/* $Id: DBGPlugInWinNt.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */ /** @file * DBGPlugInWindows - Debugger and Guest OS Digger Plugin For Windows NT. */ /* * Copyright (C) 2009-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DBGF /// @todo add new log group. #include "DBGPlugIns.h" #include #include #include #ifdef VBOX_DEBUGGER_WITH_WIN_DBG_PRINT_HOOKING # include # include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** @name Internal WinNT structures * @{ */ /** * PsLoadedModuleList entry for 32-bit NT aka LDR_DATA_TABLE_ENTRY. * Tested with XP. */ typedef struct NTMTE32 { struct { uint32_t Flink; uint32_t Blink; } InLoadOrderLinks, InMemoryOrderModuleList, InInitializationOrderModuleList; uint32_t DllBase; uint32_t EntryPoint; /** @note This field is not a size in NT 3.1. It's NULL for images loaded by the * boot loader, for other images it looks like some kind of pointer. */ uint32_t SizeOfImage; struct { uint16_t Length; uint16_t MaximumLength; uint32_t Buffer; } FullDllName, BaseDllName; uint32_t Flags; uint16_t LoadCount; uint16_t TlsIndex; /* ... there is more ... */ } NTMTE32; typedef NTMTE32 *PNTMTE32; /** * PsLoadedModuleList entry for 64-bit NT aka LDR_DATA_TABLE_ENTRY. */ typedef struct NTMTE64 { struct { uint64_t Flink; uint64_t Blink; } InLoadOrderLinks, /**< 0x00 */ InMemoryOrderModuleList, /**< 0x10 */ InInitializationOrderModuleList; /**< 0x20 */ uint64_t DllBase; /**< 0x30 */ uint64_t EntryPoint; /**< 0x38 */ uint32_t SizeOfImage; /**< 0x40 */ uint32_t Alignment; /**< 0x44 */ struct { uint16_t Length; /**< 0x48,0x58 */ uint16_t MaximumLength; /**< 0x4a,0x5a */ uint32_t Alignment; /**< 0x4c,0x5c */ uint64_t Buffer; /**< 0x50,0x60 */ } FullDllName, /**< 0x48 */ BaseDllName; /**< 0x58 */ uint32_t Flags; /**< 0x68 */ uint16_t LoadCount; /**< 0x6c */ uint16_t TlsIndex; /**< 0x6e */ /* ... there is more ... */ } NTMTE64; typedef NTMTE64 *PNTMTE64; /** MTE union. */ typedef union NTMTE { NTMTE32 vX_32; NTMTE64 vX_64; } NTMTE; typedef NTMTE *PNTMTE; /** * The essential bits of the KUSER_SHARED_DATA structure. */ typedef struct NTKUSERSHAREDDATA { uint32_t TickCountLowDeprecated; uint32_t TickCountMultiplier; struct { uint32_t LowPart; int32_t High1Time; int32_t High2Time; } InterruptTime, SystemTime, TimeZoneBias; uint16_t ImageNumberLow; uint16_t ImageNumberHigh; RTUTF16 NtSystemRoot[260]; uint32_t MaxStackTraceDepth; uint32_t CryptoExponent; uint32_t TimeZoneId; uint32_t LargePageMinimum; uint32_t Reserved2[6]; uint32_t NtBuildNumber; uint32_t NtProductType; uint8_t ProductTypeIsValid; uint8_t abPadding[3]; uint32_t NtMajorVersion; uint32_t NtMinorVersion; /* uint8_t ProcessorFeatures[64]; ... */ } NTKUSERSHAREDDATA; typedef NTKUSERSHAREDDATA *PNTKUSERSHAREDDATA; /** KI_USER_SHARED_DATA for i386 */ #define NTKUSERSHAREDDATA_WINNT32 UINT32_C(0xffdf0000) /** KI_USER_SHARED_DATA for AMD64 */ #define NTKUSERSHAREDDATA_WINNT64 UINT64_C(0xfffff78000000000) /** NTKUSERSHAREDDATA::NtProductType */ typedef enum NTPRODUCTTYPE { kNtProductType_Invalid = 0, kNtProductType_WinNt = 1, kNtProductType_LanManNt, kNtProductType_Server } NTPRODUCTTYPE; /** NT image header union. */ typedef union NTHDRSU { IMAGE_NT_HEADERS32 vX_32; IMAGE_NT_HEADERS64 vX_64; } NTHDRS; /** Pointer to NT image header union. */ typedef NTHDRS *PNTHDRS; /** Pointer to const NT image header union. */ typedef NTHDRS const *PCNTHDRS; /** * NT KD version block. */ typedef struct NTKDVERSIONBLOCK { uint16_t MajorVersion; uint16_t MinorVersion; uint8_t ProtocolVersion; uint8_t KdSecondaryVersion; uint16_t Flags; uint16_t MachineType; uint8_t MaxPacketType; uint8_t MaxStateChange; uint8_t MaxManipulate; uint8_t Simulation; uint16_t Unused; uint64_t KernBase; uint64_t PsLoadedModuleList; uint64_t DebuggerDataList; } NTKDVERSIONBLOCK; /** Pointer to an NT KD version block. */ typedef NTKDVERSIONBLOCK *PNTKDVERSIONBLOCK; /** Pointer to a const NT KD version block. */ typedef const NTKDVERSIONBLOCK *PCNTKDVERSIONBLOCK; /** @} */ typedef enum DBGDIGGERWINNTVER { DBGDIGGERWINNTVER_UNKNOWN, DBGDIGGERWINNTVER_3_1, DBGDIGGERWINNTVER_3_5, DBGDIGGERWINNTVER_4_0, DBGDIGGERWINNTVER_5_0, DBGDIGGERWINNTVER_5_1, DBGDIGGERWINNTVER_6_0 } DBGDIGGERWINNTVER; /** * WinNT guest OS digger instance data. */ typedef struct DBGDIGGERWINNT { /** Whether the information is valid or not. * (For fending off illegal interface method calls.) */ bool fValid; /** 32-bit (true) or 64-bit (false) */ bool f32Bit; /** Set if NT 3.1 was detected. * This implies both Misc.VirtualSize and NTMTE32::SizeOfImage are zero. */ bool fNt31; /** The NT version. */ DBGDIGGERWINNTVER enmVer; /** NTKUSERSHAREDDATA::NtProductType */ NTPRODUCTTYPE NtProductType; /** NTKUSERSHAREDDATA::NtMajorVersion */ uint32_t NtMajorVersion; /** NTKUSERSHAREDDATA::NtMinorVersion */ uint32_t NtMinorVersion; /** NTKUSERSHAREDDATA::NtBuildNumber */ uint32_t NtBuildNumber; /** The address of the ntoskrnl.exe image. */ DBGFADDRESS KernelAddr; /** The address of the ntoskrnl.exe module table entry. */ DBGFADDRESS KernelMteAddr; /** The address of PsLoadedModuleList. */ DBGFADDRESS PsLoadedModuleListAddr; /** Array of detected KPCR addresses for each vCPU. */ PDBGFADDRESS paKpcrAddr; /** Array of detected KPCRB addresses for each vCPU. */ PDBGFADDRESS paKpcrbAddr; /** The Windows NT specifics interface. */ DBGFOSIWINNT IWinNt; #ifdef VBOX_DEBUGGER_WITH_WIN_DBG_PRINT_HOOKING /** Breakpoint owner handle for the DbgPrint/vDbgPrint{,Ex}... interception. */ DBGFBPOWNER hBpOwnerDbgPrint; /** Breakpoint handle for the DbgPrint/vDbgPrint{,Ex}... interception. */ DBGFBP hBpDbgPrint; #endif } DBGDIGGERWINNT; /** Pointer to the linux guest OS digger instance data. */ typedef DBGDIGGERWINNT *PDBGDIGGERWINNT; /** * The WinNT digger's loader reader instance data. */ typedef struct DBGDIGGERWINNTRDR { /** The VM handle (referenced). */ PUVM pUVM; /** The image base. */ DBGFADDRESS ImageAddr; /** The image size. */ uint32_t cbImage; /** The file offset of the SizeOfImage field in the optional header if it * needs patching, otherwise set to UINT32_MAX. */ uint32_t offSizeOfImage; /** The correct image size. */ uint32_t cbCorrectImageSize; /** Number of entries in the aMappings table. */ uint32_t cMappings; /** Mapping hint. */ uint32_t iHint; /** Mapping file offset to memory offsets, ordered by file offset. */ struct { /** The file offset. */ uint32_t offFile; /** The size of this mapping. */ uint32_t cbMem; /** The offset to the memory from the start of the image. */ uint32_t offMem; } aMappings[1]; } DBGDIGGERWINNTRDR; /** Pointer a WinNT loader reader instance data. */ typedef DBGDIGGERWINNTRDR *PDBGDIGGERWINNTRDR; /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** Validates a 32-bit Windows NT kernel address */ #define WINNT32_VALID_ADDRESS(Addr) ((Addr) > UINT32_C(0x80000000) && (Addr) < UINT32_C(0xfffff000)) /** Validates a 64-bit Windows NT kernel address */ #define WINNT64_VALID_ADDRESS(Addr) ((Addr) > UINT64_C(0xffff800000000000) && (Addr) < UINT64_C(0xfffffffffffff000)) /** Validates a kernel address. */ #define WINNT_VALID_ADDRESS(pThis, Addr) ((pThis)->f32Bit ? WINNT32_VALID_ADDRESS(Addr) : WINNT64_VALID_ADDRESS(Addr)) /** Versioned and bitness wrapper. */ #define WINNT_UNION(pThis, pUnion, Member) ((pThis)->f32Bit ? (pUnion)->vX_32. Member : (pUnion)->vX_64. Member ) /** The length (in chars) of the kernel file name (no path). */ #define WINNT_KERNEL_BASE_NAME_LEN 12 /** WindowsNT on little endian ASCII systems. */ #define DIG_WINNT_MOD_TAG UINT64_C(0x54696e646f774e54) /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static DECLCALLBACK(int) dbgDiggerWinNtInit(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData); /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** Kernel names. */ static const RTUTF16 g_wszKernelNames[][WINNT_KERNEL_BASE_NAME_LEN + 1] = { { 'n', 't', 'o', 's', 'k', 'r', 'n', 'l', '.', 'e', 'x', 'e' } }; #ifdef VBOX_DEBUGGER_WITH_WIN_DBG_PRINT_HOOKING /** * Queries the string from guest memory with the pointer in the given register, sanitizing it. * * @returns VBox status code. * @param pUVM The user mode VM handle. * @param idCpu The CPU ID. * @param enmReg The register to query the string pointer from. * @param pszBuf Where to store the sanitized string. * @param cbBuf Size of the buffer in number of bytes. */ static int dbgDiggerWinNtDbgPrintQueryStringFromReg(PUVM pUVM, VMCPUID idCpu, DBGFREG enmReg, char *pszBuf, size_t cbBuf) { uint64_t u64RegPtr = 0; int rc = DBGFR3RegCpuQueryU64(pUVM, idCpu, enmReg, &u64RegPtr); if ( rc == VINF_SUCCESS || rc == VINF_DBGF_ZERO_EXTENDED_REGISTER) /* Being strict about what we expect here. */ { DBGFADDRESS AddrStr; DBGFR3AddrFromFlat(pUVM, &AddrStr, u64RegPtr); rc = DBGFR3MemRead(pUVM, idCpu, &AddrStr, pszBuf, cbBuf); if (RT_SUCCESS(rc)) { /* Check that there is a zero terminator and purge invalid encoding (expecting UTF-8 here). */ size_t idx = 0; for (idx = 0; idx < cbBuf; idx++) if (pszBuf[idx] == '\0') break; if (idx == cbBuf) pszBuf[cbBuf - 1] = '\0'; /* Force terminator, truncating the string. */ else memset(&pszBuf[idx], 0, cbBuf - idx); /* Clear everything afterwards. */ /* Purge the string encoding. */ RTStrPurgeEncoding(pszBuf); } } else if (RT_SUCCESS(rc)) rc = VERR_INVALID_STATE; return rc; } /** * @copydoc{FNDBGFBPHIT, Breakpoint callback for the DbgPrint interception.} */ static DECLCALLBACK(VBOXSTRICTRC) dbgDiggerWinNtDbgPrintHit(PVM pVM, VMCPUID idCpu, void *pvUserBp, DBGFBP hBp, PCDBGFBPPUB pBpPub, uint16_t fFlags) { RT_NOREF(hBp, pBpPub, fFlags); PDBGDIGGERWINNT pThis = (PDBGDIGGERWINNT)pvUserBp; PUVM pUVM = VMR3GetUVM(pVM); /* * The worker prototype looks like the following: * vDbgPrintExWorker(PCCH Prefix, ULONG ComponentId, ULONG Level, PCCH Format, va_list arglist, BOOL fUnknown) * * Depending on the bitness the parameters are grabbed from the appropriate registers and stack locations. * For amd64 reading the following is recommended: * https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=vs-2019 * https://docs.microsoft.com/en-us/cpp/build/prolog-and-epilog?view=vs-2019 * https://docs.microsoft.com/en-us/cpp/build/stack-usage?view=vs-2019 * * @todo 32bit */ int rc = VINF_SUCCESS; uint32_t idComponent = 0; uint32_t iLevel = 0; char aszPrefixStr[128]; /* Restricted size. */ char aszFmtStr[_1K]; /* Restricted size. */ DBGFADDRESS AddrVaList; if (!pThis->f32Bit) { /* * Grab the prefix, component, level, format string pointer from the registers and the argument list from the * stack (mind the home area for the register arguments). */ rc = dbgDiggerWinNtDbgPrintQueryStringFromReg(pUVM, idCpu, DBGFREG_RCX, &aszPrefixStr[0], sizeof(aszPrefixStr)); if (RT_SUCCESS(rc)) rc = DBGFR3RegCpuQueryU32(pUVM, idCpu, DBGFREG_RDX, &idComponent); if (RT_SUCCESS(rc)) rc = DBGFR3RegCpuQueryU32(pUVM, idCpu, DBGFREG_R8, &iLevel); if (RT_SUCCESS(rc)) rc = dbgDiggerWinNtDbgPrintQueryStringFromReg(pUVM, idCpu, DBGFREG_R9, &aszFmtStr[0], sizeof(aszFmtStr)); if (RT_SUCCESS(rc)) { /* Grabbing the pointer to the va list. The stack layout when we are here looks like (each entry is 64bit): * +-------------+ * | ... | * | VA list ptr | * | (arg3/r9) | * | (arg2/r8) | * | (arg1/rdx) | * | (arg0/rcx) | * | return RIP | * +-------------+ <- RSP */ uint64_t uRegRsp = 0; rc = DBGFR3RegCpuQueryU64(pUVM, idCpu, DBGFREG_RSP, &uRegRsp); if (rc == VINF_SUCCESS) { DBGFADDRESS AddrVaListPtr; RTGCUINTPTR GCPtrVaList = 0; DBGFR3AddrFromFlat(pUVM, &AddrVaListPtr, uRegRsp + 5 * sizeof(RTGCUINTPTR)); rc = DBGFR3MemRead(pUVM, idCpu, &AddrVaListPtr, &GCPtrVaList, sizeof(GCPtrVaList)); if (RT_SUCCESS(rc)) DBGFR3AddrFromFlat(pUVM, &AddrVaList, GCPtrVaList); } else rc = VERR_INVALID_STATE; } } else rc = VERR_NOT_IMPLEMENTED; /** @todo */ if (RT_SUCCESS(rc)) { LogRel(("DigWinNt/DbgPrint: Queried arguments %s %#x %u %s %RGv\n", &aszPrefixStr[0], idComponent, iLevel, &aszFmtStr[0], AddrVaList.FlatPtr)); /** @todo Continue here. */ } else LogRel(("DigWinNt/DbgPrint: Failed to query all arguments with rc=%Rrc\n", rc)); return VINF_SUCCESS; } /** * Disassembles the given instruction and checks whether it is a call with a fixed address. * * @returns Flag whether the insturction at the given address is a call. * @param pThis The instance data. * @param pUVM The user mode VM handle. * @param pAddrInsn Guest address of the instruction. * @param pAddrCall Where to store the destination if the instruction is a call. */ static bool dbgDiggerWinNtDbgPrintWrapperInsnIsCall(PDBGDIGGERWINNT pThis, PUVM pUVM, PCDBGFADDRESS pAddrInsn, PDBGFADDRESS pAddrCall) { DISSTATE DisState; RT_ZERO(DisState); /* Prefetch the instruction. */ uint8_t abInstr[32]; int rc = DBGFR3MemRead(pUVM, 0 /*idCpu*/, pAddrInsn, &abInstr[0], sizeof(abInstr)); if (RT_SUCCESS(rc)) { uint32_t cbInsn = 0; rc = DISInstr(&abInstr[0], pThis->f32Bit ? DISCPUMODE_32BIT : DISCPUMODE_64BIT, &DisState, &cbInsn); if ( RT_SUCCESS(rc) && DisState.pCurInstr->uOpcode == OP_CALL && DisState.Param1.fUse & DISUSE_IMMEDIATE) { if (DisState.Param1.fUse & (DISUSE_IMMEDIATE32 | DISUSE_IMMEDIATE64)) DBGFR3AddrFromFlat(pUVM, pAddrCall, DisState.Param1.uValue); else if (DisState.Param1.fUse & (DISUSE_IMMEDIATE32_REL | DISUSE_IMMEDIATE64_REL)) { *pAddrCall = *pAddrInsn; DBGFR3AddrAdd(pAddrCall, DisState.Param1.uValue + cbInsn); } return true; } } return false; } /** * Tries to find the single call instruction of the DbgPrint/etc. worker in the given control flow graph * (single basic block assumed). * * @returns VBox status code. * @param pThis The instance data. * @param pUVM The user mode VM handle. * @param hFlow The control flow graph handle. * @param pAddr Where to store the worker address on success. */ static int dbgDiggerWinNtDbgPrintResolveWorker(PDBGDIGGERWINNT pThis, PUVM pUVM, DBGFFLOW hFlow, PDBGFADDRESS pAddr) { DBGFFLOWBB hBb; int rc = DBGFR3FlowQueryStartBb(hFlow, &hBb); if (RT_SUCCESS(rc)) { bool fCallFound = false; for (uint32_t i = 0; i < DBGFR3FlowBbGetInstrCount(hBb) && RT_SUCCESS(rc); i++) { DBGFADDRESS AddrInsn; uint32_t cbInsn; rc = DBGFR3FlowBbQueryInstr(hBb, i, &AddrInsn, &cbInsn, NULL); if (RT_SUCCESS(rc)) { DBGFADDRESS AddrCall; if (dbgDiggerWinNtDbgPrintWrapperInsnIsCall(pThis, pUVM, &AddrInsn, &AddrCall)) { if (!fCallFound) { *pAddr = AddrCall; fCallFound = true; } else { LogRel(("DigWinNt/DbgPrint: nt!vDbgPrintEx contains multiple call instructions!\n")); rc = VERR_ALREADY_EXISTS; } } } } DBGFR3FlowBbRelease(hBb); } return rc; } /** * Tries to resolve and hook into the worker for all the DbgPrint like wrappers to be able * to gather debug information from the system. * * @returns nothing. * @param pThis The instance data. * @param pUVM The user mode VM handle. */ static void dbgDiggerWinNtDbgPrintHook(PDBGDIGGERWINNT pThis, PUVM pUVM) { /* * This is a multi step process: * 1. Try to resolve the address of vDbgPrint() (available since XP). * 2. Create a control flow graph from the code and verify the following assumptions: * 1. Only a single basic block. * 2. Just one call instruction. * @todo More? * 3. Get the address from the called worker * 4. Set a hardware breakpoint with our callback. */ RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, DBGF_AS_KERNEL); if (hAs != NIL_RTDBGAS) { RTDBGSYMBOL SymInfo; int rc = RTDbgAsSymbolByName(hAs, "nt!vDbgPrintEx", &SymInfo, NULL /*phMod*/); if (RT_SUCCESS(rc)) { DBGFADDRESS Addr; DBGFR3AddrFromFlat(pUVM, &Addr, (RTGCPTR)SymInfo.Value); LogRel(("DigWinNt/DbgPrint: nt!vDbgPrintEx resolved to %RGv\n", SymInfo.Value)); DBGFFLOW hCfg; rc = DBGFR3FlowCreate(pUVM, 0 /*idCpu*/, &Addr, 512 /*cbDisasmMax*/, 0 /*fFlagsFlow*/, DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED | DBGF_DISAS_FLAGS_DEFAULT_MODE, &hCfg); if (RT_SUCCESS(rc)) { /* Verify assumptions. */ if (DBGFR3FlowGetBbCount(hCfg) == 1) { rc = dbgDiggerWinNtDbgPrintResolveWorker(pThis, pUVM, hCfg, &Addr); if (RT_SUCCESS(rc)) { /* Try to hook the worker. */ LogRel(("DigWinNt/DbgPrint: Worker for nt!vDbgPrintEx resolved to %RGv\n", Addr.FlatPtr)); rc = DBGFR3BpOwnerCreate(pUVM, dbgDiggerWinNtDbgPrintHit, NULL /*pfnBpIoHit*/, &pThis->hBpOwnerDbgPrint); if (RT_SUCCESS(rc)) { rc = DBGFR3BpSetInt3Ex(pUVM, pThis->hBpOwnerDbgPrint, pThis, 0 /*idCpu*/, &Addr, DBGF_BP_F_DEFAULT, 0 /*iHitTrigger*/, 0 /*iHitDisable*/, &pThis->hBpDbgPrint); if (RT_SUCCESS(rc)) LogRel(("DigWinNt/DbgPrint: Hooked nt!vDbgPrintEx worker hBp=%#x\n", pThis->hBpDbgPrint)); else { LogRel(("DigWinNt/DbgPrint: Setting hardware breakpoint for nt!vDbgPrintEx worker failed with rc=%Rrc\n", rc)); int rc2 = DBGFR3BpOwnerDestroy(pUVM, pThis->hBpOwnerDbgPrint); pThis->hBpOwnerDbgPrint = NIL_DBGFBPOWNER; AssertRC(rc2); } } } /* else LogRel() already done */ } else LogRel(("DigWinNt/DbgPrint: Control flow graph for nt!vDbgPrintEx has more than one basic block (%u)\n", DBGFR3FlowGetBbCount(hCfg))); DBGFR3FlowRelease(hCfg); } else LogRel(("DigWinNt/DbgPrint: Failed to create control flow graph from nt!vDbgPrintEx rc=%Rrc\n", rc)); } else LogRel(("DigWinNt/DbgPrint: Failed to resolve nt!vDbgPrintEx -> rc=%Rrc\n", rc)); RTDbgAsRelease(hAs); } else LogRel(("DigWinNt/DbgPrint: Failed to resolve kernel address space handle\n")); } #endif /** * Tries to resolve the KPCR and KPCRB addresses for each vCPU. * * @returns nothing. * @param pThis The instance data. * @param pUVM The user mode VM handle. * @param pVMM The VMM function table. */ static void dbgDiggerWinNtResolveKpcr(PDBGDIGGERWINNT pThis, PUVM pUVM, PCVMMR3VTABLE pVMM) { /* * Getting at the KPCR and KPCRB is explained here: * https://www.geoffchappell.com/studies/windows/km/ntoskrnl/structs/kpcr.htm * Together with the available offsets from: * https://github.com/tpn/winsdk-10/blob/master/Include/10.0.16299.0/shared/ksamd64.inc#L883 * we can verify that the found addresses are valid by cross checking that the GDTR and self reference * match what we expect. */ VMCPUID cCpus = pVMM->pfnDBGFR3CpuGetCount(pUVM); pThis->paKpcrAddr = (PDBGFADDRESS)RTMemAllocZ(cCpus * 2 * sizeof(DBGFADDRESS)); if (RT_LIKELY(pThis->paKpcrAddr)) { pThis->paKpcrbAddr = &pThis->paKpcrAddr[cCpus]; /* Work each CPU, unexpected values in each CPU make the whole thing fail to play safe. */ int rc = VINF_SUCCESS; for (VMCPUID idCpu = 0; (idCpu < cCpus) && RT_SUCCESS(rc); idCpu++) { PDBGFADDRESS pKpcrAddr = &pThis->paKpcrAddr[idCpu]; PDBGFADDRESS pKpcrbAddr = &pThis->paKpcrbAddr[idCpu]; if (pThis->f32Bit) { /* Read FS base */ uint32_t GCPtrKpcrBase = 0; rc = pVMM->pfnDBGFR3RegCpuQueryU32(pUVM, idCpu, DBGFREG_FS_BASE, &GCPtrKpcrBase); if ( RT_SUCCESS(rc) && WINNT32_VALID_ADDRESS(GCPtrKpcrBase)) { /* * Read the start of the KPCR (@todo Probably move this to a global header) * and verify its content. */ struct { uint8_t abOoi[28]; /* Out of interest */ uint32_t GCPtrSelf; uint32_t GCPtrCurrentPrcb; uint32_t u32Irql; uint32_t u32Iir; uint32_t u32IirActive; uint32_t u32Idr; uint32_t GCPtrKdVersionBlock; uint32_t GCPtrIdt; uint32_t GCPtrGdt; uint32_t GCPtrTss; } Kpcr; LogFlow(("DigWinNt/KPCR[%u]: GS Base %RGv\n", idCpu, GCPtrKpcrBase)); pVMM->pfnDBGFR3AddrFromFlat(pUVM, pKpcrAddr, GCPtrKpcrBase); rc = pVMM->pfnDBGFR3MemRead(pUVM, idCpu, pKpcrAddr, &Kpcr, sizeof(Kpcr)); if (RT_SUCCESS(rc)) { uint32_t GCPtrGdt = 0; uint32_t GCPtrIdt = 0; rc = pVMM->pfnDBGFR3RegCpuQueryU32(pUVM, idCpu, DBGFREG_GDTR_BASE, &GCPtrGdt); if (RT_SUCCESS(rc)) rc = pVMM->pfnDBGFR3RegCpuQueryU32(pUVM, idCpu, DBGFREG_IDTR_BASE, &GCPtrIdt); if (RT_SUCCESS(rc)) { if ( Kpcr.GCPtrGdt == GCPtrGdt && Kpcr.GCPtrIdt == GCPtrIdt && Kpcr.GCPtrSelf == pKpcrAddr->FlatPtr) { pVMM->pfnDBGFR3AddrFromFlat(pUVM, pKpcrbAddr, Kpcr.GCPtrCurrentPrcb); LogRel(("DigWinNt/KPCR[%u]: KPCR=%RGv KPCRB=%RGv\n", idCpu, pKpcrAddr->FlatPtr, pKpcrbAddr->FlatPtr)); /* * Try to extract the NT build number from the KD version block if it exists, * the shared user data might have set it to 0. * * @todo We can use this method to get at the kern base and loaded module list if the other detection * method fails (seen with Windows 10 x86). * @todo On 32bit Windows the debugger data list is also always accessible this way contrary to * the amd64 version where it is only available with "/debug on" set. */ if (!pThis->NtBuildNumber) { NTKDVERSIONBLOCK KdVersBlock; DBGFADDRESS AddrKdVersBlock; pVMM->pfnDBGFR3AddrFromFlat(pUVM, &AddrKdVersBlock, Kpcr.GCPtrKdVersionBlock); rc = pVMM->pfnDBGFR3MemRead(pUVM, idCpu, &AddrKdVersBlock, &KdVersBlock, sizeof(KdVersBlock)); if (RT_SUCCESS(rc)) pThis->NtBuildNumber = KdVersBlock.MinorVersion; } } else LogRel(("DigWinNt/KPCR[%u]: KPCR validation error GDT=(%RGv vs %RGv) KPCR=(%RGv vs %RGv)\n", idCpu, Kpcr.GCPtrGdt, GCPtrGdt, Kpcr.GCPtrSelf, pKpcrAddr->FlatPtr)); } else LogRel(("DigWinNt/KPCR[%u]: Getting GDT or IDT base register failed with %Rrc\n", idCpu, rc)); } } else LogRel(("DigWinNt/KPCR[%u]: Getting FS base register failed with %Rrc (%RGv)\n", idCpu, rc, GCPtrKpcrBase)); } else { /* Read GS base which points to the base of the KPCR for each CPU. */ RTGCUINTPTR GCPtrTmp = 0; rc = pVMM->pfnDBGFR3RegCpuQueryU64(pUVM, idCpu, DBGFREG_GS_BASE, &GCPtrTmp); if ( RT_SUCCESS(rc) && !WINNT64_VALID_ADDRESS(GCPtrTmp)) { /* * Could be a user address when we stopped the VM right in usermode, * read the GS kernel base MSR instead. */ rc = pVMM->pfnDBGFR3RegCpuQueryU64(pUVM, idCpu, DBGFREG_MSR_K8_KERNEL_GS_BASE, &GCPtrTmp); } if ( RT_SUCCESS(rc) && WINNT64_VALID_ADDRESS(GCPtrTmp)) { LogFlow(("DigWinNt/KPCR[%u]: GS Base %RGv\n", idCpu, GCPtrTmp)); pVMM->pfnDBGFR3AddrFromFlat(pUVM, pKpcrAddr, GCPtrTmp); rc = pVMM->pfnDBGFR3RegCpuQueryU64(pUVM, idCpu, DBGFREG_GDTR_BASE, &GCPtrTmp); if (RT_SUCCESS(rc)) { /* * Read the start of the KPCR (@todo Probably move this to a global header) * and verify its content. */ struct { RTGCUINTPTR GCPtrGdt; RTGCUINTPTR GCPtrTss; RTGCUINTPTR GCPtrUserRsp; RTGCUINTPTR GCPtrSelf; RTGCUINTPTR GCPtrCurrentPrcb; } Kpcr; rc = pVMM->pfnDBGFR3MemRead(pUVM, idCpu, pKpcrAddr, &Kpcr, sizeof(Kpcr)); if (RT_SUCCESS(rc)) { if ( Kpcr.GCPtrGdt == GCPtrTmp && Kpcr.GCPtrSelf == pKpcrAddr->FlatPtr /** @todo && TSS */ ) { pVMM->pfnDBGFR3AddrFromFlat(pUVM, pKpcrbAddr, Kpcr.GCPtrCurrentPrcb); LogRel(("DigWinNt/KPCR[%u]: KPCR=%RGv KPCRB=%RGv\n", idCpu, pKpcrAddr->FlatPtr, pKpcrbAddr->FlatPtr)); } else LogRel(("DigWinNt/KPCR[%u]: KPCR validation error GDT=(%RGv vs %RGv) KPCR=(%RGv vs %RGv)\n", idCpu, Kpcr.GCPtrGdt, GCPtrTmp, Kpcr.GCPtrSelf, pKpcrAddr->FlatPtr)); } else LogRel(("DigWinNt/KPCR[%u]: Reading KPCR start at %RGv failed with %Rrc\n", idCpu, pKpcrAddr->FlatPtr, rc)); } else LogRel(("DigWinNt/KPCR[%u]: Getting GDT base register failed with %Rrc\n", idCpu, rc)); } else LogRel(("DigWinNt/KPCR[%u]: Getting GS base register failed with %Rrc\n", idCpu, rc)); } } if (RT_FAILURE(rc)) { LogRel(("DigWinNt/KPCR: Failed to detmine KPCR and KPCRB rc=%Rrc\n", rc)); RTMemFree(pThis->paKpcrAddr); pThis->paKpcrAddr = NULL; pThis->paKpcrbAddr = NULL; } } else LogRel(("DigWinNt/KPCR: Failed to allocate %u entries for the KPCR/KPCRB addresses\n", cCpus * 2)); } /** * Process a PE image found in guest memory. * * @param pThis The instance data. * @param pUVM The user mode VM handle. * @param pVMM The VMM function table. * @param pszName The module name. * @param pszFilename The image filename. * @param pImageAddr The image address. * @param cbImage The size of the image. */ static void dbgDiggerWinNtProcessImage(PDBGDIGGERWINNT pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, const char *pszName, const char *pszFilename, PCDBGFADDRESS pImageAddr, uint32_t cbImage) { LogFlow(("DigWinNt: %RGp %#x %s\n", pImageAddr->FlatPtr, cbImage, pszName)); /* * Do some basic validation first. */ if ( (cbImage < sizeof(IMAGE_NT_HEADERS64) && !pThis->fNt31) || cbImage >= _1M * 256) { Log(("DigWinNt: %s: Bad image size: %#x\n", pszName, cbImage)); return; } /* * Use the common in-memory module reader to create a debug module. */ RTERRINFOSTATIC ErrInfo; RTDBGMOD hDbgMod = NIL_RTDBGMOD; int rc = pVMM->pfnDBGFR3ModInMem(pUVM, pImageAddr, pThis->fNt31 ? DBGFMODINMEM_F_PE_NT31 : 0, pszName, pszFilename, pThis->f32Bit ? RTLDRARCH_X86_32 : RTLDRARCH_AMD64, cbImage, &hDbgMod, RTErrInfoInitStatic(&ErrInfo)); if (RT_SUCCESS(rc)) { /* * Tag the module. */ rc = RTDbgModSetTag(hDbgMod, DIG_WINNT_MOD_TAG); AssertRC(rc); /* * Link the module. */ RTDBGAS hAs = pVMM->pfnDBGFR3AsResolveAndRetain(pUVM, DBGF_AS_KERNEL); if (hAs != NIL_RTDBGAS) rc = RTDbgAsModuleLink(hAs, hDbgMod, pImageAddr->FlatPtr, RTDBGASLINK_FLAGS_REPLACE /*fFlags*/); else rc = VERR_INTERNAL_ERROR; RTDbgModRelease(hDbgMod); RTDbgAsRelease(hAs); } else if (RTErrInfoIsSet(&ErrInfo.Core)) Log(("DigWinNt: %s: DBGFR3ModInMem failed: %Rrc - %s\n", pszName, rc, ErrInfo.Core.pszMsg)); else Log(("DigWinNt: %s: DBGFR3ModInMem failed: %Rrc\n", pszName, rc)); } /** * Generate a debugger compatible module name from a filename. * * @returns Pointer to module name (doesn't need to be pszName). * @param pszFilename The source filename. * @param pszName Buffer to put the module name in. * @param cbName Buffer size. */ static const char *dbgDiggerWintNtFilenameToModuleName(const char *pszFilename, char *pszName, size_t cbName) { /* Skip to the filename part of the filename. :-) */ pszFilename = RTPathFilenameEx(pszFilename, RTPATH_STR_F_STYLE_DOS); /* We try use 'nt' for the kernel. */ if ( RTStrICmpAscii(pszFilename, "ntoskrnl.exe") == 0 || RTStrICmpAscii(pszFilename, "ntkrnlmp.exe") == 0) return "nt"; /* Drop the extension if .dll or .sys. */ size_t cchFilename = strlen(pszFilename); if ( cchFilename > 4 && pszFilename[cchFilename - 4] == '.') { if ( RTStrICmpAscii(&pszFilename[cchFilename - 4], ".sys") == 0 || RTStrICmpAscii(&pszFilename[cchFilename - 4], ".dll") == 0) cchFilename -= 4; } /* Copy and do replacements. */ if (cchFilename >= cbName) cchFilename = cbName - 1; size_t off; for (off = 0; off < cchFilename; off++) { char ch = pszFilename[off]; if (!RT_C_IS_ALNUM(ch)) ch = '_'; pszName[off] = ch; } pszName[off] = '\0'; return pszName; } /** * @interface_method_impl{DBGFOSIWINNT,pfnQueryVersion} */ static DECLCALLBACK(int) dbgDiggerWinNtIWinNt_QueryVersion(struct DBGFOSIWINNT *pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, uint32_t *puVersMajor, uint32_t *puVersMinor, uint32_t *puBuildNumber, bool *pf32Bit) { PDBGDIGGERWINNT pData = RT_FROM_MEMBER(pThis, DBGDIGGERWINNT, IWinNt); RT_NOREF(pUVM, pVMM); if (puVersMajor) *puVersMajor = pData->NtMajorVersion; if (puVersMinor) *puVersMinor = pData->NtMinorVersion; if (puBuildNumber) *puBuildNumber = pData->NtBuildNumber; if (pf32Bit) *pf32Bit = pData->f32Bit; return VINF_SUCCESS; } /** * @interface_method_impl{DBGFOSIWINNT,pfnQueryKernelPtrs} */ static DECLCALLBACK(int) dbgDiggerWinNtIWinNt_QueryKernelPtrs(struct DBGFOSIWINNT *pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, PRTGCUINTPTR pGCPtrKernBase, PRTGCUINTPTR pGCPtrPsLoadedModuleList) { PDBGDIGGERWINNT pData = RT_FROM_MEMBER(pThis, DBGDIGGERWINNT, IWinNt); RT_NOREF(pUVM, pVMM); *pGCPtrKernBase = pData->KernelAddr.FlatPtr; *pGCPtrPsLoadedModuleList = pData->PsLoadedModuleListAddr.FlatPtr; return VINF_SUCCESS; } /** * @interface_method_impl{DBGFOSIWINNT,pfnQueryKpcrForVCpu} */ static DECLCALLBACK(int) dbgDiggerWinNtIWinNt_QueryKpcrForVCpu(struct DBGFOSIWINNT *pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, VMCPUID idCpu, PRTGCUINTPTR pKpcr, PRTGCUINTPTR pKpcrb) { PDBGDIGGERWINNT pData = RT_FROM_MEMBER(pThis, DBGDIGGERWINNT, IWinNt); if (!pData->paKpcrAddr) return VERR_NOT_SUPPORTED; AssertReturn(idCpu < pVMM->pfnDBGFR3CpuGetCount(pUVM), VERR_INVALID_CPU_ID); if (pKpcr) *pKpcr = pData->paKpcrAddr[idCpu].FlatPtr; if (pKpcrb) *pKpcrb = pData->paKpcrbAddr[idCpu].FlatPtr; return VINF_SUCCESS; } /** * @interface_method_impl{DBGFOSIWINNT,pfnQueryCurThrdForVCpu} */ static DECLCALLBACK(int) dbgDiggerWinNtIWinNt_QueryCurThrdForVCpu(struct DBGFOSIWINNT *pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, VMCPUID idCpu, PRTGCUINTPTR pCurThrd) { PDBGDIGGERWINNT pData = RT_FROM_MEMBER(pThis, DBGDIGGERWINNT, IWinNt); if (!pData->paKpcrAddr) return VERR_NOT_SUPPORTED; AssertReturn(idCpu < pVMM->pfnDBGFR3CpuGetCount(pUVM), VERR_INVALID_CPU_ID); DBGFADDRESS AddrCurThrdPtr = pData->paKpcrbAddr[idCpu]; pVMM->pfnDBGFR3AddrAdd(&AddrCurThrdPtr, 0x08); /** @todo Make this prettier. */ return pVMM->pfnDBGFR3MemRead(pUVM, idCpu, &AddrCurThrdPtr, pCurThrd, sizeof(*pCurThrd)); } /** * @copydoc DBGFOSREG::pfnStackUnwindAssist */ static DECLCALLBACK(int) dbgDiggerWinNtStackUnwindAssist(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData, VMCPUID idCpu, PDBGFSTACKFRAME pFrame, PRTDBGUNWINDSTATE pState, PCCPUMCTX pInitialCtx, RTDBGAS hAs, uint64_t *puScratch) { Assert(pInitialCtx); /* * We want to locate trap frames here. The trap frame structure contains * the 64-bit IRET frame, so given unwind information it's easy to identify * using the return type and frame address. */ if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_64BIT) { /* * Is this a trap frame? If so, try read the trap frame. */ if ( pFrame->enmReturnType == RTDBGRETURNTYPE_IRET64 && !(pFrame->AddrFrame.FlatPtr & 0x7) && WINNT64_VALID_ADDRESS(pFrame->AddrFrame.FlatPtr) ) { KTRAP_FRAME_AMD64 TrapFrame; RT_ZERO(TrapFrame); uint64_t const uTrapFrameAddr = pFrame->AddrFrame.FlatPtr - RT_UOFFSETOF(KTRAP_FRAME_AMD64, ErrCdOrXcptFrameOrS); int rc = pState->pfnReadStack(pState, uTrapFrameAddr, sizeof(TrapFrame), &TrapFrame); if (RT_SUCCESS(rc)) { /* Valid? Not too much else we can check here (EFlags isn't reliable in manually construct frames). */ if (TrapFrame.ExceptionActive <= 2) { pFrame->fFlags |= DBGFSTACKFRAME_FLAGS_TRAP_FRAME; /* * Add sure 'register' information from the frame to the frame. * * To avoid code duplication, we do this in two steps in a loop. * The first iteration only figures out how many registers we're * going to save and allocates room for them. The second iteration * does the actual adding. */ uint32_t cRegs = pFrame->cSureRegs; PDBGFREGVALEX paSureRegs = NULL; #define ADD_REG_NAMED(a_Type, a_ValMemb, a_Value, a_pszName) do { \ if (paSureRegs) \ { \ paSureRegs[iReg].pszName = a_pszName;\ paSureRegs[iReg].enmReg = DBGFREG_END; \ paSureRegs[iReg].enmType = a_Type; \ paSureRegs[iReg].Value.a_ValMemb = (a_Value); \ } \ iReg++; \ } while (0) #define MAYBE_ADD_GREG(a_Value, a_enmReg, a_idxReg) do { \ if (!(pState->u.x86.Loaded.s.fRegs & RT_BIT(a_idxReg))) \ { \ if (paSureRegs) \ { \ pState->u.x86.Loaded.s.fRegs |= RT_BIT(a_idxReg); \ pState->u.x86.auRegs[a_idxReg] = (a_Value); \ paSureRegs[iReg].Value.u64 = (a_Value); \ paSureRegs[iReg].enmReg = a_enmReg; \ paSureRegs[iReg].enmType = DBGFREGVALTYPE_U64; \ paSureRegs[iReg].pszName = NULL; \ } \ iReg++; \ } \ } while (0) for (unsigned iLoop = 0; iLoop < 2; iLoop++) { uint32_t iReg = pFrame->cSureRegs; ADD_REG_NAMED(DBGFREGVALTYPE_U64, u64, uTrapFrameAddr, "TrapFrame"); ADD_REG_NAMED(DBGFREGVALTYPE_U8, u8, TrapFrame.ExceptionActive, "ExceptionActive"); if (TrapFrame.ExceptionActive == 0) { ADD_REG_NAMED(DBGFREGVALTYPE_U8, u8, TrapFrame.PreviousIrql, "PrevIrql"); ADD_REG_NAMED(DBGFREGVALTYPE_U8, u8, (uint8_t)TrapFrame.ErrCdOrXcptFrameOrS, "IntNo"); } else if ( TrapFrame.ExceptionActive == 1 && TrapFrame.FaultIndicator == ((TrapFrame.ErrCdOrXcptFrameOrS >> 1) & 0x9)) ADD_REG_NAMED(DBGFREGVALTYPE_U64, u64, TrapFrame.FaultAddrOrCtxRecOrTS, "cr2-probably"); if (TrapFrame.SegCs & X86_SEL_RPL) ADD_REG_NAMED(DBGFREGVALTYPE_U8, u8, 1, "UserMode"); else ADD_REG_NAMED(DBGFREGVALTYPE_U8, u8, 1, "KernelMode"); if (TrapFrame.ExceptionActive <= 1) { MAYBE_ADD_GREG(TrapFrame.Rax, DBGFREG_RAX, X86_GREG_xAX); MAYBE_ADD_GREG(TrapFrame.Rcx, DBGFREG_RCX, X86_GREG_xCX); MAYBE_ADD_GREG(TrapFrame.Rdx, DBGFREG_RDX, X86_GREG_xDX); MAYBE_ADD_GREG(TrapFrame.R8, DBGFREG_R8, X86_GREG_x8); MAYBE_ADD_GREG(TrapFrame.R9, DBGFREG_R9, X86_GREG_x9); MAYBE_ADD_GREG(TrapFrame.R10, DBGFREG_R10, X86_GREG_x10); MAYBE_ADD_GREG(TrapFrame.R11, DBGFREG_R11, X86_GREG_x11); } else if (TrapFrame.ExceptionActive == 2) { MAYBE_ADD_GREG(TrapFrame.Rbx, DBGFREG_RBX, X86_GREG_xBX); MAYBE_ADD_GREG(TrapFrame.Rsi, DBGFREG_RSI, X86_GREG_xSI); MAYBE_ADD_GREG(TrapFrame.Rdi, DBGFREG_RDI, X86_GREG_xDI); } // MAYBE_ADD_GREG(TrapFrame.Rbp, DBGFREG_RBP, X86_GREG_xBP); - KiInterrupt[Sub]Dispatch* may leave this invalid. /* Done? */ if (iLoop > 0) { Assert(cRegs == iReg); break; } /* Resize the array, zeroing the extension. */ if (pFrame->cSureRegs) paSureRegs = (PDBGFREGVALEX)pVMM->pfnMMR3HeapRealloc(pFrame->paSureRegs, iReg * sizeof(paSureRegs[0])); else paSureRegs = (PDBGFREGVALEX)pVMM->pfnMMR3HeapAllocU(pUVM, MM_TAG_DBGF_STACK, iReg * sizeof(paSureRegs[0])); AssertReturn(paSureRegs, VERR_NO_MEMORY); pFrame->paSureRegs = paSureRegs; RT_BZERO(&paSureRegs[pFrame->cSureRegs], (iReg - pFrame->cSureRegs) * sizeof(paSureRegs[0])); cRegs = iReg; } #undef ADD_REG_NAMED #undef MAYBE_ADD_GREG /* Commit the register update. */ pFrame->cSureRegs = cRegs; } } } } RT_NOREF(pUVM, pVMM, pvData, idCpu, hAs, pInitialCtx, puScratch); return VINF_SUCCESS; } /** * @copydoc DBGFOSREG::pfnQueryInterface */ static DECLCALLBACK(void *) dbgDiggerWinNtQueryInterface(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData, DBGFOSINTERFACE enmIf) { RT_NOREF(pUVM, pVMM); PDBGDIGGERWINNT pThis = (PDBGDIGGERWINNT)pvData; switch (enmIf) { case DBGFOSINTERFACE_WINNT: return &pThis->IWinNt; default: return NULL; } } /** * @copydoc DBGFOSREG::pfnQueryVersion */ static DECLCALLBACK(int) dbgDiggerWinNtQueryVersion(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData, char *pszVersion, size_t cchVersion) { RT_NOREF(pUVM, pVMM); PDBGDIGGERWINNT pThis = (PDBGDIGGERWINNT)pvData; Assert(pThis->fValid); const char *pszNtProductType; switch (pThis->NtProductType) { case kNtProductType_WinNt: pszNtProductType = "-WinNT"; break; case kNtProductType_LanManNt: pszNtProductType = "-LanManNT"; break; case kNtProductType_Server: pszNtProductType = "-Server"; break; default: pszNtProductType = ""; break; } RTStrPrintf(pszVersion, cchVersion, "%u.%u-%s%s (BuildNumber %u)", pThis->NtMajorVersion, pThis->NtMinorVersion, pThis->f32Bit ? "x86" : "AMD64", pszNtProductType, pThis->NtBuildNumber); return VINF_SUCCESS; } /** * @copydoc DBGFOSREG::pfnTerm */ static DECLCALLBACK(void) dbgDiggerWinNtTerm(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData) { RT_NOREF1(pUVM); PDBGDIGGERWINNT pThis = (PDBGDIGGERWINNT)pvData; Assert(pThis->fValid); #ifdef VBOX_DEBUGGER_WITH_WIN_DBG_PRINT_HOOKING if (pThis->hBpDbgPrint != NIL_DBGFBP) { int rc = DBGFR3BpClear(pUVM, pThis->hBpDbgPrint); AssertRC(rc); pThis->hBpDbgPrint = NIL_DBGFBP; } if (pThis->hBpOwnerDbgPrint != NIL_DBGFBPOWNER) { int rc = DBGFR3BpOwnerDestroy(pUVM, pThis->hBpOwnerDbgPrint); AssertRC(rc); pThis->hBpOwnerDbgPrint = NIL_DBGFBPOWNER; } #endif /* * As long as we're using our private LDR reader implementation, * we must unlink and ditch the modules we created. */ RTDBGAS hDbgAs = pVMM->pfnDBGFR3AsResolveAndRetain(pUVM, DBGF_AS_KERNEL); if (hDbgAs != NIL_RTDBGAS) { uint32_t iMod = RTDbgAsModuleCount(hDbgAs); while (iMod-- > 0) { RTDBGMOD hMod = RTDbgAsModuleByIndex(hDbgAs, iMod); if (hMod != NIL_RTDBGMOD) { if (RTDbgModGetTag(hMod) == DIG_WINNT_MOD_TAG) { int rc = RTDbgAsModuleUnlink(hDbgAs, hMod); AssertRC(rc); } RTDbgModRelease(hMod); } } RTDbgAsRelease(hDbgAs); } if (pThis->paKpcrAddr) RTMemFree(pThis->paKpcrAddr); /* pThis->paKpcrbAddr comes from the same allocation as pThis->paKpcrAddr. */ pThis->paKpcrAddr = NULL; pThis->paKpcrbAddr = NULL; pThis->fValid = false; } /** * @copydoc DBGFOSREG::pfnRefresh */ static DECLCALLBACK(int) dbgDiggerWinNtRefresh(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData) { PDBGDIGGERWINNT pThis = (PDBGDIGGERWINNT)pvData; NOREF(pThis); Assert(pThis->fValid); /* * For now we'll flush and reload everything. */ dbgDiggerWinNtTerm(pUVM, pVMM, pvData); return dbgDiggerWinNtInit(pUVM, pVMM, pvData); } /** * @copydoc DBGFOSREG::pfnInit */ static DECLCALLBACK(int) dbgDiggerWinNtInit(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData) { PDBGDIGGERWINNT pThis = (PDBGDIGGERWINNT)pvData; Assert(!pThis->fValid); union { uint8_t au8[0x2000]; RTUTF16 wsz[0x2000/2]; NTKUSERSHAREDDATA UserSharedData; } u; DBGFADDRESS Addr; int rc; /* * Figure the NT version. */ pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, pThis->f32Bit ? NTKUSERSHAREDDATA_WINNT32 : NTKUSERSHAREDDATA_WINNT64); rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &Addr, &u, PAGE_SIZE); if (RT_SUCCESS(rc)) { pThis->NtProductType = u.UserSharedData.ProductTypeIsValid && u.UserSharedData.NtProductType <= kNtProductType_Server ? (NTPRODUCTTYPE)u.UserSharedData.NtProductType : kNtProductType_Invalid; pThis->NtMajorVersion = u.UserSharedData.NtMajorVersion; pThis->NtMinorVersion = u.UserSharedData.NtMinorVersion; pThis->NtBuildNumber = u.UserSharedData.NtBuildNumber; } else if (pThis->fNt31) { pThis->NtProductType = kNtProductType_WinNt; pThis->NtMajorVersion = 3; pThis->NtMinorVersion = 1; pThis->NtBuildNumber = 0; } else { Log(("DigWinNt: Error reading KUSER_SHARED_DATA: %Rrc\n", rc)); return rc; } /* * Dig out the module chain. */ DBGFADDRESS AddrPrev = pThis->PsLoadedModuleListAddr; Addr = pThis->KernelMteAddr; do { /* Read the validate the MTE. */ NTMTE Mte; rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &Addr, &Mte, pThis->f32Bit ? sizeof(Mte.vX_32) : sizeof(Mte.vX_64)); if (RT_FAILURE(rc)) break; if (WINNT_UNION(pThis, &Mte, InLoadOrderLinks.Blink) != AddrPrev.FlatPtr) { Log(("DigWinNt: Bad Mte At %RGv - backpointer\n", Addr.FlatPtr)); break; } if (!WINNT_VALID_ADDRESS(pThis, WINNT_UNION(pThis, &Mte, InLoadOrderLinks.Flink)) ) { Log(("DigWinNt: Bad Mte at %RGv - forward pointer\n", Addr.FlatPtr)); break; } if (!WINNT_VALID_ADDRESS(pThis, WINNT_UNION(pThis, &Mte, BaseDllName.Buffer))) { Log(("DigWinNt: Bad Mte at %RGv - BaseDllName=%llx\n", Addr.FlatPtr, WINNT_UNION(pThis, &Mte, BaseDllName.Buffer))); break; } if (!WINNT_VALID_ADDRESS(pThis, WINNT_UNION(pThis, &Mte, FullDllName.Buffer))) { Log(("DigWinNt: Bad Mte at %RGv - FullDllName=%llx\n", Addr.FlatPtr, WINNT_UNION(pThis, &Mte, FullDllName.Buffer))); break; } if (!WINNT_VALID_ADDRESS(pThis, WINNT_UNION(pThis, &Mte, DllBase))) { Log(("DigWinNt: Bad Mte at %RGv - DllBase=%llx\n", Addr.FlatPtr, WINNT_UNION(pThis, &Mte, DllBase) )); break; } uint32_t const cbImageMte = !pThis->fNt31 ? WINNT_UNION(pThis, &Mte, SizeOfImage) : 0; if ( !pThis->fNt31 && ( cbImageMte > _256M || WINNT_UNION(pThis, &Mte, EntryPoint) - WINNT_UNION(pThis, &Mte, DllBase) > cbImageMte) ) { Log(("DigWinNt: Bad Mte at %RGv - EntryPoint=%llx SizeOfImage=%x DllBase=%llx\n", Addr.FlatPtr, WINNT_UNION(pThis, &Mte, EntryPoint), cbImageMte, WINNT_UNION(pThis, &Mte, DllBase))); break; } /* Read the full name. */ DBGFADDRESS AddrName; pVMM->pfnDBGFR3AddrFromFlat(pUVM, &AddrName, WINNT_UNION(pThis, &Mte, FullDllName.Buffer)); uint16_t cbName = WINNT_UNION(pThis, &Mte, FullDllName.Length); if (cbName < sizeof(u)) rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &AddrName, &u, cbName); else rc = VERR_OUT_OF_RANGE; if (RT_FAILURE(rc)) { pVMM->pfnDBGFR3AddrFromFlat(pUVM, &AddrName, WINNT_UNION(pThis, &Mte, BaseDllName.Buffer)); cbName = WINNT_UNION(pThis, &Mte, BaseDllName.Length); if (cbName < sizeof(u)) rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &AddrName, &u, cbName); else rc = VERR_OUT_OF_RANGE; } if (RT_SUCCESS(rc)) { u.wsz[cbName / 2] = '\0'; char *pszFilename; rc = RTUtf16ToUtf8(u.wsz, &pszFilename); if (RT_SUCCESS(rc)) { char szModName[128]; const char *pszModName = dbgDiggerWintNtFilenameToModuleName(pszFilename, szModName, sizeof(szModName)); /* Read the start of the PE image and pass it along to a worker. */ DBGFADDRESS ImageAddr; pVMM->pfnDBGFR3AddrFromFlat(pUVM, &ImageAddr, WINNT_UNION(pThis, &Mte, DllBase)); dbgDiggerWinNtProcessImage(pThis, pUVM, pVMM, pszModName, pszFilename, &ImageAddr, cbImageMte); RTStrFree(pszFilename); } } /* next */ AddrPrev = Addr; pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, WINNT_UNION(pThis, &Mte, InLoadOrderLinks.Flink)); } while ( Addr.FlatPtr != pThis->KernelMteAddr.FlatPtr && Addr.FlatPtr != pThis->PsLoadedModuleListAddr.FlatPtr); /* Try resolving the KPCR and KPCRB addresses for each vCPU. */ dbgDiggerWinNtResolveKpcr(pThis, pUVM, pVMM); #ifdef VBOX_DEBUGGER_WITH_WIN_DBG_PRINT_HOOKING /* Try to hook into the DbgPrint/vDbgPrint... code so we can gather information from the drivers. */ dbgDiggerWinNtDbgPrintHook(pThis, pUVM); #endif pThis->fValid = true; return VINF_SUCCESS; } /** * @copydoc DBGFOSREG::pfnProbe */ static DECLCALLBACK(bool) dbgDiggerWinNtProbe(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData) { PDBGDIGGERWINNT pThis = (PDBGDIGGERWINNT)pvData; DBGFADDRESS Addr; union { uint8_t au8[8192]; uint16_t au16[8192/2]; uint32_t au32[8192/4]; IMAGE_DOS_HEADER MzHdr; RTUTF16 wsz[8192/2]; X86DESCGATE a32Gates[X86_XCPT_PF + 1]; X86DESC64GATE a64Gates[X86_XCPT_PF + 1]; } u; union { NTMTE32 v32; NTMTE64 v64; } uMte, uMte2, uMte3; /* * NT only runs in protected or long mode. */ CPUMMODE const enmMode = pVMM->pfnDBGFR3CpuGetMode(pUVM, 0 /*idCpu*/); if (enmMode != CPUMMODE_PROTECTED && enmMode != CPUMMODE_LONG) return false; bool const f64Bit = enmMode == CPUMMODE_LONG; uint64_t const uStart = f64Bit ? UINT64_C(0xffff080000000000) : UINT32_C(0x80001000); uint64_t const uEnd = f64Bit ? UINT64_C(0xffffffffffff0000) : UINT32_C(0xffff0000); /* * To approximately locate the kernel we examine the IDTR handlers. * * The exception/trap/fault handlers are all in NT kernel image, we pick * KiPageFault here. */ uint64_t uIdtrBase = 0; uint16_t uIdtrLimit = 0; int rc = pVMM->pfnDBGFR3RegCpuQueryXdtr(pUVM, 0, DBGFREG_IDTR, &uIdtrBase, &uIdtrLimit); AssertRCReturn(rc, false); const uint16_t cbMinIdtr = (X86_XCPT_PF + 1) * (f64Bit ? sizeof(X86DESC64GATE) : sizeof(X86DESCGATE)); if (uIdtrLimit < cbMinIdtr) return false; rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, uIdtrBase), &u, cbMinIdtr); if (RT_FAILURE(rc)) return false; uint64_t uKrnlStart = uStart; uint64_t uKrnlEnd = uEnd; if (f64Bit) { uint64_t uHandler = u.a64Gates[X86_XCPT_PF].u16OffsetLow | ((uint32_t)u.a64Gates[X86_XCPT_PF].u16OffsetHigh << 16) | ((uint64_t)u.a64Gates[X86_XCPT_PF].u32OffsetTop << 32); if (uHandler < uStart || uHandler > uEnd) return false; uKrnlStart = (uHandler & ~(uint64_t)_4M) - _512M; uKrnlEnd = (uHandler + (uint64_t)_4M) & ~(uint64_t)_4M; } else { uint32_t uHandler = RT_MAKE_U32(u.a32Gates[X86_XCPT_PF].u16OffsetLow, u.a32Gates[X86_XCPT_PF].u16OffsetHigh); if (uHandler < uStart || uHandler > uEnd) return false; uKrnlStart = (uHandler & ~(uint64_t)_4M) - _64M; uKrnlEnd = (uHandler + (uint64_t)_4M) & ~(uint64_t)_4M; } /* * Look for the PAGELK section name that seems to be a part of all kernels. * Then try find the module table entry for it. Since it's the first entry * in the PsLoadedModuleList we can easily validate the list head and report * success. * * Note! We ASSUME the section name is 8 byte aligned. */ DBGFADDRESS KernelAddr; for (pVMM->pfnDBGFR3AddrFromFlat(pUVM, &KernelAddr, uKrnlStart); KernelAddr.FlatPtr < uKrnlEnd; KernelAddr.FlatPtr += PAGE_SIZE) { bool fNt31 = false; DBGFADDRESS const RetryAddress = KernelAddr; rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /*idCpu*/, &KernelAddr, uEnd - KernelAddr.FlatPtr, 8, "PAGELK\0", sizeof("PAGELK\0"), &KernelAddr); if ( rc == VERR_DBGF_MEM_NOT_FOUND && enmMode != CPUMMODE_LONG) { /* NT3.1 didn't have a PAGELK section, so look for _TEXT instead. The following VirtualSize is zero, so check for that too. */ rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /*idCpu*/, &RetryAddress, uEnd - RetryAddress.FlatPtr, 8, "_TEXT\0\0\0\0\0\0", sizeof("_TEXT\0\0\0\0\0\0"), &KernelAddr); fNt31 = true; } if (RT_FAILURE(rc)) break; pVMM->pfnDBGFR3AddrSub(&KernelAddr, KernelAddr.FlatPtr & PAGE_OFFSET_MASK); /* MZ + PE header. */ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &KernelAddr, &u, sizeof(u)); if ( RT_SUCCESS(rc) && u.MzHdr.e_magic == IMAGE_DOS_SIGNATURE && !(u.MzHdr.e_lfanew & 0x7) && u.MzHdr.e_lfanew >= 0x080 && u.MzHdr.e_lfanew <= 0x400) /* W8 is at 0x288*/ { if (enmMode != CPUMMODE_LONG) { IMAGE_NT_HEADERS32 const *pHdrs = (IMAGE_NT_HEADERS32 const *)&u.au8[u.MzHdr.e_lfanew]; if ( pHdrs->Signature == IMAGE_NT_SIGNATURE && pHdrs->FileHeader.Machine == IMAGE_FILE_MACHINE_I386 && pHdrs->FileHeader.SizeOfOptionalHeader == sizeof(pHdrs->OptionalHeader) && pHdrs->FileHeader.NumberOfSections >= 10 /* the kernel has lots */ && (pHdrs->FileHeader.Characteristics & (IMAGE_FILE_EXECUTABLE_IMAGE | IMAGE_FILE_DLL)) == IMAGE_FILE_EXECUTABLE_IMAGE && pHdrs->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC && pHdrs->OptionalHeader.NumberOfRvaAndSizes == IMAGE_NUMBEROF_DIRECTORY_ENTRIES ) { /* Find the MTE. */ RT_ZERO(uMte); uMte.v32.DllBase = KernelAddr.FlatPtr; uMte.v32.EntryPoint = KernelAddr.FlatPtr + pHdrs->OptionalHeader.AddressOfEntryPoint; uMte.v32.SizeOfImage = !fNt31 ? pHdrs->OptionalHeader.SizeOfImage : 0; /* NT 3.1 didn't set the size. */ DBGFADDRESS HitAddr; rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /*idCpu*/, &KernelAddr, uEnd - KernelAddr.FlatPtr, 4 /*align*/, &uMte.v32.DllBase, 3 * sizeof(uint32_t), &HitAddr); while (RT_SUCCESS(rc)) { /* check the name. */ DBGFADDRESS MteAddr = HitAddr; rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrSub(&MteAddr, RT_OFFSETOF(NTMTE32, DllBase)), &uMte2.v32, sizeof(uMte2.v32)); if ( RT_SUCCESS(rc) && uMte2.v32.DllBase == uMte.v32.DllBase && uMte2.v32.EntryPoint == uMte.v32.EntryPoint && uMte2.v32.SizeOfImage == uMte.v32.SizeOfImage && WINNT32_VALID_ADDRESS(uMte2.v32.InLoadOrderLinks.Flink) && WINNT32_VALID_ADDRESS(uMte2.v32.BaseDllName.Buffer) && WINNT32_VALID_ADDRESS(uMte2.v32.FullDllName.Buffer) && uMte2.v32.BaseDllName.Length <= 128 && uMte2.v32.FullDllName.Length <= 260 ) { rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, uMte2.v32.BaseDllName.Buffer), u.wsz, uMte2.v32.BaseDllName.Length); u.wsz[uMte2.v32.BaseDllName.Length / 2] = '\0'; if ( RT_SUCCESS(rc) && ( !RTUtf16ICmp(u.wsz, g_wszKernelNames[0]) /* || !RTUtf16ICmp(u.wsz, g_wszKernelNames[1]) */ ) ) { rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, uMte2.v32.InLoadOrderLinks.Blink), &uMte3.v32, RT_SIZEOFMEMB(NTMTE32, InLoadOrderLinks)); if ( RT_SUCCESS(rc) && uMte3.v32.InLoadOrderLinks.Flink == MteAddr.FlatPtr && WINNT32_VALID_ADDRESS(uMte3.v32.InLoadOrderLinks.Blink) ) { Log(("DigWinNt: MteAddr=%RGv KernelAddr=%RGv SizeOfImage=%x &PsLoadedModuleList=%RGv (32-bit)\n", MteAddr.FlatPtr, KernelAddr.FlatPtr, uMte2.v32.SizeOfImage, Addr.FlatPtr)); pThis->KernelAddr = KernelAddr; pThis->KernelMteAddr = MteAddr; pThis->PsLoadedModuleListAddr = Addr; pThis->f32Bit = true; pThis->fNt31 = fNt31; return true; } } else if (RT_SUCCESS(rc)) { Log2(("DigWinNt: Wrong module: MteAddr=%RGv ImageAddr=%RGv SizeOfImage=%#x '%ls'\n", MteAddr.FlatPtr, KernelAddr.FlatPtr, uMte2.v32.SizeOfImage, u.wsz)); break; /* Not NT kernel */ } } /* next */ pVMM->pfnDBGFR3AddrAdd(&HitAddr, 4); if (HitAddr.FlatPtr < uEnd) rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /*idCpu*/, &HitAddr, uEnd - HitAddr.FlatPtr, 4 /*align*/, &uMte.v32.DllBase, 3 * sizeof(uint32_t), &HitAddr); else rc = VERR_DBGF_MEM_NOT_FOUND; } } } else { IMAGE_NT_HEADERS64 const *pHdrs = (IMAGE_NT_HEADERS64 const *)&u.au8[u.MzHdr.e_lfanew]; if ( pHdrs->Signature == IMAGE_NT_SIGNATURE && pHdrs->FileHeader.Machine == IMAGE_FILE_MACHINE_AMD64 && pHdrs->FileHeader.SizeOfOptionalHeader == sizeof(pHdrs->OptionalHeader) && pHdrs->FileHeader.NumberOfSections >= 10 /* the kernel has lots */ && (pHdrs->FileHeader.Characteristics & (IMAGE_FILE_EXECUTABLE_IMAGE | IMAGE_FILE_DLL)) == IMAGE_FILE_EXECUTABLE_IMAGE && pHdrs->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR64_MAGIC && pHdrs->OptionalHeader.NumberOfRvaAndSizes == IMAGE_NUMBEROF_DIRECTORY_ENTRIES ) { /* Find the MTE. */ RT_ZERO(uMte.v64); uMte.v64.DllBase = KernelAddr.FlatPtr; uMte.v64.EntryPoint = KernelAddr.FlatPtr + pHdrs->OptionalHeader.AddressOfEntryPoint; uMte.v64.SizeOfImage = pHdrs->OptionalHeader.SizeOfImage; DBGFADDRESS ScanAddr; DBGFADDRESS HitAddr; rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &ScanAddr, uStart), uEnd - uStart, 8 /*align*/, &uMte.v64.DllBase, 5 * sizeof(uint32_t), &HitAddr); while (RT_SUCCESS(rc)) { /* Read the start of the MTE and check some basic members. */ DBGFADDRESS MteAddr = HitAddr; rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrSub(&MteAddr, RT_OFFSETOF(NTMTE64, DllBase)), &uMte2.v64, sizeof(uMte2.v64)); if ( RT_SUCCESS(rc) && uMte2.v64.DllBase == uMte.v64.DllBase && uMte2.v64.EntryPoint == uMte.v64.EntryPoint && uMte2.v64.SizeOfImage == uMte.v64.SizeOfImage && WINNT64_VALID_ADDRESS(uMte2.v64.InLoadOrderLinks.Flink) && WINNT64_VALID_ADDRESS(uMte2.v64.BaseDllName.Buffer) && WINNT64_VALID_ADDRESS(uMte2.v64.FullDllName.Buffer) && uMte2.v64.BaseDllName.Length <= 128 && uMte2.v64.FullDllName.Length <= 260 ) { /* Try read the base name and compare with known NT kernel names. */ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, uMte2.v64.BaseDllName.Buffer), u.wsz, uMte2.v64.BaseDllName.Length); u.wsz[uMte2.v64.BaseDllName.Length / 2] = '\0'; if ( RT_SUCCESS(rc) && ( !RTUtf16ICmp(u.wsz, g_wszKernelNames[0]) /* || !RTUtf16ICmp(u.wsz, g_wszKernelNames[1]) */ ) ) { /* Read the link entry of the previous entry in the list and check that its forward pointer points at the MTE we've found. */ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, uMte2.v64.InLoadOrderLinks.Blink), &uMte3.v64, RT_SIZEOFMEMB(NTMTE64, InLoadOrderLinks)); if ( RT_SUCCESS(rc) && uMte3.v64.InLoadOrderLinks.Flink == MteAddr.FlatPtr && WINNT64_VALID_ADDRESS(uMte3.v64.InLoadOrderLinks.Blink) ) { Log(("DigWinNt: MteAddr=%RGv KernelAddr=%RGv SizeOfImage=%x &PsLoadedModuleList=%RGv (32-bit)\n", MteAddr.FlatPtr, KernelAddr.FlatPtr, uMte2.v64.SizeOfImage, Addr.FlatPtr)); pThis->KernelAddr = KernelAddr; pThis->KernelMteAddr = MteAddr; pThis->PsLoadedModuleListAddr = Addr; pThis->f32Bit = false; pThis->fNt31 = false; return true; } } else if (RT_SUCCESS(rc)) { Log2(("DigWinNt: Wrong module: MteAddr=%RGv ImageAddr=%RGv SizeOfImage=%#x '%ls'\n", MteAddr.FlatPtr, KernelAddr.FlatPtr, uMte2.v64.SizeOfImage, u.wsz)); break; /* Not NT kernel */ } } /* next */ pVMM->pfnDBGFR3AddrAdd(&HitAddr, 8); if (HitAddr.FlatPtr < uEnd) rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /*idCpu*/, &HitAddr, uEnd - HitAddr.FlatPtr, 8 /*align*/, &uMte.v64.DllBase, 3 * sizeof(uint32_t), &HitAddr); else rc = VERR_DBGF_MEM_NOT_FOUND; } } } } } return false; } /** * @copydoc DBGFOSREG::pfnDestruct */ static DECLCALLBACK(void) dbgDiggerWinNtDestruct(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData) { RT_NOREF(pUVM, pVMM, pvData); } /** * @copydoc DBGFOSREG::pfnConstruct */ static DECLCALLBACK(int) dbgDiggerWinNtConstruct(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData) { RT_NOREF(pUVM, pVMM); PDBGDIGGERWINNT pThis = (PDBGDIGGERWINNT)pvData; pThis->fValid = false; pThis->f32Bit = false; pThis->enmVer = DBGDIGGERWINNTVER_UNKNOWN; pThis->IWinNt.u32Magic = DBGFOSIWINNT_MAGIC; pThis->IWinNt.pfnQueryVersion = dbgDiggerWinNtIWinNt_QueryVersion; pThis->IWinNt.pfnQueryKernelPtrs = dbgDiggerWinNtIWinNt_QueryKernelPtrs; pThis->IWinNt.pfnQueryKpcrForVCpu = dbgDiggerWinNtIWinNt_QueryKpcrForVCpu; pThis->IWinNt.pfnQueryCurThrdForVCpu = dbgDiggerWinNtIWinNt_QueryCurThrdForVCpu; pThis->IWinNt.u32EndMagic = DBGFOSIWINNT_MAGIC; #ifdef VBOX_DEBUGGER_WITH_WIN_DBG_PRINT_HOOKING pThis->hBpDbgPrint = NIL_DBGFBP; pThis->hBpOwnerDbgPrint = NIL_DBGFBPOWNER; #endif return VINF_SUCCESS; } const DBGFOSREG g_DBGDiggerWinNt = { /* .u32Magic = */ DBGFOSREG_MAGIC, /* .fFlags = */ 0, /* .cbData = */ sizeof(DBGDIGGERWINNT), /* .szName = */ "WinNT", /* .pfnConstruct = */ dbgDiggerWinNtConstruct, /* .pfnDestruct = */ dbgDiggerWinNtDestruct, /* .pfnProbe = */ dbgDiggerWinNtProbe, /* .pfnInit = */ dbgDiggerWinNtInit, /* .pfnRefresh = */ dbgDiggerWinNtRefresh, /* .pfnTerm = */ dbgDiggerWinNtTerm, /* .pfnQueryVersion = */ dbgDiggerWinNtQueryVersion, /* .pfnQueryInterface = */ dbgDiggerWinNtQueryInterface, /* .pfnStackUnwindAssist = */ dbgDiggerWinNtStackUnwindAssist, /* .u32EndMagic = */ DBGFOSREG_MAGIC };