
1766 for (unsigned i = 0; i < cBbs; i++)
1767 {
1768 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1769 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
1770 cchHeight += pDumpBb->cchHeight;
1771
1772 /* Incomplete blocks don't have a successor. */
1773 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1774 continue;
1775
1776 switch (DBGFR3FlowBbGetType(pDumpBb->hFlowBb))
1777 {
1778 case DBGFFLOWBBENDTYPE_EXIT:
1779 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1780 break;
1781 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1782 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1783 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1784 cchLeftExtra++;
1785 else
1786 cchRightExtra++;
1787 break;
1788 case DBGFFLOWBBENDTYPE_UNCOND:
1789 cchHeight += 2; /* For the arrow down to the next basic block. */
1790 break;
1791 case DBGFFLOWBBENDTYPE_COND:
1792 cchHeight += 2; /* For the arrow down to the next basic block. */
1793 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1794 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1795 cchLeftExtra++;
1796 else
1797 cchRightExtra++;
1798 break;
1799 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1800 default:
1801 AssertFailed();
1802 }
1803 }
1804
1805 for (unsigned i = 0; i < cBranchTbls; i++)
1806 {
1807 PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl = &paDumpBranchTbl[i];
1808 cchWidth = RT_MAX(cchWidth, pDumpBranchTbl->cchWidth);
1809 cchHeight += pDumpBranchTbl->cchHeight;
1810 }
1811
1812 cchWidth += 2;
1813
1814 DBGCSCREEN hScreen = NULL;
1815 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth + cchLeftExtra + cchRightExtra, cchHeight);
1816 if (RT_SUCCESS(rc))
1817 {
1818 uint32_t uY = 0;
1819
1820 /* Dump the branch tables first. */
1821 for (unsigned i = 0; i < cBranchTbls; i++)
1822 {
1823 paDumpBranchTbl[i].uStartX = cchLeftExtra + (cchWidth - paDumpBranchTbl[i].cchWidth) / 2;
1824 paDumpBranchTbl[i].uStartY = uY;
1825 dbgcCmdUnassembleCfgDumpBranchTbl(&paDumpBranchTbl[i], hScreen);
1826 uY += paDumpBranchTbl[i].cchHeight;
1827 }
1828
1829 /* Dump the basic blocks and connections to the immediate successor. */
1830 for (unsigned i = 0; i < cBbs; i++)
1831 {
1832 paDumpBb[i].uStartX = cchLeftExtra + (cchWidth - paDumpBb[i].cchWidth) / 2;
1833 paDumpBb[i].uStartY = uY;
1834 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
1835 uY += paDumpBb[i].cchHeight;
1836
1837 /* Incomplete blocks don't have a successor. */
1838 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1839 continue;
1840
1841 switch (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb))
1842 {
1843 case DBGFFLOWBBENDTYPE_EXIT:
1844 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1845 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1846 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1847 break;
1848 case DBGFFLOWBBENDTYPE_UNCOND:
1849 /* Draw the arrow down to the next block. */
1850 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1851 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
1852 uY++;
1853 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1854 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
1855 uY++;
1856 break;
1857 case DBGFFLOWBBENDTYPE_COND:
1858 /* Draw the arrow down to the next block. */
1859 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1860 '|', DBGCSCREENCOLOR_RED_BRIGHT);
1861 uY++;
1862 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1863 'V', DBGCSCREENCOLOR_RED_BRIGHT);
1864 uY++;
1865 break;
1866 default:
1867 AssertFailed();
1868 }
1869 }
1870
1871 /* Last pass, connect all remaining branches. */
1872 uint32_t uBackConns = 0;
1873 uint32_t uFwdConns = 0;
1874 for (unsigned i = 0; i < cBbs; i++)
1875 {
1876 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1877 DBGFFLOWBBENDTYPE enmEndType = DBGFR3FlowBbGetType(pDumpBb->hFlowBb);
1878
1879 /* Incomplete blocks don't have a successor. */
1880 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1881 continue;
1882
1883 switch (enmEndType)
1884 {
1885 case DBGFFLOWBBENDTYPE_EXIT:
1886 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1887 case DBGFFLOWBBENDTYPE_UNCOND:
1888 break;
1889 case DBGFFLOWBBENDTYPE_COND:
1890 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1891 {
1892 /* Find the target first to get the coordinates. */
1893 PDBGCFLOWBBDUMP pDumpBbTgt = NULL;
1894 for (unsigned idxDumpBb = 0; idxDumpBb < cBbs; idxDumpBb++)
1895 {
1896 pDumpBbTgt = &paDumpBb[idxDumpBb];
1897 if (dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBbTgt->AddrStart))
1898 break;
1899 }
1900
1901 DBGCSCREENCOLOR enmColor = enmEndType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1902 ? DBGCSCREENCOLOR_YELLOW_BRIGHT
1903 : DBGCSCREENCOLOR_GREEN_BRIGHT;
1904
1905 /*
1906 * Use the right side for targets with higher addresses,
1907 * left when jumping backwards.
1908 */
1909 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1910 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1911 {
1912 /* Going backwards. */
1913 uint32_t uXVerLine = /*cchLeftExtra - 1 -*/ uBackConns + 1;
1914 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
1915 uBackConns++;
1916
1917 /* Draw the arrow pointing to the target block. */
1918 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX - 1, pDumpBbTgt->uStartY,
1919 '>', enmColor);
1920 /* Draw the horizontal line. */
1921 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBbTgt->uStartX - 2,
1922 pDumpBbTgt->uStartY, '-', enmColor);
1923 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
1924 enmColor);
1925 /* Draw the vertical line down to the source block. */
1926 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, pDumpBbTgt->uStartY + 1, uYHorLine - 1,
1927 '|', enmColor);
1928 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
1929 /* Draw the horizontal connection between the source block and vertical part. */
1930 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBb->uStartX - 1,
1931 uYHorLine, '-', enmColor);
1932
1933 }
1934 else
1935 {
1936 /* Going forward. */
1937 uint32_t uXVerLine = cchWidth + cchLeftExtra + (cchRightExtra - uFwdConns) - 1;
1938 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
1939 uFwdConns++;
1940
1941 /* Draw the horizontal line. */
1942 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBb->uStartX + pDumpBb->cchWidth,
1943 uXVerLine - 1, uYHorLine, '-', enmColor);
1944 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
1945 /* Draw the vertical line down to the target block. */
1946 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, uYHorLine + 1, pDumpBbTgt->uStartY - 1,
1947 '|', enmColor);
1948 /* Draw the horizontal connection between the target block and vertical part. */
1949 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
1950 uXVerLine, pDumpBbTgt->uStartY, '-', enmColor);
1951 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
1952 enmColor);
1953 /* Draw the arrow pointing to the target block. */
1954 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
1955 pDumpBbTgt->uStartY, '<', enmColor);
1956 }
1957 break;
1958 }
1959 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1960 default:
1961 AssertFailed();
1962 }
1963 }
1964
1965 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, fUseColor);
1966 dbgcScreenAsciiDestroy(hScreen);
1967 }
1968 }
1969
1970 if (paDumpBb)
1971 {
1972 for (unsigned i = 0; i < cBbs; i++)
1973 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
1974 RTMemTmpFree(paDumpBb);
1975 }
1976
1977 if (paDumpBranchTbl)
1978 {
1979 for (unsigned i = 0; i < cBranchTbls; i++)
1980 DBGFR3FlowBranchTblRelease(paDumpBranchTbl[i].hFlowBranchTbl);
1981 RTMemTmpFree(paDumpBranchTbl);
1982 }
1983
1984 if (hCfgIt)
1985 DBGFR3FlowItDestroy(hCfgIt);
1986 if (hFlowBranchTblIt)
1987 DBGFR3FlowBranchTblItDestroy(hFlowBranchTblIt);
1988
1989 return rc;
1990}
1991
1992
1993/**
1994 * @callback_method_impl{FNDBGCCMD, The 'ucfg' command.}
1995 */
1996static DECLCALLBACK(int) dbgcCmdUnassembleCfg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1997{
1998 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1999
2000 /*
2001 * Validate input.
2002 */
2003 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2004 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
2005 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
2006
2007 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2008 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
2009
2010 /*
2011 * Check the desired mode.
2012 */
2013 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
2014 bool fUseColor = false;
2015 switch (pCmd->pszCmd[4])
2016 {
2017 default: AssertFailed(); RT_FALL_THRU();
2018 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
2019 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
2020 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
2021 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
2022 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
2023 case 'c': fUseColor = true; break;
2024 }
2025
2026 /** @todo should use DBGFADDRESS for everything */
2027
2028 /*
2029 * Find address.
2030 */
2031 if (!cArgs)
2032 {
2033 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2034 {
2035 /** @todo Batch query CS, RIP, CPU mode and flags. */
2036 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2037 if ( pDbgc->fRegCtxGuest
2038 && CPUMIsGuestIn64BitCode(pVCpu))
2039 {
2040 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
2041 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
2042 }
2043 else
2044 {
2045 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
2046 pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu);
2047 pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu);
2048 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
2049 && pDbgc->fRegCtxGuest
2050 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
2051 {
2052 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2053 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
2054 }
2055 }
2056
2057 if (pDbgc->fRegCtxGuest)
2058 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
2059 else
2060 fFlags |= DBGF_DISAS_FLAGS_CURRENT_HYPER | DBGF_DISAS_FLAGS_HYPER;
2061 }
2062 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
2063 {
2064 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2065 fFlags |= pDbgc->fDisasm & (DBGF_DISAS_FLAGS_MODE_MASK | DBGF_DISAS_FLAGS_HYPER);
2066 }
2067 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
2068 }
2069 else
2070 pDbgc->DisasmPos = paArgs[0];
2071 pDbgc->pLastPos = &pDbgc->DisasmPos;
2072
2073 /*
2074 * Range.
2075 */
2076 switch (pDbgc->DisasmPos.enmRangeType)
2077 {
2078 case DBGCVAR_RANGE_NONE:
2079 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2080 pDbgc->DisasmPos.u64Range = 10;
2081 break;
2082
2083 case DBGCVAR_RANGE_ELEMENTS:
2084 if (pDbgc->DisasmPos.u64Range > 2048)
2085 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
2086 break;
2087
2088 case DBGCVAR_RANGE_BYTES:
2089 if (pDbgc->DisasmPos.u64Range > 65536)
2090 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
2091 break;
2092
2093 default:
2094 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
2095 }
2096
2097 /*
2098 * Convert physical and host addresses to guest addresses.
2099 */
2100 RTDBGAS hDbgAs = pDbgc->hDbgAs;
2101 int rc;
2102 switch (pDbgc->DisasmPos.enmType)
2103 {
2104 case DBGCVAR_TYPE_GC_FLAT:
2105 case DBGCVAR_TYPE_GC_FAR:
2106 break;
2107 case DBGCVAR_TYPE_GC_PHYS:
2108 hDbgAs = DBGF_AS_PHYS;
2109 RT_FALL_THRU();
2110 case DBGCVAR_TYPE_HC_FLAT:
2111 case DBGCVAR_TYPE_HC_PHYS:
2112 {
2113 DBGCVAR VarTmp;
2114 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
2115 if (RT_FAILURE(rc))
2116 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
2117 pDbgc->DisasmPos = VarTmp;
2118 break;
2119 }
2120 default: AssertFailed(); break;
2121 }
2122
2123 DBGFADDRESS CurAddr;
2124 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
2125 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
2126 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
2127 else
2128 {
2129 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
2130 if (RT_FAILURE(rc))
2131 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
2132 }
2133
2134 DBGFFLOW hCfg;
2135 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
2136 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
2137 if (RT_SUCCESS(rc))
2138 {
2139 /* Dump the graph. */
2140 rc = dbgcCmdUnassembleCfgDump(hCfg, fUseColor, pCmdHlp);
2141 DBGFR3FlowRelease(hCfg);
2142 }
2143 else
2144 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
2145
2146 NOREF(pCmd);
2147 return rc;
2148}
2149
2150
2151/**
2152 * @callback_method_impl{FNDBGCCMD, The 'ls' command.}
2153 */
2154static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2155{
2156 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2157
2158 /*
2159 * Validate input.
2160 */
2161 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2162 if (cArgs == 1)
2163 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2164 if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2165 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing...");
2166 if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType))
2167 return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM");
2168
2169 /*
2170 * Find address.
2171 */
2172 if (!cArgs)
2173 {
2174 if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2175 {
2176 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2177 pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR;
2178 pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu);
2179 pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu);
2180 }
2181 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE;
2182 }
2183 else
2184 pDbgc->SourcePos = paArgs[0];
2185 pDbgc->pLastPos = &pDbgc->SourcePos;
2186
2187 /*
2188 * Ensure the source address is flat GC.
2189 */
2190 switch (pDbgc->SourcePos.enmType)
2191 {
2192 case DBGCVAR_TYPE_GC_FLAT:
2193 break;
2194 case DBGCVAR_TYPE_GC_PHYS:
2195 case DBGCVAR_TYPE_GC_FAR:
2196 case DBGCVAR_TYPE_HC_FLAT:
2197 case DBGCVAR_TYPE_HC_PHYS:
2198 {
2199 int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos);
2200 if (RT_FAILURE(rc))
2201 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc);
2202 break;
2203 }
2204 default: AssertFailed(); break;
2205 }
2206
2207 /*
2208 * Range.
2209 */
2210 switch (pDbgc->SourcePos.enmRangeType)
2211 {
2212 case DBGCVAR_RANGE_NONE:
2213 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2214 pDbgc->SourcePos.u64Range = 10;
2215 break;
2216
2217 case DBGCVAR_RANGE_ELEMENTS:
2218 if (pDbgc->SourcePos.u64Range > 2048)
2219 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n");
2220 break;
2221
2222 case DBGCVAR_RANGE_BYTES:
2223 if (pDbgc->SourcePos.u64Range > 65536)
2224 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
2225 break;
2226
2227 default:
2228 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType);
2229 }
2230
2231 /*
2232 * Do the disassembling.
2233 */
2234 bool fFirst = 1;
2235 RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" };
2236 int iRangeLeft = (int)pDbgc->SourcePos.u64Range;
2237 if (iRangeLeft == 0) /* kludge for 'r'. */
2238 iRangeLeft = -1;
2239 for (;;)
2240 {
2241 /*
2242 * Get line info.
2243 */
2244 RTDBGLINE Line;
2245 RTGCINTPTR off;
2246 DBGFADDRESS SourcePosAddr;
2247 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr);
2248 if (RT_FAILURE(rc))
2249 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos);
2250 rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL);
2251 if (RT_FAILURE(rc))
2252 return VINF_SUCCESS;
2253
2254 unsigned cLines = 0;
2255 if (memcmp(&Line, &LinePrev, sizeof(Line)))
2256 {
2257 /*
2258 * Print filenamename
2259 */
2260 if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename))
2261 fFirst = true;
2262 if (fFirst)
2263 {
2264 rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo);
2265 if (RT_FAILURE(rc))
2266 return rc;
2267 }
2268
2269 /*
2270 * Try open the file and read the line.
2271 */
2272 FILE *phFile = fopen(Line.szFilename, "r");
2273 if (phFile)
2274 {
2275 /* Skip ahead to the desired line. */
2276 char szLine[4096];
2277 unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1;
2278 if (cBefore > 7)
2279 cBefore = 0;
2280 unsigned cLeft = Line.uLineNo - cBefore;
2281 while (cLeft > 0)
2282 {
2283 szLine[0] = '\0';
2284 if (!fgets(szLine, sizeof(szLine), phFile))
2285 break;
2286 cLeft--;
2287 }
2288 if (!cLeft)
2289 {
2290 /* print the before lines */
2291 for (;;)
2292 {
2293 size_t cch = strlen(szLine);
2294 while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) )
2295 szLine[--cch] = '\0';
2296 if (cBefore-- <= 0)
2297 break;
2298
2299 rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine);
2300 szLine[0] = '\0';
2301 const char *pszShutUpGcc = fgets(szLine, sizeof(szLine), phFile); NOREF(pszShutUpGcc);
2302 cLines++;
2303 }
2304 /* print the actual line */
2305 rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine);
2306 }
2307 fclose(phFile);
2308 if (RT_FAILURE(rc))
2309 return rc;
2310 fFirst = false;
2311 }
2312 else
2313 return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename);
2314
2315 LinePrev = Line;
2316 }
2317
2318
2319 /*
2320 * Advance
2321 */
2322 if (iRangeLeft < 0) /* 'r' */
2323 break;
2324 if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
2325 iRangeLeft -= cLines;
2326 else
2327 iRangeLeft -= 1;
2328 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1);
2329 if (RT_FAILURE(rc))
2330 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1);
2331 if (iRangeLeft <= 0)
2332 break;
2333 }
2334
2335 NOREF(pCmd);
2336 return 0;
2337}
2338
2339
2340/**
2341 * @callback_method_impl{FNDBGCCMD, The 'r' command.}
2342 */
2343static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2344{
2345 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2346 if (!pDbgc->fRegCtxGuest)
2347 return dbgcCmdRegHyper(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
2348 return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
2349}
2350
2351
2352/**
2353 * @callback_method_impl{FNDBGCCMD, Common worker for the dbgcCmdReg*()
2354 * commands.}
2355 */
2356static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs,
2357 const char *pszPrefix)
2358{
2359 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2360 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3);
2361 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING
2362 || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL);
2363
2364 /*
2365 * Parse the register name and kind.
2366 */
2367 const char *pszReg = paArgs[0].u.pszString;
2368 if (*pszReg == '@')
2369 pszReg++;
2370 VMCPUID idCpu = pDbgc->idCpu;
2371 if (*pszPrefix)
2372 idCpu |= DBGFREG_HYPER_VMCPUID;
2373 if (*pszReg == '.')
2374 {
2375 pszReg++;
2376 idCpu |= DBGFREG_HYPER_VMCPUID;
2377 }
2378 const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : "";
2379
2380 /*
2381 * Query the register type & value (the setter needs the type).
2382 */
2383 DBGFREGVALTYPE enmType;
2384 DBGFREGVAL Value;
2385 int rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2386 if (RT_FAILURE(rc))
2387 {
2388 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2389 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2390 pszActualPrefix, pszReg);
2391 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2392 pszActualPrefix, pszReg, rc);
2393 }
2394 if (cArgs == 1)
2395 {
2396 /*
2397 * Show the register.
2398 */
2399 char szValue[160];
2400 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/);
2401 if (RT_SUCCESS(rc))
2402 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue);
2403 else
2404 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2405 }
2406 else
2407 {
2408 DBGCVAR NewValueTmp;
2409 PCDBGCVAR pNewValue;
2410 if (cArgs == 3)
2411 {
2412 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2413 if (strcmp(paArgs[1].u.pszString, "="))
2414 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='.");
2415 pNewValue = &paArgs[2];
2416 }
2417 else
2418 {
2419 /* Not possible to convince the parser to support both codeview and
2420 windbg syntax and make the equal sign optional. Try help it. */
2421 /** @todo make DBGCCmdHlpConvert do more with strings. */
2422 rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp);
2423 if (RT_FAILURE(rc))
2424 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol.");
2425 pNewValue = &NewValueTmp;
2426 }
2427
2428 /*
2429 * Modify the register.
2430 */
2431 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER);
2432 if (enmType != DBGFREGVALTYPE_DTR)
2433 {
2434 enmType = DBGFREGVALTYPE_U64;
2435 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64);
2436 }
2437 else
2438 {
2439 enmType = DBGFREGVALTYPE_DTR;
2440 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base);
2441 if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE)
2442 Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range;
2443 }
2444 if (RT_SUCCESS(rc))
2445 {
2446 rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType);
2447 if (RT_FAILURE(rc))
2448 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n",
2449 pszActualPrefix, pszReg, rc);
2450 if (rc != VINF_SUCCESS)
2451 DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc);
2452 }
2453 else
2454 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2455 }
2456 return rc;
2457}
2458
2459
2460/**
2461 * @callback_method_impl{FNDBGCCMD,
2462 * The 'rg'\, 'rg64' and 'rg32' commands\, worker for 'r'.}
2463 */
2464static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2465{
2466 /*
2467 * Show all registers our selves.
2468 */
2469 if (cArgs == 0)
2470 {
2471 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2472 bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64")
2473 || ( strcmp(pCmd->pszCmd, "rg32") != 0
2474 && DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu));
2475 char szDisAndRegs[8192];
2476 int rc;
2477
2478 if (pDbgc->fRegTerse)
2479 {
2480 if (f64BitMode)
2481 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, &szDisAndRegs[0], sizeof(szDisAndRegs),
2482 "u %016VR{rip} L 0\n"
2483 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
2484 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
2485 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
2486 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
2487 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
2488 "cs=%04VR{cs} ds=%04VR{ds} es=%04VR{es} fs=%04VR{fs} gs=%04VR{gs} ss=%04VR{ss} rflags=%08VR{rflags}\n");
2489 else
2490 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, szDisAndRegs, sizeof(szDisAndRegs),
2491 "u %04VR{cs}:%08VR{eip} L 0\n"
2492 "eax=%08VR{eax} ebx=%08VR{ebx} ecx=%08VR{ecx} edx=%08VR{edx} esi=%08VR{esi} edi=%08VR{edi}\n"
2493 "eip=%08VR{eip} esp=%08VR{esp} ebp=%08VR{ebp} %VRF{eflags}\n"
2494 "cs=%04VR{cs} ds=%04VR{ds} es=%04VR{es} fs=%04VR{fs} gs=%04VR{gs} ss=%04VR{ss} eflags=%08VR{eflags}\n");
2495 }
2496 else
2497 {
2498 if (f64BitMode)
2499 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, &szDisAndRegs[0], sizeof(szDisAndRegs),
2500 "u %016VR{rip} L 0\n"
2501 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
2502 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
2503 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
2504 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
2505 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
2506 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
2507 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
2508 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
2509 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
2510 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
2511 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
2512 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
2513 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
2514 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
2515 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
2516 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
2517 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
2518 " efer=%016VR{efer}\n"
2519 " pat=%016VR{pat}\n"
2520 " sf_mask=%016VR{sf_mask}\n"
2521 "krnl_gs_base=%016VR{krnl_gs_base}\n"
2522 " lstar=%016VR{lstar}\n"
2523 " star=%016VR{star} cstar=%016VR{cstar}\n"
2524 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
2525 );
2526 else
2527 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, szDisAndRegs, sizeof(szDisAndRegs),
2528 "u %04VR{cs}:%08VR{eip} L 0\n"
2529 "eax=%08VR{eax} ebx=%08VR{ebx} ecx=%08VR{ecx} edx=%08VR{edx} esi=%08VR{esi} edi=%08VR{edi}\n"
2530 "eip=%08VR{eip} esp=%08VR{esp} ebp=%08VR{ebp} %VRF{eflags}\n"
2531 "cs={%04VR{cs} base=%08VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} dr0=%08VR{dr0} dr1=%08VR{dr1}\n"
2532 "ds={%04VR{ds} base=%08VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} dr2=%08VR{dr2} dr3=%08VR{dr3}\n"
2533 "es={%04VR{es} base=%08VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} dr6=%08VR{dr6} dr7=%08VR{dr7}\n"
2534 "fs={%04VR{fs} base=%08VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr0=%08VR{cr0} cr2=%08VR{cr2}\n"
2535 "gs={%04VR{gs} base=%08VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr3=%08VR{cr3} cr4=%08VR{cr4}\n"
2536 "ss={%04VR{ss} base=%08VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}} cr8=%08VR{cr8}\n"
2537 "gdtr=%08VR{gdtr_base}:%04VR{gdtr_lim} idtr=%08VR{idtr_base}:%04VR{idtr_lim} eflags=%08VR{eflags}\n"
2538 "ldtr={%04VR{ldtr} base=%08VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%04VR{ldtr_attr}}\n"
2539 "tr ={%04VR{tr} base=%08VR{tr_base} limit=%08VR{tr_lim} flags=%04VR{tr_attr}}\n"
2540 "sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
2541 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
2542 );
2543 }
2544 if (RT_FAILURE(rc))
2545 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegPrintf failed");
2546 char *pszRegs = strchr(szDisAndRegs, '\n');
2547 *pszRegs++ = '\0';
2548 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s", pszRegs);
2549
2550 /*
2551 * Disassemble one instruction at cs:[r|e]ip.
2552 */
2553 if (!f64BitMode && strstr(pszRegs, " vm ")) /* a bit ugly... */
2554 return pCmdHlp->pfnExec(pCmdHlp, "uv86 %s", szDisAndRegs + 2);
2555 return pCmdHlp->pfnExec(pCmdHlp, "%s", szDisAndRegs);
2556 }
2557 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "");
2558}
2559
2560
2561/**
2562 * @callback_method_impl{FNDBGCCMD, The 'rh' command.}
2563 */
2564static DECLCALLBACK(int) dbgcCmdRegHyper(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2565{
2566 /*
2567 * Show all registers our selves.
2568 */
2569 if (cArgs == 0)
2570 {
2571 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2572 char szDisAndRegs[8192];
2573 int rc;
2574
2575 if (pDbgc->fRegTerse)
2576 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu | DBGFREG_HYPER_VMCPUID, szDisAndRegs, sizeof(szDisAndRegs),
2577 "u %VR{cs}:%VR{eip} L 0\n"
2578 ".eax=%08VR{eax} .ebx=%08VR{ebx} .ecx=%08VR{ecx} .edx=%08VR{edx} .esi=%08VR{esi} .edi=%08VR{edi}\n"
2579 ".eip=%08VR{eip} .esp=%08VR{esp} .ebp=%08VR{ebp} .%VRF{eflags}\n"
2580 ".cs=%04VR{cs} .ds=%04VR{ds} .es=%04VR{es} .fs=%04VR{fs} .gs=%04VR{gs} .ss=%04VR{ss} .eflags=%08VR{eflags}\n");
2581 else
2582 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu | DBGFREG_HYPER_VMCPUID, szDisAndRegs, sizeof(szDisAndRegs),
2583 "u %04VR{cs}:%08VR{eip} L 0\n"
2584 ".eax=%08VR{eax} .ebx=%08VR{ebx} .ecx=%08VR{ecx} .edx=%08VR{edx} .esi=%08VR{esi} .edi=%08VR{edi}\n"
2585 ".eip=%08VR{eip} .esp=%08VR{esp} .ebp=%08VR{ebp} .%VRF{eflags}\n"
2586 ".cs={%04VR{cs} base=%08VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} .dr0=%08VR{dr0} .dr1=%08VR{dr1}\n"
2587 ".ds={%04VR{ds} base=%08VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} .dr2=%08VR{dr2} .dr3=%08VR{dr3}\n"
2588 ".es={%04VR{es} base=%08VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} .dr6=%08VR{dr6} .dr6=%08VR{dr6}\n"
2589 ".fs={%04VR{fs} base=%08VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} .cr3=%016VR{cr3}\n"
2590 ".gs={%04VR{gs} base=%08VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}}\n"
2591 ".ss={%04VR{ss} base=%08VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
2592 ".gdtr=%08VR{gdtr_base}:%04VR{gdtr_lim} .idtr=%08VR{idtr_base}:%04VR{idtr_lim} .eflags=%08VR{eflags}\n"
2593 ".ldtr={%04VR{ldtr} base=%08VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%04VR{ldtr_attr}}\n"
2594 ".tr ={%04VR{tr} base=%08VR{tr_base} limit=%08VR{tr_lim} flags=%04VR{tr_attr}}\n"
2595 );
2596 if (RT_FAILURE(rc))
2597 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegPrintf failed");
2598 char *pszRegs = strchr(szDisAndRegs, '\n');
2599 *pszRegs++ = '\0';
2600 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s", pszRegs);
2601
2602 /*
2603 * Disassemble one instruction at cs:[r|e]ip.
2604 */
2605 return pCmdHlp->pfnExec(pCmdHlp, "%s", szDisAndRegs);
2606 }
2607 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, ".");
2608}
2609
2610
2611/**
2612 * @callback_method_impl{FNDBGCCMD, The 'rt' command.}
2613 */
2614static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2615{
2616 NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2617
2618 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2619 pDbgc->fRegTerse = !pDbgc->fRegTerse;
2620 return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n");
2621}
2622
2623
2624/**
2625 * @callback_method_impl{FNDBGCCMD, The 'pr' and 'tr' commands.}
2626 */
2627static DECLCALLBACK(int) dbgcCmdStepTraceToggle(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2628{
2629 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2630 Assert(cArgs == 0); NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2631
2632 /* Note! windbg accepts 'r' as a flag to 'p', 'pa', 'pc', 'pt', 't',
2633 'ta', 'tc' and 'tt'. We've simplified it. */
2634 pDbgc->fStepTraceRegs = !pDbgc->fStepTraceRegs;
2635 return VINF_SUCCESS;
2636}
2637
2638
2639/**
2640 * @callback_method_impl{FNDBGCCMD, The 'p'\, 'pc'\, 'pt'\, 't'\, 'tc'\, and 'tt' commands.}
2641 */
2642static DECLCALLBACK(int) dbgcCmdStepTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2643{
2644 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2645 if (cArgs != 0)
2646 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2647 "Sorry, but the '%s' command does not currently implement any arguments.\n", pCmd->pszCmd);
2648
2649 /* The 'count' has to be implemented by DBGC, whereas the
2650 filtering is taken care of by DBGF. */
2651
2652 /*
2653 * Convert the command to DBGF_STEP_F_XXX and other API input.
2654 */
2655 //DBGFADDRESS StackPop;
2656 PDBGFADDRESS pStackPop = NULL;
2657 RTGCPTR cbStackPop = 0;
2658 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : _64K;
2659 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2660 if (pCmd->pszCmd[1] == 'c')
2661 fFlags |= DBGF_STEP_F_STOP_ON_CALL;
2662 else if (pCmd->pszCmd[1] == 't')
2663 fFlags |= DBGF_STEP_F_STOP_ON_RET;
2664 else if (pCmd->pszCmd[0] != 'p')
2665 cMaxSteps = 1;
2666 else
2667 {
2668 /** @todo consider passing RSP + 1 in for 'p' and something else sensible for
2669 * the 'pt' command. */
2670 }
2671
2672 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, NULL, pStackPop, cbStackPop, cMaxSteps);
2673 if (RT_SUCCESS(rc))
2674 pDbgc->fReady = false;
2675 else
2676 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2677
2678 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2679 return rc;
2680}
2681
2682
2683/**
2684 * @callback_method_impl{FNDBGCCMD, The 'pa' and 'ta' commands.}
2685 */
2686static DECLCALLBACK(int) dbgcCmdStepTraceTo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2687{
2688 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2689 if (cArgs != 1)
2690 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2691 "Sorry, but the '%s' command only implements a single argument at present.\n", pCmd->pszCmd);
2692 DBGFADDRESS Address;
2693 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
2694 if (RT_FAILURE(rc))
2695 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[0]);
2696
2697 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : 1;
2698 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2699 rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, &Address, NULL, 0, cMaxSteps);
2700 if (RT_SUCCESS(rc))
2701 pDbgc->fReady = false;
2702 else
2703 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2704 return rc;
2705}
2706
2707
2708/**
2709 * Helper that tries to resolve a far address to a symbol and formats it.
2710 *
2711 * @returns Pointer to symbol string on success, NULL if not resolved.
2712 * Free using RTStrFree.
2713 * @param pCmdHlp The command helper structure.
2714 * @param hAs The address space to use. NIL_RTDBGAS means no symbol resolving.
2715 * @param sel The selector part of the address.
2716 * @param off The offset part of the address.
2717 * @param pszPrefix How to prefix the symbol string.
2718 * @param pszSuffix How to suffix the symbol string.
2719 */
2720static char *dbgcCmdHlpFarAddrToSymbol(PDBGCCMDHLP pCmdHlp, RTDBGAS hAs, RTSEL sel, uint64_t off,
2721 const char *pszPrefix, const char *pszSuffix)
2722{
2723 char *pszRet = NULL;
2724 if (hAs != NIL_RTDBGAS)
2725 {
2726 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2727 DBGFADDRESS Addr;
2728 int rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr, sel, off);
2729 if (RT_SUCCESS(rc))
2730 {
2731 RTGCINTPTR offDispSym = 0;
2732 PRTDBGSYMBOL pSymbol = DBGFR3AsSymbolByAddrA(pDbgc->pUVM, hAs, &Addr,
2733 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL
2734 | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
2735 &offDispSym, NULL);
2736 if (pSymbol)
2737 {
2738 if (offDispSym == 0)
2739 pszRet = RTStrAPrintf2("%s%s%s", pszPrefix, pSymbol->szName, pszSuffix);
2740 else if (offDispSym > 0)
2741 pszRet = RTStrAPrintf2("%s%s+%llx%s", pszPrefix, pSymbol->szName, (int64_t)offDispSym, pszSuffix);
2742 else
2743 pszRet = RTStrAPrintf2("%s%s-%llx%s", pszPrefix, pSymbol->szName, -(int64_t)offDispSym, pszSuffix);
2744 RTDbgSymbolFree(pSymbol);
2745 }
2746 }
2747 }
2748 return pszRet;
2749}
2750
2751
2752/**
2753 * @callback_method_impl{FNDBGCCMD, The 'k'\, 'kg' and 'kh' commands.}
2754 */
2755static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2756{
2757 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2758
2759 /*
2760 * Figure which context we're called for and start walking that stack.
2761 */
2762 int rc;
2763 PCDBGFSTACKFRAME pFirstFrame;
2764 bool const fGuest = pCmd->pszCmd[1] == 'g'
2765 || (pCmd->pszCmd[1] != 'h' && pDbgc->fRegCtxGuest);
2766 bool const fVerbose = pCmd->pszCmd[1] == 'v'
2767 || (pCmd->pszCmd[1] != '\0' && pCmd->pszCmd[2] == 'v');
2768 rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame);
2769 if (RT_FAILURE(rc))
2770 return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc);
2771
2772 /*
2773 * Print the frames.
2774 */
2775 char szTmp[1024];
2776 uint32_t fBitFlags = 0;
2777 for (PCDBGFSTACKFRAME pFrame = pFirstFrame;
2778 pFrame;
2779 pFrame = DBGFR3StackWalkNext(pFrame))
2780 {
2781 uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT);
2782 if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT)
2783 {
2784 if (fCurBitFlags != fBitFlags)
2785 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2786 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2787 pFrame->iFrame,
2788 pFrame->AddrFrame.Sel,
2789 (uint16_t)pFrame->AddrFrame.off,
2790 pFrame->AddrReturnFrame.Sel,
2791 (uint16_t)pFrame->AddrReturnFrame.off,
2792 (uint32_t)pFrame->AddrReturnPC.Sel,
2793 (uint32_t)pFrame->AddrReturnPC.off,
2794 pFrame->Args.au32[0],
2795 pFrame->Args.au32[1],
2796 pFrame->Args.au32[2],
2797 pFrame->Args.au32[3]);
2798 }
2799 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT)
2800 {
2801 if (fCurBitFlags != fBitFlags)
2802 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2803 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2804 pFrame->iFrame,
2805 (uint32_t)pFrame->AddrFrame.off,
2806 (uint32_t)pFrame->AddrReturnFrame.off,
2807 (uint32_t)pFrame->AddrReturnPC.Sel,
2808 (uint32_t)pFrame->AddrReturnPC.off,
2809 pFrame->Args.au32[0],
2810 pFrame->Args.au32[1],
2811 pFrame->Args.au32[2],
2812 pFrame->Args.au32[3]);
2813 }
2814 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT)
2815 {
2816 if (fCurBitFlags != fBitFlags)
2817 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n");
2818 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %016RX64 %04RX16:%016RX64 %016RX64",
2819 pFrame->iFrame,
2820 (uint64_t)pFrame->AddrFrame.off,
2821 pFrame->AddrReturnFrame.Sel,
2822 (uint64_t)pFrame->AddrReturnFrame.off,
2823 (uint64_t)pFrame->AddrReturnPC.off);
2824 }
2825 if (RT_FAILURE(rc))
2826 break;
2827 if (!pFrame->pSymPC)
2828 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
2829 fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT
2830 ? " %RTsel:%016RGv"
2831 : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT
2832 ? " %RTsel:%08RGv"
2833 : " %RTsel:%04RGv"
2834 , pFrame->AddrPC.Sel, pFrame->AddrPC.off);
2835 else
2836 {
2837 RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */
2838 if (offDisp > 0)
2839 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp);
2840 else if (offDisp < 0)
2841 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp);
2842 else
2843 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName);
2844 }
2845 if (RT_SUCCESS(rc) && pFrame->pLinePC)
2846 rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo);
2847 if (RT_SUCCESS(rc))
2848 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2849
2850 if (fVerbose && RT_SUCCESS(rc))
2851 {
2852 /*
2853 * Display verbose frame info.
2854 */
2855 const char *pszRetType;
2856 switch (pFrame->enmReturnType)
2857 {
2858 case DBGFRETURNTYPE_NEAR16: pszRetType = "retn/16"; break;
2859 case DBGFRETURNTYPE_NEAR32: pszRetType = "retn/32"; break;
2860 case DBGFRETURNTYPE_NEAR64: pszRetType = "retn/64"; break;
2861 case DBGFRETURNTYPE_FAR16: pszRetType = "retf/16"; break;
2862 case DBGFRETURNTYPE_FAR32: pszRetType = "retf/32"; break;
2863 case DBGFRETURNTYPE_FAR64: pszRetType = "retf/64"; break;
2864 case DBGFRETURNTYPE_IRET16: pszRetType = "iret-16"; break;
2865 case DBGFRETURNTYPE_IRET32: pszRetType = "iret/32s"; break;
2866 case DBGFRETURNTYPE_IRET32_PRIV: pszRetType = "iret/32p"; break;
2867 case DBGFRETURNTYPE_IRET32_V86: pszRetType = "iret/v86"; break;
2868 case DBGFRETURNTYPE_IRET64: pszRetType = "iret/64"; break;
2869 default: pszRetType = "invalid"; break;
2870 }
2871 size_t cchLine = DBGCCmdHlpPrintfLen(pCmdHlp, " %s", pszRetType);
2872 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_UNWIND_INFO)
2873 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-unwind-info");
2874 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_ODD_EVEN)
2875 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-odd-even");
2876 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_REAL_V86)
2877 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " real-v86");
2878 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_MAX_DEPTH)
2879 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " max-depth");
2880
2881 if (pFrame->cSureRegs > 0)
2882 {
2883 cchLine = 1024; /* force new line */
2884 for (uint32_t i = 0; i < pFrame->cSureRegs; i++)
2885 {
2886 if (cchLine > 80)
2887 {
2888 DBGCCmdHlpPrintf(pCmdHlp, "\n ");
2889 cchLine = 2;
2890 }
2891
2892 szTmp[0] = '\0';
2893 DBGFR3RegFormatValue(szTmp, sizeof(szTmp), &pFrame->paSureRegs[i].Value,
2894 pFrame->paSureRegs[i].enmType, false);
2895 const char *pszName = pFrame->paSureRegs[i].enmReg != DBGFREG_END
2896 ? DBGFR3RegCpuName(pUVM, pFrame->paSureRegs[i].enmReg, pFrame->paSureRegs[i].enmType)
2897 : pFrame->paSureRegs[i].pszName;
2898 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " %s=%s", pszName, szTmp);
2899 }
2900 }
2901
2902 if (RT_SUCCESS(rc))
2903 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2904 }
2905
2906 if (RT_FAILURE(rc))
2907 break;
2908
2909 fBitFlags = fCurBitFlags;
2910 }
2911
2912 DBGFR3StackWalkEnd(pFirstFrame);
2913
2914 NOREF(paArgs); NOREF(cArgs);
2915 return rc;
2916}
2917
2918
2919static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs,
2920 bool *pfDblEntry)
2921{
2922 /* GUEST64 */
2923 int rc;
2924
2925 const char *pszHyper = fHyper ? " HYPER" : "";
2926 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
2927 if (pDesc->Gen.u1DescType)
2928 {
2929 static const char * const s_apszTypes[] =
2930 {
2931 "DataRO", /* 0 Read-Only */
2932 "DataRO", /* 1 Read-Only - Accessed */
2933 "DataRW", /* 2 Read/Write */
2934 "DataRW", /* 3 Read/Write - Accessed */
2935 "DownRO", /* 4 Expand-down, Read-Only */
2936 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
2937 "DownRW", /* 6 Expand-down, Read/Write */
2938 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
2939 "CodeEO", /* 8 Execute-Only */
2940 "CodeEO", /* 9 Execute-Only - Accessed */
2941 "CodeER", /* A Execute/Readable */
2942 "CodeER", /* B Execute/Readable - Accessed */
2943 "ConfE0", /* C Conforming, Execute-Only */
2944 "ConfE0", /* D Conforming, Execute-Only - Accessed */
2945 "ConfER", /* E Conforming, Execute/Readable */
2946 "ConfER" /* F Conforming, Execute/Readable - Accessed */
2947 };
2948 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
2949 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
2950 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2951 uint32_t u32Base = X86DESC_BASE(pDesc);
2952 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
2953
2954 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
2955 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
2956 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
2957 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
2958 }
2959 else
2960 {
2961 static const char * const s_apszTypes[] =
2962 {
2963 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
2964 "Ill-1 ", /* 1 0001 Available 16-bit TSS */
2965 "LDT ", /* 2 0010 LDT */
2966 "Ill-3 ", /* 3 0011 Busy 16-bit TSS */
2967 "Ill-4 ", /* 4 0100 16-bit Call Gate */
2968 "Ill-5 ", /* 5 0101 Task Gate */
2969 "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */
2970 "Ill-7 ", /* 7 0111 16-bit Trap Gate */
2971 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
2972 "Tss64A", /* 9 1001 Available 32-bit TSS */
2973 "Ill-A ", /* A 1010 Reserved (Illegal) */
2974 "Tss64B", /* B 1011 Busy 32-bit TSS */
2975 "Call64", /* C 1100 32-bit Call Gate */
2976 "Ill-D ", /* D 1101 Reserved (Illegal) */
2977 "Int64 ", /* E 1110 32-bit Interrupt Gate */
2978 "Trap64" /* F 1111 32-bit Trap Gate */
2979 };
2980 switch (pDesc->Gen.u4Type)
2981 {
2982 /* raw */
2983 case X86_SEL_TYPE_SYS_UNDEFINED:
2984 case X86_SEL_TYPE_SYS_UNDEFINED2:
2985 case X86_SEL_TYPE_SYS_UNDEFINED4:
2986 case X86_SEL_TYPE_SYS_UNDEFINED3:
2987 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
2988 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
2989 case X86_SEL_TYPE_SYS_286_CALL_GATE:
2990 case X86_SEL_TYPE_SYS_286_INT_GATE:
2991 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
2992 case X86_SEL_TYPE_SYS_TASK_GATE:
2993 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
2994 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
2995 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
2996 break;
2997
2998 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
2999 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3000 case X86_SEL_TYPE_SYS_LDT:
3001 {
3002 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3003 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3004 const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " ";
3005
3006 uint64_t u64Base = X86DESC64_BASE(pDesc);
3007 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
3008
3009 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n",
3010 iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit,
3011 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig,
3012 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3013 pszHyper);
3014 if (pfDblEntry)
3015 *pfDblEntry = true;
3016 break;
3017 }
3018
3019 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3020 {
3021 unsigned cParams = pDesc->au8[4] & 0x1f;
3022 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3023 RTSEL sel = pDesc->au16[1];
3024 uint64_t off = pDesc->au16[0]
3025 | ((uint64_t)pDesc->au16[3] << 16)
3026 | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
3027 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3028 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s%s\n",
3029 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3030 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3031 RTStrFree(pszSymbol);
3032 if (pfDblEntry)
3033 *pfDblEntry = true;
3034 break;
3035 }
3036
3037 case X86_SEL_TYPE_SYS_386_INT_GATE:
3038 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3039 {
3040 RTSEL sel = pDesc->Gate.u16Sel;
3041 uint64_t off = pDesc->Gate.u16OffsetLow
3042 | ((uint64_t)pDesc->Gate.u16OffsetHigh << 16)
3043 | ((uint64_t)pDesc->Gate.u32OffsetTop << 32);
3044 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3045 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%u %s IST=%u%s%s\n",
3046 iEntry, s_apszTypes[pDesc->Gate.u4Type], sel, off,
3047 pDesc->Gate.u2Dpl, pszPresent, pDesc->Gate.u3IST, pszHyper, pszSymbol ? pszSymbol : "");
3048 RTStrFree(pszSymbol);
3049 if (pfDblEntry)
3050 *pfDblEntry = true;
3051 break;
3052 }
3053
3054 /* impossible, just it's necessary to keep gcc happy. */
3055 default:
3056 return VINF_SUCCESS;
3057 }
3058 }
3059 return VINF_SUCCESS;
3060}
3061
3062
3063/**
3064 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
3065 *
3066 * @returns pfnPrintf status code.
3067 * @param pCmdHlp The DBGC command helpers.
3068 * @param pDesc The descriptor to display.
3069 * @param iEntry The descriptor entry number.
3070 * @param fHyper Whether the selector belongs to the hypervisor or not.
3071 */
3072static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs)
3073{
3074 int rc;
3075
3076 const char *pszHyper = fHyper ? " HYPER" : "";
3077 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
3078 if (pDesc->Gen.u1DescType)
3079 {
3080 static const char * const s_apszTypes[] =
3081 {
3082 "DataRO", /* 0 Read-Only */
3083 "DataRO", /* 1 Read-Only - Accessed */
3084 "DataRW", /* 2 Read/Write */
3085 "DataRW", /* 3 Read/Write - Accessed */
3086 "DownRO", /* 4 Expand-down, Read-Only */
3087 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
3088 "DownRW", /* 6 Expand-down, Read/Write */
3089 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
3090 "CodeEO", /* 8 Execute-Only */
3091 "CodeEO", /* 9 Execute-Only - Accessed */
3092 "CodeER", /* A Execute/Readable */
3093 "CodeER", /* B Execute/Readable - Accessed */
3094 "ConfE0", /* C Conforming, Execute-Only */
3095 "ConfE0", /* D Conforming, Execute-Only - Accessed */
3096 "ConfER", /* E Conforming, Execute/Readable */
3097 "ConfER" /* F Conforming, Execute/Readable - Accessed */
3098 };
3099 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
3100 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3101 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3102 uint32_t u32Base = pDesc->Gen.u16BaseLow
3103 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3104 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3105 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3106 if (pDesc->Gen.u1Granularity)
3107 cbLimit <<= PAGE_SHIFT;
3108
3109 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
3110 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3111 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
3112 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
3113 }
3114 else
3115 {
3116 static const char * const s_apszTypes[] =
3117 {
3118 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
3119 "Tss16A", /* 1 0001 Available 16-bit TSS */
3120 "LDT ", /* 2 0010 LDT */
3121 "Tss16B", /* 3 0011 Busy 16-bit TSS */
3122 "Call16", /* 4 0100 16-bit Call Gate */
3123 "TaskG ", /* 5 0101 Task Gate */
3124 "Int16 ", /* 6 0110 16-bit Interrupt Gate */
3125 "Trap16", /* 7 0111 16-bit Trap Gate */
3126 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
3127 "Tss32A", /* 9 1001 Available 32-bit TSS */
3128 "Ill-A ", /* A 1010 Reserved (Illegal) */
3129 "Tss32B", /* B 1011 Busy 32-bit TSS */
3130 "Call32", /* C 1100 32-bit Call Gate */
3131 "Ill-D ", /* D 1101 Reserved (Illegal) */
3132 "Int32 ", /* E 1110 32-bit Interrupt Gate */
3133 "Trap32" /* F 1111 32-bit Trap Gate */
3134 };
3135 switch (pDesc->Gen.u4Type)
3136 {
3137 /* raw */
3138 case X86_SEL_TYPE_SYS_UNDEFINED:
3139 case X86_SEL_TYPE_SYS_UNDEFINED2:
3140 case X86_SEL_TYPE_SYS_UNDEFINED4:
3141 case X86_SEL_TYPE_SYS_UNDEFINED3:
3142 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
3143 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
3144 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3145 break;
3146
3147 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3148 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3149 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3150 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3151 case X86_SEL_TYPE_SYS_LDT:
3152 {
3153 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3154 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3155 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3156 uint32_t u32Base = pDesc->Gen.u16BaseLow
3157 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3158 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3159 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3160 if (pDesc->Gen.u1Granularity)
3161 cbLimit <<= PAGE_SHIFT;
3162
3163 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n",
3164 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3165 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig,
3166 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3167 pszHyper);
3168 break;
3169 }
3170
3171 case X86_SEL_TYPE_SYS_TASK_GATE:
3172 {
3173 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n",
3174 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1],
3175 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3176 break;
3177 }
3178
3179 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3180 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3181 {
3182 unsigned cParams = pDesc->au8[4] & 0x1f;
3183 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3184 RTSEL sel = pDesc->au16[1];
3185 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3186 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3187 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s%s\n",
3188 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3189 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3190 RTStrFree(pszSymbol);
3191 break;
3192 }
3193
3194 case X86_SEL_TYPE_SYS_286_INT_GATE:
3195 case X86_SEL_TYPE_SYS_386_INT_GATE:
3196 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
3197 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3198 {
3199 RTSEL sel = pDesc->au16[1];
3200 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3201 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3202 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s%s\n",
3203 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3204 pDesc->Gen.u2Dpl, pszPresent, pszHyper, pszSymbol ? pszSymbol : "");
3205 RTStrFree(pszSymbol);
3206 break;
3207 }
3208
3209 /* impossible, just it's necessary to keep gcc happy. */
3210 default:
3211 return VINF_SUCCESS;
3212 }
3213 }
3214 return rc;
3215}
3216
3217
3218/**
3219 * @callback_method_impl{FNDBGCCMD, The 'dg'\, 'dga'\, 'dl' and 'dla' commands.}
3220 */
3221static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3222{
3223 /*
3224 * Validate input.
3225 */
3226 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3227
3228 /*
3229 * Get the CPU mode, check which command variation this is
3230 * and fix a default parameter if needed.
3231 */
3232 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3233 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
3234 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
3235 bool fGdt = pCmd->pszCmd[1] == 'g';
3236 bool fAll = pCmd->pszCmd[2] == 'a';
3237 RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT;
3238
3239 DBGCVAR Var;
3240 if (!cArgs)
3241 {
3242 cArgs = 1;
3243 paArgs = &Var;
3244 Var.enmType = DBGCVAR_TYPE_NUMBER;
3245 Var.u.u64Number = 0;
3246 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3247 Var.u64Range = 1024;
3248 }
3249
3250 /*
3251 * Process the arguments.
3252 */
3253 for (unsigned i = 0; i < cArgs; i++)
3254 {
3255 /*
3256 * Retrieve the selector value from the argument.
3257 * The parser may confuse pointers and numbers if more than one
3258 * argument is given, that that into account.
3259 */
3260 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType));
3261 uint64_t u64;
3262 unsigned cSels = 1;
3263 switch (paArgs[i].enmType)
3264 {
3265 case DBGCVAR_TYPE_NUMBER:
3266 u64 = paArgs[i].u.u64Number;
3267 if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE)
3268 cSels = RT_MIN(paArgs[i].u64Range, 1024);
3269 break;
3270 case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break;
3271 case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break;
3272 case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break;
3273 case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break;
3274 case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break;
3275 default: u64 = _64K; break;
3276 }
3277 if (u64 < _64K)
3278 {
3279 unsigned Sel = (RTSEL)u64;
3280
3281 /*
3282 * Dump the specified range.
3283 */
3284 bool fSingle = cSels == 1;
3285 while ( cSels-- > 0
3286 && Sel < _64K)
3287 {
3288 DBGFSELINFO SelInfo;
3289 int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
3290 if (RT_SUCCESS(rc))
3291 {
3292 if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE)
3293 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n",
3294 Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit);
3295 else if ( fAll
3296 || fSingle
3297 || SelInfo.u.Raw.Gen.u1Present)
3298 {
3299 if (enmMode == CPUMMODE_PROTECTED)
3300 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel,
3301 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL);
3302 else
3303 {
3304 bool fDblSkip = false;
3305 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel,
3306 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL, &fDblSkip);
3307 if (fDblSkip)
3308 Sel += 4;
3309 }
3310 }
3311 }
3312 else
3313 {
3314 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc);
3315 if (!fAll)
3316 return rc;
3317 }
3318 if (RT_FAILURE(rc))
3319 return rc;
3320
3321 /* next */
3322 Sel += 8;
3323 }
3324 }
3325 else
3326 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64);
3327 }
3328
3329 return VINF_SUCCESS;
3330}
3331
3332
3333/**
3334 * @callback_method_impl{FNDBGCCMD, The 'di' and 'dia' commands.}
3335 */
3336static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3337{
3338 /*
3339 * Validate input.
3340 */
3341 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3342
3343 /*
3344 * Establish some stuff like the current IDTR and CPU mode,
3345 * and fix a default parameter.
3346 */
3347 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3348 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
3349 uint16_t cbLimit = 0;
3350 uint64_t GCFlat = 0;
3351 int rc = DBGFR3RegCpuQueryXdtr(pDbgc->pUVM, pDbgc->idCpu, DBGFREG_IDTR, &GCFlat, &cbLimit);
3352 if (RT_FAILURE(rc))
3353 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3RegCpuQueryXdtr/DBGFREG_IDTR");
3354 unsigned cbEntry;
3355 switch (enmMode)
3356 {
3357 case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break;
3358 case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break;
3359 case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break;
3360 default:
3361 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode);
3362 }
3363
3364 bool fAll = pCmd->pszCmd[2] == 'a';
3365 DBGCVAR Var;
3366 if (!cArgs)
3367 {
3368 cArgs = 1;
3369 paArgs = &Var;
3370 Var.enmType = DBGCVAR_TYPE_NUMBER;
3371 Var.u.u64Number = 0;
3372 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3373 Var.u64Range = 256;
3374 }
3375
3376 /*
3377 * Process the arguments.
3378 */
3379 for (unsigned i = 0; i < cArgs; i++)
3380 {
3381 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER);
3382 if (paArgs[i].u.u64Number < 256)
3383 {
3384 RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number;
3385 unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE
3386 ? paArgs[i].u64Range
3387 : 1;
3388 bool fSingle = cInts == 1;
3389 while ( cInts-- > 0
3390 && iInt < 256)
3391 {
3392 /*
3393 * Try read it.
3394 */
3395 union
3396 {
3397 RTFAR16 Real;
3398 X86DESC Prot;
3399 X86DESC64 Long;
3400 } u;
3401 if (iInt * cbEntry + (cbEntry - 1) > cbLimit)
3402 {
3403 DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt);
3404 if (!fAll && !fSingle)
3405 return VINF_SUCCESS;
3406 }
3407 DBGCVAR AddrVar;
3408 AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT;
3409 AddrVar.u.GCFlat = GCFlat + iInt * cbEntry;
3410 AddrVar.enmRangeType = DBGCVAR_RANGE_NONE;
3411 rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL);
3412 if (RT_FAILURE(rc))
3413 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt);
3414
3415 /*
3416 * Display it.
3417 */
3418 switch (enmMode)
3419 {
3420 case CPUMMODE_REAL:
3421 {
3422 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, DBGF_AS_GLOBAL, u.Real.sel, u.Real.off, " (", ")");
3423 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16%s\n", (unsigned)iInt, u.Real, pszSymbol ? pszSymbol : "");
3424 RTStrFree(pszSymbol);
3425 break;
3426 }
3427 case CPUMMODE_PROTECTED:
3428 if (fAll || fSingle || u.Prot.Gen.u1Present)
3429 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false, DBGF_AS_GLOBAL);
3430 break;
3431 case CPUMMODE_LONG:
3432 if (fAll || fSingle || u.Long.Gen.u1Present)
3433 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, DBGF_AS_GLOBAL, NULL);
3434 break;
3435 default: break; /* to shut up gcc */
3436 }
3437 if (RT_FAILURE(rc))
3438 return rc;
3439
3440 /* next */
3441 iInt++;
3442 }
3443 }
3444 else
3445 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number);
3446 }
3447
3448 return VINF_SUCCESS;
3449}
3450
3451
3452/**
3453 * @callback_method_impl{FNDBGCCMD,
3454 * The 'da'\, 'dq'\, 'dqs'\, 'dd'\, 'dds'\, 'dw'\, 'db'\, 'dp'\, 'dps'\,
3455 * and 'du' commands.}
3456 */
3457static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3458{
3459 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3460
3461 /*
3462 * Validate input.
3463 */
3464 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3465 if (cArgs == 1)
3466 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3467 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3468
3469#define DBGC_DUMP_MEM_F_ASCII RT_BIT_32(31)
3470#define DBGC_DUMP_MEM_F_UNICODE RT_BIT_32(30)
3471#define DBGC_DUMP_MEM_F_FAR RT_BIT_32(29)
3472#define DBGC_DUMP_MEM_F_SYMBOLS RT_BIT_32(28)
3473#define DBGC_DUMP_MEM_F_SIZE UINT32_C(0x0000ffff)
3474
3475 /*
3476 * Figure out the element size.
3477 */
3478 unsigned cbElement;
3479 bool fAscii = false;
3480 bool fUnicode = false;
3481 bool fFar = false;
3482 bool fSymbols = pCmd->pszCmd[1] && pCmd->pszCmd[2] == 's';
3483 switch (pCmd->pszCmd[1])
3484 {
3485 default:
3486 case 'b': cbElement = 1; break;
3487 case 'w': cbElement = 2; break;
3488 case 'd': cbElement = 4; break;
3489 case 'q': cbElement = 8; break;
3490 case 'a':
3491 cbElement = 1;
3492 fAscii = true;
3493 break;
3494 case 'F':
3495 cbElement = 4;
3496 fFar = true;
3497 break;
3498 case 'p':
3499 cbElement = DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu) ? 8 : 4;
3500 break;
3501 case 'u':
3502 cbElement = 2;
3503 fUnicode = true;
3504 break;
3505 case '\0':
3506 fAscii = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_ASCII);
3507 fSymbols = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SYMBOLS);
3508 fUnicode = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_UNICODE);
3509 fFar = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_FAR);
3510 cbElement = pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SIZE;
3511 if (!cbElement)
3512 cbElement = 1;
3513 break;
3514 }
3515 uint32_t const cbDumpElement = cbElement
3516 | (fSymbols ? DBGC_DUMP_MEM_F_SYMBOLS : 0)
3517 | (fFar ? DBGC_DUMP_MEM_F_FAR : 0)
3518 | (fUnicode ? DBGC_DUMP_MEM_F_UNICODE : 0)
3519 | (fAscii ? DBGC_DUMP_MEM_F_ASCII : 0);
3520 pDbgc->cbDumpElement = cbDumpElement;
3521
3522 /*
3523 * Find address.
3524 */
3525 if (!cArgs)
3526 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE;
3527 else
3528 pDbgc->DumpPos = paArgs[0];
3529
3530 /*
3531 * Range.
3532 */
3533 switch (pDbgc->DumpPos.enmRangeType)
3534 {
3535 case DBGCVAR_RANGE_NONE:
3536 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3537 pDbgc->DumpPos.u64Range = 0x60;
3538 break;
3539
3540 case DBGCVAR_RANGE_ELEMENTS:
3541 if (pDbgc->DumpPos.u64Range > 2048)
3542 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n");
3543 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3544 pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range;
3545 break;
3546
3547 case DBGCVAR_RANGE_BYTES:
3548 if (pDbgc->DumpPos.u64Range > 65536)
3549 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
3550 break;
3551
3552 default:
3553 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType);
3554 }
3555
3556 pDbgc->pLastPos = &pDbgc->DumpPos;
3557
3558 /*
3559 * Do the dumping.
3560 */
3561 int cbLeft = (int)pDbgc->DumpPos.u64Range;
3562 uint8_t u16Prev = '\0';
3563 for (;;)
3564 {
3565 /*
3566 * Read memory.
3567 */
3568 char achBuffer[16];
3569 size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft);
3570 size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft);
3571 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb);
3572 if (RT_FAILURE(rc))
3573 {
3574 if (u16Prev && u16Prev != '\n')
3575 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3576 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos);
3577 }
3578
3579 /*
3580 * Display it.
3581 */
3582 memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb);
3583 if (!fAscii && !fUnicode)
3584 {
3585 DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos);
3586 unsigned i;
3587 for (i = 0; i < cb; i += cbElement)
3588 {
3589 const char *pszSpace = " ";
3590 if (cbElement <= 2 && i == 8)
3591 pszSpace = "-";
3592 switch (cbElement)
3593 {
3594 case 1:
3595 DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]);
3596 break;
3597 case 2:
3598 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]);
3599 break;
3600 case 4:
3601 if (!fFar)
3602 DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]);
3603 else
3604 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x:%04x:",
3605 pszSpace, *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3606 break;
3607 case 8:
3608 DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]);
3609 break;
3610 }
3611
3612 if (fSymbols)
3613 {
3614 /* Try lookup symbol for the above address. */
3615 DBGFADDRESS Addr;
3616 rc = VINF_SUCCESS;
3617 if (cbElement == 8)
3618 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint64_t *)&achBuffer[i]);
3619 else if (!fFar)
3620 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint32_t *)&achBuffer[i]);
3621 else
3622 rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr,
3623 *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3624 if (RT_SUCCESS(rc))
3625 {
3626 RTINTPTR offDisp;
3627 RTDBGSYMBOL Symbol;
3628 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, &Addr,
3629 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
3630 &offDisp, &Symbol, NULL);
3631 if (RT_SUCCESS(rc))
3632 {
3633 if (!offDisp)
3634 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", Symbol.szName);
3635 else if (offDisp > 0)
3636 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s + %RGv", Symbol.szName, offDisp);
3637 else
3638 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s - %RGv", Symbol.szName, -offDisp);
3639 if (Symbol.cb > 0)
3640 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)", Symbol.cb);
3641 }
3642 }
3643
3644 /* Next line prefix. */
3645 unsigned iNext = i + cbElement;
3646 if (iNext < cb)
3647 {
3648 DBGCVAR TmpPos = pDbgc->DumpPos;
3649 DBGCCmdHlpEval(pCmdHlp, &TmpPos, "(%Dv) + %x", &pDbgc->DumpPos, iNext);
3650 DBGCCmdHlpPrintf(pCmdHlp, "\n%DV:", &pDbgc->DumpPos);
3651 }
3652 }
3653 }
3654
3655 /* Chars column. */
3656 if (cbElement == 1)
3657 {
3658 while (i++ < sizeof(achBuffer))
3659 DBGCCmdHlpPrintf(pCmdHlp, " ");
3660 DBGCCmdHlpPrintf(pCmdHlp, " ");
3661 for (i = 0; i < cb; i += cbElement)
3662 {
3663 uint8_t u8 = *(uint8_t *)&achBuffer[i];
3664 if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32)
3665 DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
3666 else
3667 DBGCCmdHlpPrintf(pCmdHlp, ".");
3668 }
3669 }
3670 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3671 }
3672 else
3673 {
3674 /*
3675 * We print up to the first zero and stop there.
3676 * Only printables + '\t' and '\n' are printed.
3677 */
3678 if (!u16Prev)
3679 DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos);
3680 uint16_t u16 = '\0';
3681 unsigned i;
3682 for (i = 0; i < cb; i += cbElement)
3683 {
3684 u16Prev = u16;
3685 if (cbElement == 1)
3686 u16 = *(uint8_t *)&achBuffer[i];
3687 else
3688 u16 = *(uint16_t *)&achBuffer[i];
3689 if ( u16 < 127
3690 && ( (RT_C_IS_PRINT(u16) && u16 >= 32)
3691 || u16 == '\t'
3692 || u16 == '\n'))
3693 DBGCCmdHlpPrintf(pCmdHlp, "%c", (int)u16);
3694 else if (!u16)
3695 break;
3696 else
3697 DBGCCmdHlpPrintf(pCmdHlp, "\\x%0*x", cbElement * 2, u16);
3698 }
3699 if (u16 == '\0')
3700 cb = cbLeft = i + 1;
3701 if (cbLeft - cb <= 0 && u16Prev != '\n')
3702 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3703 }
3704
3705 /*
3706 * Advance
3707 */
3708 cbLeft -= (int)cb;
3709 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb);
3710 if (RT_FAILURE(rc))
3711 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb);
3712 if (cbLeft <= 0)
3713 break;
3714 }
3715
3716 NOREF(pCmd);
3717 return VINF_SUCCESS;
3718}
3719
3720
3721/**
3722 * Best guess at which paging mode currently applies to the guest
3723 * paging structures.
3724 *
3725 * This have to come up with a decent answer even when the guest
3726 * is in non-paged protected mode or real mode.
3727 *
3728 * @returns cr3.
3729 * @param pDbgc The DBGC instance.
3730 * @param pfPAE Where to store the page address extension indicator.
3731 * @param pfLME Where to store the long mode enabled indicator.
3732 * @param pfPSE Where to store the page size extension indicator.
3733 * @param pfPGE Where to store the page global enabled indicator.
3734 * @param pfNXE Where to store the no-execution enabled indicator.
3735 */
3736static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3737{
3738 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3739 RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu);
3740 *pfPSE = !!(cr4 & X86_CR4_PSE);
3741 *pfPGE = !!(cr4 & X86_CR4_PGE);
3742 if (cr4 & X86_CR4_PAE)
3743 {
3744 *pfPSE = true;
3745 *pfPAE = true;
3746 }
3747 else
3748 *pfPAE = false;
3749
3750 *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG;
3751 *pfNXE = false; /* GUEST64 GUESTNX */
3752 return CPUMGetGuestCR3(pVCpu);
3753}
3754
3755
3756/**
3757 * Determine the shadow paging mode.
3758 *
3759 * @returns cr3.
3760 * @param pDbgc The DBGC instance.
3761 * @param pfPAE Where to store the page address extension indicator.
3762 * @param pfLME Where to store the long mode enabled indicator.
3763 * @param pfPSE Where to store the page size extension indicator.
3764 * @param pfPGE Where to store the page global enabled indicator.
3765 * @param pfNXE Where to store the no-execution enabled indicator.
3766 */
3767static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3768{
3769 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3770
3771 *pfPSE = true;
3772 *pfPGE = false;
3773 switch (PGMGetShadowMode(pVCpu))
3774 {
3775 default:
3776 case PGMMODE_32_BIT:
3777 *pfPAE = *pfLME = *pfNXE = false;
3778 break;
3779 case PGMMODE_PAE:
3780 *pfLME = *pfNXE = false;
3781 *pfPAE = true;
3782 break;
3783 case PGMMODE_PAE_NX:
3784 *pfLME = false;
3785 *pfPAE = *pfNXE = true;
3786 break;
3787 case PGMMODE_AMD64:
3788 *pfNXE = false;
3789 *pfPAE = *pfLME = true;
3790 break;
3791 case PGMMODE_AMD64_NX:
3792 *pfPAE = *pfLME = *pfNXE = true;
3793 break;
3794 }
3795 return PGMGetHyperCR3(pVCpu);
3796}
3797
3798
3799/**
3800 * @callback_method_impl{FNDBGCCMD,
3801 * The 'dpd'\, 'dpda'\, 'dpdb'\, 'dpdg' and 'dpdh' commands.}
3802 */
3803static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3804{
3805 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3806
3807 /*
3808 * Validate input.
3809 */
3810 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3811 if (cArgs == 1 && pCmd->pszCmd[3] == 'a')
3812 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3813 if (cArgs == 1 && pCmd->pszCmd[3] != 'a')
3814 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3815 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
3816 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3817
3818 /*
3819 * Guest or shadow page directories? Get the paging parameters.
3820 */
3821 bool fGuest = pCmd->pszCmd[3] != 'h';
3822 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
3823 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3824 ? pDbgc->fRegCtxGuest
3825 : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
3826
3827 bool fPAE, fLME, fPSE, fPGE, fNXE;
3828 uint64_t cr3 = fGuest
3829 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
3830 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
3831 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
3832
3833 /*
3834 * Setup default argument if none was specified.
3835 * Fix address / index confusion.
3836 */
3837 DBGCVAR VarDefault;
3838 if (!cArgs)
3839 {
3840 if (pCmd->pszCmd[3] == 'a')
3841 {
3842 if (fLME || fPAE)
3843 return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n");
3844 if (fGuest)
3845 DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3);
3846 else
3847 DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3);
3848 }
3849 else
3850 DBGCVAR_INIT_GC_FLAT(&VarDefault, 0);
3851 paArgs = &VarDefault;
3852 cArgs = 1;
3853 }
3854 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
3855 {
3856 /* If it's a number (not an address), it's an index, so convert it to an address. */
3857 Assert(pCmd->pszCmd[3] != 'a');
3858 VarDefault = paArgs[0];
3859 if (fPAE)
3860 return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n");
3861 if (VarDefault.u.u64Number >= PAGE_SIZE / cbEntry)
3862 return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", PAGE_SIZE / cbEntry - 1);
3863 VarDefault.u.u64Number <<= X86_PD_SHIFT;
3864 VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT;
3865 paArgs = &VarDefault;
3866 }
3867
3868 /*
3869 * Locate the PDE to start displaying at.
3870 *
3871 * The 'dpda' command takes the address of a PDE, while the others are guest
3872 * virtual address which PDEs should be displayed. So, 'dpda' is rather simple
3873 * while the others require us to do all the tedious walking thru the paging
3874 * hierarchy to find the intended PDE.
3875 */
3876 unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */
3877 DBGCVAR VarGCPtr = { NULL, }; /* The GC address corresponding to the current PDE (iEntry != ~0U). */
3878 DBGCVAR VarPDEAddr; /* The address of the current PDE. */
3879 unsigned cEntries; /* The number of entries to display. */
3880 unsigned cEntriesMax; /* The max number of entries to display. */
3881 int rc;
3882 if (pCmd->pszCmd[3] == 'a')
3883 {
3884 VarPDEAddr = paArgs[0];
3885 switch (VarPDEAddr.enmRangeType)
3886 {
3887 case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break;
3888 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break;
3889 default: cEntries = 10; break;
3890 }
3891 cEntriesMax = PAGE_SIZE / cbEntry;
3892 }
3893 else
3894 {
3895 /*
3896 * Determine the range.
3897 */
3898 switch (paArgs[0].enmRangeType)
3899 {
3900 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
3901 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
3902 default: cEntries = 10; break;
3903 }
3904
3905 /*
3906 * Normalize the input address, it must be a flat GC address.
3907 */
3908 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
3909 if (RT_FAILURE(rc))
3910 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
3911 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
3912 {
3913 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
3914 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
3915 }
3916 if (fPAE)
3917 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1);
3918 else
3919 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1);
3920
3921 /*
3922 * Do the paging walk until we get to the page directory.
3923 */
3924 DBGCVAR VarCur;
3925 if (fGuest)
3926 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
3927 else
3928 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
3929 if (fLME)
3930 {
3931 /* Page Map Level 4 Lookup. */
3932 /* Check if it's a valid address first? */
3933 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
3934 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
3935 X86PML4E Pml4e;
3936 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
3937 if (RT_FAILURE(rc))
3938 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
3939 if (!Pml4e.n.u1Present)
3940 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
3941
3942 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
3943 Assert(fPAE);
3944 }
3945 if (fPAE)
3946 {
3947 /* Page directory pointer table. */
3948 X86PDPE Pdpe;
3949 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
3950 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
3951 if (RT_FAILURE(rc))
3952 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
3953 if (!Pdpe.n.u1Present)
3954 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
3955
3956 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3957 VarPDEAddr = VarCur;
3958 VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
3959 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE);
3960 }
3961 else
3962 {
3963 /* 32-bit legacy - CR3 == page directory. */
3964 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK;
3965 VarPDEAddr = VarCur;
3966 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE);
3967 }
3968 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
3969 }
3970
3971 /* adjust cEntries */
3972 cEntries = RT_MAX(1, cEntries);
3973 cEntries = RT_MIN(cEntries, cEntriesMax);
3974
3975 /*
3976 * The display loop.
3977 */
3978 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n",
3979 &VarPDEAddr, iEntry);
3980 do
3981 {
3982 /*
3983 * Read.
3984 */
3985 X86PDEPAE Pde;
3986 Pde.u = 0;
3987 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL);
3988 if (RT_FAILURE(rc))
3989 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr);
3990
3991 /*
3992 * Display.
3993 */
3994 if (iEntry != ~0U)
3995 {
3996 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
3997 iEntry++;
3998 }
3999 if (fPSE && Pde.b.u1Size)
4000 DBGCCmdHlpPrintf(pCmdHlp,
4001 fPAE
4002 ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4003 : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4004 Pde.u,
4005 Pde.u & X86_PDE_PAE_PG_MASK,
4006 Pde.b.u1Present ? "p " : "np",
4007 Pde.b.u1Write ? "w" : "r",
4008 Pde.b.u1User ? "u" : "s",
4009 Pde.b.u1Accessed ? "a " : "na",
4010 Pde.b.u1Dirty ? "d " : "nd",
4011 Pde.b.u3Available,
4012 Pde.b.u1Global ? (fPGE ? "g" : "G") : " ",
4013 Pde.b.u1WriteThru ? "pwt" : " ",
4014 Pde.b.u1CacheDisable ? "pcd" : " ",
4015 Pde.b.u1PAT ? "pat" : "",
4016 Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
4017 else
4018 DBGCCmdHlpPrintf(pCmdHlp,
4019 fPAE
4020 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s"
4021 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s",
4022 Pde.u,
4023 Pde.u & X86_PDE_PAE_PG_MASK,
4024 Pde.n.u1Present ? "p " : "np",
4025 Pde.n.u1Write ? "w" : "r",
4026 Pde.n.u1User ? "u" : "s",
4027 Pde.n.u1Accessed ? "a " : "na",
4028 Pde.u & RT_BIT(6) ? "6 " : " ",
4029 Pde.n.u3Available,
4030 Pde.u & RT_BIT(8) ? "8" : " ",
4031 Pde.n.u1WriteThru ? "pwt" : " ",
4032 Pde.n.u1CacheDisable ? "pcd" : " ",
4033 Pde.u & RT_BIT(7) ? "7" : "",
4034 Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
4035 if (Pde.u & UINT64_C(0x7fff000000000000))
4036 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000)));
4037 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4038 if (RT_FAILURE(rc))
4039 return rc;
4040
4041 /*
4042 * Advance.
4043 */
4044 VarPDEAddr.u.u64Number += cbEntry;
4045 if (iEntry != ~0U)
4046 VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT);
4047 } while (cEntries-- > 0);
4048
4049 return VINF_SUCCESS;
4050}
4051
4052
4053/**
4054 * @callback_method_impl{FNDBGCCMD, The 'dpdb' command.}
4055 */
4056static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4057{
4058 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4059 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]);
4060 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]);
4061 if (RT_FAILURE(rc1))
4062 return rc1;
4063 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
4064 return rc2;
4065}
4066
4067
4068/**
4069 * @callback_method_impl{FNDBGCCMD, The 'dph*' commands and main part of 'm'.}
4070 */
4071static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4072{
4073 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4074 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4075
4076 /*
4077 * Figure the context and base flags.
4078 */
4079 uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3;
4080 if (pCmd->pszCmd[0] == 'm')
4081 fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW;
4082 else if (pCmd->pszCmd[3] == '\0')
4083 fFlags |= pDbgc->fRegCtxGuest ? DBGFPGDMP_FLAGS_GUEST : DBGFPGDMP_FLAGS_SHADOW;
4084 else if (pCmd->pszCmd[3] == 'g')
4085 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4086 else if (pCmd->pszCmd[3] == 'h')
4087 fFlags |= DBGFPGDMP_FLAGS_SHADOW;
4088 else
4089 AssertFailed();
4090
4091 if (pDbgc->cPagingHierarchyDumps == 0)
4092 fFlags |= DBGFPGDMP_FLAGS_HEADER;
4093 pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42;
4094
4095 /*
4096 * Get the range.
4097 */
4098 PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos;
4099 RTGCPTR GCPtrFirst = NIL_RTGCPTR;
4100 int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst);
4101 if (RT_FAILURE(rc))
4102 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc);
4103
4104 uint64_t cbRange;
4105 rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, PAGE_SIZE, PAGE_SIZE * 8, &cbRange);
4106 if (RT_FAILURE(rc))
4107 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc);
4108
4109 RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst;
4110 if (cbRange >= GCPtrLast)
4111 GCPtrLast = RTGCPTR_MAX;
4112 else if (!cbRange)
4113 GCPtrLast = GCPtrFirst;
4114 else
4115 GCPtrLast = GCPtrFirst + cbRange - 1;
4116
4117 /*
4118 * Do we have a CR3?
4119 */
4120 uint64_t cr3 = 0;
4121 if (cArgs > 1)
4122 {
4123 if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW))
4124 return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please.");
4125 if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
4126 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]);
4127 cr3 = paArgs[1].u.u64Number;
4128 }
4129 else
4130 fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3;
4131
4132 /*
4133 * Do we have a mode?
4134 */
4135 if (cArgs > 2)
4136 {
4137 if (paArgs[2].enmType != DBGCVAR_TYPE_STRING)
4138 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]);
4139 static const struct MODETOFLAGS
4140 {
4141 const char *pszName;
4142 uint32_t fFlags;
4143 } s_aModeToFlags[] =
4144 {
4145 { "ept", DBGFPGDMP_FLAGS_EPT },
4146 { "legacy", 0 },
4147 { "legacy-np", DBGFPGDMP_FLAGS_NP },
4148 { "pse", DBGFPGDMP_FLAGS_PSE },
4149 { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP },
4150 { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE },
4151 { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP },
4152 { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE },
4153 { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP },
4154 { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME },
4155 { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP },
4156 { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE },
4157 { "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }
4158 };
4159 int i = RT_ELEMENTS(s_aModeToFlags);
4160 while (i-- > 0)
4161 if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString))
4162 {
4163 fFlags |= s_aModeToFlags[i].fFlags;
4164 break;
4165 }
4166 if (i < 0)
4167 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString);
4168 }
4169 else
4170 fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE;
4171
4172 /*
4173 * Call the worker.
4174 */
4175 rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/,
4176 DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp));
4177 if (RT_FAILURE(rc))
4178 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc);
4179 return VINF_SUCCESS;
4180}
4181
4182
4183
4184/**
4185 * @callback_method_impl{FNDBGCCMD, The 'dpg*' commands.}
4186 */
4187static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4188{
4189 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4190
4191 /*
4192 * Validate input.
4193 */
4194 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1);
4195 if (pCmd->pszCmd[3] == 'a')
4196 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
4197 else
4198 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
4199 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
4200 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4201
4202 /*
4203 * Guest or shadow page tables? Get the paging parameters.
4204 */
4205 bool fGuest = pCmd->pszCmd[3] != 'h';
4206 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
4207 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
4208 ? pDbgc->fRegCtxGuest
4209 : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
4210
4211 bool fPAE, fLME, fPSE, fPGE, fNXE;
4212 uint64_t cr3 = fGuest
4213 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
4214 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
4215 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
4216
4217 /*
4218 * Locate the PTE to start displaying at.
4219 *
4220 * The 'dpta' command takes the address of a PTE, while the others are guest
4221 * virtual address which PTEs should be displayed. So, 'pdta' is rather simple
4222 * while the others require us to do all the tedious walking thru the paging
4223 * hierarchy to find the intended PTE.
4224 */
4225 unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */
4226 DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */
4227 DBGCVAR VarPTEAddr; /* The address of the current PTE. */
4228 unsigned cEntries; /* The number of entries to display. */
4229 unsigned cEntriesMax; /* The max number of entries to display. */
4230 int rc;
4231 if (pCmd->pszCmd[3] == 'a')
4232 {
4233 VarPTEAddr = paArgs[0];
4234 switch (VarPTEAddr.enmRangeType)
4235 {
4236 case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break;
4237 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break;
4238 default: cEntries = 10; break;
4239 }
4240 cEntriesMax = PAGE_SIZE / cbEntry;
4241 }
4242 else
4243 {
4244 /*
4245 * Determine the range.
4246 */
4247 switch (paArgs[0].enmRangeType)
4248 {
4249 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
4250 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
4251 default: cEntries = 10; break;
4252 }
4253
4254 /*
4255 * Normalize the input address, it must be a flat GC address.
4256 */
4257 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
4258 if (RT_FAILURE(rc))
4259 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
4260 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
4261 {
4262 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
4263 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
4264 }
4265 VarGCPtr.u.GCFlat &= ~(RTGCPTR)PAGE_OFFSET_MASK;
4266
4267 /*
4268 * Do the paging walk until we get to the page table.
4269 */
4270 DBGCVAR VarCur;
4271 if (fGuest)
4272 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
4273 else
4274 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
4275 if (fLME)
4276 {
4277 /* Page Map Level 4 Lookup. */
4278 /* Check if it's a valid address first? */
4279 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
4280 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
4281 X86PML4E Pml4e;
4282 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
4283 if (RT_FAILURE(rc))
4284 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
4285 if (!Pml4e.n.u1Present)
4286 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
4287
4288 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
4289 Assert(fPAE);
4290 }
4291 if (fPAE)
4292 {
4293 /* Page directory pointer table. */
4294 X86PDPE Pdpe;
4295 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
4296 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
4297 if (RT_FAILURE(rc))
4298 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
4299 if (!Pdpe.n.u1Present)
4300 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
4301
4302 VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
4303
4304 /* Page directory (PAE). */
4305 X86PDEPAE Pde;
4306 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde);
4307 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4308 if (RT_FAILURE(rc))
4309 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4310 if (!Pde.n.u1Present)
4311 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4312 if (fPSE && Pde.n.u1Size)
4313 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4314
4315 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
4316 VarPTEAddr = VarCur;
4317 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK;
4318 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE);
4319 }
4320 else
4321 {
4322 /* Page directory (legacy). */
4323 X86PDE Pde;
4324 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde);
4325 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4326 if (RT_FAILURE(rc))
4327 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4328 if (!Pde.n.u1Present)
4329 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4330 if (fPSE && Pde.n.u1Size)
4331 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4332
4333 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK;
4334 VarPTEAddr = VarCur;
4335 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK;
4336 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE);
4337 }
4338 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
4339 }
4340
4341 /* adjust cEntries */
4342 cEntries = RT_MAX(1, cEntries);
4343 cEntries = RT_MIN(cEntries, cEntriesMax);
4344
4345 /*
4346 * The display loop.
4347 */
4348 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n",
4349 &VarPTEAddr, &VarGCPtr, iEntry);
4350 do
4351 {
4352 /*
4353 * Read.
4354 */
4355 X86PTEPAE Pte;
4356 Pte.u = 0;
4357 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL);
4358 if (RT_FAILURE(rc))
4359 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr);
4360
4361 /*
4362 * Display.
4363 */
4364 if (iEntry != ~0U)
4365 {
4366 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
4367 iEntry++;
4368 }
4369 DBGCCmdHlpPrintf(pCmdHlp,
4370 fPAE
4371 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4372 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4373 Pte.u,
4374 Pte.u & X86_PTE_PAE_PG_MASK,
4375 Pte.n.u1Present ? "p " : "np",
4376 Pte.n.u1Write ? "w" : "r",
4377 Pte.n.u1User ? "u" : "s",
4378 Pte.n.u1Accessed ? "a " : "na",
4379 Pte.n.u1Dirty ? "d " : "nd",
4380 Pte.n.u3Available,
4381 Pte.n.u1Global ? (fPGE ? "g" : "G") : " ",
4382 Pte.n.u1WriteThru ? "pwt" : " ",
4383 Pte.n.u1CacheDisable ? "pcd" : " ",
4384 Pte.n.u1PAT ? "pat" : " ",
4385 Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "
4386 );
4387 if (Pte.u & UINT64_C(0x7fff000000000000))
4388 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000)));
4389 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4390 if (RT_FAILURE(rc))
4391 return rc;
4392
4393 /*
4394 * Advance.
4395 */
4396 VarPTEAddr.u.u64Number += cbEntry;
4397 if (iEntry != ~0U)
4398 VarGCPtr.u.GCFlat += PAGE_SIZE;
4399 } while (cEntries-- > 0);
4400
4401 return VINF_SUCCESS;
4402}
4403
4404
4405/**
4406 * @callback_method_impl{FNDBGCCMD, The 'dptb' command.}
4407 */
4408static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4409{
4410 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4411 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]);
4412 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]);
4413 if (RT_FAILURE(rc1))
4414 return rc1;
4415 NOREF(pCmd); NOREF(cArgs);
4416 return rc2;
4417}
4418
4419
4420/**
4421 * @callback_method_impl{FNDBGCCMD, The 'dt' command.}
4422 */
4423static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4424{
4425 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4426 int rc;
4427
4428 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4429 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
4430 if (cArgs == 1)
4431 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING
4432 && paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL);
4433
4434 /*
4435 * Check if the command indicates the type.
4436 */
4437 enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined;
4438 if (!strcmp(pCmd->pszCmd, "dt16"))
4439 enmTssType = kTss16;
4440 else if (!strcmp(pCmd->pszCmd, "dt32"))
4441 enmTssType = kTss32;
4442 else if (!strcmp(pCmd->pszCmd, "dt64"))
4443 enmTssType = kTss64;
4444
4445 /*
4446 * We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer.
4447 */
4448 uint32_t SelTss = UINT32_MAX;
4449 DBGCVAR VarTssAddr;
4450 if (cArgs == 0)
4451 {
4452 /** @todo consider querying the hidden bits instead (missing API). */
4453 uint16_t SelTR;
4454 rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR);
4455 if (RT_FAILURE(rc))
4456 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc);
4457 DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0);
4458 SelTss = SelTR;
4459 }
4460 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
4461 {
4462 if (paArgs[0].u.u64Number < 0xffff)
4463 DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0);
4464 else
4465 {
4466 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS)
4467 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n");
4468 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number);
4469 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES)
4470 {
4471 VarTssAddr.enmRangeType = paArgs[0].enmRangeType;
4472 VarTssAddr.u64Range = paArgs[0].u64Range;
4473 }
4474 }
4475 }
4476 else
4477 VarTssAddr = paArgs[0];
4478
4479 /*
4480 * Deal with TSS:ign by means of the GDT.
4481 */
4482 if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR)
4483 {
4484 SelTss = VarTssAddr.u.GCFar.sel;
4485 DBGFSELINFO SelInfo;
4486 rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
4487 if (RT_FAILURE(rc))
4488 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n",
4489 pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc);
4490
4491 if (SelInfo.u.Raw.Gen.u1DescType)
4492 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel);
4493
4494 switch (SelInfo.u.Raw.Gen.u4Type)
4495 {
4496 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4497 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4498 if (enmTssType == kTssToBeDetermined)
4499 enmTssType = kTss16;
4500 break;
4501
4502 case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */
4503 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4504 if (enmTssType == kTssToBeDetermined)
4505 enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32;
4506 break;
4507
4508 default:
4509 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n",
4510 VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type);
4511 }
4512
4513 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase);
4514 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit));
4515 }
4516
4517 /*
4518 * Determine the TSS type if none is currently given.
4519 */
4520 if (enmTssType == kTssToBeDetermined)
4521 {
4522 if ( VarTssAddr.u64Range > 0
4523 && VarTssAddr.u64Range < sizeof(X86TSS32) - 4)
4524 enmTssType = kTss16;
4525 else
4526 {
4527 uint64_t uEfer;
4528 rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer);
4529 if ( RT_FAILURE(rc)
4530 || !(uEfer & MSR_K6_EFER_LMA) )
4531 enmTssType = kTss32;
4532 else
4533 enmTssType = kTss64;
4534 }
4535 }
4536
4537 /*
4538 * Figure the min/max sizes.
4539 * ASSUMES max TSS size is 64 KB.
4540 */
4541 uint32_t cbTssMin;
4542 uint32_t cbTssMax;
4543 switch (enmTssType)
4544 {
4545 case kTss16:
4546 cbTssMin = cbTssMax = X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN + 1;
4547 break;
4548 case kTss32:
4549 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4550 cbTssMax = _64K;
4551 break;
4552 case kTss64:
4553 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4554 cbTssMax = _64K;
4555 break;
4556 default:
4557 AssertFailedReturn(VERR_INTERNAL_ERROR);
4558 }
4559 uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0;
4560 if (cbTss == 0)
4561 cbTss = cbTssMin;
4562 else if (cbTss < cbTssMin)
4563 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n",
4564 cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range);
4565 else if (cbTss > cbTssMax)
4566 cbTss = cbTssMax;
4567 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss);
4568
4569 /*
4570 * Read the TSS into a temporary buffer.
4571 */
4572 uint8_t abBuf[_64K];
4573 size_t cbTssRead;
4574 rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead);
4575 if (RT_FAILURE(rc))
4576 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc);
4577 if (cbTssRead < cbTssMin)
4578 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n",
4579 cbTssRead, cbTssMin);
4580 if (cbTssRead < cbTss)
4581 memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead);
4582
4583
4584 /*
4585 * Format the TSS.
4586 */
4587 uint16_t offIoBitmap;
4588 switch (enmTssType)
4589 {
4590 case kTss16:
4591 {
4592 PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0];
4593 if (SelTss != UINT32_MAX)
4594 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr);
4595 else
4596 DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr);
4597 DBGCCmdHlpPrintf(pCmdHlp,
4598 "ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n"
4599 "ip=%04x sp=%04x bp=%04x\n"
4600 "cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n"
4601 "ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n"
4602 "prev=%04x ldtr=%04x\n"
4603 ,
4604 pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di,
4605 pTss->ip, pTss->sp, pTss->bp,
4606 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags,
4607 pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2,
4608 pTss->selPrev, pTss->selLdt);
4609 if (pTss->cs != 0)
4610 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip);
4611 offIoBitmap = 0;
4612 break;
4613 }
4614
4615 case kTss32:
4616 {
4617 PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0];
4618 if (SelTss != UINT32_MAX)
4619 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4620 else
4621 DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4622 DBGCCmdHlpPrintf(pCmdHlp,
4623 "eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
4624 "eip=%08x esp=%08x ebp=%08x\n"
4625 "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
4626 "ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n"
4627 "prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n"
4628 ,
4629 pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi,
4630 pTss->eip, pTss->esp, pTss->ebp,
4631 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags,
4632 pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2,
4633 pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap);
4634 if (pTss->cs != 0)
4635 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip);
4636 offIoBitmap = pTss->offIoBitmap;
4637 break;
4638 }
4639
4640 case kTss64:
4641 {
4642 PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0];
4643 if (SelTss != UINT32_MAX)
4644 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4645 else
4646 DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4647 DBGCCmdHlpPrintf(pCmdHlp,
4648 "rsp0=%016RX64 rsp1=%016RX64 rsp2=%016RX64\n"
4649 "ist1=%016RX64 ist2=%016RX64\n"
4650 "ist3=%016RX64 ist4=%016RX64\n"
4651 "ist5=%016RX64 ist6=%016RX64\n"
4652 "ist7=%016RX64 iomap=%04x\n"
4653 ,
4654 pTss->rsp0, pTss->rsp1, pTss->rsp2,
4655 pTss->ist1, pTss->ist2,
4656 pTss->ist3, pTss->ist4,
4657 pTss->ist5, pTss->ist6,
4658 pTss->ist7, pTss->offIoBitmap);
4659 offIoBitmap = pTss->offIoBitmap;
4660 break;
4661 }
4662
4663 default:
4664 AssertFailedReturn(VERR_INTERNAL_ERROR);
4665 }
4666
4667 /*
4668 * Dump the interrupt redirection bitmap.
4669 */
4670 if (enmTssType != kTss16)
4671 {
4672 if ( offIoBitmap > cbTssMin
4673 && offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */
4674 {
4675 if (offIoBitmap - cbTssMin >= 32)
4676 {
4677 DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n");
4678 uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32];
4679 uint32_t iStart = 0;
4680 bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */
4681 for (uint32_t i = 0; i < 256; i++)
4682 {
4683 bool fThis = ASMBitTest(pbIntRedirBitmap, i);
4684 if (fThis != fPrev)
4685 {
4686 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected");
4687 fPrev = fThis;
4688 iStart = i;
4689 }
4690 }
4691 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected");
4692 }
4693 else
4694 DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n",
4695 offIoBitmap - cbTssMin, offIoBitmap - cbTssMin);
4696 }
4697 else if (offIoBitmap > 0)
4698 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4699 else
4700 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n");
4701 }
4702
4703 /*
4704 * Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x68
4705 * (that applies to both 32-bit and 64-bit TSSs since their size is the same).
4706 * Note that there is always one padding byte that is not technically part of the bitmap
4707 * and "must have all bits set". It's not clear what happens when it doesn't. All ports
4708 * not covered by the bitmap are considered to be not accessible.
4709 */
4710 if (enmTssType != kTss16)
4711 {
4712 if (offIoBitmap < cbTss && offIoBitmap >= 0x68)
4713 {
4714 uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K);
4715 DBGCVAR VarAddr;
4716 DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap);
4717 DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts);
4718
4719 uint8_t const *pbIoBitmap = &abBuf[offIoBitmap];
4720 uint32_t iStart = 0;
4721 bool fPrev = ASMBitTest(pbIoBitmap, 0);
4722 uint32_t cLine = 0;
4723 for (uint32_t i = 1; i < _64K; i++)
4724 {
4725 bool fThis = i < cPorts ? ASMBitTest(pbIoBitmap, i) : true;
4726 if (fThis != fPrev)
4727 {
4728 cLine++;
4729 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1,
4730 fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " ");
4731 fPrev = fThis;
4732 iStart = i;
4733 }
4734 }
4735 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK");
4736 }
4737 else if (offIoBitmap > 0)
4738 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4739 else
4740 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n");
4741 }
4742
4743 return VINF_SUCCESS;
4744}
4745
4746
4747/**
4748 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dti' command dumper callback.}
4749 */
4750static DECLCALLBACK(int) dbgcCmdDumpTypeInfoCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4751 const char *pszType, uint32_t fTypeFlags,
4752 uint32_t cElements, void *pvUser)
4753{
4754 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4755
4756 /* Pad with spaces to match the level. */
4757 for (uint32_t i = 0; i < iLvl; i++)
4758 DBGCCmdHlpPrintf(pCmdHlp, " ");
4759
4760 size_t cbWritten = 0;
4761 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4762 while (cbWritten < 32)
4763 {
4764 /* Fill with spaces to get proper aligning. */
4765 DBGCCmdHlpPrintf(pCmdHlp, " ");
4766 cbWritten++;
4767 }
4768
4769 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4770 if (fTypeFlags & DBGFTYPEREGMEMBER_F_ARRAY)
4771 DBGCCmdHlpPrintf(pCmdHlp, "[%u] ", cElements);
4772 if (fTypeFlags & DBGFTYPEREGMEMBER_F_POINTER)
4773 DBGCCmdHlpPrintf(pCmdHlp, "Ptr ");
4774 DBGCCmdHlpPrintf(pCmdHlp, "%s\n", pszType);
4775
4776 return VINF_SUCCESS;
4777}
4778
4779
4780/**
4781 * @callback_method_impl{FNDBGCCMD, The 'dti' command.}
4782 */
4783static DECLCALLBACK(int) dbgcCmdDumpTypeInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4784{
4785 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4786 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
4787 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4788 if (cArgs == 2)
4789 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[1].enmType == DBGCVAR_TYPE_NUMBER);
4790
4791 uint32_t cLvlMax = cArgs == 2 ? (uint32_t)paArgs[1].u.u64Number : UINT32_MAX;
4792 return DBGFR3TypeDumpEx(pUVM, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
4793 dbgcCmdDumpTypeInfoCallback, pCmdHlp);
4794}
4795
4796
4797static void dbgcCmdDumpTypedValCallbackBuiltin(PDBGCCMDHLP pCmdHlp, DBGFTYPEBUILTIN enmType, size_t cbType,
4798 PDBGFTYPEVALBUF pValBuf)
4799{
4800 switch (enmType)
4801 {
4802 case DBGFTYPEBUILTIN_UINT8:
4803 DBGCCmdHlpPrintf(pCmdHlp, "%RU8", pValBuf->u8);
4804 break;
4805 case DBGFTYPEBUILTIN_INT8:
4806 DBGCCmdHlpPrintf(pCmdHlp, "%RI8", pValBuf->i8);
4807 break;
4808 case DBGFTYPEBUILTIN_UINT16:
4809 DBGCCmdHlpPrintf(pCmdHlp, "%RU16", pValBuf->u16);
4810 break;
4811 case DBGFTYPEBUILTIN_INT16:
4812 DBGCCmdHlpPrintf(pCmdHlp, "%RI16", pValBuf->i16);
4813 break;
4814 case DBGFTYPEBUILTIN_UINT32:
4815 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->u32);
4816 break;
4817 case DBGFTYPEBUILTIN_INT32:
4818 DBGCCmdHlpPrintf(pCmdHlp, "%RI32", pValBuf->i32);
4819 break;
4820 case DBGFTYPEBUILTIN_UINT64:
4821 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->u64);
4822 break;
4823 case DBGFTYPEBUILTIN_INT64:
4824 DBGCCmdHlpPrintf(pCmdHlp, "%RI64", pValBuf->i64);
4825 break;
4826 case DBGFTYPEBUILTIN_PTR32:
4827 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4828 break;
4829 case DBGFTYPEBUILTIN_PTR64:
4830 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4831 break;
4832 case DBGFTYPEBUILTIN_PTR:
4833 if (cbType == sizeof(uint32_t))
4834 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4835 else if (cbType == sizeof(uint64_t))
4836 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4837 else
4838 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported pointer width %u>", cbType);
4839 break;
4840 case DBGFTYPEBUILTIN_SIZE:
4841 if (cbType == sizeof(uint32_t))
4842 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->size);
4843 else if (cbType == sizeof(uint64_t))
4844 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->size);
4845 else
4846 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported size width %u>", cbType);
4847 break;
4848 case DBGFTYPEBUILTIN_FLOAT32:
4849 case DBGFTYPEBUILTIN_FLOAT64:
4850 case DBGFTYPEBUILTIN_COMPOUND:
4851 default:
4852 AssertMsgFailed(("Invalid built-in type: %d\n", enmType));
4853 }
4854}
4855
4856/**
4857 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dtv' command dumper callback.}
4858 */
4859static DECLCALLBACK(int) dbgcCmdDumpTypedValCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4860 DBGFTYPEBUILTIN enmType, size_t cbType,
4861 PDBGFTYPEVALBUF pValBuf, uint32_t cValBufs,
4862 void *pvUser)
4863{
4864 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4865
4866 /* Pad with spaces to match the level. */
4867 for (uint32_t i = 0; i < iLvl; i++)
4868 DBGCCmdHlpPrintf(pCmdHlp, " ");
4869
4870 size_t cbWritten = 0;
4871 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4872 while (cbWritten < 32)
4873 {
4874 /* Fill with spaces to get proper aligning. */
4875 DBGCCmdHlpPrintf(pCmdHlp, " ");
4876 cbWritten++;
4877 }
4878
4879 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4880 if (cValBufs > 1)
4881 DBGCCmdHlpPrintf(pCmdHlp, "[%u] [ ", cValBufs);
4882
4883 for (uint32_t i = 0; i < cValBufs; i++)
4884 {
4885 dbgcCmdDumpTypedValCallbackBuiltin(pCmdHlp, enmType, cbType, pValBuf);
4886 if (i < cValBufs - 1)
4887 DBGCCmdHlpPrintf(pCmdHlp, " , ");
4888 pValBuf++;
4889 }
4890
4891 if (cValBufs > 1)
4892 DBGCCmdHlpPrintf(pCmdHlp, " ]");
4893 DBGCCmdHlpPrintf(pCmdHlp, "\n");
4894
4895 return VINF_SUCCESS;
4896}
4897
4898
4899/**
4900 * @callback_method_impl{FNDBGCCMD, The 'dtv' command.}
4901 */
4902static DECLCALLBACK(int) dbgcCmdDumpTypedVal(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4903{
4904 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4905 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 2 || cArgs == 3);
4906 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4907 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISGCPOINTER(paArgs[1].enmType));
4908 if (cArgs == 3)
4909 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[2].enmType == DBGCVAR_TYPE_NUMBER);
4910
4911 /*
4912 * Make DBGF address and fix the range.
4913 */
4914 DBGFADDRESS Address;
4915 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[1], &Address);
4916 if (RT_FAILURE(rc))
4917 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[1]);
4918
4919 uint32_t cLvlMax = cArgs == 3 ? (uint32_t)paArgs[2].u.u64Number : UINT32_MAX;
4920 return DBGFR3TypeValDumpEx(pUVM, &Address, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
4921 dbgcCmdDumpTypedValCallback, pCmdHlp);
4922}
4923
4924/**
4925 * @callback_method_impl{FNDBGCCMD, The 'm' command.}
4926 */
4927static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4928{
4929 DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]);
4930 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4931 return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
4932}
4933
4934
4935/**
4936 * Converts one or more variables into a byte buffer for a
4937 * given unit size.
4938 *
4939 * @returns VBox status codes:
4940 * @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched.
4941 * @retval VERR_INTERNAL_ERROR on bad variable type, bitched.
4942 * @retval VINF_SUCCESS on success.
4943 *
4944 * @param pCmdHlp The command helper callback table.
4945 * @param pvBuf The buffer to convert into.
4946 * @param pcbBuf The buffer size on input. The size of the result on output.
4947 * @param cbUnit The unit size to apply when converting.
4948 * The high bit is used to indicate unicode string.
4949 * @param paVars The array of variables to convert.
4950 * @param cVars The number of variables.
4951 */
4952int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars)
4953{
4954 union
4955 {
4956 uint8_t *pu8;
4957 uint16_t *pu16;
4958 uint32_t *pu32;
4959 uint64_t *pu64;
4960 } u, uEnd;
4961 u.pu8 = (uint8_t *)pvBuf;
4962 uEnd.pu8 = u.pu8 + *pcbBuf;
4963
4964 unsigned i;
4965 for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++)
4966 {
4967 switch (paVars[i].enmType)
4968 {
4969 case DBGCVAR_TYPE_GC_FAR:
4970 case DBGCVAR_TYPE_GC_FLAT:
4971 case DBGCVAR_TYPE_GC_PHYS:
4972 case DBGCVAR_TYPE_HC_FLAT:
4973 case DBGCVAR_TYPE_HC_PHYS:
4974 case DBGCVAR_TYPE_NUMBER:
4975 {
4976 uint64_t u64 = paVars[i].u.u64Number;
4977 switch (cbUnit & 0x1f)
4978 {
4979 case 1:
4980 do
4981 {
4982 *u.pu8++ = u64;
4983 u64 >>= 8;
4984 } while (u64);
4985 break;
4986 case 2:
4987 do
4988 {
4989 *u.pu16++ = u64;
4990 u64 >>= 16;
4991 } while (u64);
4992 break;
4993 case 4:
4994 *u.pu32++ = u64;
4995 u64 >>= 32;
4996 if (u64)
4997 *u.pu32++ = u64;
4998 break;
4999 case 8:
5000 *u.pu64++ = u64;
5001 break;
5002 }
5003 break;
5004 }
5005
5006 case DBGCVAR_TYPE_STRING:
5007 case DBGCVAR_TYPE_SYMBOL:
5008 {
5009 const char *psz = paVars[i].u.pszString;
5010 size_t cbString = strlen(psz);
5011 if (cbUnit & RT_BIT_32(31))
5012 {
5013 /* Explode char to unit. */
5014 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f))
5015 {
5016 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5017 return VERR_TOO_MUCH_DATA;
5018 }
5019 while (*psz)
5020 {
5021 switch (cbUnit & 0x1f)
5022 {
5023 case 1: *u.pu8++ = *psz; break;
5024 case 2: *u.pu16++ = *psz; break;
5025 case 4: *u.pu32++ = *psz; break;
5026 case 8: *u.pu64++ = *psz; break;
5027 }
5028 psz++;
5029 }
5030 }
5031 else
5032 {
5033 /* Raw copy with zero padding if the size isn't aligned. */
5034 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8))
5035 {
5036 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5037 return VERR_TOO_MUCH_DATA;
5038 }
5039
5040 size_t cbCopy = cbString & ~(cbUnit - 1);
5041 memcpy(u.pu8, psz, cbCopy);
5042 u.pu8 += cbCopy;
5043 psz += cbCopy;
5044
5045 size_t cbReminder = cbString & (cbUnit - 1);
5046 if (cbReminder)
5047 {
5048 memcpy(u.pu8, psz, cbString & (cbUnit - 1));
5049 memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder);
5050 u.pu8 += cbUnit;
5051 }
5052 }
5053 break;
5054 }
5055
5056 default:
5057 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5058 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR,
5059 "i=%d enmType=%d\n", i, paVars[i].enmType);
5060 return VERR_INTERNAL_ERROR;
5061 }
5062 }
5063 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5064 if (i != cVars)
5065 {
5066 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5067 return VERR_TOO_MUCH_DATA;
5068 }
5069 return VINF_SUCCESS;
5070}
5071
5072
5073/**
5074 * @callback_method_impl{FNDBGCCMD, The 'eb'\, 'ew'\, 'ed' and 'eq' commands.}
5075 */
5076static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5077{
5078 /*
5079 * Validate input.
5080 */
5081 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2);
5082 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
5083 for (unsigned iArg = 1; iArg < cArgs; iArg++)
5084 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER);
5085 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5086
5087 /*
5088 * Figure out the element size.
5089 */
5090 unsigned cbElement;
5091 switch (pCmd->pszCmd[1])
5092 {
5093 default:
5094 case 'b': cbElement = 1; break;
5095 case 'w': cbElement = 2; break;
5096 case 'd': cbElement = 4; break;
5097 case 'q': cbElement = 8; break;
5098 }
5099
5100 /*
5101 * Do setting.
5102 */
5103 DBGCVAR Addr = paArgs[0];
5104 for (unsigned iArg = 1;;)
5105 {
5106 size_t cbWritten;
5107 int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten);
5108 if (RT_FAILURE(rc))
5109 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr);
5110 if (cbWritten != cbElement)
5111 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement);
5112
5113 /* advance. */
5114 iArg++;
5115 if (iArg >= cArgs)
5116 break;
5117 rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement);
5118 if (RT_FAILURE(rc))
5119 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
5120 }
5121
5122 return VINF_SUCCESS;
5123}
5124
5125
5126/**
5127 * Executes the search.
5128 *
5129 * @returns VBox status code.
5130 * @param pCmdHlp The command helpers.
5131 * @param pUVM The user mode VM handle.
5132 * @param pAddress The address to start searching from. (undefined on output)
5133 * @param cbRange The address range to search. Must not wrap.
5134 * @param pabBytes The byte pattern to search for.
5135 * @param cbBytes The size of the pattern.
5136 * @param cbUnit The search unit.
5137 * @param cMaxHits The max number of hits.
5138 * @param pResult Where to store the result if it's a function invocation.
5139 */
5140static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange,
5141 const uint8_t *pabBytes, uint32_t cbBytes,
5142 uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult)
5143{
5144 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5145
5146 /*
5147 * Do the search.
5148 */
5149 uint64_t cHits = 0;
5150 for (;;)
5151 {
5152 /* search */
5153 DBGFADDRESS HitAddress;
5154 int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress);
5155 if (RT_FAILURE(rc))
5156 {
5157 if (rc != VERR_DBGF_MEM_NOT_FOUND)
5158 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n");
5159
5160 /* update the current address so we can save it (later). */
5161 pAddress->off += cbRange;
5162 pAddress->FlatPtr += cbRange;
5163 cbRange = 0;
5164 break;
5165 }
5166
5167 /* report result */
5168 DBGCVAR VarCur;
5169 rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur);
5170 if (RT_FAILURE(rc))
5171 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n");
5172 if (!pResult)
5173 pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur);
5174 else
5175 DBGCVAR_ASSIGN(pResult, &VarCur);
5176
5177 /* advance */
5178 cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr;
5179 *pAddress = HitAddress;
5180 pAddress->FlatPtr += cbBytes;
5181 pAddress->off += cbBytes;
5182 if (cbRange <= cbBytes)
5183 {
5184 cbRange = 0;
5185 break;
5186 }
5187 cbRange -= cbBytes;
5188
5189 if (++cHits >= cMaxHits)
5190 {
5191 /// @todo save the search.
5192 break;
5193 }
5194 }
5195
5196 /*
5197 * Save the search so we can resume it...
5198 */
5199 if (pDbgc->abSearch != pabBytes)
5200 {
5201 memcpy(pDbgc->abSearch, pabBytes, cbBytes);
5202 pDbgc->cbSearch = cbBytes;
5203 pDbgc->cbSearchUnit = cbUnit;
5204 }
5205 pDbgc->cMaxSearchHits = cMaxHits;
5206 pDbgc->SearchAddr = *pAddress;
5207 pDbgc->cbSearchRange = cbRange;
5208
5209 return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED;
5210}
5211
5212
5213/**
5214 * Resumes the previous search.
5215 *
5216 * @returns VBox status code.
5217 * @param pCmdHlp Pointer to the command helper functions.
5218 * @param pUVM The user mode VM handle.
5219 * @param pResult Where to store the result of a function invocation.
5220 */
5221static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult)
5222{
5223 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5224
5225 /*
5226 * Make sure there is a previous command.
5227 */
5228 if (!pDbgc->cbSearch)
5229 {
5230 DBGCCmdHlpPrintf(pCmdHlp, "Error: No previous search\n");
5231 return VERR_DBGC_COMMAND_FAILED;
5232 }
5233
5234 /*
5235 * Make range and address adjustments.
5236 */
5237 DBGFADDRESS Address = pDbgc->SearchAddr;
5238 if (Address.FlatPtr == ~(RTGCUINTPTR)0)
5239 {
5240 Address.FlatPtr -= Address.off;
5241 Address.off = 0;
5242 }
5243
5244 RTGCUINTPTR cbRange = pDbgc->cbSearchRange;
5245 if (!cbRange)
5246 cbRange = ~(RTGCUINTPTR)0;
5247 if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr)
5248 cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr;
5249
5250 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch,
5251 pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult);
5252}
5253
5254
5255/**
5256 * Search memory, worker for the 's' and 's?' functions.
5257 *
5258 * @returns VBox status code.
5259 * @param pCmdHlp Pointer to the command helper functions.
5260 * @param pUVM The user mode VM handle.
5261 * @param pAddress Where to start searching. If no range, search till end of address space.
5262 * @param cMaxHits The maximum number of hits.
5263 * @param chType The search type.
5264 * @param paPatArgs The pattern variable array.
5265 * @param cPatArgs Number of pattern variables.
5266 * @param pResult Where to store the result of a function invocation.
5267 */
5268static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType,
5269 PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult)
5270{
5271 if (pResult)
5272 DBGCVAR_INIT_GC_FLAT(pResult, 0);
5273
5274 /*
5275 * Convert the search pattern into bytes and DBGFR3MemScan can deal with.
5276 */
5277 uint32_t cbUnit;
5278 switch (chType)
5279 {
5280 case 'a':
5281 case 'b': cbUnit = 1; break;
5282 case 'u': cbUnit = 2 | RT_BIT_32(31); break;
5283 case 'w': cbUnit = 2; break;
5284 case 'd': cbUnit = 4; break;
5285 case 'q': cbUnit = 8; break;
5286 default:
5287 return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType);
5288 }
5289 uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)];
5290 uint32_t cbBytes = sizeof(abBytes);
5291 int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs);
5292 if (RT_FAILURE(rc))
5293 return VERR_DBGC_COMMAND_FAILED;
5294
5295 /*
5296 * Make DBGF address and fix the range.
5297 */
5298 DBGFADDRESS Address;
5299 rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address);
5300 if (RT_FAILURE(rc))
5301 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress);
5302
5303 RTGCUINTPTR cbRange;
5304 switch (pAddress->enmRangeType)
5305 {
5306 case DBGCVAR_RANGE_BYTES:
5307 cbRange = pAddress->u64Range;
5308 if (cbRange != pAddress->u64Range)
5309 cbRange = ~(RTGCUINTPTR)0;
5310 break;
5311
5312 case DBGCVAR_RANGE_ELEMENTS:
5313 cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit);
5314 if ( cbRange != pAddress->u64Range * cbUnit
5315 || cbRange < pAddress->u64Range)
5316 cbRange = ~(RTGCUINTPTR)0;
5317 break;
5318
5319 default:
5320 cbRange = ~(RTGCUINTPTR)0;
5321 break;
5322 }
5323 if (Address.FlatPtr + cbRange < Address.FlatPtr)
5324 cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr;
5325
5326 /*
5327 * Ok, do it.
5328 */
5329 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult);
5330}
5331
5332
5333/**
5334 * @callback_method_impl{FNDBGCCMD, The 's' command.}
5335 */
5336static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5337{
5338 RT_NOREF2(pCmd, paArgs);
5339
5340 /* check that the parser did what it's supposed to do. */
5341 //if ( cArgs <= 2
5342 // && paArgs[0].enmType != DBGCVAR_TYPE_STRING)
5343 // return DBGCCmdHlpPrintf(pCmdHlp, "parser error\n");
5344
5345 /*
5346 * Repeat previous search?
5347 */
5348 if (cArgs == 0)
5349 return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL);
5350
5351 /*
5352 * Parse arguments.
5353 */
5354
5355 return -1;
5356}
5357
5358
5359/**
5360 * @callback_method_impl{FNDBGCCMD, The 's?' command.}
5361 */
5362static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5363{
5364 /* check that the parser did what it's supposed to do. */
5365 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType));
5366 return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL);
5367}
5368
5369
5370/**
5371 * Matching function for interrupts event names.
5372 *
5373 * This parses the interrupt number and length.
5374 *
5375 * @returns True if match, false if not.
5376 * @param pPattern The user specified pattern to match.
5377 * @param pszEvtName The event name.
5378 * @param pCmdHlp Command helpers for warning about malformed stuff.
5379 * @param piFirst Where to return start interrupt number on success.
5380 * @param pcInts Where to return the number of interrupts on success.
5381 */
5382static bool dbgcEventIsMatchingInt(PCDBGCVAR pPattern, const char *pszEvtName, PDBGCCMDHLP pCmdHlp,
5383 uint8_t *piFirst, uint16_t *pcInts)
5384{
5385 /*
5386 * Ignore trailing hex digits when comparing with the event base name.
5387 */
5388 const char *pszPattern = pPattern->u.pszString;
5389 const char *pszEnd = RTStrEnd(pszPattern, RTSTR_MAX);
5390 while ( (uintptr_t)pszEnd > (uintptr_t)pszPattern
5391 && RT_C_IS_XDIGIT(pszEnd[-1]))
5392 pszEnd -= 1;
5393 if (RTStrSimplePatternNMatch(pszPattern, pszEnd - pszPattern, pszEvtName, RTSTR_MAX))
5394 {
5395 /*
5396 * Parse the index and length.
5397 */
5398 if (!*pszEnd)
5399 *piFirst = 0;
5400 else
5401 {
5402 int rc = RTStrToUInt8Full(pszEnd, 16, piFirst);
5403 if (rc != VINF_SUCCESS)
5404 {
5405 if (RT_FAILURE(rc))
5406 *piFirst = 0;
5407 DBGCCmdHlpPrintf(pCmdHlp, "Warning: %Rrc parsing '%s' - interpreting it as %#x\n", rc, pszEnd, *piFirst);
5408 }
5409 }
5410
5411 if (pPattern->enmRangeType == DBGCVAR_RANGE_NONE)
5412 *pcInts = 1;
5413 else
5414 *pcInts = RT_MAX(RT_MIN((uint16_t)pPattern->u64Range, 256 - *piFirst), 1);
5415 return true;
5416 }
5417 return false;
5418}
5419
5420
5421/**
5422 * Updates a DBGC event config.
5423 *
5424 * @returns VINF_SUCCESS or VERR_NO_MEMORY.
5425 * @param ppEvtCfg The event configuration entry to update.
5426 * @param pszCmd The new command. Leave command alone if NULL.
5427 * @param enmEvtState The new event state.
5428 * @param fChangeCmdOnly Whether to only update the command.
5429 */
5430static int dbgcEventUpdate(PDBGCEVTCFG *ppEvtCfg, const char *pszCmd, DBGCEVTSTATE enmEvtState, bool fChangeCmdOnly)
5431{
5432 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5433
5434 /*
5435 * If we've got a command string, update the command too.
5436 */
5437 if (pszCmd)
5438 {
5439 size_t cchCmd = strlen(pszCmd);
5440 if ( !cchCmd
5441 && ( !fChangeCmdOnly
5442 ? enmEvtState == kDbgcEvtState_Disabled
5443 : !pEvtCfg || pEvtCfg->enmState == kDbgcEvtState_Disabled))
5444 {
5445 /* NULL entry is fine if no command and disabled. */
5446 RTMemFree(pEvtCfg);
5447 *ppEvtCfg = NULL;
5448 }
5449 else
5450 {
5451 if (!pEvtCfg || pEvtCfg->cchCmd < cchCmd)
5452 {
5453 RTMemFree(pEvtCfg);
5454 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(RT_UOFFSETOF_DYN(DBGCEVTCFG, szCmd[cchCmd + 1]));
5455 if (!pEvtCfg)
5456 return VERR_NO_MEMORY;
5457 }
5458 pEvtCfg->enmState = enmEvtState;
5459 pEvtCfg->cchCmd = cchCmd;
5460 memcpy(pEvtCfg->szCmd, pszCmd, cchCmd + 1);
5461 }
5462 }
5463 /*
5464 * Update existing or enable new. If NULL and not enabled, we can keep it that way.
5465 */
5466 else if (pEvtCfg || enmEvtState != kDbgcEvtState_Disabled)
5467 {
5468 if (!pEvtCfg)
5469 {
5470 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(sizeof(DBGCEVTCFG));
5471 if (!pEvtCfg)
5472 return VERR_NO_MEMORY;
5473 pEvtCfg->cchCmd = 0;
5474 pEvtCfg->szCmd[0] = '\0';
5475 }
5476 pEvtCfg->enmState = enmEvtState;
5477 }
5478
5479 return VINF_SUCCESS;
5480}
5481
5482
5483/**
5484 * Record one settings change for a plain event.
5485 *
5486 * @returns The new @a cIntCfgs value.
5487 * @param paEventCfgs The event setttings array. Must have DBGFEVENT_END
5488 * entries.
5489 * @param cEventCfgs The current number of entries in @a paEventCfgs.
5490 * @param enmType The event to change the settings for.
5491 * @param enmEvtState The new event state.
5492 * @param iSxEvt Index into the g_aDbgcSxEvents array.
5493 *
5494 * @remarks We use abUnused[0] for the enmEvtState, while abUnused[1] and
5495 * abUnused[2] are used for iSxEvt.
5496 */
5497static uint32_t dbgcEventAddPlainConfig(PDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, DBGFEVENTTYPE enmType,
5498 DBGCEVTSTATE enmEvtState, uint16_t iSxEvt)
5499{
5500 uint32_t iCfg;
5501 for (iCfg = 0; iCfg < cEventCfgs; iCfg++)
5502 if (paEventCfgs[iCfg].enmType == enmType)
5503 break;
5504 if (iCfg == cEventCfgs)
5505 {
5506 Assert(cEventCfgs < DBGFEVENT_END);
5507 paEventCfgs[iCfg].enmType = enmType;
5508 cEventCfgs++;
5509 }
5510 paEventCfgs[iCfg].fEnabled = enmEvtState > kDbgcEvtState_Disabled;
5511 paEventCfgs[iCfg].abUnused[0] = enmEvtState;
5512 paEventCfgs[iCfg].abUnused[1] = (uint8_t)iSxEvt;
5513 paEventCfgs[iCfg].abUnused[2] = (uint8_t)(iSxEvt >> 8);
5514 return cEventCfgs;
5515}
5516
5517
5518/**
5519 * Record one or more interrupt event config changes.
5520 *
5521 * @returns The new @a cIntCfgs value.
5522 * @param paIntCfgs Interrupt confiruation array. Must have 256 entries.
5523 * @param cIntCfgs The current number of entries in @a paIntCfgs.
5524 * @param iInt The interrupt number to start with.
5525 * @param cInts The number of interrupts to change.
5526 * @param pszName The settings name (hwint/swint).
5527 * @param enmEvtState The new event state.
5528 * @param bIntOp The new DBGF interrupt state.
5529 */
5530static uint32_t dbgcEventAddIntConfig(PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs, uint8_t iInt, uint16_t cInts,
5531 const char *pszName, DBGCEVTSTATE enmEvtState, uint8_t bIntOp)
5532{
5533 bool const fHwInt = *pszName == 'h';
5534
5535 bIntOp |= (uint8_t)enmEvtState << 4;
5536 uint8_t const bSoftState = !fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5537 uint8_t const bHardState = fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5538
5539 while (cInts > 0)
5540 {
5541 uint32_t iCfg;
5542 for (iCfg = 0; iCfg < cIntCfgs; iCfg++)
5543 if (paIntCfgs[iCfg].iInterrupt == iInt)
5544 break;
5545 if (iCfg == cIntCfgs)
5546 break;
5547 if (fHwInt)
5548 paIntCfgs[iCfg].enmHardState = bHardState;
5549 else
5550 paIntCfgs[iCfg].enmSoftState = bSoftState;
5551 iInt++;
5552 cInts--;
5553 }
5554
5555 while (cInts > 0)
5556 {
5557 Assert(cIntCfgs < 256);
5558 paIntCfgs[cIntCfgs].iInterrupt = iInt;
5559 paIntCfgs[cIntCfgs].enmHardState = bHardState;
5560 paIntCfgs[cIntCfgs].enmSoftState = bSoftState;
5561 cIntCfgs++;
5562 iInt++;
5563 cInts--;
5564 }
5565
5566 return cIntCfgs;
5567}
5568
5569
5570/**
5571 * Applies event settings changes to DBGC and DBGF.
5572 *
5573 * @returns VBox status code (fully bitched)
5574 * @param pCmdHlp The command helpers.
5575 * @param pUVM The user mode VM handle.
5576 * @param paIntCfgs Interrupt configuration array. We use the upper 4
5577 * bits of the settings for the DBGCEVTSTATE. This
5578 * will be cleared.
5579 * @param cIntCfgs Number of interrupt configuration changes.
5580 * @param paEventCfgs The generic event configuration array. We use the
5581 * abUnused[0] member for the DBGCEVTSTATE, and
5582 * abUnused[2:1] for the g_aDbgcSxEvents index.
5583 * @param cEventCfgs The number of generic event settings changes.
5584 * @param pszCmd The commands to associate with the changed events.
5585 * If this is NULL, don't touch the command.
5586 * @param fChangeCmdOnly Whether to only change the commands (sx-).
5587 */
5588static int dbgcEventApplyChanges(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs,
5589 PCDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, const char *pszCmd, bool fChangeCmdOnly)
5590{
5591 int rc;
5592
5593 /*
5594 * Apply changes to DBGC. This can only fail with out of memory error.
5595 */
5596 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5597 if (cIntCfgs)
5598 for (uint32_t iCfg = 0; iCfg < cIntCfgs; iCfg++)
5599 {
5600 DBGCEVTSTATE enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmHardState >> 4);
5601 paIntCfgs[iCfg].enmHardState &= 0xf;
5602 if (paIntCfgs[iCfg].enmHardState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5603 {
5604 rc = dbgcEventUpdate(&pDbgc->apHardInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5605 if (RT_FAILURE(rc))
5606 return rc;
5607 }
5608
5609 enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmSoftState >> 4);
5610 paIntCfgs[iCfg].enmSoftState &= 0xf;
5611 if (paIntCfgs[iCfg].enmSoftState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5612 {
5613 rc = dbgcEventUpdate(&pDbgc->apSoftInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5614 if (RT_FAILURE(rc))
5615 return rc;
5616 }
5617 }
5618
5619 if (cEventCfgs)
5620 {
5621 for (uint32_t iCfg = 0; iCfg < cEventCfgs; iCfg++)
5622 {
5623 Assert((unsigned)paEventCfgs[iCfg].enmType < RT_ELEMENTS(pDbgc->apEventCfgs));
5624 uint16_t iSxEvt = RT_MAKE_U16(paEventCfgs[iCfg].abUnused[1], paEventCfgs[iCfg].abUnused[2]);
5625 Assert(iSxEvt < RT_ELEMENTS(g_aDbgcSxEvents));
5626 rc = dbgcEventUpdate(&pDbgc->apEventCfgs[iSxEvt], pszCmd, (DBGCEVTSTATE)paEventCfgs[iCfg].abUnused[0], fChangeCmdOnly);
5627 if (RT_FAILURE(rc))
5628 return rc;
5629 }
5630 }
5631
5632 /*
5633 * Apply changes to DBGF.
5634 */
5635 if (!fChangeCmdOnly)
5636 {
5637 if (cIntCfgs)
5638 {
5639 rc = DBGFR3InterruptConfigEx(pUVM, paIntCfgs, cIntCfgs);
5640 if (RT_FAILURE(rc))
5641 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3InterruptConfigEx: %Rrc\n", rc);
5642 }
5643 if (cEventCfgs)
5644 {
5645 rc = DBGFR3EventConfigEx(pUVM, paEventCfgs, cEventCfgs);
5646 if (RT_FAILURE(rc))
5647 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3EventConfigEx: %Rrc\n", rc);
5648 }
5649 }
5650
5651 return VINF_SUCCESS;
5652}
5653
5654
5655/**
5656 * @callback_method_impl{FNDBGCCMD, The 'sx[eni-]' commands.}
5657 */
5658static DECLCALLBACK(int) dbgcCmdEventCtrl(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5659{
5660 /*
5661 * Figure out which command this is.
5662 */
5663 uint8_t bIntOp;
5664 DBGCEVTSTATE enmEvtState;
5665 bool fChangeCmdOnly;
5666 switch (pCmd->pszCmd[2])
5667 {
5668 case 'e': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Enabled; fChangeCmdOnly = false; break;
5669 case 'n': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Notify; fChangeCmdOnly = false; break;
5670 case '-': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Invalid; fChangeCmdOnly = true; break;
5671 case 'i': bIntOp = DBGFINTERRUPTSTATE_DISABLED; enmEvtState = kDbgcEvtState_Disabled; fChangeCmdOnly = false; break;
5672 default:
5673 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "pszCmd=%s\n", pCmd->pszCmd);
5674 }
5675
5676 /*
5677 * Command option.
5678 */
5679 unsigned iArg = 0;
5680 const char *pszCmd = NULL;
5681 if ( cArgs >= iArg + 2
5682 && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5683 && paArgs[iArg + 1].enmType == DBGCVAR_TYPE_STRING
5684 && strcmp(paArgs[iArg].u.pszString, "-c") == 0)
5685 {
5686 pszCmd = paArgs[iArg + 1].u.pszString;
5687 iArg += 2;
5688 }
5689 if (fChangeCmdOnly && !pszCmd)
5690 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "The 'sx-' requires the '-c cmd' arguments.\n");
5691
5692 /*
5693 * The remaining arguments are event specifiers to which the operation should be applied.
5694 */
5695 uint32_t cIntCfgs = 0;
5696 DBGFINTERRUPTCONFIG aIntCfgs[256];
5697 uint32_t cEventCfgs = 0;
5698 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5699
5700 for (; iArg < cArgs; iArg++)
5701 {
5702 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, iArg, paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5703 || paArgs[iArg].enmType == DBGCVAR_TYPE_SYMBOL);
5704 uint32_t cHits = 0;
5705 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5706 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5707 {
5708 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5709 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5710 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5711 {
5712 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5713 enmEvtState, iEvt);
5714 cHits++;
5715 }
5716 }
5717 else
5718 {
5719 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5720 uint8_t iInt;
5721 uint16_t cInts;
5722 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5723 {
5724 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5725 enmEvtState, bIntOp);
5726 cHits++;
5727 }
5728 }
5729 if (!cHits)
5730 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5731 }
5732
5733 /*
5734 * Apply the changes.
5735 */
5736 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, pszCmd, fChangeCmdOnly);
5737}
5738
5739
5740/**
5741 * @callback_method_impl{FNDBGCCMD, The 'sxr' commands.}
5742 */
5743static DECLCALLBACK(int) dbgcCmdEventCtrlReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5744{
5745 RT_NOREF1(pCmd);
5746 uint32_t cEventCfgs = 0;
5747 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5748 uint32_t cIntCfgs = 0;
5749 DBGFINTERRUPTCONFIG aIntCfgs[256];
5750
5751 if (cArgs == 0)
5752 {
5753 /*
5754 * All events.
5755 */
5756 for (uint32_t iInt = 0; iInt < 256; iInt++)
5757 {
5758 aIntCfgs[iInt].iInterrupt = iInt;
5759 aIntCfgs[iInt].enmHardState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5760 aIntCfgs[iInt].enmSoftState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5761 }
5762 cIntCfgs = 256;
5763
5764 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5765 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5766 {
5767 aEventCfgs[cEventCfgs].enmType = g_aDbgcSxEvents[iEvt].enmType;
5768 aEventCfgs[cEventCfgs].fEnabled = g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled;
5769 aEventCfgs[cEventCfgs].abUnused[0] = g_aDbgcSxEvents[iEvt].enmDefault;
5770 aEventCfgs[cEventCfgs].abUnused[1] = (uint8_t)iEvt;
5771 aEventCfgs[cEventCfgs].abUnused[2] = (uint8_t)(iEvt >> 8);
5772 cEventCfgs++;
5773 }
5774 else
5775 {
5776 uint8_t const bState = ( g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5777 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED)
5778 | ((uint8_t)g_aDbgcSxEvents[iEvt].enmDefault << 4);
5779 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5780 for (uint32_t iInt = 0; iInt < 256; iInt++)
5781 aIntCfgs[iInt].enmHardState = bState;
5782 else
5783 for (uint32_t iInt = 0; iInt < 256; iInt++)
5784 aIntCfgs[iInt].enmSoftState = bState;
5785 }
5786 }
5787 else
5788 {
5789 /*
5790 * Selected events.
5791 */
5792 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
5793 {
5794 unsigned cHits = 0;
5795 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5796 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5797 {
5798 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5799 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5800 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5801 {
5802 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5803 g_aDbgcSxEvents[iEvt].enmDefault, iEvt);
5804 cHits++;
5805 }
5806 }
5807 else
5808 {
5809 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5810 uint8_t iInt;
5811 uint16_t cInts;
5812 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5813 {
5814 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5815 g_aDbgcSxEvents[iEvt].enmDefault,
5816 g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5817 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED);
5818 cHits++;
5819 }
5820 }
5821 if (!cHits)
5822 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5823 }
5824 }
5825
5826 /*
5827 * Apply the reset changes.
5828 */
5829 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, "", false);
5830}
5831
5832
5833/**
5834 * Used during DBGC initialization to configure events with defaults.
5835 *
5836 * @returns VBox status code.
5837 * @param pDbgc The DBGC instance.
5838 */
5839void dbgcEventInit(PDBGC pDbgc)
5840{
5841 if (pDbgc->pUVM)
5842 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5843}
5844
5845
5846/**
5847 * Used during DBGC termination to disable all events.
5848 *
5849 * @param pDbgc The DBGC instance.
5850 */
5851void dbgcEventTerm(PDBGC pDbgc)
5852{
5853/** @todo need to do more than just reset later. */
5854 if (pDbgc->pUVM && VMR3GetStateU(pDbgc->pUVM) < VMSTATE_DESTROYING)
5855 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5856}
5857
5858
5859static void dbgcEventDisplay(PDBGCCMDHLP pCmdHlp, const char *pszName, DBGCEVTSTATE enmDefault, PDBGCEVTCFG const *ppEvtCfg)
5860{
5861 RT_NOREF1(enmDefault);
5862 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5863
5864 const char *pszState;
5865 switch (pEvtCfg ? pEvtCfg->enmState : kDbgcEvtState_Disabled)
5866 {
5867 case kDbgcEvtState_Disabled: pszState = "ignore"; break;
5868 case kDbgcEvtState_Enabled: pszState = "enabled"; break;
5869 case kDbgcEvtState_Notify: pszState = "notify"; break;
5870 default:
5871 AssertFailed();
5872 pszState = "invalid";
5873 break;
5874 }
5875
5876 if (pEvtCfg && pEvtCfg->cchCmd > 0)
5877 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %-7s \"%s\"\n", pszName, pszState, pEvtCfg->szCmd);
5878 else
5879 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %s\n", pszName, pszState);
5880}
5881
5882
5883static void dbgcEventDisplayRange(PDBGCCMDHLP pCmdHlp, const char *pszBaseNm, DBGCEVTSTATE enmDefault,
5884 PDBGCEVTCFG const *papEvtCfgs, unsigned iCfg, unsigned cCfgs)
5885{
5886 do
5887 {
5888 PCDBGCEVTCFG pFirstCfg = papEvtCfgs[iCfg];
5889 if (pFirstCfg && pFirstCfg->enmState == kDbgcEvtState_Disabled && pFirstCfg->cchCmd == 0)
5890 pFirstCfg = NULL;
5891
5892 unsigned const iFirstCfg = iCfg;
5893 iCfg++;
5894 while (iCfg < cCfgs)
5895 {
5896 PCDBGCEVTCFG pCurCfg = papEvtCfgs[iCfg];
5897 if (pCurCfg && pCurCfg->enmState == kDbgcEvtState_Disabled && pCurCfg->cchCmd == 0)
5898 pCurCfg = NULL;
5899 if (pCurCfg != pFirstCfg)
5900 {
5901 if (!pCurCfg || !pFirstCfg)
5902 break;
5903 if (pCurCfg->enmState != pFirstCfg->enmState)
5904 break;
5905 if (pCurCfg->cchCmd != pFirstCfg->cchCmd)
5906 break;
5907 if (memcmp(pCurCfg->szCmd, pFirstCfg->szCmd, pFirstCfg->cchCmd) != 0)
5908 break;
5909 }
5910 iCfg++;
5911 }
5912
5913 char szName[16];
5914 unsigned cEntries = iCfg - iFirstCfg;
5915 if (cEntries == 1)
5916 RTStrPrintf(szName, sizeof(szName), "%s%02x", pszBaseNm, iFirstCfg);
5917 else
5918 RTStrPrintf(szName, sizeof(szName), "%s%02x L %#x", pszBaseNm, iFirstCfg, cEntries);
5919 dbgcEventDisplay(pCmdHlp, szName, enmDefault, &papEvtCfgs[iFirstCfg]);
5920
5921 cCfgs -= cEntries;
5922 } while (cCfgs > 0);
5923}
5924
5925
5926/**
5927 * @callback_method_impl{FNDBGCCMD, The 'sx' commands.}
5928 */
5929static DECLCALLBACK(int) dbgcCmdEventCtrlList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5930{
5931 RT_NOREF2(pCmd, pUVM);
5932 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5933
5934 if (cArgs == 0)
5935 {
5936 /*
5937 * All events.
5938 */
5939 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5940 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5941 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5942 &pDbgc->apEventCfgs[iEvt]);
5943 else if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5944 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5945 pDbgc->apHardInts, 0, 256);
5946 else
5947 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5948 pDbgc->apSoftInts, 0, 256);
5949 }
5950 else
5951 {
5952 /*
5953 * Selected events.
5954 */
5955 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
5956 {
5957 unsigned cHits = 0;
5958 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5959 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5960 {
5961 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5962 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5963 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5964 {
5965 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5966 &pDbgc->apEventCfgs[iEvt]);
5967 cHits++;
5968 }
5969 }
5970 else
5971 {
5972 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5973 uint8_t iInt;
5974 uint16_t cInts;
5975 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5976 {
5977 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5978 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5979 pDbgc->apHardInts, iInt, cInts);
5980 else
5981 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5982 pDbgc->apSoftInts, iInt, cInts);
5983 cHits++;
5984 }
5985 }
5986 if (cHits == 0)
5987 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5988 }
5989 }
5990
5991 return VINF_SUCCESS;
5992}
5993
5994
5995
5996/**
5997 * List near symbol.
5998 *
5999 * @returns VBox status code.
6000 * @param pCmdHlp Pointer to command helper functions.
6001 * @param pUVM The user mode VM handle.
6002 * @param pArg Pointer to the address or symbol to lookup.
6003 */
6004static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg)
6005{
6006 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6007
6008 RTDBGSYMBOL Symbol;
6009 int rc;
6010 if (pArg->enmType == DBGCVAR_TYPE_SYMBOL)
6011 {
6012 /*
6013 * Lookup the symbol address.
6014 */
6015 rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL);
6016 if (RT_FAILURE(rc))
6017 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString);
6018
6019 rc = DBGCCmdHlpPrintf(pCmdHlp, "%RTptr %s\n", Symbol.Value, Symbol.szName);
6020 }
6021 else
6022 {
6023 /*
6024 * Convert it to a flat GC address and lookup that address.
6025 */
6026 DBGCVAR AddrVar;
6027 rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg);
6028 if (RT_FAILURE(rc))
6029 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg);
6030
6031 RTINTPTR offDisp;
6032 DBGFADDRESS Addr;
6033 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat),
6034 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
6035 &offDisp, &Symbol, NULL);
6036 if (RT_FAILURE(rc))
6037 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat);
6038
6039 if (!offDisp)
6040 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s", &AddrVar, Symbol.szName);
6041 else if (offDisp > 0)
6042 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp);
6043 else
6044 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp);
6045 if (Symbol.cb > 0)
6046 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)\n", Symbol.cb);
6047 else
6048 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
6049 }
6050
6051 return rc;
6052}
6053
6054
6055/**
6056 * @callback_method_impl{FNDBGCCMD, The 'ln' (listnear) command.}
6057 */
6058static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6059{
6060 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6061 if (!cArgs)
6062 {
6063 /*
6064 * Current cs:eip symbol.
6065 */
6066 DBGCVAR AddrVar;
6067 const char *pszFmtExpr = pDbgc->fRegCtxGuest ? "%%(cs:eip)" : "%%(.cs:.eip)";
6068 int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, pszFmtExpr);
6069 if (RT_FAILURE(rc))
6070 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%s\n", pszFmtExpr + 1);
6071 return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar);
6072 }
6073
6074/** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */
6075 /*
6076 * Iterate arguments.
6077 */
6078 for (unsigned iArg = 0; iArg < cArgs; iArg++)
6079 {
6080 int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]);
6081 if (RT_FAILURE(rc))
6082 return rc;
6083 }
6084
6085 NOREF(pCmd);
6086 return VINF_SUCCESS;
6087}
6088
6089
6090/**
6091 * Matches the module patters against a module name.
6092 *
6093 * @returns true if matching, otherwise false.
6094 * @param pszName The module name.
6095 * @param paArgs The module pattern argument list.
6096 * @param cArgs Number of arguments.
6097 */
6098static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs)
6099{
6100 for (uint32_t i = 0; i < cArgs; i++)
6101 if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName))
6102 return true;
6103 return false;
6104}
6105
6106
6107/**
6108 * @callback_method_impl{FNDBGCCMD, The 'ln' (list near) command.}
6109 */
6110static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6111{
6112 bool const fMappings = pCmd->pszCmd[2] == 'o';
6113 bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v';
6114 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6115
6116 /*
6117 * Iterate the modules in the current address space and print info about
6118 * those matching the input.
6119 */
6120 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6121 for (uint32_t iAs = 0;; iAs++)
6122 {
6123 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6124 uint32_t cMods = RTDbgAsModuleCount(hAs);
6125 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6126 {
6127 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6128 if (hMod != NIL_RTDBGMOD)
6129 {
6130 bool const fDeferred = RTDbgModIsDeferred(hMod);
6131 bool const fExports = RTDbgModIsExports(hMod);
6132 uint32_t const cSegs = fDeferred ? 1 : RTDbgModSegmentCount(hMod);
6133 const char * const pszName = RTDbgModName(hMod);
6134 const char * const pszImgFile = RTDbgModImageFile(hMod);
6135 const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod);
6136 const char * const pszDbgFile = RTDbgModDebugFile(hMod);
6137 if ( cArgs == 0
6138 || dbgcCmdListModuleMatch(pszName, paArgs, cArgs))
6139 {
6140 /*
6141 * Find the mapping with the lower address, preferring a full
6142 * image mapping, for the main line.
6143 */
6144 RTDBGASMAPINFO aMappings[128];
6145 uint32_t cMappings = RT_ELEMENTS(aMappings);
6146 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6147 if (RT_SUCCESS(rc))
6148 {
6149 bool fFull = false;
6150 RTUINTPTR uMin = RTUINTPTR_MAX;
6151 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6152 if ( aMappings[iMap].Address < uMin
6153 && ( !fFull
6154 || aMappings[iMap].iSeg == NIL_RTDBGSEGIDX))
6155 uMin = aMappings[iMap].Address;
6156 if (!fVerbose || !pszImgFile)
6157 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName,
6158 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6159 else
6160 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile,
6161 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6162 if (fVerbose && pszImgFileUsed)
6163 DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed);
6164 if (fVerbose && pszDbgFile)
6165 DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile);
6166
6167 if (fMappings)
6168 {
6169 /* sort by address first - not very efficient. */
6170 for (uint32_t i = 0; i + 1 < cMappings; i++)
6171 for (uint32_t j = i + 1; j < cMappings; j++)
6172 if (aMappings[j].Address < aMappings[i].Address)
6173 {
6174 RTDBGASMAPINFO Tmp = aMappings[j];
6175 aMappings[j] = aMappings[i];
6176 aMappings[i] = Tmp;
6177 }
6178
6179 /* print */
6180 if ( cMappings == 1
6181 && aMappings[0].iSeg == NIL_RTDBGSEGIDX
6182 && !fDeferred)
6183 {
6184 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
6185 {
6186 RTDBGSEGMENT SegInfo;
6187 rc = RTDbgModSegmentByIndex(hMod, iSeg, &SegInfo);
6188 if (RT_SUCCESS(rc))
6189 {
6190 if (SegInfo.uRva != RTUINTPTR_MAX)
6191 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6192 (RTGCUINTPTR)(aMappings[0].Address + SegInfo.uRva),
6193 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6194 else
6195 DBGCCmdHlpPrintf(pCmdHlp, " %*s %RGv #%02x %s\n",
6196 sizeof(RTGCUINTPTR)*2, "noload",
6197 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6198 }
6199 else
6200 DBGCCmdHlpPrintf(pCmdHlp, " Error query segment #%u: %Rrc\n", iSeg, rc);
6201 }
6202 }
6203 else
6204 {
6205 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6206 if (aMappings[iMap].iSeg == NIL_RTDBGSEGIDX)
6207 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv <everything>\n",
6208 (RTGCUINTPTR)aMappings[iMap].Address,
6209 (RTGCUINTPTR)RTDbgModImageSize(hMod));
6210 else if (!fDeferred)
6211 {
6212 RTDBGSEGMENT SegInfo;
6213 rc = RTDbgModSegmentByIndex(hMod, aMappings[iMap].iSeg, &SegInfo);
6214 if (RT_FAILURE(rc))
6215 {
6216 RT_ZERO(SegInfo);
6217 strcpy(SegInfo.szName, "error");
6218 }
6219 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6220 (RTGCUINTPTR)aMappings[iMap].Address,
6221 (RTGCUINTPTR)SegInfo.cb,
6222 aMappings[iMap].iSeg, SegInfo.szName);
6223 }
6224 else
6225 DBGCCmdHlpPrintf(pCmdHlp, " %RGv #%02x\n",
6226 (RTGCUINTPTR)aMappings[iMap].Address, aMappings[iMap].iSeg);
6227 }
6228 }
6229 }
6230 else
6231 DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n",
6232 sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc);
6233 /** @todo missing address space API for enumerating the mappings. */
6234 }
6235 RTDbgModRelease(hMod);
6236 }
6237 }
6238 RTDbgAsRelease(hAs);
6239
6240 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6241 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6242 break;
6243 AssertBreak(iAs == 0);
6244 hAsCurAlias = DBGF_AS_GLOBAL;
6245 }
6246
6247 NOREF(pCmd);
6248 return VINF_SUCCESS;
6249}
6250
6251
6252
6253/**
6254 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 8-bit value.}
6255 */
6256static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6257 PDBGCVAR pResult)
6258{
6259 RT_NOREF1(pUVM);
6260 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6261 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6262 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6263
6264 uint8_t b;
6265 int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL);
6266 if (RT_FAILURE(rc))
6267 return rc;
6268 DBGCVAR_INIT_NUMBER(pResult, b);
6269
6270 NOREF(pFunc);
6271 return VINF_SUCCESS;
6272}
6273
6274
6275/**
6276 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 16-bit value.}
6277 */
6278static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6279 PDBGCVAR pResult)
6280{
6281 RT_NOREF1(pUVM);
6282 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6283 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6284 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6285
6286 uint16_t u16;
6287 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL);
6288 if (RT_FAILURE(rc))
6289 return rc;
6290 DBGCVAR_INIT_NUMBER(pResult, u16);
6291
6292 NOREF(pFunc);
6293 return VINF_SUCCESS;
6294}
6295
6296
6297/**
6298 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 32-bit value.}
6299 */
6300static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6301 PDBGCVAR pResult)
6302{
6303 RT_NOREF1(pUVM);
6304 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6305 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6306 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6307
6308 uint32_t u32;
6309 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL);
6310 if (RT_FAILURE(rc))
6311 return rc;
6312 DBGCVAR_INIT_NUMBER(pResult, u32);
6313
6314 NOREF(pFunc);
6315 return VINF_SUCCESS;
6316}
6317
6318
6319/**
6320 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 64-bit value.}
6321 */
6322static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6323 PDBGCVAR pResult)
6324{
6325 RT_NOREF1(pUVM);
6326 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6327 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6328 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6329
6330 uint64_t u64;
6331 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL);
6332 if (RT_FAILURE(rc))
6333 return rc;
6334 DBGCVAR_INIT_NUMBER(pResult, u64);
6335
6336 NOREF(pFunc);
6337 return VINF_SUCCESS;
6338}
6339
6340
6341/**
6342 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned pointer-sized value.}
6343 */
6344static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6345 PDBGCVAR pResult)
6346{
6347 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6348 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6349 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6350
6351 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
6352 if (enmMode == CPUMMODE_LONG)
6353 return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
6354 return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
6355}
6356
6357
6358/**
6359 * @callback_method_impl{FNDBGCFUNC, The hi(value) function implementation.}
6360 */
6361static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6362 PDBGCVAR pResult)
6363{
6364 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6365
6366 uint16_t uHi;
6367 switch (paArgs[0].enmType)
6368 {
6369 case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break;
6370 case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break;
6371 case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break;
6372 case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break;
6373 case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break;
6374 case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break;
6375 default:
6376 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
6377 }
6378 DBGCVAR_INIT_NUMBER(pResult, uHi);
6379 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
6380
6381 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
6382 return VINF_SUCCESS;
6383}
6384
6385
6386/**
6387 * @callback_method_impl{FNDBGCFUNC, The low(value) function implementation.}
6388 */
6389static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6390 PDBGCVAR pResult)
6391{
6392 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6393
6394 uint16_t uLow;
6395 switch (paArgs[0].enmType)
6396 {
6397 case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break;
6398 case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break;
6399 case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break;
6400 case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break;
6401 case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break;
6402 case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break;
6403 default:
6404 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
6405 }
6406 DBGCVAR_INIT_NUMBER(pResult, uLow);
6407 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
6408
6409 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
6410 return VINF_SUCCESS;
6411}
6412
6413
6414/**
6415 * @callback_method_impl{FNDBGCFUNC,The low(value) function implementation.}
6416 */
6417static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6418 PDBGCVAR pResult)
6419{
6420 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6421 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
6422 return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]);
6423}
6424
6425
6426/** Generic pointer argument wo/ range. */
6427static const DBGCVARDESC g_aArgPointerWoRange[] =
6428{
6429 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
6430 { 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." },
6431};
6432
6433/** Generic pointer or number argument. */
6434static const DBGCVARDESC g_aArgPointerNumber[] =
6435{
6436 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
6437 { 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." },
6438};
6439
6440
6441
6442/** Function descriptors for the CodeView / WinDbg emulation.
6443 * The emulation isn't attempting to be identical, only somewhat similar.
6444 */
6445const DBGCFUNC g_aFuncsCodeView[] =
6446{
6447 { "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." },
6448 { "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." },
6449 { "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." },
6450 { "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." },
6451 { "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." },
6452 { "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." },
6453 { "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." },
6454 { "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." },
6455};
6456
6457/** The number of functions in the CodeView/WinDbg emulation. */
6458const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);
6459
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette