VirtualBox

source: vbox/trunk/src/VBox/Debugger/DBGCEmulateCodeView.cpp@ 99813

Last change on this file since 99813 was 99739, checked in by vboxsync, 19 months ago

*: doxygen corrections (mostly about removing @returns from functions returning void).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 313.0 KB
Line 
1/* $Id: DBGCEmulateCodeView.cpp 99739 2023-05-11 01:01:08Z vboxsync $ */
2/** @file
3 * DBGC - Debugger Console, CodeView / WinDbg Emulation.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_DBGC
33#include <VBox/dbg.h>
34#include <VBox/vmm/dbgf.h>
35#include <VBox/vmm/dbgfflowtrace.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/cpum.h>
38#include <VBox/dis.h>
39#include <VBox/param.h>
40#include <VBox/err.h>
41#include <VBox/log.h>
42
43#include <iprt/asm.h>
44#include <iprt/mem.h>
45#include <iprt/string.h>
46#include <iprt/assert.h>
47#include <iprt/ctype.h>
48#include <iprt/time.h>
49
50#include <stdlib.h>
51#include <stdio.h>
52
53#include "DBGCInternal.h"
54
55
56/*********************************************************************************************************************************
57* Internal Functions *
58*********************************************************************************************************************************/
59static FNDBGCCMD dbgcCmdBrkAccess;
60static FNDBGCCMD dbgcCmdBrkClear;
61static FNDBGCCMD dbgcCmdBrkDisable;
62static FNDBGCCMD dbgcCmdBrkEnable;
63static FNDBGCCMD dbgcCmdBrkList;
64static FNDBGCCMD dbgcCmdBrkSet;
65static FNDBGCCMD dbgcCmdBrkREM;
66static FNDBGCCMD dbgcCmdDumpMem;
67static FNDBGCCMD dbgcCmdDumpDT;
68static FNDBGCCMD dbgcCmdDumpIDT;
69static FNDBGCCMD dbgcCmdDumpPageDir;
70static FNDBGCCMD dbgcCmdDumpPageDirBoth;
71static FNDBGCCMD dbgcCmdDumpPageHierarchy;
72static FNDBGCCMD dbgcCmdDumpPageTable;
73static FNDBGCCMD dbgcCmdDumpPageTableBoth;
74static FNDBGCCMD dbgcCmdDumpTSS;
75static FNDBGCCMD dbgcCmdDumpTypeInfo;
76static FNDBGCCMD dbgcCmdDumpTypedVal;
77static FNDBGCCMD dbgcCmdEditMem;
78static FNDBGCCMD dbgcCmdGo;
79static FNDBGCCMD dbgcCmdGoUp;
80static FNDBGCCMD dbgcCmdListModules;
81static FNDBGCCMD dbgcCmdListNear;
82static FNDBGCCMD dbgcCmdListSource;
83static FNDBGCCMD dbgcCmdListSymbols;
84static FNDBGCCMD dbgcCmdMemoryInfo;
85static FNDBGCCMD dbgcCmdReg;
86static FNDBGCCMD dbgcCmdRegGuest;
87static FNDBGCCMD dbgcCmdRegTerse;
88static FNDBGCCMD dbgcCmdSearchMem;
89static FNDBGCCMD dbgcCmdSearchMemType;
90static FNDBGCCMD dbgcCmdStepTrace;
91static FNDBGCCMD dbgcCmdStepTraceTo;
92static FNDBGCCMD dbgcCmdStepTraceToggle;
93static FNDBGCCMD dbgcCmdEventCtrl;
94static FNDBGCCMD dbgcCmdEventCtrlList;
95static FNDBGCCMD dbgcCmdEventCtrlReset;
96static FNDBGCCMD dbgcCmdStack;
97static FNDBGCCMD dbgcCmdUnassemble;
98static FNDBGCCMD dbgcCmdUnassembleCfg;
99static FNDBGCCMD dbgcCmdTraceFlowClear;
100static FNDBGCCMD dbgcCmdTraceFlowDisable;
101static FNDBGCCMD dbgcCmdTraceFlowEnable;
102static FNDBGCCMD dbgcCmdTraceFlowPrint;
103static FNDBGCCMD dbgcCmdTraceFlowReset;
104
105
106/*********************************************************************************************************************************
107* Global Variables *
108*********************************************************************************************************************************/
109/** 'ba' arguments. */
110static const DBGCVARDESC g_aArgBrkAcc[] =
111{
112 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
113 { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." },
114 { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." },
115 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
116 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
117 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
118 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
119};
120
121
122/** 'bc', 'bd', 'be' arguments. */
123static const DBGCVARDESC g_aArgBrks[] =
124{
125 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
126 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." },
127 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." },
128};
129
130
131/** 'bp' arguments. */
132static const DBGCVARDESC g_aArgBrkSet[] =
133{
134 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
135 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
136 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
137 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
138 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
139};
140
141
142/** 'br' arguments. */
143static const DBGCVARDESC g_aArgBrkREM[] =
144{
145 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
146 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
147 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
148 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
149 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
150};
151
152
153/** 'd?' arguments. */
154static const DBGCVARDESC g_aArgDumpMem[] =
155{
156 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
157 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory. Tip: Use the L or LB operator to specify how may items or bytes to dump." },
158};
159
160
161/** 'dg', 'dga', 'dl', 'dla' arguments. */
162static const DBGCVARDESC g_aArgDumpDT[] =
163{
164 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
165 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." },
166 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." },
167};
168
169
170/** 'di', 'dia' arguments. */
171static const DBGCVARDESC g_aArgDumpIDT[] =
172{
173 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
174 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." },
175};
176
177
178/** 'dpd*' arguments. */
179static const DBGCVARDESC g_aArgDumpPD[] =
180{
181 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
182 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." },
183 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." },
184};
185
186
187/** 'dpda' arguments. */
188static const DBGCVARDESC g_aArgDumpPDAddr[] =
189{
190 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
191 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." },
192};
193
194
195/** 'dph*' arguments. */
196static const DBGCVARDESC g_aArgDumpPH[] =
197{
198 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
199 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." },
200 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." },
201 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." },
202};
203
204
205/** 'dpt?' arguments. */
206static const DBGCVARDESC g_aArgDumpPT[] =
207{
208 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
209 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." },
210};
211
212
213/** 'dpta' arguments. */
214static const DBGCVARDESC g_aArgDumpPTAddr[] =
215{
216 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
217 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." },
218};
219
220
221/** 'dt' arguments. */
222static const DBGCVARDESC g_aArgDumpTSS[] =
223{
224 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
225 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." },
226 { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." }
227};
228
229
230/** 'dti' arguments. */
231static const DBGCVARDESC g_aArgDumpTypeInfo[] =
232{
233 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
234 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to dump" },
235 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump the type information" }
236};
237
238
239/** 'dtv' arguments. */
240static const DBGCVARDESC g_aArgDumpTypedVal[] =
241{
242 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
243 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to use" },
244 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address to start dumping from." },
245 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump" }
246};
247
248
249/** 'e?' arguments. */
250static const DBGCVARDESC g_aArgEditMem[] =
251{
252 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
253 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." },
254 { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." },
255};
256
257
258/** 'g' arguments. */
259static const DBGCVARDESC g_aArgGo[] =
260{
261 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
262 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "idCpu", "CPU ID." },
263};
264
265
266/** 'lm' arguments. */
267static const DBGCVARDESC g_aArgListMods[] =
268{
269 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
270 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." },
271};
272
273
274/** 'ln' arguments. */
275static const DBGCVARDESC g_aArgListNear[] =
276{
277 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
278 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." },
279 { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." },
280};
281
282
283/** 'ls' arguments. */
284static const DBGCVARDESC g_aArgListSource[] =
285{
286 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
287 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." },
288};
289
290
291/** 'm' argument. */
292static const DBGCVARDESC g_aArgMemoryInfo[] =
293{
294 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
295 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." },
296};
297
298
299/** 'p', 'pc', 'pt', 't', 'tc' and 'tt' arguments. */
300static const DBGCVARDESC g_aArgStepTrace[] =
301{
302 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
303 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "count", "Number of instructions or source lines to step." },
304 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
305};
306
307
308/** 'pa' and 'ta' arguments. */
309static const DBGCVARDESC g_aArgStepTraceTo[] =
310{
311 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
312 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Where to stop" },
313 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
314};
315
316
317/** 'r' arguments. */
318static const DBGCVARDESC g_aArgReg[] =
319{
320 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
321 { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." },
322 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." },
323 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." },
324};
325
326
327/** 's' arguments. */
328static const DBGCVARDESC g_aArgSearchMem[] =
329{
330 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
331 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." },
332 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." },
333 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." },
334 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." },
335 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." },
336 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." },
337 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n <Hits>", "Maximum number of hits." },
338 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
339 { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
340};
341
342
343/** 's?' arguments. */
344static const DBGCVARDESC g_aArgSearchMemType[] =
345{
346 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
347 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
348 { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
349};
350
351
352/** 'sxe', 'sxn', 'sxi', 'sx-' arguments. */
353static const DBGCVARDESC g_aArgEventCtrl[] =
354{
355 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
356 { 0, 1, DBGCVAR_CAT_STRING, 0, "-c", "The -c option, requires <cmds>." },
357 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "cmds", "Command to execute on this event." },
358 { 0 /*weird*/, ~0U, DBGCVAR_CAT_STRING, 0, "event", "One or more events, 'all' refering to all events." },
359};
360
361/** 'sx' and 'sr' arguments. */
362static const DBGCVARDESC g_aArgEventCtrlOpt[] =
363{
364 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
365 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "event", "Zero or more events, 'all' refering to all events and being the default." },
366};
367
368/** 'u' arguments. */
369static const DBGCVARDESC g_aArgUnassemble[] =
370{
371 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
372 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
373};
374
375/** 'ucfg' arguments. */
376static const DBGCVARDESC g_aArgUnassembleCfg[] =
377{
378 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
379 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
380};
381
382/** 'x' arguments. */
383static const DBGCVARDESC g_aArgListSyms[] =
384{
385 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
386 { 1, 1, DBGCVAR_CAT_STRING, 0, "symbols", "The symbols to list, format is Module!Symbol with wildcards being supoprted." }
387};
388
389/** 'tflowc' arguments. */
390static const DBGCVARDESC g_aArgTraceFlowClear[] =
391{
392 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
393 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
394 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
395};
396
397/** 'tflowd' arguments. */
398static const DBGCVARDESC g_aArgTraceFlowDisable[] =
399{
400 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
401 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
402 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
403};
404
405/** 'tflowe' arguments. */
406static const DBGCVARDESC g_aArgTraceFlowEnable[] =
407{
408 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
409 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start tracing." },
410 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "<Hits>", "Maximum number of hits before the module is disabled." }
411};
412
413/** 'tflowp', 'tflowr' arguments. */
414static const DBGCVARDESC g_aArgTraceFlowPrintReset[] =
415{
416 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
417 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
418 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
419};
420
421/** Command descriptors for the CodeView / WinDbg emulation.
422 * The emulation isn't attempting to be identical, only somewhat similar.
423 */
424const DBGCCMD g_aCmdsCodeView[] =
425{
426 /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
427 { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "<access> <size> <address> [passes [max passes]] [cmds]",
428 "Sets a data access breakpoint." },
429 { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | <bp#> [bp# []]", "Deletes a set of breakpoints." },
430 { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | <bp#> [bp# []]", "Disables a set of breakpoints." },
431 { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | <bp#> [bp# []]", "Enables a set of breakpoints." },
432 { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." },
433 { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "<address> [passes [max passes]] [cmds]",
434 "Sets a breakpoint (int 3)." },
435 { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "<address> [passes [max passes]] [cmds]",
436 "Sets a recompiler specific breakpoint." },
437 { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size and type." },
438 { "dF", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16." },
439 { "dFs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16 with near symbols." },
440 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
441 { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." },
442 { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." },
443 { "dds", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as double words with near symbols." },
444 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
445 { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." },
446 { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." },
447 { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." },
448 { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." },
449 { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." },
450 { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." },
451 { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." },
452 { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." },
453 { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " },
454 { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." },
455 { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " },
456 { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." },
457 { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." },
458 { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." },
459 { "dp", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words." },
460 { "dps", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words with near symbols." },
461 { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the default context." },
462 { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps memory at given address as a page table." },
463 { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"<addr>", "Dumps page table entries of the guest and the hypervisor." },
464 { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the guest." },
465 { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the hypervisor." },
466 { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." },
467 { "dqs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as quad words with near symbols." },
468 { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." },
469 { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." },
470 { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." },
471 { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." },
472 { "dti", 1, 2, &g_aArgDumpTypeInfo[0],RT_ELEMENTS(g_aArgDumpTypeInfo), 0, dbgcCmdDumpTypeInfo,"<type> [levels]", "Dump type information." },
473 { "dtv", 2, 3, &g_aArgDumpTypedVal[0],RT_ELEMENTS(g_aArgDumpTypedVal), 0, dbgcCmdDumpTypedVal,"<type> <addr> [levels]", "Dump a memory buffer using the information in the given type." },
474 { "du", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as unicode string (little endian)." },
475 { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." },
476 /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also
477 * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */
478 { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 1-byte value to memory." },
479 { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 2-byte value to memory." },
480 { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 4-byte value to memory." },
481 { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 8-byte value to memory." },
482 { "g", 0, 1, &g_aArgGo[0], RT_ELEMENTS(g_aArgGo), 0, dbgcCmdGo, "[idCpu]", "Continue execution of all or the specified CPU. (The latter is not recommended unless you know exactly what you're doing.)" },
483 { "gu", 0, 0, NULL, 0, 0, dbgcCmdGoUp, "", "Go up - continue execution till after return." },
484 { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." },
485 { "kv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack." },
486 { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." },
487 { "kgv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack - guest." },
488 { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." },
489 { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." },
490 { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." },
491 { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." },
492 { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." },
493 { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." },
494 { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." },
495 { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "<addr>", "Display information about that piece of memory." },
496 { "p", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step over." },
497 { "pr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
498 { "pa", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Step to the given address." },
499 { "pc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next call instruction." },
500 { "pt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next return instruction." },
501 { "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set." },
502 { "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set." },
503 { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." },
504 { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." },
505 { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." },
506 { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] <range> <pattern>", "Continue last search." },
507 { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an ascii string." },
508 { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more bytes." },
509 { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more double words." },
510 { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more quad words." },
511 { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an unicode string." },
512 { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more words." },
513 { "sx", 0, ~0U, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlList, "[<event> [..]]", "Lists settings for exceptions, exits and other events. All if no filter is specified." },
514 { "sx-", 3, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "-c <cmd> <event> [..]", "Modifies the command for one or more exceptions, exits or other event. 'all' addresses all." },
515 { "sxe", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Enable: Break into the debugger on the specified exceptions, exits and other events. 'all' addresses all." },
516 { "sxn", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Notify: Display info in the debugger and continue on the specified exceptions, exits and other events. 'all' addresses all." },
517 { "sxi", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Ignore: Ignore the specified exceptions, exits and other events ('all' = all of them). Without the -c option, the guest runs like normal." },
518 { "sxr", 0, 0, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlReset, "", "Reset the settings to default for exceptions, exits and other events. All if no filter is specified." },
519 { "t", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace ." },
520 { "tflowc", 1, ~0U, &g_aArgTraceFlowClear[0], RT_ELEMENTS(g_aArgTraceFlowClear), 0, dbgcCmdTraceFlowClear, "all | <tf#> [tf# []]", "Clears trace execution flow for the given method." },
521 { "tflowd", 0, 1, &g_aArgTraceFlowDisable[0], RT_ELEMENTS(g_aArgTraceFlowDisable), 0, dbgcCmdTraceFlowDisable, "all | <tf#> [tf# []]", "Disables trace execution flow for the given method." },
522 { "tflowe", 0, 2, &g_aArgTraceFlowEnable[0], RT_ELEMENTS(g_aArgTraceFlowEnable), 0, dbgcCmdTraceFlowEnable, "<addr> <hits>", "Enable trace execution flow of the given method." },
523 { "tflowp", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowPrint, "all | <tf#> [tf# []]", "Prints the collected trace data of the given method." },
524 { "tflowr", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowReset, "all | <tf#> [tf# []]", "Resets the collected trace data of the given trace flow module." },
525 { "tr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
526 { "ta", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Trace to the given address." },
527 { "tc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next call instruction." },
528 { "tt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next return instruction." },
529 { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." },
530 { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." },
531 { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." },
532 { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." },
533 { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." },
534 { "ucfg", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph." },
535 { "ucfgc", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph with colors." },
536 { "x", 1, 1, &g_aArgListSyms[0], RT_ELEMENTS(g_aArgListSyms), 0, dbgcCmdListSymbols, "* | <Module!Symbol>", "Examine symbols." },
537};
538
539/** The number of commands in the CodeView/WinDbg emulation. */
540const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView);
541
542
543/**
544 * Selectable debug event descriptors.
545 *
546 * @remarks Sorted by DBGCSXEVT::enmType value.
547 */
548const DBGCSXEVT g_aDbgcSxEvents[] =
549{
550 { DBGFEVENT_INTERRUPT_HARDWARE, "hwint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Hardware interrupt" },
551 { DBGFEVENT_INTERRUPT_SOFTWARE, "swint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Software interrupt" },
552 { DBGFEVENT_TRIPLE_FAULT, "triplefault", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Enabled, 0, "Triple fault "},
553 { DBGFEVENT_XCPT_DE, "xcpt_de", "de", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DE (integer divide error)" },
554 { DBGFEVENT_XCPT_DB, "xcpt_db", "db", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DB (debug)" },
555 { DBGFEVENT_XCPT_02, "xcpt_02", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
556 { DBGFEVENT_XCPT_BP, "xcpt_bp", "bp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BP (breakpoint)" },
557 { DBGFEVENT_XCPT_OF, "xcpt_of", "of", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#OF (overflow (INTO))" },
558 { DBGFEVENT_XCPT_BR, "xcpt_br", "br", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BR (bound range exceeded)" },
559 { DBGFEVENT_XCPT_UD, "xcpt_ud", "ud", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#UD (undefined opcode)" },
560 { DBGFEVENT_XCPT_NM, "xcpt_nm", "nm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#NM (FPU not available)" },
561 { DBGFEVENT_XCPT_DF, "xcpt_df", "df", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DF (double fault)" },
562 { DBGFEVENT_XCPT_09, "xcpt_09", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "Coprocessor segment overrun" },
563 { DBGFEVENT_XCPT_TS, "xcpt_ts", "ts", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#TS (task switch)" },
564 { DBGFEVENT_XCPT_NP, "xcpt_np", "np", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#NP (segment not present)" },
565 { DBGFEVENT_XCPT_SS, "xcpt_ss", "ss", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SS (stack segment fault)" },
566 { DBGFEVENT_XCPT_GP, "xcpt_gp", "gp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#GP (general protection fault)" },
567 { DBGFEVENT_XCPT_PF, "xcpt_pf", "pf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#PF (page fault)" },
568 { DBGFEVENT_XCPT_0f, "xcpt_0f", "xcpt0f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
569 { DBGFEVENT_XCPT_MF, "xcpt_mf", "mf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MF (math fault)" },
570 { DBGFEVENT_XCPT_AC, "xcpt_ac", "ac", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#AC (alignment check)" },
571 { DBGFEVENT_XCPT_MC, "xcpt_mc", "mc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MC (machine check)" },
572 { DBGFEVENT_XCPT_XF, "xcpt_xf", "xf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#XF (SIMD floating-point exception)" },
573 { DBGFEVENT_XCPT_VE, "xcpt_vd", "ve", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#VE (virtualization exception)" },
574 { DBGFEVENT_XCPT_15, "xcpt_15", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
575 { DBGFEVENT_XCPT_16, "xcpt_16", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
576 { DBGFEVENT_XCPT_17, "xcpt_17", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
577 { DBGFEVENT_XCPT_18, "xcpt_18", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
578 { DBGFEVENT_XCPT_19, "xcpt_19", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
579 { DBGFEVENT_XCPT_1a, "xcpt_1a", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
580 { DBGFEVENT_XCPT_1b, "xcpt_1b", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
581 { DBGFEVENT_XCPT_1c, "xcpt_1c", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
582 { DBGFEVENT_XCPT_1d, "xcpt_1d", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
583 { DBGFEVENT_XCPT_SX, "xcpt_sx", "sx", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SX (security exception)" },
584 { DBGFEVENT_XCPT_1f, "xcpt_1f", "xcpt1f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
585 { DBGFEVENT_INSTR_HALT, "instr_halt", "hlt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
586 { DBGFEVENT_INSTR_MWAIT, "instr_mwait", "mwait", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
587 { DBGFEVENT_INSTR_MONITOR, "instr_monitor", "monitor", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
588 { DBGFEVENT_INSTR_CPUID, "instr_cpuid", "cpuid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
589 { DBGFEVENT_INSTR_INVD, "instr_invd", "invd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
590 { DBGFEVENT_INSTR_WBINVD, "instr_wbinvd", "wbinvd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
591 { DBGFEVENT_INSTR_INVLPG, "instr_invlpg", "invlpg", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
592 { DBGFEVENT_INSTR_RDTSC, "instr_rdtsc", "rdtsc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
593 { DBGFEVENT_INSTR_RDTSCP, "instr_rdtscp", "rdtscp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
594 { DBGFEVENT_INSTR_RDPMC, "instr_rdpmc", "rdpmc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
595 { DBGFEVENT_INSTR_RDMSR, "instr_rdmsr", "rdmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
596 { DBGFEVENT_INSTR_WRMSR, "instr_wrmsr", "wrmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
597 { DBGFEVENT_INSTR_CRX_READ, "instr_crx_read", "crx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
598 { DBGFEVENT_INSTR_CRX_WRITE, "instr_crx_write", "crx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
599 { DBGFEVENT_INSTR_DRX_READ, "instr_drx_read", "drx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
600 { DBGFEVENT_INSTR_DRX_WRITE, "instr_drx_write", "drx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
601 { DBGFEVENT_INSTR_PAUSE, "instr_pause", "pause", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
602 { DBGFEVENT_INSTR_XSETBV, "instr_xsetbv", "xsetbv", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
603 { DBGFEVENT_INSTR_SIDT, "instr_sidt", "sidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
604 { DBGFEVENT_INSTR_LIDT, "instr_lidt", "lidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
605 { DBGFEVENT_INSTR_SGDT, "instr_sgdt", "sgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
606 { DBGFEVENT_INSTR_LGDT, "instr_lgdt", "lgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
607 { DBGFEVENT_INSTR_SLDT, "instr_sldt", "sldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
608 { DBGFEVENT_INSTR_LLDT, "instr_lldt", "lldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
609 { DBGFEVENT_INSTR_STR, "instr_str", "str", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
610 { DBGFEVENT_INSTR_LTR, "instr_ltr", "ltr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
611 { DBGFEVENT_INSTR_GETSEC, "instr_getsec", "getsec", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
612 { DBGFEVENT_INSTR_RSM, "instr_rsm", "rsm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
613 { DBGFEVENT_INSTR_RDRAND, "instr_rdrand", "rdrand", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
614 { DBGFEVENT_INSTR_RDSEED, "instr_rdseed", "rdseed", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
615 { DBGFEVENT_INSTR_XSAVES, "instr_xsaves", "xsaves", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
616 { DBGFEVENT_INSTR_XRSTORS, "instr_xrstors", "xrstors", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
617 { DBGFEVENT_INSTR_VMM_CALL, "instr_vmm_call", "vmm_call", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
618 { DBGFEVENT_INSTR_VMX_VMCLEAR, "instr_vmx_vmclear", "vmclear", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
619 { DBGFEVENT_INSTR_VMX_VMLAUNCH, "instr_vmx_vmlaunch", "vmlaunch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
620 { DBGFEVENT_INSTR_VMX_VMPTRLD, "instr_vmx_vmptrld", "vmptrld", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
621 { DBGFEVENT_INSTR_VMX_VMPTRST, "instr_vmx_vmptrst", "vmptrst", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
622 { DBGFEVENT_INSTR_VMX_VMREAD, "instr_vmx_vmread", "vmread", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
623 { DBGFEVENT_INSTR_VMX_VMRESUME, "instr_vmx_vmresume", "vmresume", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
624 { DBGFEVENT_INSTR_VMX_VMWRITE, "instr_vmx_vmwrite", "vmwrite", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
625 { DBGFEVENT_INSTR_VMX_VMXOFF, "instr_vmx_vmxoff", "vmxoff", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
626 { DBGFEVENT_INSTR_VMX_VMXON, "instr_vmx_vmxon", "vmxon", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
627 { DBGFEVENT_INSTR_VMX_VMFUNC, "instr_vmx_vmfunc", "vmfunc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
628 { DBGFEVENT_INSTR_VMX_INVEPT, "instr_vmx_invept", "invept", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
629 { DBGFEVENT_INSTR_VMX_INVVPID, "instr_vmx_invvpid", "invvpid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
630 { DBGFEVENT_INSTR_VMX_INVPCID, "instr_vmx_invpcid", "invpcid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
631 { DBGFEVENT_INSTR_SVM_VMRUN, "instr_svm_vmrun", "vmrun", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
632 { DBGFEVENT_INSTR_SVM_VMLOAD, "instr_svm_vmload", "vmload", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
633 { DBGFEVENT_INSTR_SVM_VMSAVE, "instr_svm_vmsave", "vmsave", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
634 { DBGFEVENT_INSTR_SVM_STGI, "instr_svm_stgi", "stgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
635 { DBGFEVENT_INSTR_SVM_CLGI, "instr_svm_clgi", "clgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
636 { DBGFEVENT_EXIT_TASK_SWITCH, "exit_task_switch", "task_switch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
637 { DBGFEVENT_EXIT_HALT, "exit_halt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
638 { DBGFEVENT_EXIT_MWAIT, "exit_mwait", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
639 { DBGFEVENT_EXIT_MONITOR, "exit_monitor", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
640 { DBGFEVENT_EXIT_CPUID, "exit_cpuid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
641 { DBGFEVENT_EXIT_INVD, "exit_invd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
642 { DBGFEVENT_EXIT_WBINVD, "exit_wbinvd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
643 { DBGFEVENT_EXIT_INVLPG, "exit_invlpg", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
644 { DBGFEVENT_EXIT_RDTSC, "exit_rdtsc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
645 { DBGFEVENT_EXIT_RDTSCP, "exit_rdtscp", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
646 { DBGFEVENT_EXIT_RDPMC, "exit_rdpmc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
647 { DBGFEVENT_EXIT_RDMSR, "exit_rdmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
648 { DBGFEVENT_EXIT_WRMSR, "exit_wrmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
649 { DBGFEVENT_EXIT_CRX_READ, "exit_crx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
650 { DBGFEVENT_EXIT_CRX_WRITE, "exit_crx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
651 { DBGFEVENT_EXIT_DRX_READ, "exit_drx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
652 { DBGFEVENT_EXIT_DRX_WRITE, "exit_drx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
653 { DBGFEVENT_EXIT_PAUSE, "exit_pause", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
654 { DBGFEVENT_EXIT_XSETBV, "exit_xsetbv", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
655 { DBGFEVENT_EXIT_SIDT, "exit_sidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
656 { DBGFEVENT_EXIT_LIDT, "exit_lidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
657 { DBGFEVENT_EXIT_SGDT, "exit_sgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
658 { DBGFEVENT_EXIT_LGDT, "exit_lgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
659 { DBGFEVENT_EXIT_SLDT, "exit_sldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
660 { DBGFEVENT_EXIT_LLDT, "exit_lldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
661 { DBGFEVENT_EXIT_STR, "exit_str", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
662 { DBGFEVENT_EXIT_LTR, "exit_ltr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
663 { DBGFEVENT_EXIT_GETSEC, "exit_getsec", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
664 { DBGFEVENT_EXIT_RSM, "exit_rsm", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
665 { DBGFEVENT_EXIT_RDRAND, "exit_rdrand", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
666 { DBGFEVENT_EXIT_RDSEED, "exit_rdseed", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
667 { DBGFEVENT_EXIT_XSAVES, "exit_xsaves", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
668 { DBGFEVENT_EXIT_XRSTORS, "exit_xrstors", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
669 { DBGFEVENT_EXIT_VMM_CALL, "exit_vmm_call", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
670 { DBGFEVENT_EXIT_VMX_VMCLEAR, "exit_vmx_vmclear", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
671 { DBGFEVENT_EXIT_VMX_VMLAUNCH, "exit_vmx_vmlaunch", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
672 { DBGFEVENT_EXIT_VMX_VMPTRLD, "exit_vmx_vmptrld", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
673 { DBGFEVENT_EXIT_VMX_VMPTRST, "exit_vmx_vmptrst", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
674 { DBGFEVENT_EXIT_VMX_VMREAD, "exit_vmx_vmread", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
675 { DBGFEVENT_EXIT_VMX_VMRESUME, "exit_vmx_vmresume", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
676 { DBGFEVENT_EXIT_VMX_VMWRITE, "exit_vmx_vmwrite", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
677 { DBGFEVENT_EXIT_VMX_VMXOFF, "exit_vmx_vmxoff", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
678 { DBGFEVENT_EXIT_VMX_VMXON, "exit_vmx_vmxon", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
679 { DBGFEVENT_EXIT_VMX_VMFUNC, "exit_vmx_vmfunc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
680 { DBGFEVENT_EXIT_VMX_INVEPT, "exit_vmx_invept", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
681 { DBGFEVENT_EXIT_VMX_INVVPID, "exit_vmx_invvpid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
682 { DBGFEVENT_EXIT_VMX_INVPCID, "exit_vmx_invpcid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
683 { DBGFEVENT_EXIT_VMX_EPT_VIOLATION, "exit_vmx_ept_violation", "eptvio", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
684 { DBGFEVENT_EXIT_VMX_EPT_MISCONFIG, "exit_vmx_ept_misconfig", "eptmis", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
685 { DBGFEVENT_EXIT_VMX_VAPIC_ACCESS, "exit_vmx_vapic_access", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
686 { DBGFEVENT_EXIT_VMX_VAPIC_WRITE, "exit_vmx_vapic_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
687 { DBGFEVENT_EXIT_SVM_VMRUN, "exit_svm_vmrun", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
688 { DBGFEVENT_EXIT_SVM_VMLOAD, "exit_svm_vmload", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
689 { DBGFEVENT_EXIT_SVM_VMSAVE, "exit_svm_vmsave", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
690 { DBGFEVENT_EXIT_SVM_STGI, "exit_svm_stgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
691 { DBGFEVENT_EXIT_SVM_CLGI, "exit_svm_clgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
692 { DBGFEVENT_VMX_SPLIT_LOCK, "vmx_split_lock", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
693 { DBGFEVENT_IOPORT_UNASSIGNED, "pio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
694 { DBGFEVENT_IOPORT_UNUSED, "pio_unused", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
695 { DBGFEVENT_MEMORY_UNASSIGNED, "mmio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
696 { DBGFEVENT_MEMORY_ROM_WRITE, "rom_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
697 { DBGFEVENT_BSOD_MSR, "bsod_msr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
698 { DBGFEVENT_BSOD_EFI, "bsod_efi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
699 { DBGFEVENT_BSOD_VMMDEV, "bsod_vmmdev", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
700};
701/** Number of entries in g_aDbgcSxEvents. */
702const uint32_t g_cDbgcSxEvents = RT_ELEMENTS(g_aDbgcSxEvents);
703
704
705
706/**
707 * @callback_method_impl{FNDBGCCMD, The 'g' command.}
708 */
709static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
710{
711 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
712
713 /*
714 * Parse arguments.
715 */
716 VMCPUID idCpu = VMCPUID_ALL;
717 if (cArgs == 1)
718 {
719 VMCPUID cCpus = DBGFR3CpuGetCount(pUVM);
720 if (paArgs[0].u.u64Number >= cCpus)
721 return DBGCCmdHlpFail(pCmdHlp, pCmd, "idCpu %RU64 is out of range! Highest valid ID is %u.\n",
722 paArgs[0].u.u64Number, cCpus - 1);
723 idCpu = (VMCPUID)paArgs[0].u.u64Number;
724 }
725 else
726 Assert(cArgs == 0);
727
728 /*
729 * Try resume the VM or CPU.
730 */
731 int rc = DBGFR3Resume(pUVM, idCpu);
732 if (RT_SUCCESS(rc))
733 {
734 Assert(rc == VINF_SUCCESS || rc == VWRN_DBGF_ALREADY_RUNNING);
735 if (rc != VWRN_DBGF_ALREADY_RUNNING)
736 return VINF_SUCCESS;
737 if (idCpu == VMCPUID_ALL)
738 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running");
739 return DBGCCmdHlpFail(pCmdHlp, pCmd, "CPU %u is already running", idCpu);
740 }
741 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume");
742}
743
744
745/**
746 * @callback_method_impl{FNDBGCCMD, The 'gu' command.}
747 */
748static DECLCALLBACK(int) dbgcCmdGoUp(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
749{
750 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
751 RT_NOREF(pCmd, paArgs, cArgs);
752
753 /* The simple way out. */
754 PDBGFADDRESS pStackPop = NULL; /** @todo try set up some stack limitations */
755 RTGCPTR cbStackPop = 0;
756 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET, NULL, pStackPop, cbStackPop, _512K);
757 if (RT_SUCCESS(rc))
758 pDbgc->fReady = false;
759 else
760 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET,) failed");
761 return rc;
762}
763
764
765/**
766 * @callback_method_impl{FNDBGCCMD, The 'ba' command.}
767 */
768static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
769{
770 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
771
772 /*
773 * Interpret access type.
774 */
775 if ( !strchr("xrwi", paArgs[0].u.pszString[0])
776 || paArgs[0].u.pszString[1])
777 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'",
778 paArgs[0].u.pszString, pCmd->pszCmd);
779 uint8_t fType = 0;
780 switch (paArgs[0].u.pszString[0])
781 {
782 case 'x': fType = X86_DR7_RW_EO; break;
783 case 'r': fType = X86_DR7_RW_RW; break;
784 case 'w': fType = X86_DR7_RW_WO; break;
785 case 'i': fType = X86_DR7_RW_IO; break;
786 }
787
788 /*
789 * Validate size.
790 */
791 if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1)
792 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!",
793 paArgs[1].u.u64Number, pCmd->pszCmd);
794 switch (paArgs[1].u.u64Number)
795 {
796 case 1:
797 case 2:
798 case 4:
799 break;
800 /*case 8: - later*/
801 default:
802 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!",
803 paArgs[1].u.u64Number, pCmd->pszCmd);
804 }
805 uint8_t cb = (uint8_t)paArgs[1].u.u64Number;
806
807 /*
808 * Convert the pointer to a DBGF address.
809 */
810 DBGFADDRESS Address;
811 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address);
812 if (RT_FAILURE(rc))
813 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]);
814
815 /*
816 * Pick out the optional arguments.
817 */
818 uint64_t iHitTrigger = 0;
819 uint64_t iHitDisable = UINT64_MAX;
820 const char *pszCmds = NULL;
821 unsigned iArg = 3;
822 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
823 {
824 iHitTrigger = paArgs[iArg].u.u64Number;
825 iArg++;
826 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
827 {
828 iHitDisable = paArgs[iArg].u.u64Number;
829 iArg++;
830 }
831 }
832 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
833 {
834 pszCmds = paArgs[iArg].u.pszString;
835 iArg++;
836 }
837
838 /*
839 * Try set the breakpoint.
840 */
841 uint32_t iBp;
842 rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp);
843 if (RT_SUCCESS(rc))
844 {
845 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
846 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
847 if (RT_SUCCESS(rc))
848 return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
849 if (rc == VERR_DBGC_BP_EXISTS)
850 {
851 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
852 if (RT_SUCCESS(rc))
853 return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
854 }
855 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
856 AssertRC(rc2);
857 }
858 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr);
859}
860
861
862/**
863 * @callback_method_impl{FNDBGCCMD, The 'bc' command.}
864 */
865static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
866{
867 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
868
869 /*
870 * Enumerate the arguments.
871 */
872 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
873 int rc = VINF_SUCCESS;
874 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
875 {
876 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
877 {
878 /* one */
879 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
880 if (iBp == paArgs[iArg].u.u64Number)
881 {
882 int rc2 = DBGFR3BpClear(pUVM, iBp);
883 if (RT_FAILURE(rc2))
884 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
885 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
886 dbgcBpDelete(pDbgc, iBp);
887 }
888 else
889 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
890 }
891 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
892 {
893 /* all */
894 PDBGCBP pBp = pDbgc->pFirstBp;
895 while (pBp)
896 {
897 uint32_t iBp = pBp->iBp;
898 pBp = pBp->pNext;
899
900 int rc2 = DBGFR3BpClear(pUVM, iBp);
901 if (RT_FAILURE(rc2))
902 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
903 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
904 dbgcBpDelete(pDbgc, iBp);
905 }
906 }
907 else
908 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
909 }
910 return rc;
911}
912
913
914/**
915 * @callback_method_impl{FNDBGCCMD, The 'bd' command.}
916 */
917static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
918{
919 /*
920 * Enumerate the arguments.
921 */
922 int rc = VINF_SUCCESS;
923 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
924 {
925 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
926 {
927 /* one */
928 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
929 if (iBp == paArgs[iArg].u.u64Number)
930 {
931 rc = DBGFR3BpDisable(pUVM, iBp);
932 if (RT_FAILURE(rc))
933 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp);
934 }
935 else
936 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
937 }
938 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
939 {
940 /* all */
941 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
942 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
943 {
944 int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp);
945 if (RT_FAILURE(rc2))
946 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp);
947 }
948 }
949 else
950 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
951 }
952 return rc;
953}
954
955
956/**
957 * @callback_method_impl{FNDBGCCMD, The 'be' command.}
958 */
959static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
960{
961 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
962
963 /*
964 * Enumerate the arguments.
965 */
966 int rc = VINF_SUCCESS;
967 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
968 {
969 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
970 {
971 /* one */
972 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
973 if (iBp == paArgs[iArg].u.u64Number)
974 {
975 rc = DBGFR3BpEnable(pUVM, iBp);
976 if (RT_FAILURE(rc))
977 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp);
978 }
979 else
980 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
981 }
982 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
983 {
984 /* all */
985 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
986 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
987 {
988 int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp);
989 if (RT_FAILURE(rc2))
990 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp);
991 }
992 }
993 else
994 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
995 }
996 return rc;
997}
998
999
1000/**
1001 * Breakpoint enumeration callback function.
1002 *
1003 * @returns VBox status code. Any failure will stop the enumeration.
1004 * @param pUVM The user mode VM handle.
1005 * @param pvUser The user argument.
1006 * @param hBp The DBGF breakpoint handle.
1007 * @param pBp Pointer to the breakpoint information. (readonly)
1008 */
1009static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, DBGFBP hBp, PCDBGFBPPUB pBp)
1010{
1011 PDBGC pDbgc = (PDBGC)pvUser;
1012 PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, hBp);
1013
1014 /*
1015 * BP type and size.
1016 */
1017 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c ", hBp, DBGF_BP_PUB_IS_ENABLED(pBp) ? 'e' : 'd');
1018 bool fHasAddress = false;
1019 switch (DBGF_BP_PUB_GET_TYPE(pBp))
1020 {
1021 case DBGFBPTYPE_INT3:
1022 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " p %RGv", pBp->u.Int3.GCPtr);
1023 fHasAddress = true;
1024 break;
1025 case DBGFBPTYPE_REG:
1026 {
1027 char chType;
1028 switch (pBp->u.Reg.fType)
1029 {
1030 case X86_DR7_RW_EO: chType = 'x'; break;
1031 case X86_DR7_RW_WO: chType = 'w'; break;
1032 case X86_DR7_RW_IO: chType = 'i'; break;
1033 case X86_DR7_RW_RW: chType = 'r'; break;
1034 default: chType = '?'; break;
1035
1036 }
1037 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%d %c %RGv", pBp->u.Reg.cb, chType, pBp->u.Reg.GCPtr);
1038 fHasAddress = true;
1039 break;
1040 }
1041
1042/** @todo realign the list when I/O and MMIO breakpoint command have been added and it's possible to test this code. */
1043 case DBGFBPTYPE_PORT_IO:
1044 case DBGFBPTYPE_MMIO:
1045 {
1046 uint32_t fAccess = DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? pBp->u.PortIo.fAccess : pBp->u.Mmio.fAccess;
1047 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? " i" : " m");
1048 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1049 fAccess & DBGFBPIOACCESS_READ_MASK ? 'r' : '-',
1050 fAccess & DBGFBPIOACCESS_READ_BYTE ? '1' : '-',
1051 fAccess & DBGFBPIOACCESS_READ_WORD ? '2' : '-',
1052 fAccess & DBGFBPIOACCESS_READ_DWORD ? '4' : '-',
1053 fAccess & DBGFBPIOACCESS_READ_QWORD ? '8' : '-',
1054 fAccess & DBGFBPIOACCESS_READ_OTHER ? '+' : '-');
1055 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1056 fAccess & DBGFBPIOACCESS_WRITE_MASK ? 'w' : '-',
1057 fAccess & DBGFBPIOACCESS_WRITE_BYTE ? '1' : '-',
1058 fAccess & DBGFBPIOACCESS_WRITE_WORD ? '2' : '-',
1059 fAccess & DBGFBPIOACCESS_WRITE_DWORD ? '4' : '-',
1060 fAccess & DBGFBPIOACCESS_WRITE_QWORD ? '8' : '-',
1061 fAccess & DBGFBPIOACCESS_WRITE_OTHER ? '+' : '-');
1062 if (DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO)
1063 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04x-%04x",
1064 pBp->u.PortIo.uPort, pBp->u.PortIo.uPort + pBp->u.PortIo.cPorts - 1);
1065 else
1066 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%RGp LB %03x", pBp->u.Mmio.PhysAddr, pBp->u.Mmio.cb);
1067 break;
1068 }
1069
1070 default:
1071 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " unknown type %d!!", DBGF_BP_PUB_GET_TYPE(pBp));
1072 AssertFailed();
1073 break;
1074
1075 }
1076 if (pBp->iHitDisable == ~(uint64_t)0)
1077 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to ~0) ", pBp->cHits, pBp->iHitTrigger);
1078 else
1079 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to %04RX64)", pBp->cHits, pBp->iHitTrigger, pBp->iHitDisable);
1080
1081 /*
1082 * Try resolve the address if it has one.
1083 */
1084 if (fHasAddress)
1085 {
1086 RTDBGSYMBOL Sym;
1087 RTINTPTR off;
1088 DBGFADDRESS Addr;
1089 int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->u.GCPtr),
1090 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1091 &off, &Sym, NULL);
1092 if (RT_SUCCESS(rc))
1093 {
1094 if (!off)
1095 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName);
1096 else if (off > 0)
1097 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off);
1098 else
1099 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off);
1100 }
1101 }
1102
1103 /*
1104 * The commands.
1105 */
1106 if (pDbgcBp)
1107 {
1108 if (pDbgcBp->cchCmd)
1109 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd);
1110 else
1111 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n");
1112 }
1113 else
1114 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n");
1115
1116 return VINF_SUCCESS;
1117}
1118
1119
1120/**
1121 * @callback_method_impl{FNDBGCCMD, The 'bl' command.}
1122 */
1123static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1124{
1125 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1126 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
1127 NOREF(paArgs);
1128
1129 /*
1130 * Enumerate the breakpoints.
1131 */
1132 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1133 int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc);
1134 if (RT_FAILURE(rc))
1135 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum");
1136 return rc;
1137}
1138
1139
1140/**
1141 * @callback_method_impl{FNDBGCCMD, The 'bp' command.}
1142 */
1143static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1144{
1145 /*
1146 * Convert the pointer to a DBGF address.
1147 */
1148 DBGFADDRESS Address;
1149 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1150 if (RT_FAILURE(rc))
1151 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1152
1153 /*
1154 * Pick out the optional arguments.
1155 */
1156 uint64_t iHitTrigger = 0;
1157 uint64_t iHitDisable = UINT64_MAX;
1158 const char *pszCmds = NULL;
1159 unsigned iArg = 1;
1160 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1161 {
1162 iHitTrigger = paArgs[iArg].u.u64Number;
1163 iArg++;
1164 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1165 {
1166 iHitDisable = paArgs[iArg].u.u64Number;
1167 iArg++;
1168 }
1169 }
1170 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1171 {
1172 pszCmds = paArgs[iArg].u.pszString;
1173 iArg++;
1174 }
1175
1176 /*
1177 * Try set the breakpoint.
1178 */
1179 uint32_t iBp;
1180 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1181 rc = DBGFR3BpSetInt3(pUVM, pDbgc->idCpu, &Address, iHitTrigger, iHitDisable, &iBp);
1182 if (RT_SUCCESS(rc))
1183 {
1184 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1185 if (RT_SUCCESS(rc))
1186 return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1187 if (rc == VERR_DBGC_BP_EXISTS)
1188 {
1189 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1190 if (RT_SUCCESS(rc))
1191 return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1192 }
1193 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1194 AssertRC(rc2);
1195 }
1196 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr);
1197}
1198
1199
1200/**
1201 * @callback_method_impl{FNDBGCCMD, The 'br' command.}
1202 */
1203static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1204{
1205 /*
1206 * Convert the pointer to a DBGF address.
1207 */
1208 DBGFADDRESS Address;
1209 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1210 if (RT_FAILURE(rc))
1211 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1212
1213 /*
1214 * Pick out the optional arguments.
1215 */
1216 uint64_t iHitTrigger = 0;
1217 uint64_t iHitDisable = UINT64_MAX;
1218 const char *pszCmds = NULL;
1219 unsigned iArg = 1;
1220 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1221 {
1222 iHitTrigger = paArgs[iArg].u.u64Number;
1223 iArg++;
1224 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1225 {
1226 iHitDisable = paArgs[iArg].u.u64Number;
1227 iArg++;
1228 }
1229 }
1230 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1231 {
1232 pszCmds = paArgs[iArg].u.pszString;
1233 iArg++;
1234 }
1235
1236 /*
1237 * Try set the breakpoint.
1238 */
1239 uint32_t iBp;
1240 rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
1241 if (RT_SUCCESS(rc))
1242 {
1243 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1244 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1245 if (RT_SUCCESS(rc))
1246 return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1247 if (rc == VERR_DBGC_BP_EXISTS)
1248 {
1249 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1250 if (RT_SUCCESS(rc))
1251 return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1252 }
1253 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1254 AssertRC(rc2);
1255 }
1256 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr);
1257}
1258
1259
1260/**
1261 * Helps the unassmble ('u') command display symbols it starts at and passes.
1262 *
1263 * @param pUVM The user mode VM handle.
1264 * @param pCmdHlp The command helpers for printing via.
1265 * @param hDbgAs The address space to look up addresses in.
1266 * @param pAddress The current address.
1267 * @param pcbCallAgain Where to return the distance to the next check (in
1268 * instruction bytes).
1269 */
1270static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress,
1271 PRTUINTPTR pcbCallAgain)
1272{
1273 RTDBGSYMBOL Symbol;
1274 RTGCINTPTR offDispSym;
1275 int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1276 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1277 &offDispSym, &Symbol, NULL);
1278 if (RT_FAILURE(rc) || offDispSym > _1G)
1279 rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1280 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1281 &offDispSym, &Symbol, NULL);
1282 if (RT_SUCCESS(rc) && offDispSym < _1G)
1283 {
1284 if (!offDispSym)
1285 {
1286 DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName);
1287 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb;
1288 }
1289 else if (offDispSym > 0)
1290 {
1291 DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym);
1292 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1;
1293 }
1294 else
1295 {
1296 DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym);
1297 *pcbCallAgain = !Symbol.cb ? 64 : (RTGCUINTPTR)-offDispSym + Symbol.cb;
1298 }
1299 }
1300 else
1301 *pcbCallAgain = UINT32_MAX;
1302}
1303
1304
1305/**
1306 * @callback_method_impl{FNDBGCCMD, The 'u' command.}
1307 */
1308static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1309{
1310 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1311
1312 /*
1313 * Validate input.
1314 */
1315 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1316 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
1317 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
1318
1319 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1320 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
1321
1322 /*
1323 * Check the desired mode.
1324 */
1325 unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
1326 switch (pCmd->pszCmd[1])
1327 {
1328 default: AssertFailed(); RT_FALL_THRU();
1329 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
1330 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
1331 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
1332 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
1333 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
1334 }
1335
1336 /** @todo should use DBGFADDRESS for everything */
1337
1338 /*
1339 * Find address.
1340 */
1341 if (!cArgs)
1342 {
1343 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1344 {
1345#if defined(VBOX_VMM_TARGET_ARMV8)
1346 AssertReleaseFailed();
1347#else
1348 /** @todo Batch query CS, RIP, CPU mode and flags. */
1349 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1350 if (CPUMIsGuestIn64BitCode(pVCpu))
1351 {
1352 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
1353 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
1354 }
1355 else
1356 {
1357 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
1358 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
1359 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
1360 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
1361 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
1362 {
1363 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1364 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
1365 }
1366 }
1367#endif
1368
1369 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
1370 }
1371 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
1372 {
1373 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1374 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
1375 }
1376 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
1377 }
1378 else
1379 pDbgc->DisasmPos = paArgs[0];
1380 pDbgc->pLastPos = &pDbgc->DisasmPos;
1381
1382 /*
1383 * Range.
1384 */
1385 switch (pDbgc->DisasmPos.enmRangeType)
1386 {
1387 case DBGCVAR_RANGE_NONE:
1388 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1389 pDbgc->DisasmPos.u64Range = 10;
1390 break;
1391
1392 case DBGCVAR_RANGE_ELEMENTS:
1393 if (pDbgc->DisasmPos.u64Range > 2048)
1394 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
1395 break;
1396
1397 case DBGCVAR_RANGE_BYTES:
1398 if (pDbgc->DisasmPos.u64Range > 65536)
1399 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
1400 break;
1401
1402 default:
1403 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
1404 }
1405
1406 /*
1407 * Convert physical and host addresses to guest addresses.
1408 */
1409 RTDBGAS hDbgAs = pDbgc->hDbgAs;
1410 int rc;
1411 switch (pDbgc->DisasmPos.enmType)
1412 {
1413 case DBGCVAR_TYPE_GC_FLAT:
1414 case DBGCVAR_TYPE_GC_FAR:
1415 break;
1416 case DBGCVAR_TYPE_GC_PHYS:
1417 hDbgAs = DBGF_AS_PHYS;
1418 RT_FALL_THRU();
1419 case DBGCVAR_TYPE_HC_FLAT:
1420 case DBGCVAR_TYPE_HC_PHYS:
1421 {
1422 DBGCVAR VarTmp;
1423 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
1424 if (RT_FAILURE(rc))
1425 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
1426 pDbgc->DisasmPos = VarTmp;
1427 break;
1428 }
1429 default: AssertFailed(); break;
1430 }
1431
1432 DBGFADDRESS CurAddr;
1433 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1434 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1435 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1436 else
1437 {
1438 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1439 if (RT_FAILURE(rc))
1440 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
1441 }
1442
1443 pDbgc->fDisasm = fFlags;
1444
1445 /*
1446 * Figure out where we are and display it. Also calculate when we need to
1447 * check for a new symbol if possible.
1448 */
1449 RTGCUINTPTR cbCheckSymbol;
1450 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1451
1452 /*
1453 * Do the disassembling.
1454 */
1455 unsigned cTries = 32;
1456 int iRangeLeft = (int)pDbgc->DisasmPos.u64Range;
1457 if (iRangeLeft == 0) /* kludge for 'r'. */
1458 iRangeLeft = -1;
1459 for (;;)
1460 {
1461 /*
1462 * Disassemble the instruction.
1463 */
1464 char szDis[256];
1465 uint32_t cbInstr = 1;
1466 if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT)
1467 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags,
1468 &szDis[0], sizeof(szDis), &cbInstr);
1469 else
1470 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags,
1471 &szDis[0], sizeof(szDis), &cbInstr);
1472 if (RT_SUCCESS(rc))
1473 {
1474 /* print it */
1475 rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]);
1476 if (RT_FAILURE(rc))
1477 return rc;
1478 }
1479 else
1480 {
1481 /* bitch. */
1482 int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n");
1483 if (RT_FAILURE(rc2))
1484 return rc2;
1485 if (cTries-- > 0)
1486 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up");
1487 cbInstr = 1;
1488 }
1489
1490 /* advance */
1491 if (iRangeLeft < 0) /* 'r' */
1492 break;
1493 if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1494 iRangeLeft--;
1495 else
1496 iRangeLeft -= cbInstr;
1497 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr);
1498 if (RT_FAILURE(rc))
1499 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr);
1500 if (iRangeLeft <= 0)
1501 break;
1502 fFlags &= ~DBGF_DISAS_FLAGS_CURRENT_GUEST;
1503
1504 /* Print next symbol? */
1505 if (cbCheckSymbol <= cbInstr)
1506 {
1507 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1508 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1509 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1510 else
1511 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1512 if (RT_SUCCESS(rc))
1513 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1514 else
1515 cbCheckSymbol = UINT32_MAX;
1516 }
1517 else
1518 cbCheckSymbol -= cbInstr;
1519 }
1520
1521 NOREF(pCmd);
1522 return VINF_SUCCESS;
1523}
1524
1525
1526/**
1527 * @callback_method_impl{FNDGCSCREENBLIT}
1528 */
1529static DECLCALLBACK(int) dbgcCmdUnassembleCfgBlit(const char *psz, void *pvUser)
1530{
1531 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
1532 return DBGCCmdHlpPrintf(pCmdHlp, "%s", psz);
1533}
1534
1535
1536/**
1537 * Checks whether both addresses are equal.
1538 *
1539 * @returns true if both addresses point to the same location, false otherwise.
1540 * @param pAddr1 First address.
1541 * @param pAddr2 Second address.
1542 */
1543static bool dbgcCmdUnassembleCfgAddrEqual(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1544{
1545 return pAddr1->Sel == pAddr2->Sel
1546 && pAddr1->off == pAddr2->off;
1547}
1548
1549
1550/**
1551 * Checks whether the first given address is lower than the second one.
1552 *
1553 * @returns true if both addresses point to the same location, false otherwise.
1554 * @param pAddr1 First address.
1555 * @param pAddr2 Second address.
1556 */
1557static bool dbgcCmdUnassembleCfgAddrLower(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1558{
1559 return pAddr1->Sel == pAddr2->Sel
1560 && pAddr1->off < pAddr2->off;
1561}
1562
1563
1564/**
1565 * Calculates the size required for the given basic block including the
1566 * border and spacing on the edges.
1567 *
1568 * @param hFlowBb The basic block handle.
1569 * @param pDumpBb The dumper state to fill in for the basic block.
1570 */
1571static void dbgcCmdUnassembleCfgDumpCalcBbSize(DBGFFLOWBB hFlowBb, PDBGCFLOWBBDUMP pDumpBb)
1572{
1573 uint32_t fFlags = DBGFR3FlowBbGetFlags(hFlowBb);
1574 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(hFlowBb);
1575
1576 pDumpBb->hFlowBb = hFlowBb;
1577 pDumpBb->cchHeight = cInstr + 4; /* Include spacing and border top and bottom. */
1578 pDumpBb->cchWidth = 0;
1579 DBGFR3FlowBbGetStartAddress(hFlowBb, &pDumpBb->AddrStart);
1580
1581 DBGFFLOWBBENDTYPE enmType = DBGFR3FlowBbGetType(hFlowBb);
1582 if ( enmType == DBGFFLOWBBENDTYPE_COND
1583 || enmType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1584 || enmType == DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP)
1585 DBGFR3FlowBbGetBranchAddress(hFlowBb, &pDumpBb->AddrTarget);
1586
1587 if (fFlags & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1588 {
1589 const char *pszErr = NULL;
1590 DBGFR3FlowBbQueryError(hFlowBb, &pszErr);
1591 if (pszErr)
1592 {
1593 pDumpBb->cchHeight++;
1594 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszErr));
1595 }
1596 }
1597 for (unsigned i = 0; i < cInstr; i++)
1598 {
1599 const char *pszInstr = NULL;
1600 int rc = DBGFR3FlowBbQueryInstr(hFlowBb, i, NULL, NULL, &pszInstr);
1601 AssertRC(rc);
1602 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszInstr));
1603 }
1604 pDumpBb->cchWidth += 4; /* Include spacing and border left and right. */
1605}
1606
1607
1608/**
1609 * Dumps a top or bottom boundary line.
1610 *
1611 * @param hScreen The screen to draw to.
1612 * @param uStartX Where to start drawing the boundary.
1613 * @param uStartY Y coordinate.
1614 * @param cchWidth Width of the boundary.
1615 * @param enmColor The color to use for drawing.
1616 */
1617static void dbgcCmdUnassembleCfgDumpBbBoundary(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1618 DBGCSCREENCOLOR enmColor)
1619{
1620 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '+', enmColor);
1621 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1622 uStartY, '-', enmColor);
1623 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '+', enmColor);
1624}
1625
1626
1627/**
1628 * Dumps a spacing line between the top or bottom boundary and the actual disassembly.
1629 *
1630 * @param hScreen The screen to draw to.
1631 * @param uStartX Where to start drawing the spacing.
1632 * @param uStartY Y coordinate.
1633 * @param cchWidth Width of the spacing.
1634 * @param enmColor The color to use for drawing.
1635 */
1636static void dbgcCmdUnassembleCfgDumpBbSpacing(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1637 DBGCSCREENCOLOR enmColor)
1638{
1639 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmColor);
1640 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1641 uStartY, ' ', enmColor);
1642 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmColor);
1643}
1644
1645
1646/**
1647 * Writes a given text to the screen.
1648 *
1649 * @param hScreen The screen to draw to.
1650 * @param uStartX Where to start drawing the line.
1651 * @param uStartY Y coordinate.
1652 * @param cchWidth Maximum width of the text.
1653 * @param pszText The text to write.
1654 * @param enmTextColor The color to use for drawing the text.
1655 * @param enmBorderColor The color to use for drawing the border.
1656 */
1657static void dbgcCmdUnassembleCfgDumpBbText(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY,
1658 uint32_t cchWidth, const char *pszText,
1659 DBGCSCREENCOLOR enmTextColor, DBGCSCREENCOLOR enmBorderColor)
1660{
1661 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmBorderColor);
1662 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + 1, uStartY, ' ', enmTextColor);
1663 dbgcScreenAsciiDrawString(hScreen, uStartX + 2, uStartY, pszText, enmTextColor);
1664 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmBorderColor);
1665}
1666
1667
1668/**
1669 * Dumps one basic block using the dumper callback.
1670 *
1671 * @param pDumpBb The basic block dump state to dump.
1672 * @param hScreen The screen to draw to.
1673 */
1674static void dbgcCmdUnassembleCfgDumpBb(PDBGCFLOWBBDUMP pDumpBb, DBGCSCREEN hScreen)
1675{
1676 uint32_t uStartY = pDumpBb->uStartY;
1677 bool fError = RT_BOOL(DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR);
1678 DBGCSCREENCOLOR enmColor = fError ? DBGCSCREENCOLOR_RED_BRIGHT : DBGCSCREENCOLOR_DEFAULT;
1679
1680 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1681 uStartY++;
1682 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1683 uStartY++;
1684
1685 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(pDumpBb->hFlowBb);
1686 for (unsigned i = 0; i < cInstr; i++)
1687 {
1688 const char *pszInstr = NULL;
1689 DBGFR3FlowBbQueryInstr(pDumpBb->hFlowBb, i, NULL, NULL, &pszInstr);
1690 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY + i,
1691 pDumpBb->cchWidth, pszInstr, DBGCSCREENCOLOR_DEFAULT,
1692 enmColor);
1693 }
1694 uStartY += cInstr;
1695
1696 if (fError)
1697 {
1698 const char *pszErr = NULL;
1699 DBGFR3FlowBbQueryError(pDumpBb->hFlowBb, &pszErr);
1700 if (pszErr)
1701 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY,
1702 pDumpBb->cchWidth, pszErr, enmColor,
1703 enmColor);
1704 uStartY++;
1705 }
1706
1707 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1708 uStartY++;
1709 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1710 uStartY++;
1711}
1712
1713
1714/**
1715 * Dumps one branch table using the dumper callback.
1716 *
1717 * @param pDumpBranchTbl The basic block dump state to dump.
1718 * @param hScreen The screen to draw to.
1719 */
1720static void dbgcCmdUnassembleCfgDumpBranchTbl(PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl, DBGCSCREEN hScreen)
1721{
1722 uint32_t uStartY = pDumpBranchTbl->uStartY;
1723 DBGCSCREENCOLOR enmColor = DBGCSCREENCOLOR_CYAN_BRIGHT;
1724
1725 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1726 uStartY++;
1727 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1728 uStartY++;
1729
1730 uint32_t cSlots = DBGFR3FlowBranchTblGetSlots(pDumpBranchTbl->hFlowBranchTbl);
1731 for (unsigned i = 0; i < cSlots; i++)
1732 {
1733 DBGFADDRESS Addr;
1734 char szAddr[128];
1735
1736 RT_ZERO(szAddr);
1737 DBGFR3FlowBranchTblGetAddrAtSlot(pDumpBranchTbl->hFlowBranchTbl, i, &Addr);
1738
1739 if (Addr.Sel == DBGF_SEL_FLAT)
1740 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%RGv", Addr.FlatPtr);
1741 else
1742 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%04x:%RGv", Addr.Sel, Addr.off);
1743
1744 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBranchTbl->uStartX, uStartY + i,
1745 pDumpBranchTbl->cchWidth, &szAddr[0], DBGCSCREENCOLOR_DEFAULT,
1746 enmColor);
1747 }
1748 uStartY += cSlots;
1749
1750 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1751 uStartY++;
1752 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1753 uStartY++;
1754}
1755
1756
1757/**
1758 * Fills in the dump states for the basic blocks and branch tables.
1759 *
1760 * @returns VBox status code.
1761 * @param hFlowIt The control flow graph iterator handle.
1762 * @param hFlowBranchTblIt The control flow graph branch table iterator handle.
1763 * @param paDumpBb The array of basic block dump states.
1764 * @param paDumpBranchTbl The array of branch table dump states.
1765 * @param cBbs Number of basic blocks.
1766 * @param cBranchTbls Number of branch tables.
1767 */
1768static int dbgcCmdUnassembleCfgDumpCalcDimensions(DBGFFLOWIT hFlowIt, DBGFFLOWBRANCHTBLIT hFlowBranchTblIt,
1769 PDBGCFLOWBBDUMP paDumpBb, PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl,
1770 uint32_t cBbs, uint32_t cBranchTbls)
1771{
1772 RT_NOREF2(cBbs, cBranchTbls);
1773
1774 /* Calculate the sizes of each basic block first. */
1775 DBGFFLOWBB hFlowBb = DBGFR3FlowItNext(hFlowIt);
1776 uint32_t idx = 0;
1777 while (hFlowBb)
1778 {
1779 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[idx]);
1780 idx++;
1781 hFlowBb = DBGFR3FlowItNext(hFlowIt);
1782 }
1783
1784 if (paDumpBranchTbl)
1785 {
1786 idx = 0;
1787 DBGFFLOWBRANCHTBL hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1788 while (hFlowBranchTbl)
1789 {
1790 paDumpBranchTbl[idx].hFlowBranchTbl = hFlowBranchTbl;
1791 paDumpBranchTbl[idx].cchHeight = DBGFR3FlowBranchTblGetSlots(hFlowBranchTbl) + 4; /* Spacing and border. */
1792 paDumpBranchTbl[idx].cchWidth = 25 + 4; /* Spacing and border. */
1793 idx++;
1794 hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1795 }
1796 }
1797
1798 return VINF_SUCCESS;
1799}
1800
1801/**
1802 * Dumps the given control flow graph to the output.
1803 *
1804 * @returns VBox status code.
1805 * @param hCfg The control flow graph handle.
1806 * @param fUseColor Flag whether the output should be colorized.
1807 * @param pCmdHlp The command helper callback table.
1808 */
1809static int dbgcCmdUnassembleCfgDump(DBGFFLOW hCfg, bool fUseColor, PDBGCCMDHLP pCmdHlp)
1810{
1811 int rc = VINF_SUCCESS;
1812 DBGFFLOWIT hCfgIt = NULL;
1813 DBGFFLOWBRANCHTBLIT hFlowBranchTblIt = NULL;
1814 uint32_t cBbs = DBGFR3FlowGetBbCount(hCfg);
1815 uint32_t cBranchTbls = DBGFR3FlowGetBranchTblCount(hCfg);
1816 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cBbs * sizeof(DBGCFLOWBBDUMP));
1817 PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl = NULL;
1818
1819 if (cBranchTbls)
1820 paDumpBranchTbl = (PDBGCFLOWBRANCHTBLDUMP)RTMemAllocZ(cBranchTbls * sizeof(DBGCFLOWBRANCHTBLDUMP));
1821
1822 if (RT_UNLIKELY(!paDumpBb || (!paDumpBranchTbl && cBranchTbls > 0)))
1823 rc = VERR_NO_MEMORY;
1824 if (RT_SUCCESS(rc))
1825 rc = DBGFR3FlowItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hCfgIt);
1826 if (RT_SUCCESS(rc) && cBranchTbls > 0)
1827 rc = DBGFR3FlowBranchTblItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hFlowBranchTblIt);
1828
1829 if (RT_SUCCESS(rc))
1830 {
1831 rc = dbgcCmdUnassembleCfgDumpCalcDimensions(hCfgIt, hFlowBranchTblIt, paDumpBb, paDumpBranchTbl,
1832 cBbs, cBranchTbls);
1833
1834 /* Calculate the ASCII screen dimensions and create one. */
1835 uint32_t cchWidth = 0;
1836 uint32_t cchLeftExtra = 5;
1837 uint32_t cchRightExtra = 5;
1838 uint32_t cchHeight = 0;
1839 for (unsigned i = 0; i < cBbs; i++)
1840 {
1841 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1842 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
1843 cchHeight += pDumpBb->cchHeight;
1844
1845 /* Incomplete blocks don't have a successor. */
1846 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1847 continue;
1848
1849 switch (DBGFR3FlowBbGetType(pDumpBb->hFlowBb))
1850 {
1851 case DBGFFLOWBBENDTYPE_EXIT:
1852 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1853 break;
1854 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1855 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1856 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1857 cchLeftExtra++;
1858 else
1859 cchRightExtra++;
1860 break;
1861 case DBGFFLOWBBENDTYPE_UNCOND:
1862 cchHeight += 2; /* For the arrow down to the next basic block. */
1863 break;
1864 case DBGFFLOWBBENDTYPE_COND:
1865 cchHeight += 2; /* For the arrow down to the next basic block. */
1866 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1867 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1868 cchLeftExtra++;
1869 else
1870 cchRightExtra++;
1871 break;
1872 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1873 default:
1874 AssertFailed();
1875 }
1876 }
1877
1878 for (unsigned i = 0; i < cBranchTbls; i++)
1879 {
1880 PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl = &paDumpBranchTbl[i];
1881 cchWidth = RT_MAX(cchWidth, pDumpBranchTbl->cchWidth);
1882 cchHeight += pDumpBranchTbl->cchHeight;
1883 }
1884
1885 cchWidth += 2;
1886
1887 DBGCSCREEN hScreen = NULL;
1888 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth + cchLeftExtra + cchRightExtra, cchHeight);
1889 if (RT_SUCCESS(rc))
1890 {
1891 uint32_t uY = 0;
1892
1893 /* Dump the branch tables first. */
1894 for (unsigned i = 0; i < cBranchTbls; i++)
1895 {
1896 paDumpBranchTbl[i].uStartX = cchLeftExtra + (cchWidth - paDumpBranchTbl[i].cchWidth) / 2;
1897 paDumpBranchTbl[i].uStartY = uY;
1898 dbgcCmdUnassembleCfgDumpBranchTbl(&paDumpBranchTbl[i], hScreen);
1899 uY += paDumpBranchTbl[i].cchHeight;
1900 }
1901
1902 /* Dump the basic blocks and connections to the immediate successor. */
1903 for (unsigned i = 0; i < cBbs; i++)
1904 {
1905 paDumpBb[i].uStartX = cchLeftExtra + (cchWidth - paDumpBb[i].cchWidth) / 2;
1906 paDumpBb[i].uStartY = uY;
1907 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
1908 uY += paDumpBb[i].cchHeight;
1909
1910 /* Incomplete blocks don't have a successor. */
1911 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1912 continue;
1913
1914 switch (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb))
1915 {
1916 case DBGFFLOWBBENDTYPE_EXIT:
1917 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1918 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1919 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1920 break;
1921 case DBGFFLOWBBENDTYPE_UNCOND:
1922 /* Draw the arrow down to the next block. */
1923 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1924 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
1925 uY++;
1926 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1927 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
1928 uY++;
1929 break;
1930 case DBGFFLOWBBENDTYPE_COND:
1931 /* Draw the arrow down to the next block. */
1932 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1933 '|', DBGCSCREENCOLOR_RED_BRIGHT);
1934 uY++;
1935 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1936 'V', DBGCSCREENCOLOR_RED_BRIGHT);
1937 uY++;
1938 break;
1939 default:
1940 AssertFailed();
1941 }
1942 }
1943
1944 /* Last pass, connect all remaining branches. */
1945 uint32_t uBackConns = 0;
1946 uint32_t uFwdConns = 0;
1947 for (unsigned i = 0; i < cBbs; i++)
1948 {
1949 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1950 DBGFFLOWBBENDTYPE enmEndType = DBGFR3FlowBbGetType(pDumpBb->hFlowBb);
1951
1952 /* Incomplete blocks don't have a successor. */
1953 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1954 continue;
1955
1956 switch (enmEndType)
1957 {
1958 case DBGFFLOWBBENDTYPE_EXIT:
1959 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1960 case DBGFFLOWBBENDTYPE_UNCOND:
1961 break;
1962 case DBGFFLOWBBENDTYPE_COND:
1963 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1964 {
1965 /* Find the target first to get the coordinates. */
1966 PDBGCFLOWBBDUMP pDumpBbTgt = NULL;
1967 for (unsigned idxDumpBb = 0; idxDumpBb < cBbs; idxDumpBb++)
1968 {
1969 pDumpBbTgt = &paDumpBb[idxDumpBb];
1970 if (dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBbTgt->AddrStart))
1971 break;
1972 }
1973
1974 DBGCSCREENCOLOR enmColor = enmEndType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1975 ? DBGCSCREENCOLOR_YELLOW_BRIGHT
1976 : DBGCSCREENCOLOR_GREEN_BRIGHT;
1977
1978 /*
1979 * Use the right side for targets with higher addresses,
1980 * left when jumping backwards.
1981 */
1982 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1983 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1984 {
1985 /* Going backwards. */
1986 uint32_t uXVerLine = /*cchLeftExtra - 1 -*/ uBackConns + 1;
1987 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
1988 uBackConns++;
1989
1990 /* Draw the arrow pointing to the target block. */
1991 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX - 1, pDumpBbTgt->uStartY,
1992 '>', enmColor);
1993 /* Draw the horizontal line. */
1994 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBbTgt->uStartX - 2,
1995 pDumpBbTgt->uStartY, '-', enmColor);
1996 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
1997 enmColor);
1998 /* Draw the vertical line down to the source block. */
1999 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, pDumpBbTgt->uStartY + 1, uYHorLine - 1,
2000 '|', enmColor);
2001 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2002 /* Draw the horizontal connection between the source block and vertical part. */
2003 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBb->uStartX - 1,
2004 uYHorLine, '-', enmColor);
2005
2006 }
2007 else
2008 {
2009 /* Going forward. */
2010 uint32_t uXVerLine = cchWidth + cchLeftExtra + (cchRightExtra - uFwdConns) - 1;
2011 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
2012 uFwdConns++;
2013
2014 /* Draw the horizontal line. */
2015 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBb->uStartX + pDumpBb->cchWidth,
2016 uXVerLine - 1, uYHorLine, '-', enmColor);
2017 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2018 /* Draw the vertical line down to the target block. */
2019 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, uYHorLine + 1, pDumpBbTgt->uStartY - 1,
2020 '|', enmColor);
2021 /* Draw the horizontal connection between the target block and vertical part. */
2022 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2023 uXVerLine, pDumpBbTgt->uStartY, '-', enmColor);
2024 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
2025 enmColor);
2026 /* Draw the arrow pointing to the target block. */
2027 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2028 pDumpBbTgt->uStartY, '<', enmColor);
2029 }
2030 break;
2031 }
2032 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
2033 default:
2034 AssertFailed();
2035 }
2036 }
2037
2038 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, fUseColor);
2039 dbgcScreenAsciiDestroy(hScreen);
2040 }
2041 }
2042
2043 if (paDumpBb)
2044 {
2045 for (unsigned i = 0; i < cBbs; i++)
2046 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
2047 RTMemTmpFree(paDumpBb);
2048 }
2049
2050 if (paDumpBranchTbl)
2051 {
2052 for (unsigned i = 0; i < cBranchTbls; i++)
2053 DBGFR3FlowBranchTblRelease(paDumpBranchTbl[i].hFlowBranchTbl);
2054 RTMemTmpFree(paDumpBranchTbl);
2055 }
2056
2057 if (hCfgIt)
2058 DBGFR3FlowItDestroy(hCfgIt);
2059 if (hFlowBranchTblIt)
2060 DBGFR3FlowBranchTblItDestroy(hFlowBranchTblIt);
2061
2062 return rc;
2063}
2064
2065
2066/**
2067 * @callback_method_impl{FNDBGCCMD, The 'ucfg' command.}
2068 */
2069static DECLCALLBACK(int) dbgcCmdUnassembleCfg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2070{
2071 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2072
2073 /*
2074 * Validate input.
2075 */
2076 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2077 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
2078 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
2079
2080 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2081 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
2082
2083 /*
2084 * Check the desired mode.
2085 */
2086 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
2087 bool fUseColor = false;
2088 switch (pCmd->pszCmd[4])
2089 {
2090 default: AssertFailed(); RT_FALL_THRU();
2091 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
2092 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
2093 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
2094 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
2095 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
2096 case 'c': fUseColor = true; break;
2097 }
2098
2099 /** @todo should use DBGFADDRESS for everything */
2100
2101 /*
2102 * Find address.
2103 */
2104 if (!cArgs)
2105 {
2106 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2107 {
2108#if defined(VBOX_VMM_TARGET_ARMV8)
2109 AssertReleaseFailed();
2110#else
2111 /** @todo Batch query CS, RIP, CPU mode and flags. */
2112 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2113 if (CPUMIsGuestIn64BitCode(pVCpu))
2114 {
2115 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
2116 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
2117 }
2118 else
2119 {
2120 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
2121 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2122 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2123 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
2124 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
2125 {
2126 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2127 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
2128 }
2129 }
2130#endif
2131
2132 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
2133 }
2134 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
2135 {
2136 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2137 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
2138 }
2139 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
2140 }
2141 else
2142 pDbgc->DisasmPos = paArgs[0];
2143 pDbgc->pLastPos = &pDbgc->DisasmPos;
2144
2145 /*
2146 * Range.
2147 */
2148 switch (pDbgc->DisasmPos.enmRangeType)
2149 {
2150 case DBGCVAR_RANGE_NONE:
2151 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2152 pDbgc->DisasmPos.u64Range = 10;
2153 break;
2154
2155 case DBGCVAR_RANGE_ELEMENTS:
2156 if (pDbgc->DisasmPos.u64Range > 2048)
2157 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
2158 break;
2159
2160 case DBGCVAR_RANGE_BYTES:
2161 if (pDbgc->DisasmPos.u64Range > 65536)
2162 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
2163 break;
2164
2165 default:
2166 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
2167 }
2168
2169 /*
2170 * Convert physical and host addresses to guest addresses.
2171 */
2172 RTDBGAS hDbgAs = pDbgc->hDbgAs;
2173 int rc;
2174 switch (pDbgc->DisasmPos.enmType)
2175 {
2176 case DBGCVAR_TYPE_GC_FLAT:
2177 case DBGCVAR_TYPE_GC_FAR:
2178 break;
2179 case DBGCVAR_TYPE_GC_PHYS:
2180 hDbgAs = DBGF_AS_PHYS;
2181 RT_FALL_THRU();
2182 case DBGCVAR_TYPE_HC_FLAT:
2183 case DBGCVAR_TYPE_HC_PHYS:
2184 {
2185 DBGCVAR VarTmp;
2186 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
2187 if (RT_FAILURE(rc))
2188 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
2189 pDbgc->DisasmPos = VarTmp;
2190 break;
2191 }
2192 default: AssertFailed(); break;
2193 }
2194
2195 DBGFADDRESS CurAddr;
2196 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
2197 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
2198 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
2199 else
2200 {
2201 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
2202 if (RT_FAILURE(rc))
2203 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
2204 }
2205
2206 DBGFFLOW hCfg;
2207 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
2208 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
2209 if (RT_SUCCESS(rc))
2210 {
2211 /* Dump the graph. */
2212 rc = dbgcCmdUnassembleCfgDump(hCfg, fUseColor, pCmdHlp);
2213 DBGFR3FlowRelease(hCfg);
2214 }
2215 else
2216 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
2217
2218 NOREF(pCmd);
2219 return rc;
2220}
2221
2222
2223/**
2224 * @callback_method_impl{FNDBGCCMD, The 'ls' command.}
2225 */
2226static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2227{
2228 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2229
2230 /*
2231 * Validate input.
2232 */
2233 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2234 if (cArgs == 1)
2235 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2236 if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2237 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing...");
2238 if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType))
2239 return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM");
2240
2241 /*
2242 * Find address.
2243 */
2244 if (!cArgs)
2245 {
2246 if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2247 {
2248#if defined(VBOX_VMM_TARGET_ARMV8)
2249 AssertReleaseFailed();
2250#else
2251 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2252 pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR;
2253 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2254 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2255#endif
2256 }
2257 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE;
2258 }
2259 else
2260 pDbgc->SourcePos = paArgs[0];
2261 pDbgc->pLastPos = &pDbgc->SourcePos;
2262
2263 /*
2264 * Ensure the source address is flat GC.
2265 */
2266 switch (pDbgc->SourcePos.enmType)
2267 {
2268 case DBGCVAR_TYPE_GC_FLAT:
2269 break;
2270 case DBGCVAR_TYPE_GC_PHYS:
2271 case DBGCVAR_TYPE_GC_FAR:
2272 case DBGCVAR_TYPE_HC_FLAT:
2273 case DBGCVAR_TYPE_HC_PHYS:
2274 {
2275 int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos);
2276 if (RT_FAILURE(rc))
2277 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc);
2278 break;
2279 }
2280 default: AssertFailed(); break;
2281 }
2282
2283 /*
2284 * Range.
2285 */
2286 switch (pDbgc->SourcePos.enmRangeType)
2287 {
2288 case DBGCVAR_RANGE_NONE:
2289 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2290 pDbgc->SourcePos.u64Range = 10;
2291 break;
2292
2293 case DBGCVAR_RANGE_ELEMENTS:
2294 if (pDbgc->SourcePos.u64Range > 2048)
2295 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n");
2296 break;
2297
2298 case DBGCVAR_RANGE_BYTES:
2299 if (pDbgc->SourcePos.u64Range > 65536)
2300 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
2301 break;
2302
2303 default:
2304 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType);
2305 }
2306
2307 /*
2308 * Do the disassembling.
2309 */
2310 bool fFirst = 1;
2311 RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" };
2312 int iRangeLeft = (int)pDbgc->SourcePos.u64Range;
2313 if (iRangeLeft == 0) /* kludge for 'r'. */
2314 iRangeLeft = -1;
2315 for (;;)
2316 {
2317 /*
2318 * Get line info.
2319 */
2320 RTDBGLINE Line;
2321 RTGCINTPTR off;
2322 DBGFADDRESS SourcePosAddr;
2323 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr);
2324 if (RT_FAILURE(rc))
2325 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos);
2326 rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL);
2327 if (RT_FAILURE(rc))
2328 return VINF_SUCCESS;
2329
2330 unsigned cLines = 0;
2331 if (memcmp(&Line, &LinePrev, sizeof(Line)))
2332 {
2333 /*
2334 * Print filenamename
2335 */
2336 if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename))
2337 fFirst = true;
2338 if (fFirst)
2339 {
2340 rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo);
2341 if (RT_FAILURE(rc))
2342 return rc;
2343 }
2344
2345 /*
2346 * Try open the file and read the line.
2347 */
2348 FILE *phFile = fopen(Line.szFilename, "r");
2349 if (phFile)
2350 {
2351 /* Skip ahead to the desired line. */
2352 char szLine[4096];
2353 unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1;
2354 if (cBefore > 7)
2355 cBefore = 0;
2356 unsigned cLeft = Line.uLineNo - cBefore;
2357 while (cLeft > 0)
2358 {
2359 szLine[0] = '\0';
2360 if (!fgets(szLine, sizeof(szLine), phFile))
2361 break;
2362 cLeft--;
2363 }
2364 if (!cLeft)
2365 {
2366 /* print the before lines */
2367 for (;;)
2368 {
2369 size_t cch = strlen(szLine);
2370 while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) )
2371 szLine[--cch] = '\0';
2372 if (cBefore-- <= 0)
2373 break;
2374
2375 rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine);
2376 szLine[0] = '\0';
2377 const char *pszShutUpGcc = fgets(szLine, sizeof(szLine), phFile); NOREF(pszShutUpGcc);
2378 cLines++;
2379 }
2380 /* print the actual line */
2381 rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine);
2382 }
2383 fclose(phFile);
2384 if (RT_FAILURE(rc))
2385 return rc;
2386 fFirst = false;
2387 }
2388 else
2389 return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename);
2390
2391 LinePrev = Line;
2392 }
2393
2394
2395 /*
2396 * Advance
2397 */
2398 if (iRangeLeft < 0) /* 'r' */
2399 break;
2400 if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
2401 iRangeLeft -= cLines;
2402 else
2403 iRangeLeft -= 1;
2404 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1);
2405 if (RT_FAILURE(rc))
2406 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1);
2407 if (iRangeLeft <= 0)
2408 break;
2409 }
2410
2411 NOREF(pCmd);
2412 return 0;
2413}
2414
2415
2416/**
2417 * @callback_method_impl{FNDBGCCMD, The 'r' command.}
2418 */
2419static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2420{
2421 return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
2422}
2423
2424
2425/**
2426 * @callback_method_impl{FNDBGCCMD, Common worker for the dbgcCmdReg*()
2427 * commands.}
2428 */
2429static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs,
2430 const char *pszPrefix)
2431{
2432 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2433 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3);
2434 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING
2435 || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL);
2436
2437 /*
2438 * Parse the register name and kind.
2439 */
2440 const char *pszReg = paArgs[0].u.pszString;
2441 if (*pszReg == '@')
2442 pszReg++;
2443 VMCPUID idCpu = pDbgc->idCpu;
2444 if (*pszPrefix)
2445 idCpu |= DBGFREG_HYPER_VMCPUID;
2446 if (*pszReg == '.')
2447 {
2448 pszReg++;
2449 idCpu |= DBGFREG_HYPER_VMCPUID;
2450 }
2451 const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : "";
2452
2453 /*
2454 * Query the register type & value (the setter needs the type).
2455 */
2456 DBGFREGVALTYPE enmType;
2457 DBGFREGVAL Value;
2458 int rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2459 if (RT_FAILURE(rc))
2460 {
2461 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2462 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2463 pszActualPrefix, pszReg);
2464 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2465 pszActualPrefix, pszReg, rc);
2466 }
2467 if (cArgs == 1)
2468 {
2469 /*
2470 * Show the register.
2471 */
2472 char szValue[160];
2473 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/);
2474 if (RT_SUCCESS(rc))
2475 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue);
2476 else
2477 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2478 }
2479 else
2480 {
2481 DBGCVAR NewValueTmp;
2482 PCDBGCVAR pNewValue;
2483 if (cArgs == 3)
2484 {
2485 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2486 if (strcmp(paArgs[1].u.pszString, "="))
2487 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='.");
2488 pNewValue = &paArgs[2];
2489 }
2490 else
2491 {
2492 /* Not possible to convince the parser to support both codeview and
2493 windbg syntax and make the equal sign optional. Try help it. */
2494 /** @todo make DBGCCmdHlpConvert do more with strings. */
2495 rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp);
2496 if (RT_FAILURE(rc))
2497 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol.");
2498 pNewValue = &NewValueTmp;
2499 }
2500
2501 /*
2502 * Modify the register.
2503 */
2504 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER);
2505 if (enmType != DBGFREGVALTYPE_DTR)
2506 {
2507 enmType = DBGFREGVALTYPE_U64;
2508 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64);
2509 }
2510 else
2511 {
2512 enmType = DBGFREGVALTYPE_DTR;
2513 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base);
2514 if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE)
2515 Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range;
2516 }
2517 if (RT_SUCCESS(rc))
2518 {
2519 rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType);
2520 if (RT_FAILURE(rc))
2521 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n",
2522 pszActualPrefix, pszReg, rc);
2523 if (rc != VINF_SUCCESS)
2524 DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc);
2525 }
2526 else
2527 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2528 }
2529 return rc;
2530}
2531
2532
2533/**
2534 * @callback_method_impl{FNDBGCCMD,
2535 * The 'rg'\, 'rg64' and 'rg32' commands\, worker for 'r'.}
2536 */
2537static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2538{
2539 /*
2540 * Show all registers our selves.
2541 */
2542 if (cArgs == 0)
2543 {
2544 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2545 bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64")
2546 || ( strcmp(pCmd->pszCmd, "rg32") != 0
2547 && DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu));
2548 return DBGCCmdHlpRegPrintf(pCmdHlp, pDbgc->idCpu, f64BitMode, pDbgc->fRegTerse);
2549 }
2550 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "");
2551}
2552
2553
2554/**
2555 * @callback_method_impl{FNDBGCCMD, The 'rt' command.}
2556 */
2557static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2558{
2559 NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2560
2561 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2562 pDbgc->fRegTerse = !pDbgc->fRegTerse;
2563 return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n");
2564}
2565
2566
2567/**
2568 * @callback_method_impl{FNDBGCCMD, The 'pr' and 'tr' commands.}
2569 */
2570static DECLCALLBACK(int) dbgcCmdStepTraceToggle(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2571{
2572 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2573 Assert(cArgs == 0); NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2574
2575 /* Note! windbg accepts 'r' as a flag to 'p', 'pa', 'pc', 'pt', 't',
2576 'ta', 'tc' and 'tt'. We've simplified it. */
2577 pDbgc->fStepTraceRegs = !pDbgc->fStepTraceRegs;
2578 return VINF_SUCCESS;
2579}
2580
2581
2582/**
2583 * @callback_method_impl{FNDBGCCMD, The 'p'\, 'pc'\, 'pt'\, 't'\, 'tc'\, and 'tt' commands.}
2584 */
2585static DECLCALLBACK(int) dbgcCmdStepTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2586{
2587 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2588 if (cArgs != 0)
2589 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2590 "Sorry, but the '%s' command does not currently implement any arguments.\n", pCmd->pszCmd);
2591
2592 /* The 'count' has to be implemented by DBGC, whereas the
2593 filtering is taken care of by DBGF. */
2594
2595 /*
2596 * Convert the command to DBGF_STEP_F_XXX and other API input.
2597 */
2598 //DBGFADDRESS StackPop;
2599 PDBGFADDRESS pStackPop = NULL;
2600 RTGCPTR cbStackPop = 0;
2601 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : _64K;
2602 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2603 if (pCmd->pszCmd[1] == 'c')
2604 fFlags |= DBGF_STEP_F_STOP_ON_CALL;
2605 else if (pCmd->pszCmd[1] == 't')
2606 fFlags |= DBGF_STEP_F_STOP_ON_RET;
2607 else if (pCmd->pszCmd[0] != 'p')
2608 cMaxSteps = 1;
2609 else
2610 {
2611 /** @todo consider passing RSP + 1 in for 'p' and something else sensible for
2612 * the 'pt' command. */
2613 }
2614
2615 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, NULL, pStackPop, cbStackPop, cMaxSteps);
2616 if (RT_SUCCESS(rc))
2617 pDbgc->fReady = false;
2618 else
2619 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2620
2621 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2622 return rc;
2623}
2624
2625
2626/**
2627 * @callback_method_impl{FNDBGCCMD, The 'pa' and 'ta' commands.}
2628 */
2629static DECLCALLBACK(int) dbgcCmdStepTraceTo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2630{
2631 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2632 if (cArgs != 1)
2633 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2634 "Sorry, but the '%s' command only implements a single argument at present.\n", pCmd->pszCmd);
2635 DBGFADDRESS Address;
2636 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
2637 if (RT_FAILURE(rc))
2638 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[0]);
2639
2640 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : 1;
2641 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2642 rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, &Address, NULL, 0, cMaxSteps);
2643 if (RT_SUCCESS(rc))
2644 pDbgc->fReady = false;
2645 else
2646 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2647 return rc;
2648}
2649
2650
2651/**
2652 * Helper that tries to resolve a far address to a symbol and formats it.
2653 *
2654 * @returns Pointer to symbol string on success, NULL if not resolved.
2655 * Free using RTStrFree.
2656 * @param pCmdHlp The command helper structure.
2657 * @param hAs The address space to use. NIL_RTDBGAS means no symbol resolving.
2658 * @param sel The selector part of the address.
2659 * @param off The offset part of the address.
2660 * @param pszPrefix How to prefix the symbol string.
2661 * @param pszSuffix How to suffix the symbol string.
2662 */
2663static char *dbgcCmdHlpFarAddrToSymbol(PDBGCCMDHLP pCmdHlp, RTDBGAS hAs, RTSEL sel, uint64_t off,
2664 const char *pszPrefix, const char *pszSuffix)
2665{
2666 char *pszRet = NULL;
2667 if (hAs != NIL_RTDBGAS)
2668 {
2669 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2670 DBGFADDRESS Addr;
2671 int rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr, sel, off);
2672 if (RT_SUCCESS(rc))
2673 {
2674 RTGCINTPTR offDispSym = 0;
2675 PRTDBGSYMBOL pSymbol = DBGFR3AsSymbolByAddrA(pDbgc->pUVM, hAs, &Addr,
2676 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL
2677 | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
2678 &offDispSym, NULL);
2679 if (pSymbol)
2680 {
2681 if (offDispSym == 0)
2682 pszRet = RTStrAPrintf2("%s%s%s", pszPrefix, pSymbol->szName, pszSuffix);
2683 else if (offDispSym > 0)
2684 pszRet = RTStrAPrintf2("%s%s+%llx%s", pszPrefix, pSymbol->szName, (int64_t)offDispSym, pszSuffix);
2685 else
2686 pszRet = RTStrAPrintf2("%s%s-%llx%s", pszPrefix, pSymbol->szName, -(int64_t)offDispSym, pszSuffix);
2687 RTDbgSymbolFree(pSymbol);
2688 }
2689 }
2690 }
2691 return pszRet;
2692}
2693
2694
2695/**
2696 * @callback_method_impl{FNDBGCCMD, The 'k'\, 'kg' and 'kh' commands.}
2697 */
2698static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2699{
2700 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2701
2702 /*
2703 * Figure which context we're called for and start walking that stack.
2704 */
2705 int rc;
2706 PCDBGFSTACKFRAME pFirstFrame;
2707 bool const fGuest = true;
2708 bool const fVerbose = pCmd->pszCmd[1] == 'v'
2709 || (pCmd->pszCmd[1] != '\0' && pCmd->pszCmd[2] == 'v');
2710 rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame);
2711 if (RT_FAILURE(rc))
2712 return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc);
2713
2714 /*
2715 * Print the frames.
2716 */
2717 char szTmp[1024];
2718 uint32_t fBitFlags = 0;
2719 for (PCDBGFSTACKFRAME pFrame = pFirstFrame;
2720 pFrame;
2721 pFrame = DBGFR3StackWalkNext(pFrame))
2722 {
2723 uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT);
2724 if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT)
2725 {
2726 if (fCurBitFlags != fBitFlags)
2727 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2728 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2729 pFrame->iFrame,
2730 pFrame->AddrFrame.Sel,
2731 (uint16_t)pFrame->AddrFrame.off,
2732 pFrame->AddrReturnFrame.Sel,
2733 (uint16_t)pFrame->AddrReturnFrame.off,
2734 (uint32_t)pFrame->AddrReturnPC.Sel,
2735 (uint32_t)pFrame->AddrReturnPC.off,
2736 pFrame->Args.au32[0],
2737 pFrame->Args.au32[1],
2738 pFrame->Args.au32[2],
2739 pFrame->Args.au32[3]);
2740 }
2741 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT)
2742 {
2743 if (fCurBitFlags != fBitFlags)
2744 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2745 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2746 pFrame->iFrame,
2747 (uint32_t)pFrame->AddrFrame.off,
2748 (uint32_t)pFrame->AddrReturnFrame.off,
2749 (uint32_t)pFrame->AddrReturnPC.Sel,
2750 (uint32_t)pFrame->AddrReturnPC.off,
2751 pFrame->Args.au32[0],
2752 pFrame->Args.au32[1],
2753 pFrame->Args.au32[2],
2754 pFrame->Args.au32[3]);
2755 }
2756 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT)
2757 {
2758 if (fCurBitFlags != fBitFlags)
2759 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n");
2760 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %016RX64 %04RX16:%016RX64 %016RX64",
2761 pFrame->iFrame,
2762 (uint64_t)pFrame->AddrFrame.off,
2763 pFrame->AddrReturnFrame.Sel,
2764 (uint64_t)pFrame->AddrReturnFrame.off,
2765 (uint64_t)pFrame->AddrReturnPC.off);
2766 }
2767 if (RT_FAILURE(rc))
2768 break;
2769 if (!pFrame->pSymPC)
2770 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
2771 fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT
2772 ? " %RTsel:%016RGv"
2773 : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT
2774 ? " %RTsel:%08RGv"
2775 : " %RTsel:%04RGv"
2776 , pFrame->AddrPC.Sel, pFrame->AddrPC.off);
2777 else
2778 {
2779 RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */
2780 if (offDisp > 0)
2781 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp);
2782 else if (offDisp < 0)
2783 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp);
2784 else
2785 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName);
2786 }
2787 if (RT_SUCCESS(rc) && pFrame->pLinePC)
2788 rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo);
2789 if (RT_SUCCESS(rc))
2790 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2791
2792 if (fVerbose && RT_SUCCESS(rc))
2793 {
2794 /*
2795 * Display verbose frame info.
2796 */
2797 const char *pszRetType = "invalid";
2798 switch (pFrame->enmReturnType)
2799 {
2800 case RTDBGRETURNTYPE_NEAR16: pszRetType = "retn/16"; break;
2801 case RTDBGRETURNTYPE_NEAR32: pszRetType = "retn/32"; break;
2802 case RTDBGRETURNTYPE_NEAR64: pszRetType = "retn/64"; break;
2803 case RTDBGRETURNTYPE_FAR16: pszRetType = "retf/16"; break;
2804 case RTDBGRETURNTYPE_FAR32: pszRetType = "retf/32"; break;
2805 case RTDBGRETURNTYPE_FAR64: pszRetType = "retf/64"; break;
2806 case RTDBGRETURNTYPE_IRET16: pszRetType = "iret-16"; break;
2807 case RTDBGRETURNTYPE_IRET32: pszRetType = "iret/32s"; break;
2808 case RTDBGRETURNTYPE_IRET32_PRIV: pszRetType = "iret/32p"; break;
2809 case RTDBGRETURNTYPE_IRET32_V86: pszRetType = "iret/v86"; break;
2810 case RTDBGRETURNTYPE_IRET64: pszRetType = "iret/64"; break;
2811
2812 case RTDBGRETURNTYPE_END:
2813 case RTDBGRETURNTYPE_INVALID:
2814 case RTDBGRETURNTYPE_32BIT_HACK:
2815 break;
2816 }
2817 size_t cchLine = DBGCCmdHlpPrintfLen(pCmdHlp, " %s", pszRetType);
2818 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_UNWIND_INFO)
2819 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-unwind-info");
2820 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_ODD_EVEN)
2821 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-odd-even");
2822 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_REAL_V86)
2823 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " real-v86");
2824 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_MAX_DEPTH)
2825 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " max-depth");
2826 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_TRAP_FRAME)
2827 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " trap-frame");
2828
2829 if (pFrame->cSureRegs > 0)
2830 {
2831 cchLine = 1024; /* force new line */
2832 for (uint32_t i = 0; i < pFrame->cSureRegs; i++)
2833 {
2834 if (cchLine > 80)
2835 {
2836 DBGCCmdHlpPrintf(pCmdHlp, "\n ");
2837 cchLine = 2;
2838 }
2839
2840 szTmp[0] = '\0';
2841 DBGFR3RegFormatValue(szTmp, sizeof(szTmp), &pFrame->paSureRegs[i].Value,
2842 pFrame->paSureRegs[i].enmType, false);
2843 const char *pszName = pFrame->paSureRegs[i].enmReg != DBGFREG_END
2844 ? DBGFR3RegCpuName(pUVM, pFrame->paSureRegs[i].enmReg, pFrame->paSureRegs[i].enmType)
2845 : pFrame->paSureRegs[i].pszName;
2846 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " %s=%s", pszName, szTmp);
2847 }
2848 }
2849
2850 if (RT_SUCCESS(rc))
2851 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2852 }
2853
2854 if (RT_FAILURE(rc))
2855 break;
2856
2857 fBitFlags = fCurBitFlags;
2858 }
2859
2860 DBGFR3StackWalkEnd(pFirstFrame);
2861
2862 NOREF(paArgs); NOREF(cArgs);
2863 return rc;
2864}
2865
2866
2867/**
2868 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
2869 *
2870 * @returns pfnPrintf status code.
2871 * @param pCmdHlp The DBGC command helpers.
2872 * @param pDesc The descriptor to display.
2873 * @param iEntry The descriptor entry number.
2874 * @param fHyper Whether the selector belongs to the hypervisor or not.
2875 * @param hAs Address space to use when resolving symbols.
2876 * @param pfDblEntry Where to indicate whether the entry is two entries wide.
2877 * Optional.
2878 */
2879static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs,
2880 bool *pfDblEntry)
2881{
2882 /* GUEST64 */
2883 int rc;
2884
2885 const char *pszHyper = fHyper ? " HYPER" : "";
2886 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
2887 if (pDesc->Gen.u1DescType)
2888 {
2889 static const char * const s_apszTypes[] =
2890 {
2891 "DataRO", /* 0 Read-Only */
2892 "DataRO", /* 1 Read-Only - Accessed */
2893 "DataRW", /* 2 Read/Write */
2894 "DataRW", /* 3 Read/Write - Accessed */
2895 "DownRO", /* 4 Expand-down, Read-Only */
2896 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
2897 "DownRW", /* 6 Expand-down, Read/Write */
2898 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
2899 "CodeEO", /* 8 Execute-Only */
2900 "CodeEO", /* 9 Execute-Only - Accessed */
2901 "CodeER", /* A Execute/Readable */
2902 "CodeER", /* B Execute/Readable - Accessed */
2903 "ConfE0", /* C Conforming, Execute-Only */
2904 "ConfE0", /* D Conforming, Execute-Only - Accessed */
2905 "ConfER", /* E Conforming, Execute/Readable */
2906 "ConfER" /* F Conforming, Execute/Readable - Accessed */
2907 };
2908 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
2909 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
2910 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2911 uint32_t u32Base = X86DESC_BASE(pDesc);
2912 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
2913
2914 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
2915 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
2916 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
2917 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
2918 }
2919 else
2920 {
2921 static const char * const s_apszTypes[] =
2922 {
2923 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
2924 "Ill-1 ", /* 1 0001 Available 16-bit TSS */
2925 "LDT ", /* 2 0010 LDT */
2926 "Ill-3 ", /* 3 0011 Busy 16-bit TSS */
2927 "Ill-4 ", /* 4 0100 16-bit Call Gate */
2928 "Ill-5 ", /* 5 0101 Task Gate */
2929 "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */
2930 "Ill-7 ", /* 7 0111 16-bit Trap Gate */
2931 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
2932 "Tss64A", /* 9 1001 Available 32-bit TSS */
2933 "Ill-A ", /* A 1010 Reserved (Illegal) */
2934 "Tss64B", /* B 1011 Busy 32-bit TSS */
2935 "Call64", /* C 1100 32-bit Call Gate */
2936 "Ill-D ", /* D 1101 Reserved (Illegal) */
2937 "Int64 ", /* E 1110 32-bit Interrupt Gate */
2938 "Trap64" /* F 1111 32-bit Trap Gate */
2939 };
2940 switch (pDesc->Gen.u4Type)
2941 {
2942 /* raw */
2943 case X86_SEL_TYPE_SYS_UNDEFINED:
2944 case X86_SEL_TYPE_SYS_UNDEFINED2:
2945 case X86_SEL_TYPE_SYS_UNDEFINED4:
2946 case X86_SEL_TYPE_SYS_UNDEFINED3:
2947 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
2948 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
2949 case X86_SEL_TYPE_SYS_286_CALL_GATE:
2950 case X86_SEL_TYPE_SYS_286_INT_GATE:
2951 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
2952 case X86_SEL_TYPE_SYS_TASK_GATE:
2953 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
2954 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
2955 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
2956 break;
2957
2958 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
2959 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
2960 case X86_SEL_TYPE_SYS_LDT:
2961 {
2962 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
2963 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2964 const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " ";
2965
2966 uint64_t u64Base = X86DESC64_BASE(pDesc);
2967 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
2968
2969 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n",
2970 iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit,
2971 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig,
2972 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
2973 pszHyper);
2974 if (pfDblEntry)
2975 *pfDblEntry = true;
2976 break;
2977 }
2978
2979 case X86_SEL_TYPE_SYS_386_CALL_GATE:
2980 {
2981 unsigned cParams = pDesc->au8[4] & 0x1f;
2982 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
2983 RTSEL sel = pDesc->au16[1];
2984 uint64_t off = pDesc->au16[0]
2985 | ((uint64_t)pDesc->au16[3] << 16)
2986 | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
2987 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
2988 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s%s\n",
2989 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
2990 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
2991 RTStrFree(pszSymbol);
2992 if (pfDblEntry)
2993 *pfDblEntry = true;
2994 break;
2995 }
2996
2997 case X86_SEL_TYPE_SYS_386_INT_GATE:
2998 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
2999 {
3000 RTSEL sel = pDesc->Gate.u16Sel;
3001 uint64_t off = pDesc->Gate.u16OffsetLow
3002 | ((uint64_t)pDesc->Gate.u16OffsetHigh << 16)
3003 | ((uint64_t)pDesc->Gate.u32OffsetTop << 32);
3004 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3005 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%u %s IST=%u%s%s\n",
3006 iEntry, s_apszTypes[pDesc->Gate.u4Type], sel, off,
3007 pDesc->Gate.u2Dpl, pszPresent, pDesc->Gate.u3IST, pszHyper, pszSymbol ? pszSymbol : "");
3008 RTStrFree(pszSymbol);
3009 if (pfDblEntry)
3010 *pfDblEntry = true;
3011 break;
3012 }
3013
3014 /* impossible, just it's necessary to keep gcc happy. */
3015 default:
3016 return VINF_SUCCESS;
3017 }
3018 }
3019 return VINF_SUCCESS;
3020}
3021
3022
3023/**
3024 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
3025 *
3026 * @returns pfnPrintf status code.
3027 * @param pCmdHlp The DBGC command helpers.
3028 * @param pDesc The descriptor to display.
3029 * @param iEntry The descriptor entry number.
3030 * @param fHyper Whether the selector belongs to the hypervisor or not.
3031 * @param hAs Address space to use when resolving symbols.
3032 */
3033static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs)
3034{
3035 int rc;
3036
3037 const char *pszHyper = fHyper ? " HYPER" : "";
3038 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
3039 if (pDesc->Gen.u1DescType)
3040 {
3041 static const char * const s_apszTypes[] =
3042 {
3043 "DataRO", /* 0 Read-Only */
3044 "DataRO", /* 1 Read-Only - Accessed */
3045 "DataRW", /* 2 Read/Write */
3046 "DataRW", /* 3 Read/Write - Accessed */
3047 "DownRO", /* 4 Expand-down, Read-Only */
3048 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
3049 "DownRW", /* 6 Expand-down, Read/Write */
3050 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
3051 "CodeEO", /* 8 Execute-Only */
3052 "CodeEO", /* 9 Execute-Only - Accessed */
3053 "CodeER", /* A Execute/Readable */
3054 "CodeER", /* B Execute/Readable - Accessed */
3055 "ConfE0", /* C Conforming, Execute-Only */
3056 "ConfE0", /* D Conforming, Execute-Only - Accessed */
3057 "ConfER", /* E Conforming, Execute/Readable */
3058 "ConfER" /* F Conforming, Execute/Readable - Accessed */
3059 };
3060 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
3061 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3062 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3063 uint32_t u32Base = pDesc->Gen.u16BaseLow
3064 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3065 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3066 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3067 if (pDesc->Gen.u1Granularity)
3068 cbLimit <<= PAGE_SHIFT;
3069
3070 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
3071 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3072 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
3073 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
3074 }
3075 else
3076 {
3077 static const char * const s_apszTypes[] =
3078 {
3079 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
3080 "Tss16A", /* 1 0001 Available 16-bit TSS */
3081 "LDT ", /* 2 0010 LDT */
3082 "Tss16B", /* 3 0011 Busy 16-bit TSS */
3083 "Call16", /* 4 0100 16-bit Call Gate */
3084 "TaskG ", /* 5 0101 Task Gate */
3085 "Int16 ", /* 6 0110 16-bit Interrupt Gate */
3086 "Trap16", /* 7 0111 16-bit Trap Gate */
3087 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
3088 "Tss32A", /* 9 1001 Available 32-bit TSS */
3089 "Ill-A ", /* A 1010 Reserved (Illegal) */
3090 "Tss32B", /* B 1011 Busy 32-bit TSS */
3091 "Call32", /* C 1100 32-bit Call Gate */
3092 "Ill-D ", /* D 1101 Reserved (Illegal) */
3093 "Int32 ", /* E 1110 32-bit Interrupt Gate */
3094 "Trap32" /* F 1111 32-bit Trap Gate */
3095 };
3096 switch (pDesc->Gen.u4Type)
3097 {
3098 /* raw */
3099 case X86_SEL_TYPE_SYS_UNDEFINED:
3100 case X86_SEL_TYPE_SYS_UNDEFINED2:
3101 case X86_SEL_TYPE_SYS_UNDEFINED4:
3102 case X86_SEL_TYPE_SYS_UNDEFINED3:
3103 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
3104 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
3105 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3106 break;
3107
3108 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3109 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3110 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3111 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3112 case X86_SEL_TYPE_SYS_LDT:
3113 {
3114 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3115 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3116 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3117 uint32_t u32Base = pDesc->Gen.u16BaseLow
3118 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3119 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3120 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3121 if (pDesc->Gen.u1Granularity)
3122 cbLimit <<= PAGE_SHIFT;
3123
3124 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n",
3125 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3126 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig,
3127 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3128 pszHyper);
3129 break;
3130 }
3131
3132 case X86_SEL_TYPE_SYS_TASK_GATE:
3133 {
3134 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n",
3135 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1],
3136 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3137 break;
3138 }
3139
3140 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3141 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3142 {
3143 unsigned cParams = pDesc->au8[4] & 0x1f;
3144 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3145 RTSEL sel = pDesc->au16[1];
3146 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3147 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3148 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s%s\n",
3149 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3150 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3151 RTStrFree(pszSymbol);
3152 break;
3153 }
3154
3155 case X86_SEL_TYPE_SYS_286_INT_GATE:
3156 case X86_SEL_TYPE_SYS_386_INT_GATE:
3157 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
3158 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3159 {
3160 RTSEL sel = pDesc->au16[1];
3161 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3162 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3163 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s%s\n",
3164 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3165 pDesc->Gen.u2Dpl, pszPresent, pszHyper, pszSymbol ? pszSymbol : "");
3166 RTStrFree(pszSymbol);
3167 break;
3168 }
3169
3170 /* impossible, just it's necessary to keep gcc happy. */
3171 default:
3172 return VINF_SUCCESS;
3173 }
3174 }
3175 return rc;
3176}
3177
3178
3179/**
3180 * @callback_method_impl{FNDBGCCMD, The 'dg'\, 'dga'\, 'dl' and 'dla' commands.}
3181 */
3182static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3183{
3184 /*
3185 * Validate input.
3186 */
3187 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3188
3189 /*
3190 * Get the CPU mode, check which command variation this is
3191 * and fix a default parameter if needed.
3192 */
3193 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3194 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
3195 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
3196 bool fGdt = pCmd->pszCmd[1] == 'g';
3197 bool fAll = pCmd->pszCmd[2] == 'a';
3198 RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT;
3199
3200 DBGCVAR Var;
3201 if (!cArgs)
3202 {
3203 cArgs = 1;
3204 paArgs = &Var;
3205 Var.enmType = DBGCVAR_TYPE_NUMBER;
3206 Var.u.u64Number = fGdt ? 0 : 4;
3207 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3208 Var.u64Range = 1024;
3209 }
3210
3211 /*
3212 * Process the arguments.
3213 */
3214 for (unsigned i = 0; i < cArgs; i++)
3215 {
3216 /*
3217 * Retrieve the selector value from the argument.
3218 * The parser may confuse pointers and numbers if more than one
3219 * argument is given, that that into account.
3220 */
3221 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType));
3222 uint64_t u64;
3223 unsigned cSels = 1;
3224 switch (paArgs[i].enmType)
3225 {
3226 case DBGCVAR_TYPE_NUMBER:
3227 u64 = paArgs[i].u.u64Number;
3228 if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE)
3229 cSels = RT_MIN(paArgs[i].u64Range, 1024);
3230 break;
3231 case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break;
3232 case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break;
3233 case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break;
3234 case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break;
3235 case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break;
3236 default: u64 = _64K; break;
3237 }
3238 if (u64 < _64K)
3239 {
3240 unsigned Sel = (RTSEL)u64;
3241
3242 /*
3243 * Dump the specified range.
3244 */
3245 bool fSingle = cSels == 1;
3246 while ( cSels-- > 0
3247 && Sel < _64K)
3248 {
3249 DBGFSELINFO SelInfo;
3250 int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
3251 if (RT_SUCCESS(rc))
3252 {
3253 if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE)
3254 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n",
3255 Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit);
3256 else if ( fAll
3257 || fSingle
3258 || SelInfo.u.Raw.Gen.u1Present)
3259 {
3260 if (enmMode == CPUMMODE_PROTECTED)
3261 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel,
3262 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL);
3263 else
3264 {
3265 bool fDblSkip = false;
3266 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel,
3267 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL, &fDblSkip);
3268 if (fDblSkip)
3269 Sel += 4;
3270 }
3271 }
3272 }
3273 else
3274 {
3275 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc);
3276 if (!fAll)
3277 return rc;
3278 }
3279 if (RT_FAILURE(rc))
3280 return rc;
3281
3282 /* next */
3283 Sel += 8;
3284 }
3285 }
3286 else
3287 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64);
3288 }
3289
3290 return VINF_SUCCESS;
3291}
3292
3293
3294/**
3295 * @callback_method_impl{FNDBGCCMD, The 'di' and 'dia' commands.}
3296 */
3297static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3298{
3299 /*
3300 * Validate input.
3301 */
3302 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3303
3304 /*
3305 * Establish some stuff like the current IDTR and CPU mode,
3306 * and fix a default parameter.
3307 */
3308 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3309 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
3310 uint16_t cbLimit = 0;
3311 uint64_t GCFlat = 0;
3312 int rc = DBGFR3RegCpuQueryXdtr(pDbgc->pUVM, pDbgc->idCpu, DBGFREG_IDTR, &GCFlat, &cbLimit);
3313 if (RT_FAILURE(rc))
3314 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3RegCpuQueryXdtr/DBGFREG_IDTR");
3315 unsigned cbEntry;
3316 switch (enmMode)
3317 {
3318 case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break;
3319 case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break;
3320 case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break;
3321 default:
3322 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode);
3323 }
3324
3325 bool fAll = pCmd->pszCmd[2] == 'a';
3326 DBGCVAR Var;
3327 if (!cArgs)
3328 {
3329 cArgs = 1;
3330 paArgs = &Var;
3331 Var.enmType = DBGCVAR_TYPE_NUMBER;
3332 Var.u.u64Number = 0;
3333 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3334 Var.u64Range = 256;
3335 }
3336
3337 /*
3338 * Process the arguments.
3339 */
3340 for (unsigned i = 0; i < cArgs; i++)
3341 {
3342 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER);
3343 if (paArgs[i].u.u64Number < 256)
3344 {
3345 RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number;
3346 unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE
3347 ? paArgs[i].u64Range
3348 : 1;
3349 bool fSingle = cInts == 1;
3350 while ( cInts-- > 0
3351 && iInt < 256)
3352 {
3353 /*
3354 * Try read it.
3355 */
3356 union
3357 {
3358 RTFAR16 Real;
3359 X86DESC Prot;
3360 X86DESC64 Long;
3361 } u;
3362 if (iInt * cbEntry + (cbEntry - 1) > cbLimit)
3363 {
3364 DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt);
3365 if (!fAll && !fSingle)
3366 return VINF_SUCCESS;
3367 }
3368 DBGCVAR AddrVar;
3369 AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT;
3370 AddrVar.u.GCFlat = GCFlat + iInt * cbEntry;
3371 AddrVar.enmRangeType = DBGCVAR_RANGE_NONE;
3372 rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL);
3373 if (RT_FAILURE(rc))
3374 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt);
3375
3376 /*
3377 * Display it.
3378 */
3379 switch (enmMode)
3380 {
3381 case CPUMMODE_REAL:
3382 {
3383 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, DBGF_AS_GLOBAL, u.Real.sel, u.Real.off, " (", ")");
3384 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16%s\n", (unsigned)iInt, u.Real, pszSymbol ? pszSymbol : "");
3385 RTStrFree(pszSymbol);
3386 break;
3387 }
3388 case CPUMMODE_PROTECTED:
3389 if (fAll || fSingle || u.Prot.Gen.u1Present)
3390 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false, DBGF_AS_GLOBAL);
3391 break;
3392 case CPUMMODE_LONG:
3393 if (fAll || fSingle || u.Long.Gen.u1Present)
3394 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, DBGF_AS_GLOBAL, NULL);
3395 break;
3396 default: break; /* to shut up gcc */
3397 }
3398 if (RT_FAILURE(rc))
3399 return rc;
3400
3401 /* next */
3402 iInt++;
3403 }
3404 }
3405 else
3406 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number);
3407 }
3408
3409 return VINF_SUCCESS;
3410}
3411
3412
3413/**
3414 * @callback_method_impl{FNDBGCCMD,
3415 * The 'da'\, 'dq'\, 'dqs'\, 'dd'\, 'dds'\, 'dw'\, 'db'\, 'dp'\, 'dps'\,
3416 * and 'du' commands.}
3417 */
3418static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3419{
3420 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3421
3422 /*
3423 * Validate input.
3424 */
3425 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3426 if (cArgs == 1)
3427 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3428 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3429
3430#define DBGC_DUMP_MEM_F_ASCII RT_BIT_32(31)
3431#define DBGC_DUMP_MEM_F_UNICODE RT_BIT_32(30)
3432#define DBGC_DUMP_MEM_F_FAR RT_BIT_32(29)
3433#define DBGC_DUMP_MEM_F_SYMBOLS RT_BIT_32(28)
3434#define DBGC_DUMP_MEM_F_SIZE UINT32_C(0x0000ffff)
3435
3436 /*
3437 * Figure out the element size.
3438 */
3439 unsigned cbElement;
3440 bool fAscii = false;
3441 bool fUnicode = false;
3442 bool fFar = false;
3443 bool fSymbols = pCmd->pszCmd[1] && pCmd->pszCmd[2] == 's';
3444 switch (pCmd->pszCmd[1])
3445 {
3446 default:
3447 case 'b': cbElement = 1; break;
3448 case 'w': cbElement = 2; break;
3449 case 'd': cbElement = 4; break;
3450 case 'q': cbElement = 8; break;
3451 case 'a':
3452 cbElement = 1;
3453 fAscii = true;
3454 break;
3455 case 'F':
3456 cbElement = 4;
3457 fFar = true;
3458 break;
3459 case 'p':
3460 cbElement = DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu) ? 8 : 4;
3461 break;
3462 case 'u':
3463 cbElement = 2;
3464 fUnicode = true;
3465 break;
3466 case '\0':
3467 fAscii = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_ASCII);
3468 fSymbols = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SYMBOLS);
3469 fUnicode = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_UNICODE);
3470 fFar = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_FAR);
3471 cbElement = pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SIZE;
3472 if (!cbElement)
3473 cbElement = 1;
3474 break;
3475 }
3476 uint32_t const cbDumpElement = cbElement
3477 | (fSymbols ? DBGC_DUMP_MEM_F_SYMBOLS : 0)
3478 | (fFar ? DBGC_DUMP_MEM_F_FAR : 0)
3479 | (fUnicode ? DBGC_DUMP_MEM_F_UNICODE : 0)
3480 | (fAscii ? DBGC_DUMP_MEM_F_ASCII : 0);
3481 pDbgc->cbDumpElement = cbDumpElement;
3482
3483 /*
3484 * Find address.
3485 */
3486 if (!cArgs)
3487 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE;
3488 else
3489 pDbgc->DumpPos = paArgs[0];
3490
3491 /*
3492 * Range.
3493 */
3494 switch (pDbgc->DumpPos.enmRangeType)
3495 {
3496 case DBGCVAR_RANGE_NONE:
3497 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3498 pDbgc->DumpPos.u64Range = 0x60;
3499 break;
3500
3501 case DBGCVAR_RANGE_ELEMENTS:
3502 if (pDbgc->DumpPos.u64Range > 2048)
3503 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n");
3504 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3505 pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range;
3506 break;
3507
3508 case DBGCVAR_RANGE_BYTES:
3509 if (pDbgc->DumpPos.u64Range > 65536)
3510 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
3511 break;
3512
3513 default:
3514 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType);
3515 }
3516
3517 pDbgc->pLastPos = &pDbgc->DumpPos;
3518
3519 /*
3520 * Do the dumping.
3521 */
3522 int cbLeft = (int)pDbgc->DumpPos.u64Range;
3523 uint8_t u16Prev = '\0';
3524 for (;;)
3525 {
3526 /*
3527 * Read memory.
3528 */
3529 char achBuffer[16];
3530 size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft);
3531 size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft);
3532 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb);
3533 if (RT_FAILURE(rc))
3534 {
3535 if (u16Prev && u16Prev != '\n')
3536 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3537 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos);
3538 }
3539
3540 /*
3541 * Display it.
3542 */
3543 memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb);
3544 if (!fAscii && !fUnicode)
3545 {
3546 DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos);
3547 unsigned i;
3548 for (i = 0; i < cb; i += cbElement)
3549 {
3550 const char *pszSpace = " ";
3551 if (cbElement <= 2 && i == 8)
3552 pszSpace = "-";
3553 switch (cbElement)
3554 {
3555 case 1:
3556 DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]);
3557 break;
3558 case 2:
3559 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]);
3560 break;
3561 case 4:
3562 if (!fFar)
3563 DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]);
3564 else
3565 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x:%04x:",
3566 pszSpace, *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3567 break;
3568 case 8:
3569 DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]);
3570 break;
3571 }
3572
3573 if (fSymbols)
3574 {
3575 /* Try lookup symbol for the above address. */
3576 DBGFADDRESS Addr;
3577 rc = VINF_SUCCESS;
3578 if (cbElement == 8)
3579 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint64_t *)&achBuffer[i]);
3580 else if (!fFar)
3581 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint32_t *)&achBuffer[i]);
3582 else
3583 rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr,
3584 *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3585 if (RT_SUCCESS(rc))
3586 {
3587 RTINTPTR offDisp;
3588 RTDBGSYMBOL Symbol;
3589 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, &Addr,
3590 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
3591 &offDisp, &Symbol, NULL);
3592 if (RT_SUCCESS(rc))
3593 {
3594 if (!offDisp)
3595 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", Symbol.szName);
3596 else if (offDisp > 0)
3597 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s + %RGv", Symbol.szName, offDisp);
3598 else
3599 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s - %RGv", Symbol.szName, -offDisp);
3600 if (Symbol.cb > 0)
3601 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)", Symbol.cb);
3602 }
3603 }
3604
3605 /* Next line prefix. */
3606 unsigned iNext = i + cbElement;
3607 if (iNext < cb)
3608 {
3609 DBGCVAR TmpPos = pDbgc->DumpPos;
3610 DBGCCmdHlpEval(pCmdHlp, &TmpPos, "(%Dv) + %x", &pDbgc->DumpPos, iNext);
3611 DBGCCmdHlpPrintf(pCmdHlp, "\n%DV:", &pDbgc->DumpPos);
3612 }
3613 }
3614 }
3615
3616 /* Chars column. */
3617 if (cbElement == 1)
3618 {
3619 while (i++ < sizeof(achBuffer))
3620 DBGCCmdHlpPrintf(pCmdHlp, " ");
3621 DBGCCmdHlpPrintf(pCmdHlp, " ");
3622 for (i = 0; i < cb; i += cbElement)
3623 {
3624 uint8_t u8 = *(uint8_t *)&achBuffer[i];
3625 if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32)
3626 DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
3627 else
3628 DBGCCmdHlpPrintf(pCmdHlp, ".");
3629 }
3630 }
3631 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3632 }
3633 else
3634 {
3635 /*
3636 * We print up to the first zero and stop there.
3637 * Only printables + '\t' and '\n' are printed.
3638 */
3639 if (!u16Prev)
3640 DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos);
3641 uint16_t u16 = '\0';
3642 unsigned i;
3643 for (i = 0; i < cb; i += cbElement)
3644 {
3645 u16Prev = u16;
3646 if (cbElement == 1)
3647 u16 = *(uint8_t *)&achBuffer[i];
3648 else
3649 u16 = *(uint16_t *)&achBuffer[i];
3650 if ( u16 < 127
3651 && ( (RT_C_IS_PRINT(u16) && u16 >= 32)
3652 || u16 == '\t'
3653 || u16 == '\n'))
3654 DBGCCmdHlpPrintf(pCmdHlp, "%c", (int)u16);
3655 else if (!u16)
3656 break;
3657 else
3658 DBGCCmdHlpPrintf(pCmdHlp, "\\x%0*x", cbElement * 2, u16);
3659 }
3660 if (u16 == '\0')
3661 cb = cbLeft = i + 1;
3662 if (cbLeft - cb <= 0 && u16Prev != '\n')
3663 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3664 }
3665
3666 /*
3667 * Advance
3668 */
3669 cbLeft -= (int)cb;
3670 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb);
3671 if (RT_FAILURE(rc))
3672 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb);
3673 if (cbLeft <= 0)
3674 break;
3675 }
3676
3677 NOREF(pCmd);
3678 return VINF_SUCCESS;
3679}
3680
3681
3682/**
3683 * Best guess at which paging mode currently applies to the guest
3684 * paging structures.
3685 *
3686 * This have to come up with a decent answer even when the guest
3687 * is in non-paged protected mode or real mode.
3688 *
3689 * @returns cr3.
3690 * @param pDbgc The DBGC instance.
3691 * @param pfPAE Where to store the page address extension indicator.
3692 * @param pfLME Where to store the long mode enabled indicator.
3693 * @param pfPSE Where to store the page size extension indicator.
3694 * @param pfPGE Where to store the page global enabled indicator.
3695 * @param pfNXE Where to store the no-execution enabled indicator.
3696 */
3697static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3698{
3699#if defined(VBOX_VMM_TARGET_ARMV8)
3700 AssertReleaseFailed();
3701 RT_NOREF(pDbgc, pfPAE, pfLME, pfPSE, pfPGE, pfNXE);
3702 return ~(RTGCPHYS)0;
3703#else
3704 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3705 RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu);
3706 *pfPSE = !!(cr4 & X86_CR4_PSE);
3707 *pfPGE = !!(cr4 & X86_CR4_PGE);
3708 if (cr4 & X86_CR4_PAE)
3709 {
3710 *pfPSE = true;
3711 *pfPAE = true;
3712 }
3713 else
3714 *pfPAE = false;
3715
3716 *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG;
3717 *pfNXE = false; /* GUEST64 GUESTNX */
3718 return CPUMGetGuestCR3(pVCpu);
3719#endif
3720}
3721
3722
3723/**
3724 * Determine the shadow paging mode.
3725 *
3726 * @returns cr3.
3727 * @param pDbgc The DBGC instance.
3728 * @param pfPAE Where to store the page address extension indicator.
3729 * @param pfLME Where to store the long mode enabled indicator.
3730 * @param pfPSE Where to store the page size extension indicator.
3731 * @param pfPGE Where to store the page global enabled indicator.
3732 * @param pfNXE Where to store the no-execution enabled indicator.
3733 */
3734static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3735{
3736#if defined(VBOX_VMM_TARGET_ARMV8)
3737 RT_NOREF(pDbgc, pfPAE, pfLME, pfPSE, pfPGE, pfNXE);
3738 AssertReleaseFailed();
3739 return ~(RTHCPHYS)0;
3740#else
3741 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3742
3743 *pfPSE = true;
3744 *pfPGE = false;
3745 switch (PGMGetShadowMode(pVCpu))
3746 {
3747 default:
3748 case PGMMODE_32_BIT:
3749 *pfPAE = *pfLME = *pfNXE = false;
3750 break;
3751 case PGMMODE_PAE:
3752 *pfLME = *pfNXE = false;
3753 *pfPAE = true;
3754 break;
3755 case PGMMODE_PAE_NX:
3756 *pfLME = false;
3757 *pfPAE = *pfNXE = true;
3758 break;
3759 case PGMMODE_AMD64:
3760 *pfNXE = false;
3761 *pfPAE = *pfLME = true;
3762 break;
3763 case PGMMODE_AMD64_NX:
3764 *pfPAE = *pfLME = *pfNXE = true;
3765 break;
3766 }
3767 return PGMGetHyperCR3(pVCpu);
3768#endif
3769}
3770
3771
3772/**
3773 * @callback_method_impl{FNDBGCCMD,
3774 * The 'dpd'\, 'dpda'\, 'dpdb'\, 'dpdg' and 'dpdh' commands.}
3775 */
3776static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3777{
3778 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3779
3780 /*
3781 * Validate input.
3782 */
3783 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3784 if (cArgs == 1 && pCmd->pszCmd[3] == 'a')
3785 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3786 if (cArgs == 1 && pCmd->pszCmd[3] != 'a')
3787 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3788 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
3789 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3790
3791 /*
3792 * Guest or shadow page directories? Get the paging parameters.
3793 */
3794 bool fGuest = pCmd->pszCmd[3] != 'h';
3795 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
3796 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
3797
3798 bool fPAE, fLME, fPSE, fPGE, fNXE;
3799 uint64_t cr3 = fGuest
3800 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
3801 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
3802 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
3803
3804 /*
3805 * Setup default argument if none was specified.
3806 * Fix address / index confusion.
3807 */
3808 DBGCVAR VarDefault;
3809 if (!cArgs)
3810 {
3811 if (pCmd->pszCmd[3] == 'a')
3812 {
3813 if (fLME || fPAE)
3814 return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n");
3815 if (fGuest)
3816 DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3);
3817 else
3818 DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3);
3819 }
3820 else
3821 DBGCVAR_INIT_GC_FLAT(&VarDefault, 0);
3822 paArgs = &VarDefault;
3823 cArgs = 1;
3824 }
3825 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
3826 {
3827 /* If it's a number (not an address), it's an index, so convert it to an address. */
3828 Assert(pCmd->pszCmd[3] != 'a');
3829 VarDefault = paArgs[0];
3830 if (fPAE)
3831 return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n");
3832 if (VarDefault.u.u64Number >= PAGE_SIZE / cbEntry)
3833 return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", PAGE_SIZE / cbEntry - 1);
3834 VarDefault.u.u64Number <<= X86_PD_SHIFT;
3835 VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT;
3836 paArgs = &VarDefault;
3837 }
3838
3839 /*
3840 * Locate the PDE to start displaying at.
3841 *
3842 * The 'dpda' command takes the address of a PDE, while the others are guest
3843 * virtual address which PDEs should be displayed. So, 'dpda' is rather simple
3844 * while the others require us to do all the tedious walking thru the paging
3845 * hierarchy to find the intended PDE.
3846 */
3847 unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */
3848 DBGCVAR VarGCPtr = { NULL, }; /* The GC address corresponding to the current PDE (iEntry != ~0U). */
3849 DBGCVAR VarPDEAddr; /* The address of the current PDE. */
3850 unsigned cEntries; /* The number of entries to display. */
3851 unsigned cEntriesMax; /* The max number of entries to display. */
3852 int rc;
3853 if (pCmd->pszCmd[3] == 'a')
3854 {
3855 VarPDEAddr = paArgs[0];
3856 switch (VarPDEAddr.enmRangeType)
3857 {
3858 case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break;
3859 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break;
3860 default: cEntries = 10; break;
3861 }
3862 cEntriesMax = PAGE_SIZE / cbEntry;
3863 }
3864 else
3865 {
3866 /*
3867 * Determine the range.
3868 */
3869 switch (paArgs[0].enmRangeType)
3870 {
3871 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
3872 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
3873 default: cEntries = 10; break;
3874 }
3875
3876 /*
3877 * Normalize the input address, it must be a flat GC address.
3878 */
3879 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
3880 if (RT_FAILURE(rc))
3881 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
3882 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
3883 {
3884 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
3885 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
3886 }
3887 if (fPAE)
3888 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1);
3889 else
3890 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1);
3891
3892 /*
3893 * Do the paging walk until we get to the page directory.
3894 */
3895 DBGCVAR VarCur;
3896 if (fGuest)
3897 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
3898 else
3899 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
3900 if (fLME)
3901 {
3902 /* Page Map Level 4 Lookup. */
3903 /* Check if it's a valid address first? */
3904 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
3905 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
3906 X86PML4E Pml4e;
3907 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
3908 if (RT_FAILURE(rc))
3909 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
3910 if (!Pml4e.n.u1Present)
3911 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
3912
3913 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
3914 Assert(fPAE);
3915 }
3916 if (fPAE)
3917 {
3918 /* Page directory pointer table. */
3919 X86PDPE Pdpe;
3920 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
3921 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
3922 if (RT_FAILURE(rc))
3923 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
3924 if (!Pdpe.n.u1Present)
3925 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
3926
3927 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3928 VarPDEAddr = VarCur;
3929 VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
3930 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE);
3931 }
3932 else
3933 {
3934 /* 32-bit legacy - CR3 == page directory. */
3935 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK;
3936 VarPDEAddr = VarCur;
3937 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE);
3938 }
3939 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
3940 }
3941
3942 /* adjust cEntries */
3943 cEntries = RT_MAX(1, cEntries);
3944 cEntries = RT_MIN(cEntries, cEntriesMax);
3945
3946 /*
3947 * The display loop.
3948 */
3949 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n",
3950 &VarPDEAddr, iEntry);
3951 do
3952 {
3953 /*
3954 * Read.
3955 */
3956 X86PDEPAE Pde;
3957 Pde.u = 0;
3958 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL);
3959 if (RT_FAILURE(rc))
3960 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr);
3961
3962 /*
3963 * Display.
3964 */
3965 if (iEntry != ~0U)
3966 {
3967 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
3968 iEntry++;
3969 }
3970 if (fPSE && Pde.b.u1Size)
3971 DBGCCmdHlpPrintf(pCmdHlp,
3972 fPAE
3973 ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
3974 : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
3975 Pde.u,
3976 Pde.u & X86_PDE_PAE_PG_MASK,
3977 Pde.b.u1Present ? "p " : "np",
3978 Pde.b.u1Write ? "w" : "r",
3979 Pde.b.u1User ? "u" : "s",
3980 Pde.b.u1Accessed ? "a " : "na",
3981 Pde.b.u1Dirty ? "d " : "nd",
3982 Pde.b.u3Available,
3983 Pde.b.u1Global ? (fPGE ? "g" : "G") : " ",
3984 Pde.b.u1WriteThru ? "pwt" : " ",
3985 Pde.b.u1CacheDisable ? "pcd" : " ",
3986 Pde.b.u1PAT ? "pat" : "",
3987 Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
3988 else
3989 DBGCCmdHlpPrintf(pCmdHlp,
3990 fPAE
3991 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s"
3992 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s",
3993 Pde.u,
3994 Pde.u & X86_PDE_PAE_PG_MASK,
3995 Pde.n.u1Present ? "p " : "np",
3996 Pde.n.u1Write ? "w" : "r",
3997 Pde.n.u1User ? "u" : "s",
3998 Pde.n.u1Accessed ? "a " : "na",
3999 Pde.u & RT_BIT(6) ? "6 " : " ",
4000 Pde.n.u3Available,
4001 Pde.u & RT_BIT(8) ? "8" : " ",
4002 Pde.n.u1WriteThru ? "pwt" : " ",
4003 Pde.n.u1CacheDisable ? "pcd" : " ",
4004 Pde.u & RT_BIT(7) ? "7" : "",
4005 Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
4006 if (Pde.u & UINT64_C(0x7fff000000000000))
4007 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000)));
4008 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4009 if (RT_FAILURE(rc))
4010 return rc;
4011
4012 /*
4013 * Advance.
4014 */
4015 VarPDEAddr.u.u64Number += cbEntry;
4016 if (iEntry != ~0U)
4017 VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT);
4018 } while (cEntries-- > 0);
4019
4020 return VINF_SUCCESS;
4021}
4022
4023
4024/**
4025 * @callback_method_impl{FNDBGCCMD, The 'dpdb' command.}
4026 */
4027static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4028{
4029 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4030 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]);
4031 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]);
4032 if (RT_FAILURE(rc1))
4033 return rc1;
4034 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
4035 return rc2;
4036}
4037
4038
4039/**
4040 * @callback_method_impl{FNDBGCCMD, The 'dph*' commands and main part of 'm'.}
4041 */
4042static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4043{
4044 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4045 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4046
4047 /*
4048 * Figure the context and base flags.
4049 */
4050 uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3;
4051 if (pCmd->pszCmd[0] == 'm')
4052 fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW;
4053 else if (pCmd->pszCmd[3] == '\0')
4054 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4055 else if (pCmd->pszCmd[3] == 'g')
4056 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4057 else if (pCmd->pszCmd[3] == 'h')
4058 fFlags |= DBGFPGDMP_FLAGS_SHADOW;
4059 else
4060 AssertFailed();
4061
4062 if (pDbgc->cPagingHierarchyDumps == 0)
4063 fFlags |= DBGFPGDMP_FLAGS_HEADER;
4064 pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42;
4065
4066 /*
4067 * Get the range.
4068 */
4069 PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos;
4070 RTGCPTR GCPtrFirst = NIL_RTGCPTR;
4071 int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst);
4072 if (RT_FAILURE(rc))
4073 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc);
4074
4075 uint64_t cbRange;
4076 rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, PAGE_SIZE, PAGE_SIZE * 8, &cbRange);
4077 if (RT_FAILURE(rc))
4078 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc);
4079
4080 RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst;
4081 if (cbRange >= GCPtrLast)
4082 GCPtrLast = RTGCPTR_MAX;
4083 else if (!cbRange)
4084 GCPtrLast = GCPtrFirst;
4085 else
4086 GCPtrLast = GCPtrFirst + cbRange - 1;
4087
4088 /*
4089 * Do we have a CR3?
4090 */
4091 uint64_t cr3 = 0;
4092 if (cArgs > 1)
4093 {
4094 if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW))
4095 return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please.");
4096 if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
4097 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]);
4098 cr3 = paArgs[1].u.u64Number;
4099 }
4100 else
4101 fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3;
4102
4103 /*
4104 * Do we have a mode?
4105 */
4106 if (cArgs > 2)
4107 {
4108 if (paArgs[2].enmType != DBGCVAR_TYPE_STRING)
4109 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]);
4110 static const struct MODETOFLAGS
4111 {
4112 const char *pszName;
4113 uint32_t fFlags;
4114 } s_aModeToFlags[] =
4115 {
4116 { "ept", DBGFPGDMP_FLAGS_EPT },
4117 { "legacy", 0 },
4118 { "legacy-np", DBGFPGDMP_FLAGS_NP },
4119 { "pse", DBGFPGDMP_FLAGS_PSE },
4120 { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP },
4121 { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE },
4122 { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP },
4123 { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE },
4124 { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP },
4125 { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME },
4126 { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP },
4127 { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE },
4128 { "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }
4129 };
4130 int i = RT_ELEMENTS(s_aModeToFlags);
4131 while (i-- > 0)
4132 if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString))
4133 {
4134 fFlags |= s_aModeToFlags[i].fFlags;
4135 break;
4136 }
4137 if (i < 0)
4138 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString);
4139 }
4140 else
4141 fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE;
4142
4143 /*
4144 * Call the worker.
4145 */
4146 rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/,
4147 DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp));
4148 if (RT_FAILURE(rc))
4149 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc);
4150 return VINF_SUCCESS;
4151}
4152
4153
4154
4155/**
4156 * @callback_method_impl{FNDBGCCMD, The 'dpg*' commands.}
4157 */
4158static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4159{
4160 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4161
4162 /*
4163 * Validate input.
4164 */
4165 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1);
4166 if (pCmd->pszCmd[3] == 'a')
4167 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
4168 else
4169 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
4170 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
4171 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4172
4173 /*
4174 * Guest or shadow page tables? Get the paging parameters.
4175 */
4176 bool fGuest = pCmd->pszCmd[3] != 'h';
4177 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
4178 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
4179
4180 bool fPAE, fLME, fPSE, fPGE, fNXE;
4181 uint64_t cr3 = fGuest
4182 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
4183 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
4184 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
4185
4186 /*
4187 * Locate the PTE to start displaying at.
4188 *
4189 * The 'dpta' command takes the address of a PTE, while the others are guest
4190 * virtual address which PTEs should be displayed. So, 'pdta' is rather simple
4191 * while the others require us to do all the tedious walking thru the paging
4192 * hierarchy to find the intended PTE.
4193 */
4194 unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */
4195 DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */
4196 DBGCVAR VarPTEAddr; /* The address of the current PTE. */
4197 unsigned cEntries; /* The number of entries to display. */
4198 unsigned cEntriesMax; /* The max number of entries to display. */
4199 int rc;
4200 if (pCmd->pszCmd[3] == 'a')
4201 {
4202 VarPTEAddr = paArgs[0];
4203 switch (VarPTEAddr.enmRangeType)
4204 {
4205 case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break;
4206 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break;
4207 default: cEntries = 10; break;
4208 }
4209 cEntriesMax = PAGE_SIZE / cbEntry;
4210 }
4211 else
4212 {
4213 /*
4214 * Determine the range.
4215 */
4216 switch (paArgs[0].enmRangeType)
4217 {
4218 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
4219 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
4220 default: cEntries = 10; break;
4221 }
4222
4223 /*
4224 * Normalize the input address, it must be a flat GC address.
4225 */
4226 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
4227 if (RT_FAILURE(rc))
4228 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
4229 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
4230 {
4231 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
4232 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
4233 }
4234 VarGCPtr.u.GCFlat &= ~(RTGCPTR)PAGE_OFFSET_MASK;
4235
4236 /*
4237 * Do the paging walk until we get to the page table.
4238 */
4239 DBGCVAR VarCur;
4240 if (fGuest)
4241 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
4242 else
4243 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
4244 if (fLME)
4245 {
4246 /* Page Map Level 4 Lookup. */
4247 /* Check if it's a valid address first? */
4248 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
4249 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
4250 X86PML4E Pml4e;
4251 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
4252 if (RT_FAILURE(rc))
4253 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
4254 if (!Pml4e.n.u1Present)
4255 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
4256
4257 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
4258 Assert(fPAE);
4259 }
4260 if (fPAE)
4261 {
4262 /* Page directory pointer table. */
4263 X86PDPE Pdpe;
4264 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
4265 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
4266 if (RT_FAILURE(rc))
4267 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
4268 if (!Pdpe.n.u1Present)
4269 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
4270
4271 VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
4272
4273 /* Page directory (PAE). */
4274 X86PDEPAE Pde;
4275 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde);
4276 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4277 if (RT_FAILURE(rc))
4278 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4279 if (!Pde.n.u1Present)
4280 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4281 if (fPSE && Pde.n.u1Size)
4282 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4283
4284 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
4285 VarPTEAddr = VarCur;
4286 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK;
4287 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE);
4288 }
4289 else
4290 {
4291 /* Page directory (legacy). */
4292 X86PDE Pde;
4293 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde);
4294 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
4295 if (RT_FAILURE(rc))
4296 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
4297 if (!Pde.n.u1Present)
4298 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
4299 if (fPSE && Pde.n.u1Size)
4300 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
4301
4302 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK;
4303 VarPTEAddr = VarCur;
4304 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK;
4305 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE);
4306 }
4307 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
4308 }
4309
4310 /* adjust cEntries */
4311 cEntries = RT_MAX(1, cEntries);
4312 cEntries = RT_MIN(cEntries, cEntriesMax);
4313
4314 /*
4315 * The display loop.
4316 */
4317 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n",
4318 &VarPTEAddr, &VarGCPtr, iEntry);
4319 do
4320 {
4321 /*
4322 * Read.
4323 */
4324 X86PTEPAE Pte;
4325 Pte.u = 0;
4326 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL);
4327 if (RT_FAILURE(rc))
4328 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr);
4329
4330 /*
4331 * Display.
4332 */
4333 if (iEntry != ~0U)
4334 {
4335 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
4336 iEntry++;
4337 }
4338 DBGCCmdHlpPrintf(pCmdHlp,
4339 fPAE
4340 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
4341 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
4342 Pte.u,
4343 Pte.u & X86_PTE_PAE_PG_MASK,
4344 Pte.n.u1Present ? "p " : "np",
4345 Pte.n.u1Write ? "w" : "r",
4346 Pte.n.u1User ? "u" : "s",
4347 Pte.n.u1Accessed ? "a " : "na",
4348 Pte.n.u1Dirty ? "d " : "nd",
4349 Pte.n.u3Available,
4350 Pte.n.u1Global ? (fPGE ? "g" : "G") : " ",
4351 Pte.n.u1WriteThru ? "pwt" : " ",
4352 Pte.n.u1CacheDisable ? "pcd" : " ",
4353 Pte.n.u1PAT ? "pat" : " ",
4354 Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "
4355 );
4356 if (Pte.u & UINT64_C(0x7fff000000000000))
4357 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000)));
4358 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
4359 if (RT_FAILURE(rc))
4360 return rc;
4361
4362 /*
4363 * Advance.
4364 */
4365 VarPTEAddr.u.u64Number += cbEntry;
4366 if (iEntry != ~0U)
4367 VarGCPtr.u.GCFlat += PAGE_SIZE;
4368 } while (cEntries-- > 0);
4369
4370 return VINF_SUCCESS;
4371}
4372
4373
4374/**
4375 * @callback_method_impl{FNDBGCCMD, The 'dptb' command.}
4376 */
4377static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4378{
4379 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4380 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]);
4381 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]);
4382 if (RT_FAILURE(rc1))
4383 return rc1;
4384 NOREF(pCmd); NOREF(cArgs);
4385 return rc2;
4386}
4387
4388
4389/**
4390 * @callback_method_impl{FNDBGCCMD, The 'dt' command.}
4391 */
4392static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4393{
4394 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4395 int rc;
4396
4397 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4398 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
4399 if (cArgs == 1)
4400 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING
4401 && paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL);
4402
4403 /*
4404 * Check if the command indicates the type.
4405 */
4406 enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined;
4407 if (!strcmp(pCmd->pszCmd, "dt16"))
4408 enmTssType = kTss16;
4409 else if (!strcmp(pCmd->pszCmd, "dt32"))
4410 enmTssType = kTss32;
4411 else if (!strcmp(pCmd->pszCmd, "dt64"))
4412 enmTssType = kTss64;
4413
4414 /*
4415 * We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer.
4416 */
4417 uint32_t SelTss = UINT32_MAX;
4418 DBGCVAR VarTssAddr;
4419 if (cArgs == 0)
4420 {
4421 /** @todo consider querying the hidden bits instead (missing API). */
4422 uint16_t SelTR;
4423 rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR);
4424 if (RT_FAILURE(rc))
4425 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc);
4426 DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0);
4427 SelTss = SelTR;
4428 }
4429 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
4430 {
4431 if (paArgs[0].u.u64Number < 0xffff)
4432 DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0);
4433 else
4434 {
4435 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS)
4436 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n");
4437 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number);
4438 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES)
4439 {
4440 VarTssAddr.enmRangeType = paArgs[0].enmRangeType;
4441 VarTssAddr.u64Range = paArgs[0].u64Range;
4442 }
4443 }
4444 }
4445 else
4446 VarTssAddr = paArgs[0];
4447
4448 /*
4449 * Deal with TSS:ign by means of the GDT.
4450 */
4451 if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR)
4452 {
4453 SelTss = VarTssAddr.u.GCFar.sel;
4454 DBGFSELINFO SelInfo;
4455 rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
4456 if (RT_FAILURE(rc))
4457 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n",
4458 pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc);
4459
4460 if (SelInfo.u.Raw.Gen.u1DescType)
4461 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel);
4462
4463 switch (SelInfo.u.Raw.Gen.u4Type)
4464 {
4465 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4466 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4467 if (enmTssType == kTssToBeDetermined)
4468 enmTssType = kTss16;
4469 break;
4470
4471 case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */
4472 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4473 if (enmTssType == kTssToBeDetermined)
4474 enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32;
4475 break;
4476
4477 default:
4478 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n",
4479 VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type);
4480 }
4481
4482 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase);
4483 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit));
4484 }
4485
4486 /*
4487 * Determine the TSS type if none is currently given.
4488 */
4489 if (enmTssType == kTssToBeDetermined)
4490 {
4491 if ( VarTssAddr.u64Range > 0
4492 && VarTssAddr.u64Range < sizeof(X86TSS32) - 4)
4493 enmTssType = kTss16;
4494 else
4495 {
4496 uint64_t uEfer;
4497 rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer);
4498 if ( RT_FAILURE(rc)
4499 || !(uEfer & MSR_K6_EFER_LMA) )
4500 enmTssType = kTss32;
4501 else
4502 enmTssType = kTss64;
4503 }
4504 }
4505
4506 /*
4507 * Figure the min/max sizes.
4508 * ASSUMES max TSS size is 64 KB.
4509 */
4510 uint32_t cbTssMin;
4511 uint32_t cbTssMax;
4512 switch (enmTssType)
4513 {
4514 case kTss16:
4515 cbTssMin = cbTssMax = X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN + 1;
4516 break;
4517 case kTss32:
4518 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4519 cbTssMax = _64K;
4520 break;
4521 case kTss64:
4522 cbTssMin = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1;
4523 cbTssMax = _64K;
4524 break;
4525 default:
4526 AssertFailedReturn(VERR_INTERNAL_ERROR);
4527 }
4528 uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0;
4529 if (cbTss == 0)
4530 cbTss = cbTssMin;
4531 else if (cbTss < cbTssMin)
4532 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n",
4533 cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range);
4534 else if (cbTss > cbTssMax)
4535 cbTss = cbTssMax;
4536 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss);
4537
4538 /*
4539 * Read the TSS into a temporary buffer.
4540 */
4541 uint8_t abBuf[_64K];
4542 size_t cbTssRead;
4543 rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead);
4544 if (RT_FAILURE(rc))
4545 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc);
4546 if (cbTssRead < cbTssMin)
4547 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n",
4548 cbTssRead, cbTssMin);
4549 if (cbTssRead < cbTss)
4550 memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead);
4551
4552
4553 /*
4554 * Format the TSS.
4555 */
4556 uint16_t offIoBitmap;
4557 switch (enmTssType)
4558 {
4559 case kTss16:
4560 {
4561 PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0];
4562 if (SelTss != UINT32_MAX)
4563 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr);
4564 else
4565 DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr);
4566 DBGCCmdHlpPrintf(pCmdHlp,
4567 "ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n"
4568 "ip=%04x sp=%04x bp=%04x\n"
4569 "cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n"
4570 "ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n"
4571 "prev=%04x ldtr=%04x\n"
4572 ,
4573 pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di,
4574 pTss->ip, pTss->sp, pTss->bp,
4575 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags,
4576 pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2,
4577 pTss->selPrev, pTss->selLdt);
4578 if (pTss->cs != 0)
4579 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip);
4580 offIoBitmap = 0;
4581 break;
4582 }
4583
4584 case kTss32:
4585 {
4586 PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0];
4587 if (SelTss != UINT32_MAX)
4588 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4589 else
4590 DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4591 DBGCCmdHlpPrintf(pCmdHlp,
4592 "eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
4593 "eip=%08x esp=%08x ebp=%08x\n"
4594 "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
4595 "ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n"
4596 "prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n"
4597 ,
4598 pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi,
4599 pTss->eip, pTss->esp, pTss->ebp,
4600 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags,
4601 pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2,
4602 pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap);
4603 if (pTss->cs != 0)
4604 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip);
4605 offIoBitmap = pTss->offIoBitmap;
4606 break;
4607 }
4608
4609 case kTss64:
4610 {
4611 PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0];
4612 if (SelTss != UINT32_MAX)
4613 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
4614 else
4615 DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
4616 DBGCCmdHlpPrintf(pCmdHlp,
4617 "rsp0=%016RX64 rsp1=%016RX64 rsp2=%016RX64\n"
4618 "ist1=%016RX64 ist2=%016RX64\n"
4619 "ist3=%016RX64 ist4=%016RX64\n"
4620 "ist5=%016RX64 ist6=%016RX64\n"
4621 "ist7=%016RX64 iomap=%04x\n"
4622 ,
4623 pTss->rsp0, pTss->rsp1, pTss->rsp2,
4624 pTss->ist1, pTss->ist2,
4625 pTss->ist3, pTss->ist4,
4626 pTss->ist5, pTss->ist6,
4627 pTss->ist7, pTss->offIoBitmap);
4628 offIoBitmap = pTss->offIoBitmap;
4629 break;
4630 }
4631
4632 default:
4633 AssertFailedReturn(VERR_INTERNAL_ERROR);
4634 }
4635
4636 /*
4637 * Dump the interrupt redirection bitmap.
4638 */
4639 if (enmTssType != kTss16)
4640 {
4641 if ( offIoBitmap > cbTssMin
4642 && offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */
4643 {
4644 if (offIoBitmap - cbTssMin >= 32)
4645 {
4646 DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n");
4647 uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32];
4648 uint32_t iStart = 0;
4649 bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */
4650 for (uint32_t i = 0; i < 256; i++)
4651 {
4652 bool fThis = ASMBitTest(pbIntRedirBitmap, i);
4653 if (fThis != fPrev)
4654 {
4655 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected");
4656 fPrev = fThis;
4657 iStart = i;
4658 }
4659 }
4660 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected");
4661 }
4662 else
4663 DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n",
4664 offIoBitmap - cbTssMin, offIoBitmap - cbTssMin);
4665 }
4666 else if (offIoBitmap > 0)
4667 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4668 else
4669 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n");
4670 }
4671
4672 /*
4673 * Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x68
4674 * (that applies to both 32-bit and 64-bit TSSs since their size is the same).
4675 * Note that there is always one padding byte that is not technically part of the bitmap
4676 * and "must have all bits set". It's not clear what happens when it doesn't. All ports
4677 * not covered by the bitmap are considered to be not accessible.
4678 */
4679 if (enmTssType != kTss16)
4680 {
4681 if (offIoBitmap < cbTss && offIoBitmap >= 0x68)
4682 {
4683 uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K);
4684 DBGCVAR VarAddr;
4685 DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap);
4686 DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts);
4687
4688 uint8_t const *pbIoBitmap = &abBuf[offIoBitmap];
4689 uint32_t iStart = 0;
4690 bool fPrev = ASMBitTest(pbIoBitmap, 0);
4691 uint32_t cLine = 0;
4692 for (uint32_t i = 1; i < _64K; i++)
4693 {
4694 bool fThis = i < cPorts ? ASMBitTest(pbIoBitmap, i) : true;
4695 if (fThis != fPrev)
4696 {
4697 cLine++;
4698 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1,
4699 fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " ");
4700 fPrev = fThis;
4701 iStart = i;
4702 }
4703 }
4704 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK");
4705 }
4706 else if (offIoBitmap > 0)
4707 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap);
4708 else
4709 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n");
4710 }
4711
4712 return VINF_SUCCESS;
4713}
4714
4715
4716/**
4717 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dti' command dumper callback.}
4718 */
4719static DECLCALLBACK(int) dbgcCmdDumpTypeInfoCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4720 const char *pszType, uint32_t fTypeFlags,
4721 uint32_t cElements, void *pvUser)
4722{
4723 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4724
4725 /* Pad with spaces to match the level. */
4726 for (uint32_t i = 0; i < iLvl; i++)
4727 DBGCCmdHlpPrintf(pCmdHlp, " ");
4728
4729 size_t cbWritten = 0;
4730 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4731 while (cbWritten < 32)
4732 {
4733 /* Fill with spaces to get proper aligning. */
4734 DBGCCmdHlpPrintf(pCmdHlp, " ");
4735 cbWritten++;
4736 }
4737
4738 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4739 if (fTypeFlags & DBGFTYPEREGMEMBER_F_ARRAY)
4740 DBGCCmdHlpPrintf(pCmdHlp, "[%u] ", cElements);
4741 if (fTypeFlags & DBGFTYPEREGMEMBER_F_POINTER)
4742 DBGCCmdHlpPrintf(pCmdHlp, "Ptr ");
4743 DBGCCmdHlpPrintf(pCmdHlp, "%s\n", pszType);
4744
4745 return VINF_SUCCESS;
4746}
4747
4748
4749/**
4750 * @callback_method_impl{FNDBGCCMD, The 'dti' command.}
4751 */
4752static DECLCALLBACK(int) dbgcCmdDumpTypeInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4753{
4754 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4755 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
4756 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4757 if (cArgs == 2)
4758 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[1].enmType == DBGCVAR_TYPE_NUMBER);
4759
4760 uint32_t cLvlMax = cArgs == 2 ? (uint32_t)paArgs[1].u.u64Number : UINT32_MAX;
4761 return DBGFR3TypeDumpEx(pUVM, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
4762 dbgcCmdDumpTypeInfoCallback, pCmdHlp);
4763}
4764
4765
4766static void dbgcCmdDumpTypedValCallbackBuiltin(PDBGCCMDHLP pCmdHlp, DBGFTYPEBUILTIN enmType, size_t cbType,
4767 PDBGFTYPEVALBUF pValBuf)
4768{
4769 switch (enmType)
4770 {
4771 case DBGFTYPEBUILTIN_UINT8:
4772 DBGCCmdHlpPrintf(pCmdHlp, "%RU8", pValBuf->u8);
4773 break;
4774 case DBGFTYPEBUILTIN_INT8:
4775 DBGCCmdHlpPrintf(pCmdHlp, "%RI8", pValBuf->i8);
4776 break;
4777 case DBGFTYPEBUILTIN_UINT16:
4778 DBGCCmdHlpPrintf(pCmdHlp, "%RU16", pValBuf->u16);
4779 break;
4780 case DBGFTYPEBUILTIN_INT16:
4781 DBGCCmdHlpPrintf(pCmdHlp, "%RI16", pValBuf->i16);
4782 break;
4783 case DBGFTYPEBUILTIN_UINT32:
4784 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->u32);
4785 break;
4786 case DBGFTYPEBUILTIN_INT32:
4787 DBGCCmdHlpPrintf(pCmdHlp, "%RI32", pValBuf->i32);
4788 break;
4789 case DBGFTYPEBUILTIN_UINT64:
4790 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->u64);
4791 break;
4792 case DBGFTYPEBUILTIN_INT64:
4793 DBGCCmdHlpPrintf(pCmdHlp, "%RI64", pValBuf->i64);
4794 break;
4795 case DBGFTYPEBUILTIN_PTR32:
4796 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4797 break;
4798 case DBGFTYPEBUILTIN_PTR64:
4799 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4800 break;
4801 case DBGFTYPEBUILTIN_PTR:
4802 if (cbType == sizeof(uint32_t))
4803 DBGCCmdHlpPrintf(pCmdHlp, "%RX32", pValBuf->GCPtr);
4804 else if (cbType == sizeof(uint64_t))
4805 DBGCCmdHlpPrintf(pCmdHlp, "%RX64", pValBuf->GCPtr);
4806 else
4807 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported pointer width %u>", cbType);
4808 break;
4809 case DBGFTYPEBUILTIN_SIZE:
4810 if (cbType == sizeof(uint32_t))
4811 DBGCCmdHlpPrintf(pCmdHlp, "%RU32", pValBuf->size);
4812 else if (cbType == sizeof(uint64_t))
4813 DBGCCmdHlpPrintf(pCmdHlp, "%RU64", pValBuf->size);
4814 else
4815 DBGCCmdHlpPrintf(pCmdHlp, "<Unsupported size width %u>", cbType);
4816 break;
4817 case DBGFTYPEBUILTIN_FLOAT32:
4818 case DBGFTYPEBUILTIN_FLOAT64:
4819 case DBGFTYPEBUILTIN_COMPOUND:
4820 default:
4821 AssertMsgFailed(("Invalid built-in type: %d\n", enmType));
4822 }
4823}
4824
4825/**
4826 * @callback_method_impl{FNDBGFR3TYPEDUMP, The 'dtv' command dumper callback.}
4827 */
4828static DECLCALLBACK(int) dbgcCmdDumpTypedValCallback(uint32_t off, const char *pszField, uint32_t iLvl,
4829 DBGFTYPEBUILTIN enmType, size_t cbType,
4830 PDBGFTYPEVALBUF pValBuf, uint32_t cValBufs,
4831 void *pvUser)
4832{
4833 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
4834
4835 /* Pad with spaces to match the level. */
4836 for (uint32_t i = 0; i < iLvl; i++)
4837 DBGCCmdHlpPrintf(pCmdHlp, " ");
4838
4839 size_t cbWritten = 0;
4840 DBGCCmdHlpPrintfEx(pCmdHlp, &cbWritten, "+0x%04x %s", off, pszField);
4841 while (cbWritten < 32)
4842 {
4843 /* Fill with spaces to get proper aligning. */
4844 DBGCCmdHlpPrintf(pCmdHlp, " ");
4845 cbWritten++;
4846 }
4847
4848 DBGCCmdHlpPrintf(pCmdHlp, ": ");
4849 if (cValBufs > 1)
4850 DBGCCmdHlpPrintf(pCmdHlp, "[%u] [ ", cValBufs);
4851
4852 for (uint32_t i = 0; i < cValBufs; i++)
4853 {
4854 dbgcCmdDumpTypedValCallbackBuiltin(pCmdHlp, enmType, cbType, pValBuf);
4855 if (i < cValBufs - 1)
4856 DBGCCmdHlpPrintf(pCmdHlp, " , ");
4857 pValBuf++;
4858 }
4859
4860 if (cValBufs > 1)
4861 DBGCCmdHlpPrintf(pCmdHlp, " ]");
4862 DBGCCmdHlpPrintf(pCmdHlp, "\n");
4863
4864 return VINF_SUCCESS;
4865}
4866
4867
4868/**
4869 * @callback_method_impl{FNDBGCCMD, The 'dtv' command.}
4870 */
4871static DECLCALLBACK(int) dbgcCmdDumpTypedVal(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4872{
4873 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4874 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 2 || cArgs == 3);
4875 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4876 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISGCPOINTER(paArgs[1].enmType));
4877 if (cArgs == 3)
4878 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[2].enmType == DBGCVAR_TYPE_NUMBER);
4879
4880 /*
4881 * Make DBGF address and fix the range.
4882 */
4883 DBGFADDRESS Address;
4884 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[1], &Address);
4885 if (RT_FAILURE(rc))
4886 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[1]);
4887
4888 uint32_t cLvlMax = cArgs == 3 ? (uint32_t)paArgs[2].u.u64Number : UINT32_MAX;
4889 return DBGFR3TypeValDumpEx(pUVM, &Address, paArgs[0].u.pszString, 0 /* fFlags */, cLvlMax,
4890 dbgcCmdDumpTypedValCallback, pCmdHlp);
4891}
4892
4893/**
4894 * @callback_method_impl{FNDBGCCMD, The 'm' command.}
4895 */
4896static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4897{
4898 DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]);
4899 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4900 return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
4901}
4902
4903
4904/**
4905 * Converts one or more variables into a byte buffer for a
4906 * given unit size.
4907 *
4908 * @returns VBox status codes:
4909 * @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched.
4910 * @retval VERR_INTERNAL_ERROR on bad variable type, bitched.
4911 * @retval VINF_SUCCESS on success.
4912 *
4913 * @param pCmdHlp The command helper callback table.
4914 * @param pvBuf The buffer to convert into.
4915 * @param pcbBuf The buffer size on input. The size of the result on output.
4916 * @param cbUnit The unit size to apply when converting.
4917 * The high bit is used to indicate unicode string.
4918 * @param paVars The array of variables to convert.
4919 * @param cVars The number of variables.
4920 */
4921int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars)
4922{
4923 union
4924 {
4925 uint8_t *pu8;
4926 uint16_t *pu16;
4927 uint32_t *pu32;
4928 uint64_t *pu64;
4929 } u, uEnd;
4930 u.pu8 = (uint8_t *)pvBuf;
4931 uEnd.pu8 = u.pu8 + *pcbBuf;
4932
4933 unsigned i;
4934 for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++)
4935 {
4936 switch (paVars[i].enmType)
4937 {
4938 case DBGCVAR_TYPE_GC_FAR:
4939 case DBGCVAR_TYPE_GC_FLAT:
4940 case DBGCVAR_TYPE_GC_PHYS:
4941 case DBGCVAR_TYPE_HC_FLAT:
4942 case DBGCVAR_TYPE_HC_PHYS:
4943 case DBGCVAR_TYPE_NUMBER:
4944 {
4945 uint64_t u64 = paVars[i].u.u64Number;
4946 switch (cbUnit & 0x1f)
4947 {
4948 case 1:
4949 do
4950 {
4951 *u.pu8++ = u64;
4952 u64 >>= 8;
4953 } while (u64);
4954 break;
4955 case 2:
4956 do
4957 {
4958 *u.pu16++ = u64;
4959 u64 >>= 16;
4960 } while (u64);
4961 break;
4962 case 4:
4963 *u.pu32++ = u64;
4964 u64 >>= 32;
4965 if (u64)
4966 *u.pu32++ = u64;
4967 break;
4968 case 8:
4969 *u.pu64++ = u64;
4970 break;
4971 }
4972 break;
4973 }
4974
4975 case DBGCVAR_TYPE_STRING:
4976 case DBGCVAR_TYPE_SYMBOL:
4977 {
4978 const char *psz = paVars[i].u.pszString;
4979 size_t cbString = strlen(psz);
4980 if (cbUnit & RT_BIT_32(31))
4981 {
4982 /* Explode char to unit. */
4983 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f))
4984 {
4985 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
4986 return VERR_TOO_MUCH_DATA;
4987 }
4988 while (*psz)
4989 {
4990 switch (cbUnit & 0x1f)
4991 {
4992 case 1: *u.pu8++ = *psz; break;
4993 case 2: *u.pu16++ = *psz; break;
4994 case 4: *u.pu32++ = *psz; break;
4995 case 8: *u.pu64++ = *psz; break;
4996 }
4997 psz++;
4998 }
4999 }
5000 else
5001 {
5002 /* Raw copy with zero padding if the size isn't aligned. */
5003 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8))
5004 {
5005 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5006 return VERR_TOO_MUCH_DATA;
5007 }
5008
5009 size_t cbCopy = cbString & ~(cbUnit - 1);
5010 memcpy(u.pu8, psz, cbCopy);
5011 u.pu8 += cbCopy;
5012 psz += cbCopy;
5013
5014 size_t cbReminder = cbString & (cbUnit - 1);
5015 if (cbReminder)
5016 {
5017 memcpy(u.pu8, psz, cbString & (cbUnit - 1));
5018 memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder);
5019 u.pu8 += cbUnit;
5020 }
5021 }
5022 break;
5023 }
5024
5025 default:
5026 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5027 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR,
5028 "i=%d enmType=%d\n", i, paVars[i].enmType);
5029 return VERR_INTERNAL_ERROR;
5030 }
5031 }
5032 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
5033 if (i != cVars)
5034 {
5035 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
5036 return VERR_TOO_MUCH_DATA;
5037 }
5038 return VINF_SUCCESS;
5039}
5040
5041
5042/**
5043 * @callback_method_impl{FNDBGCCMD, The 'eb'\, 'ew'\, 'ed' and 'eq' commands.}
5044 */
5045static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5046{
5047 /*
5048 * Validate input.
5049 */
5050 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2);
5051 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
5052 for (unsigned iArg = 1; iArg < cArgs; iArg++)
5053 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER);
5054 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
5055
5056 /*
5057 * Figure out the element size.
5058 */
5059 unsigned cbElement;
5060 switch (pCmd->pszCmd[1])
5061 {
5062 default:
5063 case 'b': cbElement = 1; break;
5064 case 'w': cbElement = 2; break;
5065 case 'd': cbElement = 4; break;
5066 case 'q': cbElement = 8; break;
5067 }
5068
5069 /*
5070 * Do setting.
5071 */
5072 DBGCVAR Addr = paArgs[0];
5073 for (unsigned iArg = 1;;)
5074 {
5075 size_t cbWritten;
5076 int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten);
5077 if (RT_FAILURE(rc))
5078 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr);
5079 if (cbWritten != cbElement)
5080 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement);
5081
5082 /* advance. */
5083 iArg++;
5084 if (iArg >= cArgs)
5085 break;
5086 rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement);
5087 if (RT_FAILURE(rc))
5088 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
5089 }
5090
5091 return VINF_SUCCESS;
5092}
5093
5094
5095/**
5096 * Executes the search.
5097 *
5098 * @returns VBox status code.
5099 * @param pCmdHlp The command helpers.
5100 * @param pUVM The user mode VM handle.
5101 * @param pAddress The address to start searching from. (undefined on output)
5102 * @param cbRange The address range to search. Must not wrap.
5103 * @param pabBytes The byte pattern to search for.
5104 * @param cbBytes The size of the pattern.
5105 * @param cbUnit The search unit.
5106 * @param cMaxHits The max number of hits.
5107 * @param pResult Where to store the result if it's a function invocation.
5108 */
5109static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange,
5110 const uint8_t *pabBytes, uint32_t cbBytes,
5111 uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult)
5112{
5113 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5114
5115 /*
5116 * Do the search.
5117 */
5118 uint64_t cHits = 0;
5119 for (;;)
5120 {
5121 /* search */
5122 DBGFADDRESS HitAddress;
5123 int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress);
5124 if (RT_FAILURE(rc))
5125 {
5126 if (rc != VERR_DBGF_MEM_NOT_FOUND)
5127 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n");
5128
5129 /* update the current address so we can save it (later). */
5130 pAddress->off += cbRange;
5131 pAddress->FlatPtr += cbRange;
5132 cbRange = 0;
5133 break;
5134 }
5135
5136 /* report result */
5137 DBGCVAR VarCur;
5138 rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur);
5139 if (RT_FAILURE(rc))
5140 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n");
5141 if (!pResult)
5142 pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur);
5143 else
5144 DBGCVAR_ASSIGN(pResult, &VarCur);
5145
5146 /* advance */
5147 cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr;
5148 *pAddress = HitAddress;
5149 pAddress->FlatPtr += cbBytes;
5150 pAddress->off += cbBytes;
5151 if (cbRange <= cbBytes)
5152 {
5153 cbRange = 0;
5154 break;
5155 }
5156 cbRange -= cbBytes;
5157
5158 if (++cHits >= cMaxHits)
5159 {
5160 /// @todo save the search.
5161 break;
5162 }
5163 }
5164
5165 /*
5166 * Save the search so we can resume it...
5167 */
5168 if (pDbgc->abSearch != pabBytes)
5169 {
5170 memcpy(pDbgc->abSearch, pabBytes, cbBytes);
5171 pDbgc->cbSearch = cbBytes;
5172 pDbgc->cbSearchUnit = cbUnit;
5173 }
5174 pDbgc->cMaxSearchHits = cMaxHits;
5175 pDbgc->SearchAddr = *pAddress;
5176 pDbgc->cbSearchRange = cbRange;
5177
5178 return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED;
5179}
5180
5181
5182/**
5183 * Resumes the previous search.
5184 *
5185 * @returns VBox status code.
5186 * @param pCmdHlp Pointer to the command helper functions.
5187 * @param pUVM The user mode VM handle.
5188 * @param pResult Where to store the result of a function invocation.
5189 */
5190static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult)
5191{
5192 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5193
5194 /*
5195 * Make sure there is a previous command.
5196 */
5197 if (!pDbgc->cbSearch)
5198 {
5199 DBGCCmdHlpPrintf(pCmdHlp, "Error: No previous search\n");
5200 return VERR_DBGC_COMMAND_FAILED;
5201 }
5202
5203 /*
5204 * Make range and address adjustments.
5205 */
5206 DBGFADDRESS Address = pDbgc->SearchAddr;
5207 if (Address.FlatPtr == ~(RTGCUINTPTR)0)
5208 {
5209 Address.FlatPtr -= Address.off;
5210 Address.off = 0;
5211 }
5212
5213 RTGCUINTPTR cbRange = pDbgc->cbSearchRange;
5214 if (!cbRange)
5215 cbRange = ~(RTGCUINTPTR)0;
5216 if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr)
5217 cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr;
5218
5219 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch,
5220 pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult);
5221}
5222
5223
5224/**
5225 * Search memory, worker for the 's' and 's?' functions.
5226 *
5227 * @returns VBox status code.
5228 * @param pCmdHlp Pointer to the command helper functions.
5229 * @param pUVM The user mode VM handle.
5230 * @param pAddress Where to start searching. If no range, search till end of address space.
5231 * @param cMaxHits The maximum number of hits.
5232 * @param chType The search type.
5233 * @param paPatArgs The pattern variable array.
5234 * @param cPatArgs Number of pattern variables.
5235 * @param pResult Where to store the result of a function invocation.
5236 */
5237static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType,
5238 PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult)
5239{
5240 if (pResult)
5241 DBGCVAR_INIT_GC_FLAT(pResult, 0);
5242
5243 /*
5244 * Convert the search pattern into bytes and DBGFR3MemScan can deal with.
5245 */
5246 uint32_t cbUnit;
5247 switch (chType)
5248 {
5249 case 'a':
5250 case 'b': cbUnit = 1; break;
5251 case 'u': cbUnit = 2 | RT_BIT_32(31); break;
5252 case 'w': cbUnit = 2; break;
5253 case 'd': cbUnit = 4; break;
5254 case 'q': cbUnit = 8; break;
5255 default:
5256 return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType);
5257 }
5258 uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)];
5259 uint32_t cbBytes = sizeof(abBytes);
5260 int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs);
5261 if (RT_FAILURE(rc))
5262 return VERR_DBGC_COMMAND_FAILED;
5263
5264 /*
5265 * Make DBGF address and fix the range.
5266 */
5267 DBGFADDRESS Address;
5268 rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address);
5269 if (RT_FAILURE(rc))
5270 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress);
5271
5272 RTGCUINTPTR cbRange;
5273 switch (pAddress->enmRangeType)
5274 {
5275 case DBGCVAR_RANGE_BYTES:
5276 cbRange = pAddress->u64Range;
5277 if (cbRange != pAddress->u64Range)
5278 cbRange = ~(RTGCUINTPTR)0;
5279 break;
5280
5281 case DBGCVAR_RANGE_ELEMENTS:
5282 cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit);
5283 if ( cbRange != pAddress->u64Range * cbUnit
5284 || cbRange < pAddress->u64Range)
5285 cbRange = ~(RTGCUINTPTR)0;
5286 break;
5287
5288 default:
5289 cbRange = ~(RTGCUINTPTR)0;
5290 break;
5291 }
5292 if (Address.FlatPtr + cbRange < Address.FlatPtr)
5293 cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr;
5294
5295 /*
5296 * Ok, do it.
5297 */
5298 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult);
5299}
5300
5301
5302/**
5303 * @callback_method_impl{FNDBGCCMD, The 's' command.}
5304 */
5305static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5306{
5307 RT_NOREF2(pCmd, paArgs);
5308
5309 /* check that the parser did what it's supposed to do. */
5310 //if ( cArgs <= 2
5311 // && paArgs[0].enmType != DBGCVAR_TYPE_STRING)
5312 // return DBGCCmdHlpPrintf(pCmdHlp, "parser error\n");
5313
5314 /*
5315 * Repeat previous search?
5316 */
5317 if (cArgs == 0)
5318 return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL);
5319
5320 /*
5321 * Parse arguments.
5322 */
5323
5324 return -1;
5325}
5326
5327
5328/**
5329 * @callback_method_impl{FNDBGCCMD, The 's?' command.}
5330 */
5331static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5332{
5333 /* check that the parser did what it's supposed to do. */
5334 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType));
5335 return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL);
5336}
5337
5338
5339/**
5340 * Matching function for interrupts event names.
5341 *
5342 * This parses the interrupt number and length.
5343 *
5344 * @returns True if match, false if not.
5345 * @param pPattern The user specified pattern to match.
5346 * @param pszEvtName The event name.
5347 * @param pCmdHlp Command helpers for warning about malformed stuff.
5348 * @param piFirst Where to return start interrupt number on success.
5349 * @param pcInts Where to return the number of interrupts on success.
5350 */
5351static bool dbgcEventIsMatchingInt(PCDBGCVAR pPattern, const char *pszEvtName, PDBGCCMDHLP pCmdHlp,
5352 uint8_t *piFirst, uint16_t *pcInts)
5353{
5354 /*
5355 * Ignore trailing hex digits when comparing with the event base name.
5356 */
5357 const char *pszPattern = pPattern->u.pszString;
5358 const char *pszEnd = RTStrEnd(pszPattern, RTSTR_MAX);
5359 while ( (uintptr_t)pszEnd > (uintptr_t)pszPattern
5360 && RT_C_IS_XDIGIT(pszEnd[-1]))
5361 pszEnd -= 1;
5362 if (RTStrSimplePatternNMatch(pszPattern, pszEnd - pszPattern, pszEvtName, RTSTR_MAX))
5363 {
5364 /*
5365 * Parse the index and length.
5366 */
5367 if (!*pszEnd)
5368 *piFirst = 0;
5369 else
5370 {
5371 int rc = RTStrToUInt8Full(pszEnd, 16, piFirst);
5372 if (rc != VINF_SUCCESS)
5373 {
5374 if (RT_FAILURE(rc))
5375 *piFirst = 0;
5376 DBGCCmdHlpPrintf(pCmdHlp, "Warning: %Rrc parsing '%s' - interpreting it as %#x\n", rc, pszEnd, *piFirst);
5377 }
5378 }
5379
5380 if (pPattern->enmRangeType == DBGCVAR_RANGE_NONE)
5381 *pcInts = 1;
5382 else
5383 *pcInts = RT_MAX(RT_MIN((uint16_t)pPattern->u64Range, 256 - *piFirst), 1);
5384 return true;
5385 }
5386 return false;
5387}
5388
5389
5390/**
5391 * Updates a DBGC event config.
5392 *
5393 * @returns VINF_SUCCESS or VERR_NO_MEMORY.
5394 * @param ppEvtCfg The event configuration entry to update.
5395 * @param pszCmd The new command. Leave command alone if NULL.
5396 * @param enmEvtState The new event state.
5397 * @param fChangeCmdOnly Whether to only update the command.
5398 */
5399static int dbgcEventUpdate(PDBGCEVTCFG *ppEvtCfg, const char *pszCmd, DBGCEVTSTATE enmEvtState, bool fChangeCmdOnly)
5400{
5401 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5402
5403 /*
5404 * If we've got a command string, update the command too.
5405 */
5406 if (pszCmd)
5407 {
5408 size_t cchCmd = strlen(pszCmd);
5409 if ( !cchCmd
5410 && ( !fChangeCmdOnly
5411 ? enmEvtState == kDbgcEvtState_Disabled
5412 : !pEvtCfg || pEvtCfg->enmState == kDbgcEvtState_Disabled))
5413 {
5414 /* NULL entry is fine if no command and disabled. */
5415 RTMemFree(pEvtCfg);
5416 *ppEvtCfg = NULL;
5417 }
5418 else
5419 {
5420 if (!pEvtCfg || pEvtCfg->cchCmd < cchCmd)
5421 {
5422 RTMemFree(pEvtCfg);
5423 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(RT_UOFFSETOF_DYN(DBGCEVTCFG, szCmd[cchCmd + 1]));
5424 if (!pEvtCfg)
5425 return VERR_NO_MEMORY;
5426 }
5427 pEvtCfg->enmState = enmEvtState;
5428 pEvtCfg->cchCmd = cchCmd;
5429 memcpy(pEvtCfg->szCmd, pszCmd, cchCmd + 1);
5430 }
5431 }
5432 /*
5433 * Update existing or enable new. If NULL and not enabled, we can keep it that way.
5434 */
5435 else if (pEvtCfg || enmEvtState != kDbgcEvtState_Disabled)
5436 {
5437 if (!pEvtCfg)
5438 {
5439 *ppEvtCfg = pEvtCfg = (PDBGCEVTCFG)RTMemAlloc(sizeof(DBGCEVTCFG));
5440 if (!pEvtCfg)
5441 return VERR_NO_MEMORY;
5442 pEvtCfg->cchCmd = 0;
5443 pEvtCfg->szCmd[0] = '\0';
5444 }
5445 pEvtCfg->enmState = enmEvtState;
5446 }
5447
5448 return VINF_SUCCESS;
5449}
5450
5451
5452/**
5453 * Record one settings change for a plain event.
5454 *
5455 * @returns The new @a cIntCfgs value.
5456 * @param paEventCfgs The event setttings array. Must have DBGFEVENT_END
5457 * entries.
5458 * @param cEventCfgs The current number of entries in @a paEventCfgs.
5459 * @param enmType The event to change the settings for.
5460 * @param enmEvtState The new event state.
5461 * @param iSxEvt Index into the g_aDbgcSxEvents array.
5462 *
5463 * @remarks We use abUnused[0] for the enmEvtState, while abUnused[1] and
5464 * abUnused[2] are used for iSxEvt.
5465 */
5466static uint32_t dbgcEventAddPlainConfig(PDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, DBGFEVENTTYPE enmType,
5467 DBGCEVTSTATE enmEvtState, uint16_t iSxEvt)
5468{
5469 uint32_t iCfg;
5470 for (iCfg = 0; iCfg < cEventCfgs; iCfg++)
5471 if (paEventCfgs[iCfg].enmType == enmType)
5472 break;
5473 if (iCfg == cEventCfgs)
5474 {
5475 Assert(cEventCfgs < DBGFEVENT_END);
5476 paEventCfgs[iCfg].enmType = enmType;
5477 cEventCfgs++;
5478 }
5479 paEventCfgs[iCfg].fEnabled = enmEvtState > kDbgcEvtState_Disabled;
5480 paEventCfgs[iCfg].abUnused[0] = enmEvtState;
5481 paEventCfgs[iCfg].abUnused[1] = (uint8_t)iSxEvt;
5482 paEventCfgs[iCfg].abUnused[2] = (uint8_t)(iSxEvt >> 8);
5483 return cEventCfgs;
5484}
5485
5486
5487/**
5488 * Record one or more interrupt event config changes.
5489 *
5490 * @returns The new @a cIntCfgs value.
5491 * @param paIntCfgs Interrupt confiruation array. Must have 256 entries.
5492 * @param cIntCfgs The current number of entries in @a paIntCfgs.
5493 * @param iInt The interrupt number to start with.
5494 * @param cInts The number of interrupts to change.
5495 * @param pszName The settings name (hwint/swint).
5496 * @param enmEvtState The new event state.
5497 * @param bIntOp The new DBGF interrupt state.
5498 */
5499static uint32_t dbgcEventAddIntConfig(PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs, uint8_t iInt, uint16_t cInts,
5500 const char *pszName, DBGCEVTSTATE enmEvtState, uint8_t bIntOp)
5501{
5502 bool const fHwInt = *pszName == 'h';
5503
5504 bIntOp |= (uint8_t)enmEvtState << 4;
5505 uint8_t const bSoftState = !fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5506 uint8_t const bHardState = fHwInt ? bIntOp : DBGFINTERRUPTSTATE_DONT_TOUCH;
5507
5508 while (cInts > 0)
5509 {
5510 uint32_t iCfg;
5511 for (iCfg = 0; iCfg < cIntCfgs; iCfg++)
5512 if (paIntCfgs[iCfg].iInterrupt == iInt)
5513 break;
5514 if (iCfg == cIntCfgs)
5515 break;
5516 if (fHwInt)
5517 paIntCfgs[iCfg].enmHardState = bHardState;
5518 else
5519 paIntCfgs[iCfg].enmSoftState = bSoftState;
5520 iInt++;
5521 cInts--;
5522 }
5523
5524 while (cInts > 0)
5525 {
5526 Assert(cIntCfgs < 256);
5527 paIntCfgs[cIntCfgs].iInterrupt = iInt;
5528 paIntCfgs[cIntCfgs].enmHardState = bHardState;
5529 paIntCfgs[cIntCfgs].enmSoftState = bSoftState;
5530 cIntCfgs++;
5531 iInt++;
5532 cInts--;
5533 }
5534
5535 return cIntCfgs;
5536}
5537
5538
5539/**
5540 * Applies event settings changes to DBGC and DBGF.
5541 *
5542 * @returns VBox status code (fully bitched)
5543 * @param pCmdHlp The command helpers.
5544 * @param pUVM The user mode VM handle.
5545 * @param paIntCfgs Interrupt configuration array. We use the upper 4
5546 * bits of the settings for the DBGCEVTSTATE. This
5547 * will be cleared.
5548 * @param cIntCfgs Number of interrupt configuration changes.
5549 * @param paEventCfgs The generic event configuration array. We use the
5550 * abUnused[0] member for the DBGCEVTSTATE, and
5551 * abUnused[2:1] for the g_aDbgcSxEvents index.
5552 * @param cEventCfgs The number of generic event settings changes.
5553 * @param pszCmd The commands to associate with the changed events.
5554 * If this is NULL, don't touch the command.
5555 * @param fChangeCmdOnly Whether to only change the commands (sx-).
5556 */
5557static int dbgcEventApplyChanges(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFINTERRUPTCONFIG paIntCfgs, uint32_t cIntCfgs,
5558 PCDBGFEVENTCONFIG paEventCfgs, uint32_t cEventCfgs, const char *pszCmd, bool fChangeCmdOnly)
5559{
5560 int rc;
5561
5562 /*
5563 * Apply changes to DBGC. This can only fail with out of memory error.
5564 */
5565 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5566 if (cIntCfgs)
5567 for (uint32_t iCfg = 0; iCfg < cIntCfgs; iCfg++)
5568 {
5569 DBGCEVTSTATE enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmHardState >> 4);
5570 paIntCfgs[iCfg].enmHardState &= 0xf;
5571 if (paIntCfgs[iCfg].enmHardState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5572 {
5573 rc = dbgcEventUpdate(&pDbgc->apHardInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5574 if (RT_FAILURE(rc))
5575 return rc;
5576 }
5577
5578 enmEvtState = (DBGCEVTSTATE)(paIntCfgs[iCfg].enmSoftState >> 4);
5579 paIntCfgs[iCfg].enmSoftState &= 0xf;
5580 if (paIntCfgs[iCfg].enmSoftState != DBGFINTERRUPTSTATE_DONT_TOUCH)
5581 {
5582 rc = dbgcEventUpdate(&pDbgc->apSoftInts[paIntCfgs[iCfg].iInterrupt], pszCmd, enmEvtState, fChangeCmdOnly);
5583 if (RT_FAILURE(rc))
5584 return rc;
5585 }
5586 }
5587
5588 if (cEventCfgs)
5589 {
5590 for (uint32_t iCfg = 0; iCfg < cEventCfgs; iCfg++)
5591 {
5592 Assert((unsigned)paEventCfgs[iCfg].enmType < RT_ELEMENTS(pDbgc->apEventCfgs));
5593 uint16_t iSxEvt = RT_MAKE_U16(paEventCfgs[iCfg].abUnused[1], paEventCfgs[iCfg].abUnused[2]);
5594 Assert(iSxEvt < RT_ELEMENTS(g_aDbgcSxEvents));
5595 rc = dbgcEventUpdate(&pDbgc->apEventCfgs[iSxEvt], pszCmd, (DBGCEVTSTATE)paEventCfgs[iCfg].abUnused[0], fChangeCmdOnly);
5596 if (RT_FAILURE(rc))
5597 return rc;
5598 }
5599 }
5600
5601 /*
5602 * Apply changes to DBGF.
5603 */
5604 if (!fChangeCmdOnly)
5605 {
5606 if (cIntCfgs)
5607 {
5608 rc = DBGFR3InterruptConfigEx(pUVM, paIntCfgs, cIntCfgs);
5609 if (RT_FAILURE(rc))
5610 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3InterruptConfigEx: %Rrc\n", rc);
5611 }
5612 if (cEventCfgs)
5613 {
5614 rc = DBGFR3EventConfigEx(pUVM, paEventCfgs, cEventCfgs);
5615 if (RT_FAILURE(rc))
5616 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3EventConfigEx: %Rrc\n", rc);
5617 }
5618 }
5619
5620 return VINF_SUCCESS;
5621}
5622
5623
5624/**
5625 * @callback_method_impl{FNDBGCCMD, The 'sx[eni-]' commands.}
5626 */
5627static DECLCALLBACK(int) dbgcCmdEventCtrl(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5628{
5629 /*
5630 * Figure out which command this is.
5631 */
5632 uint8_t bIntOp;
5633 DBGCEVTSTATE enmEvtState;
5634 bool fChangeCmdOnly;
5635 switch (pCmd->pszCmd[2])
5636 {
5637 case 'e': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Enabled; fChangeCmdOnly = false; break;
5638 case 'n': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Notify; fChangeCmdOnly = false; break;
5639 case '-': bIntOp = DBGFINTERRUPTSTATE_ENABLED; enmEvtState = kDbgcEvtState_Invalid; fChangeCmdOnly = true; break;
5640 case 'i': bIntOp = DBGFINTERRUPTSTATE_DISABLED; enmEvtState = kDbgcEvtState_Disabled; fChangeCmdOnly = false; break;
5641 default:
5642 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "pszCmd=%s\n", pCmd->pszCmd);
5643 }
5644
5645 /*
5646 * Command option.
5647 */
5648 unsigned iArg = 0;
5649 const char *pszCmd = NULL;
5650 if ( cArgs >= iArg + 2
5651 && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5652 && paArgs[iArg + 1].enmType == DBGCVAR_TYPE_STRING
5653 && strcmp(paArgs[iArg].u.pszString, "-c") == 0)
5654 {
5655 pszCmd = paArgs[iArg + 1].u.pszString;
5656 iArg += 2;
5657 }
5658 if (fChangeCmdOnly && !pszCmd)
5659 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "The 'sx-' requires the '-c cmd' arguments.\n");
5660
5661 /*
5662 * The remaining arguments are event specifiers to which the operation should be applied.
5663 */
5664 uint32_t cIntCfgs = 0;
5665 DBGFINTERRUPTCONFIG aIntCfgs[256];
5666 uint32_t cEventCfgs = 0;
5667 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5668
5669 for (; iArg < cArgs; iArg++)
5670 {
5671 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, iArg, paArgs[iArg].enmType == DBGCVAR_TYPE_STRING
5672 || paArgs[iArg].enmType == DBGCVAR_TYPE_SYMBOL);
5673 uint32_t cHits = 0;
5674 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5675 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5676 {
5677 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5678 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5679 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5680 {
5681 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5682 enmEvtState, iEvt);
5683 cHits++;
5684 }
5685 }
5686 else
5687 {
5688 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5689 uint8_t iInt;
5690 uint16_t cInts;
5691 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5692 {
5693 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5694 enmEvtState, bIntOp);
5695 cHits++;
5696 }
5697 }
5698 if (!cHits)
5699 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5700 }
5701
5702 /*
5703 * Apply the changes.
5704 */
5705 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, pszCmd, fChangeCmdOnly);
5706}
5707
5708
5709/**
5710 * @callback_method_impl{FNDBGCCMD, The 'sxr' commands.}
5711 */
5712static DECLCALLBACK(int) dbgcCmdEventCtrlReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5713{
5714 RT_NOREF1(pCmd);
5715 uint32_t cEventCfgs = 0;
5716 DBGFEVENTCONFIG aEventCfgs[DBGFEVENT_END];
5717 uint32_t cIntCfgs = 0;
5718 DBGFINTERRUPTCONFIG aIntCfgs[256];
5719
5720 if (cArgs == 0)
5721 {
5722 /*
5723 * All events.
5724 */
5725 for (uint32_t iInt = 0; iInt < 256; iInt++)
5726 {
5727 aIntCfgs[iInt].iInterrupt = iInt;
5728 aIntCfgs[iInt].enmHardState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5729 aIntCfgs[iInt].enmSoftState = DBGFINTERRUPTSTATE_DONT_TOUCH;
5730 }
5731 cIntCfgs = 256;
5732
5733 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5734 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5735 {
5736 aEventCfgs[cEventCfgs].enmType = g_aDbgcSxEvents[iEvt].enmType;
5737 aEventCfgs[cEventCfgs].fEnabled = g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled;
5738 aEventCfgs[cEventCfgs].abUnused[0] = g_aDbgcSxEvents[iEvt].enmDefault;
5739 aEventCfgs[cEventCfgs].abUnused[1] = (uint8_t)iEvt;
5740 aEventCfgs[cEventCfgs].abUnused[2] = (uint8_t)(iEvt >> 8);
5741 cEventCfgs++;
5742 }
5743 else
5744 {
5745 uint8_t const bState = ( g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5746 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED)
5747 | ((uint8_t)g_aDbgcSxEvents[iEvt].enmDefault << 4);
5748 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5749 for (uint32_t iInt = 0; iInt < 256; iInt++)
5750 aIntCfgs[iInt].enmHardState = bState;
5751 else
5752 for (uint32_t iInt = 0; iInt < 256; iInt++)
5753 aIntCfgs[iInt].enmSoftState = bState;
5754 }
5755 }
5756 else
5757 {
5758 /*
5759 * Selected events.
5760 */
5761 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
5762 {
5763 unsigned cHits = 0;
5764 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5765 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5766 {
5767 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5768 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5769 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5770 {
5771 cEventCfgs = dbgcEventAddPlainConfig(aEventCfgs, cEventCfgs, g_aDbgcSxEvents[iEvt].enmType,
5772 g_aDbgcSxEvents[iEvt].enmDefault, iEvt);
5773 cHits++;
5774 }
5775 }
5776 else
5777 {
5778 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5779 uint8_t iInt;
5780 uint16_t cInts;
5781 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5782 {
5783 cIntCfgs = dbgcEventAddIntConfig(aIntCfgs, cIntCfgs, iInt, cInts, g_aDbgcSxEvents[iEvt].pszName,
5784 g_aDbgcSxEvents[iEvt].enmDefault,
5785 g_aDbgcSxEvents[iEvt].enmDefault > kDbgcEvtState_Disabled
5786 ? DBGFINTERRUPTSTATE_ENABLED : DBGFINTERRUPTSTATE_DISABLED);
5787 cHits++;
5788 }
5789 }
5790 if (!cHits)
5791 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5792 }
5793 }
5794
5795 /*
5796 * Apply the reset changes.
5797 */
5798 return dbgcEventApplyChanges(pCmdHlp, pUVM, aIntCfgs, cIntCfgs, aEventCfgs, cEventCfgs, "", false);
5799}
5800
5801
5802/**
5803 * Used during DBGC initialization to configure events with defaults.
5804 *
5805 * @param pDbgc The DBGC instance.
5806 */
5807void dbgcEventInit(PDBGC pDbgc)
5808{
5809 if (pDbgc->pUVM)
5810 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5811}
5812
5813
5814/**
5815 * Used during DBGC termination to disable all events.
5816 *
5817 * @param pDbgc The DBGC instance.
5818 */
5819void dbgcEventTerm(PDBGC pDbgc)
5820{
5821/** @todo need to do more than just reset later. */
5822 if (pDbgc->pUVM && VMR3GetStateU(pDbgc->pUVM) < VMSTATE_DESTROYING)
5823 dbgcCmdEventCtrlReset(NULL, &pDbgc->CmdHlp, pDbgc->pUVM, NULL, 0);
5824}
5825
5826
5827static void dbgcEventDisplay(PDBGCCMDHLP pCmdHlp, const char *pszName, DBGCEVTSTATE enmDefault, PDBGCEVTCFG const *ppEvtCfg)
5828{
5829 RT_NOREF1(enmDefault);
5830 PDBGCEVTCFG pEvtCfg = *ppEvtCfg;
5831
5832 const char *pszState;
5833 switch (pEvtCfg ? pEvtCfg->enmState : kDbgcEvtState_Disabled)
5834 {
5835 case kDbgcEvtState_Disabled: pszState = "ignore"; break;
5836 case kDbgcEvtState_Enabled: pszState = "enabled"; break;
5837 case kDbgcEvtState_Notify: pszState = "notify"; break;
5838 default:
5839 AssertFailed();
5840 pszState = "invalid";
5841 break;
5842 }
5843
5844 if (pEvtCfg && pEvtCfg->cchCmd > 0)
5845 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %-7s \"%s\"\n", pszName, pszState, pEvtCfg->szCmd);
5846 else
5847 DBGCCmdHlpPrintf(pCmdHlp, "%-22s %s\n", pszName, pszState);
5848}
5849
5850
5851static void dbgcEventDisplayRange(PDBGCCMDHLP pCmdHlp, const char *pszBaseNm, DBGCEVTSTATE enmDefault,
5852 PDBGCEVTCFG const *papEvtCfgs, unsigned iCfg, unsigned cCfgs)
5853{
5854 do
5855 {
5856 PCDBGCEVTCFG pFirstCfg = papEvtCfgs[iCfg];
5857 if (pFirstCfg && pFirstCfg->enmState == kDbgcEvtState_Disabled && pFirstCfg->cchCmd == 0)
5858 pFirstCfg = NULL;
5859
5860 unsigned const iFirstCfg = iCfg;
5861 iCfg++;
5862 while (iCfg < cCfgs)
5863 {
5864 PCDBGCEVTCFG pCurCfg = papEvtCfgs[iCfg];
5865 if (pCurCfg && pCurCfg->enmState == kDbgcEvtState_Disabled && pCurCfg->cchCmd == 0)
5866 pCurCfg = NULL;
5867 if (pCurCfg != pFirstCfg)
5868 {
5869 if (!pCurCfg || !pFirstCfg)
5870 break;
5871 if (pCurCfg->enmState != pFirstCfg->enmState)
5872 break;
5873 if (pCurCfg->cchCmd != pFirstCfg->cchCmd)
5874 break;
5875 if (memcmp(pCurCfg->szCmd, pFirstCfg->szCmd, pFirstCfg->cchCmd) != 0)
5876 break;
5877 }
5878 iCfg++;
5879 }
5880
5881 char szName[16];
5882 unsigned cEntries = iCfg - iFirstCfg;
5883 if (cEntries == 1)
5884 RTStrPrintf(szName, sizeof(szName), "%s%02x", pszBaseNm, iFirstCfg);
5885 else
5886 RTStrPrintf(szName, sizeof(szName), "%s%02x L %#x", pszBaseNm, iFirstCfg, cEntries);
5887 dbgcEventDisplay(pCmdHlp, szName, enmDefault, &papEvtCfgs[iFirstCfg]);
5888
5889 cCfgs -= cEntries;
5890 } while (cCfgs > 0);
5891}
5892
5893
5894/**
5895 * @callback_method_impl{FNDBGCCMD, The 'sx' commands.}
5896 */
5897static DECLCALLBACK(int) dbgcCmdEventCtrlList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
5898{
5899 RT_NOREF2(pCmd, pUVM);
5900 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5901
5902 if (cArgs == 0)
5903 {
5904 /*
5905 * All events.
5906 */
5907 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5908 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5909 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5910 &pDbgc->apEventCfgs[iEvt]);
5911 else if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5912 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5913 pDbgc->apHardInts, 0, 256);
5914 else
5915 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5916 pDbgc->apSoftInts, 0, 256);
5917 }
5918 else
5919 {
5920 /*
5921 * Selected events.
5922 */
5923 for (uint32_t iArg = 0; iArg < cArgs; iArg++)
5924 {
5925 unsigned cHits = 0;
5926 for (uint32_t iEvt = 0; iEvt < RT_ELEMENTS(g_aDbgcSxEvents); iEvt++)
5927 if (g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Plain)
5928 {
5929 if ( RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszName)
5930 || ( g_aDbgcSxEvents[iEvt].pszAltNm
5931 && RTStrSimplePatternMatch(paArgs[iArg].u.pszString, g_aDbgcSxEvents[iEvt].pszAltNm)) )
5932 {
5933 dbgcEventDisplay(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5934 &pDbgc->apEventCfgs[iEvt]);
5935 cHits++;
5936 }
5937 }
5938 else
5939 {
5940 Assert(g_aDbgcSxEvents[iEvt].enmKind == kDbgcSxEventKind_Interrupt);
5941 uint8_t iInt;
5942 uint16_t cInts;
5943 if (dbgcEventIsMatchingInt(&paArgs[iArg], g_aDbgcSxEvents[iEvt].pszName, pCmdHlp, &iInt, &cInts))
5944 {
5945 if (strcmp(g_aDbgcSxEvents[iEvt].pszName, "hwint") == 0)
5946 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5947 pDbgc->apHardInts, iInt, cInts);
5948 else
5949 dbgcEventDisplayRange(pCmdHlp, g_aDbgcSxEvents[iEvt].pszName, g_aDbgcSxEvents[iEvt].enmDefault,
5950 pDbgc->apSoftInts, iInt, cInts);
5951 cHits++;
5952 }
5953 }
5954 if (cHits == 0)
5955 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown event: '%s'\n", paArgs[iArg].u.pszString);
5956 }
5957 }
5958
5959 return VINF_SUCCESS;
5960}
5961
5962
5963
5964/**
5965 * List near symbol.
5966 *
5967 * @returns VBox status code.
5968 * @param pCmdHlp Pointer to command helper functions.
5969 * @param pUVM The user mode VM handle.
5970 * @param pArg Pointer to the address or symbol to lookup.
5971 */
5972static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg)
5973{
5974 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
5975
5976 RTDBGSYMBOL Symbol;
5977 int rc;
5978 if (pArg->enmType == DBGCVAR_TYPE_SYMBOL)
5979 {
5980 /*
5981 * Lookup the symbol address.
5982 */
5983 rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL);
5984 if (RT_FAILURE(rc))
5985 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString);
5986
5987 rc = DBGCCmdHlpPrintf(pCmdHlp, "%RTptr %s\n", Symbol.Value, Symbol.szName);
5988 }
5989 else
5990 {
5991 /*
5992 * Convert it to a flat GC address and lookup that address.
5993 */
5994 DBGCVAR AddrVar;
5995 rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg);
5996 if (RT_FAILURE(rc))
5997 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg);
5998
5999 RTINTPTR offDisp;
6000 DBGFADDRESS Addr;
6001 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat),
6002 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
6003 &offDisp, &Symbol, NULL);
6004 if (RT_FAILURE(rc))
6005 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat);
6006
6007 if (!offDisp)
6008 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s", &AddrVar, Symbol.szName);
6009 else if (offDisp > 0)
6010 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp);
6011 else
6012 rc = DBGCCmdHlpPrintf(pCmdHlp, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp);
6013 if (Symbol.cb > 0)
6014 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)\n", Symbol.cb);
6015 else
6016 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
6017 }
6018
6019 return rc;
6020}
6021
6022
6023/**
6024 * @callback_method_impl{FNDBGCCMD, The 'ln' (listnear) command.}
6025 */
6026static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6027{
6028 if (!cArgs)
6029 {
6030 /*
6031 * Current cs:eip symbol.
6032 */
6033 DBGCVAR AddrVar;
6034 const char *pszFmtExpr = "%%(cs:eip)";
6035 int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, pszFmtExpr);
6036 if (RT_FAILURE(rc))
6037 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%s\n", pszFmtExpr + 1);
6038 return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar);
6039 }
6040
6041/** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */
6042 /*
6043 * Iterate arguments.
6044 */
6045 for (unsigned iArg = 0; iArg < cArgs; iArg++)
6046 {
6047 int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]);
6048 if (RT_FAILURE(rc))
6049 return rc;
6050 }
6051
6052 NOREF(pCmd);
6053 return VINF_SUCCESS;
6054}
6055
6056
6057/**
6058 * Matches the module patters against a module name.
6059 *
6060 * @returns true if matching, otherwise false.
6061 * @param pszName The module name.
6062 * @param paArgs The module pattern argument list.
6063 * @param cArgs Number of arguments.
6064 */
6065static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs)
6066{
6067 for (uint32_t i = 0; i < cArgs; i++)
6068 if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName))
6069 return true;
6070 return false;
6071}
6072
6073
6074/**
6075 * @callback_method_impl{FNDBGCCMD, The 'ln' (list near) command.}
6076 */
6077static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6078{
6079 bool const fMappings = pCmd->pszCmd[2] == 'o';
6080 bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v';
6081 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6082
6083 /*
6084 * Iterate the modules in the current address space and print info about
6085 * those matching the input.
6086 */
6087 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6088 for (uint32_t iAs = 0;; iAs++)
6089 {
6090 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6091 uint32_t cMods = RTDbgAsModuleCount(hAs);
6092 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6093 {
6094 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6095 if (hMod != NIL_RTDBGMOD)
6096 {
6097 bool const fDeferred = RTDbgModIsDeferred(hMod);
6098 bool const fExports = RTDbgModIsExports(hMod);
6099 uint32_t const cSegs = fDeferred ? 1 : RTDbgModSegmentCount(hMod);
6100 const char * const pszName = RTDbgModName(hMod);
6101 const char * const pszImgFile = RTDbgModImageFile(hMod);
6102 const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod);
6103 const char * const pszDbgFile = RTDbgModDebugFile(hMod);
6104 if ( cArgs == 0
6105 || dbgcCmdListModuleMatch(pszName, paArgs, cArgs))
6106 {
6107 /*
6108 * Find the mapping with the lower address, preferring a full
6109 * image mapping, for the main line.
6110 */
6111 RTDBGASMAPINFO aMappings[128];
6112 uint32_t cMappings = RT_ELEMENTS(aMappings);
6113 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6114 if (RT_SUCCESS(rc))
6115 {
6116 bool fFull = false;
6117 RTUINTPTR uMin = RTUINTPTR_MAX;
6118 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6119 if ( aMappings[iMap].Address < uMin
6120 && ( !fFull
6121 || aMappings[iMap].iSeg == NIL_RTDBGSEGIDX))
6122 uMin = aMappings[iMap].Address;
6123 if (!fVerbose || !pszImgFile)
6124 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName,
6125 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6126 else
6127 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s%s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile,
6128 fExports ? " (exports)" : fDeferred ? " (deferred)" : "");
6129 if (fVerbose && pszImgFileUsed)
6130 DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed);
6131 if (fVerbose && pszDbgFile)
6132 DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile);
6133 if (fVerbose)
6134 {
6135 char szTmp[64];
6136 RTTIMESPEC TimeSpec;
6137 int64_t secTs = 0;
6138 if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_TIMESTAMP_SECONDS, &secTs, sizeof(secTs), NULL)))
6139 DBGCCmdHlpPrintf(pCmdHlp, " Timestamp: %08RX64 %s\n", secTs,
6140 RTTimeSpecToString(RTTimeSpecSetSeconds(&TimeSpec, secTs), szTmp, sizeof(szTmp)));
6141 RTUUID Uuid;
6142 if (RT_SUCCESS(RTDbgModImageQueryProp(hMod, RTLDRPROP_UUID, &Uuid, sizeof(Uuid), NULL)))
6143 DBGCCmdHlpPrintf(pCmdHlp, " UUID: %RTuuid\n", &Uuid);
6144 }
6145
6146 if (fMappings)
6147 {
6148 /* sort by address first - not very efficient. */
6149 for (uint32_t i = 0; i + 1 < cMappings; i++)
6150 for (uint32_t j = i + 1; j < cMappings; j++)
6151 if (aMappings[j].Address < aMappings[i].Address)
6152 {
6153 RTDBGASMAPINFO Tmp = aMappings[j];
6154 aMappings[j] = aMappings[i];
6155 aMappings[i] = Tmp;
6156 }
6157
6158 /* print */
6159 if ( cMappings == 1
6160 && aMappings[0].iSeg == NIL_RTDBGSEGIDX
6161 && !fDeferred)
6162 {
6163 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
6164 {
6165 RTDBGSEGMENT SegInfo;
6166 rc = RTDbgModSegmentByIndex(hMod, iSeg, &SegInfo);
6167 if (RT_SUCCESS(rc))
6168 {
6169 if (SegInfo.uRva != RTUINTPTR_MAX)
6170 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6171 (RTGCUINTPTR)(aMappings[0].Address + SegInfo.uRva),
6172 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6173 else
6174 DBGCCmdHlpPrintf(pCmdHlp, " %*s %RGv #%02x %s\n",
6175 sizeof(RTGCUINTPTR)*2, "noload",
6176 (RTGCUINTPTR)SegInfo.cb, iSeg, SegInfo.szName);
6177 }
6178 else
6179 DBGCCmdHlpPrintf(pCmdHlp, " Error query segment #%u: %Rrc\n", iSeg, rc);
6180 }
6181 }
6182 else
6183 {
6184 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6185 if (aMappings[iMap].iSeg == NIL_RTDBGSEGIDX)
6186 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv <everything>\n",
6187 (RTGCUINTPTR)aMappings[iMap].Address,
6188 (RTGCUINTPTR)RTDbgModImageSize(hMod));
6189 else if (!fDeferred)
6190 {
6191 RTDBGSEGMENT SegInfo;
6192 rc = RTDbgModSegmentByIndex(hMod, aMappings[iMap].iSeg, &SegInfo);
6193 if (RT_FAILURE(rc))
6194 {
6195 RT_ZERO(SegInfo);
6196 strcpy(SegInfo.szName, "error");
6197 }
6198 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
6199 (RTGCUINTPTR)aMappings[iMap].Address,
6200 (RTGCUINTPTR)SegInfo.cb,
6201 aMappings[iMap].iSeg, SegInfo.szName);
6202 }
6203 else
6204 DBGCCmdHlpPrintf(pCmdHlp, " %RGv #%02x\n",
6205 (RTGCUINTPTR)aMappings[iMap].Address, aMappings[iMap].iSeg);
6206 }
6207 }
6208 }
6209 else
6210 DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n",
6211 sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc);
6212 /** @todo missing address space API for enumerating the mappings. */
6213 }
6214 RTDbgModRelease(hMod);
6215 }
6216 }
6217 RTDbgAsRelease(hAs);
6218
6219 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6220 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6221 break;
6222 AssertBreak(iAs == 0);
6223 hAsCurAlias = DBGF_AS_GLOBAL;
6224 }
6225
6226 NOREF(pCmd);
6227 return VINF_SUCCESS;
6228}
6229
6230
6231
6232/**
6233 * @callback_method_impl{FNDBGCCMD, The 'x' (examine symbols) command.}
6234 */
6235static DECLCALLBACK(int) dbgcCmdListSymbols(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6236{
6237 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6238 AssertReturn(paArgs[0].enmType == DBGCVAR_TYPE_STRING, VERR_DBGC_PARSE_BUG);
6239
6240 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6241
6242 /*
6243 * Allowed is either a single * to match everything or the Module!Symbol style
6244 * which requiresa ! to separate module and symbol.
6245 */
6246 bool fDumpAll = strcmp(paArgs[0].u.pszString, "*") == 0;
6247 const char *pszModule = NULL;
6248 size_t cchModule = 0;
6249 const char *pszSymbol = NULL;
6250 if (!fDumpAll)
6251 {
6252 const char *pszDelimiter = strchr(paArgs[0].u.pszString, '!');
6253 if (!pszDelimiter)
6254 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid search string '%s' for '%s'. Valid are either '*' or the form <Module>!<Symbol> where the <Module> and <Symbol> can contain wildcards",
6255 paArgs[0].u.pszString, pCmd->pszCmd);
6256
6257 pszModule = paArgs[0].u.pszString;
6258 cchModule = pszDelimiter - pszModule;
6259 pszSymbol = pszDelimiter + 1;
6260 }
6261
6262 /*
6263 * Iterate the modules in the current address space and print info about
6264 * those matching the input.
6265 */
6266 RTDBGAS hAsCurAlias = pDbgc->hDbgAs;
6267 for (uint32_t iAs = 0;; iAs++)
6268 {
6269 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, hAsCurAlias);
6270 uint32_t cMods = RTDbgAsModuleCount(hAs);
6271 for (uint32_t iMod = 0; iMod < cMods; iMod++)
6272 {
6273 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
6274 if (hMod != NIL_RTDBGMOD)
6275 {
6276 const char *pszModName = RTDbgModName(hMod);
6277 if ( fDumpAll
6278 || RTStrSimplePatternNMatch(pszModule, cchModule, pszModName, strlen(pszModName)))
6279 {
6280 RTDBGASMAPINFO aMappings[128];
6281 uint32_t cMappings = RT_ELEMENTS(aMappings);
6282 RTUINTPTR uMapping = 0;
6283
6284 /* Get the minimum mapping address of the module so we can print absolute values for the symbol later on. */
6285 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
6286 if (RT_SUCCESS(rc))
6287 {
6288 uMapping = RTUINTPTR_MAX;
6289 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
6290 if (aMappings[iMap].Address < uMapping)
6291 uMapping = aMappings[iMap].Address;
6292 }
6293
6294 /* Go through the symbols and print any matches. */
6295 uint32_t cSyms = RTDbgModSymbolCount(hMod);
6296 for (uint32_t iSym = 0; iSym < cSyms; iSym++)
6297 {
6298 RTDBGSYMBOL SymInfo;
6299 rc = RTDbgModSymbolByOrdinal(hMod, iSym, &SymInfo);
6300 if ( RT_SUCCESS(rc)
6301 && ( fDumpAll
6302 || RTStrSimplePatternMatch(pszSymbol, &SymInfo.szName[0])))
6303 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %s!%s\n", uMapping + RTDbgModSegmentRva(hMod, SymInfo.iSeg) + (RTGCUINTPTR)SymInfo.Value, pszModName, &SymInfo.szName[0]);
6304 }
6305 }
6306 RTDbgModRelease(hMod);
6307 }
6308 }
6309 RTDbgAsRelease(hAs);
6310
6311 /* For DBGF_AS_RC_AND_GC_GLOBAL we're required to do more work. */
6312 if (hAsCurAlias != DBGF_AS_RC_AND_GC_GLOBAL)
6313 break;
6314 AssertBreak(iAs == 0);
6315 hAsCurAlias = DBGF_AS_GLOBAL;
6316 }
6317
6318 RT_NOREF(pCmd);
6319 return VINF_SUCCESS;
6320}
6321
6322
6323/**
6324 * @callback_method_impl{FNDBGCCMD, The 'tflowc' (clear trace flow) command.}
6325 */
6326static DECLCALLBACK(int) dbgcCmdTraceFlowClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6327{
6328 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6329
6330 /*
6331 * Enumerate the arguments.
6332 */
6333 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6334 int rc = VINF_SUCCESS;
6335 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6336 {
6337 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6338 {
6339 /* one */
6340 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6341 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6342 {
6343 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6344 if (pFlowTrace)
6345 {
6346 rc = DBGFR3FlowTraceModRelease(pFlowTrace->hTraceFlowMod);
6347 if (RT_FAILURE(rc))
6348 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModRelease failed for flow trace module %#x", iFlowTraceMod);
6349 rc = DBGFR3FlowRelease(pFlowTrace->hFlow);
6350 if (RT_FAILURE(rc))
6351 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowRelease failed for flow trace module %#x", iFlowTraceMod);
6352 dbgcFlowTraceModDelete(pDbgc, iFlowTraceMod);
6353 }
6354 else
6355 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6356 }
6357 else
6358 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6359 }
6360 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6361 {
6362 /* all */
6363 PDBGCTFLOW pIt, pItNext;
6364 RTListForEachSafe(&pDbgc->LstTraceFlowMods, pIt, pItNext, DBGCTFLOW, NdTraceFlow)
6365 {
6366 int rc2 = DBGFR3FlowTraceModRelease(pIt->hTraceFlowMod);
6367 if (RT_FAILURE(rc2))
6368 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", pIt->iTraceFlowMod);
6369 dbgcFlowTraceModDelete(pDbgc, pIt->iTraceFlowMod);
6370 }
6371 }
6372 else
6373 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6374 }
6375 return rc;
6376}
6377
6378
6379/**
6380 * @callback_method_impl{FNDBGCCMD, The 'tflowd' (disable trace flow) command.}
6381 */
6382static DECLCALLBACK(int) dbgcCmdTraceFlowDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6383{
6384 /*
6385 * Enumerate the arguments.
6386 */
6387 RT_NOREF1(pUVM);
6388 int rc = VINF_SUCCESS;
6389 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6390 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6391 {
6392 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6393 {
6394 /* one */
6395 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6396 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6397 {
6398 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6399 if (pFlowTrace)
6400 {
6401 rc = DBGFR3FlowTraceModDisable(pFlowTrace->hTraceFlowMod);
6402 if (RT_FAILURE(rc))
6403 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModDisable failed for flow trace module %#x", iFlowTraceMod);
6404 }
6405 else
6406 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6407 }
6408 else
6409 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
6410 }
6411 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6412 {
6413 /* all */
6414 PDBGCTFLOW pIt;
6415 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6416 {
6417 int rc2 = DBGFR3FlowTraceModDisable(pIt->hTraceFlowMod);
6418 if (RT_FAILURE(rc2))
6419 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3FlowTraceModDisable failed for flow trace module %#x",
6420 pIt->iTraceFlowMod);
6421 }
6422 }
6423 else
6424 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6425 }
6426 return rc;
6427}
6428
6429
6430/**
6431 * @callback_method_impl{FNDBGCCMD, The 'tflowe' (enable trace flow) command.}
6432 */
6433static DECLCALLBACK(int) dbgcCmdTraceFlowEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6434{
6435 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6436
6437 /*
6438 * Validate input.
6439 */
6440 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6441 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 2);
6442 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
6443
6444 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
6445 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
6446
6447 /*
6448 * Check the desired mode.
6449 */
6450 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED | DBGF_DISAS_FLAGS_DEFAULT_MODE;
6451
6452 /** @todo should use DBGFADDRESS for everything */
6453
6454 /*
6455 * Find address.
6456 */
6457 if (!cArgs)
6458 {
6459 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
6460 {
6461#if defined(VBOX_VMM_TARGET_ARMV8)
6462 AssertReleaseFailed();
6463#else
6464 /** @todo Batch query CS, RIP, CPU mode and flags. */
6465 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
6466 if (CPUMIsGuestIn64BitCode(pVCpu))
6467 {
6468 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
6469 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
6470 }
6471 else
6472 {
6473 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
6474 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
6475 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
6476 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
6477 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
6478 {
6479 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
6480 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
6481 }
6482 }
6483#endif
6484
6485 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
6486 }
6487 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
6488 {
6489 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
6490 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
6491 }
6492 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
6493 }
6494 else
6495 pDbgc->DisasmPos = paArgs[0];
6496 pDbgc->pLastPos = &pDbgc->DisasmPos;
6497
6498 /*
6499 * Convert physical and host addresses to guest addresses.
6500 */
6501 RTDBGAS hDbgAs = pDbgc->hDbgAs;
6502 int rc;
6503 switch (pDbgc->DisasmPos.enmType)
6504 {
6505 case DBGCVAR_TYPE_GC_FLAT:
6506 case DBGCVAR_TYPE_GC_FAR:
6507 break;
6508 case DBGCVAR_TYPE_GC_PHYS:
6509 hDbgAs = DBGF_AS_PHYS;
6510 /* fall thru */
6511 case DBGCVAR_TYPE_HC_FLAT:
6512 case DBGCVAR_TYPE_HC_PHYS:
6513 {
6514 DBGCVAR VarTmp;
6515 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
6516 if (RT_FAILURE(rc))
6517 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
6518 pDbgc->DisasmPos = VarTmp;
6519 break;
6520 }
6521 default: AssertFailed(); break;
6522 }
6523
6524 DBGFADDRESS CurAddr;
6525 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
6526 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
6527 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
6528 else
6529 {
6530 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
6531 if (RT_FAILURE(rc))
6532 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
6533 }
6534
6535 DBGFFLOW hCfg;
6536 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
6537 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
6538 if (RT_SUCCESS(rc))
6539 {
6540 /* Create a probe. */
6541 DBGFFLOWTRACEPROBE hFlowTraceProbe = NULL;
6542 DBGFFLOWTRACEPROBE hFlowTraceProbeExit = NULL;
6543 DBGFFLOWTRACEPROBEENTRY Entry;
6544 DBGFFLOWTRACEMOD hFlowTraceMod = NULL;
6545 uint32_t iTraceModId = 0;
6546
6547 RT_ZERO(Entry);
6548 Entry.enmType = DBGFFLOWTRACEPROBEENTRYTYPE_DEBUGGER;
6549
6550 rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbe);
6551 if (RT_SUCCESS(rc))
6552 rc = DBGFR3FlowTraceProbeCreate(pUVM, NULL, &hFlowTraceProbeExit);
6553 if (RT_SUCCESS(rc))
6554 rc = DBGFR3FlowTraceProbeEntriesAdd(hFlowTraceProbeExit, &Entry, 1 /*cEntries*/);
6555 if (RT_SUCCESS(rc))
6556 rc = DBGFR3FlowTraceModCreateFromFlowGraph(pUVM, VMCPUID_ANY, hCfg, NULL,
6557 hFlowTraceProbe, hFlowTraceProbe,
6558 hFlowTraceProbeExit, &hFlowTraceMod);
6559 if (RT_SUCCESS(rc))
6560 rc = dbgcFlowTraceModAdd(pDbgc, hFlowTraceMod, hCfg, &iTraceModId);
6561 if (RT_SUCCESS(rc))
6562 rc = DBGFR3FlowTraceModEnable(hFlowTraceMod, 0, 0);
6563 if (RT_SUCCESS(rc))
6564 DBGCCmdHlpPrintf(pCmdHlp, "Enabled execution flow tracing %u at %RGv\n",
6565 iTraceModId, CurAddr.FlatPtr);
6566
6567 if (hFlowTraceProbe)
6568 DBGFR3FlowTraceProbeRelease(hFlowTraceProbe);
6569 if (hFlowTraceProbeExit)
6570 DBGFR3FlowTraceProbeRelease(hFlowTraceProbeExit);
6571 }
6572 else
6573 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
6574
6575 NOREF(pCmd);
6576 return rc;
6577}
6578
6579
6580/**
6581 * Enumerates and prints all records contained in the given flow tarce module.
6582 *
6583 * @returns VBox status code.
6584 * @param pCmd The command.
6585 * @param pCmdHlp The command helpers.
6586 * @param hFlowTraceMod The flow trace module to print.
6587 * @param hFlow The control flow graph assoicated with the given module.
6588 * @param iFlowTraceMod The flow trace module identifier.
6589 */
6590static int dbgcCmdTraceFlowPrintOne(PDBGCCMDHLP pCmdHlp, PCDBGCCMD pCmd, DBGFFLOWTRACEMOD hFlowTraceMod,
6591 DBGFFLOW hFlow, uint32_t iFlowTraceMod)
6592{
6593 RT_NOREF(hFlow);
6594
6595 DBGFFLOWTRACEREPORT hFlowTraceReport;
6596 int rc = DBGFR3FlowTraceModQueryReport(hFlowTraceMod, &hFlowTraceReport);
6597 if (RT_SUCCESS(rc))
6598 {
6599 uint32_t cRecords = DBGFR3FlowTraceReportGetRecordCount(hFlowTraceReport);
6600 DBGCCmdHlpPrintf(pCmdHlp, "Report for flow trace module %#x (%u records):\n",
6601 iFlowTraceMod, cRecords);
6602
6603 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cRecords * sizeof(DBGCFLOWBBDUMP));
6604 if (RT_LIKELY(paDumpBb))
6605 {
6606 /* Query the basic block referenced for each record and calculate the size. */
6607 for (uint32_t i = 0; i < cRecords && RT_SUCCESS(rc); i++)
6608 {
6609 DBGFFLOWTRACERECORD hRec = NULL;
6610 rc = DBGFR3FlowTraceReportQueryRecord(hFlowTraceReport, i, &hRec);
6611 if (RT_SUCCESS(rc))
6612 {
6613 DBGFADDRESS Addr;
6614 DBGFR3FlowTraceRecordGetAddr(hRec, &Addr);
6615
6616 DBGFFLOWBB hFlowBb = NULL;
6617 rc = DBGFR3FlowQueryBbByAddress(hFlow, &Addr, &hFlowBb);
6618 if (RT_SUCCESS(rc))
6619 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[i]);
6620
6621 DBGFR3FlowTraceRecordRelease(hRec);
6622 }
6623 }
6624
6625 if (RT_SUCCESS(rc))
6626 {
6627 /* Calculate the ASCII screen dimensions and create one. */
6628 uint32_t cchWidth = 0;
6629 uint32_t cchHeight = 0;
6630 for (unsigned i = 0; i < cRecords; i++)
6631 {
6632 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
6633 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
6634 cchHeight += pDumpBb->cchHeight;
6635
6636 /* Incomplete blocks don't have a successor. */
6637 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
6638 continue;
6639
6640 cchHeight += 2; /* For the arrow down to the next basic block. */
6641 }
6642
6643
6644 DBGCSCREEN hScreen = NULL;
6645 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth, cchHeight);
6646 if (RT_SUCCESS(rc))
6647 {
6648 uint32_t uY = 0;
6649
6650 /* Dump the basic blocks and connections to the immediate successor. */
6651 for (unsigned i = 0; i < cRecords; i++)
6652 {
6653 paDumpBb[i].uStartX = (cchWidth - paDumpBb[i].cchWidth) / 2;
6654 paDumpBb[i].uStartY = uY;
6655 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
6656 uY += paDumpBb[i].cchHeight;
6657
6658 /* Incomplete blocks don't have a successor. */
6659 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
6660 continue;
6661
6662 if (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb) != DBGFFLOWBBENDTYPE_EXIT)
6663 {
6664 /* Draw the arrow down to the next block. */
6665 dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY,
6666 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
6667 uY++;
6668 dbgcScreenAsciiDrawCharacter(hScreen, cchWidth / 2, uY,
6669 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
6670 uY++;
6671 }
6672 }
6673
6674 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, false /*fUseColor*/);
6675 dbgcScreenAsciiDestroy(hScreen);
6676 }
6677 else
6678 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to create virtual screen for flow trace module %#x", iFlowTraceMod);
6679 }
6680 else
6681 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query all records of flow trace module %#x", iFlowTraceMod);
6682
6683 for (unsigned i = 0; i < cRecords; i++)
6684 {
6685 if (paDumpBb[i].hFlowBb)
6686 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
6687 }
6688
6689 RTMemTmpFree(paDumpBb);
6690 }
6691 else
6692 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to allocate memory for %u records", cRecords);
6693
6694 DBGFR3FlowTraceReportRelease(hFlowTraceReport);
6695 }
6696 else
6697 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query report for flow trace module %#x", iFlowTraceMod);
6698
6699 return rc;
6700}
6701
6702
6703/**
6704 * @callback_method_impl{FNDBGCCMD, The 'tflowp' (print trace flow) command.}
6705 */
6706static DECLCALLBACK(int) dbgcCmdTraceFlowPrint(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6707{
6708 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6709
6710 /*
6711 * Enumerate the arguments.
6712 */
6713 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6714 int rc = VINF_SUCCESS;
6715 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6716 {
6717 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6718 {
6719 /* one */
6720 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6721 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6722 {
6723 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6724 if (pFlowTrace)
6725 rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pFlowTrace->hTraceFlowMod,
6726 pFlowTrace->hFlow, pFlowTrace->iTraceFlowMod);
6727 else
6728 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6729 }
6730 else
6731 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6732 }
6733 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6734 {
6735 /* all */
6736 PDBGCTFLOW pIt;
6737 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6738 {
6739 rc = dbgcCmdTraceFlowPrintOne(pCmdHlp, pCmd, pIt->hTraceFlowMod,
6740 pIt->hFlow, pIt->iTraceFlowMod);
6741 if (RT_FAILURE(rc))
6742 break;
6743 }
6744 }
6745 else
6746 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6747 }
6748 return rc;
6749}
6750
6751
6752/**
6753 * @callback_method_impl{FNDBGCCMD, The 'tflowr' (reset trace flow) command.}
6754 */
6755static DECLCALLBACK(int) dbgcCmdTraceFlowReset(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
6756{
6757 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
6758
6759 /*
6760 * Enumerate the arguments.
6761 */
6762 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
6763 int rc = VINF_SUCCESS;
6764 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
6765 {
6766 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
6767 {
6768 /* one */
6769 uint32_t iFlowTraceMod = (uint32_t)paArgs[iArg].u.u64Number;
6770 if (iFlowTraceMod == paArgs[iArg].u.u64Number)
6771 {
6772 PDBGCTFLOW pFlowTrace = dbgcFlowTraceModGet(pDbgc, iFlowTraceMod);
6773 if (pFlowTrace)
6774 {
6775 rc = DBGFR3FlowTraceModClear(pFlowTrace->hTraceFlowMod);
6776 if (RT_FAILURE(rc))
6777 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", iFlowTraceMod);
6778 }
6779 else
6780 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, VERR_NOT_FOUND, "Flow trace module %#x doesn't exist", iFlowTraceMod);
6781 }
6782 else
6783 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Flow trace mod id %RX64 is too large", paArgs[iArg].u.u64Number);
6784 }
6785 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
6786 {
6787 /* all */
6788 PDBGCTFLOW pIt;
6789 RTListForEach(&pDbgc->LstTraceFlowMods, pIt, DBGCTFLOW, NdTraceFlow)
6790 {
6791 rc = DBGFR3FlowTraceModClear(pIt->hTraceFlowMod);
6792 if (RT_FAILURE(rc))
6793 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowTraceModClear failed for flow trace module %#x", pIt->iTraceFlowMod);
6794 }
6795 }
6796 else
6797 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
6798 }
6799 return rc;
6800}
6801
6802
6803
6804/**
6805 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 8-bit value.}
6806 */
6807static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6808 PDBGCVAR pResult)
6809{
6810 RT_NOREF1(pUVM);
6811 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6812 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6813 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6814
6815 uint8_t b;
6816 int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL);
6817 if (RT_FAILURE(rc))
6818 return rc;
6819 DBGCVAR_INIT_NUMBER(pResult, b);
6820
6821 NOREF(pFunc);
6822 return VINF_SUCCESS;
6823}
6824
6825
6826/**
6827 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 16-bit value.}
6828 */
6829static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6830 PDBGCVAR pResult)
6831{
6832 RT_NOREF1(pUVM);
6833 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6834 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6835 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6836
6837 uint16_t u16;
6838 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL);
6839 if (RT_FAILURE(rc))
6840 return rc;
6841 DBGCVAR_INIT_NUMBER(pResult, u16);
6842
6843 NOREF(pFunc);
6844 return VINF_SUCCESS;
6845}
6846
6847
6848/**
6849 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 32-bit value.}
6850 */
6851static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6852 PDBGCVAR pResult)
6853{
6854 RT_NOREF1(pUVM);
6855 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6856 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6857 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6858
6859 uint32_t u32;
6860 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL);
6861 if (RT_FAILURE(rc))
6862 return rc;
6863 DBGCVAR_INIT_NUMBER(pResult, u32);
6864
6865 NOREF(pFunc);
6866 return VINF_SUCCESS;
6867}
6868
6869
6870/**
6871 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned 64-bit value.}
6872 */
6873static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6874 PDBGCVAR pResult)
6875{
6876 RT_NOREF1(pUVM);
6877 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6878 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6879 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6880
6881 uint64_t u64;
6882 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL);
6883 if (RT_FAILURE(rc))
6884 return rc;
6885 DBGCVAR_INIT_NUMBER(pResult, u64);
6886
6887 NOREF(pFunc);
6888 return VINF_SUCCESS;
6889}
6890
6891
6892/**
6893 * @callback_method_impl{FNDBGCFUNC, Reads a unsigned pointer-sized value.}
6894 */
6895static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6896 PDBGCVAR pResult)
6897{
6898 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6899 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
6900 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
6901
6902 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
6903 if (enmMode == CPUMMODE_LONG)
6904 return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
6905 return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
6906}
6907
6908
6909/**
6910 * @callback_method_impl{FNDBGCFUNC, The hi(value) function implementation.}
6911 */
6912static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6913 PDBGCVAR pResult)
6914{
6915 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6916
6917 uint16_t uHi;
6918 switch (paArgs[0].enmType)
6919 {
6920 case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break;
6921 case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break;
6922 case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break;
6923 case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break;
6924 case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break;
6925 case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break;
6926 default:
6927 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
6928 }
6929 DBGCVAR_INIT_NUMBER(pResult, uHi);
6930 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
6931
6932 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
6933 return VINF_SUCCESS;
6934}
6935
6936
6937/**
6938 * @callback_method_impl{FNDBGCFUNC, The low(value) function implementation.}
6939 */
6940static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6941 PDBGCVAR pResult)
6942{
6943 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6944
6945 uint16_t uLow;
6946 switch (paArgs[0].enmType)
6947 {
6948 case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break;
6949 case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break;
6950 case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break;
6951 case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break;
6952 case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break;
6953 case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break;
6954 default:
6955 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
6956 }
6957 DBGCVAR_INIT_NUMBER(pResult, uLow);
6958 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
6959
6960 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
6961 return VINF_SUCCESS;
6962}
6963
6964
6965/**
6966 * @callback_method_impl{FNDBGCFUNC,The low(value) function implementation.}
6967 */
6968static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
6969 PDBGCVAR pResult)
6970{
6971 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
6972 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
6973 return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]);
6974}
6975
6976
6977/** Generic pointer argument wo/ range. */
6978static const DBGCVARDESC g_aArgPointerWoRange[] =
6979{
6980 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
6981 { 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." },
6982};
6983
6984/** Generic pointer or number argument. */
6985static const DBGCVARDESC g_aArgPointerNumber[] =
6986{
6987 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
6988 { 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." },
6989};
6990
6991
6992
6993/** Function descriptors for the CodeView / WinDbg emulation.
6994 * The emulation isn't attempting to be identical, only somewhat similar.
6995 */
6996const DBGCFUNC g_aFuncsCodeView[] =
6997{
6998 { "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." },
6999 { "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." },
7000 { "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." },
7001 { "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." },
7002 { "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." },
7003 { "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." },
7004 { "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." },
7005 { "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." },
7006};
7007
7008/** The number of functions in the CodeView/WinDbg emulation. */
7009const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);
7010
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette