VirtualBox

source: vbox/trunk/src/VBox/Debugger/DBGCEmulateCodeView.cpp@ 89535

Last change on this file since 89535 was 87788, checked in by vboxsync, 4 years ago

Debugger: Some early access to the DBGFR3FlowTrace* API for toying around, bugref:8650

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 312.0 KB
Line 
1/* $Id: DBGCEmulateCodeView.cpp 87788 2021-02-18 15:12:31Z vboxsync $ */
2/** @file
3 * DBGC - Debugger Console, CodeView / WinDbg Emulation.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DBGC
23#include <VBox/dbg.h>
24#include <VBox/vmm/dbgf.h>
25#include <VBox/vmm/dbgfflowtrace.h>
26#include <VBox/vmm/pgm.h>
27#include <VBox/vmm/cpum.h>
28#include <VBox/dis.h>
29#include <VBox/param.h>
30#include <VBox/err.h>
31#include <VBox/log.h>
32
33#include <iprt/asm.h>
34#include <iprt/mem.h>
35#include <iprt/string.h>
36#include <iprt/assert.h>
37#include <iprt/ctype.h>
38#include <iprt/time.h>
39
40#include <stdlib.h>
41#include <stdio.h>
42
43#include "DBGCInternal.h"
44
45
46/*********************************************************************************************************************************
47* Internal Functions *
48*********************************************************************************************************************************/
49static FNDBGCCMD dbgcCmdBrkAccess;
50static FNDBGCCMD dbgcCmdBrkClear;
51static FNDBGCCMD dbgcCmdBrkDisable;
52static FNDBGCCMD dbgcCmdBrkEnable;
53static FNDBGCCMD dbgcCmdBrkList;
54static FNDBGCCMD dbgcCmdBrkSet;
55static FNDBGCCMD dbgcCmdBrkREM;
56static FNDBGCCMD dbgcCmdDumpMem;
57static FNDBGCCMD dbgcCmdDumpDT;
58static FNDBGCCMD dbgcCmdDumpIDT;
59static FNDBGCCMD dbgcCmdDumpPageDir;
60static FNDBGCCMD dbgcCmdDumpPageDirBoth;
61static FNDBGCCMD dbgcCmdDumpPageHierarchy;
62static FNDBGCCMD dbgcCmdDumpPageTable;
63static FNDBGCCMD dbgcCmdDumpPageTableBoth;
64static FNDBGCCMD dbgcCmdDumpTSS;
65static FNDBGCCMD dbgcCmdDumpTypeInfo;
66static FNDBGCCMD dbgcCmdDumpTypedVal;
67static FNDBGCCMD dbgcCmdEditMem;
68static FNDBGCCMD dbgcCmdGo;
69static FNDBGCCMD dbgcCmdGoUp;
70static FNDBGCCMD dbgcCmdListModules;
71static FNDBGCCMD dbgcCmdListNear;
72static FNDBGCCMD dbgcCmdListSource;
73static FNDBGCCMD dbgcCmdListSymbols;
74static FNDBGCCMD dbgcCmdMemoryInfo;
75static FNDBGCCMD dbgcCmdReg;
76static FNDBGCCMD dbgcCmdRegGuest;
77static FNDBGCCMD dbgcCmdRegTerse;
78static FNDBGCCMD dbgcCmdSearchMem;
79static FNDBGCCMD dbgcCmdSearchMemType;
80static FNDBGCCMD dbgcCmdStepTrace;
81static FNDBGCCMD dbgcCmdStepTraceTo;
82static FNDBGCCMD dbgcCmdStepTraceToggle;
83static FNDBGCCMD dbgcCmdEventCtrl;
84static FNDBGCCMD dbgcCmdEventCtrlList;
85static FNDBGCCMD dbgcCmdEventCtrlReset;
86static FNDBGCCMD dbgcCmdStack;
87static FNDBGCCMD dbgcCmdUnassemble;
88static FNDBGCCMD dbgcCmdUnassembleCfg;
89static FNDBGCCMD dbgcCmdTraceFlowClear;
90static FNDBGCCMD dbgcCmdTraceFlowDisable;
91static FNDBGCCMD dbgcCmdTraceFlowEnable;
92static FNDBGCCMD dbgcCmdTraceFlowPrint;
93static FNDBGCCMD dbgcCmdTraceFlowReset;
94
95
96/*********************************************************************************************************************************
97* Global Variables *
98*********************************************************************************************************************************/
99/** 'ba' arguments. */
100static const DBGCVARDESC g_aArgBrkAcc[] =
101{
102 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
103 { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." },
104 { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." },
105 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
106 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
107 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
108 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
109};
110
111
112/** 'bc', 'bd', 'be' arguments. */
113static const DBGCVARDESC g_aArgBrks[] =
114{
115 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
116 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." },
117 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." },
118};
119
120
121/** 'bp' arguments. */
122static const DBGCVARDESC g_aArgBrkSet[] =
123{
124 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
125 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
126 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
127 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
128 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
129};
130
131
132/** 'br' arguments. */
133static const DBGCVARDESC g_aArgBrkREM[] =
134{
135 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
136 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
137 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
138 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
139 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
140};
141
142
143/** 'd?' arguments. */
144static const DBGCVARDESC g_aArgDumpMem[] =
145{
146 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
147 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory." },
148};
149
150
151/** 'dg', 'dga', 'dl', 'dla' arguments. */
152static const DBGCVARDESC g_aArgDumpDT[] =
153{
154 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
155 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." },
156 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." },
157};
158
159
160/** 'di', 'dia' arguments. */
161static const DBGCVARDESC g_aArgDumpIDT[] =
162{
163 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
164 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." },
165};
166
167
168/** 'dpd*' arguments. */
169static const DBGCVARDESC g_aArgDumpPD[] =
170{
171 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
172 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." },
173 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." },
174};
175
176
177/** 'dpda' arguments. */
178static const DBGCVARDESC g_aArgDumpPDAddr[] =
179{
180 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
181 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." },
182};
183
184
185/** 'dph*' arguments. */
186static const DBGCVARDESC g_aArgDumpPH[] =
187{
188 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
189 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." },
190 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." },
191 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." },
192};
193
194
195/** 'dpt?' arguments. */
196static const DBGCVARDESC g_aArgDumpPT[] =
197{
198 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
199 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." },
200};
201
202
203/** 'dpta' arguments. */
204static const DBGCVARDESC g_aArgDumpPTAddr[] =
205{
206 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
207 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." },
208};
209
210
211/** 'dt' arguments. */
212static const DBGCVARDESC g_aArgDumpTSS[] =
213{
214 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
215 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." },
216 { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." }
217};
218
219
220/** 'dti' arguments. */
221static const DBGCVARDESC g_aArgDumpTypeInfo[] =
222{
223 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
224 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to dump" },
225 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump the type information" }
226};
227
228
229/** 'dtv' arguments. */
230static const DBGCVARDESC g_aArgDumpTypedVal[] =
231{
232 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
233 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to use" },
234 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address to start dumping from." },
235 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump" }
236};
237
238
239/** 'e?' arguments. */
240static const DBGCVARDESC g_aArgEditMem[] =
241{
242 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
243 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." },
244 { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." },
245};
246
247
248/** 'g' arguments. */
249static const DBGCVARDESC g_aArgGo[] =
250{
251 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
252 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "idCpu", "CPU ID." },
253};
254
255
256/** 'lm' arguments. */
257static const DBGCVARDESC g_aArgListMods[] =
258{
259 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
260 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." },
261};
262
263
264/** 'ln' arguments. */
265static const DBGCVARDESC g_aArgListNear[] =
266{
267 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
268 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." },
269 { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." },
270};
271
272
273/** 'ls' arguments. */
274static const DBGCVARDESC g_aArgListSource[] =
275{
276 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
277 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." },
278};
279
280
281/** 'm' argument. */
282static const DBGCVARDESC g_aArgMemoryInfo[] =
283{
284 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
285 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." },
286};
287
288
289/** 'p', 'pc', 'pt', 't', 'tc' and 'tt' arguments. */
290static const DBGCVARDESC g_aArgStepTrace[] =
291{
292 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
293 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "count", "Number of instructions or source lines to step." },
294 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
295};
296
297
298/** 'pa' and 'ta' arguments. */
299static const DBGCVARDESC g_aArgStepTraceTo[] =
300{
301 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
302 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Where to stop" },
303 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
304};
305
306
307/** 'r' arguments. */
308static const DBGCVARDESC g_aArgReg[] =
309{
310 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
311 { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." },
312 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." },
313 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." },
314};
315
316
317/** 's' arguments. */
318static const DBGCVARDESC g_aArgSearchMem[] =
319{
320 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
321 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." },
322 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." },
323 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." },
324 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." },
325 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." },
326 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." },
327 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n <Hits>", "Maximum number of hits." },
328 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
329 { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
330};
331
332
333/** 's?' arguments. */
334static const DBGCVARDESC g_aArgSearchMemType[] =
335{
336 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
337 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
338 { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
339};
340
341
342/** 'sxe', 'sxn', 'sxi', 'sx-' arguments. */
343static const DBGCVARDESC g_aArgEventCtrl[] =
344{
345 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
346 { 0, 1, DBGCVAR_CAT_STRING, 0, "-c", "The -c option, requires <cmds>." },
347 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "cmds", "Command to execute on this event." },
348 { 0 /*weird*/, ~0U, DBGCVAR_CAT_STRING, 0, "event", "One or more events, 'all' refering to all events." },
349};
350
351/** 'sx' and 'sr' arguments. */
352static const DBGCVARDESC g_aArgEventCtrlOpt[] =
353{
354 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
355 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "event", "Zero or more events, 'all' refering to all events and being the default." },
356};
357
358/** 'u' arguments. */
359static const DBGCVARDESC g_aArgUnassemble[] =
360{
361 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
362 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
363};
364
365/** 'ucfg' arguments. */
366static const DBGCVARDESC g_aArgUnassembleCfg[] =
367{
368 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
369 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
370};
371
372/** 'x' arguments. */
373static const DBGCVARDESC g_aArgListSyms[] =
374{
375 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
376 { 1, 1, DBGCVAR_CAT_STRING, 0, "symbols", "The symbols to list, format is Module!Symbol with wildcards being supoprted." }
377};
378
379/** 'tflowc' arguments. */
380static const DBGCVARDESC g_aArgTraceFlowClear[] =
381{
382 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
383 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
384 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
385};
386
387/** 'tflowd' arguments. */
388static const DBGCVARDESC g_aArgTraceFlowDisable[] =
389{
390 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
391 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
392 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
393};
394
395/** 'tflowe' arguments. */
396static const DBGCVARDESC g_aArgTraceFlowEnable[] =
397{
398 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
399 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start tracing." },
400 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "<Hits>", "Maximum number of hits before the module is disabled." }
401};
402
403/** 'tflowp', 'tflowr' arguments. */
404static const DBGCVARDESC g_aArgTraceFlowPrintReset[] =
405{
406 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
407 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
408 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
409};
410
411/** Command descriptors for the CodeView / WinDbg emulation.
412 * The emulation isn't attempting to be identical, only somewhat similar.
413 */
414const DBGCCMD g_aCmdsCodeView[] =
415{
416 /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
417 { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "<access> <size> <address> [passes [max passes]] [cmds]",
418 "Sets a data access breakpoint." },
419 { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | <bp#> [bp# []]", "Deletes a set of breakpoints." },
420 { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | <bp#> [bp# []]", "Disables a set of breakpoints." },
421 { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | <bp#> [bp# []]", "Enables a set of breakpoints." },
422 { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." },
423 { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "<address> [passes [max passes]] [cmds]",
424 "Sets a breakpoint (int 3)." },
425 { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "<address> [passes [max passes]] [cmds]",
426 "Sets a recompiler specific breakpoint." },
427 { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size and type." },
428 { "dF", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16." },
429 { "dFs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16 with near symbols." },
430 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
431 { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." },
432 { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." },
433 { "dds", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as double words with near symbols." },
434 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
435 { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." },
436 { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." },
437 { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." },
438 { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." },
439 { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." },
440 { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." },
441 { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." },
442 { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." },
443 { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " },
444 { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." },
445 { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " },
446 { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." },
447 { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." },
448 { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." },
449 { "dp", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words." },
450 { "dps", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words with near symbols." },
451 { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the default context." },
452 { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps memory at given address as a page table." },
453 { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"<addr>", "Dumps page table entries of the guest and the hypervisor." },
454 { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the guest." },
455 { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the hypervisor." },
456 { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." },
457 { "dqs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as quad words with near symbols." },
458 { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." },
459 { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." },
460 { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." },
461 { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." },
462 { "dti", 1, 2, &g_aArgDumpTypeInfo[0],RT_ELEMENTS(g_aArgDumpTypeInfo), 0, dbgcCmdDumpTypeInfo,"<type> [levels]", "Dump type information." },
463 { "dtv", 2, 3, &g_aArgDumpTypedVal[0],RT_ELEMENTS(g_aArgDumpTypedVal), 0, dbgcCmdDumpTypedVal,"<type> <addr> [levels]", "Dump a memory buffer using the information in the given type." },
464 { "du", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as unicode string (little endian)." },
465 { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." },
466 /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also
467 * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */
468 { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 1-byte value to memory." },
469 { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 2-byte value to memory." },
470 { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 4-byte value to memory." },
471 { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 8-byte value to memory." },
472 { "g", 0, 1, &g_aArgGo[0], RT_ELEMENTS(g_aArgGo), 0, dbgcCmdGo, "[idCpu]", "Continue execution of all or the specified CPU. (The latter is not recommended unless you know exactly what you're doing.)" },
473 { "gu", 0, 0, NULL, 0, 0, dbgcCmdGoUp, "", "Go up - continue execution till after return." },
474 { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." },
475 { "kv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack." },
476 { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." },
477 { "kgv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack - guest." },
478 { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." },
479 { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." },
480 { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." },
481 { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." },
482 { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." },
483 { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." },
484 { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." },
485 { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "<addr>", "Display information about that piece of memory." },
486 { "p", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step over." },
487 { "pr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
488 { "pa", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Step to the given address." },
489 { "pc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next call instruction." },
490 { "pt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next return instruction." },
491 { "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set." },
492 { "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set." },
493 { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." },
494 { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." },
495 { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." },
496 { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] <range> <pattern>", "Continue last search." },
497 { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an ascii string." },
498 { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more bytes." },
499 { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more double words." },
500 { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more quad words." },
501 { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an unicode string." },
502 { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more words." },
503 { "sx", 0, ~0U, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlList, "[<event> [..]]", "Lists settings for exceptions, exits and other events. All if no filter is specified." },
504 { "sx-", 3, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "-c <cmd> <event> [..]", "Modifies the command for one or more exceptions, exits or other event. 'all' addresses all." },
505 { "sxe", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Enable: Break into the debugger on the specified exceptions, exits and other events. 'all' addresses all." },
506 { "sxn", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Notify: Display info in the debugger and continue on the specified exceptions, exits and other events. 'all' addresses all." },
507 { "sxi", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Ignore: Ignore the specified exceptions, exits and other events ('all' = all of them). Without the -c option, the guest runs like normal." },
508 { "sxr", 0, 0, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlReset, "", "Reset the settings to default for exceptions, exits and other events. All if no filter is specified." },
509 { "t", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace ." },
510 { "tflowc", 1, ~0U, &g_aArgTraceFlowClear[0], RT_ELEMENTS(g_aArgTraceFlowClear), 0, dbgcCmdTraceFlowClear, "all | <tf#> [tf# []]", "Clears trace execution flow for the given method." },
511 { "tflowd", 0, 1, &g_aArgTraceFlowDisable[0], RT_ELEMENTS(g_aArgTraceFlowDisable), 0, dbgcCmdTraceFlowDisable, "all | <tf#> [tf# []]", "Disables trace execution flow for the given method." },
512 { "tflowe", 0, 2, &g_aArgTraceFlowEnable[0], RT_ELEMENTS(g_aArgTraceFlowEnable), 0, dbgcCmdTraceFlowEnable, "<addr> <hits>", "Enable trace execution flow of the given method." },
513 { "tflowp", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowPrint, "all | <tf#> [tf# []]", "Prints the collected trace data of the given method." },
514 { "tflowr", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowReset, "all | <tf#> [tf# []]", "Resets the collected trace data of the given trace flow module." },
515 { "tr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
516 { "ta", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Trace to the given address." },
517 { "tc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next call instruction." },
518 { "tt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next return instruction." },
519 { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." },
520 { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." },
521 { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." },
522 { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." },
523 { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." },
524 { "ucfg", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph." },
525 { "ucfgc", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph with colors." },
526 { "x", 1, 1, &g_aArgListSyms[0], RT_ELEMENTS(g_aArgListSyms), 0, dbgcCmdListSymbols, "* | <Module!Symbol>", "Examine symbols." },
527};
528
529/** The number of commands in the CodeView/WinDbg emulation. */
530const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView);
531
532
533/**
534 * Selectable debug event descriptors.
535 *
536 * @remarks Sorted by DBGCSXEVT::enmType value.
537 */
538const DBGCSXEVT g_aDbgcSxEvents[] =
539{
540 { DBGFEVENT_INTERRUPT_HARDWARE, "hwint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Hardware interrupt" },
541 { DBGFEVENT_INTERRUPT_SOFTWARE, "swint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Software interrupt" },
542 { DBGFEVENT_TRIPLE_FAULT, "triplefault", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Enabled, 0, "Triple fault "},
543 { DBGFEVENT_XCPT_DE, "xcpt_de", "de", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DE (integer divide error)" },
544 { DBGFEVENT_XCPT_DB, "xcpt_db", "db", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DB (debug)" },
545 { DBGFEVENT_XCPT_02, "xcpt_02", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
546 { DBGFEVENT_XCPT_BP, "xcpt_bp", "bp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BP (breakpoint)" },
547 { DBGFEVENT_XCPT_OF, "xcpt_of", "of", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#OF (overflow (INTO))" },
548 { DBGFEVENT_XCPT_BR, "xcpt_br", "br", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BR (bound range exceeded)" },
549 { DBGFEVENT_XCPT_UD, "xcpt_ud", "ud", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#UD (undefined opcode)" },
550 { DBGFEVENT_XCPT_NM, "xcpt_nm", "nm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#NM (FPU not available)" },
551 { DBGFEVENT_XCPT_DF, "xcpt_df", "df", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DF (double fault)" },
552 { DBGFEVENT_XCPT_09, "xcpt_09", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "Coprocessor segment overrun" },
553 { DBGFEVENT_XCPT_TS, "xcpt_ts", "ts", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#TS (task switch)" },
554 { DBGFEVENT_XCPT_NP, "xcpt_np", "np", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#NP (segment not present)" },
555 { DBGFEVENT_XCPT_SS, "xcpt_ss", "ss", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SS (stack segment fault)" },
556 { DBGFEVENT_XCPT_GP, "xcpt_gp", "gp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#GP (general protection fault)" },
557 { DBGFEVENT_XCPT_PF, "xcpt_pf", "pf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#PF (page fault)" },
558 { DBGFEVENT_XCPT_0f, "xcpt_0f", "xcpt0f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
559 { DBGFEVENT_XCPT_MF, "xcpt_mf", "mf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MF (math fault)" },
560 { DBGFEVENT_XCPT_AC, "xcpt_ac", "ac", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#AC (alignment check)" },
561 { DBGFEVENT_XCPT_MC, "xcpt_mc", "mc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MC (machine check)" },
562 { DBGFEVENT_XCPT_XF, "xcpt_xf", "xf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#XF (SIMD floating-point exception)" },
563 { DBGFEVENT_XCPT_VE, "xcpt_vd", "ve", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#VE (virtualization exception)" },
564 { DBGFEVENT_XCPT_15, "xcpt_15", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
565 { DBGFEVENT_XCPT_16, "xcpt_16", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
566 { DBGFEVENT_XCPT_17, "xcpt_17", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
567 { DBGFEVENT_XCPT_18, "xcpt_18", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
568 { DBGFEVENT_XCPT_19, "xcpt_19", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
569 { DBGFEVENT_XCPT_1a, "xcpt_1a", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
570 { DBGFEVENT_XCPT_1b, "xcpt_1b", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
571 { DBGFEVENT_XCPT_1c, "xcpt_1c", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
572 { DBGFEVENT_XCPT_1d, "xcpt_1d", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
573 { DBGFEVENT_XCPT_SX, "xcpt_sx", "sx", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SX (security exception)" },
574 { DBGFEVENT_XCPT_1f, "xcpt_1f", "xcpt1f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
575 { DBGFEVENT_INSTR_HALT, "instr_halt", "hlt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
576 { DBGFEVENT_INSTR_MWAIT, "instr_mwait", "mwait", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
577 { DBGFEVENT_INSTR_MONITOR, "instr_monitor", "monitor", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
578 { DBGFEVENT_INSTR_CPUID, "instr_cpuid", "cpuid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
579 { DBGFEVENT_INSTR_INVD, "instr_invd", "invd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
580 { DBGFEVENT_INSTR_WBINVD, "instr_wbinvd", "wbinvd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
581 { DBGFEVENT_INSTR_INVLPG, "instr_invlpg", "invlpg", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
582 { DBGFEVENT_INSTR_RDTSC, "instr_rdtsc", "rdtsc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
583 { DBGFEVENT_INSTR_RDTSCP, "instr_rdtscp", "rdtscp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
584 { DBGFEVENT_INSTR_RDPMC, "instr_rdpmc", "rdpmc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
585 { DBGFEVENT_INSTR_RDMSR, "instr_rdmsr", "rdmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
586 { DBGFEVENT_INSTR_WRMSR, "instr_wrmsr", "wrmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
587 { DBGFEVENT_INSTR_CRX_READ, "instr_crx_read", "crx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
588 { DBGFEVENT_INSTR_CRX_WRITE, "instr_crx_write", "crx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
589 { DBGFEVENT_INSTR_DRX_READ, "instr_drx_read", "drx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
590 { DBGFEVENT_INSTR_DRX_WRITE, "instr_drx_write", "drx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
591 { DBGFEVENT_INSTR_PAUSE, "instr_pause", "pause", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
592 { DBGFEVENT_INSTR_XSETBV, "instr_xsetbv", "xsetbv", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
593 { DBGFEVENT_INSTR_SIDT, "instr_sidt", "sidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
594 { DBGFEVENT_INSTR_LIDT, "instr_lidt", "lidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
595 { DBGFEVENT_INSTR_SGDT, "instr_sgdt", "sgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
596 { DBGFEVENT_INSTR_LGDT, "instr_lgdt", "lgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
597 { DBGFEVENT_INSTR_SLDT, "instr_sldt", "sldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
598 { DBGFEVENT_INSTR_LLDT, "instr_lldt", "lldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
599 { DBGFEVENT_INSTR_STR, "instr_str", "str", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
600 { DBGFEVENT_INSTR_LTR, "instr_ltr", "ltr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
601 { DBGFEVENT_INSTR_GETSEC, "instr_getsec", "getsec", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
602 { DBGFEVENT_INSTR_RSM, "instr_rsm", "rsm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
603 { DBGFEVENT_INSTR_RDRAND, "instr_rdrand", "rdrand", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
604 { DBGFEVENT_INSTR_RDSEED, "instr_rdseed", "rdseed", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
605 { DBGFEVENT_INSTR_XSAVES, "instr_xsaves", "xsaves", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
606 { DBGFEVENT_INSTR_XRSTORS, "instr_xrstors", "xrstors", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
607 { DBGFEVENT_INSTR_VMM_CALL, "instr_vmm_call", "vmm_call", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
608 { DBGFEVENT_INSTR_VMX_VMCLEAR, "instr_vmx_vmclear", "vmclear", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
609 { DBGFEVENT_INSTR_VMX_VMLAUNCH, "instr_vmx_vmlaunch", "vmlaunch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
610 { DBGFEVENT_INSTR_VMX_VMPTRLD, "instr_vmx_vmptrld", "vmptrld", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
611 { DBGFEVENT_INSTR_VMX_VMPTRST, "instr_vmx_vmptrst", "vmptrst", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
612 { DBGFEVENT_INSTR_VMX_VMREAD, "instr_vmx_vmread", "vmread", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
613 { DBGFEVENT_INSTR_VMX_VMRESUME, "instr_vmx_vmresume", "vmresume", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
614 { DBGFEVENT_INSTR_VMX_VMWRITE, "instr_vmx_vmwrite", "vmwrite", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
615 { DBGFEVENT_INSTR_VMX_VMXOFF, "instr_vmx_vmxoff", "vmxoff", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
616 { DBGFEVENT_INSTR_VMX_VMXON, "instr_vmx_vmxon", "vmxon", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
617 { DBGFEVENT_INSTR_VMX_VMFUNC, "instr_vmx_vmfunc", "vmfunc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
618 { DBGFEVENT_INSTR_VMX_INVEPT, "instr_vmx_invept", "invept", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
619 { DBGFEVENT_INSTR_VMX_INVVPID, "instr_vmx_invvpid", "invvpid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
620 { DBGFEVENT_INSTR_VMX_INVPCID, "instr_vmx_invpcid", "invpcid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
621 { DBGFEVENT_INSTR_SVM_VMRUN, "instr_svm_vmrun", "vmrun", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
622 { DBGFEVENT_INSTR_SVM_VMLOAD, "instr_svm_vmload", "vmload", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
623 { DBGFEVENT_INSTR_SVM_VMSAVE, "instr_svm_vmsave", "vmsave", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
624 { DBGFEVENT_INSTR_SVM_STGI, "instr_svm_stgi", "stgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
625 { DBGFEVENT_INSTR_SVM_CLGI, "instr_svm_clgi", "clgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
626 { DBGFEVENT_EXIT_TASK_SWITCH, "exit_task_switch", "task_switch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
627 { DBGFEVENT_EXIT_HALT, "exit_halt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
628 { DBGFEVENT_EXIT_MWAIT, "exit_mwait", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
629 { DBGFEVENT_EXIT_MONITOR, "exit_monitor", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
630 { DBGFEVENT_EXIT_CPUID, "exit_cpuid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
631 { DBGFEVENT_EXIT_INVD, "exit_invd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
632 { DBGFEVENT_EXIT_WBINVD, "exit_wbinvd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
633 { DBGFEVENT_EXIT_INVLPG, "exit_invlpg", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
634 { DBGFEVENT_EXIT_RDTSC, "exit_rdtsc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
635 { DBGFEVENT_EXIT_RDTSCP, "exit_rdtscp", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
636 { DBGFEVENT_EXIT_RDPMC, "exit_rdpmc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
637 { DBGFEVENT_EXIT_RDMSR, "exit_rdmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
638 { DBGFEVENT_EXIT_WRMSR, "exit_wrmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
639 { DBGFEVENT_EXIT_CRX_READ, "exit_crx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
640 { DBGFEVENT_EXIT_CRX_WRITE, "exit_crx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
641 { DBGFEVENT_EXIT_DRX_READ, "exit_drx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
642 { DBGFEVENT_EXIT_DRX_WRITE, "exit_drx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
643 { DBGFEVENT_EXIT_PAUSE, "exit_pause", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
644 { DBGFEVENT_EXIT_XSETBV, "exit_xsetbv", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
645 { DBGFEVENT_EXIT_SIDT, "exit_sidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
646 { DBGFEVENT_EXIT_LIDT, "exit_lidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
647 { DBGFEVENT_EXIT_SGDT, "exit_sgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
648 { DBGFEVENT_EXIT_LGDT, "exit_lgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
649 { DBGFEVENT_EXIT_SLDT, "exit_sldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
650 { DBGFEVENT_EXIT_LLDT, "exit_lldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
651 { DBGFEVENT_EXIT_STR, "exit_str", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
652 { DBGFEVENT_EXIT_LTR, "exit_ltr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
653 { DBGFEVENT_EXIT_GETSEC, "exit_getsec", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
654 { DBGFEVENT_EXIT_RSM, "exit_rsm", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
655 { DBGFEVENT_EXIT_RDRAND, "exit_rdrand", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
656 { DBGFEVENT_EXIT_RDSEED, "exit_rdseed", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
657 { DBGFEVENT_EXIT_XSAVES, "exit_xsaves", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
658 { DBGFEVENT_EXIT_XRSTORS, "exit_xrstors", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
659 { DBGFEVENT_EXIT_VMM_CALL, "exit_vmm_call", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
660 { DBGFEVENT_EXIT_VMX_VMCLEAR, "exit_vmx_vmclear", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
661 { DBGFEVENT_EXIT_VMX_VMLAUNCH, "exit_vmx_vmlaunch", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
662 { DBGFEVENT_EXIT_VMX_VMPTRLD, "exit_vmx_vmptrld", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
663 { DBGFEVENT_EXIT_VMX_VMPTRST, "exit_vmx_vmptrst", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
664 { DBGFEVENT_EXIT_VMX_VMREAD, "exit_vmx_vmread", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
665 { DBGFEVENT_EXIT_VMX_VMRESUME, "exit_vmx_vmresume", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
666 { DBGFEVENT_EXIT_VMX_VMWRITE, "exit_vmx_vmwrite", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
667 { DBGFEVENT_EXIT_VMX_VMXOFF, "exit_vmx_vmxoff", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
668 { DBGFEVENT_EXIT_VMX_VMXON, "exit_vmx_vmxon", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
669 { DBGFEVENT_EXIT_VMX_VMFUNC, "exit_vmx_vmfunc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
670 { DBGFEVENT_EXIT_VMX_INVEPT, "exit_vmx_invept", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
671 { DBGFEVENT_EXIT_VMX_INVVPID, "exit_vmx_invvpid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
672 { DBGFEVENT_EXIT_VMX_INVPCID, "exit_vmx_invpcid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
673 { DBGFEVENT_EXIT_VMX_EPT_VIOLATION, "exit_vmx_ept_violation", "eptvio", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
674 { DBGFEVENT_EXIT_VMX_EPT_MISCONFIG, "exit_vmx_ept_misconfig", "eptmis", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
675 { DBGFEVENT_EXIT_VMX_VAPIC_ACCESS, "exit_vmx_vapic_access", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
676 { DBGFEVENT_EXIT_VMX_VAPIC_WRITE, "exit_vmx_vapic_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
677 { DBGFEVENT_EXIT_SVM_VMRUN, "exit_svm_vmrun", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
678 { DBGFEVENT_EXIT_SVM_VMLOAD, "exit_svm_vmload", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
679 { DBGFEVENT_EXIT_SVM_VMSAVE, "exit_svm_vmsave", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
680 { DBGFEVENT_EXIT_SVM_STGI, "exit_svm_stgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
681 { DBGFEVENT_EXIT_SVM_CLGI, "exit_svm_clgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
682 { DBGFEVENT_IOPORT_UNASSIGNED, "pio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
683 { DBGFEVENT_IOPORT_UNUSED, "pio_unused", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
684 { DBGFEVENT_MEMORY_UNASSIGNED, "mmio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
685 { DBGFEVENT_MEMORY_ROM_WRITE, "rom_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
686 { DBGFEVENT_BSOD_MSR, "bsod_msr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
687 { DBGFEVENT_BSOD_EFI, "bsod_efi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
688 { DBGFEVENT_BSOD_VMMDEV, "bsod_vmmdev", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
689};
690/** Number of entries in g_aDbgcSxEvents. */
691const uint32_t g_cDbgcSxEvents = RT_ELEMENTS(g_aDbgcSxEvents);
692
693
694
695/**
696 * @callback_method_impl{FNDBGCCMD, The 'g' command.}
697 */
698static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
699{
700 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
701
702 /*
703 * Parse arguments.
704 */
705 VMCPUID idCpu = VMCPUID_ALL;
706 if (cArgs == 1)
707 {
708 VMCPUID cCpus = DBGFR3CpuGetCount(pUVM);
709 if (paArgs[0].u.u64Number >= cCpus)
710 return DBGCCmdHlpFail(pCmdHlp, pCmd, "idCpu %RU64 is out of range! Highest valid ID is %u.\n",
711 paArgs[0].u.u64Number, cCpus - 1);
712 idCpu = (VMCPUID)paArgs[0].u.u64Number;
713 }
714 else
715 Assert(cArgs == 0);
716
717 /*
718 * Try resume the VM or CPU.
719 */
720 int rc = DBGFR3Resume(pUVM, idCpu);
721 if (RT_SUCCESS(rc))
722 {
723 Assert(rc == VINF_SUCCESS || rc == VWRN_DBGF_ALREADY_RUNNING);
724 if (rc != VWRN_DBGF_ALREADY_RUNNING)
725 return VINF_SUCCESS;
726 if (idCpu == VMCPUID_ALL)
727 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running");
728 return DBGCCmdHlpFail(pCmdHlp, pCmd, "CPU %u is already running", idCpu);
729 }
730 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume");
731}
732
733
734/**
735 * @callback_method_impl{FNDBGCCMD, The 'gu' command.}
736 */
737static DECLCALLBACK(int) dbgcCmdGoUp(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
738{
739 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
740 RT_NOREF(pCmd, paArgs, cArgs);
741
742 /* The simple way out. */
743 PDBGFADDRESS pStackPop = NULL; /** @todo try set up some stack limitations */
744 RTGCPTR cbStackPop = 0;
745 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET, NULL, pStackPop, cbStackPop, _512K);
746 if (RT_SUCCESS(rc))
747 pDbgc->fReady = false;
748 else
749 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET,) failed");
750 return rc;
751}
752
753
754/**
755 * @callback_method_impl{FNDBGCCMD, The 'ba' command.}
756 */
757static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
758{
759 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
760
761 /*
762 * Interpret access type.
763 */
764 if ( !strchr("xrwi", paArgs[0].u.pszString[0])
765 || paArgs[0].u.pszString[1])
766 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'",
767 paArgs[0].u.pszString, pCmd->pszCmd);
768 uint8_t fType = 0;
769 switch (paArgs[0].u.pszString[0])
770 {
771 case 'x': fType = X86_DR7_RW_EO; break;
772 case 'r': fType = X86_DR7_RW_RW; break;
773 case 'w': fType = X86_DR7_RW_WO; break;
774 case 'i': fType = X86_DR7_RW_IO; break;
775 }
776
777 /*
778 * Validate size.
779 */
780 if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1)
781 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!",
782 paArgs[1].u.u64Number, pCmd->pszCmd);
783 switch (paArgs[1].u.u64Number)
784 {
785 case 1:
786 case 2:
787 case 4:
788 break;
789 /*case 8: - later*/
790 default:
791 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!",
792 paArgs[1].u.u64Number, pCmd->pszCmd);
793 }
794 uint8_t cb = (uint8_t)paArgs[1].u.u64Number;
795
796 /*
797 * Convert the pointer to a DBGF address.
798 */
799 DBGFADDRESS Address;
800 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address);
801 if (RT_FAILURE(rc))
802 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]);
803
804 /*
805 * Pick out the optional arguments.
806 */
807 uint64_t iHitTrigger = 0;
808 uint64_t iHitDisable = UINT64_MAX;
809 const char *pszCmds = NULL;
810 unsigned iArg = 3;
811 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
812 {
813 iHitTrigger = paArgs[iArg].u.u64Number;
814 iArg++;
815 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
816 {
817 iHitDisable = paArgs[iArg].u.u64Number;
818 iArg++;
819 }
820 }
821 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
822 {
823 pszCmds = paArgs[iArg].u.pszString;
824 iArg++;
825 }
826
827 /*
828 * Try set the breakpoint.
829 */
830 uint32_t iBp;
831 rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp);
832 if (RT_SUCCESS(rc))
833 {
834 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
835 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
836 if (RT_SUCCESS(rc))
837 return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
838 if (rc == VERR_DBGC_BP_EXISTS)
839 {
840 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
841 if (RT_SUCCESS(rc))
842 return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
843 }
844 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
845 AssertRC(rc2);
846 }
847 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr);
848}
849
850
851/**
852 * @callback_method_impl{FNDBGCCMD, The 'bc' command.}
853 */
854static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
855{
856 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
857
858 /*
859 * Enumerate the arguments.
860 */
861 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
862 int rc = VINF_SUCCESS;
863 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
864 {
865 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
866 {
867 /* one */
868 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
869 if (iBp == paArgs[iArg].u.u64Number)
870 {
871 int rc2 = DBGFR3BpClear(pUVM, iBp);
872 if (RT_FAILURE(rc2))
873 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
874 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
875 dbgcBpDelete(pDbgc, iBp);
876 }
877 else
878 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
879 }
880 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
881 {
882 /* all */
883 PDBGCBP pBp = pDbgc->pFirstBp;
884 while (pBp)
885 {
886 uint32_t iBp = pBp->iBp;
887 pBp = pBp->pNext;
888
889 int rc2 = DBGFR3BpClear(pUVM, iBp);
890 if (RT_FAILURE(rc2))
891 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
892 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
893 dbgcBpDelete(pDbgc, iBp);
894 }
895 }
896 else
897 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
898 }
899 return rc;
900}
901
902
903/**
904 * @callback_method_impl{FNDBGCCMD, The 'bd' command.}
905 */
906static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
907{
908 /*
909 * Enumerate the arguments.
910 */
911 int rc = VINF_SUCCESS;
912 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
913 {
914 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
915 {
916 /* one */
917 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
918 if (iBp == paArgs[iArg].u.u64Number)
919 {
920 rc = DBGFR3BpDisable(pUVM, iBp);
921 if (RT_FAILURE(rc))
922 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp);
923 }
924 else
925 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
926 }
927 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
928 {
929 /* all */
930 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
931 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
932 {
933 int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp);
934 if (RT_FAILURE(rc2))
935 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp);
936 }
937 }
938 else
939 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
940 }
941 return rc;
942}
943
944
945/**
946 * @callback_method_impl{FNDBGCCMD, The 'be' command.}
947 */
948static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
949{
950 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
951
952 /*
953 * Enumerate the arguments.
954 */
955 int rc = VINF_SUCCESS;
956 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
957 {
958 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
959 {
960 /* one */
961 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
962 if (iBp == paArgs[iArg].u.u64Number)
963 {
964 rc = DBGFR3BpEnable(pUVM, iBp);
965 if (RT_FAILURE(rc))
966 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp);
967 }
968 else
969 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
970 }
971 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
972 {
973 /* all */
974 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
975 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
976 {
977 int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp);
978 if (RT_FAILURE(rc2))
979 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp);
980 }
981 }
982 else
983 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
984 }
985 return rc;
986}
987
988
989/**
990 * Breakpoint enumeration callback function.
991 *
992 * @returns VBox status code. Any failure will stop the enumeration.
993 * @param pUVM The user mode VM handle.
994 * @param pvUser The user argument.
995 * @param hBp The DBGF breakpoint handle.
996 * @param pBp Pointer to the breakpoint information. (readonly)
997 */
998static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, DBGFBP hBp, PCDBGFBPPUB pBp)
999{
1000 PDBGC pDbgc = (PDBGC)pvUser;
1001 PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, hBp);
1002
1003 /*
1004 * BP type and size.
1005 */
1006 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c ", hBp, DBGF_BP_PUB_IS_ENABLED(pBp) ? 'e' : 'd');
1007 bool fHasAddress = false;
1008 switch (DBGF_BP_PUB_GET_TYPE(pBp))
1009 {
1010 case DBGFBPTYPE_INT3:
1011 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " p %RGv", pBp->u.Int3.GCPtr);
1012 fHasAddress = true;
1013 break;
1014 case DBGFBPTYPE_REG:
1015 {
1016 char chType;
1017 switch (pBp->u.Reg.fType)
1018 {
1019 case X86_DR7_RW_EO: chType = 'x'; break;
1020 case X86_DR7_RW_WO: chType = 'w'; break;
1021 case X86_DR7_RW_IO: chType = 'i'; break;
1022 case X86_DR7_RW_RW: chType = 'r'; break;
1023 default: chType = '?'; break;
1024
1025 }
1026 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%d %c %RGv", pBp->u.Reg.cb, chType, pBp->u.Reg.GCPtr);
1027 fHasAddress = true;
1028 break;
1029 }
1030
1031/** @todo realign the list when I/O and MMIO breakpoint command have been added and it's possible to test this code. */
1032 case DBGFBPTYPE_PORT_IO:
1033 case DBGFBPTYPE_MMIO:
1034 {
1035 uint32_t fAccess = DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? pBp->u.PortIo.fAccess : pBp->u.Mmio.fAccess;
1036 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? " i" : " m");
1037 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1038 fAccess & DBGFBPIOACCESS_READ_MASK ? 'r' : '-',
1039 fAccess & DBGFBPIOACCESS_READ_BYTE ? '1' : '-',
1040 fAccess & DBGFBPIOACCESS_READ_WORD ? '2' : '-',
1041 fAccess & DBGFBPIOACCESS_READ_DWORD ? '4' : '-',
1042 fAccess & DBGFBPIOACCESS_READ_QWORD ? '8' : '-',
1043 fAccess & DBGFBPIOACCESS_READ_OTHER ? '+' : '-');
1044 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1045 fAccess & DBGFBPIOACCESS_WRITE_MASK ? 'w' : '-',
1046 fAccess & DBGFBPIOACCESS_WRITE_BYTE ? '1' : '-',
1047 fAccess & DBGFBPIOACCESS_WRITE_WORD ? '2' : '-',
1048 fAccess & DBGFBPIOACCESS_WRITE_DWORD ? '4' : '-',
1049 fAccess & DBGFBPIOACCESS_WRITE_QWORD ? '8' : '-',
1050 fAccess & DBGFBPIOACCESS_WRITE_OTHER ? '+' : '-');
1051 if (DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO)
1052 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04x-%04x",
1053 pBp->u.PortIo.uPort, pBp->u.PortIo.uPort + pBp->u.PortIo.cPorts - 1);
1054 else
1055 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%RGp LB %03x", pBp->u.Mmio.PhysAddr, pBp->u.Mmio.cb);
1056 break;
1057 }
1058
1059 default:
1060 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " unknown type %d!!", DBGF_BP_PUB_GET_TYPE(pBp));
1061 AssertFailed();
1062 break;
1063
1064 }
1065 if (pBp->iHitDisable == ~(uint64_t)0)
1066 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to ~0) ", pBp->cHits, pBp->iHitTrigger);
1067 else
1068 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to %04RX64)", pBp->cHits, pBp->iHitTrigger, pBp->iHitDisable);
1069
1070 /*
1071 * Try resolve the address if it has one.
1072 */
1073 if (fHasAddress)
1074 {
1075 RTDBGSYMBOL Sym;
1076 RTINTPTR off;
1077 DBGFADDRESS Addr;
1078 int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->u.GCPtr),
1079 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1080 &off, &Sym, NULL);
1081 if (RT_SUCCESS(rc))
1082 {
1083 if (!off)
1084 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName);
1085 else if (off > 0)
1086 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off);
1087 else
1088 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off);
1089 }
1090 }
1091
1092 /*
1093 * The commands.
1094 */
1095 if (pDbgcBp)
1096 {
1097 if (pDbgcBp->cchCmd)
1098 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd);
1099 else
1100 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n");
1101 }
1102 else
1103 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n");
1104
1105 return VINF_SUCCESS;
1106}
1107
1108
1109/**
1110 * @callback_method_impl{FNDBGCCMD, The 'bl' command.}
1111 */
1112static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1113{
1114 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1115 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
1116 NOREF(paArgs);
1117
1118 /*
1119 * Enumerate the breakpoints.
1120 */
1121 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1122 int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc);
1123 if (RT_FAILURE(rc))
1124 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum");
1125 return rc;
1126}
1127
1128
1129/**
1130 * @callback_method_impl{FNDBGCCMD, The 'bp' command.}
1131 */
1132static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1133{
1134 /*
1135 * Convert the pointer to a DBGF address.
1136 */
1137 DBGFADDRESS Address;
1138 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1139 if (RT_FAILURE(rc))
1140 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1141
1142 /*
1143 * Pick out the optional arguments.
1144 */
1145 uint64_t iHitTrigger = 0;
1146 uint64_t iHitDisable = UINT64_MAX;
1147 const char *pszCmds = NULL;
1148 unsigned iArg = 1;
1149 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1150 {
1151 iHitTrigger = paArgs[iArg].u.u64Number;
1152 iArg++;
1153 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1154 {
1155 iHitDisable = paArgs[iArg].u.u64Number;
1156 iArg++;
1157 }
1158 }
1159 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1160 {
1161 pszCmds = paArgs[iArg].u.pszString;
1162 iArg++;
1163 }
1164
1165 /*
1166 * Try set the breakpoint.
1167 */
1168 uint32_t iBp;
1169 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1170 rc = DBGFR3BpSetInt3(pUVM, pDbgc->idCpu, &Address, iHitTrigger, iHitDisable, &iBp);
1171 if (RT_SUCCESS(rc))
1172 {
1173 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1174 if (RT_SUCCESS(rc))
1175 return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1176 if (rc == VERR_DBGC_BP_EXISTS)
1177 {
1178 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1179 if (RT_SUCCESS(rc))
1180 return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1181 }
1182 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1183 AssertRC(rc2);
1184 }
1185 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr);
1186}
1187
1188
1189/**
1190 * @callback_method_impl{FNDBGCCMD, The 'br' command.}
1191 */
1192static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1193{
1194 /*
1195 * Convert the pointer to a DBGF address.
1196 */
1197 DBGFADDRESS Address;
1198 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1199 if (RT_FAILURE(rc))
1200 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1201
1202 /*
1203 * Pick out the optional arguments.
1204 */
1205 uint64_t iHitTrigger = 0;
1206 uint64_t iHitDisable = UINT64_MAX;
1207 const char *pszCmds = NULL;
1208 unsigned iArg = 1;
1209 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1210 {
1211 iHitTrigger = paArgs[iArg].u.u64Number;
1212 iArg++;
1213 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1214 {
1215 iHitDisable = paArgs[iArg].u.u64Number;
1216 iArg++;
1217 }
1218 }
1219 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1220 {
1221 pszCmds = paArgs[iArg].u.pszString;
1222 iArg++;
1223 }
1224
1225 /*
1226 * Try set the breakpoint.
1227 */
1228 uint32_t iBp;
1229 rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
1230 if (RT_SUCCESS(rc))
1231 {
1232 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1233 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1234 if (RT_SUCCESS(rc))
1235 return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1236 if (rc == VERR_DBGC_BP_EXISTS)
1237 {
1238 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1239 if (RT_SUCCESS(rc))
1240 return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1241 }
1242 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1243 AssertRC(rc2);
1244 }
1245 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr);
1246}
1247
1248
1249/**
1250 * Helps the unassmble ('u') command display symbols it starts at and passes.
1251 *
1252 * @param pUVM The user mode VM handle.
1253 * @param pCmdHlp The command helpers for printing via.
1254 * @param hDbgAs The address space to look up addresses in.
1255 * @param pAddress The current address.
1256 * @param pcbCallAgain Where to return the distance to the next check (in
1257 * instruction bytes).
1258 */
1259static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress,
1260 PRTUINTPTR pcbCallAgain)
1261{
1262 RTDBGSYMBOL Symbol;
1263 RTGCINTPTR offDispSym;
1264 int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1265 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1266 &offDispSym, &Symbol, NULL);
1267 if (RT_FAILURE(rc) || offDispSym > _1G)
1268 rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1269 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1270 &offDispSym, &Symbol, NULL);
1271 if (RT_SUCCESS(rc) && offDispSym < _1G)
1272 {
1273 if (!offDispSym)
1274 {
1275 DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName);
1276 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb;
1277 }
1278 else if (offDispSym > 0)
1279 {
1280 DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym);
1281 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1;
1282 }
1283 else
1284 {
1285 DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym);
1286 *pcbCallAgain = !Symbol.cb ? 64 : (RTGCUINTPTR)-offDispSym + Symbol.cb;
1287 }
1288 }
1289 else
1290 *pcbCallAgain = UINT32_MAX;
1291}
1292
1293
1294/**
1295 * @callback_method_impl{FNDBGCCMD, The 'u' command.}
1296 */
1297static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1298{
1299 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1300
1301 /*
1302 * Validate input.
1303 */
1304 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1305 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
1306 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
1307
1308 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1309 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
1310
1311 /*
1312 * Check the desired mode.
1313 */
1314 unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
1315 switch (pCmd->pszCmd[1])
1316 {
1317 default: AssertFailed(); RT_FALL_THRU();
1318 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
1319 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
1320 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
1321 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
1322 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
1323 }
1324
1325 /** @todo should use DBGFADDRESS for everything */
1326
1327 /*
1328 * Find address.
1329 */
1330 if (!cArgs)
1331 {
1332 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1333 {
1334 /** @todo Batch query CS, RIP, CPU mode and flags. */
1335 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1336 if (CPUMIsGuestIn64BitCode(pVCpu))
1337 {
1338 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
1339 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
1340 }
1341 else
1342 {
1343 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
1344 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
1345 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
1346 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
1347 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
1348 {
1349 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1350 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
1351 }
1352 }
1353
1354 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
1355 }
1356 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
1357 {
1358 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1359 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
1360 }
1361 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
1362 }
1363 else
1364 pDbgc->DisasmPos = paArgs[0];
1365 pDbgc->pLastPos = &pDbgc->DisasmPos;
1366
1367 /*
1368 * Range.
1369 */
1370 switch (pDbgc->DisasmPos.enmRangeType)
1371 {
1372 case DBGCVAR_RANGE_NONE:
1373 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1374 pDbgc->DisasmPos.u64Range = 10;
1375 break;
1376
1377 case DBGCVAR_RANGE_ELEMENTS:
1378 if (pDbgc->DisasmPos.u64Range > 2048)
1379 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
1380 break;
1381
1382 case DBGCVAR_RANGE_BYTES:
1383 if (pDbgc->DisasmPos.u64Range > 65536)
1384 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
1385 break;
1386
1387 default:
1388 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
1389 }
1390
1391 /*
1392 * Convert physical and host addresses to guest addresses.
1393 */
1394 RTDBGAS hDbgAs = pDbgc->hDbgAs;
1395 int rc;
1396 switch (pDbgc->DisasmPos.enmType)
1397 {
1398 case DBGCVAR_TYPE_GC_FLAT:
1399 case DBGCVAR_TYPE_GC_FAR:
1400 break;
1401 case DBGCVAR_TYPE_GC_PHYS:
1402 hDbgAs = DBGF_AS_PHYS;
1403 RT_FALL_THRU();
1404 case DBGCVAR_TYPE_HC_FLAT:
1405 case DBGCVAR_TYPE_HC_PHYS:
1406 {
1407 DBGCVAR VarTmp;
1408 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
1409 if (RT_FAILURE(rc))
1410 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
1411 pDbgc->DisasmPos = VarTmp;
1412 break;
1413 }
1414 default: AssertFailed(); break;
1415 }
1416
1417 DBGFADDRESS CurAddr;
1418 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1419 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1420 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1421 else
1422 {
1423 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1424 if (RT_FAILURE(rc))
1425 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
1426 }
1427
1428 pDbgc->fDisasm = fFlags;
1429
1430 /*
1431 * Figure out where we are and display it. Also calculate when we need to
1432 * check for a new symbol if possible.
1433 */
1434 RTGCUINTPTR cbCheckSymbol;
1435 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1436
1437 /*
1438 * Do the disassembling.
1439 */
1440 unsigned cTries = 32;
1441 int iRangeLeft = (int)pDbgc->DisasmPos.u64Range;
1442 if (iRangeLeft == 0) /* kludge for 'r'. */
1443 iRangeLeft = -1;
1444 for (;;)
1445 {
1446 /*
1447 * Disassemble the instruction.
1448 */
1449 char szDis[256];
1450 uint32_t cbInstr = 1;
1451 if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT)
1452 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags,
1453 &szDis[0], sizeof(szDis), &cbInstr);
1454 else
1455 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags,
1456 &szDis[0], sizeof(szDis), &cbInstr);
1457 if (RT_SUCCESS(rc))
1458 {
1459 /* print it */
1460 rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]);
1461 if (RT_FAILURE(rc))
1462 return rc;
1463 }
1464 else
1465 {
1466 /* bitch. */
1467 int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n");
1468 if (RT_FAILURE(rc2))
1469 return rc2;
1470 if (cTries-- > 0)
1471 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up");
1472 cbInstr = 1;
1473 }
1474
1475 /* advance */
1476 if (iRangeLeft < 0) /* 'r' */
1477 break;
1478 if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1479 iRangeLeft--;
1480 else
1481 iRangeLeft -= cbInstr;
1482 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr);
1483 if (RT_FAILURE(rc))
1484 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr);
1485 if (iRangeLeft <= 0)
1486 break;
1487 fFlags &= ~DBGF_DISAS_FLAGS_CURRENT_GUEST;
1488
1489 /* Print next symbol? */
1490 if (cbCheckSymbol <= cbInstr)
1491 {
1492 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1493 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1494 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1495 else
1496 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1497 if (RT_SUCCESS(rc))
1498 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1499 else
1500 cbCheckSymbol = UINT32_MAX;
1501 }
1502 else
1503 cbCheckSymbol -= cbInstr;
1504 }
1505
1506 NOREF(pCmd);
1507 return VINF_SUCCESS;
1508}
1509
1510
1511/**
1512 * @callback_method_impl{FNDGCSCREENBLIT}
1513 */
1514static DECLCALLBACK(int) dbgcCmdUnassembleCfgBlit(const char *psz, void *pvUser)
1515{
1516 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
1517 return DBGCCmdHlpPrintf(pCmdHlp, "%s", psz);
1518}
1519
1520
1521/**
1522 * Checks whether both addresses are equal.
1523 *
1524 * @returns true if both addresses point to the same location, false otherwise.
1525 * @param pAddr1 First address.
1526 * @param pAddr2 Second address.
1527 */
1528static bool dbgcCmdUnassembleCfgAddrEqual(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1529{
1530 return pAddr1->Sel == pAddr2->Sel
1531 && pAddr1->off == pAddr2->off;
1532}
1533
1534
1535/**
1536 * Checks whether the first given address is lower than the second one.
1537 *
1538 * @returns true if both addresses point to the same location, false otherwise.
1539 * @param pAddr1 First address.
1540 * @param pAddr2 Second address.
1541 */
1542static bool dbgcCmdUnassembleCfgAddrLower(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1543{
1544 return pAddr1->Sel == pAddr2->Sel
1545 && pAddr1->off < pAddr2->off;
1546}
1547
1548
1549/**
1550 * Calculates the size required for the given basic block including the
1551 * border and spacing on the edges.
1552 *
1553 * @returns nothing.
1554 * @param hFlowBb The basic block handle.
1555 * @param pDumpBb The dumper state to fill in for the basic block.
1556 */
1557static void dbgcCmdUnassembleCfgDumpCalcBbSize(DBGFFLOWBB hFlowBb, PDBGCFLOWBBDUMP pDumpBb)
1558{
1559 uint32_t fFlags = DBGFR3FlowBbGetFlags(hFlowBb);
1560 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(hFlowBb);
1561
1562 pDumpBb->hFlowBb = hFlowBb;
1563 pDumpBb->cchHeight = cInstr + 4; /* Include spacing and border top and bottom. */
1564 pDumpBb->cchWidth = 0;
1565 DBGFR3FlowBbGetStartAddress(hFlowBb, &pDumpBb->AddrStart);
1566
1567 DBGFFLOWBBENDTYPE enmType = DBGFR3FlowBbGetType(hFlowBb);
1568 if ( enmType == DBGFFLOWBBENDTYPE_COND
1569 || enmType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1570 || enmType == DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP)
1571 DBGFR3FlowBbGetBranchAddress(hFlowBb, &pDumpBb->AddrTarget);
1572
1573 if (fFlags & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1574 {
1575 const char *pszErr = NULL;
1576 DBGFR3FlowBbQueryError(hFlowBb, &pszErr);
1577 if (pszErr)
1578 {
1579 pDumpBb->cchHeight++;
1580 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszErr));
1581 }
1582 }
1583 for (unsigned i = 0; i < cInstr; i++)
1584 {
1585 const char *pszInstr = NULL;
1586 int rc = DBGFR3FlowBbQueryInstr(hFlowBb, i, NULL, NULL, &pszInstr);
1587 AssertRC(rc);
1588 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszInstr));
1589 }
1590 pDumpBb->cchWidth += 4; /* Include spacing and border left and right. */
1591}
1592
1593
1594/**
1595 * Dumps a top or bottom boundary line.
1596 *
1597 * @returns nothing.
1598 * @param hScreen The screen to draw to.
1599 * @param uStartX Where to start drawing the boundary.
1600 * @param uStartY Y coordinate.
1601 * @param cchWidth Width of the boundary.
1602 * @param enmColor The color to use for drawing.
1603 */
1604static void dbgcCmdUnassembleCfgDumpBbBoundary(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1605 DBGCSCREENCOLOR enmColor)
1606{
1607 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '+', enmColor);
1608 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1609 uStartY, '-', enmColor);
1610 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '+', enmColor);
1611}
1612
1613
1614/**
1615 * Dumps a spacing line between the top or bottom boundary and the actual disassembly.
1616 *
1617 * @returns nothing.
1618 * @param hScreen The screen to draw to.
1619 * @param uStartX Where to start drawing the spacing.
1620 * @param uStartY Y coordinate.
1621 * @param cchWidth Width of the spacing.
1622 * @param enmColor The color to use for drawing.
1623 */
1624static void dbgcCmdUnassembleCfgDumpBbSpacing(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1625 DBGCSCREENCOLOR enmColor)
1626{
1627 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmColor);
1628 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1629 uStartY, ' ', enmColor);
1630 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmColor);
1631}
1632
1633
1634/**
1635 * Writes a given text to the screen.
1636 *
1637 * @returns nothing.
1638 * @param hScreen The screen to draw to.
1639 * @param uStartX Where to start drawing the line.
1640 * @param uStartY Y coordinate.
1641 * @param cchWidth Maximum width of the text.
1642 * @param pszText The text to write.
1643 * @param enmTextColor The color to use for drawing the text.
1644 * @param enmBorderColor The color to use for drawing the border.
1645 */
1646static void dbgcCmdUnassembleCfgDumpBbText(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY,
1647 uint32_t cchWidth, const char *pszText,
1648 DBGCSCREENCOLOR enmTextColor, DBGCSCREENCOLOR enmBorderColor)
1649{
1650 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmBorderColor);
1651 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + 1, uStartY, ' ', enmTextColor);
1652 dbgcScreenAsciiDrawString(hScreen, uStartX + 2, uStartY, pszText, enmTextColor);
1653 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmBorderColor);
1654}
1655
1656
1657/**
1658 * Dumps one basic block using the dumper callback.
1659 *
1660 * @returns nothing.
1661 * @param pDumpBb The basic block dump state to dump.
1662 * @param hScreen The screen to draw to.
1663 */
1664static void dbgcCmdUnassembleCfgDumpBb(PDBGCFLOWBBDUMP pDumpBb, DBGCSCREEN hScreen)
1665{
1666 uint32_t uStartY = pDumpBb->uStartY;
1667 bool fError = RT_BOOL(DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR);
1668 DBGCSCREENCOLOR enmColor = fError ? DBGCSCREENCOLOR_RED_BRIGHT : DBGCSCREENCOLOR_DEFAULT;
1669
1670 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1671 uStartY++;
1672 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1673 uStartY++;
1674
1675 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(pDumpBb->hFlowBb);
1676 for (unsigned i = 0; i < cInstr; i++)
1677 {
1678 const char *pszInstr = NULL;
1679 DBGFR3FlowBbQueryInstr(pDumpBb->hFlowBb, i, NULL, NULL, &pszInstr);
1680 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY + i,
1681 pDumpBb->cchWidth, pszInstr, DBGCSCREENCOLOR_DEFAULT,
1682 enmColor);
1683 }
1684 uStartY += cInstr;
1685
1686 if (fError)
1687 {
1688 const char *pszErr = NULL;
1689 DBGFR3FlowBbQueryError(pDumpBb->hFlowBb, &pszErr);
1690 if (pszErr)
1691 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY,
1692 pDumpBb->cchWidth, pszErr, enmColor,
1693 enmColor);
1694 uStartY++;
1695 }
1696
1697 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1698 uStartY++;
1699 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1700 uStartY++;
1701}
1702
1703
1704/**
1705 * Dumps one branch table using the dumper callback.
1706 *
1707 * @returns nothing.
1708 * @param pDumpBranchTbl The basic block dump state to dump.
1709 * @param hScreen The screen to draw to.
1710 */
1711static void dbgcCmdUnassembleCfgDumpBranchTbl(PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl, DBGCSCREEN hScreen)
1712{
1713 uint32_t uStartY = pDumpBranchTbl->uStartY;
1714 DBGCSCREENCOLOR enmColor = DBGCSCREENCOLOR_CYAN_BRIGHT;
1715
1716 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1717 uStartY++;
1718 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1719 uStartY++;
1720
1721 uint32_t cSlots = DBGFR3FlowBranchTblGetSlots(pDumpBranchTbl->hFlowBranchTbl);
1722 for (unsigned i = 0; i < cSlots; i++)
1723 {
1724 DBGFADDRESS Addr;
1725 char szAddr[128];
1726
1727 RT_ZERO(szAddr);
1728 DBGFR3FlowBranchTblGetAddrAtSlot(pDumpBranchTbl->hFlowBranchTbl, i, &Addr);
1729
1730 if (Addr.Sel == DBGF_SEL_FLAT)
1731 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%RGv", Addr.FlatPtr);
1732 else
1733 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%04x:%RGv", Addr.Sel, Addr.off);
1734
1735 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBranchTbl->uStartX, uStartY + i,
1736 pDumpBranchTbl->cchWidth, &szAddr[0], DBGCSCREENCOLOR_DEFAULT,
1737 enmColor);
1738 }
1739 uStartY += cSlots;
1740
1741 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1742 uStartY++;
1743 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1744 uStartY++;
1745}
1746
1747
1748/**
1749 * Fills in the dump states for the basic blocks and branch tables.
1750 *
1751 * @returns VBox status code.
1752 * @param hFlowIt The control flow graph iterator handle.
1753 * @param hFlowBranchTblIt The control flow graph branch table iterator handle.
1754 * @param paDumpBb The array of basic block dump states.
1755 * @param paDumpBranchTbl The array of branch table dump states.
1756 * @param cBbs Number of basic blocks.
1757 * @param cBranchTbls Number of branch tables.
1758 */
1759static int dbgcCmdUnassembleCfgDumpCalcDimensions(DBGFFLOWIT hFlowIt, DBGFFLOWBRANCHTBLIT hFlowBranchTblIt,
1760 PDBGCFLOWBBDUMP paDumpBb, PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl,
1761 uint32_t cBbs, uint32_t cBranchTbls)
1762{
1763 RT_NOREF2(cBbs, cBranchTbls);
1764
1765 /* Calculate the sizes of each basic block first. */
1766 DBGFFLOWBB hFlowBb = DBGFR3FlowItNext(hFlowIt);
1767 uint32_t idx = 0;
1768 while (hFlowBb)
1769 {
1770 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[idx]);
1771 idx++;
1772 hFlowBb = DBGFR3FlowItNext(hFlowIt);
1773 }
1774
1775 if (paDumpBranchTbl)
1776 {
1777 idx = 0;
1778 DBGFFLOWBRANCHTBL hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1779 while (hFlowBranchTbl)
1780 {
1781 paDumpBranchTbl[idx].hFlowBranchTbl = hFlowBranchTbl;
1782 paDumpBranchTbl[idx].cchHeight = DBGFR3FlowBranchTblGetSlots(hFlowBranchTbl) + 4; /* Spacing and border. */
1783 paDumpBranchTbl[idx].cchWidth = 25 + 4; /* Spacing and border. */
1784 idx++;
1785 hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1786 }
1787 }
1788
1789 return VINF_SUCCESS;
1790}
1791
1792/**
1793 * Dumps the given control flow graph to the output.
1794 *
1795 * @returns VBox status code.
1796 * @param hCfg The control flow graph handle.
1797 * @param fUseColor Flag whether the output should be colorized.
1798 * @param pCmdHlp The command helper callback table.
1799 */
1800static int dbgcCmdUnassembleCfgDump(DBGFFLOW hCfg, bool fUseColor, PDBGCCMDHLP pCmdHlp)
1801{
1802 int rc = VINF_SUCCESS;
1803 DBGFFLOWIT hCfgIt = NULL;
1804 DBGFFLOWBRANCHTBLIT hFlowBranchTblIt = NULL;
1805 uint32_t cBbs = DBGFR3FlowGetBbCount(hCfg);
1806 uint32_t cBranchTbls = DBGFR3FlowGetBranchTblCount(hCfg);
1807 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cBbs * sizeof(DBGCFLOWBBDUMP));
1808 PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl = NULL;
1809
1810 if (cBranchTbls)
1811 paDumpBranchTbl = (PDBGCFLOWBRANCHTBLDUMP)RTMemAllocZ(cBranchTbls * sizeof(DBGCFLOWBRANCHTBLDUMP));
1812
1813 if (RT_UNLIKELY(!paDumpBb || (!paDumpBranchTbl && cBranchTbls > 0)))
1814 rc = VERR_NO_MEMORY;
1815 if (RT_SUCCESS(rc))
1816 rc = DBGFR3FlowItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hCfgIt);
1817 if (RT_SUCCESS(rc) && cBranchTbls > 0)
1818 rc = DBGFR3FlowBranchTblItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hFlowBranchTblIt);
1819
1820 if (RT_SUCCESS(rc))
1821 {
1822 rc = dbgcCmdUnassembleCfgDumpCalcDimensions(hCfgIt, hFlowBranchTblIt, paDumpBb, paDumpBranchTbl,
1823 cBbs, cBranchTbls);
1824
1825 /* Calculate the ASCII screen dimensions and create one. */
1826 uint32_t cchWidth = 0;
1827 uint32_t cchLeftExtra = 5;
1828 uint32_t cchRightExtra = 5;
1829 uint32_t cchHeight = 0;
1830 for (unsigned i = 0; i < cBbs; i++)
1831 {
1832 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1833 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
1834 cchHeight += pDumpBb->cchHeight;
1835
1836 /* Incomplete blocks don't have a successor. */
1837 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1838 continue;
1839
1840 switch (DBGFR3FlowBbGetType(pDumpBb->hFlowBb))
1841 {
1842 case DBGFFLOWBBENDTYPE_EXIT:
1843 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1844 break;
1845 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1846 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1847 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1848 cchLeftExtra++;
1849 else
1850 cchRightExtra++;
1851 break;
1852 case DBGFFLOWBBENDTYPE_UNCOND:
1853 cchHeight += 2; /* For the arrow down to the next basic block. */
1854 break;
1855 case DBGFFLOWBBENDTYPE_COND:
1856 cchHeight += 2; /* For the arrow down to the next basic block. */
1857 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1858 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1859 cchLeftExtra++;
1860 else
1861 cchRightExtra++;
1862 break;
1863 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1864 default:
1865 AssertFailed();
1866 }
1867 }
1868
1869 for (unsigned i = 0; i < cBranchTbls; i++)
1870 {
1871 PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl = &paDumpBranchTbl[i];
1872 cchWidth = RT_MAX(cchWidth, pDumpBranchTbl->cchWidth);
1873 cchHeight += pDumpBranchTbl->cchHeight;
1874 }
1875
1876 cchWidth += 2;
1877
1878 DBGCSCREEN hScreen = NULL;
1879 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth + cchLeftExtra + cchRightExtra, cchHeight);
1880 if (RT_SUCCESS(rc))
1881 {
1882 uint32_t uY = 0;
1883
1884 /* Dump the branch tables first. */
1885 for (unsigned i = 0; i < cBranchTbls; i++)
1886 {
1887 paDumpBranchTbl[i].uStartX = cchLeftExtra + (cchWidth - paDumpBranchTbl[i].cchWidth) / 2;
1888 paDumpBranchTbl[i].uStartY = uY;
1889 dbgcCmdUnassembleCfgDumpBranchTbl(&paDumpBranchTbl[i], hScreen);
1890 uY += paDumpBranchTbl[i].cchHeight;
1891 }
1892
1893 /* Dump the basic blocks and connections to the immediate successor. */
1894 for (unsigned i = 0; i < cBbs; i++)
1895 {
1896 paDumpBb[i].uStartX = cchLeftExtra + (cchWidth - paDumpBb[i].cchWidth) / 2;
1897 paDumpBb[i].uStartY = uY;
1898 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
1899 uY += paDumpBb[i].cchHeight;
1900
1901 /* Incomplete blocks don't have a successor. */
1902 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1903 continue;
1904
1905 switch (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb))
1906 {
1907 case DBGFFLOWBBENDTYPE_EXIT:
1908 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1909 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1910 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1911 break;
1912 case DBGFFLOWBBENDTYPE_UNCOND:
1913 /* Draw the arrow down to the next block. */
1914 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1915 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
1916 uY++;
1917 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1918 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
1919 uY++;
1920 break;
1921 case DBGFFLOWBBENDTYPE_COND:
1922 /* Draw the arrow down to the next block. */
1923 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1924 '|', DBGCSCREENCOLOR_RED_BRIGHT);
1925 uY++;
1926 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1927 'V', DBGCSCREENCOLOR_RED_BRIGHT);
1928 uY++;
1929 break;
1930 default:
1931 AssertFailed();
1932 }
1933 }
1934
1935 /* Last pass, connect all remaining branches. */
1936 uint32_t uBackConns = 0;
1937 uint32_t uFwdConns = 0;
1938 for (unsigned i = 0; i < cBbs; i++)
1939 {
1940 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1941 DBGFFLOWBBENDTYPE enmEndType = DBGFR3FlowBbGetType(pDumpBb->hFlowBb);
1942
1943 /* Incomplete blocks don't have a successor. */
1944 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1945 continue;
1946
1947 switch (enmEndType)
1948 {
1949 case DBGFFLOWBBENDTYPE_EXIT:
1950 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1951 case DBGFFLOWBBENDTYPE_UNCOND:
1952 break;
1953 case DBGFFLOWBBENDTYPE_COND:
1954 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1955 {
1956 /* Find the target first to get the coordinates. */
1957 PDBGCFLOWBBDUMP pDumpBbTgt = NULL;
1958 for (unsigned idxDumpBb = 0; idxDumpBb < cBbs; idxDumpBb++)
1959 {
1960 pDumpBbTgt = &paDumpBb[idxDumpBb];
1961 if (dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBbTgt->AddrStart))
1962 break;
1963 }
1964
1965 DBGCSCREENCOLOR enmColor = enmEndType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1966 ? DBGCSCREENCOLOR_YELLOW_BRIGHT
1967 : DBGCSCREENCOLOR_GREEN_BRIGHT;
1968
1969 /*
1970 * Use the right side for targets with higher addresses,
1971 * left when jumping backwards.
1972 */
1973 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1974 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1975 {
1976 /* Going backwards. */
1977 uint32_t uXVerLine = /*cchLeftExtra - 1 -*/ uBackConns + 1;
1978 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
1979 uBackConns++;
1980
1981 /* Draw the arrow pointing to the target block. */
1982 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX - 1, pDumpBbTgt->uStartY,
1983 '>', enmColor);
1984 /* Draw the horizontal line. */
1985 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBbTgt->uStartX - 2,
1986 pDumpBbTgt->uStartY, '-', enmColor);
1987 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
1988 enmColor);
1989 /* Draw the vertical line down to the source block. */
1990 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, pDumpBbTgt->uStartY + 1, uYHorLine - 1,
1991 '|', enmColor);
1992 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
1993 /* Draw the horizontal connection between the source block and vertical part. */
1994 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBb->uStartX - 1,
1995 uYHorLine, '-', enmColor);
1996
1997 }
1998 else
1999 {
2000 /* Going forward. */
2001 uint32_t uXVerLine = cchWidth + cchLeftExtra + (cchRightExtra - uFwdConns) - 1;
2002 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
2003 uFwdConns++;
2004
2005 /* Draw the horizontal line. */
2006 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBb->uStartX + pDumpBb->cchWidth,
2007 uXVerLine - 1, uYHorLine, '-', enmColor);
2008 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2009 /* Draw the vertical line down to the target block. */
2010 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, uYHorLine + 1, pDumpBbTgt->uStartY - 1,
2011 '|', enmColor);
2012 /* Draw the horizontal connection between the target block and vertical part. */
2013 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2014 uXVerLine, pDumpBbTgt->uStartY, '-', enmColor);
2015 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
2016 enmColor);
2017 /* Draw the arrow pointing to the target block. */
2018 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2019 pDumpBbTgt->uStartY, '<', enmColor);
2020 }
2021 break;
2022 }
2023 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
2024 default:
2025 AssertFailed();
2026 }
2027 }
2028
2029 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, fUseColor);
2030 dbgcScreenAsciiDestroy(hScreen);
2031 }
2032 }
2033
2034 if (paDumpBb)
2035 {
2036 for (unsigned i = 0; i < cBbs; i++)
2037 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
2038 RTMemTmpFree(paDumpBb);
2039 }
2040
2041 if (paDumpBranchTbl)
2042 {
2043 for (unsigned i = 0; i < cBranchTbls; i++)
2044 DBGFR3FlowBranchTblRelease(paDumpBranchTbl[i].hFlowBranchTbl);
2045 RTMemTmpFree(paDumpBranchTbl);
2046 }
2047
2048 if (hCfgIt)
2049 DBGFR3FlowItDestroy(hCfgIt);
2050 if (hFlowBranchTblIt)
2051 DBGFR3FlowBranchTblItDestroy(hFlowBranchTblIt);
2052
2053 return rc;
2054}
2055
2056
2057/**
2058 * @callback_method_impl{FNDBGCCMD, The 'ucfg' command.}
2059 */
2060static DECLCALLBACK(int) dbgcCmdUnassembleCfg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2061{
2062 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2063
2064 /*
2065 * Validate input.
2066 */
2067 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2068 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
2069 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
2070
2071 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2072 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
2073
2074 /*
2075 * Check the desired mode.
2076 */
2077 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
2078 bool fUseColor = false;
2079 switch (pCmd->pszCmd[4])
2080 {
2081 default: AssertFailed(); RT_FALL_THRU();
2082 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
2083 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
2084 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
2085 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
2086 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
2087 case 'c': fUseColor = true; break;
2088 }
2089
2090 /** @todo should use DBGFADDRESS for everything */
2091
2092 /*
2093 * Find address.
2094 */
2095 if (!cArgs)
2096 {
2097 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2098 {
2099 /** @todo Batch query CS, RIP, CPU mode and flags. */
2100 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2101 if (CPUMIsGuestIn64BitCode(pVCpu))
2102 {
2103 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
2104 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
2105 }
2106 else
2107 {
2108 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
2109 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2110 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2111 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
2112 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
2113 {
2114 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2115 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
2116 }
2117 }
2118
2119 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
2120 }
2121 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
2122 {
2123 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2124 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
2125 }
2126 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
2127 }
2128 else
2129 pDbgc->DisasmPos = paArgs[0];
2130 pDbgc->pLastPos = &pDbgc->DisasmPos;
2131
2132 /*
2133 * Range.
2134 */
2135 switch (pDbgc->DisasmPos.enmRangeType)
2136 {
2137 case DBGCVAR_RANGE_NONE:
2138 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2139 pDbgc->DisasmPos.u64Range = 10;
2140 break;
2141
2142 case DBGCVAR_RANGE_ELEMENTS:
2143 if (pDbgc->DisasmPos.u64Range > 2048)
2144 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
2145 break;
2146
2147 case DBGCVAR_RANGE_BYTES:
2148 if (pDbgc->DisasmPos.u64Range > 65536)
2149 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
2150 break;
2151
2152 default:
2153 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
2154 }
2155
2156 /*
2157 * Convert physical and host addresses to guest addresses.
2158 */
2159 RTDBGAS hDbgAs = pDbgc->hDbgAs;
2160 int rc;
2161 switch (pDbgc->DisasmPos.enmType)
2162 {
2163 case DBGCVAR_TYPE_GC_FLAT:
2164 case DBGCVAR_TYPE_GC_FAR:
2165 break;
2166 case DBGCVAR_TYPE_GC_PHYS:
2167 hDbgAs = DBGF_AS_PHYS;
2168 RT_FALL_THRU();
2169 case DBGCVAR_TYPE_HC_FLAT:
2170 case DBGCVAR_TYPE_HC_PHYS:
2171 {
2172 DBGCVAR VarTmp;
2173 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
2174 if (RT_FAILURE(rc))
2175 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
2176 pDbgc->DisasmPos = VarTmp;
2177 break;
2178 }
2179 default: AssertFailed(); break;
2180 }
2181
2182 DBGFADDRESS CurAddr;
2183 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
2184 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
2185 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
2186 else
2187 {
2188 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
2189 if (RT_FAILURE(rc))
2190 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
2191 }
2192
2193 DBGFFLOW hCfg;
2194 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
2195 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
2196 if (RT_SUCCESS(rc))
2197 {
2198 /* Dump the graph. */
2199 rc = dbgcCmdUnassembleCfgDump(hCfg, fUseColor, pCmdHlp);
2200 DBGFR3FlowRelease(hCfg);
2201 }
2202 else
2203 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
2204
2205 NOREF(pCmd);
2206 return rc;
2207}
2208
2209
2210/**
2211 * @callback_method_impl{FNDBGCCMD, The 'ls' command.}
2212 */
2213static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2214{
2215 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2216
2217 /*
2218 * Validate input.
2219 */
2220 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2221 if (cArgs == 1)
2222 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2223 if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2224 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing...");
2225 if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType))
2226 return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM");
2227
2228 /*
2229 * Find address.
2230 */
2231 if (!cArgs)
2232 {
2233 if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2234 {
2235 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2236 pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR;
2237 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2238 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2239 }
2240 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE;
2241 }
2242 else
2243 pDbgc->SourcePos = paArgs[0];
2244 pDbgc->pLastPos = &pDbgc->SourcePos;
2245
2246 /*
2247 * Ensure the source address is flat GC.
2248 */
2249 switch (pDbgc->SourcePos.enmType)
2250 {
2251 case DBGCVAR_TYPE_GC_FLAT:
2252 break;
2253 case DBGCVAR_TYPE_GC_PHYS:
2254 case DBGCVAR_TYPE_GC_FAR:
2255 case DBGCVAR_TYPE_HC_FLAT:
2256 case DBGCVAR_TYPE_HC_PHYS:
2257 {
2258 int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos);
2259 if (RT_FAILURE(rc))
2260 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc);
2261 break;
2262 }
2263 default: AssertFailed(); break;
2264 }
2265
2266 /*
2267 * Range.
2268 */
2269 switch (pDbgc->SourcePos.enmRangeType)
2270 {
2271 case DBGCVAR_RANGE_NONE:
2272 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2273 pDbgc->SourcePos.u64Range = 10;
2274 break;
2275
2276 case DBGCVAR_RANGE_ELEMENTS:
2277 if (pDbgc->SourcePos.u64Range > 2048)
2278 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n");
2279 break;
2280
2281 case DBGCVAR_RANGE_BYTES:
2282 if (pDbgc->SourcePos.u64Range > 65536)
2283 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
2284 break;
2285
2286 default:
2287 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType);
2288 }
2289
2290 /*
2291 * Do the disassembling.
2292 */
2293 bool fFirst = 1;
2294 RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" };
2295 int iRangeLeft = (int)pDbgc->SourcePos.u64Range;
2296 if (iRangeLeft == 0) /* kludge for 'r'. */
2297 iRangeLeft = -1;
2298 for (;;)
2299 {
2300 /*
2301 * Get line info.
2302 */
2303 RTDBGLINE Line;
2304 RTGCINTPTR off;
2305 DBGFADDRESS SourcePosAddr;
2306 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr);
2307 if (RT_FAILURE(rc))
2308 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos);
2309 rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL);
2310 if (RT_FAILURE(rc))
2311 return VINF_SUCCESS;
2312
2313 unsigned cLines = 0;
2314 if (memcmp(&Line, &LinePrev, sizeof(Line)))
2315 {
2316 /*
2317 * Print filenamename
2318 */
2319 if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename))
2320 fFirst = true;
2321 if (fFirst)
2322 {
2323 rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo);
2324 if (RT_FAILURE(rc))
2325 return rc;
2326 }
2327
2328 /*
2329 * Try open the file and read the line.
2330 */
2331 FILE *phFile = fopen(Line.szFilename, "r");
2332 if (phFile)
2333 {
2334 /* Skip ahead to the desired line. */
2335 char szLine[4096];
2336 unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1;
2337 if (cBefore > 7)
2338 cBefore = 0;
2339 unsigned cLeft = Line.uLineNo - cBefore;
2340 while (cLeft > 0)
2341 {
2342 szLine[0] = '\0';
2343 if (!fgets(szLine, sizeof(szLine), phFile))
2344 break;
2345 cLeft--;
2346 }
2347 if (!cLeft)
2348 {
2349 /* print the before lines */
2350 for (;;)
2351 {
2352 size_t cch = strlen(szLine);
2353 while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) )
2354 szLine[--cch] = '\0';
2355 if (cBefore-- <= 0)
2356 break;
2357
2358 rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine);
2359 szLine[0] = '\0';
2360 const char *pszShutUpGcc = fgets(szLine, sizeof(szLine), phFile); NOREF(pszShutUpGcc);
2361 cLines++;
2362 }
2363 /* print the actual line */
2364 rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine);
2365 }
2366 fclose(phFile);
2367 if (RT_FAILURE(rc))
2368 return rc;
2369 fFirst = false;
2370 }
2371 else
2372 return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename);
2373
2374 LinePrev = Line;
2375 }
2376
2377
2378 /*
2379 * Advance
2380 */
2381 if (iRangeLeft < 0) /* 'r' */
2382 break;
2383 if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
2384 iRangeLeft -= cLines;
2385 else
2386 iRangeLeft -= 1;
2387 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1);
2388 if (RT_FAILURE(rc))
2389 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1);
2390 if (iRangeLeft <= 0)
2391 break;
2392 }
2393
2394 NOREF(pCmd);
2395 return 0;
2396}
2397
2398
2399/**
2400 * @callback_method_impl{FNDBGCCMD, The 'r' command.}
2401 */
2402static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2403{
2404 return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
2405}
2406
2407
2408/**
2409 * @callback_method_impl{FNDBGCCMD, Common worker for the dbgcCmdReg*()
2410 * commands.}
2411 */
2412static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs,
2413 const char *pszPrefix)
2414{
2415 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2416 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3);
2417 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING
2418 || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL);
2419
2420 /*
2421 * Parse the register name and kind.
2422 */
2423 const char *pszReg = paArgs[0].u.pszString;
2424 if (*pszReg == '@')
2425 pszReg++;
2426 VMCPUID idCpu = pDbgc->idCpu;
2427 if (*pszPrefix)
2428 idCpu |= DBGFREG_HYPER_VMCPUID;
2429 if (*pszReg == '.')
2430 {
2431 pszReg++;
2432 idCpu |= DBGFREG_HYPER_VMCPUID;
2433 }
2434 const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : "";
2435
2436 /*
2437 * Query the register type & value (the setter needs the type).
2438 */
2439 DBGFREGVALTYPE enmType;
2440 DBGFREGVAL Value;
2441 int rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2442 if (RT_FAILURE(rc))
2443 {
2444 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2445 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2446 pszActualPrefix, pszReg);
2447 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2448 pszActualPrefix, pszReg, rc);
2449 }
2450 if (cArgs == 1)
2451 {
2452 /*
2453 * Show the register.
2454 */
2455 char szValue[160];
2456 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/);
2457 if (RT_SUCCESS(rc))
2458 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue);
2459 else
2460 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2461 }
2462 else
2463 {
2464 DBGCVAR NewValueTmp;
2465 PCDBGCVAR pNewValue;
2466 if (cArgs == 3)
2467 {
2468 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2469 if (strcmp(paArgs[1].u.pszString, "="))
2470 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='.");
2471 pNewValue = &paArgs[2];
2472 }
2473 else
2474 {
2475 /* Not possible to convince the parser to support both codeview and
2476 windbg syntax and make the equal sign optional. Try help it. */
2477 /** @todo make DBGCCmdHlpConvert do more with strings. */
2478 rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp);
2479 if (RT_FAILURE(rc))
2480 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol.");
2481 pNewValue = &NewValueTmp;
2482 }
2483
2484 /*
2485 * Modify the register.
2486 */
2487 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER);
2488 if (enmType != DBGFREGVALTYPE_DTR)
2489 {
2490 enmType = DBGFREGVALTYPE_U64;
2491 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64);
2492 }
2493 else
2494 {
2495 enmType = DBGFREGVALTYPE_DTR;
2496 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base);
2497 if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE)
2498 Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range;
2499 }
2500 if (RT_SUCCESS(rc))
2501 {
2502 rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType);
2503 if (RT_FAILURE(rc))
2504 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n",
2505 pszActualPrefix, pszReg, rc);
2506 if (rc != VINF_SUCCESS)
2507 DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc);
2508 }
2509 else
2510 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2511 }
2512 return rc;
2513}
2514
2515
2516/**
2517 * @callback_method_impl{FNDBGCCMD,
2518 * The 'rg'\, 'rg64' and 'rg32' commands\, worker for 'r'.}
2519 */
2520static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2521{
2522 /*
2523 * Show all registers our selves.
2524 */
2525 if (cArgs == 0)
2526 {
2527 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2528 bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64")
2529 || ( strcmp(pCmd->pszCmd, "rg32") != 0
2530 && DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu));
2531 return DBGCCmdHlpRegPrintf(pCmdHlp, pDbgc->idCpu, f64BitMode, pDbgc->fRegTerse);
2532 }
2533 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "");
2534}
2535
2536
2537/**
2538 * @callback_method_impl{FNDBGCCMD, The 'rt' command.}
2539 */
2540static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2541{
2542 NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2543
2544 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2545 pDbgc->fRegTerse = !pDbgc->fRegTerse;
2546 return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n");
2547}
2548
2549
2550/**
2551 * @callback_method_impl{FNDBGCCMD, The 'pr' and 'tr' commands.}
2552 */
2553static DECLCALLBACK(int) dbgcCmdStepTraceToggle(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2554{
2555 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2556 Assert(cArgs == 0); NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2557
2558 /* Note! windbg accepts 'r' as a flag to 'p', 'pa', 'pc', 'pt', 't',
2559 'ta', 'tc' and 'tt'. We've simplified it. */
2560 pDbgc->fStepTraceRegs = !pDbgc->fStepTraceRegs;
2561 return VINF_SUCCESS;
2562}
2563
2564
2565/**
2566 * @callback_method_impl{FNDBGCCMD, The 'p'\, 'pc'\, 'pt'\, 't'\, 'tc'\, and 'tt' commands.}
2567 */
2568static DECLCALLBACK(int) dbgcCmdStepTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2569{
2570 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2571 if (cArgs != 0)
2572 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2573 "Sorry, but the '%s' command does not currently implement any arguments.\n", pCmd->pszCmd);
2574
2575 /* The 'count' has to be implemented by DBGC, whereas the
2576 filtering is taken care of by DBGF. */
2577
2578 /*
2579 * Convert the command to DBGF_STEP_F_XXX and other API input.
2580 */
2581 //DBGFADDRESS StackPop;
2582 PDBGFADDRESS pStackPop = NULL;
2583 RTGCPTR cbStackPop = 0;
2584 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : _64K;
2585 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2586 if (pCmd->pszCmd[1] == 'c')
2587 fFlags |= DBGF_STEP_F_STOP_ON_CALL;
2588 else if (pCmd->pszCmd[1] == 't')
2589 fFlags |= DBGF_STEP_F_STOP_ON_RET;
2590 else if (pCmd->pszCmd[0] != 'p')
2591 cMaxSteps = 1;
2592 else
2593 {
2594 /** @todo consider passing RSP + 1 in for 'p' and something else sensible for
2595 * the 'pt' command. */
2596 }
2597
2598 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, NULL, pStackPop, cbStackPop, cMaxSteps);
2599 if (RT_SUCCESS(rc))
2600 pDbgc->fReady = false;
2601 else
2602 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2603
2604 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2605 return rc;
2606}
2607
2608
2609/**
2610 * @callback_method_impl{FNDBGCCMD, The 'pa' and 'ta' commands.}
2611 */
2612static DECLCALLBACK(int) dbgcCmdStepTraceTo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2613{
2614 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2615 if (cArgs != 1)
2616 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2617 "Sorry, but the '%s' command only implements a single argument at present.\n", pCmd->pszCmd);
2618 DBGFADDRESS Address;
2619 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
2620 if (RT_FAILURE(rc))
2621 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[0]);
2622
2623 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : 1;
2624 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2625 rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, &Address, NULL, 0, cMaxSteps);
2626 if (RT_SUCCESS(rc))
2627 pDbgc->fReady = false;
2628 else
2629 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2630 return rc;
2631}
2632
2633
2634/**
2635 * Helper that tries to resolve a far address to a symbol and formats it.
2636 *
2637 * @returns Pointer to symbol string on success, NULL if not resolved.
2638 * Free using RTStrFree.
2639 * @param pCmdHlp The command helper structure.
2640 * @param hAs The address space to use. NIL_RTDBGAS means no symbol resolving.
2641 * @param sel The selector part of the address.
2642 * @param off The offset part of the address.
2643 * @param pszPrefix How to prefix the symbol string.
2644 * @param pszSuffix How to suffix the symbol string.
2645 */
2646static char *dbgcCmdHlpFarAddrToSymbol(PDBGCCMDHLP pCmdHlp, RTDBGAS hAs, RTSEL sel, uint64_t off,
2647 const char *pszPrefix, const char *pszSuffix)
2648{
2649 char *pszRet = NULL;
2650 if (hAs != NIL_RTDBGAS)
2651 {
2652 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2653 DBGFADDRESS Addr;
2654 int rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr, sel, off);
2655 if (RT_SUCCESS(rc))
2656 {
2657 RTGCINTPTR offDispSym = 0;
2658 PRTDBGSYMBOL pSymbol = DBGFR3AsSymbolByAddrA(pDbgc->pUVM, hAs, &Addr,
2659 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL
2660 | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
2661 &offDispSym, NULL);
2662 if (pSymbol)
2663 {
2664 if (offDispSym == 0)
2665 pszRet = RTStrAPrintf2("%s%s%s", pszPrefix, pSymbol->szName, pszSuffix);
2666 else if (offDispSym > 0)
2667 pszRet = RTStrAPrintf2("%s%s+%llx%s", pszPrefix, pSymbol->szName, (int64_t)offDispSym, pszSuffix);
2668 else
2669 pszRet = RTStrAPrintf2("%s%s-%llx%s", pszPrefix, pSymbol->szName, -(int64_t)offDispSym, pszSuffix);
2670 RTDbgSymbolFree(pSymbol);
2671 }
2672 }
2673 }
2674 return pszRet;
2675}
2676
2677
2678/**
2679 * @callback_method_impl{FNDBGCCMD, The 'k'\, 'kg' and 'kh' commands.}
2680 */
2681static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2682{
2683 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2684
2685 /*
2686 * Figure which context we're called for and start walking that stack.
2687 */
2688 int rc;
2689 PCDBGFSTACKFRAME pFirstFrame;
2690 bool const fGuest = true;
2691 bool const fVerbose = pCmd->pszCmd[1] == 'v'
2692 || (pCmd->pszCmd[1] != '\0' && pCmd->pszCmd[2] == 'v');
2693 rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame);
2694 if (RT_FAILURE(rc))
2695 return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc);
2696
2697 /*
2698 * Print the frames.
2699 */
2700 char szTmp[1024];
2701 uint32_t fBitFlags = 0;
2702 for (PCDBGFSTACKFRAME pFrame = pFirstFrame;
2703 pFrame;
2704 pFrame = DBGFR3StackWalkNext(pFrame))
2705 {
2706 uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT);
2707 if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT)
2708 {
2709 if (fCurBitFlags != fBitFlags)
2710 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2711 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2712 pFrame->iFrame,
2713 pFrame->AddrFrame.Sel,
2714 (uint16_t)pFrame->AddrFrame.off,
2715 pFrame->AddrReturnFrame.Sel,
2716 (uint16_t)pFrame->AddrReturnFrame.off,
2717 (uint32_t)pFrame->AddrReturnPC.Sel,
2718 (uint32_t)pFrame->AddrReturnPC.off,
2719 pFrame->Args.au32[0],
2720 pFrame->Args.au32[1],
2721 pFrame->Args.au32[2],
2722 pFrame->Args.au32[3]);
2723 }
2724 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT)
2725 {
2726 if (fCurBitFlags != fBitFlags)
2727 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2728 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2729 pFrame->iFrame,
2730 (uint32_t)pFrame->AddrFrame.off,
2731 (uint32_t)pFrame->AddrReturnFrame.off,
2732 (uint32_t)pFrame->AddrReturnPC.Sel,
2733 (uint32_t)pFrame->AddrReturnPC.off,
2734 pFrame->Args.au32[0],
2735 pFrame->Args.au32[1],
2736 pFrame->Args.au32[2],
2737 pFrame->Args.au32[3]);
2738 }
2739 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT)
2740 {
2741 if (fCurBitFlags != fBitFlags)
2742 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n");
2743 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %016RX64 %04RX16:%016RX64 %016RX64",
2744 pFrame->iFrame,
2745 (uint64_t)pFrame->AddrFrame.off,
2746 pFrame->AddrReturnFrame.Sel,
2747 (uint64_t)pFrame->AddrReturnFrame.off,
2748 (uint64_t)pFrame->AddrReturnPC.off);
2749 }
2750 if (RT_FAILURE(rc))
2751 break;
2752 if (!pFrame->pSymPC)
2753 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
2754 fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT
2755 ? " %RTsel:%016RGv"
2756 : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT
2757 ? " %RTsel:%08RGv"
2758 : " %RTsel:%04RGv"
2759 , pFrame->AddrPC.Sel, pFrame->AddrPC.off);
2760 else
2761 {
2762 RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */
2763 if (offDisp > 0)
2764 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp);
2765 else if (offDisp < 0)
2766 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp);
2767 else
2768 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName);
2769 }
2770 if (RT_SUCCESS(rc) && pFrame->pLinePC)
2771 rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo);
2772 if (RT_SUCCESS(rc))
2773 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2774
2775 if (fVerbose && RT_SUCCESS(rc))
2776 {
2777 /*
2778 * Display verbose frame info.
2779 */
2780 const char *pszRetType = "invalid";
2781 switch (pFrame->enmReturnType)
2782 {
2783 case RTDBGRETURNTYPE_NEAR16: pszRetType = "retn/16"; break;
2784 case RTDBGRETURNTYPE_NEAR32: pszRetType = "retn/32"; break;
2785 case RTDBGRETURNTYPE_NEAR64: pszRetType = "retn/64"; break;
2786 case RTDBGRETURNTYPE_FAR16: pszRetType = "retf/16"; break;
2787 case RTDBGRETURNTYPE_FAR32: pszRetType = "retf/32"; break;
2788 case RTDBGRETURNTYPE_FAR64: pszRetType = "retf/64"; break;
2789 case RTDBGRETURNTYPE_IRET16: pszRetType = "iret-16"; break;
2790 case RTDBGRETURNTYPE_IRET32: pszRetType = "iret/32s"; break;
2791 case RTDBGRETURNTYPE_IRET32_PRIV: pszRetType = "iret/32p"; break;
2792 case RTDBGRETURNTYPE_IRET32_V86: pszRetType = "iret/v86"; break;
2793 case RTDBGRETURNTYPE_IRET64: pszRetType = "iret/64"; break;
2794
2795 case RTDBGRETURNTYPE_END:
2796 case RTDBGRETURNTYPE_INVALID:
2797 case RTDBGRETURNTYPE_32BIT_HACK:
2798 break;
2799 }
2800 size_t cchLine = DBGCCmdHlpPrintfLen(pCmdHlp, " %s", pszRetType);
2801 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_UNWIND_INFO)
2802 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-unwind-info");
2803 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_ODD_EVEN)
2804 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-odd-even");
2805 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_REAL_V86)
2806 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " real-v86");
2807 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_MAX_DEPTH)
2808 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " max-depth");
2809 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_TRAP_FRAME)
2810 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " trap-frame");
2811
2812 if (pFrame->cSureRegs > 0)
2813 {
2814 cchLine = 1024; /* force new line */
2815 for (uint32_t i = 0; i < pFrame->cSureRegs; i++)
2816 {
2817 if (cchLine > 80)
2818 {
2819 DBGCCmdHlpPrintf(pCmdHlp, "\n ");
2820 cchLine = 2;
2821 }
2822
2823 szTmp[0] = '\0';
2824 DBGFR3RegFormatValue(szTmp, sizeof(szTmp), &pFrame->paSureRegs[i].Value,
2825 pFrame->paSureRegs[i].enmType, false);
2826 const char *pszName = pFrame->paSureRegs[i].enmReg != DBGFREG_END
2827 ? DBGFR3RegCpuName(pUVM, pFrame->paSureRegs[i].enmReg, pFrame->paSureRegs[i].enmType)
2828 : pFrame->paSureRegs[i].pszName;
2829 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " %s=%s", pszName, szTmp);
2830 }
2831 }
2832
2833 if (RT_SUCCESS(rc))
2834 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2835 }
2836
2837 if (RT_FAILURE(rc))
2838 break;
2839
2840 fBitFlags = fCurBitFlags;
2841 }
2842
2843 DBGFR3StackWalkEnd(pFirstFrame);
2844
2845 NOREF(paArgs); NOREF(cArgs);
2846 return rc;
2847}
2848
2849
2850/**
2851 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
2852 *
2853 * @returns pfnPrintf status code.
2854 * @param pCmdHlp The DBGC command helpers.
2855 * @param pDesc The descriptor to display.
2856 * @param iEntry The descriptor entry number.
2857 * @param fHyper Whether the selector belongs to the hypervisor or not.
2858 * @param hAs Address space to use when resolving symbols.
2859 * @param pfDblEntry Where to indicate whether the entry is two entries wide.
2860 * Optional.
2861 */
2862static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs,
2863 bool *pfDblEntry)
2864{
2865 /* GUEST64 */
2866 int rc;
2867
2868 const char *pszHyper = fHyper ? " HYPER" : "";
2869 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
2870 if (pDesc->Gen.u1DescType)
2871 {
2872 static const char * const s_apszTypes[] =
2873 {
2874 "DataRO", /* 0 Read-Only */
2875 "DataRO", /* 1 Read-Only - Accessed */
2876 "DataRW", /* 2 Read/Write */
2877 "DataRW", /* 3 Read/Write - Accessed */
2878 "DownRO", /* 4 Expand-down, Read-Only */
2879 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
2880 "DownRW", /* 6 Expand-down, Read/Write */
2881 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
2882 "CodeEO", /* 8 Execute-Only */
2883 "CodeEO", /* 9 Execute-Only - Accessed */
2884 "CodeER", /* A Execute/Readable */
2885 "CodeER", /* B Execute/Readable - Accessed */
2886 "ConfE0", /* C Conforming, Execute-Only */
2887 "ConfE0", /* D Conforming, Execute-Only - Accessed */
2888 "ConfER", /* E Conforming, Execute/Readable */
2889 "ConfER" /* F Conforming, Execute/Readable - Accessed */
2890 };
2891 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
2892 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
2893 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2894 uint32_t u32Base = X86DESC_BASE(pDesc);
2895 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
2896
2897 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
2898 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
2899 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
2900 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
2901 }
2902 else
2903 {
2904 static const char * const s_apszTypes[] =
2905 {
2906 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
2907 "Ill-1 ", /* 1 0001 Available 16-bit TSS */
2908 "LDT ", /* 2 0010 LDT */
2909 "Ill-3 ", /* 3 0011 Busy 16-bit TSS */
2910 "Ill-4 ", /* 4 0100 16-bit Call Gate */
2911 "Ill-5 ", /* 5 0101 Task Gate */
2912 "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */
2913 "Ill-7 ", /* 7 0111 16-bit Trap Gate */
2914 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
2915 "Tss64A", /* 9 1001 Available 32-bit TSS */
2916 "Ill-A ", /* A 1010 Reserved (Illegal) */
2917 "Tss64B", /* B 1011 Busy 32-bit TSS */
2918 "Call64", /* C 1100 32-bit Call Gate */
2919 "Ill-D ", /* D 1101 Reserved (Illegal) */
2920 "Int64 ", /* E 1110 32-bit Interrupt Gate */
2921 "Trap64" /* F 1111 32-bit Trap Gate */
2922 };
2923 switch (pDesc->Gen.u4Type)
2924 {
2925 /* raw */
2926 case X86_SEL_TYPE_SYS_UNDEFINED:
2927 case X86_SEL_TYPE_SYS_UNDEFINED2:
2928 case X86_SEL_TYPE_SYS_UNDEFINED4:
2929 case X86_SEL_TYPE_SYS_UNDEFINED3:
2930 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
2931 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
2932 case X86_SEL_TYPE_SYS_286_CALL_GATE:
2933 case X86_SEL_TYPE_SYS_286_INT_GATE:
2934 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
2935 case X86_SEL_TYPE_SYS_TASK_GATE:
2936 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
2937 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
2938 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
2939 break;
2940
2941 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
2942 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
2943 case X86_SEL_TYPE_SYS_LDT:
2944 {
2945 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
2946 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2947 const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " ";
2948
2949 uint64_t u64Base = X86DESC64_BASE(pDesc);
2950 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
2951
2952 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n",
2953 iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit,
2954 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig,
2955 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
2956 pszHyper);
2957 if (pfDblEntry)
2958 *pfDblEntry = true;
2959 break;
2960 }
2961
2962 case X86_SEL_TYPE_SYS_386_CALL_GATE:
2963 {
2964 unsigned cParams = pDesc->au8[4] & 0x1f;
2965 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
2966 RTSEL sel = pDesc->au16[1];
2967 uint64_t off = pDesc->au16[0]
2968 | ((uint64_t)pDesc->au16[3] << 16)
2969 | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
2970 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
2971 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s%s\n",
2972 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
2973 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
2974 RTStrFree(pszSymbol);
2975 if (pfDblEntry)
2976 *pfDblEntry = true;
2977 break;
2978 }
2979
2980 case X86_SEL_TYPE_SYS_386_INT_GATE:
2981 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
2982 {
2983 RTSEL sel = pDesc->Gate.u16Sel;
2984 uint64_t off = pDesc->Gate.u16OffsetLow
2985 | ((uint64_t)pDesc->Gate.u16OffsetHigh << 16)
2986 | ((uint64_t)pDesc->Gate.u32OffsetTop << 32);
2987 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
2988 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%u %s IST=%u%s%s\n",
2989 iEntry, s_apszTypes[pDesc->Gate.u4Type], sel, off,
2990 pDesc->Gate.u2Dpl, pszPresent, pDesc->Gate.u3IST, pszHyper, pszSymbol ? pszSymbol : "");
2991 RTStrFree(pszSymbol);
2992 if (pfDblEntry)
2993 *pfDblEntry = true;
2994 break;
2995 }
2996
2997 /* impossible, just it's necessary to keep gcc happy. */
2998 default:
2999 return VINF_SUCCESS;
3000 }
3001 }
3002 return VINF_SUCCESS;
3003}
3004
3005
3006/**
3007 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
3008 *
3009 * @returns pfnPrintf status code.
3010 * @param pCmdHlp The DBGC command helpers.
3011 * @param pDesc The descriptor to display.
3012 * @param iEntry The descriptor entry number.
3013 * @param fHyper Whether the selector belongs to the hypervisor or not.
3014 * @param hAs Address space to use when resolving symbols.
3015 */
3016static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs)
3017{
3018 int rc;
3019
3020 const char *pszHyper = fHyper ? " HYPER" : "";
3021 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
3022 if (pDesc->Gen.u1DescType)
3023 {
3024 static const char * const s_apszTypes[] =
3025 {
3026 "DataRO", /* 0 Read-Only */
3027 "DataRO", /* 1 Read-Only - Accessed */
3028 "DataRW", /* 2 Read/Write */
3029 "DataRW", /* 3 Read/Write - Accessed */
3030 "DownRO", /* 4 Expand-down, Read-Only */
3031 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
3032 "DownRW", /* 6 Expand-down, Read/Write */
3033 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
3034 "CodeEO", /* 8 Execute-Only */
3035 "CodeEO", /* 9 Execute-Only - Accessed */
3036 "CodeER", /* A Execute/Readable */
3037 "CodeER", /* B Execute/Readable - Accessed */
3038 "ConfE0", /* C Conforming, Execute-Only */
3039 "ConfE0", /* D Conforming, Execute-Only - Accessed */
3040 "ConfER", /* E Conforming, Execute/Readable */
3041 "ConfER" /* F Conforming, Execute/Readable - Accessed */
3042 };
3043 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
3044 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3045 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3046 uint32_t u32Base = pDesc->Gen.u16BaseLow
3047 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3048 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3049 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3050 if (pDesc->Gen.u1Granularity)
3051 cbLimit <<= PAGE_SHIFT;
3052
3053 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
3054 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3055 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
3056 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
3057 }
3058 else
3059 {
3060 static const char * const s_apszTypes[] =
3061 {
3062 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
3063 "Tss16A", /* 1 0001 Available 16-bit TSS */
3064 "LDT ", /* 2 0010 LDT */
3065 "Tss16B", /* 3 0011 Busy 16-bit TSS */
3066 "Call16", /* 4 0100 16-bit Call Gate */
3067 "TaskG ", /* 5 0101 Task Gate */
3068 "Int16 ", /* 6 0110 16-bit Interrupt Gate */
3069 "Trap16", /* 7 0111 16-bit Trap Gate */
3070 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
3071 "Tss32A", /* 9 1001 Available 32-bit TSS */
3072 "Ill-A ", /* A 1010 Reserved (Illegal) */
3073 "Tss32B", /* B 1011 Busy 32-bit TSS */
3074 "Call32", /* C 1100 32-bit Call Gate */
3075 "Ill-D ", /* D 1101 Reserved (Illegal) */
3076 "Int32 ", /* E 1110 32-bit Interrupt Gate */
3077 "Trap32" /* F 1111 32-bit Trap Gate */
3078 };
3079 switch (pDesc->Gen.u4Type)
3080 {
3081 /* raw */
3082 case X86_SEL_TYPE_SYS_UNDEFINED:
3083 case X86_SEL_TYPE_SYS_UNDEFINED2:
3084 case X86_SEL_TYPE_SYS_UNDEFINED4:
3085 case X86_SEL_TYPE_SYS_UNDEFINED3:
3086 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
3087 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
3088 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3089 break;
3090
3091 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3092 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3093 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3094 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3095 case X86_SEL_TYPE_SYS_LDT:
3096 {
3097 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3098 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3099 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3100 uint32_t u32Base = pDesc->Gen.u16BaseLow
3101 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3102 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3103 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3104 if (pDesc->Gen.u1Granularity)
3105 cbLimit <<= PAGE_SHIFT;
3106
3107 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n",
3108 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3109 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig,
3110 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3111 pszHyper);
3112 break;
3113 }
3114
3115 case X86_SEL_TYPE_SYS_TASK_GATE:
3116 {
3117 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n",
3118 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1],
3119 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3120 break;
3121 }
3122
3123 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3124 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3125 {
3126 unsigned cParams = pDesc->au8[4] & 0x1f;
3127 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3128 RTSEL sel = pDesc->au16[1];
3129 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3130 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3131 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s%s\n",
3132 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3133 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3134 RTStrFree(pszSymbol);
3135 break;
3136 }
3137
3138 case X86_SEL_TYPE_SYS_286_INT_GATE:
3139 case X86_SEL_TYPE_SYS_386_INT_GATE:
3140 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
3141 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3142 {
3143 RTSEL sel = pDesc->au16[1];
3144 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3145 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3146 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s%s\n",
3147 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3148 pDesc->Gen.u2Dpl, pszPresent, pszHyper, pszSymbol ? pszSymbol : "");
3149 RTStrFree(pszSymbol);
3150 break;
3151 }
3152
3153 /* impossible, just it's necessary to keep gcc happy. */
3154 default:
3155 return VINF_SUCCESS;
3156 }
3157 }
3158 return rc;
3159}
3160
3161
3162/**
3163 * @callback_method_impl{FNDBGCCMD, The 'dg'\, 'dga'\, 'dl' and 'dla' commands.}
3164 */
3165static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3166{
3167 /*
3168 * Validate input.
3169 */
3170 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3171
3172 /*
3173 * Get the CPU mode, check which command variation this is
3174 * and fix a default parameter if needed.
3175 */
3176 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3177 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
3178 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
3179 bool fGdt = pCmd->pszCmd[1] == 'g';
3180 bool fAll = pCmd->pszCmd[2] == 'a';
3181 RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT;
3182
3183 DBGCVAR Var;
3184 if (!cArgs)
3185 {
3186 cArgs = 1;
3187 paArgs = &Var;
3188 Var.enmType = DBGCVAR_TYPE_NUMBER;
3189 Var.u.u64Number = fGdt ? 0 : 4;
3190 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3191 Var.u64Range = 1024;
3192 }
3193
3194 /*
3195 * Process the arguments.
3196 */
3197 for (unsigned i = 0; i < cArgs; i++)
3198 {
3199 /*
3200 * Retrieve the selector value from the argument.
3201 * The parser may confuse pointers and numbers if more than one
3202 * argument is given, that that into account.
3203 */
3204 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType));
3205 uint64_t u64;
3206 unsigned cSels = 1;
3207 switch (paArgs[i].enmType)
3208 {
3209 case DBGCVAR_TYPE_NUMBER:
3210 u64 = paArgs[i].u.u64Number;
3211 if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE)
3212 cSels = RT_MIN(paArgs[i].u64Range, 1024);
3213 break;
3214 case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break;
3215 case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break;
3216 case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break;
3217 case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break;
3218 case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break;
3219 default: u64 = _64K; break;
3220 }
3221 if (u64 < _64K)
3222 {
3223 unsigned Sel = (RTSEL)u64;
3224
3225 /*
3226 * Dump the specified range.
3227 */
3228 bool fSingle = cSels == 1;
3229 while ( cSels-- > 0
3230 && Sel < _64K)
3231 {
3232 DBGFSELINFO SelInfo;
3233 int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
3234 if (RT_SUCCESS(rc))
3235 {
3236 if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE)
3237 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n",
3238 Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit);
3239 else if ( fAll
3240 || fSingle
3241 || SelInfo.u.Raw.Gen.u1Present)
3242 {
3243 if (enmMode == CPUMMODE_PROTECTED)
3244 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel,
3245 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL);
3246 else
3247 {
3248 bool fDblSkip = false;
3249 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel,
3250 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL, &fDblSkip);
3251 if (fDblSkip)
3252 Sel += 4;
3253 }
3254 }
3255 }
3256 else
3257 {
3258 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc);
3259 if (!fAll)
3260 return rc;
3261 }
3262 if (RT_FAILURE(rc))
3263 return rc;
3264
3265 /* next */
3266 Sel += 8;
3267 }
3268 }
3269 else
3270 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64);
3271 }
3272
3273 return VINF_SUCCESS;
3274}
3275
3276
3277/**
3278 * @callback_method_impl{FNDBGCCMD, The 'di' and 'dia' commands.}
3279 */
3280static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3281{
3282 /*
3283 * Validate input.
3284 */
3285 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3286
3287 /*
3288 * Establish some stuff like the current IDTR and CPU mode,
3289 * and fix a default parameter.
3290 */
3291 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3292 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
3293 uint16_t cbLimit = 0;
3294 uint64_t GCFlat = 0;
3295 int rc = DBGFR3RegCpuQueryXdtr(pDbgc->pUVM, pDbgc->idCpu, DBGFREG_IDTR, &GCFlat, &cbLimit);
3296 if (RT_FAILURE(rc))
3297 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3RegCpuQueryXdtr/DBGFREG_IDTR");
3298 unsigned cbEntry;
3299 switch (enmMode)
3300 {
3301 case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break;
3302 case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break;
3303 case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break;
3304 default:
3305 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode);
3306 }
3307
3308 bool fAll = pCmd->pszCmd[2] == 'a';
3309 DBGCVAR Var;
3310 if (!cArgs)
3311 {
3312 cArgs = 1;
3313 paArgs = &Var;
3314 Var.enmType = DBGCVAR_TYPE_NUMBER;
3315 Var.u.u64Number = 0;
3316 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3317 Var.u64Range = 256;
3318 }
3319
3320 /*
3321 * Process the arguments.
3322 */
3323 for (unsigned i = 0; i < cArgs; i++)
3324 {
3325 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER);
3326 if (paArgs[i].u.u64Number < 256)
3327 {
3328 RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number;
3329 unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE
3330 ? paArgs[i].u64Range
3331 : 1;
3332 bool fSingle = cInts == 1;
3333 while ( cInts-- > 0
3334 && iInt < 256)
3335 {
3336 /*
3337 * Try read it.
3338 */
3339 union
3340 {
3341 RTFAR16 Real;
3342 X86DESC Prot;
3343 X86DESC64 Long;
3344 } u;
3345 if (iInt * cbEntry + (cbEntry - 1) > cbLimit)
3346 {
3347 DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt);
3348 if (!fAll && !fSingle)
3349 return VINF_SUCCESS;
3350 }
3351 DBGCVAR AddrVar;
3352 AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT;
3353 AddrVar.u.GCFlat = GCFlat + iInt * cbEntry;
3354 AddrVar.enmRangeType = DBGCVAR_RANGE_NONE;
3355 rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL);
3356 if (RT_FAILURE(rc))
3357 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt);
3358
3359 /*
3360 * Display it.
3361 */
3362 switch (enmMode)
3363 {
3364 case CPUMMODE_REAL:
3365 {
3366 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, DBGF_AS_GLOBAL, u.Real.sel, u.Real.off, " (", ")");
3367 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16%s\n", (unsigned)iInt, u.Real, pszSymbol ? pszSymbol : "");
3368 RTStrFree(pszSymbol);
3369 break;
3370 }
3371 case CPUMMODE_PROTECTED:
3372 if (fAll || fSingle || u.Prot.Gen.u1Present)
3373 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false, DBGF_AS_GLOBAL);
3374 break;
3375 case CPUMMODE_LONG:
3376 if (fAll || fSingle || u.Long.Gen.u1Present)
3377 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, DBGF_AS_GLOBAL, NULL);
3378 break;
3379 default: break; /* to shut up gcc */
3380 }
3381 if (RT_FAILURE(rc))
3382 return rc;
3383
3384 /* next */
3385 iInt++;
3386 }
3387 }
3388 else
3389 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number);
3390 }
3391
3392 return VINF_SUCCESS;
3393}
3394
3395
3396/**
3397 * @callback_method_impl{FNDBGCCMD,
3398 * The 'da'\, 'dq'\, 'dqs'\, 'dd'\, 'dds'\, 'dw'\, 'db'\, 'dp'\, 'dps'\,
3399 * and 'du' commands.}
3400 */
3401static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3402{
3403 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3404
3405 /*
3406 * Validate input.
3407 */
3408 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3409 if (cArgs == 1)
3410 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3411 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3412
3413#define DBGC_DUMP_MEM_F_ASCII RT_BIT_32(31)
3414#define DBGC_DUMP_MEM_F_UNICODE RT_BIT_32(30)
3415#define DBGC_DUMP_MEM_F_FAR RT_BIT_32(29)
3416#define DBGC_DUMP_MEM_F_SYMBOLS RT_BIT_32(28)
3417#define DBGC_DUMP_MEM_F_SIZE UINT32_C(0x0000ffff)
3418
3419 /*
3420 * Figure out the element size.
3421 */
3422 unsigned cbElement;
3423 bool fAscii = false;
3424 bool fUnicode = false;
3425 bool fFar = false;
3426 bool fSymbols = pCmd->pszCmd[1] && pCmd->pszCmd[2] == 's';
3427 switch (pCmd->pszCmd[1])
3428 {
3429 default:
3430 case 'b': cbElement = 1; break;
3431 case 'w': cbElement = 2; break;
3432 case 'd': cbElement = 4; break;
3433 case 'q': cbElement = 8; break;
3434 case 'a':
3435 cbElement = 1;
3436 fAscii = true;
3437 break;
3438 case 'F':
3439 cbElement = 4;
3440 fFar = true;
3441 break;
3442 case 'p':
3443 cbElement = DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu) ? 8 : 4;
3444 break;
3445 case 'u':
3446 cbElement = 2;
3447 fUnicode = true;
3448 break;
3449 case '\0':
3450 fAscii = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_ASCII);
3451 fSymbols = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SYMBOLS);
3452 fUnicode = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_UNICODE);
3453 fFar = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_FAR);
3454 cbElement = pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SIZE;
3455 if (!cbElement)
3456 cbElement = 1;
3457 break;
3458 }
3459 uint32_t const cbDumpElement = cbElement
3460 | (fSymbols ? DBGC_DUMP_MEM_F_SYMBOLS : 0)
3461 | (fFar ? DBGC_DUMP_MEM_F_FAR : 0)
3462 | (fUnicode ? DBGC_DUMP_MEM_F_UNICODE : 0)
3463 | (fAscii ? DBGC_DUMP_MEM_F_ASCII : 0);
3464 pDbgc->cbDumpElement = cbDumpElement;
3465
3466 /*
3467 * Find address.
3468 */
3469 if (!cArgs)
3470 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE;
3471 else
3472 pDbgc->DumpPos = paArgs[0];
3473
3474 /*
3475 * Range.
3476 */
3477 switch (pDbgc->DumpPos.enmRangeType)
3478 {
3479 case DBGCVAR_RANGE_NONE:
3480 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3481 pDbgc->DumpPos.u64Range = 0x60;
3482 break;
3483
3484 case DBGCVAR_RANGE_ELEMENTS:
3485 if (pDbgc->DumpPos.u64Range > 2048)
3486 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n");
3487 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3488 pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range;
3489 break;
3490
3491 case DBGCVAR_RANGE_BYTES:
3492 if (pDbgc->DumpPos.u64Range > 65536)
3493 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
3494 break;
3495
3496 default:
3497 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType);
3498 }
3499
3500 pDbgc->pLastPos = &pDbgc->DumpPos;
3501
3502 /*
3503 * Do the dumping.
3504 */
3505 int cbLeft = (int)pDbgc->DumpPos.u64Range;
3506 uint8_t u16Prev = '\0';
3507 for (;;)
3508 {
3509 /*
3510 * Read memory.
3511 */
3512 char achBuffer[16];
3513 size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft);
3514 size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft);
3515 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb);
3516 if (RT_FAILURE(rc))
3517 {
3518 if (u16Prev && u16Prev != '\n')
3519 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3520 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos);
3521 }
3522
3523 /*
3524 * Display it.
3525 */
3526 memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb);
3527 if (!fAscii && !fUnicode)
3528 {
3529 DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos);
3530 unsigned i;
3531 for (i = 0; i < cb; i += cbElement)
3532 {
3533 const char *pszSpace = " ";
3534 if (cbElement <= 2 && i == 8)
3535 pszSpace = "-";
3536 switch (cbElement)
3537 {
3538 case 1:
3539 DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]);
3540 break;
3541 case 2:
3542 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]);
3543 break;
3544 case 4:
3545 if (!fFar)
3546 DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]);
3547 else
3548 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x:%04x:",
3549 pszSpace, *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3550 break;
3551 case 8:
3552 DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]);
3553 break;
3554 }
3555
3556 if (fSymbols)
3557 {
3558 /* Try lookup symbol for the above address. */
3559 DBGFADDRESS Addr;
3560 rc = VINF_SUCCESS;
3561 if (cbElement == 8)
3562 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint64_t *)&achBuffer[i]);
3563 else if (!fFar)
3564 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint32_t *)&achBuffer[i]);
3565 else
3566 rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr,
3567 *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3568 if (RT_SUCCESS(rc))
3569 {
3570 RTINTPTR offDisp;
3571 RTDBGSYMBOL Symbol;
3572 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, &Addr,
3573 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
3574 &offDisp, &Symbol, NULL);
3575 if (RT_SUCCESS(rc))
3576 {
3577 if (!offDisp)
3578 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", Symbol.szName);
3579 else if (offDisp > 0)
3580 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s + %RGv", Symbol.szName, offDisp);
3581 else
3582 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s - %RGv", Symbol.szName, -offDisp);
3583 if (Symbol.cb > 0)
3584 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)", Symbol.cb);
3585 }
3586 }
3587
3588 /* Next line prefix. */
3589 unsigned iNext = i + cbElement;
3590 if (iNext < cb)
3591 {
3592 DBGCVAR TmpPos = pDbgc->DumpPos;
3593 DBGCCmdHlpEval(pCmdHlp, &TmpPos, "(%Dv) + %x", &pDbgc->DumpPos, iNext);
3594 DBGCCmdHlpPrintf(pCmdHlp, "\n%DV:", &pDbgc->DumpPos);
3595 }
3596 }
3597 }
3598
3599 /* Chars column. */
3600 if (cbElement == 1)
3601 {
3602 while (i++ < sizeof(achBuffer))
3603 DBGCCmdHlpPrintf(pCmdHlp, " ");
3604 DBGCCmdHlpPrintf(pCmdHlp, " ");
3605 for (i = 0; i < cb; i += cbElement)
3606 {
3607 uint8_t u8 = *(uint8_t *)&achBuffer[i];
3608 if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32)
3609 DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
3610 else
3611 DBGCCmdHlpPrintf(pCmdHlp, ".");
3612 }
3613 }
3614 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3615 }
3616 else
3617 {
3618 /*
3619 * We print up to the first zero and stop there.
3620 * Only printables + '\t' and '\n' are printed.
3621 */
3622 if (!u16Prev)
3623 DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos);
3624 uint16_t u16 = '\0';
3625 unsigned i;
3626 for (i = 0; i < cb; i += cbElement)
3627 {
3628 u16Prev = u16;
3629 if (cbElement == 1)
3630 u16 = *(uint8_t *)&achBuffer[i];
3631 else
3632 u16 = *(uint16_t *)&achBuffer[i];
3633 if ( u16 < 127
3634 && ( (RT_C_IS_PRINT(u16) && u16 >= 32)
3635 || u16 == '\t'
3636 || u16 == '\n'))
3637 DBGCCmdHlpPrintf(pCmdHlp, "%c", (int)u16);
3638 else if (!u16)
3639 break;
3640 else
3641 DBGCCmdHlpPrintf(pCmdHlp, "\\x%0*x", cbElement * 2, u16);
3642 }
3643 if (u16 == '\0')
3644 cb = cbLeft = i + 1;
3645 if (cbLeft - cb <= 0 && u16Prev != '\n')
3646 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3647 }
3648
3649 /*
3650 * Advance
3651 */
3652 cbLeft -= (int)cb;
3653 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb);
3654 if (RT_FAILURE(rc))
3655 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb);
3656 if (cbLeft <= 0)
3657 break;
3658 }
3659
3660 NOREF(pCmd);
3661 return VINF_SUCCESS;
3662}
3663
3664
3665/**
3666 * Best guess at which paging mode currently applies to the guest
3667 * paging structures.
3668 *
3669 * This have to come up with a decent answer even when the guest
3670 * is in non-paged protected mode or real mode.
3671 *
3672 * @returns cr3.
3673 * @param pDbgc The DBGC instance.
3674 * @param pfPAE Where to store the page address extension indicator.
3675 * @param pfLME Where to store the long mode enabled indicator.
3676 * @param pfPSE Where to store the page size extension indicator.
3677 * @param pfPGE Where to store the page global enabled indicator.
3678 * @param pfNXE Where to store the no-execution enabled indicator.
3679 */
3680static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3681{
3682 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3683 RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu);
3684 *pfPSE = !!(cr4 & X86_CR4_PSE);
3685 *pfPGE = !!(cr4 & X86_CR4_PGE);
3686 if (cr4 & X86_CR4_PAE)
3687 {
3688 *pfPSE = true;
3689 *pfPAE = true;
3690 }
3691 else
3692 *pfPAE = false;
3693
3694 *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG;
3695 *pfNXE = false; /* GUEST64 GUESTNX */
3696 return CPUMGetGuestCR3(pVCpu);
3697}
3698
3699
3700/**
3701 * Determine the shadow paging mode.
3702 *
3703 * @returns cr3.
3704 * @param pDbgc The DBGC instance.
3705 * @param pfPAE Where to store the page address extension indicator.
3706 * @param pfLME Where to store the long mode enabled indicator.
3707 * @param pfPSE Where to store the page size extension indicator.
3708 * @param pfPGE Where to store the page global enabled indicator.
3709 * @param pfNXE Where to store the no-execution enabled indicator.
3710 */
3711static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3712{
3713 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3714
3715 *pfPSE = true;
3716 *pfPGE = false;
3717 switch (PGMGetShadowMode(pVCpu))
3718 {
3719 default:
3720 case PGMMODE_32_BIT:
3721 *pfPAE = *pfLME = *pfNXE = false;
3722 break;
3723 case PGMMODE_PAE:
3724 *pfLME = *pfNXE = false;
3725 *pfPAE = true;
3726 break;
3727 case PGMMODE_PAE_NX:
3728 *pfLME = false;
3729 *pfPAE = *pfNXE = true;
3730 break;
3731 case PGMMODE_AMD64:
3732 *pfNXE = false;
3733 *pfPAE = *pfLME = true;
3734 break;
3735 case PGMMODE_AMD64_NX:
3736 *pfPAE = *pfLME = *pfNXE = true;
3737 break;
3738 }
3739 return PGMGetHyperCR3(pVCpu);
3740}
3741
3742
3743/**
3744 * @callback_method_impl{FNDBGCCMD,
3745 * The 'dpd'\, 'dpda'\, 'dpdb'\, 'dpdg' and 'dpdh' commands.}
3746 */
3747static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3748{
3749 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3750
3751 /*
3752 * Validate input.
3753 */
3754 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3755 if (cArgs == 1 && pCmd->pszCmd[3] == 'a')
3756 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3757 if (cArgs == 1 && pCmd->pszCmd[3] != 'a')
3758 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3759 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
3760 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3761
3762 /*
3763 * Guest or shadow page directories? Get the paging parameters.
3764 */
3765 bool fGuest = pCmd->pszCmd[3] != 'h';
3766 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
3767 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
3768
3769 bool fPAE, fLME, fPSE, fPGE, fNXE;
3770 uint64_t cr3 = fGuest
3771 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
3772 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
3773 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
3774
3775 /*
3776 * Setup default argument if none was specified.
3777 * Fix address / index confusion.
3778 */
3779 DBGCVAR VarDefault;
3780 if (!cArgs)
3781 {
3782 if (pCmd->pszCmd[3] == 'a')
3783 {
3784 if (fLME || fPAE)
3785 return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n");
3786 if (fGuest)
3787 DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3);
3788 else
3789 DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3);
3790 }
3791 else
3792 DBGCVAR_INIT_GC_FLAT(&VarDefault, 0);
3793 paArgs = &VarDefault;
3794 cArgs = 1;
3795 }
3796 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
3797 {
3798 /* If it's a number (not an address), it's an index, so convert it to an address. */
3799 Assert(pCmd->pszCmd[3] != 'a');
3800 VarDefault = paArgs[0];
3801 if (fPAE)
3802 return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n");
3803 if (VarDefault.u.u64Number >= PAGE_SIZE / cbEntry)
3804 return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", PAGE_SIZE / cbEntry - 1);
3805 VarDefault.u.u64Number <<= X86_PD_SHIFT;
3806 VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT;
3807 paArgs = &VarDefault;
3808 }
3809
3810 /*
3811 * Locate the PDE to start displaying at.
3812 *
3813 * The 'dpda' command takes the address of a PDE, while the others are guest
3814 * virtual address which PDEs should be displayed. So, 'dpda' is rather simple
3815 * while the others require us to do all the tedious walking thru the paging
3816 * hierarchy to find the intended PDE.
3817 */
3818 unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */
3819 DBGCVAR VarGCPtr = { NULL, }; /* The GC address corresponding to the current PDE (iEntry != ~0U). */
3820 DBGCVAR VarPDEAddr; /* The address of the current PDE. */
3821 unsigned cEntries; /* The number of entries to display. */
3822 unsigned cEntriesMax; /* The max number of entries to display. */
3823 int rc;
3824 if (pCmd->pszCmd[3] == 'a')
3825 {
3826 VarPDEAddr = paArgs[0];
3827 switch (VarPDEAddr.enmRangeType)
3828 {
3829 case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break;
3830 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break;
3831 default: cEntries = 10; break;
3832 }
3833 cEntriesMax = PAGE_SIZE / cbEntry;
3834 }
3835 else
3836 {
3837 /*
3838 * Determine the range.
3839 */
3840 switch (paArgs[0].enmRangeType)
3841 {
3842 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
3843 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
3844 default: cEntries = 10; break;
3845 }
3846
3847 /*
3848 * Normalize the input address, it must be a flat GC address.
3849 */
3850 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
3851 if (RT_FAILURE(rc))
3852 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
3853 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
3854 {
3855 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
3856 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
3857 }
3858 if (fPAE)
3859 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1);
3860 else
3861 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1);
3862
3863 /*
3864 * Do the paging walk until we get to the page directory.
3865 */
3866 DBGCVAR VarCur;
3867 if (fGuest)
3868 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
3869 else
3870 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
3871 if (fLME)
3872 {
3873 /* Page Map Level 4 Lookup. */
3874 /* Check if it's a valid address first? */
3875 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
3876 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
3877 X86PML4E Pml4e;
3878 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
3879 if (RT_FAILURE(rc))
3880 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
3881 if (!Pml4e.n.u1Present)
3882 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
3883
3884 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
3885 Assert(fPAE);
3886 }
3887 if (fPAE)
3888 {
3889 /* Page directory pointer table. */
3890 X86PDPE Pdpe;
3891 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
3892 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
3893 if (RT_FAILURE(rc))
3894 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
3895 if (!Pdpe.n.u1Present)
3896 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
3897
3898 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3899 VarPDEAddr = VarCur;
3900 VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
3901 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE);
3902 }
3903 else
3904 {
3905 /* 32-bit legacy - CR3 == page directory. */
3906 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK;
3907 VarPDEAddr = VarCur;
3908 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE);
3909 }
3910 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
3911 }
3912
3913 /* adjust cEntries */
3914 cEntries = RT_MAX(1, cEntries);
3915 cEntries = RT_MIN(cEntries, cEntriesMax);
3916
3917 /*
3918 * The display loop.
3919 */
3920 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n",
3921 &VarPDEAddr, iEntry);
3922 do
3923 {
3924 /*
3925 * Read.
3926 */
3927 X86PDEPAE Pde;
3928 Pde.u = 0;
3929 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL);
3930 if (RT_FAILURE(rc))
3931 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr);
3932
3933 /*
3934 * Display.
3935 */
3936 if (iEntry != ~0U)
3937 {
3938 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
3939 iEntry++;
3940 }
3941 if (fPSE && Pde.b.u1Size)
3942 DBGCCmdHlpPrintf(pCmdHlp,
3943 fPAE
3944 ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
3945 : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
3946 Pde.u,
3947 Pde.u & X86_PDE_PAE_PG_MASK,
3948 Pde.b.u1Present ? "p " : "np",
3949 Pde.b.u1Write ? "w" : "r",
3950 Pde.b.u1User ? "u" : "s",
3951 Pde.b.u1Accessed ? "a " : "na",
3952 Pde.b.u1Dirty ? "d " : "nd",
3953 Pde.b.u3Available,
3954 Pde.b.u1Global ? (fPGE ? "g" : "G") : " ",
3955 Pde.b.u1WriteThru ? "pwt" : " ",
3956 Pde.b.u1CacheDisable ? "pcd" : " ",
3957 Pde.b.u1PAT ? "pat" : "",
3958 Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
3959 else
3960 DBGCCmdHlpPrintf(pCmdHlp,
3961 fPAE
3962 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s"
3963 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s",
3964 Pde.u,
3965 Pde.u & X86_PDE_PAE_PG_MASK,
3966 Pde.n.u1Present ? "p " : "np",
3967 Pde.n.u1Write ? "w" : "r",
3968 Pde.n.u1User ? "u" : "s",
3969 Pde.n.u1Accessed ? "a " : "na",
3970 Pde.u & RT_BIT(6) ? "6 " : " ",
3971 Pde.n.u3Available,
3972 Pde.u & RT_BIT(8) ? "8" : " ",
3973 Pde.n.u1WriteThru ? "pwt" : " ",
3974 Pde.n.u1CacheDisable ? "pcd" : " ",
3975 Pde.u & RT_BIT(7) ? "7" : "",
3976 Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
3977 if (Pde.u & UINT64_C(0x7fff000000000000))
3978 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000)));
3979 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3980 if (RT_FAILURE(rc))
3981 return rc;
3982
3983 /*
3984 * Advance.
3985 */
3986 VarPDEAddr.u.u64Number += cbEntry;
3987 if (iEntry != ~0U)
3988 VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT);
3989 } while (cEntries-- > 0);
3990
3991 return VINF_SUCCESS;
3992}
3993
3994
3995/**
3996 * @callback_method_impl{FNDBGCCMD, The 'dpdb' command.}
3997 */
3998static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3999{
4000 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4001 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]);
4002 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]);
4003 if (RT_FAILURE(rc1))
4004 return rc1;
4005 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
4006 return rc2;
4007}
4008
4009
4010/**
4011 * @callback_method_impl{FNDBGCCMD, The 'dph*' commands and main part of 'm'.}
4012 */
4013static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4014{
4015 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4016 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4017
4018 /*
4019 * Figure the context and base flags.
4020 */
4021 uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3;
4022 if (pCmd->pszCmd[0] == 'm')
4023 fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW;
4024 else if (pCmd->pszCmd[3] == '\0')
4025 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4026 else if (pCmd->pszCmd[3] == 'g')
4027 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4028 else if (pCmd->pszCmd[3] == 'h')
4029 fFlags |= DBGFPGDMP_FLAGS_SHADOW;
4030 else
4031 AssertFailed();
4032
4033 if (pDbgc->cPagingHierarchyDumps == 0)
4034 fFlags |= DBGFPGDMP_FLAGS_HEADER;
4035 pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42;
4036
4037 /*
4038 * Get the range.
4039 */
4040 PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos;
4041 RTGCPTR GCPtrFirst = NIL_RTGCPTR;
4042 int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst);
4043 if (RT_FAILURE(rc))
4044 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc);
4045
4046 uint64_t cbRange;
4047 rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, PAGE_SIZE, PAGE_SIZE * 8, &cbRange);
4048 if (RT_FAILURE(rc))
4049 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc);
4050
4051 RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst;
4052 if (cbRange >= GCPtrLast)
4053 GCPtrLast = RTGCPTR_MAX;
4054 else if (!cbRange)
4055 GCPtrLast = GCPtrFirst;
4056 else
4057 GCPtrLast = GCPtrFirst + cbRange - 1;
4058
4059 /*
4060 * Do we have a CR3?
4061 */
4062 uint64_t cr3 = 0;
4063 if (cArgs > 1)
4064 {
4065 if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW))
4066 return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please.");
4067 if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
4068 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]);
4069 cr3 = paArgs[1].u.u64Number;
4070 }
4071 else
4072 fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3;
4073
4074 /*
4075 * Do we have a mode?
4076 */
4077 if (cArgs > 2)
4078 {
4079 if (paArgs[2].enmType != DBGCVAR_TYPE_STRING)
4080 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]);
4081 static const struct MODETOFLAGS
4082 {
4083 const char *pszName;
4084 uint32_t fFlags;
4085 } s_aModeToFlags[] =
4086 {
4087 { "ept", DBGFPGDMP_FLAGS_EPT },
4088 { "legacy", 0 },
4089 { "legacy-np", DBGFPGDMP_FLAGS_NP },
4090 { "pse", DBGFPGDMP_FLAGS_PSE },
4091 { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP },
4092 { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE },
4093 { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP },
4094 { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE },
4095 { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP },
4096 { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME },
4097 { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP },
4098 { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE },
4099 { "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }
4100 };
4101 int i = RT_ELEMENTS(s_aModeToFlags);
4102 while (i-- > 0)
4103 if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString))
4104 {
4105 fFlags |= s_aModeToFlags[i].fFlags;
4106 break;
4107 }
4108 if (i < 0)
4109 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString);
4110 }
4111 else
4112 fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE;
4113
4114 /*
4115 * Call the worker.
4116 */
4117 rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/,
4118 DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp));
4119 if (RT_FAILURE(rc))
4120 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc);
4121 return VINF_SUCCESS;
4122}
4123
4124
4125
4126/**
4127 * @callback_method_impl{FNDBGCCMD, The 'dpg*' commands.}
4128 */
4129static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4130{
4131 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4132
4133 /*
4134 * Validate input.
4135 */
4136 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1);
4137 if (pCmd->pszCmd[3] == 'a')
4138 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
4139 else
4140 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
4141 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
4142 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4143
4144 /*
4145 * Guest or shadow page tables? Get the paging parameters.
4146 */
4147 bool fGuest = pCmd->pszCmd[3] != 'h';
4148 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
4149 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
4150
4151 bool fPAE, fLME, fPSE, fPGE, fNXE;
4152 uint64_t cr3 = fGuest
4153 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
4154 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
4155 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
4156
4157 /*
4158 * Locate the PTE to start displaying at.
4159 *
4160 * The 'dpta' command takes the address of a PTE, while the others are guest
4161 * virtual address which PTEs should be displayed. So, 'pdta' is rather simple
4162 * while the others require us to do all the tedious walking thru the paging
4163 * hierarchy to find the intended PTE.
4164 */
4165 unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */
4166 DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */
4167 DBGCVAR VarPTEAddr; /* The address of the current PTE. */
4168 unsigned cEntries; /* The number of entries to display. */
4169 unsigned cEntriesMax; /* The max number of entries to display. */
4170 int rc;
4171 if (pCmd->pszCmd[3] == 'a')
4172 {
4173 VarPTEAddr = paArgs[0];
4174 switch (VarPTEAddr.enmRangeType)
4175 {
4176 case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break;
4177 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break;
4178 default: cEntries = 10; break;
4179 }
4180 cEntriesMax = PAGE_SIZE / cbEntry;
4181 }
4182 else
4183 {
4184 /*
4185 * Determine the range.
4186 */
4187 switch (paArgs[0].enmRangeType)
4188 {
4189 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
4190 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
4191 default: cEntries = 10; break;
4192 }
4193
4194 /*
4195 * Normalize the input address, it must be a flat GC address.
4196 */
4197 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
4198 if (RT_FAILURE(rc))
4199 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
4200 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
4201 {
4202 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
4203 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
4204 }
4205 VarGCPtr.u.GCFlat &= ~(RTGCPTR)PAGE_OFFSET_MASK;
4206
4207 /*
4208 * Do the paging walk until we get to the page table.
4209 */
4210 DBGCVAR VarCur;
4211 if (fGuest)
4212 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
4213 else
4214 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
4215 if (fLME)
4216 {
4217 /* Page Map Level 4 Lookup. */
4218 /* Check if it's a valid address first? */
4219 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
4220 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
4221 X86PML4E Pml4e;
4222 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
4223 if (RT_FAILURE(rc))
4224 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
4225 if (!Pml4e.n.u1Present)
4226 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
4227
4228 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
4229 Assert(fPAE);
4230 }
4231 if (fPAE)
4232 {
4233 /* Page directory pointer table. */
4234 X86PDPE Pdpe;
4235 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
4236 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
4237 if (RT_FAILURE(rc))
4238 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
4239 if (!Pdpe.n.u1Present)
4240 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
4241
4242 VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
4243
4244 /* Page directory (PAE). */
4245 X86PDEPAE Pde;
4246 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde);
4247 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4248 if (RT_FAILURE(rc))
4249 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4250 if (!Pde.n.u1Present)
4251 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4252 if (fPSE && Pde.n.u1Size)
4253 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4254
4255 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
4256 VarPTEAddr = VarCur;
4257 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK;
4258 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE);
4259 }
4260 else
4261 {
4262 /* Page directory (legacy). */
4263 X86PDE Pde;
4264 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde);
4265 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4266 if (RT_FAILURE(rc))
4267 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4268 if (!Pde.n.u1Present)
4269 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4270 if (fPSE && Pde.n.u1Size)
4271 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4272
4273 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK;
4274 VarPTEAddr = VarCur;
4275 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK;
4276 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE);
4277 }
4278 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
4279 }
4280
4281 /* adjust cEntries */
4282 cEntries = RT_MAX(1, cEntries);
4283 cEntries = RT_MIN(cEntries, cEntriesMax);
4284
4285 /*
4286 * The display loop.
4287 */
4288 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n",
4289 &VarPTEAddr, &VarGCPtr, iEntry);
4290 do
4291 {
4292 /*
4293 * Read.
4294 */
4295 X86PTEPAE Pte;
4296 Pte.u = 0;
4297 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL);
4298 if (RT_FAILURE(rc))
4299 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr);
4300
4301 /*
4302 * Display.
4303 */
4304 if (iEntry != ~0U)
4305 {
4306 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
4307 iEntry++;
4308 }
4309 DBGCCmdHlpPrintf(pCmdHlp,
4310 fPAE
4311 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4312 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4313 Pte.u,
4314 Pte.u & X86_PTE_PAE_PG_MASK,
4315 Pte.n.u1Present ? "p " : "np",
4316 Pte.n.u1Write ? "w" : "r",
4317 Pte.n.u1User ? "u" : "s",
4318 Pte.n.u1Accessed ? "a " : "na",
4319 Pte.n.u1Dirty ? "d " : "nd",
4320 Pte.n.u3Available,
4321 Pte.n.u1Global ? (fPGE ? "g" : "G") : " ",
4322 Pte.n.u1WriteThru ? "pwt" : " ",
4323 Pte.n.u1CacheDisable ? "pcd" : " ",
4324 Pte.n.u1PAT ? "pat" : " ",
4325 Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "
4326 );
4327 if (Pte.u & UINT64_C(0x7fff000000000000))
4328 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000)));
4329 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4330 if (RT_FAILURE(rc))
4331 return rc;
4332
4333 /*
4334 * Advance.
4335 */
4336 VarPTEAddr.u.u64Number += cbEntry;
4337 if (iEntry != ~0U)
4338 VarGCPtr.u.GCFlat += PAGE_SIZE;
4339 } while (cEntries-- > 0);
4340
4341 return VINF_SUCCESS;
4342}
4343
4344
4345/**
4346 * @callback_method_impl{FNDBGCCMD, The 'dptb' command.}
4347 */
4348static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4349{
4350 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4351 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]);
4352 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]);
4353 if (RT_FAILURE(rc1))
4354 return rc1;
4355 NOREF(pCmd); NOREF(cArgs);
4356 return rc2;
4357}
4358
4359
4360/**
4361 * @callback_method_impl{FNDBGCCMD, The 'dt' command.}
4362 */
4363static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4364{
4365 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4366 int rc;
4367
4368 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4369 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
4370 if (cArgs == 1)
4371 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING
4372 && paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL);
4373
4374 /*
4375 * Check if the command indicates the type.
4376 */
4377 enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined;
4378 if (!strcmp(pCmd->pszCmd, "dt16"))
4379 enmTssType = kTss16;
4380 else if (!strcmp(pCmd->pszCmd, "dt32"))
4381 enmTssType = kTss32;
4382 else if (!strcmp(pCmd->pszCmd, "dt64"))
4383 enmTssType = kTss64;
4384
4385 /*
4386 * We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer.
4387 */
4388 uint32_t SelTss = UINT32_MAX;
4389 DBGCVAR VarTssAddr;
4390 if (cArgs == 0)
4391 {
4392 /** @todo consider querying the hidden bits instead (missing API). */
4393 uint16_t SelTR;
4394 rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR);
4395 if (RT_FAILURE(rc))
4396 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc);
4397 DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0);
4398 SelTss = SelTR;
4399 }
4400 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
4401 {
4402 if (paArgs[0].u.u64Number < 0xffff)
4403 DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0);
4404 else
4405 {
4406 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS)
4407 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n");
4408 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number);
4409 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES)
4410 {
4411 VarTssAddr.enmRangeType = paArgs[0].enmRangeType;
4412 VarTssAddr.u64Range = paArgs[0].u64Range;
4413 }
4414 }
4415 }
4416 else
4417 VarTssAddr = paArgs[0];
4418
4419 /*
4420 * Deal with TSS:ign by means of the GDT.
4421 */
4422 if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR)
4423 {
4424 SelTss = VarTssAddr.u.GCFar.sel;
4425 DBGFSELINFO SelInfo;
4426 rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
4427 if (RT_FAILURE(rc))
4428 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n",
4429 pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc);
4430
4431 if (SelInfo.u.Raw.Gen.u1DescType)
4432 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel);
4433
4434 switch (SelInfo.u.Raw.Gen.u4Type)
4435 {
4436 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4437 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4438 if (enmTssType == kTssToBeDetermined)
4439 enmTssType = kTss16;
4440 break;
4441
4442 case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */
4443 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4444 if (enmTssType == kTssToBeDetermined)
4445 enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32;
4446 break;
4447
4448 default:
4449 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n",
4450 VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type);
4451 }
4452
4453 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase);
4454 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit));
4455 }
4456
4457 /*
4458 * Determine the TSS type if none is currently given.
4459 */
4460 if (enmTssType == kTssToBeDetermined)
4461 {
4462 if ( VarTssAddr.u64Range > 0
4463 && VarTssAddr.u64Range < sizeof(X86TSS32) - 4)
4464 enmTssType = kTss16;
4465 else
4466 {
4467 uint64_t uEfer;
4468 rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer);
4469 if ( RT_FAILURE(rc)
4470 || !(uEfer & MSR_K6_EFER_LMA) )
4471 enmTssType = kTss32;
4472 else
4473 enmTssType = kTss64;
4474 }
4475 }
4476
4477 /*
4478 * Figure the min/max sizes.
4479 * ASSUMES max TSS size is 64 KB.
4480 */
4481 uint32_t cbTssMin;
4482 uint32_t cbTssMax;
4483 switch (enmTssType)
4484 {
4485 case kTss16:
4486 cbTssMin = cbTssMax = X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN + 1;
4487 break;
4488 case kTss32:
4489 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4490 cbTssMax = _64K;
4491 break;
4492 case kTss64:
4493 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4494 cbTssMax = _64K;
4495 break;
4496 default:
4497 AssertFailedReturn(VERR_INTERNAL_ERROR);
4498 }
4499 uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0;
4500 if (cbTss == 0)
4501 cbTss = cbTssMin;
4502 else if (cbTss < cbTssMin)
4503 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n",
4504 cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range);
4505 else if (cbTss > cbTssMax)
4506 cbTss = cbTssMax;
4507 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss);
4508
4509 /*
4510 * Read the TSS into a temporary buffer.
4511 */
4512 uint8_t abBuf[_64K];
4513 size_t cbTssRead;
4514 rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead);
4515 if (RT_FAILURE(rc))
4516 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc);
4517 if (cbTssRead < cbTssMin)
4518 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n",
4519 cbTssRead, cbTssMin);
4520 if (cbTssRead < cbTss)
4521 memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead);
4522
4523
4524 /*
4525 * Format the TSS.
4526 */
4527 uint16_t offIoBitmap;
4528 switch (enmTssType)
4529 {
4530 case kTss16:
4531 {
4532 PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0];
4533 if (SelTss != UINT32_MAX)
4534 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr);
4535 else
4536 DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr);
4537 DBGCCmdHlpPrintf(pCmdHlp,
4538 "ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n"
4539 "ip=%04x sp=%04x bp=%04x\n"
4540 "cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n"
4541 "ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n"
4542 "prev=%04x ldtr=%04x\n"
4543 ,
4544 pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di,
4545 pTss->ip, pTss->sp, pTss->bp,
4546 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags,
4547 pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2,
4548 pTss->selPrev, pTss->selLdt);
4549 if (pTss->cs != 0)
4550 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip);
4551 offIoBitmap = 0;
4552 break;
4553 }
4554
4555 case kTss32:
4556 {
4557 PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0];
4558 if (SelTss != UINT32_MAX)
4559 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4560 else
4561 DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4562 DBGCCmdHlpPrintf(pCmdHlp,
4563 "eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
4564 "eip=%08x esp=%08x ebp=%08x\n"
4565 "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
4566 "ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n"
4567 "prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n"
4568 ,
4569 pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi,
4570 pTss->eip, pTss->esp, pTss->ebp,
4571 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags,
4572 pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2,
4573 pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap);
4574 if (pTss->cs != 0)
4575 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip);
4576 offIoBitmap = pTss->offIoBitmap;
4577 break;
4578 }
4579
4580 case kTss64:
4581 {
4582 PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0];
4583 if (SelTss != UINT32_MAX)
4584 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4585 else
4586 DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4587 DBGCCmdHlpPrintf(pCmdHlp,
4588 "rsp0=%016RX64 rsp1=%016RX64 rsp2=%016RX64\n"
4589 "ist1=%016RX64 ist2=%016RX64\n"
4590 "ist3=%016RX64 ist4=%016RX64\n"
4591 "ist5=%016RX64 ist6=%016RX64\n"
4592 "ist7=%016RX64 iomap=%04x\n"
4593 ,
4594 pTss->rsp0, pTss->rsp1, pTss->rsp2,
4595 pTss->ist1, pTss->ist2,
4596 pTss->ist3, pTss->ist4,
4597 pTss->ist5, pTss->ist6,
4598 pTss->ist7, pTss->offIoBitmap);
4599 offIoBitmap = pTss->offIoBitmap;
4600 break;
4601 }
4602
4603 default:
4604 AssertFailedReturn(VERR_INTERNAL_ERROR);
4605 }
4606
4607 /*
4608 * Dump the interrupt redirection bitmap.
4609 */
4610 if (enmTssType != kTss16)
4611 {
4612 if ( offIoBitmap > cbTssMin
4613 && offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */
4614 {
4615 if (offIoBitmap - cbTssMin >= 32)
4616 {
4617 DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n");
4618 uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32];
4619 uint32_t iStart = 0;
4620 bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */
4621 for (uint32_t i = 0; i < 256; i++)
4622 {
4623 bool fThis = ASMBitTest(pbIntRedirBitmap, i);
4624 if (fThis != fPrev)
4625 {
4626 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected");
4627 fPrev = fThis;
4628 iStart = i;
4629 }
4630 }
4631 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected");
4632 }
4633 else
4634 DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n",
4635 offIoBitmap - cbTssMin, offIoBitmap - cbTssMin);
4636 }
4637 else if (offIoBitmap > 0)
4638 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4639 else
4640 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n");
4641 }
4642
4643 /*
4644 * Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x68
4645 * (that applies to both 32-bit and 64-bit TSSs since their size is the same).
4646 * Note that there is always one padding byte that is not technically part of the bitmap
4647 * and "must have all bits set". It's not clear what happens when it doesn't. All ports
4648 * not covered by the bitmap are considered to be not accessible.
4649 */
4650 if (enmTssType != kTss16)
4651 {
4652 if (offIoBitmap < cbTss && offIoBitmap >= 0x68)
4653 {
4654 uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K);
4655 DBGCVAR VarAddr;
4656 DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap);
4657 DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts);
4658
4659 uint8_t const *pbIoBitmap = &abBuf[offIoBitmap];
4660 uint32_t iStart = 0;
4661 bool fPrev = ASMBitTest(pbIoBitmap, 0);
4662 uint32_t cLine = 0;
4663 for (uint32_t i = 1; i < _64K; i++)
4664 {
4665 bool fThis = i < cPorts ? ASMBitTest(pbIoBitmap, i) : true;
4666 if (fThis != fPrev)
4667 {
4668 cLine++;
4669 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1,
4670 fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " ");
4671 fPrev = fThis;
4672 iStart = i;
4673 }
4674 }
4675 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK");
4676 }
4677 else if (offIoBitmap > 0)
4678 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4679 else
4680 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n");
4681 }
4682
4683 return VINF_SUCCESS;
4684}
4685
4686
4687/**
4688 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dti' command dumper callback.}
4689 */
4690static DECLCALLBACK(int) dbgcCmdDumpTypeInfoCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4691 const char *pszType, uint32_t fTypeFlags,
4692 uint32_t cElements, void *pvUser)
4693{
4694 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4695
4696 /* Pad with spaces to match the level. */
4697 for (uint32_t i = 0; i < iLvl; i++)
4698 DBGCCmdHlpPrintf(pCmdHlp, " ");
4699
4700 size_t cbWritten = 0;
4701 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4702 while (cbWritten < 32)
4703 {
4704 /* Fill with spaces to get proper aligning. */
4705 DBGCCmdHlpPrintf(pCmdHlp, " ");
4706 cbWritten++;
4707 }
4708
4709 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4710 if (fTypeFlags & DBGFTYPEREGMEMBER_F_ARRAY)
4711 DBGCCmdHlpPrintf(pCmdHlp, "[%u] ", cElements);
4712 if (fTypeFlags & DBGFTYPEREGMEMBER_F_POINTER)
4713 DBGCCmdHlpPrintf(pCmdHlp, "Ptr ");
4714 DBGCCmdHlpPrintf(pCmdHlp, "%s\n", pszType);
4715
4716 return VINF_SUCCESS;
4717}
4718
4719
4720/**
4721 * @callback_method_impl{FNDBGCCMD, The 'dti' command.}
4722 */
4723static DECLCALLBACK(int) dbgcCmdDumpTypeInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4724{
4725 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4726 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
4727 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4728 if (cArgs == 2)
4729 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[1].enmType == DBGCVAR_TYPE_NUMBER);
4730
4731 uint32_t cLvlMax = cArgs == 2 ? (uint32_t)paArgs[1].u.u64Number : UINT32_MAX;
4732 return DBGFR3TypeDumpEx(pUVM, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
4733 dbgcCmdDumpTypeInfoCallback, pCmdHlp);
4734}
4735
4736
4737static void dbgcCmdDumpTypedValCallbackBuiltin(PDBGCCMDHLP pCmdHlp, DBGFTYPEBUILTIN enmType, size_t cbType,
4738 PDBGFTYPEVALBUF pValBuf)
4739{
4740 switch (enmType)
4741 {
4742 case DBGFTYPEBUILTIN_UINT8:
4743 DBGCCmdHlpPrintf(pCmdHlp, "%RU8", pValBuf->u8);
4744 break;
4745 case DBGFTYPEBUILTIN_INT8:
4746 DBGCCmdHlpPrintf(pCmdHlp, "%RI8", pValBuf->i8);
4747 break;
4748 case DBGFTYPEBUILTIN_UINT16:
4749 DBGCCmdHlpPrintf(pCmdHlp, "%RU16", pValBuf->u16);
4750 break;
4751 case DBGFTYPEBUILTIN_INT16:
4752 DBGCCmdHlpPrintf(pCmdHlp, "%RI16", pValBuf->i16);
4753 break;
4754 case DBGFTYPEBUILTIN_UINT32:
4755 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->u32);
4756 break;
4757 case DBGFTYPEBUILTIN_INT32:
4758 DBGCCmdHlpPrintf(pCmdHlp, "%RI32", pValBuf->i32);
4759 break;
4760 case DBGFTYPEBUILTIN_UINT64:
4761 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->u64);
4762 break;
4763 case DBGFTYPEBUILTIN_INT64:
4764 DBGCCmdHlpPrintf(pCmdHlp, "%RI64", pValBuf->i64);
4765 break;
4766 case DBGFTYPEBUILTIN_PTR32:
4767 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4768 break;
4769 case DBGFTYPEBUILTIN_PTR64:
4770 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4771 break;
4772 case DBGFTYPEBUILTIN_PTR:
4773 if (cbType == sizeof(uint32_t))
4774 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4775 else if (cbType == sizeof(uint64_t))
4776 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4777 else
4778 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported pointer width %u>", cbType);
4779 break;
4780 case DBGFTYPEBUILTIN_SIZE:
4781 if (cbType == sizeof(uint32_t))
4782 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->size);
4783 else if (cbType == sizeof(uint64_t))
4784 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->size);
4785 else
4786 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported size width %u>", cbType);
4787 break;
4788 case DBGFTYPEBUILTIN_FLOAT32:
4789 case DBGFTYPEBUILTIN_FLOAT64:
4790 case DBGFTYPEBUILTIN_COMPOUND:
4791 default:
4792 AssertMsgFailed(("Invalid built-in type: %d\n", enmType));
4793 }
4794}
4795
4796/**
4797 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dtv' command dumper callback.}
4798 */
4799static DECLCALLBACK(int) dbgcCmdDumpTypedValCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4800 DBGFTYPEBUILTIN enmType, size_t cbType,
4801 PDBGFTYPEVALBUF pValBuf, uint32_t cValBufs,
4802 void *pvUser)
4803{
4804 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4805
4806 /* Pad with spaces to match the level. */
4807 for (uint32_t i = 0; i < iLvl; i++)
4808 DBGCCmdHlpPrintf(pCmdHlp, " ");
4809
4810 size_t cbWritten = 0;
4811 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4812 while (cbWritten < 32)
4813 {
4814 /* Fill with spaces to get proper aligning. */
4815 DBGCCmdHlpPrintf(pCmdHlp, " ");
4816 cbWritten++;
4817 }
4818
4819 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4820 if (cValBufs > 1)
4821 DBGCCmdHlpPrintf(pCmdHlp, "[%u] [ ", cValBufs);
4822
4823 for (uint32_t i = 0; i < cValBufs; i++)
4824 {
4825 dbgcCmdDumpTypedValCallbackBuiltin(pCmdHlp, enmType, cbType, pValBuf);
4826 if (i < cValBufs - 1)
4827 DBGCCmdHlpPrintf(pCmdHlp, " , ");
4828 pValBuf++;
4829 }
4830
4831 if (cValBufs > 1)
4832 DBGCCmdHlpPrintf(pCmdHlp, " ]");
4833 DBGCCmdHlpPrintf(pCmdHlp, "\n");
4834
4835 return VINF_SUCCESS;
4836}
4837
4838
4839/**
4840 * @callback_method_impl{FNDBGCCMD, The 'dtv' command.}
4841 */
4842static DECLCALLBACK(int) dbgcCmdDumpTypedVal(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4843{
4844 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4845 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 2 || cArgs == 3);
4846 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4847 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISGCPOINTER(paArgs[1].enmType));
4848 if (cArgs == 3)
4849 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[2].enmType == DBGCVAR_TYPE_NUMBER);
4850
4851 /*
4852 * Make DBGF address and fix the range.
4853 */
4854 DBGFADDRESS Address;
4855 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[1], &Address);
4856 if (RT_FAILURE(rc))
4857 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[1]);
4858
4859 uint32_t cLvlMax = cArgs == 3 ? (uint32_t)paArgs[2].u.u64Number : UINT32_MAX;
4860 return DBGFR3TypeValDumpEx(pUVM, &Address, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
4861 dbgcCmdDumpTypedValCallback, pCmdHlp);
4862}
4863
4864/**
4865 * @callback_method_impl{FNDBGCCMD, The 'm' command.}
4866 */
4867static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4868{
4869 DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]);
4870 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4871 return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
4872}
4873
4874
4875/**
4876 * Converts one or more variables into a byte buffer for a
4877 * given unit size.
4878 *
4879 * @returns VBox status codes:
4880 * @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched.
4881 * @retval VERR_INTERNAL_ERROR on bad variable type, bitched.
4882 * @retval VINF_SUCCESS on success.
4883 *
4884 * @param pCmdHlp The command helper callback table.
4885 * @param pvBuf The buffer to convert into.
4886 * @param pcbBuf The buffer size on input. The size of the result on output.
4887 * @param cbUnit The unit size to apply when converting.
4888 * The high bit is used to indicate unicode string.
4889 * @param paVars The array of variables to convert.
4890 * @param cVars The number of variables.
4891 */
4892int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars)
4893{
4894 union
4895 {
4896 uint8_t *pu8;
4897 uint16_t *pu16;
4898 uint32_t *pu32;
4899 uint64_t *pu64;
4900 } u, uEnd;
4901 u.pu8 = (uint8_t *)pvBuf;
4902 uEnd.pu8 = u.pu8 + *pcbBuf;
4903
4904 unsigned i;
4905 for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++)
4906 {
4907 switch (paVars[i].enmType)
4908 {
4909 case DBGCVAR_TYPE_GC_FAR:
4910 case DBGCVAR_TYPE_GC_FLAT:
4911 case DBGCVAR_TYPE_GC_PHYS:
4912 case DBGCVAR_TYPE_HC_FLAT:
4913 case DBGCVAR_TYPE_HC_PHYS:
4914 case DBGCVAR_TYPE_NUMBER:
4915 {
4916 uint64_t u64 = paVars[i].u.u64Number;
4917 switch (cbUnit & 0x1f)
4918 {
4919 case 1:
4920 do
4921 {
4922 *u.pu8++ = u64;
4923 u64 >>= 8;
4924 } while (u64);
4925 break;
4926 case 2:
4927 do
4928 {
4929 *u.pu16++ = u64;
4930 u64 >>= 16;
4931 } while (u64);
4932 break;
4933 case 4:
4934 *u.pu32++ = u64;
4935 u64 >>= 32;
4936 if (u64)
4937 *u.pu32++ = u64;
4938 break;
4939 case 8:
4940 *u.pu64++ = u64;
4941 break;
4942 }
4943 break;
4944 }
4945
4946 case DBGCVAR_TYPE_STRING:
4947 case DBGCVAR_TYPE_SYMBOL:
4948 {
4949 const char *psz = paVars[i].u.pszString;
4950 size_t cbString = strlen(psz);
4951 if (cbUnit & RT_BIT_32(31))
4952 {
4953 /* Explode char to unit. */
4954 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f))
4955 {
4956 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
4957 return VERR_TOO_MUCH_DATA;
4958 }
4959 while (*psz)
4960 {
4961 switch (cbUnit & 0x1f)
4962 {
4963 case 1: *u.pu8++ = *psz; break;
4964 case 2: *u.pu16++ = *psz; break;
4965 case 4: *u.pu32++ = *psz; break;
4966 case 8: *u.pu64++ = *psz; break;
4967 }
4968 psz++;
4969 }
4970 }
4971 else
4972 {
4973 /* Raw copy with zero padding if the size isn't aligned. */
4974 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8))
4975 {
4976 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
4977 return VERR_TOO_MUCH_DATA;
4978 }
4979
4980 size_t cbCopy = cbString & ~(cbUnit - 1);
4981 memcpy(u.pu8, psz, cbCopy);
4982 u.pu8 += cbCopy;
4983 psz += cbCopy;
4984
4985 size_t cbReminder = cbString & (cbUnit - 1);
4986 if (cbReminder)
4987 {
4988 memcpy(u.pu8, psz, cbString & (cbUnit - 1));
4989 memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder);
4990 u.pu8 += cbUnit;
4991 }
4992 }
4993 break;
4994 }
4995
4996 default:
4997 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
4998 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR,
4999 "i=%d enmType=%d\n", i, paVars[i].enmType);
5000 return VERR_INTERNAL_ERROR;
5001 }
5002 }
5003 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5004 if (i != cVars)
5005 {
5006 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5007 return VERR_TOO_MUCH_DATA;
5008 }
5009 return VINF_SUCCESS;
5010}
5011
5012
5013/**
5014 * @callback_method_impl{FNDBGCCMD, The 'eb'\, 'ew'\, 'ed' and 'eq' commands.}
5015 */
5016static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5017{
5018 /*
5019 * Validate input.
5020 */
5021 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2);
5022 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
5023 for (unsigned iArg = 1; iArg < cArgs; iArg++)
5024 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER);
5025 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5026
5027 /*
5028 * Figure out the element size.
5029 */
5030 unsigned cbElement;
5031 switch (pCmd->pszCmd[1])
5032 {
5033 default:
5034 case 'b': cbElement = 1; break;
5035 case 'w': cbElement = 2; break;
5036 case 'd': cbElement = 4; break;
5037 case 'q': cbElement = 8; break;
5038 }
5039
5040 /*
5041 * Do setting.
5042 */
5043 DBGCVAR Addr = paArgs[0];
5044 for (unsigned iArg = 1;;)
5045 {
5046 size_t cbWritten;
5047 int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten);
5048 if (RT_FAILURE(rc))
5049 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr);
5050 if (cbWritten != cbElement)
5051 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement);
5052
5053 /* advance. */
5054 iArg++;
5055 if (iArg >= cArgs)
5056 break;
5057 rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement);
5058 if (RT_FAILURE(rc))
5059 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
5060 }
5061
5062 return VINF_SUCCESS;
5063}
5064
5065
5066/**
5067 * Executes the search.
5068 *
5069 * @returns VBox status code.
5070 * @param pCmdHlp The command helpers.
5071 * @param pUVM The user mode VM handle.
5072 * @param pAddress The address to start searching from. (undefined on output)
5073 * @param cbRange The address range to search. Must not wrap.
5074 * @param pabBytes The byte pattern to search for.
5075 * @param cbBytes The size of the pattern.
5076 * @param cbUnit The search unit.
5077 * @param cMaxHits The max number of hits.
5078 * @param pResult Where to store the result if it's a function invocation.
5079 */
5080static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange,
5081 const uint8_t *pabBytes, uint32_t cbBytes,
5082 uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult)
5083{
5084 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5085
5086 /*
5087 * Do the search.
5088 */
5089 uint64_t cHits = 0;
5090 for (;;)
5091 {
5092 /* search */
5093 DBGFADDRESS HitAddress;
5094 int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress);
5095 if (RT_FAILURE(rc))
5096 {
5097 if (rc != VERR_DBGF_MEM_NOT_FOUND)
5098 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n");
5099
5100 /* update the current address so we can save it (later). */
5101 pAddress->off += cbRange;
5102 pAddress->FlatPtr += cbRange;
5103 cbRange = 0;
5104 break;
5105 }
5106
5107 /* report result */
5108 DBGCVAR VarCur;
5109 rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur);
5110 if (RT_FAILURE(rc))
5111 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n");
5112 if (!pResult)
5113 pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur);
5114 else
5115 DBGCVAR_ASSIGN(pResult, &VarCur);
5116
5117 /* advance */
5118 cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr;
5119 *pAddress = HitAddress;
5120 pAddress->FlatPtr += cbBytes;
5121 pAddress->off += cbBytes;
5122 if (cbRange <= cbBytes)
5123 {
5124 cbRange = 0;
5125 break;
5126 }
5127 cbRange -= cbBytes;
5128
5129 if (++cHits >= cMaxHits)
5130 {
5131 /// @todo save the search.
5132 break;
5133 }
5134 }
5135
5136 /*
5137 * Save the search so we can resume it...
5138 */
5139 if (pDbgc->abSearch != pabBytes)
5140 {
5141 memcpy(pDbgc->abSearch, pabBytes, cbBytes);
5142 pDbgc->cbSearch = cbBytes;
5143 pDbgc->cbSearchUnit = cbUnit;
5144 }
5145 pDbgc->cMaxSearchHits = cMaxHits;
5146 pDbgc->SearchAddr = *pAddress;
5147 pDbgc->cbSearchRange = cbRange;
5148
5149 return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED;
5150}
5151
5152
5153/**
5154 * Resumes the previous search.
5155 *
5156 * @returns VBox status code.
5157 * @param pCmdHlp Pointer to the command helper functions.
5158 * @param pUVM The user mode VM handle.
5159 * @param pResult Where to store the result of a function invocation.
5160 */
5161static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult)
5162{
5163 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5164
5165 /*
5166 * Make sure there is a previous command.
5167 */
5168 if (!pDbgc->cbSearch)
5169 {
5170 DBGCCmdHlpPrintf(pCmdHlp, "Error: No previous search\n");
5171 return VERR_DBGC_COMMAND_FAILED;
5172 }
5173
5174 /*
5175 * Make range and address adjustments.
5176 */
5177 DBGFADDRESS Address = pDbgc->SearchAddr;
5178 if (Address.FlatPtr == ~(RTGCUINTPTR)0)
5179 {
5180 Address.FlatPtr -= Address.off;
5181 Address.off = 0;
5182 }
5183
5184 RTGCUINTPTR cbRange = pDbgc->cbSearchRange;
5185 if (!cbRange)
5186 cbRange = ~(RTGCUINTPTR)0;
5187 if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr)
5188 cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr;
5189
5190 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch,
5191 pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult);
5192}
5193
5194
5195/**
5196 * Search memory, worker for the 's' and 's?' functions.
5197 *
5198 * @returns VBox status code.
5199 * @param pCmdHlp Pointer to the command helper functions.
5200 * @param pUVM The user mode VM handle.
5201 * @param pAddress Where to start searching. If no range, search till end of address space.
5202 * @param cMaxHits The maximum number of hits.
5203 * @param chType The search type.
5204 * @param paPatArgs The pattern variable array.
5205 * @param cPatArgs Number of pattern variables.
5206 * @param pResult Where to store the result of a function invocation.
5207 */
5208static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType,
5209 PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult)
5210{
5211 if (pResult)
5212 DBGCVAR_INIT_GC_FLAT(pResult, 0);
5213
5214 /*
5215 * Convert the search pattern into bytes and DBGFR3MemScan can deal with.
5216 */
5217 uint32_t cbUnit;
5218 switch (chType)
5219 {
5220 case 'a':
5221 case 'b': cbUnit = 1; break;
5222 case 'u': cbUnit = 2 | RT_BIT_32(31); break;
5223 case 'w': cbUnit = 2; break;
5224 case 'd': cbUnit = 4; break;
5225 case 'q': cbUnit = 8; break;
5226 default:
5227 return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType);
5228 }
5229 uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)];
5230 uint32_t cbBytes = sizeof(abBytes);
5231 int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs);
5232 if (RT_FAILURE(rc))
5233 return VERR_DBGC_COMMAND_FAILED;
5234
5235 /*
5236 * Make DBGF address and fix the range.
5237 */
5238 DBGFADDRESS Address;
5239 rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address);
5240 if (RT_FAILURE(rc))
5241 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress);
5242
5243 RTGCUINTPTR cbRange;
5244 switch (pAddress->enmRangeType)
5245 {
5246 case DBGCVAR_RANGE_BYTES:
5247 cbRange = pAddress->u64Range;
5248 if (cbRange != pAddress->u64Range)
5249 cbRange = ~(RTGCUINTPTR)0;
5250 break;
5251
5252 case DBGCVAR_RANGE_ELEMENTS:
5253 cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit);
5254 if ( cbRange != pAddress->u64Range * cbUnit
5255 || cbRange < pAddress->u64Range)
5256 cbRange = ~(RTGCUINTPTR)0;
5257 break;
5258
5259 default:
5260 cbRange = ~(RTGCUINTPTR)0;
5261 break;
5262 }
5263 if (Address.FlatPtr + cbRange < Address.FlatPtr)
5264 cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr;
5265
5266 /*
5267 * Ok, do it.
5268 */
5269 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult);
5270}
5271
5272
5273/**
5274 * @callback_method_impl{FNDBGCCMD, The 's' command.}
5275 */
5276static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5277{
5278 RT_NOREF2(pCmd, paArgs);
5279
5280 /* check that the parser did what it's supposed to do. */
5281 //if ( cArgs <= 2
5282 // && paArgs[0].enmType != DBGCVAR_TYPE_STRING)
5283 // return DBGCCmdHlpPrintf(pCmdHlp, "parser error\n");
5284
5285 /*
5286 * Repeat previous search?
5287 */
5288 if (cArgs == 0)
5289 return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL);
5290
5291 /*
5292 * Parse arguments.
5293 */
5294
5295 return -1;
5296}
5297
5298
5299/**
5300 * @callback_method_impl{FNDBGCCMD, The 's?' command.}
5301 */
5302static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5303{
5304 /* check that the parser did what it's supposed to do. */
5305 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType));
5306 return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL);
5307}
5308
5309
5310/**
5311 * Matching function for interrupts event names.
5312 *
5313 * This parses the interrupt number and length.
5314 *
5315 * @returns True if match, false if not.
5316 * @param pPattern The user specified pattern to match.
5317 * @param pszEvtName The event name.
5318 * @param pCmdHlp Command helpers for warning about malformed stuff.
5319 * @param piFirst Where to return start interrupt number on success.
5320 * @param pcInts Where to return the number of interrupts on success.
5321 */
5322static bool dbgcEventIsMatchingInt(PCDBGCVAR pPattern, const char *pszEvtName, PDBGCCMDHLP pCmdHlp,
5323 uint8_t *piFirst, uint16_t *pcInts)
5324{
5325 /*
5326 * Ignore trailing hex digits when comparing with the event base name.
5327 */
5328 const char *pszPattern = pPattern->u.pszString;
5329 const char *pszEnd = RTStrEnd(pszPattern, RTSTR_MAX);
5330 while ( (uintptr_t)pszEnd > (uintptr_t)pszPattern
5331 && RT_C_IS_XDIGIT(pszEnd[-1]))
5332 pszEnd -= 1;
5333 if (RTStrSimplePatternNMatch(pszPattern, pszEnd - pszPattern, pszEvtName, RTSTR_MAX))
5334 {
5335 /*
5336 * Parse the index and length.
5337 */
5338 if (!*pszEnd)
5339 *piFirst = 0;
5340 else
5341 {
5342 int rc = RTStrToUInt8Full(pszEnd, 16, piFirst);
5343 if (rc != VINF_SUCCESS)
5344 {
5345 if (RT_FAILURE(rc))
5346 *piFirst = 0;
5347 DBGCCmdHlpPrintf(pCmdHlp, "Warning: %Rrc parsing '%s' - interpreting it as %#x\n", rc, pszEnd, *piFirst);
5348 }
5349 }
5350
5351 if (pPattern->enmRangeType == DBGCVAR_RANGE_NONE)
5352 *pcInts = 1;
5353 else
5354 *pcInts = RT_MAX(RT_MIN((uint16_t)pPattern->u64Range, 256 - *piFirst), 1);
5355 return true;
5356 }
5357 return false;
5358}
5359
5360
5361/**
5362 * Updates a DBGC event config.
5363 *
5364 * @returns VINF_SUCCESS or VERR_NO_MEMORY.
5365 * @param ppEvtCfg The event configuration entry to update.
5366 * @param pszCmd The new command. Leave command alone if NULL.
5367 * @param enmEvtState The new event state.
5368 * @param fChangeCmdOnly Whether to only update the command.
5369 */
5370static int dbgcEventUpdate(PDBGCEVTCFG *ppEvtCfg, const char *pszCmd, DBGCEVTSTATE enmEvtState, bool fChangeCmdOnly)
5371{
5372 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5373
5374 /*
5375 * If we've got a command string, update the command too.
5376 */
5377 if (pszCmd)
5378 {
5379 size_t cchCmd = strlen(pszCmd);
5380 if ( !cchCmd
5381 && ( !fChangeCmdOnly
5382 ? enmEvtState == kDbgcEvtState_Disabled
5383 : !pEvtCfg || pEvtCfg->enmState == kDbgcEvtState_Disabled))
5384 {
5385 /* NULL entry is fine if no command and disabled. */
5386 RTMemFree(pEvtCfg);
5387 *ppEvtCfg = NULL;
5388 }
5389 else
5390 {
5391 if (!pEvtCfg || pEvtCfg->cchCmd < cchCmd)
5392 {
5393 RTMemFree(pEvtCfg);
5394 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(RT_UOFFSETOF_DYN(DBGCEVTCFG, szCmd[cchCmd + 1]));
5395 if (!pEvtCfg)
5396 return VERR_NO_MEMORY;
5397 }
5398 pEvtCfg->enmState = enmEvtState;
5399 pEvtCfg->cchCmd = cchCmd;
5400 memcpy(pEvtCfg->szCmd, pszCmd, cchCmd + 1);
5401 }
5402 }
5403 /*
5404 * Update existing or enable new. If NULL and not enabled, we can keep it that way.
5405 */
5406 else if (pEvtCfg || enmEvtState != kDbgcEvtState_Disabled)
5407 {
5408 if (!pEvtCfg)
5409 {
5410 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(sizeof(DBGCEVTCFG));
5411 if (!pEvtCfg)
5412 return VERR_NO_MEMORY;
5413 pEvtCfg->cchCmd = 0;
5414 pEvtCfg->szCmd[0] = '\0';
5415 }
5416 pEvtCfg->enmState = enmEvtState;
5417 }
5418
5419 return VINF_SUCCESS;
5420}
5421
5422
5423/**
5424 * Record one settings change for a plain event.
5425 *
5426 * @returns The new @a cIntCfgs value.
5427 * @param paEventCfgs The event setttings array. Must have DBGFEVENT_END
5428 * entries.
5429 * @param cEventCfgs The current number of entries in @a paEventCfgs.
5430 * @param enmType The event to change the settings for.
5431 * @param enmEvtState The new event state.
5432 * @param iSxEvt Index into the g_aDbgcSxEvents array.
5433 *
5434 * @remarks We use abUnused[0] for the enmEvtState, while abUnused[1] and
5435 * abUnused[2] are used for iSxEvt.
5436 */
5437static uint32_t dbgcEventAddPlainConfig(PDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, DBGFEVENTTYPE enmType,
5438 DBGCEVTSTATE enmEvtState, uint16_t iSxEvt)
5439{
5440 uint32_t iCfg;
5441 for (iCfg = 0; iCfg < cEventCfgs; iCfg++)
5442 if (paEventCfgs[iCfg].enmType == enmType)
5443 break;
5444 if (iCfg == cEventCfgs)
5445 {
5446 Assert(cEventCfgs < DBGFEVENT_END);
5447 paEventCfgs[iCfg].enmType = enmType;
5448 cEventCfgs++;
5449 }
5450 paEventCfgs[iCfg].fEnabled = enmEvtState > kDbgcEvtState_Disabled;
5451 paEventCfgs[iCfg].abUnused[0] = enmEvtState;
5452 paEventCfgs[iCfg].abUnused[1] = (uint8_t)iSxEvt;
5453 paEventCfgs[iCfg].abUnused[2] = (uint8_t)(iSxEvt >> 8);
5454 return cEventCfgs;
5455}
5456
5457
5458/**
5459 * Record one or more interrupt event config changes.
5460 *
5461 * @returns The new @a cIntCfgs value.
5462 * @param paIntCfgs Interrupt confiruation array. Must have 256 entries.
5463 * @param cIntCfgs The current number of entries in @a paIntCfgs.
5464 * @param iInt The interrupt number to start with.
5465 * @param cInts The number of interrupts to change.
5466 * @param pszName The settings name (hwint/swint).
5467 * @param enmEvtState The new event state.
5468 * @param bIntOp The new DBGF interrupt state.
5469 */
5470static uint32_t dbgcEventAddIntConfig(PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs, uint8_t iInt, uint16_t cInts,
5471 const char *pszName, DBGCEVTSTATE enmEvtState, uint8_t bIntOp)
5472{
5473 bool const fHwInt = *pszName == 'h';
5474
5475 bIntOp |= (uint8_t)enmEvtState << 4;
5476 uint8_t const bSoftState = !fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5477 uint8_t const bHardState = fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5478
5479 while (cInts > 0)
5480 {
5481 uint32_t iCfg;
5482 for (iCfg = 0; iCfg < cIntCfgs; iCfg++)
5483 if (paIntCfgs[iCfg].iInterrupt == iInt)
5484 break;
5485 if (iCfg == cIntCfgs)
5486 break;
5487 if (fHwInt)
5488 paIntCfgs[iCfg].enmHardState = bHardState;
5489 else
5490 paIntCfgs[iCfg].enmSoftState = bSoftState;
5491 iInt++;
5492 cInts--;
5493 }
5494
5495 while (cInts > 0)
5496 {
5497 Assert(cIntCfgs < 256);
5498 paIntCfgs[cIntCfgs].iInterrupt = iInt;
5499 paIntCfgs[cIntCfgs].enmHardState = bHardState;
5500 paIntCfgs[cIntCfgs].enmSoftState = bSoftState;
5501 cIntCfgs++;
5502 iInt++;
5503 cInts--;
5504 }
5505
5506 return cIntCfgs;
5507}
5508
5509
5510/**
5511 * Applies event settings changes to DBGC and DBGF.
5512 *
5513 * @returns VBox status code (fully bitched)
5514 * @param pCmdHlp The command helpers.
5515 * @param pUVM The user mode VM handle.
5516 * @param paIntCfgs Interrupt configuration array. We use the upper 4
5517 * bits of the settings for the DBGCEVTSTATE. This
5518 * will be cleared.
5519 * @param cIntCfgs Number of interrupt configuration changes.
5520 * @param paEventCfgs The generic event configuration array. We use the
5521 * abUnused[0] member for the DBGCEVTSTATE, and
5522 * abUnused[2:1] for the g_aDbgcSxEvents index.
5523 * @param cEventCfgs The number of generic event settings changes.
5524 * @param pszCmd The commands to associate with the changed events.
5525 * If this is NULL, don't touch the command.
5526 * @param fChangeCmdOnly Whether to only change the commands (sx-).
5527 */
5528static int dbgcEventApplyChanges(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs,
5529 PCDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, const char *pszCmd, bool fChangeCmdOnly)
5530{
5531 int rc;
5532
5533 /*
5534 * Apply changes to DBGC. This can only fail with out of memory error.
5535 */
5536 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5537 if (cIntCfgs)
5538 for (uint32_t iCfg = 0; iCfg < cIntCfgs; iCfg++)
5539 {
5540 DBGCEVTSTATE enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmHardState >> 4);
5541 paIntCfgs[iCfg].enmHardState &= 0xf;
5542 if (paIntCfgs[iCfg].enmHardState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5543 {
5544 rc = dbgcEventUpdate(&pDbgc->apHardInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5545 if (RT_FAILURE(rc))
5546 return rc;
5547 }
5548
5549 enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmSoftState >> 4);
5550 paIntCfgs[iCfg].enmSoftState &= 0xf;
5551 if (paIntCfgs[iCfg].enmSoftState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5552 {
5553 rc = dbgcEventUpdate(&pDbgc->apSoftInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5554 if (RT_FAILURE(rc))
5555 return rc;
5556 }
5557 }
5558
5559 if (cEventCfgs)
5560 {
5561 for (uint32_t iCfg = 0; iCfg < cEventCfgs; iCfg++)
5562 {
5563 Assert((unsigned)paEventCfgs[iCfg].enmType < RT_ELEMENTS(pDbgc->apEventCfgs));
5564 uint16_t iSxEvt = RT_MAKE_U16(paEventCfgs[iCfg].abUnused[1], paEventCfgs[iCfg].abUnused[2]);
5565 Assert(iSxEvt < RT_ELEMENTS(g_aDbgcSxEvents));
5566 rc = dbgcEventUpdate(&pDbgc->apEventCfgs[iSxEvt], pszCmd, (DBGCEVTSTATE)paEventCfgs[iCfg].abUnused[0], fChangeCmdOnly);
5567 if (RT_FAILURE(rc))
5568 return rc;
5569 }
5570 }
5571
5572 /*
5573 * Apply changes to DBGF.
5574 */
5575 if (!fChangeCmdOnly)
5576 {
5577 if (cIntCfgs)
5578 {
5579 rc = DBGFR3InterruptConfigEx(pUVM, paIntCfgs, cIntCfgs);
5580 if (RT_FAILURE(rc))
5581 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3InterruptConfigEx: %Rrc\n", rc);
5582 }
5583 if (cEventCfgs)
5584 {
5585 rc = DBGFR3EventConfigEx(pUVM, paEventCfgs, cEventCfgs);
5586 if (RT_FAILURE(rc))
5587 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3EventConfigEx: %Rrc\n", rc);
5588 }
5589 }
5590
5591 return VINF_SUCCESS;
5592}
5593
5594
5595/**
5596 * @callback_method_impl{FNDBGCCMD, The 'sx[eni-]' commands.}
5597 */
5598static DECLCALLBACK(int) dbgcCmdEventCtrl(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5599{
5600 /*
5601 * Figure out which command this is.
5602 */
5603 uint8_t bIntOp;
5604 DBGCEVTSTATE enmEvtState;
5605 bool fChangeCmdOnly;
5606 switch (pCmd->pszCmd[2])
5607 {
5608 case 'e': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Enabled; fChangeCmdOnly = false; break;
5609 case 'n': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Notify; fChangeCmdOnly = false; break;
5610 case '-': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Invalid; fChangeCmdOnly = true; break;
5611 case 'i': bIntOp = DBGFINTERRUPTSTATE_DISABLED; enmEvtState = kDbgcEvtState_Disabled; fChangeCmdOnly = false; break;
5612 default:
5613 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "pszCmd=%s\n", pCmd->pszCmd);
5614 }
5615
5616 /*
5617 * Command option.
5618 */
5619 unsigned iArg = 0;
5620 const char *pszCmd = NULL;
5621 if ( cArgs >= iArg + 2
5622 && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5623 && paArgs[iArg + 1].enmType == DBGCVAR_TYPE_STRING
5624 && strcmp(paArgs[iArg].u.pszString, "-c") == 0)
5625 {
5626 pszCmd = paArgs[iArg + 1].u.pszString;
5627 iArg += 2;
5628 }
5629 if (fChangeCmdOnly && !pszCmd)
5630 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "The 'sx-' requires the '-c cmd' arguments.\n");
5631
5632 /*
5633 * The remaining arguments are event specifiers to which the operation should be applied.
5634 */
5635 uint32_t cIntCfgs = 0;
5636 DBGFINTERRUPTCONFIG aIntCfgs[256];
5637 uint32_t cEventCfgs = 0;
5638 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5639
5640 for (; iArg < cArgs; iArg++)
5641 {
5642 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, iArg, paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5643 || paArgs[iArg].enmType == DBGCVAR_TYPE_SYMBOL);
5644 uint32_t cHits = 0;
5645 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5646 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5647 {
5648 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5649 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5650 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5651 {
5652 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5653 enmEvtState, iEvt);
5654 cHits++;
5655 }
5656 }
5657 else
5658 {
5659 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5660 uint8_t iInt;
5661 uint16_t cInts;
5662 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5663 {
5664 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5665 enmEvtState, bIntOp);
5666 cHits++;
5667 }
5668 }
5669 if (!cHits)
5670 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5671 }
5672
5673 /*
5674 * Apply the changes.
5675 */
5676 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, pszCmd, fChangeCmdOnly);
5677}
5678
5679
5680/**
5681 * @callback_method_impl{FNDBGCCMD, The 'sxr' commands.}
5682 */
5683static DECLCALLBACK(int) dbgcCmdEventCtrlReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5684{
5685 RT_NOREF1(pCmd);
5686 uint32_t cEventCfgs = 0;
5687 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5688 uint32_t cIntCfgs = 0;
5689 DBGFINTERRUPTCONFIG aIntCfgs[256];
5690
5691 if (cArgs == 0)
5692 {
5693 /*
5694 * All events.
5695 */
5696 for (uint32_t iInt = 0; iInt < 256; iInt++)
5697 {
5698 aIntCfgs[iInt].iInterrupt = iInt;
5699 aIntCfgs[iInt].enmHardState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5700 aIntCfgs[iInt].enmSoftState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5701 }
5702 cIntCfgs = 256;
5703
5704 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5705 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5706 {
5707 aEventCfgs[cEventCfgs].enmType = g_aDbgcSxEvents[iEvt].enmType;
5708 aEventCfgs[cEventCfgs].fEnabled = g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled;
5709 aEventCfgs[cEventCfgs].abUnused[0] = g_aDbgcSxEvents[iEvt].enmDefault;
5710 aEventCfgs[cEventCfgs].abUnused[1] = (uint8_t)iEvt;
5711 aEventCfgs[cEventCfgs].abUnused[2] = (uint8_t)(iEvt >> 8);
5712 cEventCfgs++;
5713 }
5714 else
5715 {
5716 uint8_t const bState = ( g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5717 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED)
5718 | ((uint8_t)g_aDbgcSxEvents[iEvt].enmDefault << 4);
5719 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5720 for (uint32_t iInt = 0; iInt < 256; iInt++)
5721 aIntCfgs[iInt].enmHardState = bState;
5722 else
5723 for (uint32_t iInt = 0; iInt < 256; iInt++)
5724 aIntCfgs[iInt].enmSoftState = bState;
5725 }
5726 }
5727 else
5728 {
5729 /*
5730 * Selected events.
5731 */
5732 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
5733 {
5734 unsigned cHits = 0;
5735 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5736 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5737 {
5738 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5739 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5740 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5741 {
5742 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5743 g_aDbgcSxEvents[iEvt].enmDefault, iEvt);
5744 cHits++;
5745 }
5746 }
5747 else
5748 {
5749 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5750 uint8_t iInt;
5751 uint16_t cInts;
5752 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5753 {
5754 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5755 g_aDbgcSxEvents[iEvt].enmDefault,
5756 g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5757 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED);
5758 cHits++;
5759 }
5760 }
5761 if (!cHits)
5762 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5763 }
5764 }
5765
5766 /*
5767 * Apply the reset changes.
5768 */
5769 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, "", false);
5770}
5771
5772
5773/**
5774 * Used during DBGC initialization to configure events with defaults.
5775 *
5776 * @returns VBox status code.
5777 * @param pDbgc The DBGC instance.
5778 */
5779void dbgcEventInit(PDBGC pDbgc)
5780{
5781 if (pDbgc->pUVM)
5782 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5783}
5784
5785
5786/**
5787 * Used during DBGC termination to disable all events.
5788 *
5789 * @param pDbgc The DBGC instance.
5790 */
5791void dbgcEventTerm(PDBGC pDbgc)
5792{
5793/** @todo need to do more than just reset later. */
5794 if (pDbgc->pUVM && VMR3GetStateU(pDbgc->pUVM) < VMSTATE_DESTROYING)
5795 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5796}
5797
5798
5799static void dbgcEventDisplay(PDBGCCMDHLP pCmdHlp, const char *pszName, DBGCEVTSTATE enmDefault, PDBGCEVTCFG const *ppEvtCfg)
5800{
5801 RT_NOREF1(enmDefault);
5802 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5803
5804 const char *pszState;
5805 switch (pEvtCfg ? pEvtCfg->enmState : kDbgcEvtState_Disabled)
5806 {
5807 case kDbgcEvtState_Disabled: pszState = "ignore"; break;
5808 case kDbgcEvtState_Enabled: pszState = "enabled"; break;
5809 case kDbgcEvtState_Notify: pszState = "notify"; break;
5810 default:
5811 AssertFailed();
5812 pszState = "invalid";
5813 break;
5814 }
5815
5816 if (pEvtCfg && pEvtCfg->cchCmd > 0)
5817 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %-7s \"%s\"\n", pszName, pszState, pEvtCfg->szCmd);
5818 else
5819 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %s\n", pszName, pszState);
5820}
5821
5822
5823static void dbgcEventDisplayRange(PDBGCCMDHLP pCmdHlp, const char *pszBaseNm, DBGCEVTSTATE enmDefault,
5824 PDBGCEVTCFG const *papEvtCfgs, unsigned iCfg, unsigned cCfgs)
5825{
5826 do
5827 {
5828 PCDBGCEVTCFG pFirstCfg = papEvtCfgs[iCfg];
5829 if (pFirstCfg && pFirstCfg->enmState == kDbgcEvtState_Disabled && pFirstCfg->cchCmd == 0)
5830 pFirstCfg = NULL;
5831
5832 unsigned const iFirstCfg = iCfg;
5833 iCfg++;
5834 while (iCfg < cCfgs)
5835 {
5836 PCDBGCEVTCFG pCurCfg = papEvtCfgs[iCfg];
5837 if (pCurCfg && pCurCfg->enmState == kDbgcEvtState_Disabled && pCurCfg->cchCmd == 0)
5838 pCurCfg = NULL;
5839 if (pCurCfg != pFirstCfg)
5840 {
5841 if (!pCurCfg || !pFirstCfg)
5842 break;
5843 if (pCurCfg->enmState != pFirstCfg->enmState)
5844 break;
5845 if (pCurCfg->cchCmd != pFirstCfg->cchCmd)
5846 break;
5847 if (memcmp(pCurCfg->szCmd, pFirstCfg->szCmd, pFirstCfg->cchCmd) != 0)
5848 break;
5849 }
5850 iCfg++;
5851 }
5852
5853 char szName[16];
5854 unsigned cEntries = iCfg - iFirstCfg;
5855 if (cEntries == 1)
5856 RTStrPrintf(szName, sizeof(szName), "%s%02x", pszBaseNm, iFirstCfg);
5857 else
5858 RTStrPrintf(szName, sizeof(szName), "%s%02x L %#x", pszBaseNm, iFirstCfg, cEntries);
5859 dbgcEventDisplay(pCmdHlp, szName, enmDefault, &papEvtCfgs[iFirstCfg]);
5860
5861 cCfgs -= cEntries;
5862 } while (cCfgs > 0);
5863}
5864
5865
5866/**
5867 * @callback_method_impl{FNDBGCCMD, The 'sx' commands.}
5868 */
5869static DECLCALLBACK(int) dbgcCmdEventCtrlList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5870{
5871 RT_NOREF2(pCmd, pUVM);
5872 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5873
5874 if (cArgs == 0)
5875 {
5876 /*
5877 * All events.
5878 */
5879 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5880 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5881 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5882 &pDbgc->apEventCfgs[iEvt]);
5883 else if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5884 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5885 pDbgc->apHardInts, 0, 256);
5886 else
5887 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5888 pDbgc->apSoftInts, 0, 256);
5889 }
5890 else
5891 {
5892 /*
5893 * Selected events.
5894 */
5895 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
5896 {
5897 unsigned cHits = 0;
5898 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5899 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5900 {
5901 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5902 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5903 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5904 {
5905 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5906 &pDbgc->apEventCfgs[iEvt]);
5907 cHits++;
5908 }
5909 }
5910 else
5911 {
5912 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5913 uint8_t iInt;
5914 uint16_t cInts;
5915 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5916 {
5917 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5918 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5919 pDbgc->apHardInts, iInt, cInts);
5920 else
5921 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5922 pDbgc->apSoftInts, iInt, cInts);
5923 cHits++;
5924 }
5925 }
5926 if (cHits == 0)
5927 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5928 }
5929 }
5930
5931 return VINF_SUCCESS;
5932}
5933
5934
5935
5936/**
5937 * List near symbol.
5938 *
5939 * @returns VBox status code.
5940 * @param pCmdHlp Pointer to command helper functions.
5941 * @param pUVM The user mode VM handle.
5942 * @param pArg Pointer to the address or symbol to lookup.
5943 */
5944static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg)
5945{
5946 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5947
5948 RTDBGSYMBOL Symbol;
5949 int rc;
5950 if (pArg->enmType == DBGCVAR_TYPE_SYMBOL)
5951 {
5952 /*
5953 * Lookup the symbol address.
5954 */
5955 rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL);
5956 if (RT_FAILURE(rc))
5957 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString);
5958
5959 rc = DBGCCmdHlpPrintf(pCmdHlp, "%RTptr %s\n", Symbol.Value, Symbol.szName);
5960 }
5961 else
5962 {
5963 /*
5964 * Convert it to a flat GC address and lookup that address.
5965 */
5966 DBGCVAR AddrVar;
5967 rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg);
5968 if (RT_FAILURE(rc))
5969 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg);
5970
5971 RTINTPTR offDisp;
5972 DBGFADDRESS Addr;
5973 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat),
5974 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
5975 &offDisp, &Symbol, NULL);
5976 if (RT_FAILURE(rc))
5977 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat);
5978
5979 if (!offDisp)
5980 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s", &AddrVar, Symbol.szName);
5981 else if (offDisp > 0)
5982 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp);
5983 else
5984 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp);
5985 if (Symbol.cb > 0)
5986 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)\n", Symbol.cb);
5987 else
5988 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
5989 }
5990
5991 return rc;
5992}
5993
5994
5995/**
5996 * @callback_method_impl{FNDBGCCMD, The 'ln' (listnear) command.}
5997 */
5998static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5999{
6000 if (!cArgs)
6001 {
6002 /*
6003 * Current cs:eip symbol.
6004 */
6005 DBGCVAR AddrVar;
6006 const char *pszFmtExpr = "%%(cs:eip)";
6007 int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, pszFmtExpr);
6008 if (RT_FAILURE(rc))
6009 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%s\n", pszFmtExpr + 1);
6010 return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar);
6011 }
6012
6013/** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */
6014 /*
6015 * Iterate arguments.
6016 */
6017 for (unsigned iArg = 0; iArg < cArgs; iArg++)
6018 {
6019 int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]);
6020 if (RT_FAILURE(rc))
6021 return rc;
6022 }
6023
6024 NOREF(pCmd);
6025 return VINF_SUCCESS;
6026}
6027
6028
6029/**
6030 * Matches the module patters against a module name.
6031 *
6032 * @returns true if matching, otherwise false.
6033 * @param pszName The module name.
6034 * @param paArgs The module pattern argument list.
6035 * @param cArgs Number of arguments.
6036 */
6037static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs)
6038{
6039 for (uint32_t i = 0; i < cArgs; i++)
6040 if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName))
6041 return true;
6042 return false;
6043}
6044
6045
6046/**
6047 * @callback_method_impl{FNDBGCCMD, The 'ln' (list near) command.}
6048 */
6049static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6050{
6051 bool const fMappings = pCmd->pszCmd[2] == 'o';
6052 bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v';
6053 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6054
6055 /*
6056 * Iterate the modules in the current address space and print info about
6057 * those matching the input.
6058 */
6059 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6060 for (uint32_t iAs = 0;; iAs++)
6061 {
6062 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6063 uint32_t cMods = RTDbgAsModuleCount(hAs);
6064 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6065 {
6066 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6067 if (hMod != NIL_RTDBGMOD)
6068 {
6069 bool const fDeferred = RTDbgModIsDeferred(hMod);
6070 bool const fExports = RTDbgModIsExports(hMod);
6071 uint32_t const cSegs = fDeferred ? 1 : RTDbgModSegmentCount(hMod);
6072 const char * const pszName = RTDbgModName(hMod);
6073 const char * const pszImgFile = RTDbgModImageFile(hMod);
6074 const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod);
6075 const char * const pszDbgFile = RTDbgModDebugFile(hMod);
6076 if ( cArgs == 0
6077 || dbgcCmdListModuleMatch(pszName, paArgs, cArgs))
6078 {
6079 /*
6080 * Find the mapping with the lower address, preferring a full
6081 * image mapping, for the main line.
6082 */
6083 RTDBGASMAPINFO aMappings[128];
6084 uint32_t cMappings = RT_ELEMENTS(aMappings);
6085 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6086 if (RT_SUCCESS(rc))
6087 {
6088 bool fFull = false;
6089 RTUINTPTR uMin = RTUINTPTR_MAX;
6090 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6091 if ( aMappings[iMap].Address < uMin
6092 && ( !fFull
6093 || aMappings[iMap].iSeg == NIL_RTDBGSEGIDX))
6094 uMin = aMappings[iMap].Address;
6095 if (!fVerbose || !pszImgFile)
6096 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName,
6097 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6098 else
6099 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile,
6100 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6101 if (fVerbose && pszImgFileUsed)
6102 DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed);
6103 if (fVerbose && pszDbgFile)
6104 DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile);
6105 if (fVerbose)
6106 {
6107 char szTmp[64];
6108 RTTIMESPEC TimeSpec;
6109 int64_t secTs = 0;
6110 if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_TIMESTAMP_SECONDS, &secTs, sizeof(secTs), NULL)))
6111 DBGCCmdHlpPrintf(pCmdHlp, " Timestamp: %08RX64 %s\n", secTs,
6112 RTTimeSpecToString(RTTimeSpecSetSeconds(&TimeSpec, secTs), szTmp, sizeof(szTmp)));
6113 RTUUID Uuid;
6114 if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_UUID, &Uuid, sizeof(Uuid), NULL)))
6115 DBGCCmdHlpPrintf(pCmdHlp, " UUID: %RTuuid\n", &Uuid);
6116 }
6117
6118 if (fMappings)
6119 {
6120 /* sort by address first - not very efficient. */
6121 for (uint32_t i = 0; i + 1 < cMappings; i++)
6122 for (uint32_t j = i + 1; j < cMappings; j++)
6123 if (aMappings[j].Address < aMappings[i].Address)
6124 {
6125 RTDBGASMAPINFO Tmp = aMappings[j];
6126 aMappings[j] = aMappings[i];
6127 aMappings[i] = Tmp;
6128 }
6129
6130 /* print */
6131 if ( cMappings == 1
6132 && aMappings[0].iSeg == NIL_RTDBGSEGIDX
6133 && !fDeferred)
6134 {
6135 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
6136 {
6137 RTDBGSEGMENT SegInfo;
6138 rc = RTDbgModSegmentByIndex(hMod, iSeg, &SegInfo);
6139 if (RT_SUCCESS(rc))
6140 {
6141 if (SegInfo.uRva != RTUINTPTR_MAX)
6142 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6143 (RTGCUINTPTR)(aMappings[0].Address + SegInfo.uRva),
6144 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6145 else
6146 DBGCCmdHlpPrintf(pCmdHlp, " %*s %RGv #%02x %s\n",
6147 sizeof(RTGCUINTPTR)*2, "noload",
6148 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6149 }
6150 else
6151 DBGCCmdHlpPrintf(pCmdHlp, " Error query segment #%u: %Rrc\n", iSeg, rc);
6152 }
6153 }
6154 else
6155 {
6156 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6157 if (aMappings[iMap].iSeg == NIL_RTDBGSEGIDX)
6158 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv <everything>\n",
6159 (RTGCUINTPTR)aMappings[iMap].Address,
6160 (RTGCUINTPTR)RTDbgModImageSize(hMod));
6161 else if (!fDeferred)
6162 {
6163 RTDBGSEGMENT SegInfo;
6164 rc = RTDbgModSegmentByIndex(hMod, aMappings[iMap].iSeg, &SegInfo);
6165 if (RT_FAILURE(rc))
6166 {
6167 RT_ZERO(SegInfo);
6168 strcpy(SegInfo.szName, "error");
6169 }
6170 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6171 (RTGCUINTPTR)aMappings[iMap].Address,
6172 (RTGCUINTPTR)SegInfo.cb,
6173 aMappings[iMap].iSeg, SegInfo.szName);
6174 }
6175 else
6176 DBGCCmdHlpPrintf(pCmdHlp, " %RGv #%02x\n",
6177 (RTGCUINTPTR)aMappings[iMap].Address, aMappings[iMap].iSeg);
6178 }
6179 }
6180 }
6181 else
6182 DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n",
6183 sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc);
6184 /** @todo missing address space API for enumerating the mappings. */
6185 }
6186 RTDbgModRelease(hMod);
6187 }
6188 }
6189 RTDbgAsRelease(hAs);
6190
6191 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6192 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6193 break;
6194 AssertBreak(iAs == 0);
6195 hAsCurAlias = DBGF_AS_GLOBAL;
6196 }
6197
6198 NOREF(pCmd);
6199 return VINF_SUCCESS;
6200}
6201
6202
6203
6204/**
6205 * @callback_method_impl{FNDBGCCMD, The 'x' (examine symbols) command.}
6206 */
6207static DECLCALLBACK(int) dbgcCmdListSymbols(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6208{
6209 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6210 AssertReturn(paArgs[0].enmType == DBGCVAR_TYPE_STRING, VERR_DBGC_PARSE_BUG);
6211
6212 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6213
6214 /*
6215 * Allowed is either a single * to match everything or the Module!Symbol style
6216 * which requiresa ! to separate module and symbol.
6217 */
6218 bool fDumpAll = strcmp(paArgs[0].u.pszString, "*") == 0;
6219 const char *pszModule = NULL;
6220 size_t cchModule = 0;
6221 const char *pszSymbol = NULL;
6222 if (!fDumpAll)
6223 {
6224 const char *pszDelimiter = strchr(paArgs[0].u.pszString, '!');
6225 if (!pszDelimiter)
6226 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid search string '%s' for '%s'. Valid are either '*' or the form <Module>!<Symbol> where the <Module> and <Symbol> can contain wildcards",
6227 paArgs[0].u.pszString, pCmd->pszCmd);
6228
6229 pszModule = paArgs[0].u.pszString;
6230 cchModule = pszDelimiter - pszModule;
6231 pszSymbol = pszDelimiter + 1;
6232 }
6233
6234 /*
6235 * Iterate the modules in the current address space and print info about
6236 * those matching the input.
6237 */
6238 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6239 for (uint32_t iAs = 0;; iAs++)
6240 {
6241 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6242 uint32_t cMods = RTDbgAsModuleCount(hAs);
6243 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6244 {
6245 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6246 if (hMod != NIL_RTDBGMOD)
6247 {
6248 const char *pszModName = RTDbgModName(hMod);
6249 if ( fDumpAll
6250 || RTStrSimplePatternNMatch(pszModule, cchModule, pszModName, strlen(pszModName)))
6251 {
6252 RTDBGASMAPINFO aMappings[128];
6253 uint32_t cMappings = RT_ELEMENTS(aMappings);
6254 RTUINTPTR uMapping = 0;
6255
6256 /* Get the minimum mapping address of the module so we can print absolute values for the symbol later on. */
6257 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6258 if (RT_SUCCESS(rc))
6259 {
6260 uMapping = RTUINTPTR_MAX;
6261 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6262 if (aMappings[iMap].Address < uMapping)
6263 uMapping = aMappings[iMap].Address;
6264 }
6265
6266 /* Go through the symbols and print any matches. */
6267 uint32_t cSyms = RTDbgModSymbolCount(hMod);
6268 for (uint32_t iSym = 0; iSym < cSyms; iSym++)
6269 {
6270 RTDBGSYMBOL SymInfo;
6271 rc = RTDbgModSymbolByOrdinal(hMod, iSym, &SymInfo);
6272 if ( RT_SUCCESS(rc)
6273 && ( fDumpAll
6274 || RTStrSimplePatternMatch(pszSymbol, &SymInfo.szName[0])))
6275 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %s!%s\n", uMapping + (RTGCUINTPTR)SymInfo.Value, pszModName, &SymInfo.szName[0]);
6276 }
6277 }
6278 RTDbgModRelease(hMod);
6279 }
6280 }
6281 RTDbgAsRelease(hAs);
6282
6283 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6284 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6285 break;
6286 AssertBreak(iAs == 0);
6287 hAsCurAlias = DBGF_AS_GLOBAL;
6288 }
6289
6290 RT_NOREF(pCmd);
6291 return VINF_SUCCESS;
6292}
6293
6294
6295/**
6296 * @callback_method_impl{FNDBGCCMD, The 'tflowc' (clear trace flow) command.}
6297 */
6298static DECLCALLBACK(int) dbgcCmdTraceFlowClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6299{
6300 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6301
6302 /*
6303 * Enumerate the arguments.
6304 */
6305 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6306 int rc = VINF_SUCCESS;
6307 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6308 {
6309 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6310 {
6311 /* one */
6312 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6313 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6314 {
6315 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6316 if (pFlowTrace)
6317 {
6318 rc = DBGFR3FlowTraceModRelease(pFlowTrace->hTraceFlowMod);
6319 if (RT_FAILURE(rc))
6320 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModRelease failed for flow trace module %#x", iFlowTraceMod);
6321 rc = DBGFR3FlowRelease(pFlowTrace->hFlow);
6322 if (RT_FAILURE(rc))
6323 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowRelease failed for flow trace module %#x", iFlowTraceMod);
6324 dbgcFlowTraceModDelete(pDbgc, iFlowTraceMod);
6325 }
6326 else
6327 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6328 }
6329 else
6330 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6331 }
6332 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6333 {
6334 /* all */
6335 PDBGCTFLOW pIt, pItNext;
6336 RTListForEachSafe(&pDbgc->LstTraceFlowMods, pIt, pItNext, DBGCTFLOW, NdTraceFlow)
6337 {
6338 int rc2 = DBGFR3FlowTraceModRelease(pIt->hTraceFlowMod);
6339 if (RT_FAILURE(rc2))
6340 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", pIt->iTraceFlowMod);
6341 dbgcFlowTraceModDelete(pDbgc, pIt->iTraceFlowMod);
6342 }
6343 }
6344 else
6345 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6346 }
6347 return rc;
6348}
6349
6350
6351/**
6352 * @callback_method_impl{FNDBGCCMD, The 'tflowd' (disable trace flow) command.}
6353 */
6354static DECLCALLBACK(int) dbgcCmdTraceFlowDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6355{
6356 /*
6357 * Enumerate the arguments.
6358 */
6359 RT_NOREF1(pUVM);
6360 int rc = VINF_SUCCESS;
6361 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6362 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6363 {
6364 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6365 {
6366 /* one */
6367 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6368 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6369 {
6370 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6371 if (pFlowTrace)
6372 {
6373 rc = DBGFR3FlowTraceModDisable(pFlowTrace->hTraceFlowMod);
6374 if (RT_FAILURE(rc))
6375 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", iFlowTraceMod);
6376 }
6377 else
6378 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6379 }
6380 else
6381 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
6382 }
6383 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6384 {
6385 /* all */
6386 PDBGCTFLOW pIt;
6387 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6388 {
6389 int rc2 = DBGFR3FlowTraceModDisable(pIt->hTraceFlowMod);
6390 if (RT_FAILURE(rc2))
6391 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x",
6392 pIt->iTraceFlowMod);
6393 }
6394 }
6395 else
6396 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6397 }
6398 return rc;
6399}
6400
6401
6402/**
6403 * @callback_method_impl{FNDBGCCMD, The 'tflowe' (enable trace flow) command.}
6404 */
6405static DECLCALLBACK(int) dbgcCmdTraceFlowEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6406{
6407 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6408
6409 /*
6410 * Validate input.
6411 */
6412 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6413 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 2);
6414 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
6415
6416 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
6417 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
6418
6419 /*
6420 * Check the desired mode.
6421 */
6422 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED | DBGF_DISAS_FLAGS_DEFAULT_MODE;
6423
6424 /** @todo should use DBGFADDRESS for everything */
6425
6426 /*
6427 * Find address.
6428 */
6429 if (!cArgs)
6430 {
6431 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
6432 {
6433 /** @todo Batch query CS, RIP, CPU mode and flags. */
6434 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
6435 if (CPUMIsGuestIn64BitCode(pVCpu))
6436 {
6437 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
6438 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
6439 }
6440 else
6441 {
6442 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
6443 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
6444 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
6445 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
6446 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
6447 {
6448 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
6449 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
6450 }
6451 }
6452
6453 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
6454 }
6455 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
6456 {
6457 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
6458 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
6459 }
6460 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
6461 }
6462 else
6463 pDbgc->DisasmPos = paArgs[0];
6464 pDbgc->pLastPos = &pDbgc->DisasmPos;
6465
6466 /*
6467 * Convert physical and host addresses to guest addresses.
6468 */
6469 RTDBGAS hDbgAs = pDbgc->hDbgAs;
6470 int rc;
6471 switch (pDbgc->DisasmPos.enmType)
6472 {
6473 case DBGCVAR_TYPE_GC_FLAT:
6474 case DBGCVAR_TYPE_GC_FAR:
6475 break;
6476 case DBGCVAR_TYPE_GC_PHYS:
6477 hDbgAs = DBGF_AS_PHYS;
6478 /* fall thru */
6479 case DBGCVAR_TYPE_HC_FLAT:
6480 case DBGCVAR_TYPE_HC_PHYS:
6481 {
6482 DBGCVAR VarTmp;
6483 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
6484 if (RT_FAILURE(rc))
6485 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
6486 pDbgc->DisasmPos = VarTmp;
6487 break;
6488 }
6489 default: AssertFailed(); break;
6490 }
6491
6492 DBGFADDRESS CurAddr;
6493 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
6494 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
6495 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
6496 else
6497 {
6498 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
6499 if (RT_FAILURE(rc))
6500 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
6501 }
6502
6503 DBGFFLOW hCfg;
6504 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
6505 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
6506 if (RT_SUCCESS(rc))
6507 {
6508 /* Create a probe. */
6509 DBGFFLOWTRACEPROBE hFlowTraceProbe = NULL;
6510 DBGFFLOWTRACEPROBE hFlowTraceProbeExit = NULL;
6511 DBGFFLOWTRACEPROBEENTRY Entry;
6512 DBGFFLOWTRACEMOD hFlowTraceMod = NULL;
6513 uint32_t iTraceModId = 0;
6514
6515 RT_ZERO(Entry);
6516 Entry.enmType = DBGFFLOWTRACEPROBEENTRYTYPE_DEBUGGER;
6517
6518 rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbe);
6519 if (RT_SUCCESS(rc))
6520 rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbeExit);
6521 if (RT_SUCCESS(rc))
6522 rc = DBGFR3FlowTraceProbeEntriesAdd(hFlowTraceProbeExit, &Entry, 1 /*cEntries*/);
6523 if (RT_SUCCESS(rc))
6524 rc = DBGFR3FlowTraceModCreateFromFlowGraph(pUVM, VMCPUID_ANY, hCfg, NULL,
6525 hFlowTraceProbe, hFlowTraceProbe,
6526 hFlowTraceProbeExit, &hFlowTraceMod);
6527 if (RT_SUCCESS(rc))
6528 rc = dbgcFlowTraceModAdd(pDbgc, hFlowTraceMod, hCfg, &iTraceModId);
6529 if (RT_SUCCESS(rc))
6530 rc = DBGFR3FlowTraceModEnable(hFlowTraceMod, 0, 0);
6531 if (RT_SUCCESS(rc))
6532 DBGCCmdHlpPrintf(pCmdHlp, "Enabled execution flow tracing %u at %RGv\n",
6533 iTraceModId, CurAddr.FlatPtr);
6534
6535 if (hFlowTraceProbe)
6536 DBGFR3FlowTraceProbeRelease(hFlowTraceProbe);
6537 if (hFlowTraceProbeExit)
6538 DBGFR3FlowTraceProbeRelease(hFlowTraceProbeExit);
6539 }
6540 else
6541 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
6542
6543 NOREF(pCmd);
6544 return rc;
6545}
6546
6547
6548/**
6549 * Enumerates and prints all records contained in the given flow tarce module.
6550 *
6551 * @returns VBox status code.
6552 * @param pCmd The command.
6553 * @param pCmdHlp The command helpers.
6554 * @param hFlowTraceMod The flow trace module to print.
6555 * @param hFlow The control flow graph assoicated with the given module.
6556 * @param iFlowTraceMod The flow trace module identifier.
6557 */
6558static int dbgcCmdTraceFlowPrintOne(PDBGCCMDHLP pCmdHlp, PCDBGCCMD pCmd, DBGFFLOWTRACEMOD hFlowTraceMod,
6559 DBGFFLOW hFlow, uint32_t iFlowTraceMod)
6560{
6561 RT_NOREF(hFlow);
6562
6563 DBGFFLOWTRACEREPORT hFlowTraceReport;
6564 int rc = DBGFR3FlowTraceModQueryReport(hFlowTraceMod, &hFlowTraceReport);
6565 if (RT_SUCCESS(rc))
6566 {
6567 uint32_t cRecords = DBGFR3FlowTraceReportGetRecordCount(hFlowTraceReport);
6568 DBGCCmdHlpPrintf(pCmdHlp, "Report for flow trace module %#x (%u records):\n",
6569 iFlowTraceMod, cRecords);
6570
6571 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cRecords * sizeof(DBGCFLOWBBDUMP));
6572 if (RT_LIKELY(paDumpBb))
6573 {
6574 /* Query the basic block referenced for each record and calculate the size. */
6575 for (uint32_t i = 0; i < cRecords && RT_SUCCESS(rc); i++)
6576 {
6577 DBGFFLOWTRACERECORD hRec = NULL;
6578 rc = DBGFR3FlowTraceReportQueryRecord(hFlowTraceReport, i, &hRec);
6579 if (RT_SUCCESS(rc))
6580 {
6581 DBGFADDRESS Addr;
6582 DBGFR3FlowTraceRecordGetAddr(hRec, &Addr);
6583
6584 DBGFFLOWBB hFlowBb = NULL;
6585 rc = DBGFR3FlowQueryBbByAddress(hFlow, &Addr, &hFlowBb);
6586 if (RT_SUCCESS(rc))
6587 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[i]);
6588
6589 DBGFR3FlowTraceRecordRelease(hRec);
6590 }
6591 }
6592
6593 if (RT_SUCCESS(rc))
6594 {
6595 /* Calculate the ASCII screen dimensions and create one. */
6596 uint32_t cchWidth = 0;
6597 uint32_t cchHeight = 0;
6598 for (unsigned i = 0; i < cRecords; i++)
6599 {
6600 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
6601 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
6602 cchHeight += pDumpBb->cchHeight;
6603
6604 /* Incomplete blocks don't have a successor. */
6605 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
6606 continue;
6607
6608 cchHeight += 2; /* For the arrow down to the next basic block. */
6609 }
6610
6611
6612 DBGCSCREEN hScreen = NULL;
6613 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth, cchHeight);
6614 if (RT_SUCCESS(rc))
6615 {
6616 uint32_t uY = 0;
6617
6618 /* Dump the basic blocks and connections to the immediate successor. */
6619 for (unsigned i = 0; i < cRecords; i++)
6620 {
6621 paDumpBb[i].uStartX = (cchWidth - paDumpBb[i].cchWidth) / 2;
6622 paDumpBb[i].uStartY = uY;
6623 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
6624 uY += paDumpBb[i].cchHeight;
6625
6626 /* Incomplete blocks don't have a successor. */
6627 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
6628 continue;
6629
6630 if (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb) != DBGFFLOWBBENDTYPE_EXIT)
6631 {
6632 /* Draw the arrow down to the next block. */
6633 dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY,
6634 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
6635 uY++;
6636 dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY,
6637 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
6638 uY++;
6639 }
6640 }
6641
6642 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, false /*fUseColor*/);
6643 dbgcScreenAsciiDestroy(hScreen);
6644 }
6645 else
6646 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to create virtual screen for flow trace module %#x", iFlowTraceMod);
6647 }
6648 else
6649 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query all records of flow trace module %#x", iFlowTraceMod);
6650
6651 for (unsigned i = 0; i < cRecords; i++)
6652 {
6653 if (paDumpBb[i].hFlowBb)
6654 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
6655 }
6656
6657 RTMemTmpFree(paDumpBb);
6658 }
6659 else
6660 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to allocate memory for %u records", cRecords);
6661
6662 DBGFR3FlowTraceReportRelease(hFlowTraceReport);
6663 }
6664 else
6665 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query report for flow trace module %#x", iFlowTraceMod);
6666
6667 return rc;
6668}
6669
6670
6671/**
6672 * @callback_method_impl{FNDBGCCMD, The 'tflowp' (print trace flow) command.}
6673 */
6674static DECLCALLBACK(int) dbgcCmdTraceFlowPrint(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6675{
6676 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6677
6678 /*
6679 * Enumerate the arguments.
6680 */
6681 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6682 int rc = VINF_SUCCESS;
6683 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6684 {
6685 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6686 {
6687 /* one */
6688 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6689 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6690 {
6691 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6692 if (pFlowTrace)
6693 rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pFlowTrace->hTraceFlowMod,
6694 pFlowTrace->hFlow, pFlowTrace->iTraceFlowMod);
6695 else
6696 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6697 }
6698 else
6699 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6700 }
6701 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6702 {
6703 /* all */
6704 PDBGCTFLOW pIt;
6705 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6706 {
6707 rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pIt->hTraceFlowMod,
6708 pIt->hFlow, pIt->iTraceFlowMod);
6709 if (RT_FAILURE(rc))
6710 break;
6711 }
6712 }
6713 else
6714 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6715 }
6716 return rc;
6717}
6718
6719
6720/**
6721 * @callback_method_impl{FNDBGCCMD, The 'tflowr' (reset trace flow) command.}
6722 */
6723static DECLCALLBACK(int) dbgcCmdTraceFlowReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6724{
6725 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6726
6727 /*
6728 * Enumerate the arguments.
6729 */
6730 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6731 int rc = VINF_SUCCESS;
6732 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6733 {
6734 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6735 {
6736 /* one */
6737 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6738 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6739 {
6740 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6741 if (pFlowTrace)
6742 {
6743 rc = DBGFR3FlowTraceModClear(pFlowTrace->hTraceFlowMod);
6744 if (RT_FAILURE(rc))
6745 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", iFlowTraceMod);
6746 }
6747 else
6748 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6749 }
6750 else
6751 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6752 }
6753 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6754 {
6755 /* all */
6756 PDBGCTFLOW pIt;
6757 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6758 {
6759 rc = DBGFR3FlowTraceModClear(pIt->hTraceFlowMod);
6760 if (RT_FAILURE(rc))
6761 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", pIt->iTraceFlowMod);
6762 }
6763 }
6764 else
6765 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6766 }
6767 return rc;
6768}
6769
6770
6771
6772/**
6773 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 8-bit value.}
6774 */
6775static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6776 PDBGCVAR pResult)
6777{
6778 RT_NOREF1(pUVM);
6779 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6780 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6781 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6782
6783 uint8_t b;
6784 int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL);
6785 if (RT_FAILURE(rc))
6786 return rc;
6787 DBGCVAR_INIT_NUMBER(pResult, b);
6788
6789 NOREF(pFunc);
6790 return VINF_SUCCESS;
6791}
6792
6793
6794/**
6795 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 16-bit value.}
6796 */
6797static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6798 PDBGCVAR pResult)
6799{
6800 RT_NOREF1(pUVM);
6801 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6802 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6803 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6804
6805 uint16_t u16;
6806 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL);
6807 if (RT_FAILURE(rc))
6808 return rc;
6809 DBGCVAR_INIT_NUMBER(pResult, u16);
6810
6811 NOREF(pFunc);
6812 return VINF_SUCCESS;
6813}
6814
6815
6816/**
6817 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 32-bit value.}
6818 */
6819static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6820 PDBGCVAR pResult)
6821{
6822 RT_NOREF1(pUVM);
6823 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6824 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6825 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6826
6827 uint32_t u32;
6828 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL);
6829 if (RT_FAILURE(rc))
6830 return rc;
6831 DBGCVAR_INIT_NUMBER(pResult, u32);
6832
6833 NOREF(pFunc);
6834 return VINF_SUCCESS;
6835}
6836
6837
6838/**
6839 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 64-bit value.}
6840 */
6841static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6842 PDBGCVAR pResult)
6843{
6844 RT_NOREF1(pUVM);
6845 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6846 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6847 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6848
6849 uint64_t u64;
6850 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL);
6851 if (RT_FAILURE(rc))
6852 return rc;
6853 DBGCVAR_INIT_NUMBER(pResult, u64);
6854
6855 NOREF(pFunc);
6856 return VINF_SUCCESS;
6857}
6858
6859
6860/**
6861 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned pointer-sized value.}
6862 */
6863static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6864 PDBGCVAR pResult)
6865{
6866 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6867 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6868 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6869
6870 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
6871 if (enmMode == CPUMMODE_LONG)
6872 return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
6873 return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
6874}
6875
6876
6877/**
6878 * @callback_method_impl{FNDBGCFUNC, The hi(value) function implementation.}
6879 */
6880static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6881 PDBGCVAR pResult)
6882{
6883 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6884
6885 uint16_t uHi;
6886 switch (paArgs[0].enmType)
6887 {
6888 case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break;
6889 case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break;
6890 case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break;
6891 case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break;
6892 case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break;
6893 case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break;
6894 default:
6895 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
6896 }
6897 DBGCVAR_INIT_NUMBER(pResult, uHi);
6898 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
6899
6900 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
6901 return VINF_SUCCESS;
6902}
6903
6904
6905/**
6906 * @callback_method_impl{FNDBGCFUNC, The low(value) function implementation.}
6907 */
6908static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6909 PDBGCVAR pResult)
6910{
6911 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6912
6913 uint16_t uLow;
6914 switch (paArgs[0].enmType)
6915 {
6916 case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break;
6917 case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break;
6918 case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break;
6919 case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break;
6920 case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break;
6921 case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break;
6922 default:
6923 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
6924 }
6925 DBGCVAR_INIT_NUMBER(pResult, uLow);
6926 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
6927
6928 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
6929 return VINF_SUCCESS;
6930}
6931
6932
6933/**
6934 * @callback_method_impl{FNDBGCFUNC,The low(value) function implementation.}
6935 */
6936static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6937 PDBGCVAR pResult)
6938{
6939 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6940 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
6941 return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]);
6942}
6943
6944
6945/** Generic pointer argument wo/ range. */
6946static const DBGCVARDESC g_aArgPointerWoRange[] =
6947{
6948 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
6949 { 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." },
6950};
6951
6952/** Generic pointer or number argument. */
6953static const DBGCVARDESC g_aArgPointerNumber[] =
6954{
6955 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
6956 { 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." },
6957};
6958
6959
6960
6961/** Function descriptors for the CodeView / WinDbg emulation.
6962 * The emulation isn't attempting to be identical, only somewhat similar.
6963 */
6964const DBGCFUNC g_aFuncsCodeView[] =
6965{
6966 { "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." },
6967 { "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." },
6968 { "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." },
6969 { "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." },
6970 { "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." },
6971 { "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." },
6972 { "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." },
6973 { "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." },
6974};
6975
6976/** The number of functions in the CodeView/WinDbg emulation. */
6977const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);
6978
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette