VirtualBox

source: vbox/trunk/src/VBox/Devices/Audio/DevHDA.cpp@ 74900

Last change on this file since 74900 was 74067, checked in by vboxsync, 6 years ago

Audio/HDA: Implemented hdaR3MixerAddDrv() / hdaR3MixerRemoveDrv() and added the ability to (re-)set the recording source automatically when a driver get detached at runtime.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 194.7 KB
Line 
1/* $Id: DevHDA.cpp 74067 2018-09-04 13:22:49Z vboxsync $ */
2/** @file
3 * DevHDA.cpp - VBox Intel HD Audio Controller.
4 *
5 * Implemented against the specifications found in "High Definition Audio
6 * Specification", Revision 1.0a June 17, 2010, and "Intel I/O Controller
7 * HUB 6 (ICH6) Family, Datasheet", document number 301473-002.
8 */
9
10/*
11 * Copyright (C) 2006-2018 Oracle Corporation
12 *
13 * This file is part of VirtualBox Open Source Edition (OSE), as
14 * available from http://www.virtualbox.org. This file is free software;
15 * you can redistribute it and/or modify it under the terms of the GNU
16 * General Public License (GPL) as published by the Free Software
17 * Foundation, in version 2 as it comes in the "COPYING" file of the
18 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
19 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
20 */
21
22
23/*********************************************************************************************************************************
24* Header Files *
25*********************************************************************************************************************************/
26#define LOG_GROUP LOG_GROUP_DEV_HDA
27#include <VBox/log.h>
28
29#include <VBox/vmm/pdmdev.h>
30#include <VBox/vmm/pdmaudioifs.h>
31#include <VBox/version.h>
32#include <VBox/AssertGuest.h>
33
34#include <iprt/assert.h>
35#include <iprt/asm.h>
36#include <iprt/asm-math.h>
37#include <iprt/file.h>
38#include <iprt/list.h>
39#ifdef IN_RING3
40# include <iprt/mem.h>
41# include <iprt/semaphore.h>
42# include <iprt/string.h>
43# include <iprt/uuid.h>
44#endif
45
46#include "VBoxDD.h"
47
48#include "AudioMixBuffer.h"
49#include "AudioMixer.h"
50
51#include "DevHDA.h"
52#include "DevHDACommon.h"
53
54#include "HDACodec.h"
55#include "HDAStream.h"
56# if defined(VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT) || defined(VBOX_WITH_AUDIO_HDA_51_SURROUND)
57# include "HDAStreamChannel.h"
58# endif
59#include "HDAStreamMap.h"
60#include "HDAStreamPeriod.h"
61
62#include "DrvAudio.h"
63
64
65/*********************************************************************************************************************************
66* Defined Constants And Macros *
67*********************************************************************************************************************************/
68//#define HDA_AS_PCI_EXPRESS
69
70/* Installs a DMA access handler (via PGM callback) to monitor
71 * HDA's DMA operations, that is, writing / reading audio stream data.
72 *
73 * !!! Note: Certain guests are *that* timing sensitive that when enabling !!!
74 * !!! such a handler will mess up audio completely (e.g. Windows 7). !!! */
75//#define HDA_USE_DMA_ACCESS_HANDLER
76#ifdef HDA_USE_DMA_ACCESS_HANDLER
77# include <VBox/vmm/pgm.h>
78#endif
79
80/* Uses the DMA access handler to read the written DMA audio (output) data.
81 * Only valid if HDA_USE_DMA_ACCESS_HANDLER is set.
82 *
83 * Also see the note / warning for HDA_USE_DMA_ACCESS_HANDLER. */
84//# define HDA_USE_DMA_ACCESS_HANDLER_WRITING
85
86/* Useful to debug the device' timing. */
87//#define HDA_DEBUG_TIMING
88
89/* To debug silence coming from the guest in form of audio gaps.
90 * Very crude implementation for now. */
91//#define HDA_DEBUG_SILENCE
92
93#if defined(VBOX_WITH_HP_HDA)
94/* HP Pavilion dv4t-1300 */
95# define HDA_PCI_VENDOR_ID 0x103c
96# define HDA_PCI_DEVICE_ID 0x30f7
97#elif defined(VBOX_WITH_INTEL_HDA)
98/* Intel HDA controller */
99# define HDA_PCI_VENDOR_ID 0x8086
100# define HDA_PCI_DEVICE_ID 0x2668
101#elif defined(VBOX_WITH_NVIDIA_HDA)
102/* nVidia HDA controller */
103# define HDA_PCI_VENDOR_ID 0x10de
104# define HDA_PCI_DEVICE_ID 0x0ac0
105#else
106# error "Please specify your HDA device vendor/device IDs"
107#endif
108
109/* Make sure that interleaving streams support is enabled if the 5.1 surround code is being used. */
110#if defined (VBOX_WITH_AUDIO_HDA_51_SURROUND) && !defined(VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT)
111# define VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT
112#endif
113
114/**
115 * Acquires the HDA lock.
116 */
117#define DEVHDA_LOCK(a_pThis) \
118 do { \
119 int rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, VERR_IGNORED); \
120 AssertRC(rcLock); \
121 } while (0)
122
123/**
124 * Acquires the HDA lock or returns.
125 */
126# define DEVHDA_LOCK_RETURN(a_pThis, a_rcBusy) \
127 do { \
128 int rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, a_rcBusy); \
129 if (rcLock != VINF_SUCCESS) \
130 { \
131 AssertRC(rcLock); \
132 return rcLock; \
133 } \
134 } while (0)
135
136/**
137 * Acquires the HDA lock or returns.
138 */
139# define DEVHDA_LOCK_RETURN_VOID(a_pThis) \
140 do { \
141 int rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, VERR_IGNORED); \
142 if (rcLock != VINF_SUCCESS) \
143 { \
144 AssertRC(rcLock); \
145 return; \
146 } \
147 } while (0)
148
149/**
150 * Releases the HDA lock.
151 */
152#define DEVHDA_UNLOCK(a_pThis) \
153 do { PDMCritSectLeave(&(a_pThis)->CritSect); } while (0)
154
155/**
156 * Acquires the TM lock and HDA lock, returns on failure.
157 */
158#define DEVHDA_LOCK_BOTH_RETURN_VOID(a_pThis, a_SD) \
159 do { \
160 int rcLock = TMTimerLock((a_pThis)->pTimer[a_SD], VERR_IGNORED); \
161 if (rcLock != VINF_SUCCESS) \
162 { \
163 AssertRC(rcLock); \
164 return; \
165 } \
166 rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, VERR_IGNORED); \
167 if (rcLock != VINF_SUCCESS) \
168 { \
169 AssertRC(rcLock); \
170 TMTimerUnlock((a_pThis)->pTimer[a_SD]); \
171 return; \
172 } \
173 } while (0)
174
175/**
176 * Acquires the TM lock and HDA lock, returns on failure.
177 */
178#define DEVHDA_LOCK_BOTH_RETURN(a_pThis, a_SD, a_rcBusy) \
179 do { \
180 int rcLock = TMTimerLock((a_pThis)->pTimer[a_SD], (a_rcBusy)); \
181 if (rcLock != VINF_SUCCESS) \
182 return rcLock; \
183 rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, (a_rcBusy)); \
184 if (rcLock != VINF_SUCCESS) \
185 { \
186 AssertRC(rcLock); \
187 TMTimerUnlock((a_pThis)->pTimer[a_SD]); \
188 return rcLock; \
189 } \
190 } while (0)
191
192/**
193 * Releases the HDA lock and TM lock.
194 */
195#define DEVHDA_UNLOCK_BOTH(a_pThis, a_SD) \
196 do { \
197 PDMCritSectLeave(&(a_pThis)->CritSect); \
198 TMTimerUnlock((a_pThis)->pTimer[a_SD]); \
199 } while (0)
200
201
202/*********************************************************************************************************************************
203* Structures and Typedefs *
204*********************************************************************************************************************************/
205
206/**
207 * Structure defining a (host backend) driver stream.
208 * Each driver has its own instances of audio mixer streams, which then
209 * can go into the same (or even different) audio mixer sinks.
210 */
211typedef struct HDADRIVERSTREAM
212{
213 /** Associated mixer handle. */
214 R3PTRTYPE(PAUDMIXSTREAM) pMixStrm;
215} HDADRIVERSTREAM, *PHDADRIVERSTREAM;
216
217#ifdef HDA_USE_DMA_ACCESS_HANDLER
218/**
219 * Struct for keeping an HDA DMA access handler context.
220 */
221typedef struct HDADMAACCESSHANDLER
222{
223 /** Node for storing this handler in our list in HDASTREAMSTATE. */
224 RTLISTNODER3 Node;
225 /** Pointer to stream to which this access handler is assigned to. */
226 R3PTRTYPE(PHDASTREAM) pStream;
227 /** Access handler type handle. */
228 PGMPHYSHANDLERTYPE hAccessHandlerType;
229 /** First address this handler uses. */
230 RTGCPHYS GCPhysFirst;
231 /** Last address this handler uses. */
232 RTGCPHYS GCPhysLast;
233 /** Actual BDLE address to handle. */
234 RTGCPHYS BDLEAddr;
235 /** Actual BDLE buffer size to handle. */
236 RTGCPHYS BDLESize;
237 /** Whether the access handler has been registered or not. */
238 bool fRegistered;
239 uint8_t Padding[3];
240} HDADMAACCESSHANDLER, *PHDADMAACCESSHANDLER;
241#endif
242
243/**
244 * Struct for maintaining a host backend driver.
245 * This driver must be associated to one, and only one,
246 * HDA codec. The HDA controller does the actual multiplexing
247 * of HDA codec data to various host backend drivers then.
248 *
249 * This HDA device uses a timer in order to synchronize all
250 * read/write accesses across all attached LUNs / backends.
251 */
252typedef struct HDADRIVER
253{
254 /** Node for storing this driver in our device driver list of HDASTATE. */
255 RTLISTNODER3 Node;
256 /** Pointer to HDA controller (state). */
257 R3PTRTYPE(PHDASTATE) pHDAState;
258 /** Driver flags. */
259 PDMAUDIODRVFLAGS fFlags;
260 uint8_t u32Padding0[2];
261 /** LUN to which this driver has been assigned. */
262 uint8_t uLUN;
263 /** Whether this driver is in an attached state or not. */
264 bool fAttached;
265 /** Pointer to attached driver base interface. */
266 R3PTRTYPE(PPDMIBASE) pDrvBase;
267 /** Audio connector interface to the underlying host backend. */
268 R3PTRTYPE(PPDMIAUDIOCONNECTOR) pConnector;
269 /** Mixer stream for line input. */
270 HDADRIVERSTREAM LineIn;
271#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
272 /** Mixer stream for mic input. */
273 HDADRIVERSTREAM MicIn;
274#endif
275 /** Mixer stream for front output. */
276 HDADRIVERSTREAM Front;
277#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
278 /** Mixer stream for center/LFE output. */
279 HDADRIVERSTREAM CenterLFE;
280 /** Mixer stream for rear output. */
281 HDADRIVERSTREAM Rear;
282#endif
283} HDADRIVER;
284
285
286/*********************************************************************************************************************************
287* Internal Functions *
288*********************************************************************************************************************************/
289#ifndef VBOX_DEVICE_STRUCT_TESTCASE
290#ifdef IN_RING3
291static void hdaR3GCTLReset(PHDASTATE pThis);
292#endif
293
294/** @name Register read/write stubs.
295 * @{
296 */
297static int hdaRegReadUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
298static int hdaRegWriteUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
299/** @} */
300
301/** @name Global register set read/write functions.
302 * @{
303 */
304static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
305static int hdaRegReadLPIB(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
306static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
307static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
308static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
309static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
310static int hdaRegWriteCORBSIZE(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
311static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
312static int hdaRegWriteRINTCNT(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
313static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
314static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
315static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
316static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
317static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
318static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
319/** @} */
320
321/** @name {IOB}SDn write functions.
322 * @{
323 */
324static int hdaRegWriteSDCBL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
325static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
326static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
327static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
328static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
329static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
330static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
331static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
332static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
333/** @} */
334
335/** @name Generic register read/write functions.
336 * @{
337 */
338static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
339static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
340static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
341#ifdef IN_RING3
342static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
343#endif
344static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
345static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
346static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
347static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
348/** @} */
349
350/** @name HDA device functions.
351 * @{
352 */
353#ifdef IN_RING3
354static int hdaR3AddStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg);
355static int hdaR3RemoveStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg);
356# ifdef HDA_USE_DMA_ACCESS_HANDLER
357static DECLCALLBACK(VBOXSTRICTRC) hdaR3DMAAccessHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys,
358 void *pvBuf, size_t cbBuf,
359 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser);
360# endif
361#endif /* IN_RING3 */
362/** @} */
363
364/** @name HDA mixer functions.
365 * @{
366 */
367#ifdef IN_RING3
368static int hdaR3MixerAddDrvStream(PHDASTATE pThis, PAUDMIXSINK pMixSink, PPDMAUDIOSTREAMCFG pCfg, PHDADRIVER pDrv);
369#endif
370/** @} */
371
372
373/*********************************************************************************************************************************
374* Global Variables *
375*********************************************************************************************************************************/
376
377/** No register description (RD) flags defined. */
378#define HDA_RD_FLAG_NONE 0
379/** Writes to SD are allowed while RUN bit is set. */
380#define HDA_RD_FLAG_SD_WRITE_RUN RT_BIT(0)
381
382/** Emits a single audio stream register set (e.g. OSD0) at a specified offset. */
383#define HDA_REG_MAP_STRM(offset, name) \
384 /* offset size read mask write mask flags read callback write callback index + abbrev description */ \
385 /* ------- ------- ---------- ---------- ------------------------- -------------- ----------------- ----------------------------- ----------- */ \
386 /* Offset 0x80 (SD0) */ \
387 { offset, 0x00003, 0x00FF001F, 0x00F0001F, HDA_RD_FLAG_SD_WRITE_RUN, hdaRegReadU24 , hdaRegWriteSDCTL , HDA_REG_IDX_STRM(name, CTL) , #name " Stream Descriptor Control" }, \
388 /* Offset 0x83 (SD0) */ \
389 { offset + 0x3, 0x00001, 0x0000003C, 0x0000001C, HDA_RD_FLAG_SD_WRITE_RUN, hdaRegReadU8 , hdaRegWriteSDSTS , HDA_REG_IDX_STRM(name, STS) , #name " Status" }, \
390 /* Offset 0x84 (SD0) */ \
391 { offset + 0x4, 0x00004, 0xFFFFFFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadLPIB, hdaRegWriteU32 , HDA_REG_IDX_STRM(name, LPIB) , #name " Link Position In Buffer" }, \
392 /* Offset 0x88 (SD0) */ \
393 { offset + 0x8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteSDCBL , HDA_REG_IDX_STRM(name, CBL) , #name " Cyclic Buffer Length" }, \
394 /* Offset 0x8C (SD0) */ \
395 { offset + 0xC, 0x00002, 0x0000FFFF, 0x0000FFFF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDLVI , HDA_REG_IDX_STRM(name, LVI) , #name " Last Valid Index" }, \
396 /* Reserved: FIFO Watermark. ** @todo Document this! */ \
397 { offset + 0xE, 0x00002, 0x00000007, 0x00000007, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDFIFOW, HDA_REG_IDX_STRM(name, FIFOW), #name " FIFO Watermark" }, \
398 /* Offset 0x90 (SD0) */ \
399 { offset + 0x10, 0x00002, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDFIFOS, HDA_REG_IDX_STRM(name, FIFOS), #name " FIFO Size" }, \
400 /* Offset 0x92 (SD0) */ \
401 { offset + 0x12, 0x00002, 0x00007F7F, 0x00007F7F, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDFMT , HDA_REG_IDX_STRM(name, FMT) , #name " Stream Format" }, \
402 /* Reserved: 0x94 - 0x98. */ \
403 /* Offset 0x98 (SD0) */ \
404 { offset + 0x18, 0x00004, 0xFFFFFF80, 0xFFFFFF80, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteSDBDPL , HDA_REG_IDX_STRM(name, BDPL) , #name " Buffer Descriptor List Pointer-Lower Base Address" }, \
405 /* Offset 0x9C (SD0) */ \
406 { offset + 0x1C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteSDBDPU , HDA_REG_IDX_STRM(name, BDPU) , #name " Buffer Descriptor List Pointer-Upper Base Address" }
407
408/** Defines a single audio stream register set (e.g. OSD0). */
409#define HDA_REG_MAP_DEF_STREAM(index, name) \
410 HDA_REG_MAP_STRM(HDA_REG_DESC_SD0_BASE + (index * 32 /* 0x20 */), name)
411
412/* See 302349 p 6.2. */
413const HDAREGDESC g_aHdaRegMap[HDA_NUM_REGS] =
414{
415 /* offset size read mask write mask flags read callback write callback index + abbrev */
416 /*------- ------- ---------- ---------- ----------------- ---------------- ------------------- ------------------------ */
417 { 0x00000, 0x00002, 0x0000FFFB, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(GCAP) }, /* Global Capabilities */
418 { 0x00002, 0x00001, 0x000000FF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(VMIN) }, /* Minor Version */
419 { 0x00003, 0x00001, 0x000000FF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(VMAJ) }, /* Major Version */
420 { 0x00004, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(OUTPAY) }, /* Output Payload Capabilities */
421 { 0x00006, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(INPAY) }, /* Input Payload Capabilities */
422 { 0x00008, 0x00004, 0x00000103, 0x00000103, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteGCTL , HDA_REG_IDX(GCTL) }, /* Global Control */
423 { 0x0000c, 0x00002, 0x00007FFF, 0x00007FFF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(WAKEEN) }, /* Wake Enable */
424 { 0x0000e, 0x00002, 0x00000007, 0x00000007, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteSTATESTS, HDA_REG_IDX(STATESTS) }, /* State Change Status */
425 { 0x00010, 0x00002, 0xFFFFFFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadUnimpl, hdaRegWriteUnimpl , HDA_REG_IDX(GSTS) }, /* Global Status */
426 { 0x00018, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(OUTSTRMPAY) }, /* Output Stream Payload Capability */
427 { 0x0001A, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(INSTRMPAY) }, /* Input Stream Payload Capability */
428 { 0x00020, 0x00004, 0xC00000FF, 0xC00000FF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(INTCTL) }, /* Interrupt Control */
429 { 0x00024, 0x00004, 0xC00000FF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteUnimpl , HDA_REG_IDX(INTSTS) }, /* Interrupt Status */
430 { 0x00030, 0x00004, 0xFFFFFFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadWALCLK, hdaRegWriteUnimpl , HDA_REG_IDX_NOMEM(WALCLK) }, /* Wall Clock Counter */
431 { 0x00034, 0x00004, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(SSYNC) }, /* Stream Synchronization */
432 { 0x00040, 0x00004, 0xFFFFFF80, 0xFFFFFF80, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(CORBLBASE) }, /* CORB Lower Base Address */
433 { 0x00044, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(CORBUBASE) }, /* CORB Upper Base Address */
434 { 0x00048, 0x00002, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteCORBWP , HDA_REG_IDX(CORBWP) }, /* CORB Write Pointer */
435 { 0x0004A, 0x00002, 0x000080FF, 0x00008000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteCORBRP , HDA_REG_IDX(CORBRP) }, /* CORB Read Pointer */
436 { 0x0004C, 0x00001, 0x00000003, 0x00000003, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteCORBCTL , HDA_REG_IDX(CORBCTL) }, /* CORB Control */
437 { 0x0004D, 0x00001, 0x00000001, 0x00000001, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteCORBSTS , HDA_REG_IDX(CORBSTS) }, /* CORB Status */
438 { 0x0004E, 0x00001, 0x000000F3, 0x00000003, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteCORBSIZE, HDA_REG_IDX(CORBSIZE) }, /* CORB Size */
439 { 0x00050, 0x00004, 0xFFFFFF80, 0xFFFFFF80, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(RIRBLBASE) }, /* RIRB Lower Base Address */
440 { 0x00054, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(RIRBUBASE) }, /* RIRB Upper Base Address */
441 { 0x00058, 0x00002, 0x000000FF, 0x00008000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteRIRBWP , HDA_REG_IDX(RIRBWP) }, /* RIRB Write Pointer */
442 { 0x0005A, 0x00002, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteRINTCNT , HDA_REG_IDX(RINTCNT) }, /* Response Interrupt Count */
443 { 0x0005C, 0x00001, 0x00000007, 0x00000007, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteU8 , HDA_REG_IDX(RIRBCTL) }, /* RIRB Control */
444 { 0x0005D, 0x00001, 0x00000005, 0x00000005, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteRIRBSTS , HDA_REG_IDX(RIRBSTS) }, /* RIRB Status */
445 { 0x0005E, 0x00001, 0x000000F3, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(RIRBSIZE) }, /* RIRB Size */
446 { 0x00060, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(IC) }, /* Immediate Command */
447 { 0x00064, 0x00004, 0x00000000, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteUnimpl , HDA_REG_IDX(IR) }, /* Immediate Response */
448 { 0x00068, 0x00002, 0x00000002, 0x00000002, HDA_RD_FLAG_NONE, hdaRegReadIRS , hdaRegWriteIRS , HDA_REG_IDX(IRS) }, /* Immediate Command Status */
449 { 0x00070, 0x00004, 0xFFFFFFFF, 0xFFFFFF81, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(DPLBASE) }, /* DMA Position Lower Base */
450 { 0x00074, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(DPUBASE) }, /* DMA Position Upper Base */
451 /* 4 Serial Data In (SDI). */
452 HDA_REG_MAP_DEF_STREAM(0, SD0),
453 HDA_REG_MAP_DEF_STREAM(1, SD1),
454 HDA_REG_MAP_DEF_STREAM(2, SD2),
455 HDA_REG_MAP_DEF_STREAM(3, SD3),
456 /* 4 Serial Data Out (SDO). */
457 HDA_REG_MAP_DEF_STREAM(4, SD4),
458 HDA_REG_MAP_DEF_STREAM(5, SD5),
459 HDA_REG_MAP_DEF_STREAM(6, SD6),
460 HDA_REG_MAP_DEF_STREAM(7, SD7)
461};
462
463const HDAREGALIAS g_aHdaRegAliases[] =
464{
465 { 0x2084, HDA_REG_SD0LPIB },
466 { 0x20a4, HDA_REG_SD1LPIB },
467 { 0x20c4, HDA_REG_SD2LPIB },
468 { 0x20e4, HDA_REG_SD3LPIB },
469 { 0x2104, HDA_REG_SD4LPIB },
470 { 0x2124, HDA_REG_SD5LPIB },
471 { 0x2144, HDA_REG_SD6LPIB },
472 { 0x2164, HDA_REG_SD7LPIB }
473};
474
475#ifdef IN_RING3
476
477/** HDABDLEDESC field descriptors for the v7 saved state. */
478static SSMFIELD const g_aSSMBDLEDescFields7[] =
479{
480 SSMFIELD_ENTRY(HDABDLEDESC, u64BufAdr),
481 SSMFIELD_ENTRY(HDABDLEDESC, u32BufSize),
482 SSMFIELD_ENTRY(HDABDLEDESC, fFlags),
483 SSMFIELD_ENTRY_TERM()
484};
485
486/** HDABDLESTATE field descriptors for the v6+ saved state. */
487static SSMFIELD const g_aSSMBDLEStateFields6[] =
488{
489 SSMFIELD_ENTRY(HDABDLESTATE, u32BDLIndex),
490 SSMFIELD_ENTRY(HDABDLESTATE, cbBelowFIFOW),
491 SSMFIELD_ENTRY_OLD(FIFO, HDA_FIFO_MAX), /* Deprecated; now is handled in the stream's circular buffer. */
492 SSMFIELD_ENTRY(HDABDLESTATE, u32BufOff),
493 SSMFIELD_ENTRY_TERM()
494};
495
496/** HDABDLESTATE field descriptors for the v7 saved state. */
497static SSMFIELD const g_aSSMBDLEStateFields7[] =
498{
499 SSMFIELD_ENTRY(HDABDLESTATE, u32BDLIndex),
500 SSMFIELD_ENTRY(HDABDLESTATE, cbBelowFIFOW),
501 SSMFIELD_ENTRY(HDABDLESTATE, u32BufOff),
502 SSMFIELD_ENTRY_TERM()
503};
504
505/** HDASTREAMSTATE field descriptors for the v6 saved state. */
506static SSMFIELD const g_aSSMStreamStateFields6[] =
507{
508 SSMFIELD_ENTRY_OLD(cBDLE, sizeof(uint16_t)), /* Deprecated. */
509 SSMFIELD_ENTRY(HDASTREAMSTATE, uCurBDLE),
510 SSMFIELD_ENTRY_OLD(fStop, 1), /* Deprecated; see SSMR3PutBool(). */
511 SSMFIELD_ENTRY_OLD(fRunning, 1), /* Deprecated; using the HDA_SDCTL_RUN bit is sufficient. */
512 SSMFIELD_ENTRY(HDASTREAMSTATE, fInReset),
513 SSMFIELD_ENTRY_TERM()
514};
515
516/** HDASTREAMSTATE field descriptors for the v7 saved state. */
517static SSMFIELD const g_aSSMStreamStateFields7[] =
518{
519 SSMFIELD_ENTRY(HDASTREAMSTATE, uCurBDLE),
520 SSMFIELD_ENTRY(HDASTREAMSTATE, fInReset),
521 SSMFIELD_ENTRY(HDASTREAMSTATE, tsTransferNext),
522 SSMFIELD_ENTRY_TERM()
523};
524
525/** HDASTREAMPERIOD field descriptors for the v7 saved state. */
526static SSMFIELD const g_aSSMStreamPeriodFields7[] =
527{
528 SSMFIELD_ENTRY(HDASTREAMPERIOD, u64StartWalClk),
529 SSMFIELD_ENTRY(HDASTREAMPERIOD, u64ElapsedWalClk),
530 SSMFIELD_ENTRY(HDASTREAMPERIOD, framesTransferred),
531 SSMFIELD_ENTRY(HDASTREAMPERIOD, cIntPending),
532 SSMFIELD_ENTRY_TERM()
533};
534
535/**
536 * 32-bit size indexed masks, i.e. g_afMasks[2 bytes] = 0xffff.
537 */
538static uint32_t const g_afMasks[5] =
539{
540 UINT32_C(0), UINT32_C(0x000000ff), UINT32_C(0x0000ffff), UINT32_C(0x00ffffff), UINT32_C(0xffffffff)
541};
542
543#endif /* IN_RING3 */
544
545
546
547/**
548 * Retrieves the number of bytes of a FIFOW register.
549 *
550 * @return Number of bytes of a given FIFOW register.
551 */
552DECLINLINE(uint8_t) hdaSDFIFOWToBytes(uint32_t u32RegFIFOW)
553{
554 uint32_t cb;
555 switch (u32RegFIFOW)
556 {
557 case HDA_SDFIFOW_8B: cb = 8; break;
558 case HDA_SDFIFOW_16B: cb = 16; break;
559 case HDA_SDFIFOW_32B: cb = 32; break;
560 default: cb = 0; break;
561 }
562
563 Assert(RT_IS_POWER_OF_TWO(cb));
564 return cb;
565}
566
567#ifdef IN_RING3
568/**
569 * Reschedules pending interrupts for all audio streams which have complete
570 * audio periods but did not have the chance to issue their (pending) interrupts yet.
571 *
572 * @param pThis The HDA device state.
573 */
574static void hdaR3ReschedulePendingInterrupts(PHDASTATE pThis)
575{
576 bool fInterrupt = false;
577
578 for (uint8_t i = 0; i < HDA_MAX_STREAMS; ++i)
579 {
580 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, i);
581 if (!pStream)
582 continue;
583
584 if ( hdaR3StreamPeriodIsComplete (&pStream->State.Period)
585 && hdaR3StreamPeriodNeedsInterrupt(&pStream->State.Period)
586 && hdaR3WalClkSet(pThis, hdaR3StreamPeriodGetAbsElapsedWalClk(&pStream->State.Period), false /* fForce */))
587 {
588 fInterrupt = true;
589 break;
590 }
591 }
592
593 LogFunc(("fInterrupt=%RTbool\n", fInterrupt));
594
595# ifndef LOG_ENABLED
596 hdaProcessInterrupt(pThis);
597# else
598 hdaProcessInterrupt(pThis, __FUNCTION__);
599# endif
600}
601#endif /* IN_RING3 */
602
603/**
604 * Looks up a register at the exact offset given by @a offReg.
605 *
606 * @returns Register index on success, -1 if not found.
607 * @param offReg The register offset.
608 */
609static int hdaRegLookup(uint32_t offReg)
610{
611 /*
612 * Aliases.
613 */
614 if (offReg >= g_aHdaRegAliases[0].offReg)
615 {
616 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++)
617 if (offReg == g_aHdaRegAliases[i].offReg)
618 return g_aHdaRegAliases[i].idxAlias;
619 Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg);
620 return -1;
621 }
622
623 /*
624 * Binary search the
625 */
626 int idxEnd = RT_ELEMENTS(g_aHdaRegMap);
627 int idxLow = 0;
628 for (;;)
629 {
630 int idxMiddle = idxLow + (idxEnd - idxLow) / 2;
631 if (offReg < g_aHdaRegMap[idxMiddle].offset)
632 {
633 if (idxLow == idxMiddle)
634 break;
635 idxEnd = idxMiddle;
636 }
637 else if (offReg > g_aHdaRegMap[idxMiddle].offset)
638 {
639 idxLow = idxMiddle + 1;
640 if (idxLow >= idxEnd)
641 break;
642 }
643 else
644 return idxMiddle;
645 }
646
647#ifdef RT_STRICT
648 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
649 Assert(g_aHdaRegMap[i].offset != offReg);
650#endif
651 return -1;
652}
653
654#ifdef IN_RING3
655
656/**
657 * Looks up a register covering the offset given by @a offReg.
658 *
659 * @returns Register index on success, -1 if not found.
660 * @param offReg The register offset.
661 */
662static int hdaR3RegLookupWithin(uint32_t offReg)
663{
664 /*
665 * Aliases.
666 */
667 if (offReg >= g_aHdaRegAliases[0].offReg)
668 {
669 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++)
670 {
671 uint32_t off = offReg - g_aHdaRegAliases[i].offReg;
672 if (off < 4 && off < g_aHdaRegMap[g_aHdaRegAliases[i].idxAlias].size)
673 return g_aHdaRegAliases[i].idxAlias;
674 }
675 Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg);
676 return -1;
677 }
678
679 /*
680 * Binary search the register map.
681 */
682 int idxEnd = RT_ELEMENTS(g_aHdaRegMap);
683 int idxLow = 0;
684 for (;;)
685 {
686 int idxMiddle = idxLow + (idxEnd - idxLow) / 2;
687 if (offReg < g_aHdaRegMap[idxMiddle].offset)
688 {
689 if (idxLow == idxMiddle)
690 break;
691 idxEnd = idxMiddle;
692 }
693 else if (offReg >= g_aHdaRegMap[idxMiddle].offset + g_aHdaRegMap[idxMiddle].size)
694 {
695 idxLow = idxMiddle + 1;
696 if (idxLow >= idxEnd)
697 break;
698 }
699 else
700 return idxMiddle;
701 }
702
703# ifdef RT_STRICT
704 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
705 Assert(offReg - g_aHdaRegMap[i].offset >= g_aHdaRegMap[i].size);
706# endif
707 return -1;
708}
709
710
711/**
712 * Synchronizes the CORB / RIRB buffers between internal <-> device state.
713 *
714 * @returns IPRT status code.
715 * @param pThis HDA state.
716 * @param fLocal Specify true to synchronize HDA state's CORB buffer with the device state,
717 * or false to synchronize the device state's RIRB buffer with the HDA state.
718 *
719 * @todo r=andy Break this up into two functions?
720 */
721static int hdaR3CmdSync(PHDASTATE pThis, bool fLocal)
722{
723 int rc = VINF_SUCCESS;
724 if (fLocal)
725 {
726 if (pThis->u64CORBBase)
727 {
728 AssertPtr(pThis->pu32CorbBuf);
729 Assert(pThis->cbCorbBuf);
730
731/** @todo r=bird: An explanation is required why PDMDevHlpPhysRead is used with
732 * the CORB and PDMDevHlpPCIPhysWrite with RIRB below. There are
733 * similar unexplained inconsistencies in DevHDACommon.cpp. */
734 rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pThis->u64CORBBase, pThis->pu32CorbBuf, pThis->cbCorbBuf);
735 Log(("hdaR3CmdSync/CORB: read %RGp LB %#x (%Rrc)\n", pThis->u64CORBBase, pThis->cbCorbBuf, rc));
736 AssertRCReturn(rc, rc);
737 }
738 }
739 else
740 {
741 if (pThis->u64RIRBBase)
742 {
743 AssertPtr(pThis->pu64RirbBuf);
744 Assert(pThis->cbRirbBuf);
745
746 rc = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pThis->u64RIRBBase, pThis->pu64RirbBuf, pThis->cbRirbBuf);
747 Log(("hdaR3CmdSync/RIRB: phys read %RGp LB %#x (%Rrc)\n", pThis->u64RIRBBase, pThis->pu64RirbBuf, rc));
748 AssertRCReturn(rc, rc);
749 }
750 }
751
752# ifdef DEBUG_CMD_BUFFER
753 LogFunc(("fLocal=%RTbool\n", fLocal));
754
755 uint8_t i = 0;
756 do
757 {
758 LogFunc(("CORB%02x: ", i));
759 uint8_t j = 0;
760 do
761 {
762 const char *pszPrefix;
763 if ((i + j) == HDA_REG(pThis, CORBRP))
764 pszPrefix = "[R]";
765 else if ((i + j) == HDA_REG(pThis, CORBWP))
766 pszPrefix = "[W]";
767 else
768 pszPrefix = " "; /* three spaces */
769 Log((" %s%08x", pszPrefix, pThis->pu32CorbBuf[i + j]));
770 j++;
771 } while (j < 8);
772 Log(("\n"));
773 i += 8;
774 } while(i != 0);
775
776 do
777 {
778 LogFunc(("RIRB%02x: ", i));
779 uint8_t j = 0;
780 do
781 {
782 const char *prefix;
783 if ((i + j) == HDA_REG(pThis, RIRBWP))
784 prefix = "[W]";
785 else
786 prefix = " ";
787 Log((" %s%016lx", prefix, pThis->pu64RirbBuf[i + j]));
788 } while (++j < 8);
789 Log(("\n"));
790 i += 8;
791 } while (i != 0);
792# endif
793 return rc;
794}
795
796/**
797 * Processes the next CORB buffer command in the queue.
798 *
799 * This will invoke the HDA codec verb dispatcher.
800 *
801 * @returns IPRT status code.
802 * @param pThis HDA state.
803 */
804static int hdaR3CORBCmdProcess(PHDASTATE pThis)
805{
806 uint8_t corbRp = HDA_REG(pThis, CORBRP);
807 uint8_t corbWp = HDA_REG(pThis, CORBWP);
808 uint8_t rirbWp = HDA_REG(pThis, RIRBWP);
809
810 Log3Func(("CORB(RP:%x, WP:%x) RIRBWP:%x\n", corbRp, corbWp, rirbWp));
811
812 if (!(HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA))
813 {
814 LogFunc(("CORB DMA not active, skipping\n"));
815 return VINF_SUCCESS;
816 }
817
818 Assert(pThis->cbCorbBuf);
819
820 int rc = hdaR3CmdSync(pThis, true /* Sync from guest */);
821 AssertRCReturn(rc, rc);
822
823 uint16_t cIntCnt = HDA_REG(pThis, RINTCNT) & 0xff;
824
825 if (!cIntCnt) /* 0 means 256 interrupts. */
826 cIntCnt = HDA_MAX_RINTCNT;
827
828 Log3Func(("START CORB(RP:%x, WP:%x) RIRBWP:%x, RINTCNT:%RU8/%RU8\n",
829 corbRp, corbWp, rirbWp, pThis->u16RespIntCnt, cIntCnt));
830
831 while (corbRp != corbWp)
832 {
833 corbRp = (corbRp + 1) % (pThis->cbCorbBuf / HDA_CORB_ELEMENT_SIZE); /* Advance +1 as the first command(s) are at CORBWP + 1. */
834
835 uint32_t uCmd = pThis->pu32CorbBuf[corbRp];
836 uint64_t uResp = 0;
837
838 rc = pThis->pCodec->pfnLookup(pThis->pCodec, HDA_CODEC_CMD(uCmd, 0 /* Codec index */), &uResp);
839 if (RT_FAILURE(rc))
840 LogFunc(("Codec lookup failed with rc=%Rrc\n", rc));
841
842 Log3Func(("Codec verb %08x -> response %016lx\n", uCmd, uResp));
843
844 if ( (uResp & CODEC_RESPONSE_UNSOLICITED)
845 && !(HDA_REG(pThis, GCTL) & HDA_GCTL_UNSOL))
846 {
847 LogFunc(("Unexpected unsolicited response.\n"));
848 HDA_REG(pThis, CORBRP) = corbRp;
849
850 /** @todo r=andy No CORB/RIRB syncing to guest required in that case? */
851 return rc;
852 }
853
854 rirbWp = (rirbWp + 1) % HDA_RIRB_SIZE;
855
856 pThis->pu64RirbBuf[rirbWp] = uResp;
857
858 pThis->u16RespIntCnt++;
859
860 bool fSendInterrupt = false;
861
862 if (pThis->u16RespIntCnt == cIntCnt) /* Response interrupt count reached? */
863 {
864 pThis->u16RespIntCnt = 0; /* Reset internal interrupt response counter. */
865
866 Log3Func(("Response interrupt count reached (%RU16)\n", pThis->u16RespIntCnt));
867 fSendInterrupt = true;
868
869 }
870 else if (corbRp == corbWp) /* Did we reach the end of the current command buffer? */
871 {
872 Log3Func(("Command buffer empty\n"));
873 fSendInterrupt = true;
874 }
875
876 if (fSendInterrupt)
877 {
878 if (HDA_REG(pThis, RIRBCTL) & HDA_RIRBCTL_RINTCTL) /* Response Interrupt Control (RINTCTL) enabled? */
879 {
880 HDA_REG(pThis, RIRBSTS) |= HDA_RIRBSTS_RINTFL;
881
882# ifndef LOG_ENABLED
883 rc = hdaProcessInterrupt(pThis);
884# else
885 rc = hdaProcessInterrupt(pThis, __FUNCTION__);
886# endif
887 }
888 }
889 }
890
891 Log3Func(("END CORB(RP:%x, WP:%x) RIRBWP:%x, RINTCNT:%RU8/%RU8\n",
892 corbRp, corbWp, rirbWp, pThis->u16RespIntCnt, cIntCnt));
893
894 HDA_REG(pThis, CORBRP) = corbRp;
895 HDA_REG(pThis, RIRBWP) = rirbWp;
896
897 rc = hdaR3CmdSync(pThis, false /* Sync to guest */);
898 AssertRCReturn(rc, rc);
899
900 if (RT_FAILURE(rc))
901 AssertRCReturn(rc, rc);
902
903 return rc;
904}
905
906#endif /* IN_RING3 */
907
908/* Register access handlers. */
909
910static int hdaRegReadUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
911{
912 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg);
913 *pu32Value = 0;
914 return VINF_SUCCESS;
915}
916
917static int hdaRegWriteUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
918{
919 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value);
920 return VINF_SUCCESS;
921}
922
923/* U8 */
924static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
925{
926 Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffffff00) == 0);
927 return hdaRegReadU32(pThis, iReg, pu32Value);
928}
929
930static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
931{
932 Assert((u32Value & 0xffffff00) == 0);
933 return hdaRegWriteU32(pThis, iReg, u32Value);
934}
935
936/* U16 */
937static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
938{
939 Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffff0000) == 0);
940 return hdaRegReadU32(pThis, iReg, pu32Value);
941}
942
943static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
944{
945 Assert((u32Value & 0xffff0000) == 0);
946 return hdaRegWriteU32(pThis, iReg, u32Value);
947}
948
949/* U24 */
950static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
951{
952 Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xff000000) == 0);
953 return hdaRegReadU32(pThis, iReg, pu32Value);
954}
955
956#ifdef IN_RING3
957static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
958{
959 Assert((u32Value & 0xff000000) == 0);
960 return hdaRegWriteU32(pThis, iReg, u32Value);
961}
962#endif
963
964/* U32 */
965static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
966{
967 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
968
969 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
970
971 *pu32Value = pThis->au32Regs[iRegMem] & g_aHdaRegMap[iReg].readable;
972
973 DEVHDA_UNLOCK(pThis);
974 return VINF_SUCCESS;
975}
976
977static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
978{
979 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
980
981 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
982
983 pThis->au32Regs[iRegMem] = (u32Value & g_aHdaRegMap[iReg].writable)
984 | (pThis->au32Regs[iRegMem] & ~g_aHdaRegMap[iReg].writable);
985 DEVHDA_UNLOCK(pThis);
986 return VINF_SUCCESS;
987}
988
989static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
990{
991 RT_NOREF_PV(iReg);
992#ifdef IN_RING3
993 DEVHDA_LOCK(pThis);
994#else
995 if (!(u32Value & HDA_GCTL_CRST))
996 return VINF_IOM_R3_MMIO_WRITE;
997 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
998#endif
999
1000 if (u32Value & HDA_GCTL_CRST)
1001 {
1002 /* Set the CRST bit to indicate that we're leaving reset mode. */
1003 HDA_REG(pThis, GCTL) |= HDA_GCTL_CRST;
1004 LogFunc(("Guest leaving HDA reset\n"));
1005 }
1006 else
1007 {
1008#ifdef IN_RING3
1009 /* Enter reset state. */
1010 LogFunc(("Guest entering HDA reset with DMA(RIRB:%s, CORB:%s)\n",
1011 HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA ? "on" : "off",
1012 HDA_REG(pThis, RIRBCTL) & HDA_RIRBCTL_RDMAEN ? "on" : "off"));
1013
1014 /* Clear the CRST bit to indicate that we're in reset state. */
1015 HDA_REG(pThis, GCTL) &= ~HDA_GCTL_CRST;
1016
1017 hdaR3GCTLReset(pThis);
1018#else
1019 AssertFailedReturnStmt(DEVHDA_UNLOCK(pThis), VINF_IOM_R3_MMIO_WRITE);
1020#endif
1021 }
1022
1023 if (u32Value & HDA_GCTL_FCNTRL)
1024 {
1025 /* Flush: GSTS:1 set, see 6.2.6. */
1026 HDA_REG(pThis, GSTS) |= HDA_GSTS_FSTS; /* Set the flush status. */
1027 /* DPLBASE and DPUBASE should be initialized with initial value (see 6.2.6). */
1028 }
1029
1030 DEVHDA_UNLOCK(pThis);
1031 return VINF_SUCCESS;
1032}
1033
1034static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1035{
1036 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1037
1038 uint32_t v = HDA_REG_IND(pThis, iReg);
1039 uint32_t nv = u32Value & HDA_STATESTS_SCSF_MASK;
1040
1041 HDA_REG(pThis, STATESTS) &= ~(v & nv); /* Write of 1 clears corresponding bit. */
1042
1043 DEVHDA_UNLOCK(pThis);
1044 return VINF_SUCCESS;
1045}
1046
1047static int hdaRegReadLPIB(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
1048{
1049 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
1050
1051 const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, LPIB, iReg);
1052 uint32_t u32LPIB = HDA_STREAM_REG(pThis, LPIB, uSD);
1053#ifdef LOG_ENABLED
1054 const uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, uSD);
1055 LogFlowFunc(("[SD%RU8] LPIB=%RU32, CBL=%RU32\n", uSD, u32LPIB, u32CBL));
1056#endif
1057
1058 *pu32Value = u32LPIB;
1059
1060 DEVHDA_UNLOCK(pThis);
1061 return VINF_SUCCESS;
1062}
1063
1064#ifdef IN_RING3
1065/**
1066 * Returns the current maximum value the wall clock counter can be set to.
1067 * This maximum value depends on all currently handled HDA streams and their own current timing.
1068 *
1069 * @return Current maximum value the wall clock counter can be set to.
1070 * @param pThis HDA state.
1071 *
1072 * @remark Does not actually set the wall clock counter.
1073 */
1074static uint64_t hdaR3WalClkGetMax(PHDASTATE pThis)
1075{
1076 const uint64_t u64WalClkCur = ASMAtomicReadU64(&pThis->u64WalClk);
1077 const uint64_t u64FrontAbsWalClk = pThis->SinkFront.pStream
1078 ? hdaR3StreamPeriodGetAbsElapsedWalClk(&pThis->SinkFront.pStream->State.Period) : 0;
1079# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1080# error "Implement me!"
1081# endif
1082 const uint64_t u64LineInAbsWalClk = pThis->SinkLineIn.pStream
1083 ? hdaR3StreamPeriodGetAbsElapsedWalClk(&pThis->SinkLineIn.pStream->State.Period) : 0;
1084# ifdef VBOX_WITH_HDA_MIC_IN
1085 const uint64_t u64MicInAbsWalClk = pThis->SinkMicIn.pStream
1086 ? hdaR3StreamPeriodGetAbsElapsedWalClk(&pThis->SinkMicIn.pStream->State.Period) : 0;
1087# endif
1088
1089 uint64_t u64WalClkNew = RT_MAX(u64WalClkCur, u64FrontAbsWalClk);
1090# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1091# error "Implement me!"
1092# endif
1093 u64WalClkNew = RT_MAX(u64WalClkNew, u64LineInAbsWalClk);
1094# ifdef VBOX_WITH_HDA_MIC_IN
1095 u64WalClkNew = RT_MAX(u64WalClkNew, u64MicInAbsWalClk);
1096# endif
1097
1098 Log3Func(("%RU64 -> Front=%RU64, LineIn=%RU64 -> %RU64\n",
1099 u64WalClkCur, u64FrontAbsWalClk, u64LineInAbsWalClk, u64WalClkNew));
1100
1101 return u64WalClkNew;
1102}
1103#endif /* IN_RING3 */
1104
1105static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
1106{
1107#ifdef IN_RING3
1108 RT_NOREF(iReg);
1109
1110 DEVHDA_LOCK(pThis);
1111
1112 *pu32Value = RT_LO_U32(ASMAtomicReadU64(&pThis->u64WalClk));
1113
1114 Log3Func(("%RU32 (max @ %RU64)\n",*pu32Value, hdaR3WalClkGetMax(pThis)));
1115
1116 DEVHDA_UNLOCK(pThis);
1117 return VINF_SUCCESS;
1118#else
1119 RT_NOREF(pThis, iReg, pu32Value);
1120 return VINF_IOM_R3_MMIO_READ;
1121#endif
1122}
1123
1124static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1125{
1126 RT_NOREF(iReg);
1127 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1128
1129 if (u32Value & HDA_CORBRP_RST)
1130 {
1131 /* Do a CORB reset. */
1132 if (pThis->cbCorbBuf)
1133 {
1134#ifdef IN_RING3
1135 Assert(pThis->pu32CorbBuf);
1136 RT_BZERO((void *)pThis->pu32CorbBuf, pThis->cbCorbBuf);
1137#else
1138 DEVHDA_UNLOCK(pThis);
1139 return VINF_IOM_R3_MMIO_WRITE;
1140#endif
1141 }
1142
1143 LogRel2(("HDA: CORB reset\n"));
1144
1145 HDA_REG(pThis, CORBRP) = HDA_CORBRP_RST; /* Clears the pointer. */
1146 }
1147 else
1148 HDA_REG(pThis, CORBRP) &= ~HDA_CORBRP_RST; /* Only CORBRP_RST bit is writable. */
1149
1150 DEVHDA_UNLOCK(pThis);
1151 return VINF_SUCCESS;
1152}
1153
1154static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1155{
1156#ifdef IN_RING3
1157 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1158
1159 int rc = hdaRegWriteU8(pThis, iReg, u32Value);
1160 AssertRC(rc);
1161
1162 if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Start DMA engine. */
1163 {
1164 rc = hdaR3CORBCmdProcess(pThis);
1165 }
1166 else
1167 LogFunc(("CORB DMA not running, skipping\n"));
1168
1169 DEVHDA_UNLOCK(pThis);
1170 return rc;
1171#else
1172 RT_NOREF(pThis, iReg, u32Value);
1173 return VINF_IOM_R3_MMIO_WRITE;
1174#endif
1175}
1176
1177static int hdaRegWriteCORBSIZE(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1178{
1179#ifdef IN_RING3
1180 RT_NOREF(iReg);
1181 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1182
1183 if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Ignore request if CORB DMA engine is (still) running. */
1184 {
1185 LogFunc(("CORB DMA is (still) running, skipping\n"));
1186
1187 DEVHDA_UNLOCK(pThis);
1188 return VINF_SUCCESS;
1189 }
1190
1191 u32Value = (u32Value & HDA_CORBSIZE_SZ);
1192
1193 uint16_t cEntries = HDA_CORB_SIZE; /* Set default. */
1194
1195 switch (u32Value)
1196 {
1197 case 0: /* 8 byte; 2 entries. */
1198 cEntries = 2;
1199 break;
1200
1201 case 1: /* 64 byte; 16 entries. */
1202 cEntries = 16;
1203 break;
1204
1205 case 2: /* 1 KB; 256 entries. */
1206 /* Use default size. */
1207 break;
1208
1209 default:
1210 LogRel(("HDA: Guest tried to set an invalid CORB size (0x%x), keeping default\n", u32Value));
1211 u32Value = 2;
1212 /* Use default size. */
1213 break;
1214 }
1215
1216 uint32_t cbCorbBuf = cEntries * HDA_CORB_ELEMENT_SIZE;
1217 Assert(cbCorbBuf <= HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE); /* Paranoia. */
1218
1219 if (cbCorbBuf != pThis->cbCorbBuf)
1220 {
1221 RT_BZERO(pThis->pu32CorbBuf, HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE); /* Clear CORB when setting a new size. */
1222 pThis->cbCorbBuf = cbCorbBuf;
1223 }
1224
1225 LogFunc(("CORB buffer size is now %RU32 bytes (%u entries)\n", pThis->cbCorbBuf, pThis->cbCorbBuf / HDA_CORB_ELEMENT_SIZE));
1226
1227 HDA_REG(pThis, CORBSIZE) = u32Value;
1228
1229 DEVHDA_UNLOCK(pThis);
1230 return VINF_SUCCESS;
1231#else
1232 RT_NOREF(pThis, iReg, u32Value);
1233 return VINF_IOM_R3_MMIO_WRITE;
1234#endif
1235}
1236
1237static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1238{
1239 RT_NOREF_PV(iReg);
1240 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1241
1242 uint32_t v = HDA_REG(pThis, CORBSTS);
1243 HDA_REG(pThis, CORBSTS) &= ~(v & u32Value);
1244
1245 DEVHDA_UNLOCK(pThis);
1246 return VINF_SUCCESS;
1247}
1248
1249static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1250{
1251#ifdef IN_RING3
1252 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1253
1254 int rc = hdaRegWriteU16(pThis, iReg, u32Value);
1255 AssertRCSuccess(rc);
1256
1257 rc = hdaR3CORBCmdProcess(pThis);
1258
1259 DEVHDA_UNLOCK(pThis);
1260 return rc;
1261#else
1262 RT_NOREF(pThis, iReg, u32Value);
1263 return VINF_IOM_R3_MMIO_WRITE;
1264#endif
1265}
1266
1267static int hdaRegWriteSDCBL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1268{
1269 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1270
1271 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, HDA_SD_NUM_FROM_REG(pThis, CBL, iReg));
1272 if (pStream)
1273 {
1274 pStream->u32CBL = u32Value;
1275 LogFlowFunc(("[SD%RU8] CBL=%RU32\n", pStream->u8SD, u32Value));
1276 }
1277 else
1278 LogFunc(("[SD%RU8] Warning: Changing SDCBL on non-attached stream (0x%x)\n",
1279 HDA_SD_NUM_FROM_REG(pThis, CTL, iReg), u32Value));
1280
1281 int rc = hdaRegWriteU32(pThis, iReg, u32Value);
1282 AssertRCSuccess(rc);
1283
1284 DEVHDA_UNLOCK(pThis);
1285 return rc;
1286}
1287
1288static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1289{
1290#ifdef IN_RING3
1291 /* Get the stream descriptor. */
1292 const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, CTL, iReg);
1293
1294 DEVHDA_LOCK_BOTH_RETURN(pThis, uSD, VINF_IOM_R3_MMIO_WRITE);
1295
1296 /*
1297 * Some guests write too much (that is, 32-bit with the top 8 bit being junk)
1298 * instead of 24-bit required for SDCTL. So just mask this here to be safe.
1299 */
1300 u32Value &= 0x00ffffff;
1301
1302 bool fRun = RT_BOOL(u32Value & HDA_SDCTL_RUN);
1303 bool fInRun = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_SDCTL_RUN);
1304
1305 bool fReset = RT_BOOL(u32Value & HDA_SDCTL_SRST);
1306 bool fInReset = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_SDCTL_SRST);
1307
1308 LogFunc(("[SD%RU8] fRun=%RTbool, fInRun=%RTbool, fReset=%RTbool, fInReset=%RTbool, %R[sdctl]\n",
1309 uSD, fRun, fInRun, fReset, fInReset, u32Value));
1310
1311 /*
1312 * Extract the stream tag the guest wants to use for this specific
1313 * stream descriptor (SDn). This only can happen if the stream is in a non-running
1314 * state, so we're doing the lookup and assignment here.
1315 *
1316 * So depending on the guest OS, SD3 can use stream tag 4, for example.
1317 */
1318 uint8_t uTag = (u32Value >> HDA_SDCTL_NUM_SHIFT) & HDA_SDCTL_NUM_MASK;
1319 if (uTag > HDA_MAX_TAGS)
1320 {
1321 LogFunc(("[SD%RU8] Warning: Invalid stream tag %RU8 specified!\n", uSD, uTag));
1322
1323 int rc = hdaRegWriteU24(pThis, iReg, u32Value);
1324 DEVHDA_UNLOCK_BOTH(pThis, uSD);
1325 return rc;
1326 }
1327
1328 PHDATAG pTag = &pThis->aTags[uTag];
1329 AssertPtr(pTag);
1330
1331 LogFunc(("[SD%RU8] Using stream tag=%RU8\n", uSD, uTag));
1332
1333 /* Assign new values. */
1334 pTag->uTag = uTag;
1335 pTag->pStream = hdaGetStreamFromSD(pThis, uSD);
1336
1337 PHDASTREAM pStream = pTag->pStream;
1338 AssertPtr(pStream);
1339
1340 if (fInReset)
1341 {
1342 Assert(!fReset);
1343 Assert(!fInRun && !fRun);
1344
1345 /* Exit reset state. */
1346 ASMAtomicXchgBool(&pStream->State.fInReset, false);
1347
1348 /* Report that we're done resetting this stream by clearing SRST. */
1349 HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_SDCTL_SRST;
1350
1351 LogFunc(("[SD%RU8] Reset exit\n", uSD));
1352 }
1353 else if (fReset)
1354 {
1355 /* ICH6 datasheet 18.2.33 says that RUN bit should be cleared before initiation of reset. */
1356 Assert(!fInRun && !fRun);
1357
1358 LogFunc(("[SD%RU8] Reset enter\n", uSD));
1359
1360 hdaR3StreamLock(pStream);
1361
1362# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1363 hdaR3StreamAsyncIOLock(pStream);
1364# endif
1365 /* Make sure to remove the run bit before doing the actual stream reset. */
1366 HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_SDCTL_RUN;
1367
1368 hdaR3StreamReset(pThis, pStream, pStream->u8SD);
1369
1370# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1371 hdaR3StreamAsyncIOUnlock(pStream);
1372# endif
1373 hdaR3StreamUnlock(pStream);
1374 }
1375 else
1376 {
1377 /*
1378 * We enter here to change DMA states only.
1379 */
1380 if (fInRun != fRun)
1381 {
1382 Assert(!fReset && !fInReset);
1383 LogFunc(("[SD%RU8] State changed (fRun=%RTbool)\n", uSD, fRun));
1384
1385 hdaR3StreamLock(pStream);
1386
1387 int rc2;
1388
1389# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1390 if (fRun)
1391 rc2 = hdaR3StreamAsyncIOCreate(pStream);
1392
1393 hdaR3StreamAsyncIOLock(pStream);
1394# endif
1395 if (fRun)
1396 {
1397 /* (Re-)initialize the stream with current values. */
1398 rc2 = hdaR3StreamInit(pStream, pStream->u8SD);
1399 AssertRC(rc2);
1400
1401 /* Remove the old stream from the device setup. */
1402 hdaR3RemoveStream(pThis, &pStream->State.Cfg);
1403
1404 /* Add the stream to the device setup. */
1405 rc2 = hdaR3AddStream(pThis, &pStream->State.Cfg);
1406 AssertRC(rc2);
1407 }
1408
1409 /* Enable/disable the stream. */
1410 rc2 = hdaR3StreamEnable(pStream, fRun /* fEnable */);
1411 AssertRC(rc2);
1412
1413 if (fRun)
1414 {
1415 /* Keep track of running streams. */
1416 pThis->cStreamsActive++;
1417
1418 /* (Re-)init the stream's period. */
1419 hdaR3StreamPeriodInit(&pStream->State.Period,
1420 pStream->u8SD, pStream->u16LVI, pStream->u32CBL, &pStream->State.Cfg);
1421
1422 /* Begin a new period for this stream. */
1423 rc2 = hdaR3StreamPeriodBegin(&pStream->State.Period, hdaWalClkGetCurrent(pThis)/* Use current wall clock time */);
1424 AssertRC(rc2);
1425
1426 rc2 = hdaR3TimerSet(pThis, pStream, TMTimerGet(pThis->pTimer[pStream->u8SD]) + pStream->State.cTransferTicks, false /* fForce */);
1427 AssertRC(rc2);
1428 }
1429 else
1430 {
1431 /* Keep track of running streams. */
1432 Assert(pThis->cStreamsActive);
1433 if (pThis->cStreamsActive)
1434 pThis->cStreamsActive--;
1435
1436 /* Make sure to (re-)schedule outstanding (delayed) interrupts. */
1437 hdaR3ReschedulePendingInterrupts(pThis);
1438
1439 /* Reset the period. */
1440 hdaR3StreamPeriodReset(&pStream->State.Period);
1441 }
1442
1443# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1444 hdaR3StreamAsyncIOUnlock(pStream);
1445# endif
1446 /* Make sure to leave the lock before (eventually) starting the timer. */
1447 hdaR3StreamUnlock(pStream);
1448 }
1449 }
1450
1451 int rc2 = hdaRegWriteU24(pThis, iReg, u32Value);
1452 AssertRC(rc2);
1453
1454 DEVHDA_UNLOCK_BOTH(pThis, uSD);
1455 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1456#else /* !IN_RING3 */
1457 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value);
1458 return VINF_IOM_R3_MMIO_WRITE;
1459#endif /* IN_RING3 */
1460}
1461
1462static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1463{
1464#ifdef IN_RING3
1465 const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, STS, iReg);
1466
1467 DEVHDA_LOCK_BOTH_RETURN(pThis, uSD, VINF_IOM_R3_MMIO_WRITE);
1468
1469 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
1470 if (!pStream)
1471 {
1472 AssertMsgFailed(("[SD%RU8] Warning: Writing SDSTS on non-attached stream (0x%x)\n",
1473 HDA_SD_NUM_FROM_REG(pThis, STS, iReg), u32Value));
1474
1475 int rc = hdaRegWriteU16(pThis, iReg, u32Value);
1476 DEVHDA_UNLOCK_BOTH(pThis, uSD);
1477 return rc;
1478 }
1479
1480 hdaR3StreamLock(pStream);
1481
1482 uint32_t v = HDA_REG_IND(pThis, iReg);
1483
1484 /* Clear (zero) FIFOE, DESE and BCIS bits when writing 1 to it (6.2.33). */
1485 HDA_REG_IND(pThis, iReg) &= ~(u32Value & v);
1486
1487 /* Some guests tend to write SDnSTS even if the stream is not running.
1488 * So make sure to check if the RUN bit is set first. */
1489 const bool fRunning = pStream->State.fRunning;
1490
1491 Log3Func(("[SD%RU8] fRunning=%RTbool %R[sdsts]\n", pStream->u8SD, fRunning, v));
1492
1493 PHDASTREAMPERIOD pPeriod = &pStream->State.Period;
1494
1495 if (hdaR3StreamPeriodLock(pPeriod))
1496 {
1497 const bool fNeedsInterrupt = hdaR3StreamPeriodNeedsInterrupt(pPeriod);
1498 if (fNeedsInterrupt)
1499 hdaR3StreamPeriodReleaseInterrupt(pPeriod);
1500
1501 if (hdaR3StreamPeriodIsComplete(pPeriod))
1502 {
1503 /* Make sure to try to update the WALCLK register if a period is complete.
1504 * Use the maximum WALCLK value all (active) streams agree to. */
1505 const uint64_t uWalClkMax = hdaR3WalClkGetMax(pThis);
1506 if (uWalClkMax > hdaWalClkGetCurrent(pThis))
1507 hdaR3WalClkSet(pThis, uWalClkMax, false /* fForce */);
1508
1509 hdaR3StreamPeriodEnd(pPeriod);
1510
1511 if (fRunning)
1512 hdaR3StreamPeriodBegin(pPeriod, hdaWalClkGetCurrent(pThis) /* Use current wall clock time */);
1513 }
1514
1515 hdaR3StreamPeriodUnlock(pPeriod); /* Unlock before processing interrupt. */
1516 }
1517
1518# ifndef LOG_ENABLED
1519 hdaProcessInterrupt(pThis);
1520# else
1521 hdaProcessInterrupt(pThis, __FUNCTION__);
1522# endif
1523
1524 const uint64_t tsNow = TMTimerGet(pThis->pTimer[uSD]);
1525 Assert(tsNow >= pStream->State.tsTransferLast);
1526
1527 const uint64_t cTicksElapsed = tsNow - pStream->State.tsTransferLast;
1528# ifdef LOG_ENABLED
1529 const uint64_t cTicksTransferred = pStream->State.cbTransferProcessed * pStream->State.cTicksPerByte;
1530# endif
1531
1532 uint64_t cTicksToNext = pStream->State.cTransferTicks;
1533 if (cTicksToNext) /* Only do any calculations if the stream currently is set up for transfers. */
1534 {
1535 Log3Func(("[SD%RU8] cTicksElapsed=%RU64, cTicksTransferred=%RU64, cTicksToNext=%RU64\n",
1536 pStream->u8SD, cTicksElapsed, cTicksTransferred, cTicksToNext));
1537
1538 Log3Func(("[SD%RU8] cbTransferProcessed=%RU32, cbTransferChunk=%RU32, cbTransferSize=%RU32\n",
1539 pStream->u8SD, pStream->State.cbTransferProcessed, pStream->State.cbTransferChunk, pStream->State.cbTransferSize));
1540
1541 if (cTicksElapsed <= cTicksToNext)
1542 {
1543 cTicksToNext = cTicksToNext - cTicksElapsed;
1544 }
1545 else /* Catch up. */
1546 {
1547 Log3Func(("[SD%RU8] Warning: Lagging behind (%RU64 ticks elapsed, maximum allowed is %RU64)\n",
1548 pStream->u8SD, cTicksElapsed, cTicksToNext));
1549
1550 LogRelMax2(64, ("HDA: Stream #%RU8 interrupt lagging behind (expected %uus, got %uus), trying to catch up ...\n",
1551 pStream->u8SD,
1552 (TMTimerGetFreq(pThis->pTimer[pStream->u8SD]) / pThis->u16TimerHz) / 1000,(tsNow - pStream->State.tsTransferLast) / 1000));
1553
1554 cTicksToNext = 0;
1555 }
1556
1557 Log3Func(("[SD%RU8] -> cTicksToNext=%RU64\n", pStream->u8SD, cTicksToNext));
1558
1559 /* Reset processed data counter. */
1560 pStream->State.cbTransferProcessed = 0;
1561 pStream->State.tsTransferNext = tsNow + cTicksToNext;
1562
1563 /* Only re-arm the timer if there were pending transfer interrupts left
1564 * -- it could happen that we land in here if a guest writes to SDnSTS
1565 * unconditionally. */
1566 if (pStream->State.cTransferPendingInterrupts)
1567 {
1568 pStream->State.cTransferPendingInterrupts--;
1569
1570 /* Re-arm the timer. */
1571 LogFunc(("Timer set SD%RU8\n", pStream->u8SD));
1572 hdaR3TimerSet(pThis, pStream, tsNow + cTicksToNext, false /* fForce */);
1573 }
1574 }
1575
1576 hdaR3StreamUnlock(pStream);
1577
1578 DEVHDA_UNLOCK_BOTH(pThis, uSD);
1579 return VINF_SUCCESS;
1580#else /* IN_RING3 */
1581 RT_NOREF(pThis, iReg, u32Value);
1582 return VINF_IOM_R3_MMIO_WRITE;
1583#endif /* !IN_RING3 */
1584}
1585
1586static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1587{
1588 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1589
1590 if (HDA_REG_IND(pThis, iReg) == u32Value) /* Value already set? */
1591 { /* nothing to do */ }
1592 else
1593 {
1594 uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, LVI, iReg);
1595 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
1596 if (pStream)
1597 {
1598 /** @todo Validate LVI. */
1599 pStream->u16LVI = u32Value;
1600 LogFunc(("[SD%RU8] Updating LVI to %RU16\n", uSD, pStream->u16LVI));
1601
1602#ifdef HDA_USE_DMA_ACCESS_HANDLER
1603 if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_OUT)
1604 {
1605 /* Try registering the DMA handlers.
1606 * As we can't be sure in which order LVI + BDL base are set, try registering in both routines. */
1607 if (hdaR3StreamRegisterDMAHandlers(pThis, pStream))
1608 LogFunc(("[SD%RU8] DMA logging enabled\n", pStream->u8SD));
1609 }
1610#endif
1611 }
1612 else
1613 AssertMsgFailed(("[SD%RU8] Warning: Changing SDLVI on non-attached stream (0x%x)\n", uSD, u32Value));
1614
1615 int rc2 = hdaRegWriteU16(pThis, iReg, u32Value);
1616 AssertRC(rc2);
1617 }
1618
1619 DEVHDA_UNLOCK(pThis);
1620 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1621}
1622
1623static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1624{
1625 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1626
1627 uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, FIFOW, iReg);
1628
1629 if (hdaGetDirFromSD(uSD) != PDMAUDIODIR_IN) /* FIFOW for input streams only. */
1630 {
1631#ifndef IN_RING0
1632 LogRel(("HDA: Warning: Guest tried to write read-only FIFOW to output stream #%RU8, ignoring\n", uSD));
1633 DEVHDA_UNLOCK(pThis);
1634 return VINF_SUCCESS;
1635#else
1636 DEVHDA_UNLOCK(pThis);
1637 return VINF_IOM_R3_MMIO_WRITE;
1638#endif
1639 }
1640
1641 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, HDA_SD_NUM_FROM_REG(pThis, FIFOW, iReg));
1642 if (!pStream)
1643 {
1644 AssertMsgFailed(("[SD%RU8] Warning: Changing FIFOW on non-attached stream (0x%x)\n", uSD, u32Value));
1645
1646 int rc = hdaRegWriteU16(pThis, iReg, u32Value);
1647 DEVHDA_UNLOCK(pThis);
1648 return rc;
1649 }
1650
1651 uint32_t u32FIFOW = 0;
1652
1653 switch (u32Value)
1654 {
1655 case HDA_SDFIFOW_8B:
1656 case HDA_SDFIFOW_16B:
1657 case HDA_SDFIFOW_32B:
1658 u32FIFOW = u32Value;
1659 break;
1660 default:
1661 ASSERT_GUEST_LOGREL_MSG_FAILED(("Guest tried write unsupported FIFOW (0x%x) to stream #%RU8, defaulting to 32 bytes\n",
1662 u32Value, uSD));
1663 u32FIFOW = HDA_SDFIFOW_32B;
1664 break;
1665 }
1666
1667 if (u32FIFOW)
1668 {
1669 pStream->u16FIFOW = hdaSDFIFOWToBytes(u32FIFOW);
1670 LogFunc(("[SD%RU8] Updating FIFOW to %RU32 bytes\n", uSD, pStream->u16FIFOW));
1671
1672 int rc2 = hdaRegWriteU16(pThis, iReg, u32FIFOW);
1673 AssertRC(rc2);
1674 }
1675
1676 DEVHDA_UNLOCK(pThis);
1677 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1678}
1679
1680/**
1681 * @note This method could be called for changing value on Output Streams only (ICH6 datasheet 18.2.39).
1682 */
1683static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1684{
1685 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
1686
1687 uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, FIFOS, iReg);
1688
1689 if (hdaGetDirFromSD(uSD) != PDMAUDIODIR_OUT) /* FIFOS for output streams only. */
1690 {
1691 LogRel(("HDA: Warning: Guest tried to write read-only FIFOS to input stream #%RU8, ignoring\n", uSD));
1692
1693 DEVHDA_UNLOCK(pThis);
1694 return VINF_SUCCESS;
1695 }
1696
1697 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
1698 if (!pStream)
1699 {
1700 AssertMsgFailed(("[SD%RU8] Warning: Changing FIFOS on non-attached stream (0x%x)\n", uSD, u32Value));
1701
1702 int rc = hdaRegWriteU16(pThis, iReg, u32Value);
1703 DEVHDA_UNLOCK(pThis);
1704 return rc;
1705 }
1706
1707 uint32_t u32FIFOS = 0;
1708
1709 switch(u32Value)
1710 {
1711 case HDA_SDOFIFO_16B:
1712 case HDA_SDOFIFO_32B:
1713 case HDA_SDOFIFO_64B:
1714 case HDA_SDOFIFO_128B:
1715 case HDA_SDOFIFO_192B:
1716 case HDA_SDOFIFO_256B:
1717 u32FIFOS = u32Value;
1718 break;
1719
1720 default:
1721 ASSERT_GUEST_LOGREL_MSG_FAILED(("Guest tried write unsupported FIFOS (0x%x) to stream #%RU8, defaulting to 192 bytes\n",
1722 u32Value, uSD));
1723 u32FIFOS = HDA_SDOFIFO_192B;
1724 break;
1725 }
1726
1727 if (u32FIFOS)
1728 {
1729 pStream->u16FIFOS = u32FIFOS + 1;
1730 LogFunc(("[SD%RU8] Updating FIFOS to %RU32 bytes\n", uSD, pStream->u16FIFOS));
1731
1732 int rc2 = hdaRegWriteU16(pThis, iReg, u32FIFOS);
1733 AssertRC(rc2);
1734 }
1735
1736 DEVHDA_UNLOCK(pThis);
1737 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1738}
1739
1740#ifdef IN_RING3
1741
1742/**
1743 * Adds an audio output stream to the device setup using the given configuration.
1744 *
1745 * @returns IPRT status code.
1746 * @param pThis Device state.
1747 * @param pCfg Stream configuration to use for adding a stream.
1748 */
1749static int hdaR3AddStreamOut(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
1750{
1751 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1752 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
1753
1754 AssertReturn(pCfg->enmDir == PDMAUDIODIR_OUT, VERR_INVALID_PARAMETER);
1755
1756 LogFlowFunc(("Stream=%s\n", pCfg->szName));
1757
1758 int rc = VINF_SUCCESS;
1759
1760 bool fUseFront = true; /* Always use front out by default. */
1761# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1762 bool fUseRear;
1763 bool fUseCenter;
1764 bool fUseLFE;
1765
1766 fUseRear = fUseCenter = fUseLFE = false;
1767
1768 /*
1769 * Use commonly used setups for speaker configurations.
1770 */
1771
1772 /** @todo Make the following configurable through mixer API and/or CFGM? */
1773 switch (pCfg->Props.cChannels)
1774 {
1775 case 3: /* 2.1: Front (Stereo) + LFE. */
1776 {
1777 fUseLFE = true;
1778 break;
1779 }
1780
1781 case 4: /* Quadrophonic: Front (Stereo) + Rear (Stereo). */
1782 {
1783 fUseRear = true;
1784 break;
1785 }
1786
1787 case 5: /* 4.1: Front (Stereo) + Rear (Stereo) + LFE. */
1788 {
1789 fUseRear = true;
1790 fUseLFE = true;
1791 break;
1792 }
1793
1794 case 6: /* 5.1: Front (Stereo) + Rear (Stereo) + Center/LFE. */
1795 {
1796 fUseRear = true;
1797 fUseCenter = true;
1798 fUseLFE = true;
1799 break;
1800 }
1801
1802 default: /* Unknown; fall back to 2 front channels (stereo). */
1803 {
1804 rc = VERR_NOT_SUPPORTED;
1805 break;
1806 }
1807 }
1808# else /* !VBOX_WITH_AUDIO_HDA_51_SURROUND */
1809 /* Only support mono or stereo channels. */
1810 if ( pCfg->Props.cChannels != 1 /* Mono */
1811 && pCfg->Props.cChannels != 2 /* Stereo */)
1812 {
1813 rc = VERR_NOT_SUPPORTED;
1814 }
1815# endif /* !VBOX_WITH_AUDIO_HDA_51_SURROUND */
1816
1817 if (rc == VERR_NOT_SUPPORTED)
1818 {
1819 LogRel2(("HDA: Warning: Unsupported channel count (%RU8), falling back to stereo channels (2)\n", pCfg->Props.cChannels));
1820
1821 /* Fall back to 2 channels (see below in fUseFront block). */
1822 rc = VINF_SUCCESS;
1823 }
1824
1825 do
1826 {
1827 if (RT_FAILURE(rc))
1828 break;
1829
1830 if (fUseFront)
1831 {
1832 RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Front");
1833
1834 pCfg->DestSource.Dest = PDMAUDIOPLAYBACKDEST_FRONT;
1835 pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED;
1836
1837 pCfg->Props.cChannels = 2;
1838 pCfg->Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pCfg->Props.cBytes, pCfg->Props.cChannels);
1839
1840 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_FRONT, pCfg);
1841 }
1842
1843# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1844 if ( RT_SUCCESS(rc)
1845 && (fUseCenter || fUseLFE))
1846 {
1847 RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Center/LFE");
1848
1849 pCfg->DestSource.Dest = PDMAUDIOPLAYBACKDEST_CENTER_LFE;
1850 pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED;
1851
1852 pCfg->Props.cChannels = (fUseCenter && fUseLFE) ? 2 : 1;
1853 pCfg->Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pCfg->Props.cBits, pCfg->Props.cChannels);
1854
1855 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_CENTER_LFE, pCfg);
1856 }
1857
1858 if ( RT_SUCCESS(rc)
1859 && fUseRear)
1860 {
1861 RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Rear");
1862
1863 pCfg->DestSource.Dest = PDMAUDIOPLAYBACKDEST_REAR;
1864 pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED;
1865
1866 pCfg->Props.cChannels = 2;
1867 pCfg->Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pCfg->Props.cBits, pCfg->Props.cChannels);
1868
1869 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_REAR, pCfg);
1870 }
1871# endif /* VBOX_WITH_AUDIO_HDA_51_SURROUND */
1872
1873 } while (0);
1874
1875 LogFlowFuncLeaveRC(rc);
1876 return rc;
1877}
1878
1879/**
1880 * Adds an audio input stream to the device setup using the given configuration.
1881 *
1882 * @returns IPRT status code.
1883 * @param pThis Device state.
1884 * @param pCfg Stream configuration to use for adding a stream.
1885 */
1886static int hdaR3AddStreamIn(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
1887{
1888 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1889 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
1890
1891 AssertReturn(pCfg->enmDir == PDMAUDIODIR_IN, VERR_INVALID_PARAMETER);
1892
1893 LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->DestSource.Source));
1894
1895 int rc;
1896
1897 switch (pCfg->DestSource.Source)
1898 {
1899 case PDMAUDIORECSOURCE_LINE:
1900 {
1901 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_LINE_IN, pCfg);
1902 break;
1903 }
1904# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
1905 case PDMAUDIORECSOURCE_MIC:
1906 {
1907 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_MIC_IN, pCfg);
1908 break;
1909 }
1910# endif
1911 default:
1912 rc = VERR_NOT_SUPPORTED;
1913 break;
1914 }
1915
1916 LogFlowFuncLeaveRC(rc);
1917 return rc;
1918}
1919
1920/**
1921 * Adds an audio stream to the device setup using the given configuration.
1922 *
1923 * @returns IPRT status code.
1924 * @param pThis Device state.
1925 * @param pCfg Stream configuration to use for adding a stream.
1926 */
1927static int hdaR3AddStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
1928{
1929 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1930 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
1931
1932 int rc;
1933
1934 LogFlowFuncEnter();
1935
1936 switch (pCfg->enmDir)
1937 {
1938 case PDMAUDIODIR_OUT:
1939 rc = hdaR3AddStreamOut(pThis, pCfg);
1940 break;
1941
1942 case PDMAUDIODIR_IN:
1943 rc = hdaR3AddStreamIn(pThis, pCfg);
1944 break;
1945
1946 default:
1947 rc = VERR_NOT_SUPPORTED;
1948 AssertFailed();
1949 break;
1950 }
1951
1952 LogFlowFunc(("Returning %Rrc\n", rc));
1953
1954 return rc;
1955}
1956
1957/**
1958 * Removes an audio stream from the device setup using the given configuration.
1959 *
1960 * @returns IPRT status code.
1961 * @param pThis Device state.
1962 * @param pCfg Stream configuration to use for removing a stream.
1963 */
1964static int hdaR3RemoveStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
1965{
1966 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1967 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
1968
1969 int rc = VINF_SUCCESS;
1970
1971 PDMAUDIOMIXERCTL enmMixerCtl = PDMAUDIOMIXERCTL_UNKNOWN;
1972 switch (pCfg->enmDir)
1973 {
1974 case PDMAUDIODIR_IN:
1975 {
1976 LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->DestSource.Source));
1977
1978 switch (pCfg->DestSource.Source)
1979 {
1980 case PDMAUDIORECSOURCE_LINE: enmMixerCtl = PDMAUDIOMIXERCTL_LINE_IN; break;
1981# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
1982 case PDMAUDIORECSOURCE_MIC: enmMixerCtl = PDMAUDIOMIXERCTL_MIC_IN; break;
1983# endif
1984 default:
1985 rc = VERR_NOT_SUPPORTED;
1986 break;
1987 }
1988
1989 break;
1990 }
1991
1992 case PDMAUDIODIR_OUT:
1993 {
1994 LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->DestSource.Dest));
1995
1996 switch (pCfg->DestSource.Dest)
1997 {
1998 case PDMAUDIOPLAYBACKDEST_FRONT: enmMixerCtl = PDMAUDIOMIXERCTL_FRONT; break;
1999# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2000 case PDMAUDIOPLAYBACKDEST_CENTER_LFE: enmMixerCtl = PDMAUDIOMIXERCTL_CENTER_LFE; break;
2001 case PDMAUDIOPLAYBACKDEST_REAR: enmMixerCtl = PDMAUDIOMIXERCTL_REAR; break;
2002# endif
2003 default:
2004 rc = VERR_NOT_SUPPORTED;
2005 break;
2006 }
2007 break;
2008 }
2009
2010 default:
2011 rc = VERR_NOT_SUPPORTED;
2012 break;
2013 }
2014
2015 if (RT_SUCCESS(rc))
2016 rc = hdaCodecRemoveStream(pThis->pCodec, enmMixerCtl);
2017
2018 LogFlowFuncLeaveRC(rc);
2019 return rc;
2020}
2021#endif /* IN_RING3 */
2022
2023static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2024{
2025 DEVHDA_LOCK(pThis);
2026
2027# ifdef LOG_ENABLED
2028 if (!hdaGetStreamFromSD(pThis, HDA_SD_NUM_FROM_REG(pThis, FMT, iReg)))
2029 LogFunc(("[SD%RU8] Warning: Changing SDFMT on non-attached stream (0x%x)\n",
2030 HDA_SD_NUM_FROM_REG(pThis, FMT, iReg), u32Value));
2031# endif
2032
2033
2034 /* Write the wanted stream format into the register in any case.
2035 *
2036 * This is important for e.g. MacOS guests, as those try to initialize streams which are not reported
2037 * by the device emulation (wants 4 channels, only have 2 channels at the moment).
2038 *
2039 * When ignoring those (invalid) formats, this leads to MacOS thinking that the device is malfunctioning
2040 * and therefore disabling the device completely. */
2041 int rc = hdaRegWriteU16(pThis, iReg, u32Value);
2042 AssertRC(rc);
2043
2044 DEVHDA_UNLOCK(pThis);
2045 return VINF_SUCCESS; /* Never return failure. */
2046}
2047
2048/* Note: Will be called for both, BDPL and BDPU, registers. */
2049DECLINLINE(int) hdaRegWriteSDBDPX(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value, uint8_t uSD)
2050{
2051#ifdef IN_RING3
2052 DEVHDA_LOCK(pThis);
2053
2054 int rc2 = hdaRegWriteU32(pThis, iReg, u32Value);
2055 AssertRC(rc2);
2056
2057 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
2058 if (!pStream)
2059 {
2060 DEVHDA_UNLOCK(pThis);
2061 return VINF_SUCCESS;
2062 }
2063
2064 /* Update BDL base. */
2065 pStream->u64BDLBase = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, uSD),
2066 HDA_STREAM_REG(pThis, BDPU, uSD));
2067
2068# ifdef HDA_USE_DMA_ACCESS_HANDLER
2069 if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_OUT)
2070 {
2071 /* Try registering the DMA handlers.
2072 * As we can't be sure in which order LVI + BDL base are set, try registering in both routines. */
2073 if (hdaR3StreamRegisterDMAHandlers(pThis, pStream))
2074 LogFunc(("[SD%RU8] DMA logging enabled\n", pStream->u8SD));
2075 }
2076# endif
2077
2078 LogFlowFunc(("[SD%RU8] BDLBase=0x%x\n", pStream->u8SD, pStream->u64BDLBase));
2079
2080 DEVHDA_UNLOCK(pThis);
2081 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
2082#else /* !IN_RING3 */
2083 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value); RT_NOREF_PV(uSD);
2084 return VINF_IOM_R3_MMIO_WRITE;
2085#endif /* IN_RING3 */
2086}
2087
2088static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2089{
2090 return hdaRegWriteSDBDPX(pThis, iReg, u32Value, HDA_SD_NUM_FROM_REG(pThis, BDPL, iReg));
2091}
2092
2093static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2094{
2095 return hdaRegWriteSDBDPX(pThis, iReg, u32Value, HDA_SD_NUM_FROM_REG(pThis, BDPU, iReg));
2096}
2097
2098static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
2099{
2100 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
2101
2102 /* regarding 3.4.3 we should mark IRS as busy in case CORB is active */
2103 if ( HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP)
2104 || (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA))
2105 {
2106 HDA_REG(pThis, IRS) = HDA_IRS_ICB; /* busy */
2107 }
2108
2109 int rc = hdaRegReadU32(pThis, iReg, pu32Value);
2110 DEVHDA_UNLOCK(pThis);
2111
2112 return rc;
2113}
2114
2115static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2116{
2117 RT_NOREF_PV(iReg);
2118 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
2119
2120 /*
2121 * If the guest set the ICB bit of IRS register, HDA should process the verb in IC register,
2122 * write the response to IR register, and set the IRV (valid in case of success) bit of IRS register.
2123 */
2124 if ( (u32Value & HDA_IRS_ICB)
2125 && !(HDA_REG(pThis, IRS) & HDA_IRS_ICB))
2126 {
2127#ifdef IN_RING3
2128 uint32_t uCmd = HDA_REG(pThis, IC);
2129
2130 if (HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP))
2131 {
2132 DEVHDA_UNLOCK(pThis);
2133
2134 /*
2135 * 3.4.3: Defines behavior of immediate Command status register.
2136 */
2137 LogRel(("HDA: Guest attempted process immediate verb (%x) with active CORB\n", uCmd));
2138 return VINF_SUCCESS;
2139 }
2140
2141 HDA_REG(pThis, IRS) = HDA_IRS_ICB; /* busy */
2142
2143 uint64_t uResp;
2144 int rc2 = pThis->pCodec->pfnLookup(pThis->pCodec,
2145 HDA_CODEC_CMD(uCmd, 0 /* LUN */), &uResp);
2146 if (RT_FAILURE(rc2))
2147 LogFunc(("Codec lookup failed with rc2=%Rrc\n", rc2));
2148
2149 HDA_REG(pThis, IR) = (uint32_t)uResp; /** @todo r=andy Do we need a 64-bit response? */
2150 HDA_REG(pThis, IRS) = HDA_IRS_IRV; /* result is ready */
2151 /** @todo r=michaln We just set the IRS value, why are we clearing unset bits? */
2152 HDA_REG(pThis, IRS) &= ~HDA_IRS_ICB; /* busy is clear */
2153
2154 DEVHDA_UNLOCK(pThis);
2155 return VINF_SUCCESS;
2156#else /* !IN_RING3 */
2157 DEVHDA_UNLOCK(pThis);
2158 return VINF_IOM_R3_MMIO_WRITE;
2159#endif /* !IN_RING3 */
2160 }
2161
2162 /*
2163 * Once the guest read the response, it should clear the IRV bit of the IRS register.
2164 */
2165 HDA_REG(pThis, IRS) &= ~(u32Value & HDA_IRS_IRV);
2166
2167 DEVHDA_UNLOCK(pThis);
2168 return VINF_SUCCESS;
2169}
2170
2171static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2172{
2173 RT_NOREF(iReg);
2174 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
2175
2176 if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Ignore request if CORB DMA engine is (still) running. */
2177 {
2178 LogFunc(("CORB DMA (still) running, skipping\n"));
2179
2180 DEVHDA_UNLOCK(pThis);
2181 return VINF_SUCCESS;
2182 }
2183
2184 if (u32Value & HDA_RIRBWP_RST)
2185 {
2186 /* Do a RIRB reset. */
2187 if (pThis->cbRirbBuf)
2188 {
2189 Assert(pThis->pu64RirbBuf);
2190 RT_BZERO((void *)pThis->pu64RirbBuf, pThis->cbRirbBuf);
2191 }
2192
2193 LogRel2(("HDA: RIRB reset\n"));
2194
2195 HDA_REG(pThis, RIRBWP) = 0;
2196 }
2197
2198 /* The remaining bits are O, see 6.2.22. */
2199
2200 DEVHDA_UNLOCK(pThis);
2201 return VINF_SUCCESS;
2202}
2203
2204static int hdaRegWriteRINTCNT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2205{
2206 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
2207
2208 if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Ignore request if CORB DMA engine is (still) running. */
2209 {
2210 LogFunc(("CORB DMA is (still) running, skipping\n"));
2211
2212 DEVHDA_UNLOCK(pThis);
2213 return VINF_SUCCESS;
2214 }
2215
2216 int rc = hdaRegWriteU16(pThis, iReg, u32Value);
2217 AssertRC(rc);
2218
2219 LogFunc(("Response interrupt count is now %RU8\n", HDA_REG(pThis, RINTCNT) & 0xFF));
2220
2221 DEVHDA_UNLOCK(pThis);
2222 return rc;
2223}
2224
2225static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2226{
2227 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
2228 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
2229
2230 int rc = hdaRegWriteU32(pThis, iReg, u32Value);
2231 AssertRCSuccess(rc);
2232
2233 switch (iReg)
2234 {
2235 case HDA_REG_CORBLBASE:
2236 pThis->u64CORBBase &= UINT64_C(0xFFFFFFFF00000000);
2237 pThis->u64CORBBase |= pThis->au32Regs[iRegMem];
2238 break;
2239 case HDA_REG_CORBUBASE:
2240 pThis->u64CORBBase &= UINT64_C(0x00000000FFFFFFFF);
2241 pThis->u64CORBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32);
2242 break;
2243 case HDA_REG_RIRBLBASE:
2244 pThis->u64RIRBBase &= UINT64_C(0xFFFFFFFF00000000);
2245 pThis->u64RIRBBase |= pThis->au32Regs[iRegMem];
2246 break;
2247 case HDA_REG_RIRBUBASE:
2248 pThis->u64RIRBBase &= UINT64_C(0x00000000FFFFFFFF);
2249 pThis->u64RIRBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32);
2250 break;
2251 case HDA_REG_DPLBASE:
2252 {
2253 pThis->u64DPBase = pThis->au32Regs[iRegMem] & DPBASE_ADDR_MASK;
2254 Assert(pThis->u64DPBase % 128 == 0); /* Must be 128-byte aligned. */
2255
2256 /* Also make sure to handle the DMA position enable bit. */
2257 pThis->fDMAPosition = pThis->au32Regs[iRegMem] & RT_BIT_32(0);
2258 LogRel(("HDA: %s DMA position buffer\n", pThis->fDMAPosition ? "Enabled" : "Disabled"));
2259 break;
2260 }
2261 case HDA_REG_DPUBASE:
2262 pThis->u64DPBase = RT_MAKE_U64(RT_LO_U32(pThis->u64DPBase) & DPBASE_ADDR_MASK, pThis->au32Regs[iRegMem]);
2263 break;
2264 default:
2265 AssertMsgFailed(("Invalid index\n"));
2266 break;
2267 }
2268
2269 LogFunc(("CORB base:%llx RIRB base: %llx DP base: %llx\n",
2270 pThis->u64CORBBase, pThis->u64RIRBBase, pThis->u64DPBase));
2271
2272 DEVHDA_UNLOCK(pThis);
2273 return rc;
2274}
2275
2276static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2277{
2278 RT_NOREF_PV(iReg);
2279 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
2280
2281 uint8_t v = HDA_REG(pThis, RIRBSTS);
2282 HDA_REG(pThis, RIRBSTS) &= ~(v & u32Value);
2283
2284#ifndef LOG_ENABLED
2285 int rc = hdaProcessInterrupt(pThis);
2286#else
2287 int rc = hdaProcessInterrupt(pThis, __FUNCTION__);
2288#endif
2289
2290 DEVHDA_UNLOCK(pThis);
2291 return rc;
2292}
2293
2294#ifdef IN_RING3
2295
2296/**
2297 * Retrieves a corresponding sink for a given mixer control.
2298 * Returns NULL if no sink is found.
2299 *
2300 * @return PHDAMIXERSINK
2301 * @param pThis HDA state.
2302 * @param enmMixerCtl Mixer control to get the corresponding sink for.
2303 */
2304static PHDAMIXERSINK hdaR3MixerControlToSink(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl)
2305{
2306 PHDAMIXERSINK pSink;
2307
2308 switch (enmMixerCtl)
2309 {
2310 case PDMAUDIOMIXERCTL_VOLUME_MASTER:
2311 /* Fall through is intentional. */
2312 case PDMAUDIOMIXERCTL_FRONT:
2313 pSink = &pThis->SinkFront;
2314 break;
2315# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2316 case PDMAUDIOMIXERCTL_CENTER_LFE:
2317 pSink = &pThis->SinkCenterLFE;
2318 break;
2319 case PDMAUDIOMIXERCTL_REAR:
2320 pSink = &pThis->SinkRear;
2321 break;
2322# endif
2323 case PDMAUDIOMIXERCTL_LINE_IN:
2324 pSink = &pThis->SinkLineIn;
2325 break;
2326# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2327 case PDMAUDIOMIXERCTL_MIC_IN:
2328 pSink = &pThis->SinkMicIn;
2329 break;
2330# endif
2331 default:
2332 pSink = NULL;
2333 AssertMsgFailed(("Unhandled mixer control\n"));
2334 break;
2335 }
2336
2337 return pSink;
2338}
2339
2340/**
2341 * Adds a specific HDA driver to the driver chain.
2342 *
2343 * @return IPRT status code.
2344 * @param pThis HDA state.
2345 * @param pDrv HDA driver to add.
2346 */
2347static int hdaR3MixerAddDrv(PHDASTATE pThis, PHDADRIVER pDrv)
2348{
2349 int rc = VINF_SUCCESS;
2350
2351 PHDASTREAM pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkLineIn);
2352 if ( pStream
2353 && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
2354 {
2355 int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkLineIn.pMixSink, &pStream->State.Cfg, pDrv);
2356 if (RT_SUCCESS(rc))
2357 rc = rc2;
2358 }
2359
2360# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2361 pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkMicIn);
2362 if ( pStream
2363 && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
2364 {
2365 int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkMicIn.pMixSink, &pStream->State.Cfg, pDrv);
2366 if (RT_SUCCESS(rc))
2367 rc = rc2;
2368 }
2369# endif
2370
2371 pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkFront);
2372 if ( pStream
2373 && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
2374 {
2375 int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkFront.pMixSink, &pStream->State.Cfg, pDrv);
2376 if (RT_SUCCESS(rc))
2377 rc = rc2;
2378 }
2379
2380# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2381 pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkCenterLFE);
2382 if ( pStream
2383 && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
2384 {
2385 int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkCenterLFE.pMixSink, &pStream->State.Cfg, pDrv);
2386 if (RT_SUCCESS(rc))
2387 rc = rc2;
2388 }
2389
2390 pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkRear);
2391 if ( pStream
2392 && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
2393 {
2394 int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkRear.pMixSink, &pStream->State.Cfg, pDrv);
2395 if (RT_SUCCESS(rc))
2396 rc = rc2;
2397 }
2398# endif
2399
2400 return rc;
2401}
2402
2403/**
2404 * Removes a specific HDA driver from the driver chain and destroys its
2405 * associated streams.
2406 *
2407 * @param pThis HDA state.
2408 * @param pDrv HDA driver to remove.
2409 */
2410static void hdaR3MixerRemoveDrv(PHDASTATE pThis, PHDADRIVER pDrv)
2411{
2412 AssertPtrReturnVoid(pThis);
2413 AssertPtrReturnVoid(pDrv);
2414
2415 if (pDrv->LineIn.pMixStrm)
2416 {
2417 if (AudioMixerSinkGetRecordingSource(pThis->SinkLineIn.pMixSink) == pDrv->LineIn.pMixStrm)
2418 AudioMixerSinkSetRecordingSource(pThis->SinkLineIn.pMixSink, NULL);
2419
2420 AudioMixerSinkRemoveStream(pThis->SinkLineIn.pMixSink, pDrv->LineIn.pMixStrm);
2421 AudioMixerStreamDestroy(pDrv->LineIn.pMixStrm);
2422 pDrv->LineIn.pMixStrm = NULL;
2423 }
2424
2425# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2426 if (pDrv->MicIn.pMixStrm)
2427 {
2428 if (AudioMixerSinkGetRecordingSource(pThis->SinkMicIn.pMixSink) == pDrv->MicIn.pMixStrm)
2429 AudioMixerSinkSetRecordingSource(&pThis->SinkMicIn.pMixSink, NULL);
2430
2431 AudioMixerSinkRemoveStream(pThis->SinkMicIn.pMixSink, pDrv->MicIn.pMixStrm);
2432 AudioMixerStreamDestroy(pDrv->MicIn.pMixStrm);
2433 pDrv->MicIn.pMixStrm = NULL;
2434 }
2435# endif
2436
2437 if (pDrv->Front.pMixStrm)
2438 {
2439 AudioMixerSinkRemoveStream(pThis->SinkFront.pMixSink, pDrv->Front.pMixStrm);
2440 AudioMixerStreamDestroy(pDrv->Front.pMixStrm);
2441 pDrv->Front.pMixStrm = NULL;
2442 }
2443
2444# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2445 if (pDrv->CenterLFE.pMixStrm)
2446 {
2447 AudioMixerSinkRemoveStream(pThis->SinkCenterLFE.pMixSink, pDrv->CenterLFE.pMixStrm);
2448 AudioMixerStreamDestroy(pDrv->CenterLFE.pMixStrm);
2449 pDrv->CenterLFE.pMixStrm = NULL;
2450 }
2451
2452 if (pDrv->Rear.pMixStrm)
2453 {
2454 AudioMixerSinkRemoveStream(pThis->SinkRear.pMixSink, pDrv->Rear.pMixStrm);
2455 AudioMixerStreamDestroy(pDrv->Rear.pMixStrm);
2456 pDrv->Rear.pMixStrm = NULL;
2457 }
2458# endif
2459
2460 RTListNodeRemove(&pDrv->Node);
2461}
2462
2463/**
2464 * Adds a driver stream to a specific mixer sink.
2465 *
2466 * @returns IPRT status code (ignored by caller).
2467 * @param pThis HDA state.
2468 * @param pMixSink Audio mixer sink to add audio streams to.
2469 * @param pCfg Audio stream configuration to use for the audio streams to add.
2470 * @param pDrv Driver stream to add.
2471 */
2472static int hdaR3MixerAddDrvStream(PHDASTATE pThis, PAUDMIXSINK pMixSink, PPDMAUDIOSTREAMCFG pCfg, PHDADRIVER pDrv)
2473{
2474 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2475 AssertPtrReturn(pMixSink, VERR_INVALID_POINTER);
2476 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
2477
2478 LogFunc(("Sink=%s, Stream=%s\n", pMixSink->pszName, pCfg->szName));
2479
2480 PPDMAUDIOSTREAMCFG pStreamCfg = DrvAudioHlpStreamCfgDup(pCfg);
2481 if (!pStreamCfg)
2482 return VERR_NO_MEMORY;
2483
2484 LogFunc(("[LUN#%RU8] %s\n", pDrv->uLUN, pStreamCfg->szName));
2485
2486 int rc = VINF_SUCCESS;
2487
2488 PHDADRIVERSTREAM pDrvStream = NULL;
2489
2490 if (pStreamCfg->enmDir == PDMAUDIODIR_IN)
2491 {
2492 LogFunc(("enmRecSource=%d\n", pStreamCfg->DestSource.Source));
2493
2494 switch (pStreamCfg->DestSource.Source)
2495 {
2496 case PDMAUDIORECSOURCE_LINE:
2497 pDrvStream = &pDrv->LineIn;
2498 break;
2499# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2500 case PDMAUDIORECSOURCE_MIC:
2501 pDrvStream = &pDrv->MicIn;
2502 break;
2503# endif
2504 default:
2505 rc = VERR_NOT_SUPPORTED;
2506 break;
2507 }
2508 }
2509 else if (pStreamCfg->enmDir == PDMAUDIODIR_OUT)
2510 {
2511 LogFunc(("enmPlaybackDest=%d\n", pStreamCfg->DestSource.Dest));
2512
2513 switch (pStreamCfg->DestSource.Dest)
2514 {
2515 case PDMAUDIOPLAYBACKDEST_FRONT:
2516 pDrvStream = &pDrv->Front;
2517 break;
2518# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2519 case PDMAUDIOPLAYBACKDEST_CENTER_LFE:
2520 pDrvStream = &pDrv->CenterLFE;
2521 break;
2522 case PDMAUDIOPLAYBACKDEST_REAR:
2523 pDrvStream = &pDrv->Rear;
2524 break;
2525# endif
2526 default:
2527 rc = VERR_NOT_SUPPORTED;
2528 break;
2529 }
2530 }
2531 else
2532 rc = VERR_NOT_SUPPORTED;
2533
2534 if (RT_SUCCESS(rc))
2535 {
2536 AssertPtr(pDrvStream);
2537 AssertMsg(pDrvStream->pMixStrm == NULL, ("[LUN#%RU8] Driver stream already present when it must not\n", pDrv->uLUN));
2538
2539 PAUDMIXSTREAM pMixStrm;
2540 rc = AudioMixerSinkCreateStream(pMixSink, pDrv->pConnector, pStreamCfg, 0 /* fFlags */, &pMixStrm);
2541 LogFlowFunc(("LUN#%RU8: Created stream \"%s\" for sink, rc=%Rrc\n", pDrv->uLUN, pStreamCfg->szName, rc));
2542 if (RT_SUCCESS(rc))
2543 {
2544 rc = AudioMixerSinkAddStream(pMixSink, pMixStrm);
2545 LogFlowFunc(("LUN#%RU8: Added stream \"%s\" to sink, rc=%Rrc\n", pDrv->uLUN, pStreamCfg->szName, rc));
2546 if (RT_SUCCESS(rc))
2547 {
2548 /* If this is an input stream, always set the latest (added) stream
2549 * as the recording source.
2550 * @todo Make the recording source dynamic (CFGM?). */
2551 if (pStreamCfg->enmDir == PDMAUDIODIR_IN)
2552 {
2553 PDMAUDIOBACKENDCFG Cfg;
2554 rc = pDrv->pConnector->pfnGetConfig(pDrv->pConnector, &Cfg);
2555 if (RT_SUCCESS(rc))
2556 {
2557 if (Cfg.cMaxStreamsIn) /* At least one input source available? */
2558 {
2559 rc = AudioMixerSinkSetRecordingSource(pMixSink, pMixStrm);
2560 LogFlowFunc(("LUN#%RU8: Recording source for '%s' -> '%s', rc=%Rrc\n",
2561 pDrv->uLUN, pStreamCfg->szName, Cfg.szName, rc));
2562
2563 if (RT_SUCCESS(rc))
2564 LogRel(("HDA: Set recording source for '%s' to '%s'\n",
2565 pStreamCfg->szName, Cfg.szName));
2566 }
2567 else
2568 LogRel(("HDA: Backend '%s' currently is not offering any recording source for '%s'\n",
2569 Cfg.szName, pStreamCfg->szName));
2570 }
2571 else if (RT_FAILURE(rc))
2572 LogFunc(("LUN#%RU8: Unable to retrieve backend configuration for '%s', rc=%Rrc\n",
2573 pDrv->uLUN, pStreamCfg->szName, rc));
2574 }
2575 }
2576 }
2577
2578 if (RT_SUCCESS(rc))
2579 pDrvStream->pMixStrm = pMixStrm;
2580 }
2581
2582 if (pStreamCfg)
2583 {
2584 RTMemFree(pStreamCfg);
2585 pStreamCfg = NULL;
2586 }
2587
2588 LogFlowFuncLeaveRC(rc);
2589 return rc;
2590}
2591
2592/**
2593 * Adds all current driver streams to a specific mixer sink.
2594 *
2595 * @returns IPRT status code.
2596 * @param pThis HDA state.
2597 * @param pMixSink Audio mixer sink to add stream to.
2598 * @param pCfg Audio stream configuration to use for the audio streams to add.
2599 */
2600static int hdaR3MixerAddDrvStreams(PHDASTATE pThis, PAUDMIXSINK pMixSink, PPDMAUDIOSTREAMCFG pCfg)
2601{
2602 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2603 AssertPtrReturn(pMixSink, VERR_INVALID_POINTER);
2604 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
2605
2606 LogFunc(("Sink=%s, Stream=%s\n", pMixSink->pszName, pCfg->szName));
2607
2608 if (!DrvAudioHlpStreamCfgIsValid(pCfg))
2609 return VERR_INVALID_PARAMETER;
2610
2611 int rc = AudioMixerSinkSetFormat(pMixSink, &pCfg->Props);
2612 if (RT_FAILURE(rc))
2613 return rc;
2614
2615 PHDADRIVER pDrv;
2616 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
2617 {
2618 int rc2 = hdaR3MixerAddDrvStream(pThis, pMixSink, pCfg, pDrv);
2619 if (RT_FAILURE(rc2))
2620 LogFunc(("Attaching stream failed with %Rrc\n", rc2));
2621
2622 /* Do not pass failure to rc here, as there might be drivers which aren't
2623 * configured / ready yet. */
2624 }
2625
2626 return rc;
2627}
2628
2629/**
2630 * @interface_method_impl{HDACODEC,pfnCbMixerAddStream}
2631 *
2632 * Adds a new audio stream to a specific mixer control.
2633 *
2634 * Depending on the mixer control the stream then gets assigned to one of the internal
2635 * mixer sinks, which in turn then handle the mixing of all connected streams to that sink.
2636 *
2637 * @return IPRT status code.
2638 * @param pThis HDA state.
2639 * @param enmMixerCtl Mixer control to assign new stream to.
2640 * @param pCfg Stream configuration for the new stream.
2641 */
2642static DECLCALLBACK(int) hdaR3MixerAddStream(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, PPDMAUDIOSTREAMCFG pCfg)
2643{
2644 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2645 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
2646
2647 int rc;
2648
2649 PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl);
2650 if (pSink)
2651 {
2652 rc = hdaR3MixerAddDrvStreams(pThis, pSink->pMixSink, pCfg);
2653
2654 AssertPtr(pSink->pMixSink);
2655 LogFlowFunc(("Sink=%s, Mixer control=%s\n", pSink->pMixSink->pszName, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl)));
2656 }
2657 else
2658 rc = VERR_NOT_FOUND;
2659
2660 LogFlowFuncLeaveRC(rc);
2661 return rc;
2662}
2663
2664/**
2665 * @interface_method_impl{HDACODEC,pfnCbMixerRemoveStream}
2666 *
2667 * Removes a specified mixer control from the HDA's mixer.
2668 *
2669 * @return IPRT status code.
2670 * @param pThis HDA state.
2671 * @param enmMixerCtl Mixer control to remove.
2672 *
2673 * @remarks Can be called as a callback by the HDA codec.
2674 */
2675static DECLCALLBACK(int) hdaR3MixerRemoveStream(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl)
2676{
2677 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2678
2679 int rc;
2680
2681 PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl);
2682 if (pSink)
2683 {
2684 PHDADRIVER pDrv;
2685 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
2686 {
2687 PAUDMIXSTREAM pMixStream = NULL;
2688 switch (enmMixerCtl)
2689 {
2690 /*
2691 * Input.
2692 */
2693 case PDMAUDIOMIXERCTL_LINE_IN:
2694 pMixStream = pDrv->LineIn.pMixStrm;
2695 pDrv->LineIn.pMixStrm = NULL;
2696 break;
2697# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2698 case PDMAUDIOMIXERCTL_MIC_IN:
2699 pMixStream = pDrv->MicIn.pMixStrm;
2700 pDrv->MicIn.pMixStrm = NULL;
2701 break;
2702# endif
2703 /*
2704 * Output.
2705 */
2706 case PDMAUDIOMIXERCTL_FRONT:
2707 pMixStream = pDrv->Front.pMixStrm;
2708 pDrv->Front.pMixStrm = NULL;
2709 break;
2710# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2711 case PDMAUDIOMIXERCTL_CENTER_LFE:
2712 pMixStream = pDrv->CenterLFE.pMixStrm;
2713 pDrv->CenterLFE.pMixStrm = NULL;
2714 break;
2715 case PDMAUDIOMIXERCTL_REAR:
2716 pMixStream = pDrv->Rear.pMixStrm;
2717 pDrv->Rear.pMixStrm = NULL;
2718 break;
2719# endif
2720 default:
2721 AssertMsgFailed(("Mixer control %d not implemented\n", enmMixerCtl));
2722 break;
2723 }
2724
2725 if (pMixStream)
2726 {
2727 AudioMixerSinkRemoveStream(pSink->pMixSink, pMixStream);
2728 AudioMixerStreamDestroy(pMixStream);
2729
2730 pMixStream = NULL;
2731 }
2732 }
2733
2734 AudioMixerSinkRemoveAllStreams(pSink->pMixSink);
2735 rc = VINF_SUCCESS;
2736 }
2737 else
2738 rc = VERR_NOT_FOUND;
2739
2740 LogFunc(("Mixer control=%s, rc=%Rrc\n", DrvAudioHlpAudMixerCtlToStr(enmMixerCtl), rc));
2741 return rc;
2742}
2743
2744/**
2745 * @interface_method_impl{HDACODEC,pfnCbMixerControl}
2746 *
2747 * Controls an input / output converter widget, that is, which converter is connected
2748 * to which stream (and channel).
2749 *
2750 * @returns IPRT status code.
2751 * @param pThis HDA State.
2752 * @param enmMixerCtl Mixer control to set SD stream number and channel for.
2753 * @param uSD SD stream number (number + 1) to set. Set to 0 for unassign.
2754 * @param uChannel Channel to set. Only valid if a valid SD stream number is specified.
2755 *
2756 * @remarks Can be called as a callback by the HDA codec.
2757 */
2758static DECLCALLBACK(int) hdaR3MixerControl(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, uint8_t uSD, uint8_t uChannel)
2759{
2760 LogFunc(("enmMixerCtl=%s, uSD=%RU8, uChannel=%RU8\n", DrvAudioHlpAudMixerCtlToStr(enmMixerCtl), uSD, uChannel));
2761
2762 if (uSD == 0) /* Stream number 0 is reserved. */
2763 {
2764 Log2Func(("Invalid SDn (%RU8) number for mixer control '%s', ignoring\n", uSD, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl)));
2765 return VINF_SUCCESS;
2766 }
2767 /* uChannel is optional. */
2768
2769 /* SDn0 starts as 1. */
2770 Assert(uSD);
2771 uSD--;
2772
2773# ifndef VBOX_WITH_AUDIO_HDA_MIC_IN
2774 /* Only SDI0 (Line-In) is supported. */
2775 if ( hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN
2776 && uSD >= 1)
2777 {
2778 LogRel2(("HDA: Dedicated Mic-In support not imlpemented / built-in (stream #%RU8), using Line-In (stream #0) instead\n", uSD));
2779 uSD = 0;
2780 }
2781# endif
2782
2783 int rc = VINF_SUCCESS;
2784
2785 PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl);
2786 if (pSink)
2787 {
2788 AssertPtr(pSink->pMixSink);
2789
2790 /* If this an output stream, determine the correct SD#. */
2791 if ( (uSD < HDA_MAX_SDI)
2792 && AudioMixerSinkGetDir(pSink->pMixSink) == AUDMIXSINKDIR_OUTPUT)
2793 {
2794 uSD += HDA_MAX_SDI;
2795 }
2796
2797 /* Detach the existing stream from the sink. */
2798 if ( pSink->pStream
2799 && ( pSink->pStream->u8SD != uSD
2800 || pSink->pStream->u8Channel != uChannel)
2801 )
2802 {
2803 LogFunc(("Sink '%s' was assigned to stream #%RU8 (channel %RU8) before\n",
2804 pSink->pMixSink->pszName, pSink->pStream->u8SD, pSink->pStream->u8Channel));
2805
2806 hdaR3StreamLock(pSink->pStream);
2807
2808 /* Only disable the stream if the stream descriptor # has changed. */
2809 if (pSink->pStream->u8SD != uSD)
2810 hdaR3StreamEnable(pSink->pStream, false);
2811
2812 pSink->pStream->pMixSink = NULL;
2813
2814 hdaR3StreamUnlock(pSink->pStream);
2815
2816 pSink->pStream = NULL;
2817 }
2818
2819 Assert(uSD < HDA_MAX_STREAMS);
2820
2821 /* Attach the new stream to the sink.
2822 * Enabling the stream will be done by the gust via a separate SDnCTL call then. */
2823 if (pSink->pStream == NULL)
2824 {
2825 LogRel2(("HDA: Setting sink '%s' to stream #%RU8 (channel %RU8), mixer control=%s\n",
2826 pSink->pMixSink->pszName, uSD, uChannel, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl)));
2827
2828 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
2829 if (pStream)
2830 {
2831 hdaR3StreamLock(pStream);
2832
2833 pSink->pStream = pStream;
2834
2835 pStream->u8Channel = uChannel;
2836 pStream->pMixSink = pSink;
2837
2838 hdaR3StreamUnlock(pStream);
2839
2840 rc = VINF_SUCCESS;
2841 }
2842 else
2843 rc = VERR_NOT_IMPLEMENTED;
2844 }
2845 }
2846 else
2847 rc = VERR_NOT_FOUND;
2848
2849 if (RT_FAILURE(rc))
2850 LogRel(("HDA: Converter control for stream #%RU8 (channel %RU8) / mixer control '%s' failed with %Rrc, skipping\n",
2851 uSD, uChannel, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl), rc));
2852
2853 LogFlowFuncLeaveRC(rc);
2854 return rc;
2855}
2856
2857/**
2858 * @interface_method_impl{HDACODEC,pfnCbMixerSetVolume}
2859 *
2860 * Sets the volume of a specified mixer control.
2861 *
2862 * @return IPRT status code.
2863 * @param pThis HDA State.
2864 * @param enmMixerCtl Mixer control to set volume for.
2865 * @param pVol Pointer to volume data to set.
2866 *
2867 * @remarks Can be called as a callback by the HDA codec.
2868 */
2869static DECLCALLBACK(int) hdaR3MixerSetVolume(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, PPDMAUDIOVOLUME pVol)
2870{
2871 int rc;
2872
2873 PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl);
2874 if ( pSink
2875 && pSink->pMixSink)
2876 {
2877 LogRel2(("HDA: Setting volume for mixer sink '%s' to %RU8/%RU8 (%s)\n",
2878 pSink->pMixSink->pszName, pVol->uLeft, pVol->uRight, pVol->fMuted ? "Muted" : "Unmuted"));
2879
2880 /* Set the volume.
2881 * We assume that the codec already converted it to the correct range. */
2882 rc = AudioMixerSinkSetVolume(pSink->pMixSink, pVol);
2883 }
2884 else
2885 rc = VERR_NOT_FOUND;
2886
2887 LogFlowFuncLeaveRC(rc);
2888 return rc;
2889}
2890
2891/**
2892 * Main routine for the stream's timer.
2893 *
2894 * @param pDevIns Device instance.
2895 * @param pTimer Timer this callback was called for.
2896 * @param pvUser Pointer to associated HDASTREAM.
2897 */
2898static DECLCALLBACK(void) hdaR3Timer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
2899{
2900 RT_NOREF(pDevIns, pTimer);
2901
2902 PHDASTREAM pStream = (PHDASTREAM)pvUser;
2903 AssertPtr(pStream);
2904
2905 PHDASTATE pThis = pStream->pHDAState;
2906
2907 DEVHDA_LOCK_BOTH_RETURN_VOID(pStream->pHDAState, pStream->u8SD);
2908
2909 hdaR3StreamUpdate(pStream, true /* fInTimer */);
2910
2911 /* Flag indicating whether to kick the timer again for a
2912 * new data processing round. */
2913 const bool fSinkActive = AudioMixerSinkIsActive(pStream->pMixSink->pMixSink);
2914 if (fSinkActive)
2915 {
2916 const bool fTimerScheduled = hdaR3StreamTransferIsScheduled(pStream);
2917 Log3Func(("fSinksActive=%RTbool, fTimerScheduled=%RTbool\n", fSinkActive, fTimerScheduled));
2918 if (!fTimerScheduled)
2919 hdaR3TimerSet(pThis, pStream,
2920 TMTimerGet(pThis->pTimer[pStream->u8SD])
2921 + TMTimerGetFreq(pThis->pTimer[pStream->u8SD]) / pStream->pHDAState->u16TimerHz,
2922 true /* fForce */);
2923 }
2924 else
2925 Log3Func(("fSinksActive=%RTbool\n", fSinkActive));
2926
2927 DEVHDA_UNLOCK_BOTH(pThis, pStream->u8SD);
2928}
2929
2930# ifdef HDA_USE_DMA_ACCESS_HANDLER
2931/**
2932 * HC access handler for the FIFO.
2933 *
2934 * @returns VINF_SUCCESS if the handler have carried out the operation.
2935 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2936 * @param pVM VM Handle.
2937 * @param pVCpu The cross context CPU structure for the calling EMT.
2938 * @param GCPhys The physical address the guest is writing to.
2939 * @param pvPhys The HC mapping of that address.
2940 * @param pvBuf What the guest is reading/writing.
2941 * @param cbBuf How much it's reading/writing.
2942 * @param enmAccessType The access type.
2943 * @param enmOrigin Who is making the access.
2944 * @param pvUser User argument.
2945 */
2946static DECLCALLBACK(VBOXSTRICTRC) hdaR3DMAAccessHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys,
2947 void *pvBuf, size_t cbBuf,
2948 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
2949{
2950 RT_NOREF(pVM, pVCpu, pvPhys, pvBuf, enmOrigin);
2951
2952 PHDADMAACCESSHANDLER pHandler = (PHDADMAACCESSHANDLER)pvUser;
2953 AssertPtr(pHandler);
2954
2955 PHDASTREAM pStream = pHandler->pStream;
2956 AssertPtr(pStream);
2957
2958 Assert(GCPhys >= pHandler->GCPhysFirst);
2959 Assert(GCPhys <= pHandler->GCPhysLast);
2960 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2961
2962 /* Not within BDLE range? Bail out. */
2963 if ( (GCPhys < pHandler->BDLEAddr)
2964 || (GCPhys + cbBuf > pHandler->BDLEAddr + pHandler->BDLESize))
2965 {
2966 return VINF_PGM_HANDLER_DO_DEFAULT;
2967 }
2968
2969 switch(enmAccessType)
2970 {
2971 case PGMACCESSTYPE_WRITE:
2972 {
2973# ifdef DEBUG
2974 PHDASTREAMDBGINFO pStreamDbg = &pStream->Dbg;
2975
2976 const uint64_t tsNowNs = RTTimeNanoTS();
2977 const uint32_t tsElapsedMs = (tsNowNs - pStreamDbg->tsWriteSlotBegin) / 1000 / 1000;
2978
2979 uint64_t cWritesHz = ASMAtomicReadU64(&pStreamDbg->cWritesHz);
2980 uint64_t cbWrittenHz = ASMAtomicReadU64(&pStreamDbg->cbWrittenHz);
2981
2982 if (tsElapsedMs >= (1000 / HDA_TIMER_HZ_DEFAULT))
2983 {
2984 LogFunc(("[SD%RU8] %RU32ms elapsed, cbWritten=%RU64, cWritten=%RU64 -- %RU32 bytes on average per time slot (%zums)\n",
2985 pStream->u8SD, tsElapsedMs, cbWrittenHz, cWritesHz,
2986 ASMDivU64ByU32RetU32(cbWrittenHz, cWritesHz ? cWritesHz : 1), 1000 / HDA_TIMER_HZ_DEFAULT));
2987
2988 pStreamDbg->tsWriteSlotBegin = tsNowNs;
2989
2990 cWritesHz = 0;
2991 cbWrittenHz = 0;
2992 }
2993
2994 cWritesHz += 1;
2995 cbWrittenHz += cbBuf;
2996
2997 ASMAtomicIncU64(&pStreamDbg->cWritesTotal);
2998 ASMAtomicAddU64(&pStreamDbg->cbWrittenTotal, cbBuf);
2999
3000 ASMAtomicWriteU64(&pStreamDbg->cWritesHz, cWritesHz);
3001 ASMAtomicWriteU64(&pStreamDbg->cbWrittenHz, cbWrittenHz);
3002
3003 LogFunc(("[SD%RU8] Writing %3zu @ 0x%x (off %zu)\n",
3004 pStream->u8SD, cbBuf, GCPhys, GCPhys - pHandler->BDLEAddr));
3005
3006 LogFunc(("[SD%RU8] cWrites=%RU64, cbWritten=%RU64 -> %RU32 bytes on average\n",
3007 pStream->u8SD, pStreamDbg->cWritesTotal, pStreamDbg->cbWrittenTotal,
3008 ASMDivU64ByU32RetU32(pStreamDbg->cbWrittenTotal, pStreamDbg->cWritesTotal)));
3009# endif
3010
3011 if (pThis->fDebugEnabled)
3012 {
3013 RTFILE fh;
3014 RTFileOpen(&fh, VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH "hdaDMAAccessWrite.pcm",
3015 RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND | RTFILE_O_WRITE | RTFILE_O_DENY_NONE);
3016 RTFileWrite(fh, pvBuf, cbBuf, NULL);
3017 RTFileClose(fh);
3018 }
3019
3020# ifdef HDA_USE_DMA_ACCESS_HANDLER_WRITING
3021 PRTCIRCBUF pCircBuf = pStream->State.pCircBuf;
3022 AssertPtr(pCircBuf);
3023
3024 uint8_t *pbBuf = (uint8_t *)pvBuf;
3025 while (cbBuf)
3026 {
3027 /* Make sure we only copy as much as the stream's FIFO can hold (SDFIFOS, 18.2.39). */
3028 void *pvChunk;
3029 size_t cbChunk;
3030 RTCircBufAcquireWriteBlock(pCircBuf, cbBuf, &pvChunk, &cbChunk);
3031
3032 if (cbChunk)
3033 {
3034 memcpy(pvChunk, pbBuf, cbChunk);
3035
3036 pbBuf += cbChunk;
3037 Assert(cbBuf >= cbChunk);
3038 cbBuf -= cbChunk;
3039 }
3040 else
3041 {
3042 //AssertMsg(RTCircBufFree(pCircBuf), ("No more space but still %zu bytes to write\n", cbBuf));
3043 break;
3044 }
3045
3046 LogFunc(("[SD%RU8] cbChunk=%zu\n", pStream->u8SD, cbChunk));
3047
3048 RTCircBufReleaseWriteBlock(pCircBuf, cbChunk);
3049 }
3050# endif /* HDA_USE_DMA_ACCESS_HANDLER_WRITING */
3051 break;
3052 }
3053
3054 default:
3055 AssertMsgFailed(("Access type not implemented\n"));
3056 break;
3057 }
3058
3059 return VINF_PGM_HANDLER_DO_DEFAULT;
3060}
3061# endif /* HDA_USE_DMA_ACCESS_HANDLER */
3062
3063/**
3064 * Soft reset of the device triggered via GCTL.
3065 *
3066 * @param pThis HDA state.
3067 *
3068 */
3069static void hdaR3GCTLReset(PHDASTATE pThis)
3070{
3071 LogFlowFuncEnter();
3072
3073 pThis->cStreamsActive = 0;
3074
3075 HDA_REG(pThis, GCAP) = HDA_MAKE_GCAP(HDA_MAX_SDO, HDA_MAX_SDI, 0, 0, 1); /* see 6.2.1 */
3076 HDA_REG(pThis, VMIN) = 0x00; /* see 6.2.2 */
3077 HDA_REG(pThis, VMAJ) = 0x01; /* see 6.2.3 */
3078 HDA_REG(pThis, OUTPAY) = 0x003C; /* see 6.2.4 */
3079 HDA_REG(pThis, INPAY) = 0x001D; /* see 6.2.5 */
3080 HDA_REG(pThis, CORBSIZE) = 0x42; /* Up to 256 CORB entries see 6.2.1 */
3081 HDA_REG(pThis, RIRBSIZE) = 0x42; /* Up to 256 RIRB entries see 6.2.1 */
3082 HDA_REG(pThis, CORBRP) = 0x0;
3083 HDA_REG(pThis, CORBWP) = 0x0;
3084 HDA_REG(pThis, RIRBWP) = 0x0;
3085 /* Some guests (like Haiku) don't set RINTCNT explicitly but expect an interrupt after each
3086 * RIRB response -- so initialize RINTCNT to 1 by default. */
3087 HDA_REG(pThis, RINTCNT) = 0x1;
3088
3089 /*
3090 * Stop any audio currently playing and/or recording.
3091 */
3092 pThis->SinkFront.pStream = NULL;
3093 if (pThis->SinkFront.pMixSink)
3094 AudioMixerSinkReset(pThis->SinkFront.pMixSink);
3095# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
3096 pThis->SinkMicIn.pStream = NULL;
3097 if (pThis->SinkMicIn.pMixSink)
3098 AudioMixerSinkReset(pThis->SinkMicIn.pMixSink);
3099# endif
3100 pThis->SinkLineIn.pStream = NULL;
3101 if (pThis->SinkLineIn.pMixSink)
3102 AudioMixerSinkReset(pThis->SinkLineIn.pMixSink);
3103# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
3104 pThis->SinkCenterLFE = NULL;
3105 if (pThis->SinkCenterLFE.pMixSink)
3106 AudioMixerSinkReset(pThis->SinkCenterLFE.pMixSink);
3107 pThis->SinkRear.pStream = NULL;
3108 if (pThis->SinkRear.pMixSink)
3109 AudioMixerSinkReset(pThis->SinkRear.pMixSink);
3110# endif
3111
3112 /*
3113 * Reset the codec.
3114 */
3115 if ( pThis->pCodec
3116 && pThis->pCodec->pfnReset)
3117 {
3118 pThis->pCodec->pfnReset(pThis->pCodec);
3119 }
3120
3121 /*
3122 * Set some sensible defaults for which HDA sinks
3123 * are connected to which stream number.
3124 *
3125 * We use SD0 for input and SD4 for output by default.
3126 * These stream numbers can be changed by the guest dynamically lateron.
3127 */
3128# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
3129 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_MIC_IN , 1 /* SD0 */, 0 /* Channel */);
3130# endif
3131 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_LINE_IN , 1 /* SD0 */, 0 /* Channel */);
3132
3133 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_FRONT , 5 /* SD4 */, 0 /* Channel */);
3134# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
3135 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_CENTER_LFE, 5 /* SD4 */, 0 /* Channel */);
3136 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_REAR , 5 /* SD4 */, 0 /* Channel */);
3137# endif
3138
3139 /* Reset CORB. */
3140 pThis->cbCorbBuf = HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE;
3141 RT_BZERO(pThis->pu32CorbBuf, pThis->cbCorbBuf);
3142
3143 /* Reset RIRB. */
3144 pThis->cbRirbBuf = HDA_RIRB_SIZE * HDA_RIRB_ELEMENT_SIZE;
3145 RT_BZERO(pThis->pu64RirbBuf, pThis->cbRirbBuf);
3146
3147 /* Clear our internal response interrupt counter. */
3148 pThis->u16RespIntCnt = 0;
3149
3150 for (uint8_t uSD = 0; uSD < HDA_MAX_STREAMS; ++uSD)
3151 {
3152 int rc2 = hdaR3StreamEnable(&pThis->aStreams[uSD], false /* fEnable */);
3153 if (RT_SUCCESS(rc2))
3154 {
3155 /* Remove the RUN bit from SDnCTL in case the stream was in a running state before. */
3156 HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_SDCTL_RUN;
3157 hdaR3StreamReset(pThis, &pThis->aStreams[uSD], uSD);
3158 }
3159 }
3160
3161 /* Clear stream tags <-> objects mapping table. */
3162 RT_ZERO(pThis->aTags);
3163
3164 /* Emulation of codec "wake up" (HDA spec 5.5.1 and 6.5). */
3165 HDA_REG(pThis, STATESTS) = 0x1;
3166
3167 LogFlowFuncLeave();
3168 LogRel(("HDA: Reset\n"));
3169}
3170
3171#endif /* IN_RING3 */
3172
3173/* MMIO callbacks */
3174
3175/**
3176 * @callback_method_impl{FNIOMMMIOREAD, Looks up and calls the appropriate handler.}
3177 *
3178 * @note During implementation, we discovered so-called "forgotten" or "hole"
3179 * registers whose description is not listed in the RPM, datasheet, or
3180 * spec.
3181 */
3182PDMBOTHCBDECL(int) hdaMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
3183{
3184 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
3185 int rc;
3186 RT_NOREF_PV(pvUser);
3187 Assert(pThis->uAlignmentCheckMagic == HDASTATE_ALIGNMENT_CHECK_MAGIC);
3188
3189 /*
3190 * Look up and log.
3191 */
3192 uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr;
3193 int idxRegDsc = hdaRegLookup(offReg); /* Register descriptor index. */
3194#ifdef LOG_ENABLED
3195 unsigned const cbLog = cb;
3196 uint32_t offRegLog = offReg;
3197#endif
3198
3199 Log3Func(("offReg=%#x cb=%#x\n", offReg, cb));
3200 Assert(cb == 4); Assert((offReg & 3) == 0);
3201
3202 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
3203
3204 if (!(HDA_REG(pThis, GCTL) & HDA_GCTL_CRST) && idxRegDsc != HDA_REG_GCTL)
3205 LogFunc(("Access to registers except GCTL is blocked while reset\n"));
3206
3207 if (idxRegDsc == -1)
3208 LogRel(("HDA: Invalid read access @0x%x (bytes=%u)\n", offReg, cb));
3209
3210 if (idxRegDsc != -1)
3211 {
3212 /* Leave lock before calling read function. */
3213 DEVHDA_UNLOCK(pThis);
3214
3215 /* ASSUMES gapless DWORD at end of map. */
3216 if (g_aHdaRegMap[idxRegDsc].size == 4)
3217 {
3218 /*
3219 * Straight forward DWORD access.
3220 */
3221 rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, (uint32_t *)pv);
3222 Log3Func(("\tRead %s => %x (%Rrc)\n", g_aHdaRegMap[idxRegDsc].abbrev, *(uint32_t *)pv, rc));
3223 }
3224 else
3225 {
3226 /*
3227 * Multi register read (unless there are trailing gaps).
3228 * ASSUMES that only DWORD reads have sideeffects.
3229 */
3230#ifdef IN_RING3
3231 uint32_t u32Value = 0;
3232 unsigned cbLeft = 4;
3233 do
3234 {
3235 uint32_t const cbReg = g_aHdaRegMap[idxRegDsc].size;
3236 uint32_t u32Tmp = 0;
3237
3238 rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, &u32Tmp);
3239 Log3Func(("\tRead %s[%db] => %x (%Rrc)*\n", g_aHdaRegMap[idxRegDsc].abbrev, cbReg, u32Tmp, rc));
3240 if (rc != VINF_SUCCESS)
3241 break;
3242 u32Value |= (u32Tmp & g_afMasks[cbReg]) << ((4 - cbLeft) * 8);
3243
3244 cbLeft -= cbReg;
3245 offReg += cbReg;
3246 idxRegDsc++;
3247 } while (cbLeft > 0 && g_aHdaRegMap[idxRegDsc].offset == offReg);
3248
3249 if (rc == VINF_SUCCESS)
3250 *(uint32_t *)pv = u32Value;
3251 else
3252 Assert(!IOM_SUCCESS(rc));
3253#else /* !IN_RING3 */
3254 /* Take the easy way out. */
3255 rc = VINF_IOM_R3_MMIO_READ;
3256#endif /* !IN_RING3 */
3257 }
3258 }
3259 else
3260 {
3261 DEVHDA_UNLOCK(pThis);
3262
3263 rc = VINF_IOM_MMIO_UNUSED_FF;
3264 Log3Func(("\tHole at %x is accessed for read\n", offReg));
3265 }
3266
3267 /*
3268 * Log the outcome.
3269 */
3270#ifdef LOG_ENABLED
3271 if (cbLog == 4)
3272 Log3Func(("\tReturning @%#05x -> %#010x %Rrc\n", offRegLog, *(uint32_t *)pv, rc));
3273 else if (cbLog == 2)
3274 Log3Func(("\tReturning @%#05x -> %#06x %Rrc\n", offRegLog, *(uint16_t *)pv, rc));
3275 else if (cbLog == 1)
3276 Log3Func(("\tReturning @%#05x -> %#04x %Rrc\n", offRegLog, *(uint8_t *)pv, rc));
3277#endif
3278 return rc;
3279}
3280
3281
3282DECLINLINE(int) hdaWriteReg(PHDASTATE pThis, int idxRegDsc, uint32_t u32Value, char const *pszLog)
3283{
3284 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
3285
3286 if (!(HDA_REG(pThis, GCTL) & HDA_GCTL_CRST) && idxRegDsc != HDA_REG_GCTL)
3287 {
3288 Log(("hdaWriteReg: Warning: Access to %s is blocked while controller is in reset mode\n", g_aHdaRegMap[idxRegDsc].abbrev));
3289 LogRel2(("HDA: Warning: Access to register %s is blocked while controller is in reset mode\n",
3290 g_aHdaRegMap[idxRegDsc].abbrev));
3291
3292 DEVHDA_UNLOCK(pThis);
3293 return VINF_SUCCESS;
3294 }
3295
3296 /*
3297 * Handle RD (register description) flags.
3298 */
3299
3300 /* For SDI / SDO: Check if writes to those registers are allowed while SDCTL's RUN bit is set. */
3301 if (idxRegDsc >= HDA_NUM_GENERAL_REGS)
3302 {
3303 const uint32_t uSDCTL = HDA_STREAM_REG(pThis, CTL, HDA_SD_NUM_FROM_REG(pThis, CTL, idxRegDsc));
3304
3305 /*
3306 * Some OSes (like Win 10 AU) violate the spec by writing stuff to registers which are not supposed to be be touched
3307 * while SDCTL's RUN bit is set. So just ignore those values.
3308 */
3309
3310 /* Is the RUN bit currently set? */
3311 if ( RT_BOOL(uSDCTL & HDA_SDCTL_RUN)
3312 /* Are writes to the register denied if RUN bit is set? */
3313 && !(g_aHdaRegMap[idxRegDsc].fFlags & HDA_RD_FLAG_SD_WRITE_RUN))
3314 {
3315 Log(("hdaWriteReg: Warning: Access to %s is blocked! %R[sdctl]\n", g_aHdaRegMap[idxRegDsc].abbrev, uSDCTL));
3316 LogRel2(("HDA: Warning: Access to register %s is blocked while the stream's RUN bit is set\n",
3317 g_aHdaRegMap[idxRegDsc].abbrev));
3318
3319 DEVHDA_UNLOCK(pThis);
3320 return VINF_SUCCESS;
3321 }
3322 }
3323
3324 /* Leave the lock before calling write function. */
3325 /** @todo r=bird: Why do we need to do that?? There is no
3326 * explanation why this is necessary here...
3327 *
3328 * More or less all write functions retake the lock, so why not let
3329 * those who need to drop the lock or take additional locks release
3330 * it? See, releasing a lock you already got always runs the risk
3331 * of someone else grabbing it and forcing you to wait, better to
3332 * do the two-three things a write handle needs to do than enter
3333 * and exit the lock all the time. */
3334 DEVHDA_UNLOCK(pThis);
3335
3336#ifdef LOG_ENABLED
3337 uint32_t const idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
3338 uint32_t const u32OldValue = pThis->au32Regs[idxRegMem];
3339#endif
3340 int rc = g_aHdaRegMap[idxRegDsc].pfnWrite(pThis, idxRegDsc, u32Value);
3341 Log3Func(("Written value %#x to %s[%d byte]; %x => %x%s, rc=%d\n", u32Value, g_aHdaRegMap[idxRegDsc].abbrev,
3342 g_aHdaRegMap[idxRegDsc].size, u32OldValue, pThis->au32Regs[idxRegMem], pszLog, rc));
3343 RT_NOREF(pszLog);
3344 return rc;
3345}
3346
3347
3348/**
3349 * @callback_method_impl{FNIOMMMIOWRITE, Looks up and calls the appropriate handler.}
3350 */
3351PDMBOTHCBDECL(int) hdaMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb)
3352{
3353 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
3354 int rc;
3355 RT_NOREF_PV(pvUser);
3356 Assert(pThis->uAlignmentCheckMagic == HDASTATE_ALIGNMENT_CHECK_MAGIC);
3357
3358 /*
3359 * The behavior of accesses that aren't aligned on natural boundraries is
3360 * undefined. Just reject them outright.
3361 */
3362 /** @todo IOM could check this, it could also split the 8 byte accesses for us. */
3363 Assert(cb == 1 || cb == 2 || cb == 4 || cb == 8);
3364 if (GCPhysAddr & (cb - 1))
3365 return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "misaligned write access: GCPhysAddr=%RGp cb=%u\n", GCPhysAddr, cb);
3366
3367 /*
3368 * Look up and log the access.
3369 */
3370 uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr;
3371 int idxRegDsc = hdaRegLookup(offReg);
3372#if defined(IN_RING3) || defined(LOG_ENABLED)
3373 uint32_t idxRegMem = idxRegDsc != -1 ? g_aHdaRegMap[idxRegDsc].mem_idx : UINT32_MAX;
3374#endif
3375 uint64_t u64Value;
3376 if (cb == 4) u64Value = *(uint32_t const *)pv;
3377 else if (cb == 2) u64Value = *(uint16_t const *)pv;
3378 else if (cb == 1) u64Value = *(uint8_t const *)pv;
3379 else if (cb == 8) u64Value = *(uint64_t const *)pv;
3380 else
3381 {
3382 u64Value = 0; /* shut up gcc. */
3383 AssertReleaseMsgFailed(("%u\n", cb));
3384 }
3385
3386#ifdef LOG_ENABLED
3387 uint32_t const u32LogOldValue = idxRegDsc >= 0 ? pThis->au32Regs[idxRegMem] : UINT32_MAX;
3388 if (idxRegDsc == -1)
3389 Log3Func(("@%#05x u32=%#010x cb=%d\n", offReg, *(uint32_t const *)pv, cb));
3390 else if (cb == 4)
3391 Log3Func(("@%#05x u32=%#010x %s\n", offReg, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev));
3392 else if (cb == 2)
3393 Log3Func(("@%#05x u16=%#06x (%#010x) %s\n", offReg, *(uint16_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev));
3394 else if (cb == 1)
3395 Log3Func(("@%#05x u8=%#04x (%#010x) %s\n", offReg, *(uint8_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev));
3396
3397 if (idxRegDsc >= 0 && g_aHdaRegMap[idxRegDsc].size != cb)
3398 Log3Func(("\tsize=%RU32 != cb=%u!!\n", g_aHdaRegMap[idxRegDsc].size, cb));
3399#endif
3400
3401 /*
3402 * Try for a direct hit first.
3403 */
3404 if (idxRegDsc != -1 && g_aHdaRegMap[idxRegDsc].size == cb)
3405 {
3406 rc = hdaWriteReg(pThis, idxRegDsc, u64Value, "");
3407 Log3Func(("\t%#x -> %#x\n", u32LogOldValue, idxRegMem != UINT32_MAX ? pThis->au32Regs[idxRegMem] : UINT32_MAX));
3408 }
3409 /*
3410 * Partial or multiple register access, loop thru the requested memory.
3411 */
3412 else
3413 {
3414#ifdef IN_RING3
3415 /*
3416 * If it's an access beyond the start of the register, shift the input
3417 * value and fill in missing bits. Natural alignment rules means we
3418 * will only see 1 or 2 byte accesses of this kind, so no risk of
3419 * shifting out input values.
3420 */
3421 if (idxRegDsc == -1 && (idxRegDsc = hdaR3RegLookupWithin(offReg)) != -1)
3422 {
3423 uint32_t const cbBefore = offReg - g_aHdaRegMap[idxRegDsc].offset; Assert(cbBefore > 0 && cbBefore < 4);
3424 offReg -= cbBefore;
3425 idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
3426 u64Value <<= cbBefore * 8;
3427 u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbBefore];
3428 Log3Func(("\tWithin register, supplied %u leading bits: %#llx -> %#llx ...\n",
3429 cbBefore * 8, ~g_afMasks[cbBefore] & u64Value, u64Value));
3430 }
3431
3432 /* Loop thru the write area, it may cover multiple registers. */
3433 rc = VINF_SUCCESS;
3434 for (;;)
3435 {
3436 uint32_t cbReg;
3437 if (idxRegDsc != -1)
3438 {
3439 idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
3440 cbReg = g_aHdaRegMap[idxRegDsc].size;
3441 if (cb < cbReg)
3442 {
3443 u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbReg] & ~g_afMasks[cb];
3444 Log3Func(("\tSupplying missing bits (%#x): %#llx -> %#llx ...\n",
3445 g_afMasks[cbReg] & ~g_afMasks[cb], u64Value & g_afMasks[cb], u64Value));
3446 }
3447# ifdef LOG_ENABLED
3448 uint32_t uLogOldVal = pThis->au32Regs[idxRegMem];
3449# endif
3450 rc = hdaWriteReg(pThis, idxRegDsc, u64Value, "*");
3451 Log3Func(("\t%#x -> %#x\n", uLogOldVal, pThis->au32Regs[idxRegMem]));
3452 }
3453 else
3454 {
3455 LogRel(("HDA: Invalid write access @0x%x\n", offReg));
3456 cbReg = 1;
3457 }
3458 if (rc != VINF_SUCCESS)
3459 break;
3460 if (cbReg >= cb)
3461 break;
3462
3463 /* Advance. */
3464 offReg += cbReg;
3465 cb -= cbReg;
3466 u64Value >>= cbReg * 8;
3467 if (idxRegDsc == -1)
3468 idxRegDsc = hdaRegLookup(offReg);
3469 else
3470 {
3471 idxRegDsc++;
3472 if ( (unsigned)idxRegDsc >= RT_ELEMENTS(g_aHdaRegMap)
3473 || g_aHdaRegMap[idxRegDsc].offset != offReg)
3474 {
3475 idxRegDsc = -1;
3476 }
3477 }
3478 }
3479
3480#else /* !IN_RING3 */
3481 /* Take the simple way out. */
3482 rc = VINF_IOM_R3_MMIO_WRITE;
3483#endif /* !IN_RING3 */
3484 }
3485
3486 return rc;
3487}
3488
3489
3490/* PCI callback. */
3491
3492#ifdef IN_RING3
3493/**
3494 * @callback_method_impl{FNPCIIOREGIONMAP}
3495 */
3496static DECLCALLBACK(int) hdaR3PciIoRegionMap(PPDMDEVINS pDevIns, PPDMPCIDEV pPciDev, uint32_t iRegion,
3497 RTGCPHYS GCPhysAddress, RTGCPHYS cb, PCIADDRESSSPACE enmType)
3498{
3499 RT_NOREF(iRegion, enmType);
3500 PHDASTATE pThis = RT_FROM_MEMBER(pPciDev, HDASTATE, PciDev);
3501
3502 /*
3503 * 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word.
3504 *
3505 * Let IOM talk DWORDs when reading, saves a lot of complications. On
3506 * writing though, we have to do it all ourselves because of sideeffects.
3507 */
3508 Assert(enmType == PCI_ADDRESS_SPACE_MEM);
3509 int rc = PDMDevHlpMMIORegister(pDevIns, GCPhysAddress, cb, NULL /*pvUser*/,
3510 IOMMMIO_FLAGS_READ_DWORD
3511 | IOMMMIO_FLAGS_WRITE_PASSTHRU,
3512 hdaMMIOWrite, hdaMMIORead, "HDA");
3513
3514 if (RT_FAILURE(rc))
3515 return rc;
3516
3517 if (pThis->fRZEnabled)
3518 {
3519 rc = PDMDevHlpMMIORegisterR0(pDevIns, GCPhysAddress, cb, NIL_RTR0PTR /*pvUser*/,
3520 "hdaMMIOWrite", "hdaMMIORead");
3521 if (RT_FAILURE(rc))
3522 return rc;
3523
3524 rc = PDMDevHlpMMIORegisterRC(pDevIns, GCPhysAddress, cb, NIL_RTRCPTR /*pvUser*/,
3525 "hdaMMIOWrite", "hdaMMIORead");
3526 if (RT_FAILURE(rc))
3527 return rc;
3528 }
3529
3530 pThis->MMIOBaseAddr = GCPhysAddress;
3531 return VINF_SUCCESS;
3532}
3533
3534
3535/* Saved state workers and callbacks. */
3536
3537static int hdaR3SaveStream(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, PHDASTREAM pStream)
3538{
3539 RT_NOREF(pDevIns);
3540#ifdef VBOX_STRICT
3541 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
3542#endif
3543
3544 Log2Func(("[SD%RU8]\n", pStream->u8SD));
3545
3546 /* Save stream ID. */
3547 int rc = SSMR3PutU8(pSSM, pStream->u8SD);
3548 AssertRCReturn(rc, rc);
3549 Assert(pStream->u8SD < HDA_MAX_STREAMS);
3550
3551 rc = SSMR3PutStructEx(pSSM, &pStream->State, sizeof(HDASTREAMSTATE), 0 /*fFlags*/, g_aSSMStreamStateFields7, NULL);
3552 AssertRCReturn(rc, rc);
3553
3554#ifdef VBOX_STRICT /* Sanity checks. */
3555 uint64_t u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, pStream->u8SD),
3556 HDA_STREAM_REG(pThis, BDPU, pStream->u8SD));
3557 uint16_t u16LVI = HDA_STREAM_REG(pThis, LVI, pStream->u8SD);
3558 uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, pStream->u8SD);
3559
3560 Assert(u64BaseDMA == pStream->u64BDLBase);
3561 Assert(u16LVI == pStream->u16LVI);
3562 Assert(u32CBL == pStream->u32CBL);
3563#endif
3564
3565 rc = SSMR3PutStructEx(pSSM, &pStream->State.BDLE.Desc, sizeof(HDABDLEDESC),
3566 0 /*fFlags*/, g_aSSMBDLEDescFields7, NULL);
3567 AssertRCReturn(rc, rc);
3568
3569 rc = SSMR3PutStructEx(pSSM, &pStream->State.BDLE.State, sizeof(HDABDLESTATE),
3570 0 /*fFlags*/, g_aSSMBDLEStateFields7, NULL);
3571 AssertRCReturn(rc, rc);
3572
3573 rc = SSMR3PutStructEx(pSSM, &pStream->State.Period, sizeof(HDASTREAMPERIOD),
3574 0 /* fFlags */, g_aSSMStreamPeriodFields7, NULL);
3575 AssertRCReturn(rc, rc);
3576
3577#ifdef VBOX_STRICT /* Sanity checks. */
3578 PHDABDLE pBDLE = &pStream->State.BDLE;
3579 if (u64BaseDMA)
3580 {
3581 Assert(pStream->State.uCurBDLE <= u16LVI + 1);
3582
3583 HDABDLE curBDLE;
3584 rc = hdaR3BDLEFetch(pThis, &curBDLE, u64BaseDMA, pStream->State.uCurBDLE);
3585 AssertRC(rc);
3586
3587 Assert(curBDLE.Desc.u32BufSize == pBDLE->Desc.u32BufSize);
3588 Assert(curBDLE.Desc.u64BufAdr == pBDLE->Desc.u64BufAdr);
3589 Assert(curBDLE.Desc.fFlags == pBDLE->Desc.fFlags);
3590 }
3591 else
3592 {
3593 Assert(pBDLE->Desc.u64BufAdr == 0);
3594 Assert(pBDLE->Desc.u32BufSize == 0);
3595 }
3596#endif
3597
3598 uint32_t cbCircBufSize = 0;
3599 uint32_t cbCircBufUsed = 0;
3600
3601 if (pStream->State.pCircBuf)
3602 {
3603 cbCircBufSize = (uint32_t)RTCircBufSize(pStream->State.pCircBuf);
3604 cbCircBufUsed = (uint32_t)RTCircBufUsed(pStream->State.pCircBuf);
3605 }
3606
3607 rc = SSMR3PutU32(pSSM, cbCircBufSize);
3608 AssertRCReturn(rc, rc);
3609
3610 rc = SSMR3PutU32(pSSM, cbCircBufUsed);
3611 AssertRCReturn(rc, rc);
3612
3613 if (cbCircBufUsed)
3614 {
3615 /*
3616 * We now need to get the circular buffer's data without actually modifying
3617 * the internal read / used offsets -- otherwise we would end up with broken audio
3618 * data after saving the state.
3619 *
3620 * So get the current read offset and serialize the buffer data manually based on that.
3621 */
3622 size_t cbCircBufOffRead = RTCircBufOffsetRead(pStream->State.pCircBuf);
3623
3624 void *pvBuf;
3625 size_t cbBuf;
3626 RTCircBufAcquireReadBlock(pStream->State.pCircBuf, cbCircBufUsed, &pvBuf, &cbBuf);
3627
3628 if (cbBuf)
3629 {
3630 size_t cbToRead = cbCircBufUsed;
3631 size_t cbEnd = 0;
3632
3633 if (cbCircBufUsed > cbCircBufOffRead)
3634 cbEnd = cbCircBufUsed - cbCircBufOffRead;
3635
3636 if (cbEnd) /* Save end of buffer first. */
3637 {
3638 rc = SSMR3PutMem(pSSM, (uint8_t *)pvBuf + cbCircBufSize - cbEnd /* End of buffer */, cbEnd);
3639 AssertRCReturn(rc, rc);
3640
3641 Assert(cbToRead >= cbEnd);
3642 cbToRead -= cbEnd;
3643 }
3644
3645 if (cbToRead) /* Save remaining stuff at start of buffer (if any). */
3646 {
3647 rc = SSMR3PutMem(pSSM, (uint8_t *)pvBuf - cbCircBufUsed /* Start of buffer */, cbToRead);
3648 AssertRCReturn(rc, rc);
3649 }
3650 }
3651
3652 RTCircBufReleaseReadBlock(pStream->State.pCircBuf, 0 /* Don't advance read pointer -- see comment above */);
3653 }
3654
3655 Log2Func(("[SD%RU8] LPIB=%RU32, CBL=%RU32, LVI=%RU32\n",
3656 pStream->u8SD,
3657 HDA_STREAM_REG(pThis, LPIB, pStream->u8SD), HDA_STREAM_REG(pThis, CBL, pStream->u8SD), HDA_STREAM_REG(pThis, LVI, pStream->u8SD)));
3658
3659#ifdef LOG_ENABLED
3660 hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1);
3661#endif
3662
3663 return rc;
3664}
3665
3666/**
3667 * @callback_method_impl{FNSSMDEVSAVEEXEC}
3668 */
3669static DECLCALLBACK(int) hdaR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
3670{
3671 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
3672
3673 /* Save Codec nodes states. */
3674 hdaCodecSaveState(pThis->pCodec, pSSM);
3675
3676 /* Save MMIO registers. */
3677 SSMR3PutU32(pSSM, RT_ELEMENTS(pThis->au32Regs));
3678 SSMR3PutMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
3679
3680 /* Save controller-specifc internals. */
3681 SSMR3PutU64(pSSM, pThis->u64WalClk);
3682 SSMR3PutU8(pSSM, pThis->u8IRQL);
3683
3684 /* Save number of streams. */
3685 SSMR3PutU32(pSSM, HDA_MAX_STREAMS);
3686
3687 /* Save stream states. */
3688 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
3689 {
3690 int rc = hdaR3SaveStream(pDevIns, pSSM, &pThis->aStreams[i]);
3691 AssertRCReturn(rc, rc);
3692 }
3693
3694 return VINF_SUCCESS;
3695}
3696
3697/**
3698 * Does required post processing when loading a saved state.
3699 *
3700 * @param pThis Pointer to HDA state.
3701 */
3702static int hdaR3LoadExecPost(PHDASTATE pThis)
3703{
3704 int rc = VINF_SUCCESS;
3705
3706 /*
3707 * Enable all previously active streams.
3708 */
3709 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
3710 {
3711 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, i);
3712 if (pStream)
3713 {
3714 int rc2;
3715
3716 bool fActive = RT_BOOL(HDA_STREAM_REG(pThis, CTL, i) & HDA_SDCTL_RUN);
3717 if (fActive)
3718 {
3719#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
3720 /* Make sure to also create the async I/O thread before actually enabling the stream. */
3721 rc2 = hdaR3StreamAsyncIOCreate(pStream);
3722 AssertRC(rc2);
3723
3724 /* ... and enabling it. */
3725 hdaR3StreamAsyncIOEnable(pStream, true /* fEnable */);
3726#endif
3727 /* Resume the stream's period. */
3728 hdaR3StreamPeriodResume(&pStream->State.Period);
3729
3730 /* (Re-)enable the stream. */
3731 rc2 = hdaR3StreamEnable(pStream, true /* fEnable */);
3732 AssertRC(rc2);
3733
3734 /* Add the stream to the device setup. */
3735 rc2 = hdaR3AddStream(pThis, &pStream->State.Cfg);
3736 AssertRC(rc2);
3737
3738#ifdef HDA_USE_DMA_ACCESS_HANDLER
3739 /* (Re-)install the DMA handler. */
3740 hdaR3StreamRegisterDMAHandlers(pThis, pStream);
3741#endif
3742 if (hdaR3StreamTransferIsScheduled(pStream))
3743 hdaR3TimerSet(pThis, pStream, hdaR3StreamTransferGetNext(pStream), true /* fForce */);
3744
3745 /* Also keep track of the currently active streams. */
3746 pThis->cStreamsActive++;
3747 }
3748 }
3749 }
3750
3751 LogFlowFuncLeaveRC(rc);
3752 return rc;
3753}
3754
3755
3756/**
3757 * Handles loading of all saved state versions older than the current one.
3758 *
3759 * @param pThis Pointer to HDA state.
3760 * @param pSSM Pointer to SSM handle.
3761 * @param uVersion Saved state version to load.
3762 * @param uPass Loading stage to handle.
3763 */
3764static int hdaR3LoadExecLegacy(PHDASTATE pThis, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3765{
3766 RT_NOREF(uPass);
3767
3768 int rc = VINF_SUCCESS;
3769
3770 /*
3771 * Load MMIO registers.
3772 */
3773 uint32_t cRegs;
3774 switch (uVersion)
3775 {
3776 case HDA_SSM_VERSION_1:
3777 /* Starting with r71199, we would save 112 instead of 113
3778 registers due to some code cleanups. This only affected trunk
3779 builds in the 4.1 development period. */
3780 cRegs = 113;
3781 if (SSMR3HandleRevision(pSSM) >= 71199)
3782 {
3783 uint32_t uVer = SSMR3HandleVersion(pSSM);
3784 if ( VBOX_FULL_VERSION_GET_MAJOR(uVer) == 4
3785 && VBOX_FULL_VERSION_GET_MINOR(uVer) == 0
3786 && VBOX_FULL_VERSION_GET_BUILD(uVer) >= 51)
3787 cRegs = 112;
3788 }
3789 break;
3790
3791 case HDA_SSM_VERSION_2:
3792 case HDA_SSM_VERSION_3:
3793 cRegs = 112;
3794 AssertCompile(RT_ELEMENTS(pThis->au32Regs) >= 112);
3795 break;
3796
3797 /* Since version 4 we store the register count to stay flexible. */
3798 case HDA_SSM_VERSION_4:
3799 case HDA_SSM_VERSION_5:
3800 case HDA_SSM_VERSION_6:
3801 rc = SSMR3GetU32(pSSM, &cRegs); AssertRCReturn(rc, rc);
3802 if (cRegs != RT_ELEMENTS(pThis->au32Regs))
3803 LogRel(("HDA: SSM version cRegs is %RU32, expected %RU32\n", cRegs, RT_ELEMENTS(pThis->au32Regs)));
3804 break;
3805
3806 default:
3807 LogRel(("HDA: Warning: Unsupported / too new saved state version (%RU32)\n", uVersion));
3808 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3809 }
3810
3811 if (cRegs >= RT_ELEMENTS(pThis->au32Regs))
3812 {
3813 SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
3814 SSMR3Skip(pSSM, sizeof(uint32_t) * (cRegs - RT_ELEMENTS(pThis->au32Regs)));
3815 }
3816 else
3817 SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(uint32_t) * cRegs);
3818
3819 /* Make sure to update the base addresses first before initializing any streams down below. */
3820 pThis->u64CORBBase = RT_MAKE_U64(HDA_REG(pThis, CORBLBASE), HDA_REG(pThis, CORBUBASE));
3821 pThis->u64RIRBBase = RT_MAKE_U64(HDA_REG(pThis, RIRBLBASE), HDA_REG(pThis, RIRBUBASE));
3822 pThis->u64DPBase = RT_MAKE_U64(HDA_REG(pThis, DPLBASE) & DPBASE_ADDR_MASK, HDA_REG(pThis, DPUBASE));
3823
3824 /* Also make sure to update the DMA position bit if this was enabled when saving the state. */
3825 pThis->fDMAPosition = RT_BOOL(HDA_REG(pThis, DPLBASE) & RT_BIT_32(0));
3826
3827 /*
3828 * Note: Saved states < v5 store LVI (u32BdleMaxCvi) for
3829 * *every* BDLE state, whereas it only needs to be stored
3830 * *once* for every stream. Most of the BDLE state we can
3831 * get out of the registers anyway, so just ignore those values.
3832 *
3833 * Also, only the current BDLE was saved, regardless whether
3834 * there were more than one (and there are at least two entries,
3835 * according to the spec).
3836 */
3837#define HDA_SSM_LOAD_BDLE_STATE_PRE_V5(v, x) \
3838 { \
3839 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* Begin marker */ \
3840 AssertRCReturn(rc, rc); \
3841 rc = SSMR3GetU64(pSSM, &x.Desc.u64BufAdr); /* u64BdleCviAddr */ \
3842 AssertRCReturn(rc, rc); \
3843 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* u32BdleMaxCvi */ \
3844 AssertRCReturn(rc, rc); \
3845 rc = SSMR3GetU32(pSSM, &x.State.u32BDLIndex); /* u32BdleCvi */ \
3846 AssertRCReturn(rc, rc); \
3847 rc = SSMR3GetU32(pSSM, &x.Desc.u32BufSize); /* u32BdleCviLen */ \
3848 AssertRCReturn(rc, rc); \
3849 rc = SSMR3GetU32(pSSM, &x.State.u32BufOff); /* u32BdleCviPos */ \
3850 AssertRCReturn(rc, rc); \
3851 bool fIOC; \
3852 rc = SSMR3GetBool(pSSM, &fIOC); /* fBdleCviIoc */ \
3853 AssertRCReturn(rc, rc); \
3854 x.Desc.fFlags = fIOC ? HDA_BDLE_FLAG_IOC : 0; \
3855 rc = SSMR3GetU32(pSSM, &x.State.cbBelowFIFOW); /* cbUnderFifoW */ \
3856 AssertRCReturn(rc, rc); \
3857 rc = SSMR3Skip(pSSM, sizeof(uint8_t) * 256); /* FIFO */ \
3858 AssertRCReturn(rc, rc); \
3859 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* End marker */ \
3860 AssertRCReturn(rc, rc); \
3861 }
3862
3863 /*
3864 * Load BDLEs (Buffer Descriptor List Entries) and DMA counters.
3865 */
3866 switch (uVersion)
3867 {
3868 case HDA_SSM_VERSION_1:
3869 case HDA_SSM_VERSION_2:
3870 case HDA_SSM_VERSION_3:
3871 case HDA_SSM_VERSION_4:
3872 {
3873 /* Only load the internal states.
3874 * The rest will be initialized from the saved registers later. */
3875
3876 /* Note 1: Only the *current* BDLE for a stream was saved! */
3877 /* Note 2: The stream's saving order is/was fixed, so don't touch! */
3878
3879 /* Output */
3880 PHDASTREAM pStream = &pThis->aStreams[4];
3881 rc = hdaR3StreamInit(pStream, 4 /* Stream descriptor, hardcoded */);
3882 if (RT_FAILURE(rc))
3883 break;
3884 HDA_SSM_LOAD_BDLE_STATE_PRE_V5(uVersion, pStream->State.BDLE);
3885 pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex;
3886
3887 /* Microphone-In */
3888 pStream = &pThis->aStreams[2];
3889 rc = hdaR3StreamInit(pStream, 2 /* Stream descriptor, hardcoded */);
3890 if (RT_FAILURE(rc))
3891 break;
3892 HDA_SSM_LOAD_BDLE_STATE_PRE_V5(uVersion, pStream->State.BDLE);
3893 pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex;
3894
3895 /* Line-In */
3896 pStream = &pThis->aStreams[0];
3897 rc = hdaR3StreamInit(pStream, 0 /* Stream descriptor, hardcoded */);
3898 if (RT_FAILURE(rc))
3899 break;
3900 HDA_SSM_LOAD_BDLE_STATE_PRE_V5(uVersion, pStream->State.BDLE);
3901 pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex;
3902 break;
3903 }
3904
3905#undef HDA_SSM_LOAD_BDLE_STATE_PRE_V5
3906
3907 default: /* Since v5 we support flexible stream and BDLE counts. */
3908 {
3909 uint32_t cStreams;
3910 rc = SSMR3GetU32(pSSM, &cStreams);
3911 if (RT_FAILURE(rc))
3912 break;
3913
3914 if (cStreams > HDA_MAX_STREAMS)
3915 cStreams = HDA_MAX_STREAMS; /* Sanity. */
3916
3917 /* Load stream states. */
3918 for (uint32_t i = 0; i < cStreams; i++)
3919 {
3920 uint8_t uStreamID;
3921 rc = SSMR3GetU8(pSSM, &uStreamID);
3922 if (RT_FAILURE(rc))
3923 break;
3924
3925 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uStreamID);
3926 HDASTREAM StreamDummy;
3927
3928 if (!pStream)
3929 {
3930 pStream = &StreamDummy;
3931 LogRel2(("HDA: Warning: Stream ID=%RU32 not supported, skipping to load ...\n", uStreamID));
3932 }
3933
3934 rc = hdaR3StreamInit(pStream, uStreamID);
3935 if (RT_FAILURE(rc))
3936 {
3937 LogRel(("HDA: Stream #%RU32: Initialization of stream %RU8 failed, rc=%Rrc\n", i, uStreamID, rc));
3938 break;
3939 }
3940
3941 /*
3942 * Load BDLEs (Buffer Descriptor List Entries) and DMA counters.
3943 */
3944
3945 if (uVersion == HDA_SSM_VERSION_5)
3946 {
3947 /* Get the current BDLE entry and skip the rest. */
3948 uint16_t cBDLE;
3949
3950 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* Begin marker */
3951 AssertRC(rc);
3952 rc = SSMR3GetU16(pSSM, &cBDLE); /* cBDLE */
3953 AssertRC(rc);
3954 rc = SSMR3GetU16(pSSM, &pStream->State.uCurBDLE); /* uCurBDLE */
3955 AssertRC(rc);
3956 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* End marker */
3957 AssertRC(rc);
3958
3959 uint32_t u32BDLEIndex;
3960 for (uint16_t a = 0; a < cBDLE; a++)
3961 {
3962 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* Begin marker */
3963 AssertRC(rc);
3964 rc = SSMR3GetU32(pSSM, &u32BDLEIndex); /* u32BDLIndex */
3965 AssertRC(rc);
3966
3967 /* Does the current BDLE index match the current BDLE to process? */
3968 if (u32BDLEIndex == pStream->State.uCurBDLE)
3969 {
3970 rc = SSMR3GetU32(pSSM, &pStream->State.BDLE.State.cbBelowFIFOW); /* cbBelowFIFOW */
3971 AssertRC(rc);
3972 rc = SSMR3Skip(pSSM, sizeof(uint8_t) * 256); /* FIFO, deprecated */
3973 AssertRC(rc);
3974 rc = SSMR3GetU32(pSSM, &pStream->State.BDLE.State.u32BufOff); /* u32BufOff */
3975 AssertRC(rc);
3976 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* End marker */
3977 AssertRC(rc);
3978 }
3979 else /* Skip not current BDLEs. */
3980 {
3981 rc = SSMR3Skip(pSSM, sizeof(uint32_t) /* cbBelowFIFOW */
3982 + sizeof(uint8_t) * 256 /* au8FIFO */
3983 + sizeof(uint32_t) /* u32BufOff */
3984 + sizeof(uint32_t)); /* End marker */
3985 AssertRC(rc);
3986 }
3987 }
3988 }
3989 else
3990 {
3991 rc = SSMR3GetStructEx(pSSM, &pStream->State, sizeof(HDASTREAMSTATE),
3992 0 /* fFlags */, g_aSSMStreamStateFields6, NULL);
3993 if (RT_FAILURE(rc))
3994 break;
3995
3996 /* Get HDABDLEDESC. */
3997 uint32_t uMarker;
3998 rc = SSMR3GetU32(pSSM, &uMarker); /* Begin marker. */
3999 AssertRC(rc);
4000 Assert(uMarker == UINT32_C(0x19200102) /* SSMR3STRUCT_BEGIN */);
4001 rc = SSMR3GetU64(pSSM, &pStream->State.BDLE.Desc.u64BufAdr);
4002 AssertRC(rc);
4003 rc = SSMR3GetU32(pSSM, &pStream->State.BDLE.Desc.u32BufSize);
4004 AssertRC(rc);
4005 bool fFlags = false;
4006 rc = SSMR3GetBool(pSSM, &fFlags); /* Saved states < v7 only stored the IOC as boolean flag. */
4007 AssertRC(rc);
4008 pStream->State.BDLE.Desc.fFlags = fFlags ? HDA_BDLE_FLAG_IOC : 0;
4009 rc = SSMR3GetU32(pSSM, &uMarker); /* End marker. */
4010 AssertRC(rc);
4011 Assert(uMarker == UINT32_C(0x19920406) /* SSMR3STRUCT_END */);
4012
4013 rc = SSMR3GetStructEx(pSSM, &pStream->State.BDLE.State, sizeof(HDABDLESTATE),
4014 0 /* fFlags */, g_aSSMBDLEStateFields6, NULL);
4015 if (RT_FAILURE(rc))
4016 break;
4017
4018 Log2Func(("[SD%RU8] LPIB=%RU32, CBL=%RU32, LVI=%RU32\n",
4019 uStreamID,
4020 HDA_STREAM_REG(pThis, LPIB, uStreamID), HDA_STREAM_REG(pThis, CBL, uStreamID), HDA_STREAM_REG(pThis, LVI, uStreamID)));
4021#ifdef LOG_ENABLED
4022 hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1);
4023#endif
4024 }
4025
4026 } /* for cStreams */
4027 break;
4028 } /* default */
4029 }
4030
4031 return rc;
4032}
4033
4034/**
4035 * @callback_method_impl{FNSSMDEVLOADEXEC}
4036 */
4037static DECLCALLBACK(int) hdaR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
4038{
4039 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4040
4041 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
4042
4043 LogRel2(("hdaR3LoadExec: uVersion=%RU32, uPass=0x%x\n", uVersion, uPass));
4044
4045 /*
4046 * Load Codec nodes states.
4047 */
4048 int rc = hdaCodecLoadState(pThis->pCodec, pSSM, uVersion);
4049 if (RT_FAILURE(rc))
4050 {
4051 LogRel(("HDA: Failed loading codec state (version %RU32, pass 0x%x), rc=%Rrc\n", uVersion, uPass, rc));
4052 return rc;
4053 }
4054
4055 if (uVersion < HDA_SSM_VERSION) /* Handle older saved states? */
4056 {
4057 rc = hdaR3LoadExecLegacy(pThis, pSSM, uVersion, uPass);
4058 if (RT_SUCCESS(rc))
4059 rc = hdaR3LoadExecPost(pThis);
4060
4061 return rc;
4062 }
4063
4064 /*
4065 * Load MMIO registers.
4066 */
4067 uint32_t cRegs;
4068 rc = SSMR3GetU32(pSSM, &cRegs); AssertRCReturn(rc, rc);
4069 if (cRegs != RT_ELEMENTS(pThis->au32Regs))
4070 LogRel(("HDA: SSM version cRegs is %RU32, expected %RU32\n", cRegs, RT_ELEMENTS(pThis->au32Regs)));
4071
4072 if (cRegs >= RT_ELEMENTS(pThis->au32Regs))
4073 {
4074 SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
4075 SSMR3Skip(pSSM, sizeof(uint32_t) * (cRegs - RT_ELEMENTS(pThis->au32Regs)));
4076 }
4077 else
4078 SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(uint32_t) * cRegs);
4079
4080 /* Make sure to update the base addresses first before initializing any streams down below. */
4081 pThis->u64CORBBase = RT_MAKE_U64(HDA_REG(pThis, CORBLBASE), HDA_REG(pThis, CORBUBASE));
4082 pThis->u64RIRBBase = RT_MAKE_U64(HDA_REG(pThis, RIRBLBASE), HDA_REG(pThis, RIRBUBASE));
4083 pThis->u64DPBase = RT_MAKE_U64(HDA_REG(pThis, DPLBASE) & DPBASE_ADDR_MASK, HDA_REG(pThis, DPUBASE));
4084
4085 /* Also make sure to update the DMA position bit if this was enabled when saving the state. */
4086 pThis->fDMAPosition = RT_BOOL(HDA_REG(pThis, DPLBASE) & RT_BIT_32(0));
4087
4088 /*
4089 * Load controller-specifc internals.
4090 * Don't annoy other team mates (forgot this for state v7).
4091 */
4092 if ( SSMR3HandleRevision(pSSM) >= 116273
4093 || SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(5, 2, 0))
4094 {
4095 rc = SSMR3GetU64(pSSM, &pThis->u64WalClk);
4096 AssertRC(rc);
4097
4098 rc = SSMR3GetU8(pSSM, &pThis->u8IRQL);
4099 AssertRC(rc);
4100 }
4101
4102 /*
4103 * Load streams.
4104 */
4105 uint32_t cStreams;
4106 rc = SSMR3GetU32(pSSM, &cStreams);
4107 AssertRC(rc);
4108
4109 if (cStreams > HDA_MAX_STREAMS)
4110 cStreams = HDA_MAX_STREAMS; /* Sanity. */
4111
4112 Log2Func(("cStreams=%RU32\n", cStreams));
4113
4114 /* Load stream states. */
4115 for (uint32_t i = 0; i < cStreams; i++)
4116 {
4117 uint8_t uStreamID;
4118 rc = SSMR3GetU8(pSSM, &uStreamID);
4119 AssertRC(rc);
4120
4121 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uStreamID);
4122 HDASTREAM StreamDummy;
4123
4124 if (!pStream)
4125 {
4126 pStream = &StreamDummy;
4127 LogRel2(("HDA: Warning: Loading of stream #%RU8 not supported, skipping to load ...\n", uStreamID));
4128 }
4129
4130 rc = hdaR3StreamInit(pStream, uStreamID);
4131 if (RT_FAILURE(rc))
4132 {
4133 LogRel(("HDA: Stream #%RU8: Loading initialization failed, rc=%Rrc\n", uStreamID, rc));
4134 /* Continue. */
4135 }
4136
4137 rc = SSMR3GetStructEx(pSSM, &pStream->State, sizeof(HDASTREAMSTATE),
4138 0 /* fFlags */, g_aSSMStreamStateFields7,
4139 NULL);
4140 AssertRC(rc);
4141
4142 /*
4143 * Load BDLEs (Buffer Descriptor List Entries) and DMA counters.
4144 */
4145 rc = SSMR3GetStructEx(pSSM, &pStream->State.BDLE.Desc, sizeof(HDABDLEDESC),
4146 0 /* fFlags */, g_aSSMBDLEDescFields7, NULL);
4147 AssertRC(rc);
4148
4149 rc = SSMR3GetStructEx(pSSM, &pStream->State.BDLE.State, sizeof(HDABDLESTATE),
4150 0 /* fFlags */, g_aSSMBDLEStateFields7, NULL);
4151 AssertRC(rc);
4152
4153 Log2Func(("[SD%RU8] %R[bdle]\n", pStream->u8SD, &pStream->State.BDLE));
4154
4155 /*
4156 * Load period state.
4157 * Don't annoy other team mates (forgot this for state v7).
4158 */
4159 hdaR3StreamPeriodInit(&pStream->State.Period,
4160 pStream->u8SD, pStream->u16LVI, pStream->u32CBL, &pStream->State.Cfg);
4161
4162 if ( SSMR3HandleRevision(pSSM) >= 116273
4163 || SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(5, 2, 0))
4164 {
4165 rc = SSMR3GetStructEx(pSSM, &pStream->State.Period, sizeof(HDASTREAMPERIOD),
4166 0 /* fFlags */, g_aSSMStreamPeriodFields7, NULL);
4167 AssertRC(rc);
4168 }
4169
4170 /*
4171 * Load internal (FIFO) buffer.
4172 */
4173 uint32_t cbCircBufSize = 0;
4174 rc = SSMR3GetU32(pSSM, &cbCircBufSize); /* cbCircBuf */
4175 AssertRC(rc);
4176
4177 uint32_t cbCircBufUsed = 0;
4178 rc = SSMR3GetU32(pSSM, &cbCircBufUsed); /* cbCircBuf */
4179 AssertRC(rc);
4180
4181 if (cbCircBufSize) /* If 0, skip the buffer. */
4182 {
4183 /* Paranoia. */
4184 AssertReleaseMsg(cbCircBufSize <= _1M,
4185 ("HDA: Saved state contains bogus DMA buffer size (%RU32) for stream #%RU8",
4186 cbCircBufSize, uStreamID));
4187 AssertReleaseMsg(cbCircBufUsed <= cbCircBufSize,
4188 ("HDA: Saved state contains invalid DMA buffer usage (%RU32/%RU32) for stream #%RU8",
4189 cbCircBufUsed, cbCircBufSize, uStreamID));
4190 AssertPtr(pStream->State.pCircBuf);
4191
4192 /* Do we need to cre-create the circular buffer do fit the data size? */
4193 if (cbCircBufSize != (uint32_t)RTCircBufSize(pStream->State.pCircBuf))
4194 {
4195 RTCircBufDestroy(pStream->State.pCircBuf);
4196 pStream->State.pCircBuf = NULL;
4197
4198 rc = RTCircBufCreate(&pStream->State.pCircBuf, cbCircBufSize);
4199 AssertRC(rc);
4200 }
4201
4202 if ( RT_SUCCESS(rc)
4203 && cbCircBufUsed)
4204 {
4205 void *pvBuf;
4206 size_t cbBuf;
4207
4208 RTCircBufAcquireWriteBlock(pStream->State.pCircBuf, cbCircBufUsed, &pvBuf, &cbBuf);
4209
4210 if (cbBuf)
4211 {
4212 rc = SSMR3GetMem(pSSM, pvBuf, cbBuf);
4213 AssertRC(rc);
4214 }
4215
4216 RTCircBufReleaseWriteBlock(pStream->State.pCircBuf, cbBuf);
4217
4218 Assert(cbBuf == cbCircBufUsed);
4219 }
4220 }
4221
4222 Log2Func(("[SD%RU8] LPIB=%RU32, CBL=%RU32, LVI=%RU32\n",
4223 uStreamID,
4224 HDA_STREAM_REG(pThis, LPIB, uStreamID), HDA_STREAM_REG(pThis, CBL, uStreamID), HDA_STREAM_REG(pThis, LVI, uStreamID)));
4225#ifdef LOG_ENABLED
4226 hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1);
4227#endif
4228 /** @todo (Re-)initialize active periods? */
4229
4230 } /* for cStreams */
4231
4232 rc = hdaR3LoadExecPost(pThis);
4233 AssertRC(rc);
4234
4235 LogFlowFuncLeaveRC(rc);
4236 return rc;
4237}
4238
4239/* IPRT format type handlers. */
4240
4241/**
4242 * @callback_method_impl{FNRTSTRFORMATTYPE}
4243 */
4244static DECLCALLBACK(size_t) hdaR3StrFmtBDLE(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4245 const char *pszType, void const *pvValue,
4246 int cchWidth, int cchPrecision, unsigned fFlags,
4247 void *pvUser)
4248{
4249 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4250 PHDABDLE pBDLE = (PHDABDLE)pvValue;
4251 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
4252 "BDLE(idx:%RU32, off:%RU32, fifow:%RU32, IOC:%RTbool, DMA[%RU32 bytes @ 0x%x])",
4253 pBDLE->State.u32BDLIndex, pBDLE->State.u32BufOff, pBDLE->State.cbBelowFIFOW,
4254 pBDLE->Desc.fFlags & HDA_BDLE_FLAG_IOC, pBDLE->Desc.u32BufSize, pBDLE->Desc.u64BufAdr);
4255}
4256
4257/**
4258 * @callback_method_impl{FNRTSTRFORMATTYPE}
4259 */
4260static DECLCALLBACK(size_t) hdaR3StrFmtSDCTL(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4261 const char *pszType, void const *pvValue,
4262 int cchWidth, int cchPrecision, unsigned fFlags,
4263 void *pvUser)
4264{
4265 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4266 uint32_t uSDCTL = (uint32_t)(uintptr_t)pvValue;
4267 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
4268 "SDCTL(raw:%#x, DIR:%s, TP:%RTbool, STRIPE:%x, DEIE:%RTbool, FEIE:%RTbool, IOCE:%RTbool, RUN:%RTbool, RESET:%RTbool)",
4269 uSDCTL,
4270 uSDCTL & HDA_SDCTL_DIR ? "OUT" : "IN",
4271 RT_BOOL(uSDCTL & HDA_SDCTL_TP),
4272 (uSDCTL & HDA_SDCTL_STRIPE_MASK) >> HDA_SDCTL_STRIPE_SHIFT,
4273 RT_BOOL(uSDCTL & HDA_SDCTL_DEIE),
4274 RT_BOOL(uSDCTL & HDA_SDCTL_FEIE),
4275 RT_BOOL(uSDCTL & HDA_SDCTL_IOCE),
4276 RT_BOOL(uSDCTL & HDA_SDCTL_RUN),
4277 RT_BOOL(uSDCTL & HDA_SDCTL_SRST));
4278}
4279
4280/**
4281 * @callback_method_impl{FNRTSTRFORMATTYPE}
4282 */
4283static DECLCALLBACK(size_t) hdaR3StrFmtSDFIFOS(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4284 const char *pszType, void const *pvValue,
4285 int cchWidth, int cchPrecision, unsigned fFlags,
4286 void *pvUser)
4287{
4288 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4289 uint32_t uSDFIFOS = (uint32_t)(uintptr_t)pvValue;
4290 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOS(raw:%#x, sdfifos:%RU8 B)", uSDFIFOS, uSDFIFOS ? uSDFIFOS + 1 : 0);
4291}
4292
4293/**
4294 * @callback_method_impl{FNRTSTRFORMATTYPE}
4295 */
4296static DECLCALLBACK(size_t) hdaR3StrFmtSDFIFOW(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4297 const char *pszType, void const *pvValue,
4298 int cchWidth, int cchPrecision, unsigned fFlags,
4299 void *pvUser)
4300{
4301 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4302 uint32_t uSDFIFOW = (uint32_t)(uintptr_t)pvValue;
4303 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOW(raw: %#0x, sdfifow:%d B)", uSDFIFOW, hdaSDFIFOWToBytes(uSDFIFOW));
4304}
4305
4306/**
4307 * @callback_method_impl{FNRTSTRFORMATTYPE}
4308 */
4309static DECLCALLBACK(size_t) hdaR3StrFmtSDSTS(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4310 const char *pszType, void const *pvValue,
4311 int cchWidth, int cchPrecision, unsigned fFlags,
4312 void *pvUser)
4313{
4314 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4315 uint32_t uSdSts = (uint32_t)(uintptr_t)pvValue;
4316 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
4317 "SDSTS(raw:%#0x, fifordy:%RTbool, dese:%RTbool, fifoe:%RTbool, bcis:%RTbool)",
4318 uSdSts,
4319 RT_BOOL(uSdSts & HDA_SDSTS_FIFORDY),
4320 RT_BOOL(uSdSts & HDA_SDSTS_DESE),
4321 RT_BOOL(uSdSts & HDA_SDSTS_FIFOE),
4322 RT_BOOL(uSdSts & HDA_SDSTS_BCIS));
4323}
4324
4325/* Debug info dumpers */
4326
4327static int hdaR3DbgLookupRegByName(const char *pszArgs)
4328{
4329 int iReg = 0;
4330 for (; iReg < HDA_NUM_REGS; ++iReg)
4331 if (!RTStrICmp(g_aHdaRegMap[iReg].abbrev, pszArgs))
4332 return iReg;
4333 return -1;
4334}
4335
4336
4337static void hdaR3DbgPrintRegister(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iHdaIndex)
4338{
4339 Assert( pThis
4340 && iHdaIndex >= 0
4341 && iHdaIndex < HDA_NUM_REGS);
4342 pHlp->pfnPrintf(pHlp, "%s: 0x%x\n", g_aHdaRegMap[iHdaIndex].abbrev, pThis->au32Regs[g_aHdaRegMap[iHdaIndex].mem_idx]);
4343}
4344
4345/**
4346 * @callback_method_impl{FNDBGFHANDLERDEV}
4347 */
4348static DECLCALLBACK(void) hdaR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4349{
4350 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4351 int iHdaRegisterIndex = hdaR3DbgLookupRegByName(pszArgs);
4352 if (iHdaRegisterIndex != -1)
4353 hdaR3DbgPrintRegister(pThis, pHlp, iHdaRegisterIndex);
4354 else
4355 {
4356 for(iHdaRegisterIndex = 0; (unsigned int)iHdaRegisterIndex < HDA_NUM_REGS; ++iHdaRegisterIndex)
4357 hdaR3DbgPrintRegister(pThis, pHlp, iHdaRegisterIndex);
4358 }
4359}
4360
4361static void hdaR3DbgPrintStream(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iIdx)
4362{
4363 Assert( pThis
4364 && iIdx >= 0
4365 && iIdx < HDA_MAX_STREAMS);
4366
4367 const PHDASTREAM pStream = &pThis->aStreams[iIdx];
4368
4369 pHlp->pfnPrintf(pHlp, "Stream #%d:\n", iIdx);
4370 pHlp->pfnPrintf(pHlp, "\tSD%dCTL : %R[sdctl]\n", iIdx, HDA_STREAM_REG(pThis, CTL, iIdx));
4371 pHlp->pfnPrintf(pHlp, "\tSD%dCTS : %R[sdsts]\n", iIdx, HDA_STREAM_REG(pThis, STS, iIdx));
4372 pHlp->pfnPrintf(pHlp, "\tSD%dFIFOS: %R[sdfifos]\n", iIdx, HDA_STREAM_REG(pThis, FIFOS, iIdx));
4373 pHlp->pfnPrintf(pHlp, "\tSD%dFIFOW: %R[sdfifow]\n", iIdx, HDA_STREAM_REG(pThis, FIFOW, iIdx));
4374 pHlp->pfnPrintf(pHlp, "\tBDLE : %R[bdle]\n", &pStream->State.BDLE);
4375}
4376
4377static void hdaR3DbgPrintBDLE(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iIdx)
4378{
4379 Assert( pThis
4380 && iIdx >= 0
4381 && iIdx < HDA_MAX_STREAMS);
4382
4383 const PHDASTREAM pStream = &pThis->aStreams[iIdx];
4384 const PHDABDLE pBDLE = &pStream->State.BDLE;
4385
4386 pHlp->pfnPrintf(pHlp, "Stream #%d BDLE:\n", iIdx);
4387
4388 uint64_t u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, iIdx),
4389 HDA_STREAM_REG(pThis, BDPU, iIdx));
4390 uint16_t u16LVI = HDA_STREAM_REG(pThis, LVI, iIdx);
4391 uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, iIdx);
4392
4393 if (!u64BaseDMA)
4394 return;
4395
4396 pHlp->pfnPrintf(pHlp, "\tCurrent: %R[bdle]\n\n", pBDLE);
4397
4398 pHlp->pfnPrintf(pHlp, "\tMemory:\n");
4399
4400 uint32_t cbBDLE = 0;
4401 for (uint16_t i = 0; i < u16LVI + 1; i++)
4402 {
4403 HDABDLEDESC bd;
4404 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BaseDMA + i * sizeof(HDABDLEDESC), &bd, sizeof(bd));
4405
4406 pHlp->pfnPrintf(pHlp, "\t\t%s #%03d BDLE(adr:0x%llx, size:%RU32, ioc:%RTbool)\n",
4407 pBDLE->State.u32BDLIndex == i ? "*" : " ", i, bd.u64BufAdr, bd.u32BufSize, bd.fFlags & HDA_BDLE_FLAG_IOC);
4408
4409 cbBDLE += bd.u32BufSize;
4410 }
4411
4412 pHlp->pfnPrintf(pHlp, "Total: %RU32 bytes\n", cbBDLE);
4413
4414 if (cbBDLE != u32CBL)
4415 pHlp->pfnPrintf(pHlp, "Warning: %RU32 bytes does not match CBL (%RU32)!\n", cbBDLE, u32CBL);
4416
4417 pHlp->pfnPrintf(pHlp, "DMA counters (base @ 0x%llx):\n", u64BaseDMA);
4418 if (!u64BaseDMA) /* No DMA base given? Bail out. */
4419 {
4420 pHlp->pfnPrintf(pHlp, "\tNo counters found\n");
4421 return;
4422 }
4423
4424 for (int i = 0; i < u16LVI + 1; i++)
4425 {
4426 uint32_t uDMACnt;
4427 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), (pThis->u64DPBase & DPBASE_ADDR_MASK) + (i * 2 * sizeof(uint32_t)),
4428 &uDMACnt, sizeof(uDMACnt));
4429
4430 pHlp->pfnPrintf(pHlp, "\t#%03d DMA @ 0x%x\n", i , uDMACnt);
4431 }
4432}
4433
4434static int hdaR3DbgLookupStrmIdx(PHDASTATE pThis, const char *pszArgs)
4435{
4436 RT_NOREF(pThis, pszArgs);
4437 /** @todo Add args parsing. */
4438 return -1;
4439}
4440
4441/**
4442 * @callback_method_impl{FNDBGFHANDLERDEV}
4443 */
4444static DECLCALLBACK(void) hdaR3DbgInfoStream(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4445{
4446 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4447 int iHdaStreamdex = hdaR3DbgLookupStrmIdx(pThis, pszArgs);
4448 if (iHdaStreamdex != -1)
4449 hdaR3DbgPrintStream(pThis, pHlp, iHdaStreamdex);
4450 else
4451 for(iHdaStreamdex = 0; iHdaStreamdex < HDA_MAX_STREAMS; ++iHdaStreamdex)
4452 hdaR3DbgPrintStream(pThis, pHlp, iHdaStreamdex);
4453}
4454
4455/**
4456 * @callback_method_impl{FNDBGFHANDLERDEV}
4457 */
4458static DECLCALLBACK(void) hdaR3DbgInfoBDLE(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4459{
4460 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4461 int iHdaStreamdex = hdaR3DbgLookupStrmIdx(pThis, pszArgs);
4462 if (iHdaStreamdex != -1)
4463 hdaR3DbgPrintBDLE(pThis, pHlp, iHdaStreamdex);
4464 else
4465 for (iHdaStreamdex = 0; iHdaStreamdex < HDA_MAX_STREAMS; ++iHdaStreamdex)
4466 hdaR3DbgPrintBDLE(pThis, pHlp, iHdaStreamdex);
4467}
4468
4469/**
4470 * @callback_method_impl{FNDBGFHANDLERDEV}
4471 */
4472static DECLCALLBACK(void) hdaR3DbgInfoCodecNodes(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4473{
4474 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4475
4476 if (pThis->pCodec->pfnDbgListNodes)
4477 pThis->pCodec->pfnDbgListNodes(pThis->pCodec, pHlp, pszArgs);
4478 else
4479 pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n");
4480}
4481
4482/**
4483 * @callback_method_impl{FNDBGFHANDLERDEV}
4484 */
4485static DECLCALLBACK(void) hdaR3DbgInfoCodecSelector(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4486{
4487 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4488
4489 if (pThis->pCodec->pfnDbgSelector)
4490 pThis->pCodec->pfnDbgSelector(pThis->pCodec, pHlp, pszArgs);
4491 else
4492 pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n");
4493}
4494
4495/**
4496 * @callback_method_impl{FNDBGFHANDLERDEV}
4497 */
4498static DECLCALLBACK(void) hdaR3DbgInfoMixer(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4499{
4500 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4501
4502 if (pThis->pMixer)
4503 AudioMixerDebug(pThis->pMixer, pHlp, pszArgs);
4504 else
4505 pHlp->pfnPrintf(pHlp, "Mixer not available\n");
4506}
4507
4508
4509/* PDMIBASE */
4510
4511/**
4512 * @interface_method_impl{PDMIBASE,pfnQueryInterface}
4513 */
4514static DECLCALLBACK(void *) hdaR3QueryInterface(struct PDMIBASE *pInterface, const char *pszIID)
4515{
4516 PHDASTATE pThis = RT_FROM_MEMBER(pInterface, HDASTATE, IBase);
4517 Assert(&pThis->IBase == pInterface);
4518
4519 PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase);
4520 return NULL;
4521}
4522
4523
4524/* PDMDEVREG */
4525
4526/**
4527 * Attach command, internal version.
4528 *
4529 * This is called to let the device attach to a driver for a specified LUN
4530 * during runtime. This is not called during VM construction, the device
4531 * constructor has to attach to all the available drivers.
4532 *
4533 * @returns VBox status code.
4534 * @param pThis HDA state.
4535 * @param uLUN The logical unit which is being detached.
4536 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
4537 * @param ppDrv Attached driver instance on success. Optional.
4538 */
4539static int hdaR3AttachInternal(PHDASTATE pThis, unsigned uLUN, uint32_t fFlags, PHDADRIVER *ppDrv)
4540{
4541 RT_NOREF(fFlags);
4542
4543 /*
4544 * Attach driver.
4545 */
4546 char *pszDesc;
4547 if (RTStrAPrintf(&pszDesc, "Audio driver port (HDA) for LUN#%u", uLUN) <= 0)
4548 AssertLogRelFailedReturn(VERR_NO_MEMORY);
4549
4550 PPDMIBASE pDrvBase;
4551 int rc = PDMDevHlpDriverAttach(pThis->pDevInsR3, uLUN,
4552 &pThis->IBase, &pDrvBase, pszDesc);
4553 if (RT_SUCCESS(rc))
4554 {
4555 PHDADRIVER pDrv = (PHDADRIVER)RTMemAllocZ(sizeof(HDADRIVER));
4556 if (pDrv)
4557 {
4558 pDrv->pDrvBase = pDrvBase;
4559 pDrv->pConnector = PDMIBASE_QUERY_INTERFACE(pDrvBase, PDMIAUDIOCONNECTOR);
4560 AssertMsg(pDrv->pConnector != NULL, ("Configuration error: LUN#%u has no host audio interface, rc=%Rrc\n", uLUN, rc));
4561 pDrv->pHDAState = pThis;
4562 pDrv->uLUN = uLUN;
4563
4564 /*
4565 * For now we always set the driver at LUN 0 as our primary
4566 * host backend. This might change in the future.
4567 */
4568 if (pDrv->uLUN == 0)
4569 pDrv->fFlags |= PDMAUDIODRVFLAGS_PRIMARY;
4570
4571 LogFunc(("LUN#%u: pCon=%p, drvFlags=0x%x\n", uLUN, pDrv->pConnector, pDrv->fFlags));
4572
4573 /* Attach to driver list if not attached yet. */
4574 if (!pDrv->fAttached)
4575 {
4576 RTListAppend(&pThis->lstDrv, &pDrv->Node);
4577 pDrv->fAttached = true;
4578 }
4579
4580 if (ppDrv)
4581 *ppDrv = pDrv;
4582 }
4583 else
4584 rc = VERR_NO_MEMORY;
4585 }
4586 else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
4587 LogFunc(("No attached driver for LUN #%u\n", uLUN));
4588
4589 if (RT_FAILURE(rc))
4590 {
4591 /* Only free this string on failure;
4592 * must remain valid for the live of the driver instance. */
4593 RTStrFree(pszDesc);
4594 }
4595
4596 LogFunc(("uLUN=%u, fFlags=0x%x, rc=%Rrc\n", uLUN, fFlags, rc));
4597 return rc;
4598}
4599
4600/**
4601 * Detach command, internal version.
4602 *
4603 * This is called to let the device detach from a driver for a specified LUN
4604 * during runtime.
4605 *
4606 * @returns VBox status code.
4607 * @param pThis HDA state.
4608 * @param pDrv Driver to detach from device.
4609 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
4610 */
4611static int hdaR3DetachInternal(PHDASTATE pThis, PHDADRIVER pDrv, uint32_t fFlags)
4612{
4613 RT_NOREF(fFlags);
4614
4615 /* First, remove the driver from our list and destory it's associated streams.
4616 * This also will un-set the driver as a recording source (if associated). */
4617 hdaR3MixerRemoveDrv(pThis, pDrv);
4618
4619 /* Next, search backwards for a capable (attached) driver which now will be the
4620 * new recording source. */
4621 PHDADRIVER pDrvCur;
4622 RTListForEachReverse(&pThis->lstDrv, pDrvCur, HDADRIVER, Node)
4623 {
4624 if (!pDrvCur->pConnector)
4625 continue;
4626
4627 PDMAUDIOBACKENDCFG Cfg;
4628 int rc2 = pDrvCur->pConnector->pfnGetConfig(pDrvCur->pConnector, &Cfg);
4629 if (RT_FAILURE(rc2))
4630 continue;
4631
4632 PHDADRIVERSTREAM pDrvStrm;
4633# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
4634 pDrvStrm = &pDrvCur->MicIn;
4635 if ( pDrvStrm
4636 && pDrvStrm->pMixStrm)
4637 {
4638 rc2 = AudioMixerSinkSetRecordingSource(pThis->SinkMicIn.pMixSink, pDrvStrm->pMixStrm);
4639 if (RT_SUCCESS(rc2))
4640 LogRel2(("HDA: Set new recording source for 'Mic In' to '%s'\n", Cfg.szName));
4641 }
4642# endif
4643 pDrvStrm = &pDrvCur->LineIn;
4644 if ( pDrvStrm
4645 && pDrvStrm->pMixStrm)
4646 {
4647 rc2 = AudioMixerSinkSetRecordingSource(pThis->SinkLineIn.pMixSink, pDrvStrm->pMixStrm);
4648 if (RT_SUCCESS(rc2))
4649 LogRel2(("HDA: Set new recording source for 'Line In' to '%s'\n", Cfg.szName));
4650 }
4651 }
4652
4653 LogFunc(("uLUN=%u, fFlags=0x%x\n", pDrv->uLUN, fFlags));
4654 return VINF_SUCCESS;
4655}
4656
4657/**
4658 * @interface_method_impl{PDMDEVREG,pfnAttach}
4659 */
4660static DECLCALLBACK(int) hdaR3Attach(PPDMDEVINS pDevIns, unsigned uLUN, uint32_t fFlags)
4661{
4662 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4663
4664 DEVHDA_LOCK_RETURN(pThis, VERR_IGNORED);
4665
4666 LogFunc(("uLUN=%u, fFlags=0x%x\n", uLUN, fFlags));
4667
4668 PHDADRIVER pDrv;
4669 int rc2 = hdaR3AttachInternal(pThis, uLUN, fFlags, &pDrv);
4670 if (RT_SUCCESS(rc2))
4671 rc2 = hdaR3MixerAddDrv(pThis, pDrv);
4672
4673 if (RT_FAILURE(rc2))
4674 LogFunc(("Failed with %Rrc\n", rc2));
4675
4676 DEVHDA_UNLOCK(pThis);
4677
4678 return VINF_SUCCESS;
4679}
4680
4681/**
4682 * @interface_method_impl{PDMDEVREG,pfnDetach}
4683 */
4684static DECLCALLBACK(void) hdaR3Detach(PPDMDEVINS pDevIns, unsigned uLUN, uint32_t fFlags)
4685{
4686 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4687
4688 DEVHDA_LOCK(pThis);
4689
4690 LogFunc(("uLUN=%u, fFlags=0x%x\n", uLUN, fFlags));
4691
4692 PHDADRIVER pDrv, pDrvNext;
4693 RTListForEachSafe(&pThis->lstDrv, pDrv, pDrvNext, HDADRIVER, Node)
4694 {
4695 if (pDrv->uLUN == uLUN)
4696 {
4697 int rc2 = hdaR3DetachInternal(pThis, pDrv, fFlags);
4698 if (RT_SUCCESS(rc2))
4699 {
4700 RTMemFree(pDrv);
4701 pDrv = NULL;
4702 }
4703
4704 break;
4705 }
4706 }
4707
4708 DEVHDA_UNLOCK(pThis);
4709}
4710
4711/**
4712 * Powers off the device.
4713 *
4714 * @param pDevIns Device instance to power off.
4715 */
4716static DECLCALLBACK(void) hdaR3PowerOff(PPDMDEVINS pDevIns)
4717{
4718 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4719
4720 DEVHDA_LOCK_RETURN_VOID(pThis);
4721
4722 LogRel2(("HDA: Powering off ...\n"));
4723
4724 /* Ditto goes for the codec, which in turn uses the mixer. */
4725 hdaCodecPowerOff(pThis->pCodec);
4726
4727 /*
4728 * Note: Destroy the mixer while powering off and *not* in hdaR3Destruct,
4729 * giving the mixer the chance to release any references held to
4730 * PDM audio streams it maintains.
4731 */
4732 if (pThis->pMixer)
4733 {
4734 AudioMixerDestroy(pThis->pMixer);
4735 pThis->pMixer = NULL;
4736 }
4737
4738 DEVHDA_UNLOCK(pThis);
4739}
4740
4741
4742/**
4743 * Re-attaches (replaces) a driver with a new driver.
4744 *
4745 * This is only used by to attach the Null driver when it failed to attach the
4746 * one that was configured.
4747 *
4748 * @returns VBox status code.
4749 * @param pThis Device instance to re-attach driver to.
4750 * @param pDrv Driver instance used for attaching to.
4751 * If NULL is specified, a new driver will be created and appended
4752 * to the driver list.
4753 * @param uLUN The logical unit which is being re-detached.
4754 * @param pszDriver New driver name to attach.
4755 */
4756static int hdaR3ReattachInternal(PHDASTATE pThis, PHDADRIVER pDrv, uint8_t uLUN, const char *pszDriver)
4757{
4758 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
4759 AssertPtrReturn(pszDriver, VERR_INVALID_POINTER);
4760
4761 int rc;
4762
4763 if (pDrv)
4764 {
4765 rc = hdaR3DetachInternal(pThis, pDrv, 0 /* fFlags */);
4766 if (RT_SUCCESS(rc))
4767 rc = PDMDevHlpDriverDetach(pThis->pDevInsR3, PDMIBASE_2_PDMDRV(pDrv->pDrvBase), 0 /* fFlags */);
4768
4769 if (RT_FAILURE(rc))
4770 return rc;
4771
4772 pDrv = NULL;
4773 }
4774
4775 PVM pVM = PDMDevHlpGetVM(pThis->pDevInsR3);
4776 PCFGMNODE pRoot = CFGMR3GetRoot(pVM);
4777 PCFGMNODE pDev0 = CFGMR3GetChild(pRoot, "Devices/hda/0/");
4778
4779 /* Remove LUN branch. */
4780 CFGMR3RemoveNode(CFGMR3GetChildF(pDev0, "LUN#%u/", uLUN));
4781
4782#define RC_CHECK() if (RT_FAILURE(rc)) { AssertReleaseRC(rc); break; }
4783
4784 do
4785 {
4786 PCFGMNODE pLunL0;
4787 rc = CFGMR3InsertNodeF(pDev0, &pLunL0, "LUN#%u/", uLUN); RC_CHECK();
4788 rc = CFGMR3InsertString(pLunL0, "Driver", "AUDIO"); RC_CHECK();
4789 rc = CFGMR3InsertNode(pLunL0, "Config/", NULL); RC_CHECK();
4790
4791 PCFGMNODE pLunL1, pLunL2;
4792 rc = CFGMR3InsertNode (pLunL0, "AttachedDriver/", &pLunL1); RC_CHECK();
4793 rc = CFGMR3InsertNode (pLunL1, "Config/", &pLunL2); RC_CHECK();
4794 rc = CFGMR3InsertString(pLunL1, "Driver", pszDriver); RC_CHECK();
4795
4796 rc = CFGMR3InsertString(pLunL2, "AudioDriver", pszDriver); RC_CHECK();
4797
4798 } while (0);
4799
4800 if (RT_SUCCESS(rc))
4801 rc = hdaR3AttachInternal(pThis, uLUN, 0 /* fFlags */, NULL /* ppDrv */);
4802
4803 LogFunc(("pThis=%p, uLUN=%u, pszDriver=%s, rc=%Rrc\n", pThis, uLUN, pszDriver, rc));
4804
4805#undef RC_CHECK
4806
4807 return rc;
4808}
4809
4810
4811/**
4812 * @interface_method_impl{PDMDEVREG,pfnReset}
4813 */
4814static DECLCALLBACK(void) hdaR3Reset(PPDMDEVINS pDevIns)
4815{
4816 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4817
4818 LogFlowFuncEnter();
4819
4820 DEVHDA_LOCK_RETURN_VOID(pThis);
4821
4822 /*
4823 * 18.2.6,7 defines that values of this registers might be cleared on power on/reset
4824 * hdaR3Reset shouldn't affects these registers.
4825 */
4826 HDA_REG(pThis, WAKEEN) = 0x0;
4827
4828 hdaR3GCTLReset(pThis);
4829
4830 /* Indicate that HDA is not in reset. The firmware is supposed to (un)reset HDA,
4831 * but we can take a shortcut.
4832 */
4833 HDA_REG(pThis, GCTL) = HDA_GCTL_CRST;
4834
4835 DEVHDA_UNLOCK(pThis);
4836}
4837
4838
4839/**
4840 * @interface_method_impl{PDMDEVREG,pfnRelocate}
4841 */
4842static DECLCALLBACK(void) hdaR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
4843{
4844 NOREF(offDelta);
4845 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4846 pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
4847}
4848
4849
4850/**
4851 * @interface_method_impl{PDMDEVREG,pfnDestruct}
4852 */
4853static DECLCALLBACK(int) hdaR3Destruct(PPDMDEVINS pDevIns)
4854{
4855 PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns); /* this shall come first */
4856 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4857 DEVHDA_LOCK(pThis); /** @todo r=bird: this will fail on early constructor failure. */
4858
4859 PHDADRIVER pDrv;
4860 while (!RTListIsEmpty(&pThis->lstDrv))
4861 {
4862 pDrv = RTListGetFirst(&pThis->lstDrv, HDADRIVER, Node);
4863
4864 RTListNodeRemove(&pDrv->Node);
4865 RTMemFree(pDrv);
4866 }
4867
4868 if (pThis->pCodec)
4869 {
4870 hdaCodecDestruct(pThis->pCodec);
4871
4872 RTMemFree(pThis->pCodec);
4873 pThis->pCodec = NULL;
4874 }
4875
4876 RTMemFree(pThis->pu32CorbBuf);
4877 pThis->pu32CorbBuf = NULL;
4878
4879 RTMemFree(pThis->pu64RirbBuf);
4880 pThis->pu64RirbBuf = NULL;
4881
4882 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
4883 hdaR3StreamDestroy(&pThis->aStreams[i]);
4884
4885 DEVHDA_UNLOCK(pThis);
4886 return VINF_SUCCESS;
4887}
4888
4889
4890/**
4891 * @interface_method_impl{PDMDEVREG,pfnConstruct}
4892 */
4893static DECLCALLBACK(int) hdaR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
4894{
4895 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); /* this shall come first */
4896 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4897 Assert(iInstance == 0); RT_NOREF(iInstance);
4898
4899 /*
4900 * Initialize the state sufficently to make the destructor work.
4901 */
4902 pThis->uAlignmentCheckMagic = HDASTATE_ALIGNMENT_CHECK_MAGIC;
4903 RTListInit(&pThis->lstDrv);
4904 /** @todo r=bird: There are probably other things which should be
4905 * initialized here before we start failing. */
4906
4907 /*
4908 * Validations.
4909 */
4910 if (!CFGMR3AreValuesValid(pCfg, "RZEnabled\0"
4911 "TimerHz\0"
4912 "PosAdjustEnabled\0"
4913 "PosAdjustFrames\0"
4914 "DebugEnabled\0"
4915 "DebugPathOut\0"))
4916 {
4917 return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES,
4918 N_ ("Invalid configuration for the Intel HDA device"));
4919 }
4920
4921 int rc = CFGMR3QueryBoolDef(pCfg, "RZEnabled", &pThis->fRZEnabled, true);
4922 if (RT_FAILURE(rc))
4923 return PDMDEV_SET_ERROR(pDevIns, rc,
4924 N_("HDA configuration error: failed to read RCEnabled as boolean"));
4925
4926
4927 rc = CFGMR3QueryU16Def(pCfg, "TimerHz", &pThis->u16TimerHz, HDA_TIMER_HZ_DEFAULT /* Default value, if not set. */);
4928 if (RT_FAILURE(rc))
4929 return PDMDEV_SET_ERROR(pDevIns, rc,
4930 N_("HDA configuration error: failed to read Hertz (Hz) rate as unsigned integer"));
4931
4932 if (pThis->u16TimerHz != HDA_TIMER_HZ_DEFAULT)
4933 LogRel(("HDA: Using custom device timer rate (%RU16Hz)\n", pThis->u16TimerHz));
4934
4935 rc = CFGMR3QueryBoolDef(pCfg, "PosAdjustEnabled", &pThis->fPosAdjustEnabled, true);
4936 if (RT_FAILURE(rc))
4937 return PDMDEV_SET_ERROR(pDevIns, rc,
4938 N_("HDA configuration error: failed to read position adjustment enabled as boolean"));
4939
4940 if (!pThis->fPosAdjustEnabled)
4941 LogRel(("HDA: Position adjustment is disabled\n"));
4942
4943 rc = CFGMR3QueryU16Def(pCfg, "PosAdjustFrames", &pThis->cPosAdjustFrames, HDA_POS_ADJUST_DEFAULT);
4944 if (RT_FAILURE(rc))
4945 return PDMDEV_SET_ERROR(pDevIns, rc,
4946 N_("HDA configuration error: failed to read position adjustment frames as unsigned integer"));
4947
4948 if (pThis->cPosAdjustFrames)
4949 LogRel(("HDA: Using custom position adjustment (%RU16 audio frames)\n", pThis->cPosAdjustFrames));
4950
4951 rc = CFGMR3QueryBoolDef(pCfg, "DebugEnabled", &pThis->Dbg.fEnabled, false);
4952 if (RT_FAILURE(rc))
4953 return PDMDEV_SET_ERROR(pDevIns, rc,
4954 N_("HDA configuration error: failed to read debugging enabled flag as boolean"));
4955
4956 rc = CFGMR3QueryStringDef(pCfg, "DebugPathOut", pThis->Dbg.szOutPath, sizeof(pThis->Dbg.szOutPath),
4957 VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH);
4958 if (RT_FAILURE(rc))
4959 return PDMDEV_SET_ERROR(pDevIns, rc,
4960 N_("HDA configuration error: failed to read debugging output path flag as string"));
4961
4962 if (!strlen(pThis->Dbg.szOutPath))
4963 RTStrPrintf(pThis->Dbg.szOutPath, sizeof(pThis->Dbg.szOutPath), VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH);
4964
4965 if (pThis->Dbg.fEnabled)
4966 LogRel2(("HDA: Debug output will be saved to '%s'\n", pThis->Dbg.szOutPath));
4967
4968 /*
4969 * Use an own critical section for the device instead of the default
4970 * one provided by PDM. This allows fine-grained locking in combination
4971 * with TM when timer-specific stuff is being called in e.g. the MMIO handlers.
4972 */
4973 rc = PDMDevHlpCritSectInit(pDevIns, &pThis->CritSect, RT_SRC_POS, "HDA");
4974 AssertRCReturn(rc, rc);
4975
4976 rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
4977 AssertRCReturn(rc, rc);
4978
4979 /*
4980 * Initialize data (most of it anyway).
4981 */
4982 pThis->pDevInsR3 = pDevIns;
4983 pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
4984 pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
4985 /* IBase */
4986 pThis->IBase.pfnQueryInterface = hdaR3QueryInterface;
4987
4988 /* PCI Device */
4989 PCIDevSetVendorId (&pThis->PciDev, HDA_PCI_VENDOR_ID); /* nVidia */
4990 PCIDevSetDeviceId (&pThis->PciDev, HDA_PCI_DEVICE_ID); /* HDA */
4991
4992 PCIDevSetCommand (&pThis->PciDev, 0x0000); /* 04 rw,ro - pcicmd. */
4993 PCIDevSetStatus (&pThis->PciDev, VBOX_PCI_STATUS_CAP_LIST); /* 06 rwc?,ro? - pcists. */
4994 PCIDevSetRevisionId (&pThis->PciDev, 0x01); /* 08 ro - rid. */
4995 PCIDevSetClassProg (&pThis->PciDev, 0x00); /* 09 ro - pi. */
4996 PCIDevSetClassSub (&pThis->PciDev, 0x03); /* 0a ro - scc; 03 == HDA. */
4997 PCIDevSetClassBase (&pThis->PciDev, 0x04); /* 0b ro - bcc; 04 == multimedia. */
4998 PCIDevSetHeaderType (&pThis->PciDev, 0x00); /* 0e ro - headtyp. */
4999 PCIDevSetBaseAddress (&pThis->PciDev, 0, /* 10 rw - MMIO */
5000 false /* fIoSpace */, false /* fPrefetchable */, true /* f64Bit */, 0x00000000);
5001 PCIDevSetInterruptLine (&pThis->PciDev, 0x00); /* 3c rw. */
5002 PCIDevSetInterruptPin (&pThis->PciDev, 0x01); /* 3d ro - INTA#. */
5003
5004#if defined(HDA_AS_PCI_EXPRESS)
5005 PCIDevSetCapabilityList (&pThis->PciDev, 0x80);
5006#elif defined(VBOX_WITH_MSI_DEVICES)
5007 PCIDevSetCapabilityList (&pThis->PciDev, 0x60);
5008#else
5009 PCIDevSetCapabilityList (&pThis->PciDev, 0x50); /* ICH6 datasheet 18.1.16 */
5010#endif
5011
5012 /// @todo r=michaln: If there are really no PCIDevSetXx for these, the meaning
5013 /// of these values needs to be properly documented!
5014 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
5015 PCIDevSetByte(&pThis->PciDev, 0x40, 0x01);
5016
5017 /* Power Management */
5018 PCIDevSetByte(&pThis->PciDev, 0x50 + 0, VBOX_PCI_CAP_ID_PM);
5019 PCIDevSetByte(&pThis->PciDev, 0x50 + 1, 0x0); /* next */
5020 PCIDevSetWord(&pThis->PciDev, 0x50 + 2, VBOX_PCI_PM_CAP_DSI | 0x02 /* version, PM1.1 */ );
5021
5022#ifdef HDA_AS_PCI_EXPRESS
5023 /* PCI Express */
5024 PCIDevSetByte(&pThis->PciDev, 0x80 + 0, VBOX_PCI_CAP_ID_EXP); /* PCI_Express */
5025 PCIDevSetByte(&pThis->PciDev, 0x80 + 1, 0x60); /* next */
5026 /* Device flags */
5027 PCIDevSetWord(&pThis->PciDev, 0x80 + 2,
5028 /* version */ 0x1 |
5029 /* Root Complex Integrated Endpoint */ (VBOX_PCI_EXP_TYPE_ROOT_INT_EP << 4) |
5030 /* MSI */ (100) << 9 );
5031 /* Device capabilities */
5032 PCIDevSetDWord(&pThis->PciDev, 0x80 + 4, VBOX_PCI_EXP_DEVCAP_FLRESET);
5033 /* Device control */
5034 PCIDevSetWord( &pThis->PciDev, 0x80 + 8, 0);
5035 /* Device status */
5036 PCIDevSetWord( &pThis->PciDev, 0x80 + 10, 0);
5037 /* Link caps */
5038 PCIDevSetDWord(&pThis->PciDev, 0x80 + 12, 0);
5039 /* Link control */
5040 PCIDevSetWord( &pThis->PciDev, 0x80 + 16, 0);
5041 /* Link status */
5042 PCIDevSetWord( &pThis->PciDev, 0x80 + 18, 0);
5043 /* Slot capabilities */
5044 PCIDevSetDWord(&pThis->PciDev, 0x80 + 20, 0);
5045 /* Slot control */
5046 PCIDevSetWord( &pThis->PciDev, 0x80 + 24, 0);
5047 /* Slot status */
5048 PCIDevSetWord( &pThis->PciDev, 0x80 + 26, 0);
5049 /* Root control */
5050 PCIDevSetWord( &pThis->PciDev, 0x80 + 28, 0);
5051 /* Root capabilities */
5052 PCIDevSetWord( &pThis->PciDev, 0x80 + 30, 0);
5053 /* Root status */
5054 PCIDevSetDWord(&pThis->PciDev, 0x80 + 32, 0);
5055 /* Device capabilities 2 */
5056 PCIDevSetDWord(&pThis->PciDev, 0x80 + 36, 0);
5057 /* Device control 2 */
5058 PCIDevSetQWord(&pThis->PciDev, 0x80 + 40, 0);
5059 /* Link control 2 */
5060 PCIDevSetQWord(&pThis->PciDev, 0x80 + 48, 0);
5061 /* Slot control 2 */
5062 PCIDevSetWord( &pThis->PciDev, 0x80 + 56, 0);
5063#endif
5064
5065 /*
5066 * Register the PCI device.
5067 */
5068 rc = PDMDevHlpPCIRegister(pDevIns, &pThis->PciDev);
5069 if (RT_FAILURE(rc))
5070 return rc;
5071
5072 rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, 0x4000, PCI_ADDRESS_SPACE_MEM, hdaR3PciIoRegionMap);
5073 if (RT_FAILURE(rc))
5074 return rc;
5075
5076#ifdef VBOX_WITH_MSI_DEVICES
5077 PDMMSIREG MsiReg;
5078 RT_ZERO(MsiReg);
5079 MsiReg.cMsiVectors = 1;
5080 MsiReg.iMsiCapOffset = 0x60;
5081 MsiReg.iMsiNextOffset = 0x50;
5082 rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg);
5083 if (RT_FAILURE(rc))
5084 {
5085 /* That's OK, we can work without MSI */
5086 PCIDevSetCapabilityList(&pThis->PciDev, 0x50);
5087 }
5088#endif
5089
5090 rc = PDMDevHlpSSMRegister(pDevIns, HDA_SSM_VERSION, sizeof(*pThis), hdaR3SaveExec, hdaR3LoadExec);
5091 if (RT_FAILURE(rc))
5092 return rc;
5093
5094#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
5095 LogRel(("HDA: Asynchronous I/O enabled\n"));
5096#endif
5097
5098 uint8_t uLUN;
5099 for (uLUN = 0; uLUN < UINT8_MAX; ++uLUN)
5100 {
5101 LogFunc(("Trying to attach driver for LUN #%RU32 ...\n", uLUN));
5102 rc = hdaR3AttachInternal(pThis, uLUN, 0 /* fFlags */, NULL /* ppDrv */);
5103 if (RT_FAILURE(rc))
5104 {
5105 if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
5106 rc = VINF_SUCCESS;
5107 else if (rc == VERR_AUDIO_BACKEND_INIT_FAILED)
5108 {
5109 hdaR3ReattachInternal(pThis, NULL /* pDrv */, uLUN, "NullAudio");
5110 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding",
5111 N_("Host audio backend initialization has failed. Selecting the NULL audio backend "
5112 "with the consequence that no sound is audible"));
5113 /* Attaching to the NULL audio backend will never fail. */
5114 rc = VINF_SUCCESS;
5115 }
5116 break;
5117 }
5118 }
5119
5120 LogFunc(("cLUNs=%RU8, rc=%Rrc\n", uLUN, rc));
5121
5122 if (RT_SUCCESS(rc))
5123 {
5124 rc = AudioMixerCreate("HDA Mixer", 0 /* uFlags */, &pThis->pMixer);
5125 if (RT_SUCCESS(rc))
5126 {
5127 /*
5128 * Add mixer output sinks.
5129 */
5130#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
5131 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Front",
5132 AUDMIXSINKDIR_OUTPUT, &pThis->SinkFront.pMixSink);
5133 AssertRC(rc);
5134 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Center / Subwoofer",
5135 AUDMIXSINKDIR_OUTPUT, &pThis->SinkCenterLFE.pMixSink);
5136 AssertRC(rc);
5137 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Rear",
5138 AUDMIXSINKDIR_OUTPUT, &pThis->SinkRear.pMixSink);
5139 AssertRC(rc);
5140#else
5141 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] PCM Output",
5142 AUDMIXSINKDIR_OUTPUT, &pThis->SinkFront.pMixSink);
5143 AssertRC(rc);
5144#endif
5145 /*
5146 * Add mixer input sinks.
5147 */
5148 rc = AudioMixerCreateSink(pThis->pMixer, "[Recording] Line In",
5149 AUDMIXSINKDIR_INPUT, &pThis->SinkLineIn.pMixSink);
5150 AssertRC(rc);
5151#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5152 rc = AudioMixerCreateSink(pThis->pMixer, "[Recording] Microphone In",
5153 AUDMIXSINKDIR_INPUT, &pThis->SinkMicIn.pMixSink);
5154 AssertRC(rc);
5155#endif
5156 /* There is no master volume control. Set the master to max. */
5157 PDMAUDIOVOLUME vol = { false, 255, 255 };
5158 rc = AudioMixerSetMasterVolume(pThis->pMixer, &vol);
5159 AssertRC(rc);
5160 }
5161 }
5162
5163 if (RT_SUCCESS(rc))
5164 {
5165 /* Allocate CORB buffer. */
5166 pThis->cbCorbBuf = HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE;
5167 pThis->pu32CorbBuf = (uint32_t *)RTMemAllocZ(pThis->cbCorbBuf);
5168 if (pThis->pu32CorbBuf)
5169 {
5170 /* Allocate RIRB buffer. */
5171 pThis->cbRirbBuf = HDA_RIRB_SIZE * HDA_RIRB_ELEMENT_SIZE;
5172 pThis->pu64RirbBuf = (uint64_t *)RTMemAllocZ(pThis->cbRirbBuf);
5173 if (pThis->pu64RirbBuf)
5174 {
5175 /* Allocate codec. */
5176 pThis->pCodec = (PHDACODEC)RTMemAllocZ(sizeof(HDACODEC));
5177 if (!pThis->pCodec)
5178 rc = PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Out of memory allocating HDA codec state"));
5179 }
5180 else
5181 rc = PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Out of memory allocating RIRB"));
5182 }
5183 else
5184 rc = PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Out of memory allocating CORB"));
5185
5186 if (RT_SUCCESS(rc))
5187 {
5188 /* Set codec callbacks to this controller. */
5189 pThis->pCodec->pfnCbMixerAddStream = hdaR3MixerAddStream;
5190 pThis->pCodec->pfnCbMixerRemoveStream = hdaR3MixerRemoveStream;
5191 pThis->pCodec->pfnCbMixerControl = hdaR3MixerControl;
5192 pThis->pCodec->pfnCbMixerSetVolume = hdaR3MixerSetVolume;
5193
5194 pThis->pCodec->pHDAState = pThis; /* Assign HDA controller state to codec. */
5195
5196 /* Construct the codec. */
5197 rc = hdaCodecConstruct(pDevIns, pThis->pCodec, 0 /* Codec index */, pCfg);
5198 if (RT_FAILURE(rc))
5199 AssertRCReturn(rc, rc);
5200
5201 /* ICH6 datasheet defines 0 values for SVID and SID (18.1.14-15), which together with values returned for
5202 verb F20 should provide device/codec recognition. */
5203 Assert(pThis->pCodec->u16VendorId);
5204 Assert(pThis->pCodec->u16DeviceId);
5205 PCIDevSetSubSystemVendorId(&pThis->PciDev, pThis->pCodec->u16VendorId); /* 2c ro - intel.) */
5206 PCIDevSetSubSystemId( &pThis->PciDev, pThis->pCodec->u16DeviceId); /* 2e ro. */
5207 }
5208 }
5209
5210 if (RT_SUCCESS(rc))
5211 {
5212 /*
5213 * Create all hardware streams.
5214 */
5215 for (uint8_t i = 0; i < HDA_MAX_STREAMS; ++i)
5216 {
5217 /* Create the emulation timer (per stream).
5218 *
5219 * Note: Use TMCLOCK_VIRTUAL_SYNC here, as the guest's HDA driver
5220 * relies on exact (virtual) DMA timing and uses DMA Position Buffers
5221 * instead of the LPIB registers.
5222 */
5223 char szTimer[16];
5224 RTStrPrintf2(szTimer, sizeof(szTimer), "HDA SD%RU8", i);
5225
5226 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, hdaR3Timer, &pThis->aStreams[i],
5227 TMTIMER_FLAGS_NO_CRIT_SECT, szTimer, &pThis->pTimer[i]);
5228 AssertRCReturn(rc, rc);
5229
5230 /* Use our own critcal section for the device timer.
5231 * That way we can control more fine-grained when to lock what. */
5232 rc = TMR3TimerSetCritSect(pThis->pTimer[i], &pThis->CritSect);
5233 AssertRCReturn(rc, rc);
5234
5235 rc = hdaR3StreamCreate(&pThis->aStreams[i], pThis, i /* u8SD */);
5236 AssertRC(rc);
5237 }
5238
5239#ifdef VBOX_WITH_AUDIO_HDA_ONETIME_INIT
5240 /*
5241 * Initialize the driver chain.
5242 */
5243 PHDADRIVER pDrv;
5244 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
5245 {
5246 /*
5247 * Only primary drivers are critical for the VM to run. Everything else
5248 * might not worth showing an own error message box in the GUI.
5249 */
5250 if (!(pDrv->fFlags & PDMAUDIODRVFLAGS_PRIMARY))
5251 continue;
5252
5253 PPDMIAUDIOCONNECTOR pCon = pDrv->pConnector;
5254 AssertPtr(pCon);
5255
5256 bool fValidLineIn = AudioMixerStreamIsValid(pDrv->LineIn.pMixStrm);
5257# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5258 bool fValidMicIn = AudioMixerStreamIsValid(pDrv->MicIn.pMixStrm);
5259# endif
5260 bool fValidOut = AudioMixerStreamIsValid(pDrv->Front.pMixStrm);
5261# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
5262 /** @todo Anything to do here? */
5263# endif
5264
5265 if ( !fValidLineIn
5266# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5267 && !fValidMicIn
5268# endif
5269 && !fValidOut)
5270 {
5271 LogRel(("HDA: Falling back to NULL backend (no sound audible)\n"));
5272
5273 hdaR3Reset(pDevIns);
5274 hdaR3ReattachInternal(pThis, pDrv, pDrv->uLUN, "NullAudio");
5275
5276 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding",
5277 N_("No audio devices could be opened. Selecting the NULL audio backend "
5278 "with the consequence that no sound is audible"));
5279 }
5280 else
5281 {
5282 bool fWarn = false;
5283
5284 PDMAUDIOBACKENDCFG backendCfg;
5285 int rc2 = pCon->pfnGetConfig(pCon, &backendCfg);
5286 if (RT_SUCCESS(rc2))
5287 {
5288 if (backendCfg.cMaxStreamsIn)
5289 {
5290# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5291 /* If the audio backend supports two or more input streams at once,
5292 * warn if one of our two inputs (microphone-in and line-in) failed to initialize. */
5293 if (backendCfg.cMaxStreamsIn >= 2)
5294 fWarn = !fValidLineIn || !fValidMicIn;
5295 /* If the audio backend only supports one input stream at once (e.g. pure ALSA, and
5296 * *not* ALSA via PulseAudio plugin!), only warn if both of our inputs failed to initialize.
5297 * One of the two simply is not in use then. */
5298 else if (backendCfg.cMaxStreamsIn == 1)
5299 fWarn = !fValidLineIn && !fValidMicIn;
5300 /* Don't warn if our backend is not able of supporting any input streams at all. */
5301# else /* !VBOX_WITH_AUDIO_HDA_MIC_IN */
5302 /* We only have line-in as input source. */
5303 fWarn = !fValidLineIn;
5304# endif /* VBOX_WITH_AUDIO_HDA_MIC_IN */
5305 }
5306
5307 if ( !fWarn
5308 && backendCfg.cMaxStreamsOut)
5309 {
5310 fWarn = !fValidOut;
5311 }
5312 }
5313 else
5314 {
5315 LogRel(("HDA: Unable to retrieve audio backend configuration for LUN #%RU8, rc=%Rrc\n", pDrv->uLUN, rc2));
5316 fWarn = true;
5317 }
5318
5319 if (fWarn)
5320 {
5321 char szMissingStreams[255];
5322 size_t len = 0;
5323 if (!fValidLineIn)
5324 {
5325 LogRel(("HDA: WARNING: Unable to open PCM line input for LUN #%RU8!\n", pDrv->uLUN));
5326 len = RTStrPrintf(szMissingStreams, sizeof(szMissingStreams), "PCM Input");
5327 }
5328# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5329 if (!fValidMicIn)
5330 {
5331 LogRel(("HDA: WARNING: Unable to open PCM microphone input for LUN #%RU8!\n", pDrv->uLUN));
5332 len += RTStrPrintf(szMissingStreams + len,
5333 sizeof(szMissingStreams) - len, len ? ", PCM Microphone" : "PCM Microphone");
5334 }
5335# endif /* VBOX_WITH_AUDIO_HDA_MIC_IN */
5336 if (!fValidOut)
5337 {
5338 LogRel(("HDA: WARNING: Unable to open PCM output for LUN #%RU8!\n", pDrv->uLUN));
5339 len += RTStrPrintf(szMissingStreams + len,
5340 sizeof(szMissingStreams) - len, len ? ", PCM Output" : "PCM Output");
5341 }
5342
5343 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding",
5344 N_("Some HDA audio streams (%s) could not be opened. Guest applications generating audio "
5345 "output or depending on audio input may hang. Make sure your host audio device "
5346 "is working properly. Check the logfile for error messages of the audio "
5347 "subsystem"), szMissingStreams);
5348 }
5349 }
5350 }
5351#endif /* VBOX_WITH_AUDIO_HDA_ONETIME_INIT */
5352 }
5353
5354 if (RT_SUCCESS(rc))
5355 {
5356 hdaR3Reset(pDevIns);
5357
5358 /*
5359 * Debug and string formatter types.
5360 */
5361 PDMDevHlpDBGFInfoRegister(pDevIns, "hda", "HDA info. (hda [register case-insensitive])", hdaR3DbgInfo);
5362 PDMDevHlpDBGFInfoRegister(pDevIns, "hdabdle", "HDA stream BDLE info. (hdabdle [stream number])", hdaR3DbgInfoBDLE);
5363 PDMDevHlpDBGFInfoRegister(pDevIns, "hdastream", "HDA stream info. (hdastream [stream number])", hdaR3DbgInfoStream);
5364 PDMDevHlpDBGFInfoRegister(pDevIns, "hdcnodes", "HDA codec nodes.", hdaR3DbgInfoCodecNodes);
5365 PDMDevHlpDBGFInfoRegister(pDevIns, "hdcselector", "HDA codec's selector states [node number].", hdaR3DbgInfoCodecSelector);
5366 PDMDevHlpDBGFInfoRegister(pDevIns, "hdamixer", "HDA mixer state.", hdaR3DbgInfoMixer);
5367
5368 rc = RTStrFormatTypeRegister("bdle", hdaR3StrFmtBDLE, NULL);
5369 AssertRC(rc);
5370 rc = RTStrFormatTypeRegister("sdctl", hdaR3StrFmtSDCTL, NULL);
5371 AssertRC(rc);
5372 rc = RTStrFormatTypeRegister("sdsts", hdaR3StrFmtSDSTS, NULL);
5373 AssertRC(rc);
5374 rc = RTStrFormatTypeRegister("sdfifos", hdaR3StrFmtSDFIFOS, NULL);
5375 AssertRC(rc);
5376 rc = RTStrFormatTypeRegister("sdfifow", hdaR3StrFmtSDFIFOW, NULL);
5377 AssertRC(rc);
5378
5379 /*
5380 * Some debug assertions.
5381 */
5382 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
5383 {
5384 struct HDAREGDESC const *pReg = &g_aHdaRegMap[i];
5385 struct HDAREGDESC const *pNextReg = i + 1 < RT_ELEMENTS(g_aHdaRegMap) ? &g_aHdaRegMap[i + 1] : NULL;
5386
5387 /* binary search order. */
5388 AssertReleaseMsg(!pNextReg || pReg->offset + pReg->size <= pNextReg->offset,
5389 ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
5390 i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size));
5391
5392 /* alignment. */
5393 AssertReleaseMsg( pReg->size == 1
5394 || (pReg->size == 2 && (pReg->offset & 1) == 0)
5395 || (pReg->size == 3 && (pReg->offset & 3) == 0)
5396 || (pReg->size == 4 && (pReg->offset & 3) == 0),
5397 ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
5398
5399 /* registers are packed into dwords - with 3 exceptions with gaps at the end of the dword. */
5400 AssertRelease(((pReg->offset + pReg->size) & 3) == 0 || pNextReg);
5401 if (pReg->offset & 3)
5402 {
5403 struct HDAREGDESC const *pPrevReg = i > 0 ? &g_aHdaRegMap[i - 1] : NULL;
5404 AssertReleaseMsg(pPrevReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
5405 if (pPrevReg)
5406 AssertReleaseMsg(pPrevReg->offset + pPrevReg->size == pReg->offset,
5407 ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
5408 i - 1, pPrevReg->offset, pPrevReg->size, i + 1, pReg->offset, pReg->size));
5409 }
5410#if 0
5411 if ((pReg->offset + pReg->size) & 3)
5412 {
5413 AssertReleaseMsg(pNextReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
5414 if (pNextReg)
5415 AssertReleaseMsg(pReg->offset + pReg->size == pNextReg->offset,
5416 ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
5417 i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size));
5418 }
5419#endif
5420 /* The final entry is a full DWORD, no gaps! Allows shortcuts. */
5421 AssertReleaseMsg(pNextReg || ((pReg->offset + pReg->size) & 3) == 0,
5422 ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
5423 }
5424 }
5425
5426# ifdef VBOX_WITH_STATISTICS
5427 if (RT_SUCCESS(rc))
5428 {
5429 /*
5430 * Register statistics.
5431 */
5432 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTimer, STAMTYPE_PROFILE, "/Devices/HDA/Timer", STAMUNIT_TICKS_PER_CALL, "Profiling hdaR3Timer.");
5433 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIn, STAMTYPE_PROFILE, "/Devices/HDA/Input", STAMUNIT_TICKS_PER_CALL, "Profiling input.");
5434 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatOut, STAMTYPE_PROFILE, "/Devices/HDA/Output", STAMUNIT_TICKS_PER_CALL, "Profiling output.");
5435 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatBytesRead, STAMTYPE_COUNTER, "/Devices/HDA/BytesRead" , STAMUNIT_BYTES, "Bytes read from HDA emulation.");
5436 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatBytesWritten, STAMTYPE_COUNTER, "/Devices/HDA/BytesWritten", STAMUNIT_BYTES, "Bytes written to HDA emulation.");
5437 }
5438# endif
5439
5440 LogFlowFuncLeaveRC(rc);
5441 return rc;
5442}
5443
5444/**
5445 * The device registration structure.
5446 */
5447const PDMDEVREG g_DeviceHDA =
5448{
5449 /* u32Version */
5450 PDM_DEVREG_VERSION,
5451 /* szName */
5452 "hda",
5453 /* szRCMod */
5454 "VBoxDDRC.rc",
5455 /* szR0Mod */
5456 "VBoxDDR0.r0",
5457 /* pszDescription */
5458 "Intel HD Audio Controller",
5459 /* fFlags */
5460 PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0,
5461 /* fClass */
5462 PDM_DEVREG_CLASS_AUDIO,
5463 /* cMaxInstances */
5464 1,
5465 /* cbInstance */
5466 sizeof(HDASTATE),
5467 /* pfnConstruct */
5468 hdaR3Construct,
5469 /* pfnDestruct */
5470 hdaR3Destruct,
5471 /* pfnRelocate */
5472 hdaR3Relocate,
5473 /* pfnMemSetup */
5474 NULL,
5475 /* pfnPowerOn */
5476 NULL,
5477 /* pfnReset */
5478 hdaR3Reset,
5479 /* pfnSuspend */
5480 NULL,
5481 /* pfnResume */
5482 NULL,
5483 /* pfnAttach */
5484 hdaR3Attach,
5485 /* pfnDetach */
5486 hdaR3Detach,
5487 /* pfnQueryInterface. */
5488 NULL,
5489 /* pfnInitComplete */
5490 NULL,
5491 /* pfnPowerOff */
5492 hdaR3PowerOff,
5493 /* pfnSoftReset */
5494 NULL,
5495 /* u32VersionEnd */
5496 PDM_DEVREG_VERSION
5497};
5498
5499#endif /* IN_RING3 */
5500#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
5501
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette