VirtualBox

source: vbox/trunk/src/VBox/Devices/Audio/DevHDA.cpp@ 64403

Last change on this file since 64403 was 64403, checked in by vboxsync, 8 years ago

Audio/HDA: Implemented reset handling for codec.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 226.9 KB
Line 
1/* $Id: DevHDA.cpp 64403 2016-10-24 17:09:47Z vboxsync $ */
2/** @file
3 * DevHDA - VBox Intel HD Audio Controller.
4 *
5 * Implemented against the specifications found in "High Definition Audio
6 * Specification", Revision 1.0a June 17, 2010, and "Intel I/O Controller
7 * HUB 6 (ICH6) Family, Datasheet", document number 301473-002.
8 */
9
10/*
11 * Copyright (C) 2006-2016 Oracle Corporation
12 *
13 * This file is part of VirtualBox Open Source Edition (OSE), as
14 * available from http://www.virtualbox.org. This file is free software;
15 * you can redistribute it and/or modify it under the terms of the GNU
16 * General Public License (GPL) as published by the Free Software
17 * Foundation, in version 2 as it comes in the "COPYING" file of the
18 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
19 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
20 */
21
22
23/*********************************************************************************************************************************
24* Header Files *
25*********************************************************************************************************************************/
26#define LOG_GROUP LOG_GROUP_DEV_HDA
27#include <VBox/log.h>
28#include <VBox/vmm/pdmdev.h>
29#include <VBox/vmm/pdmaudioifs.h>
30#include <VBox/version.h>
31
32#include <iprt/assert.h>
33#include <iprt/asm.h>
34#include <iprt/asm-math.h>
35#include <iprt/file.h>
36#include <iprt/list.h>
37#ifdef IN_RING3
38# include <iprt/mem.h>
39# include <iprt/semaphore.h>
40# include <iprt/string.h>
41# include <iprt/uuid.h>
42#endif
43
44#include "VBoxDD.h"
45
46#include "AudioMixBuffer.h"
47#include "AudioMixer.h"
48#include "HDACodec.h"
49#include "DevHDACommon.h"
50#include "DrvAudio.h"
51
52
53/*********************************************************************************************************************************
54* Defined Constants And Macros *
55*********************************************************************************************************************************/
56//#define HDA_AS_PCI_EXPRESS
57#define VBOX_WITH_INTEL_HDA
58
59/*
60 * HDA_DEBUG_DUMP_PCM_DATA enables dumping the raw PCM data
61 * to a file on the host. Be sure to adjust HDA_DEBUG_DUMP_PCM_DATA_PATH
62 * to your needs before using this!
63 */
64//#define HDA_DEBUG_DUMP_PCM_DATA
65#ifdef HDA_DEBUG_DUMP_PCM_DATA
66# ifdef RT_OS_WINDOWS
67# define HDA_DEBUG_DUMP_PCM_DATA_PATH "c:\\temp\\"
68# else
69# define HDA_DEBUG_DUMP_PCM_DATA_PATH "/tmp/"
70# endif
71#endif
72
73#if defined(VBOX_WITH_HP_HDA)
74/* HP Pavilion dv4t-1300 */
75# define HDA_PCI_VENDOR_ID 0x103c
76# define HDA_PCI_DEVICE_ID 0x30f7
77#elif defined(VBOX_WITH_INTEL_HDA)
78/* Intel HDA controller */
79# define HDA_PCI_VENDOR_ID 0x8086
80# define HDA_PCI_DEVICE_ID 0x2668
81#elif defined(VBOX_WITH_NVIDIA_HDA)
82/* nVidia HDA controller */
83# define HDA_PCI_VENDOR_ID 0x10de
84# define HDA_PCI_DEVICE_ID 0x0ac0
85#else
86# error "Please specify your HDA device vendor/device IDs"
87#endif
88
89/** @todo r=bird: Looking at what the linux driver (accidentally?) does when
90 * updating CORBWP, I belive that the ICH6 datahsheet is wrong and that CORBRP
91 * is read only except for bit 15 like the HDA spec states.
92 *
93 * Btw. the CORBRPRST implementation is incomplete according to both docs (sw
94 * writes 1, hw sets it to 1 (after completion), sw reads 1, sw writes 0). */
95#define BIRD_THINKS_CORBRP_IS_MOSTLY_RO
96
97/* Make sure that interleaving streams support is enabled if the 5.1 surround code is being used. */
98#if defined (VBOX_WITH_AUDIO_HDA_51_SURROUND) && !defined(VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT)
99# define VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT
100#endif
101
102/**
103 * At the moment we support 4 input + 4 output streams max, which is 8 in total.
104 * Bidirectional streams are currently *not* supported.
105 *
106 * Note: When changing any of those values, be prepared for some saved state
107 * fixups / trouble!
108 */
109#define HDA_MAX_SDI 4
110#define HDA_MAX_SDO 4
111#define HDA_MAX_STREAMS (HDA_MAX_SDI + HDA_MAX_SDO)
112AssertCompile(HDA_MAX_SDI <= HDA_MAX_SDO);
113
114/** Number of general registers. */
115#define HDA_NUM_GENERAL_REGS 34
116/** Number of total registers in the HDA's register map. */
117#define HDA_NUM_REGS (HDA_NUM_GENERAL_REGS + (HDA_MAX_STREAMS * 10 /* Each stream descriptor has 10 registers */))
118/** Total number of stream tags (channels). Index 0 is reserved / invalid. */
119#define HDA_MAX_TAGS 16
120
121/**
122 * NB: Register values stored in memory (au32Regs[]) are indexed through
123 * the HDA_RMX_xxx macros (also HDA_MEM_IND_NAME()). On the other hand, the
124 * register descriptors in g_aHdaRegMap[] are indexed through the
125 * HDA_REG_xxx macros (also HDA_REG_IND_NAME()).
126 *
127 * The au32Regs[] layout is kept unchanged for saved state
128 * compatibility.
129 */
130
131/* Registers */
132#define HDA_REG_IND_NAME(x) HDA_REG_##x
133#define HDA_MEM_IND_NAME(x) HDA_RMX_##x
134#define HDA_REG_FIELD_MASK(reg, x) HDA_##reg##_##x##_MASK
135#define HDA_REG_FIELD_FLAG_MASK(reg, x) RT_BIT(HDA_##reg##_##x##_SHIFT)
136#define HDA_REG_FIELD_SHIFT(reg, x) HDA_##reg##_##x##_SHIFT
137#define HDA_REG_IND(pThis, x) ((pThis)->au32Regs[g_aHdaRegMap[x].mem_idx])
138#define HDA_REG(pThis, x) (HDA_REG_IND((pThis), HDA_REG_IND_NAME(x)))
139#define HDA_REG_FLAG_VALUE(pThis, reg, val) (HDA_REG((pThis),reg) & (((HDA_REG_FIELD_FLAG_MASK(reg, val)))))
140
141
142#define HDA_REG_GCAP 0 /* range 0x00-0x01*/
143#define HDA_RMX_GCAP 0
144/* GCAP HDASpec 3.3.2 This macro encodes the following information about HDA in a compact manner:
145 * oss (15:12) - number of output streams supported
146 * iss (11:8) - number of input streams supported
147 * bss (7:3) - number of bidirectional streams supported
148 * bds (2:1) - number of serial data out (SDO) signals supported
149 * b64sup (0) - 64 bit addressing supported.
150 */
151#define HDA_MAKE_GCAP(oss, iss, bss, bds, b64sup) \
152 ( (((oss) & 0xF) << 12) \
153 | (((iss) & 0xF) << 8) \
154 | (((bss) & 0x1F) << 3) \
155 | (((bds) & 0x3) << 1) \
156 | ((b64sup) & 1))
157
158#define HDA_REG_VMIN 1 /* 0x02 */
159#define HDA_RMX_VMIN 1
160
161#define HDA_REG_VMAJ 2 /* 0x03 */
162#define HDA_RMX_VMAJ 2
163
164#define HDA_REG_OUTPAY 3 /* 0x04-0x05 */
165#define HDA_RMX_OUTPAY 3
166
167#define HDA_REG_INPAY 4 /* 0x06-0x07 */
168#define HDA_RMX_INPAY 4
169
170#define HDA_REG_GCTL 5 /* 0x08-0x0B */
171#define HDA_RMX_GCTL 5
172#define HDA_GCTL_RST_SHIFT 0
173#define HDA_GCTL_FSH_SHIFT 1
174#define HDA_GCTL_UR_SHIFT 8
175
176#define HDA_REG_WAKEEN 6 /* 0x0C */
177#define HDA_RMX_WAKEEN 6
178
179#define HDA_REG_STATESTS 7 /* 0x0E */
180#define HDA_RMX_STATESTS 7
181#define HDA_STATES_SCSF 0x7
182
183#define HDA_REG_GSTS 8 /* 0x10-0x11*/
184#define HDA_RMX_GSTS 8
185#define HDA_GSTS_FSH_SHIFT 1
186
187#define HDA_REG_OUTSTRMPAY 9 /* 0x18 */
188#define HDA_RMX_OUTSTRMPAY 112
189
190#define HDA_REG_INSTRMPAY 10 /* 0x1a */
191#define HDA_RMX_INSTRMPAY 113
192
193#define HDA_REG_INTCTL 11 /* 0x20 */
194#define HDA_RMX_INTCTL 9
195#define HDA_INTCTL_GIE_SHIFT 31
196#define HDA_INTCTL_CIE_SHIFT 30
197#define HDA_INTCTL_S0_SHIFT 0
198#define HDA_INTCTL_S1_SHIFT 1
199#define HDA_INTCTL_S2_SHIFT 2
200#define HDA_INTCTL_S3_SHIFT 3
201#define HDA_INTCTL_S4_SHIFT 4
202#define HDA_INTCTL_S5_SHIFT 5
203#define HDA_INTCTL_S6_SHIFT 6
204#define HDA_INTCTL_S7_SHIFT 7
205#define INTCTL_SX(pThis, X) (HDA_REG_FLAG_VALUE((pThis), INTCTL, S##X))
206
207#define HDA_REG_INTSTS 12 /* 0x24 */
208#define HDA_RMX_INTSTS 10
209#define HDA_INTSTS_GIS_SHIFT 31
210#define HDA_INTSTS_CIS_SHIFT 30
211#define HDA_INTSTS_S0_SHIFT 0
212#define HDA_INTSTS_S1_SHIFT 1
213#define HDA_INTSTS_S2_SHIFT 2
214#define HDA_INTSTS_S3_SHIFT 3
215#define HDA_INTSTS_S4_SHIFT 4
216#define HDA_INTSTS_S5_SHIFT 5
217#define HDA_INTSTS_S6_SHIFT 6
218#define HDA_INTSTS_S7_SHIFT 7
219#define HDA_INTSTS_S_MASK(num) RT_BIT(HDA_REG_FIELD_SHIFT(S##num))
220
221#define HDA_REG_WALCLK 13 /* 0x30 */
222#define HDA_RMX_WALCLK /* Not defined! */
223
224/* Note: The HDA specification defines a SSYNC register at offset 0x38. The
225 * ICH6/ICH9 datahseet defines SSYNC at offset 0x34. The Linux HDA driver matches
226 * the datasheet.
227 */
228#define HDA_REG_SSYNC 14 /* 0x38 */
229#define HDA_RMX_SSYNC 12
230
231#define HDA_REG_CORBLBASE 15 /* 0x40 */
232#define HDA_RMX_CORBLBASE 13
233
234#define HDA_REG_CORBUBASE 16 /* 0x44 */
235#define HDA_RMX_CORBUBASE 14
236
237#define HDA_REG_CORBWP 17 /* 0x48 */
238#define HDA_RMX_CORBWP 15
239
240#define HDA_REG_CORBRP 18 /* 0x4A */
241#define HDA_RMX_CORBRP 16
242#define HDA_CORBRP_RST_SHIFT 15
243#define HDA_CORBRP_WP_SHIFT 0
244#define HDA_CORBRP_WP_MASK 0xFF
245
246#define HDA_REG_CORBCTL 19 /* 0x4C */
247#define HDA_RMX_CORBCTL 17
248#define HDA_CORBCTL_DMA_SHIFT 1
249#define HDA_CORBCTL_CMEIE_SHIFT 0
250
251#define HDA_REG_CORBSTS 20 /* 0x4D */
252#define HDA_RMX_CORBSTS 18
253#define HDA_CORBSTS_CMEI_SHIFT 0
254
255#define HDA_REG_CORBSIZE 21 /* 0x4E */
256#define HDA_RMX_CORBSIZE 19
257#define HDA_CORBSIZE_SZ_CAP 0xF0
258#define HDA_CORBSIZE_SZ 0x3
259/* till ich 10 sizes of CORB and RIRB are hardcoded to 256 in real hw */
260
261#define HDA_REG_RIRBLBASE 22 /* 0x50 */
262#define HDA_RMX_RIRBLBASE 20
263
264#define HDA_REG_RIRBUBASE 23 /* 0x54 */
265#define HDA_RMX_RIRBUBASE 21
266
267#define HDA_REG_RIRBWP 24 /* 0x58 */
268#define HDA_RMX_RIRBWP 22
269#define HDA_RIRBWP_RST_SHIFT 15
270#define HDA_RIRBWP_WP_MASK 0xFF
271
272#define HDA_REG_RINTCNT 25 /* 0x5A */
273#define HDA_RMX_RINTCNT 23
274#define RINTCNT_N(pThis) (HDA_REG(pThis, RINTCNT) & 0xff)
275
276#define HDA_REG_RIRBCTL 26 /* 0x5C */
277#define HDA_RMX_RIRBCTL 24
278#define HDA_RIRBCTL_RIC_SHIFT 0
279#define HDA_RIRBCTL_DMA_SHIFT 1
280#define HDA_ROI_DMA_SHIFT 2
281
282#define HDA_REG_RIRBSTS 27 /* 0x5D */
283#define HDA_RMX_RIRBSTS 25
284#define HDA_RIRBSTS_RINTFL_SHIFT 0
285#define HDA_RIRBSTS_RIRBOIS_SHIFT 2
286
287#define HDA_REG_RIRBSIZE 28 /* 0x5E */
288#define HDA_RMX_RIRBSIZE 26
289#define HDA_RIRBSIZE_SZ_CAP 0xF0
290#define HDA_RIRBSIZE_SZ 0x3
291
292#define RIRBSIZE_SZ(pThis) (HDA_REG(pThis, HDA_REG_RIRBSIZE) & HDA_RIRBSIZE_SZ)
293#define RIRBSIZE_SZ_CAP(pThis) (HDA_REG(pThis, HDA_REG_RIRBSIZE) & HDA_RIRBSIZE_SZ_CAP)
294
295
296#define HDA_REG_IC 29 /* 0x60 */
297#define HDA_RMX_IC 27
298
299#define HDA_REG_IR 30 /* 0x64 */
300#define HDA_RMX_IR 28
301
302#define HDA_REG_IRS 31 /* 0x68 */
303#define HDA_RMX_IRS 29
304#define HDA_IRS_ICB_SHIFT 0
305#define HDA_IRS_IRV_SHIFT 1
306
307#define HDA_REG_DPLBASE 32 /* 0x70 */
308#define HDA_RMX_DPLBASE 30
309#define DPLBASE(pThis) (HDA_REG((pThis), DPLBASE))
310
311#define HDA_REG_DPUBASE 33 /* 0x74 */
312#define HDA_RMX_DPUBASE 31
313#define DPUBASE(pThis) (HDA_REG((pThis), DPUBASE))
314
315#define DPBASE_ADDR_MASK (~(uint64_t)0x7f)
316
317#define HDA_STREAM_REG_DEF(name, num) (HDA_REG_SD##num##name)
318#define HDA_STREAM_RMX_DEF(name, num) (HDA_RMX_SD##num##name)
319/* Note: sdnum here _MUST_ be stream reg number [0,7]. */
320#define HDA_STREAM_REG(pThis, name, sdnum) (HDA_REG_IND((pThis), HDA_REG_SD0##name + (sdnum) * 10))
321
322#define HDA_SD_NUM_FROM_REG(pThis, func, reg) ((reg - HDA_STREAM_REG_DEF(func, 0)) / 10)
323
324/** @todo Condense marcos! */
325
326#define HDA_REG_SD0CTL HDA_NUM_GENERAL_REGS /* 0x80 */
327#define HDA_REG_SD1CTL (HDA_STREAM_REG_DEF(CTL, 0) + 10) /* 0xA0 */
328#define HDA_REG_SD2CTL (HDA_STREAM_REG_DEF(CTL, 0) + 20) /* 0xC0 */
329#define HDA_REG_SD3CTL (HDA_STREAM_REG_DEF(CTL, 0) + 30) /* 0xE0 */
330#define HDA_REG_SD4CTL (HDA_STREAM_REG_DEF(CTL, 0) + 40) /* 0x100 */
331#define HDA_REG_SD5CTL (HDA_STREAM_REG_DEF(CTL, 0) + 50) /* 0x120 */
332#define HDA_REG_SD6CTL (HDA_STREAM_REG_DEF(CTL, 0) + 60) /* 0x140 */
333#define HDA_REG_SD7CTL (HDA_STREAM_REG_DEF(CTL, 0) + 70) /* 0x160 */
334#define HDA_RMX_SD0CTL 32
335#define HDA_RMX_SD1CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 10)
336#define HDA_RMX_SD2CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 20)
337#define HDA_RMX_SD3CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 30)
338#define HDA_RMX_SD4CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 40)
339#define HDA_RMX_SD5CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 50)
340#define HDA_RMX_SD6CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 60)
341#define HDA_RMX_SD7CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 70)
342
343#define SD(func, num) SD##num##func
344
345#define HDA_SDCTL(pThis, num) HDA_REG((pThis), SD(CTL, num))
346#define HDA_SDCTL_NUM(pThis, num) ((HDA_SDCTL((pThis), num) & HDA_REG_FIELD_MASK(SDCTL,NUM)) >> HDA_REG_FIELD_SHIFT(SDCTL, NUM))
347#define HDA_SDCTL_NUM_MASK 0xF
348#define HDA_SDCTL_NUM_SHIFT 20
349#define HDA_SDCTL_DIR_SHIFT 19
350#define HDA_SDCTL_TP_SHIFT 18
351#define HDA_SDCTL_STRIPE_MASK 0x3
352#define HDA_SDCTL_STRIPE_SHIFT 16
353#define HDA_SDCTL_DEIE_SHIFT 4
354#define HDA_SDCTL_FEIE_SHIFT 3
355#define HDA_SDCTL_ICE_SHIFT 2
356#define HDA_SDCTL_RUN_SHIFT 1
357#define HDA_SDCTL_SRST_SHIFT 0
358
359#define HDA_REG_SD0STS 35 /* 0x83 */
360#define HDA_REG_SD1STS (HDA_STREAM_REG_DEF(STS, 0) + 10) /* 0xA3 */
361#define HDA_REG_SD2STS (HDA_STREAM_REG_DEF(STS, 0) + 20) /* 0xC3 */
362#define HDA_REG_SD3STS (HDA_STREAM_REG_DEF(STS, 0) + 30) /* 0xE3 */
363#define HDA_REG_SD4STS (HDA_STREAM_REG_DEF(STS, 0) + 40) /* 0x103 */
364#define HDA_REG_SD5STS (HDA_STREAM_REG_DEF(STS, 0) + 50) /* 0x123 */
365#define HDA_REG_SD6STS (HDA_STREAM_REG_DEF(STS, 0) + 60) /* 0x143 */
366#define HDA_REG_SD7STS (HDA_STREAM_REG_DEF(STS, 0) + 70) /* 0x163 */
367#define HDA_RMX_SD0STS 33
368#define HDA_RMX_SD1STS (HDA_STREAM_RMX_DEF(STS, 0) + 10)
369#define HDA_RMX_SD2STS (HDA_STREAM_RMX_DEF(STS, 0) + 20)
370#define HDA_RMX_SD3STS (HDA_STREAM_RMX_DEF(STS, 0) + 30)
371#define HDA_RMX_SD4STS (HDA_STREAM_RMX_DEF(STS, 0) + 40)
372#define HDA_RMX_SD5STS (HDA_STREAM_RMX_DEF(STS, 0) + 50)
373#define HDA_RMX_SD6STS (HDA_STREAM_RMX_DEF(STS, 0) + 60)
374#define HDA_RMX_SD7STS (HDA_STREAM_RMX_DEF(STS, 0) + 70)
375
376#define SDSTS(pThis, num) HDA_REG((pThis), SD(STS, num))
377#define HDA_SDSTS_FIFORDY_SHIFT 5
378#define HDA_SDSTS_DE_SHIFT 4
379#define HDA_SDSTS_FE_SHIFT 3
380#define HDA_SDSTS_BCIS_SHIFT 2
381
382#define HDA_REG_SD0LPIB 36 /* 0x84 */
383#define HDA_REG_SD1LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 10) /* 0xA4 */
384#define HDA_REG_SD2LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 20) /* 0xC4 */
385#define HDA_REG_SD3LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 30) /* 0xE4 */
386#define HDA_REG_SD4LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 40) /* 0x104 */
387#define HDA_REG_SD5LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 50) /* 0x124 */
388#define HDA_REG_SD6LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 60) /* 0x144 */
389#define HDA_REG_SD7LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 70) /* 0x164 */
390#define HDA_RMX_SD0LPIB 34
391#define HDA_RMX_SD1LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 10)
392#define HDA_RMX_SD2LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 20)
393#define HDA_RMX_SD3LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 30)
394#define HDA_RMX_SD4LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 40)
395#define HDA_RMX_SD5LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 50)
396#define HDA_RMX_SD6LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 60)
397#define HDA_RMX_SD7LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 70)
398
399#define HDA_REG_SD0CBL 37 /* 0x88 */
400#define HDA_REG_SD1CBL (HDA_STREAM_REG_DEF(CBL, 0) + 10) /* 0xA8 */
401#define HDA_REG_SD2CBL (HDA_STREAM_REG_DEF(CBL, 0) + 20) /* 0xC8 */
402#define HDA_REG_SD3CBL (HDA_STREAM_REG_DEF(CBL, 0) + 30) /* 0xE8 */
403#define HDA_REG_SD4CBL (HDA_STREAM_REG_DEF(CBL, 0) + 40) /* 0x108 */
404#define HDA_REG_SD5CBL (HDA_STREAM_REG_DEF(CBL, 0) + 50) /* 0x128 */
405#define HDA_REG_SD6CBL (HDA_STREAM_REG_DEF(CBL, 0) + 60) /* 0x148 */
406#define HDA_REG_SD7CBL (HDA_STREAM_REG_DEF(CBL, 0) + 70) /* 0x168 */
407#define HDA_RMX_SD0CBL 35
408#define HDA_RMX_SD1CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 10)
409#define HDA_RMX_SD2CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 20)
410#define HDA_RMX_SD3CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 30)
411#define HDA_RMX_SD4CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 40)
412#define HDA_RMX_SD5CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 50)
413#define HDA_RMX_SD6CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 60)
414#define HDA_RMX_SD7CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 70)
415
416#define HDA_REG_SD0LVI 38 /* 0x8C */
417#define HDA_REG_SD1LVI (HDA_STREAM_REG_DEF(LVI, 0) + 10) /* 0xAC */
418#define HDA_REG_SD2LVI (HDA_STREAM_REG_DEF(LVI, 0) + 20) /* 0xCC */
419#define HDA_REG_SD3LVI (HDA_STREAM_REG_DEF(LVI, 0) + 30) /* 0xEC */
420#define HDA_REG_SD4LVI (HDA_STREAM_REG_DEF(LVI, 0) + 40) /* 0x10C */
421#define HDA_REG_SD5LVI (HDA_STREAM_REG_DEF(LVI, 0) + 50) /* 0x12C */
422#define HDA_REG_SD6LVI (HDA_STREAM_REG_DEF(LVI, 0) + 60) /* 0x14C */
423#define HDA_REG_SD7LVI (HDA_STREAM_REG_DEF(LVI, 0) + 70) /* 0x16C */
424#define HDA_RMX_SD0LVI 36
425#define HDA_RMX_SD1LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 10)
426#define HDA_RMX_SD2LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 20)
427#define HDA_RMX_SD3LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 30)
428#define HDA_RMX_SD4LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 40)
429#define HDA_RMX_SD5LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 50)
430#define HDA_RMX_SD6LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 60)
431#define HDA_RMX_SD7LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 70)
432
433#define HDA_REG_SD0FIFOW 39 /* 0x8E */
434#define HDA_REG_SD1FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 10) /* 0xAE */
435#define HDA_REG_SD2FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 20) /* 0xCE */
436#define HDA_REG_SD3FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 30) /* 0xEE */
437#define HDA_REG_SD4FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 40) /* 0x10E */
438#define HDA_REG_SD5FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 50) /* 0x12E */
439#define HDA_REG_SD6FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 60) /* 0x14E */
440#define HDA_REG_SD7FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 70) /* 0x16E */
441#define HDA_RMX_SD0FIFOW 37
442#define HDA_RMX_SD1FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 10)
443#define HDA_RMX_SD2FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 20)
444#define HDA_RMX_SD3FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 30)
445#define HDA_RMX_SD4FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 40)
446#define HDA_RMX_SD5FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 50)
447#define HDA_RMX_SD6FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 60)
448#define HDA_RMX_SD7FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 70)
449
450/*
451 * ICH6 datasheet defined limits for FIFOW values (18.2.38).
452 */
453#define HDA_SDFIFOW_8B 0x2
454#define HDA_SDFIFOW_16B 0x3
455#define HDA_SDFIFOW_32B 0x4
456
457#define HDA_REG_SD0FIFOS 40 /* 0x90 */
458#define HDA_REG_SD1FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 10) /* 0xB0 */
459#define HDA_REG_SD2FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 20) /* 0xD0 */
460#define HDA_REG_SD3FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 30) /* 0xF0 */
461#define HDA_REG_SD4FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 40) /* 0x110 */
462#define HDA_REG_SD5FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 50) /* 0x130 */
463#define HDA_REG_SD6FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 60) /* 0x150 */
464#define HDA_REG_SD7FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 70) /* 0x170 */
465#define HDA_RMX_SD0FIFOS 38
466#define HDA_RMX_SD1FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 10)
467#define HDA_RMX_SD2FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 20)
468#define HDA_RMX_SD3FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 30)
469#define HDA_RMX_SD4FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 40)
470#define HDA_RMX_SD5FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 50)
471#define HDA_RMX_SD6FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 60)
472#define HDA_RMX_SD7FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 70)
473
474/*
475 * ICH6 datasheet defines limits for FIFOS registers (18.2.39)
476 * formula: size - 1
477 * Other values not listed are not supported.
478 */
479#define HDA_SDIFIFO_120B 0x77 /* 8-, 16-, 20-, 24-, 32-bit Input Streams */
480#define HDA_SDIFIFO_160B 0x9F /* 20-, 24-bit Input Streams Streams */
481
482#define HDA_SDOFIFO_16B 0x0F /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
483#define HDA_SDOFIFO_32B 0x1F /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
484#define HDA_SDOFIFO_64B 0x3F /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
485#define HDA_SDOFIFO_128B 0x7F /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
486#define HDA_SDOFIFO_192B 0xBF /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
487#define HDA_SDOFIFO_256B 0xFF /* 20-, 24-bit Output Streams */
488#define SDFIFOS(pThis, num) HDA_REG((pThis), SD(FIFOS, num))
489
490#define HDA_REG_SD0FMT 41 /* 0x92 */
491#define HDA_REG_SD1FMT (HDA_STREAM_REG_DEF(FMT, 0) + 10) /* 0xB2 */
492#define HDA_REG_SD2FMT (HDA_STREAM_REG_DEF(FMT, 0) + 20) /* 0xD2 */
493#define HDA_REG_SD3FMT (HDA_STREAM_REG_DEF(FMT, 0) + 30) /* 0xF2 */
494#define HDA_REG_SD4FMT (HDA_STREAM_REG_DEF(FMT, 0) + 40) /* 0x112 */
495#define HDA_REG_SD5FMT (HDA_STREAM_REG_DEF(FMT, 0) + 50) /* 0x132 */
496#define HDA_REG_SD6FMT (HDA_STREAM_REG_DEF(FMT, 0) + 60) /* 0x152 */
497#define HDA_REG_SD7FMT (HDA_STREAM_REG_DEF(FMT, 0) + 70) /* 0x172 */
498#define HDA_RMX_SD0FMT 39
499#define HDA_RMX_SD1FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 10)
500#define HDA_RMX_SD2FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 20)
501#define HDA_RMX_SD3FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 30)
502#define HDA_RMX_SD4FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 40)
503#define HDA_RMX_SD5FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 50)
504#define HDA_RMX_SD6FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 60)
505#define HDA_RMX_SD7FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 70)
506
507#define SDFMT(pThis, num) (HDA_REG((pThis), SD(FMT, num)))
508#define HDA_SDFMT_BASE_RATE(pThis, num) ((SDFMT(pThis, num) & HDA_REG_FIELD_FLAG_MASK(SDFMT, BASE_RATE)) >> HDA_REG_FIELD_SHIFT(SDFMT, BASE_RATE))
509#define HDA_SDFMT_MULT(pThis, num) ((SDFMT((pThis), num) & HDA_REG_FIELD_MASK(SDFMT,MULT)) >> HDA_REG_FIELD_SHIFT(SDFMT, MULT))
510#define HDA_SDFMT_DIV(pThis, num) ((SDFMT((pThis), num) & HDA_REG_FIELD_MASK(SDFMT,DIV)) >> HDA_REG_FIELD_SHIFT(SDFMT, DIV))
511
512#define HDA_REG_SD0BDPL 42 /* 0x98 */
513#define HDA_REG_SD1BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 10) /* 0xB8 */
514#define HDA_REG_SD2BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 20) /* 0xD8 */
515#define HDA_REG_SD3BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 30) /* 0xF8 */
516#define HDA_REG_SD4BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 40) /* 0x118 */
517#define HDA_REG_SD5BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 50) /* 0x138 */
518#define HDA_REG_SD6BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 60) /* 0x158 */
519#define HDA_REG_SD7BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 70) /* 0x178 */
520#define HDA_RMX_SD0BDPL 40
521#define HDA_RMX_SD1BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 10)
522#define HDA_RMX_SD2BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 20)
523#define HDA_RMX_SD3BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 30)
524#define HDA_RMX_SD4BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 40)
525#define HDA_RMX_SD5BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 50)
526#define HDA_RMX_SD6BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 60)
527#define HDA_RMX_SD7BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 70)
528
529#define HDA_REG_SD0BDPU 43 /* 0x9C */
530#define HDA_REG_SD1BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 10) /* 0xBC */
531#define HDA_REG_SD2BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 20) /* 0xDC */
532#define HDA_REG_SD3BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 30) /* 0xFC */
533#define HDA_REG_SD4BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 40) /* 0x11C */
534#define HDA_REG_SD5BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 50) /* 0x13C */
535#define HDA_REG_SD6BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 60) /* 0x15C */
536#define HDA_REG_SD7BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 70) /* 0x17C */
537#define HDA_RMX_SD0BDPU 41
538#define HDA_RMX_SD1BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 10)
539#define HDA_RMX_SD2BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 20)
540#define HDA_RMX_SD3BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 30)
541#define HDA_RMX_SD4BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 40)
542#define HDA_RMX_SD5BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 50)
543#define HDA_RMX_SD6BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 60)
544#define HDA_RMX_SD7BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 70)
545
546#define HDA_CODEC_CAD_SHIFT 28
547/* Encodes the (required) LUN into a codec command. */
548#define HDA_CODEC_CMD(cmd, lun) ((cmd) | (lun << HDA_CODEC_CAD_SHIFT))
549
550
551
552/*********************************************************************************************************************************
553* Structures and Typedefs *
554*********************************************************************************************************************************/
555
556/**
557 * Internal state of a Buffer Descriptor List Entry (BDLE),
558 * needed to keep track of the data needed for the actual device
559 * emulation.
560 */
561typedef struct HDABDLESTATE
562{
563 /** Own index within the BDL (Buffer Descriptor List). */
564 uint32_t u32BDLIndex;
565 /** Number of bytes below the stream's FIFO watermark (SDFIFOW).
566 * Used to check if we need fill up the FIFO again. */
567 uint32_t cbBelowFIFOW;
568 /** The buffer descriptor's internal DMA buffer. */
569 uint8_t au8FIFO[HDA_SDOFIFO_256B + 1];
570 /** Current offset in DMA buffer (in bytes).*/
571 uint32_t u32BufOff;
572 uint32_t Padding;
573} HDABDLESTATE, *PHDABDLESTATE;
574
575/**
576 * Buffer Descriptor List Entry (BDLE) (3.6.3).
577 *
578 * Contains only register values which do *not* change until a
579 * stream reset occurs.
580 */
581typedef struct HDABDLE
582{
583 /** Starting address of the actual buffer. Must be 128-bit aligned. */
584 uint64_t u64BufAdr;
585 /** Size of the actual buffer (in bytes). */
586 uint32_t u32BufSize;
587 /** Interrupt on completion; the controller will generate
588 * an interrupt when the last byte of the buffer has been
589 * fetched by the DMA engine. */
590 bool fIntOnCompletion;
591 /** Internal state of this BDLE.
592 * Not part of the actual BDLE registers. */
593 HDABDLESTATE State;
594} HDABDLE, *PHDABDLE;
595
596/**
597 * Structure for keeping an audio stream data mapping.
598 */
599typedef struct HDASTREAMMAPPING
600{
601 /** The stream's layout. */
602 PDMAUDIOSTREAMLAYOUT enmLayout;
603 /** Number of audio channels in this stream. */
604 uint8_t cChannels;
605 /** Array audio channels. */
606 R3PTRTYPE(PPDMAUDIOSTREAMCHANNEL) paChannels;
607 R3PTRTYPE(PRTCIRCBUF) pCircBuf;
608} HDASTREAMMAPPING, *PHDASTREAMMAPPING;
609
610/**
611 * Internal state of a HDA stream.
612 */
613typedef struct HDASTREAMSTATE
614{
615 /** Current BDLE to use. Wraps around to 0 if
616 * maximum (cBDLE) is reached. */
617 uint16_t uCurBDLE;
618 /** Stop indicator. */
619 volatile bool fDoStop;
620 /** Flag indicating whether this stream is in an
621 * active (operative) state or not. */
622 volatile bool fActive;
623 /** Flag indicating whether this stream currently is
624 * in reset mode and therefore not acccessible by the guest. */
625 volatile bool fInReset;
626 /** Unused, padding. */
627 bool fPadding;
628 /** Critical section to serialize access. */
629 RTCRITSECT CritSect;
630 /** Event signalling that the stream's state has been changed. */
631 RTSEMEVENT hStateChangedEvent;
632 /** This stream's data mapping. */
633 HDASTREAMMAPPING Mapping;
634 /** Current BDLE (Buffer Descriptor List Entry). */
635 HDABDLE BDLE;
636} HDASTREAMSTATE, *PHDASTREAMSTATE;
637
638/**
639 * Structure defining an HDA mixer sink.
640 * Its purpose is to know which audio mixer sink is bound to
641 * which SDn (SDI/SDO) device stream.
642 *
643 * This is needed in order to handle interleaved streams
644 * (that is, multiple channels in one stream) or non-interleaved
645 * streams (each channel has a dedicated stream).
646 *
647 * This is only known to the actual device emulation level.
648 */
649typedef struct HDAMIXERSINK
650{
651 /** SDn ID this sink is assigned to. 0 if not assigned. */
652 uint8_t uSD;
653 /** Channel ID of SDn ID. Only valid if SDn ID is valid. */
654 uint8_t uChannel;
655 uint8_t Padding[3];
656 /** Pointer to the actual audio mixer sink. */
657 R3PTRTYPE(PAUDMIXSINK) pMixSink;
658} HDAMIXERSINK, *PHDAMIXERSINK;
659
660/**
661 * Structure for keeping a HDA stream state.
662 *
663 * Contains only register values which do *not* change until a
664 * stream reset occurs.
665 */
666typedef struct HDASTREAM
667{
668 /** Stream descriptor number (SDn). */
669 uint8_t u8SD;
670 uint8_t Padding0[7];
671 /** DMA base address (SDnBDPU - SDnBDPL). */
672 uint64_t u64BDLBase;
673 /** Cyclic Buffer Length (SDnCBL).
674 * Represents the size of the ring buffer. */
675 uint32_t u32CBL;
676 /** Format (SDnFMT). */
677 uint16_t u16FMT;
678 /** FIFO Size (FIFOS).
679 * Maximum number of bytes that may have been DMA'd into
680 * memory but not yet transmitted on the link.
681 *
682 * Must be a power of two. */
683 uint16_t u16FIFOS;
684 /** Last Valid Index (SDnLVI). */
685 uint16_t u16LVI;
686 uint16_t Padding1[3];
687 /** Pointer to HDA sink this stream is attached to. */
688 R3PTRTYPE(PHDAMIXERSINK) pMixSink;
689 /** Internal state of this stream. */
690 HDASTREAMSTATE State;
691} HDASTREAM, *PHDASTREAM;
692
693/**
694 * Structure for mapping a stream tag to an HDA stream.
695 */
696typedef struct HDATAG
697{
698 /** Own stream tag. */
699 uint8_t uTag;
700 uint8_t Padding[7];
701 /** Pointer to associated stream. */
702 R3PTRTYPE(PHDASTREAM) pStrm;
703} HDATAG, *PHDATAG;
704
705/**
706 * Structure defining an HDA mixer stream.
707 * This is being used together with an audio mixer instance.
708 */
709typedef struct HDAMIXERSTREAM
710{
711 union
712 {
713 /** Desired playback destination (for an output stream). */
714 PDMAUDIOPLAYBACKDEST Dest;
715 /** Desired recording source (for an input stream). */
716 PDMAUDIORECSOURCE Source;
717 } DestSource;
718 uint8_t Padding1[4];
719 /** Associated mixer handle. */
720 R3PTRTYPE(PAUDMIXSTREAM) pMixStrm;
721} HDAMIXERSTREAM, *PHDAMIXERSTREAM;
722
723/**
724 * Struct for maintaining a host backend driver.
725 * This driver must be associated to one, and only one,
726 * HDA codec. The HDA controller does the actual multiplexing
727 * of HDA codec data to various host backend drivers then.
728 *
729 * This HDA device uses a timer in order to synchronize all
730 * read/write accesses across all attached LUNs / backends.
731 */
732typedef struct HDADRIVER
733{
734 /** Node for storing this driver in our device driver list of HDASTATE. */
735 RTLISTNODER3 Node;
736 /** Pointer to HDA controller (state). */
737 R3PTRTYPE(PHDASTATE) pHDAState;
738 /** Driver flags. */
739 PDMAUDIODRVFLAGS Flags;
740 uint8_t u32Padding0[2];
741 /** LUN to which this driver has been assigned. */
742 uint8_t uLUN;
743 /** Whether this driver is in an attached state or not. */
744 bool fAttached;
745 /** Pointer to attached driver base interface. */
746 R3PTRTYPE(PPDMIBASE) pDrvBase;
747 /** Audio connector interface to the underlying host backend. */
748 R3PTRTYPE(PPDMIAUDIOCONNECTOR) pConnector;
749 /** Mixer stream for line input. */
750 HDAMIXERSTREAM LineIn;
751#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
752 /** Mixer stream for mic input. */
753 HDAMIXERSTREAM MicIn;
754#endif
755 /** Mixer stream for front output. */
756 HDAMIXERSTREAM Front;
757#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
758 /** Mixer stream for center/LFE output. */
759 HDAMIXERSTREAM CenterLFE;
760 /** Mixer stream for rear output. */
761 HDAMIXERSTREAM Rear;
762#endif
763} HDADRIVER;
764
765/**
766 * ICH Intel HD Audio Controller state.
767 */
768typedef struct HDASTATE
769{
770 /** The PCI device structure. */
771 PDMPCIDEV PciDev;
772 /** R3 Pointer to the device instance. */
773 PPDMDEVINSR3 pDevInsR3;
774 /** R0 Pointer to the device instance. */
775 PPDMDEVINSR0 pDevInsR0;
776 /** R0 Pointer to the device instance. */
777 PPDMDEVINSRC pDevInsRC;
778 /** Padding for alignment. */
779 uint32_t u32Padding;
780 /** The base interface for LUN\#0. */
781 PDMIBASE IBase;
782 RTGCPHYS MMIOBaseAddr;
783 /** The HDA's register set. */
784 uint32_t au32Regs[HDA_NUM_REGS];
785 /** Internal stream states. */
786 HDASTREAM aStreams[HDA_MAX_STREAMS];
787 /** Mapping table between stream tags and stream states. */
788 HDATAG aTags[HDA_MAX_TAGS];
789 /** CORB buffer base address. */
790 uint64_t u64CORBBase;
791 /** RIRB buffer base address. */
792 uint64_t u64RIRBBase;
793 /** DMA base address.
794 * Made out of DPLBASE + DPUBASE (3.3.32 + 3.3.33). */
795 uint64_t u64DPBase;
796 /** DMA position buffer enable bit. */
797 bool fDMAPosition;
798 /** Padding for alignment. */
799 uint8_t u8Padding0[7];
800 /** Pointer to CORB buffer. */
801 R3PTRTYPE(uint32_t *) pu32CorbBuf;
802 /** Size in bytes of CORB buffer. */
803 uint32_t cbCorbBuf;
804 /** Padding for alignment. */
805 uint32_t u32Padding1;
806 /** Pointer to RIRB buffer. */
807 R3PTRTYPE(uint64_t *) pu64RirbBuf;
808 /** Size in bytes of RIRB buffer. */
809 uint32_t cbRirbBuf;
810 /** Indicates if HDA controller is in reset mode. */
811 bool fInReset;
812 /** Flag whether the R0 part is enabled. */
813 bool fR0Enabled;
814 /** Flag whether the RC part is enabled. */
815 bool fRCEnabled;
816 /** Number of active (running) SDn streams. */
817 uint8_t cStreamsActive;
818#ifndef VBOX_WITH_AUDIO_HDA_CALLBACKS
819 /** The timer for pumping data thru the attached LUN drivers. */
820 PTMTIMERR3 pTimer;
821 /** Flag indicating whether the timer is active or not. */
822 bool fTimerActive;
823 uint8_t u8Padding1[7];
824 /** Timer ticks per Hz. */
825 uint64_t cTimerTicks;
826 /** Timestamp of the last timer callback (hdaTimer).
827 * Used to calculate the time actually elapsed between two timer callbacks. */
828 uint64_t uTimerTS;
829#endif
830#ifdef VBOX_WITH_STATISTICS
831# ifndef VBOX_WITH_AUDIO_HDA_CALLBACKS
832 STAMPROFILE StatTimer;
833# endif
834 STAMCOUNTER StatBytesRead;
835 STAMCOUNTER StatBytesWritten;
836#endif
837 /** Pointer to HDA codec to use. */
838 R3PTRTYPE(PHDACODEC) pCodec;
839 /** List of associated LUN drivers (HDADRIVER). */
840 RTLISTANCHORR3 lstDrv;
841 /** The device' software mixer. */
842 R3PTRTYPE(PAUDIOMIXER) pMixer;
843 /** HDA sink for (front) output. */
844 HDAMIXERSINK SinkFront;
845#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
846 /** HDA sink for center / LFE output. */
847 HDAMIXERSINK SinkCenterLFE;
848 /** HDA sink for rear output. */
849 HDAMIXERSINK SinkRear;
850#endif
851 /** HDA mixer sink for line input. */
852 HDAMIXERSINK SinkLineIn;
853#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
854 /** Audio mixer sink for microphone input. */
855 HDAMIXERSINK SinkMicIn;
856#endif
857 uint64_t u64BaseTS;
858 /** Response Interrupt Count (RINTCNT). */
859 uint8_t u8RespIntCnt;
860 /** Padding for alignment. */
861 uint8_t au8Padding2[7];
862} HDASTATE;
863/** Pointer to the ICH Intel HD Audio Controller state. */
864typedef HDASTATE *PHDASTATE;
865
866#ifdef VBOX_WITH_AUDIO_HDA_CALLBACKS
867typedef struct HDACALLBACKCTX
868{
869 PHDASTATE pThis;
870 PHDADRIVER pDriver;
871} HDACALLBACKCTX, *PHDACALLBACKCTX;
872#endif
873
874
875/*********************************************************************************************************************************
876* Internal Functions *
877*********************************************************************************************************************************/
878#ifndef VBOX_DEVICE_STRUCT_TESTCASE
879#ifdef IN_RING3
880static FNPDMDEVRESET hdaReset;
881#endif
882
883/** @name Register read/write stubs.
884 * @{
885 */
886static int hdaRegReadUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
887static int hdaRegWriteUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
888/** @} */
889
890/** @name Global register set read/write functions.
891 * @{
892 */
893static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
894static int hdaRegReadINTSTS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
895static int hdaRegReadLPIB(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
896static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
897//static int hdaRegReadSSYNC(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); - unused
898//static int hdaRegWriteSSYNC(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); - unused
899//static int hdaRegWriteINTSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); - implementation not found.
900static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
901static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
902static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
903static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
904static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
905static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
906static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
907static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
908static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
909static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
910/** @} */
911
912/** @name {IOB}SDn write functions.
913 * @{
914 */
915static int hdaRegWriteSDCBL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
916static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
917static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
918static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
919//static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); - unused
920//static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); - unused
921static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
922static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
923static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
924/** @} */
925
926/* Locking + logging. */
927#ifdef IN_RING3
928DECLINLINE(int) hdaRegWriteSDLock(PHDASTATE pThis, PHDASTREAM pStream, uint32_t iReg, uint32_t u32Value);
929DECLINLINE(void) hdaRegWriteSDUnlock(PHDASTREAM pStream);
930#endif
931
932/** @name Generic register read/write functions.
933 * @{
934 */
935static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
936static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
937static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
938#ifdef IN_RING3
939static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
940#endif
941static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
942static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
943static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
944static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
945/** @} */
946
947#ifdef IN_RING3
948static void hdaStreamDestroy(PHDASTREAM pStream);
949static int hdaStreamSetActive(PHDASTATE pThis, PHDASTREAM pStream, bool fActive);
950//static int hdaStreamStart(PHDASTREAM pStream); - unused
951static int hdaStreamStop(PHDASTREAM pStream);
952/*static int hdaStreamWaitForStateChange(PHDASTREAM pStream, RTMSINTERVAL msTimeout); - currently unused */
953static int hdaTransfer(PHDASTATE pThis, PHDASTREAM pStream, uint32_t cbToProcess, uint32_t *pcbProcessed);
954#endif
955
956#ifdef IN_RING3
957static int hdaStreamMapInit(PHDASTREAMMAPPING pMapping, PPDMAUDIOSTREAMCFG pCfg);
958static void hdaStreamMapDestroy(PHDASTREAMMAPPING pMapping);
959static void hdaStreamMapReset(PHDASTREAMMAPPING pMapping);
960#endif
961
962#ifdef IN_RING3
963static int hdaBDLEFetch(PHDASTATE pThis, PHDABDLE pBDLE, uint64_t u64BaseDMA, uint16_t u16Entry);
964DECLINLINE(uint32_t) hdaStreamUpdateLPIB(PHDASTATE pThis, PHDASTREAM pStream, uint32_t u32LPIB);
965# ifdef LOG_ENABLED
966static void hdaBDLEDumpAll(PHDASTATE pThis, uint64_t u64BaseDMA, uint16_t cBDLE);
967# endif
968#endif
969static int hdaProcessInterrupt(PHDASTATE pThis);
970
971/*
972 * Timer routines.
973 */
974#if !defined(VBOX_WITH_AUDIO_HDA_CALLBACKS) && defined(IN_RING3)
975static void hdaTimerMaybeStart(PHDASTATE pThis);
976static void hdaTimerMaybeStop(PHDASTATE pThis);
977#endif
978
979
980/*********************************************************************************************************************************
981* Global Variables *
982*********************************************************************************************************************************/
983
984/** Offset of the SD0 register map. */
985#define HDA_REG_DESC_SD0_BASE 0x80
986
987/** Turn a short global register name into an memory index and a stringized name. */
988#define HDA_REG_IDX(abbrev) HDA_MEM_IND_NAME(abbrev), #abbrev
989
990/** Turns a short stream register name into an memory index and a stringized name. */
991#define HDA_REG_IDX_STRM(reg, suff) HDA_MEM_IND_NAME(reg ## suff), #reg #suff
992
993/** Same as above for a register *not* stored in memory. */
994#define HDA_REG_IDX_LOCAL(abbrev) 0, #abbrev
995
996/** Emits a single audio stream register set (e.g. OSD0) at a specified offset. */
997#define HDA_REG_MAP_STRM(offset, name) \
998 /* offset size read mask write mask read callback write callback index + abbrev description */ \
999 /* ------- ------- ---------- ---------- -------------- ----------------- ------------------------------ ----------- */ \
1000 /* Offset 0x80 (SD0) */ \
1001 { offset, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , HDA_REG_IDX_STRM(name, CTL) , #name " Stream Descriptor Control" }, \
1002 /* Offset 0x83 (SD0) */ \
1003 { offset + 0x3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , HDA_REG_IDX_STRM(name, STS) , #name " Status" }, \
1004 /* Offset 0x84 (SD0) */ \
1005 { offset + 0x4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadLPIB, hdaRegWriteU32 , HDA_REG_IDX_STRM(name, LPIB) , #name " Link Position In Buffer" }, \
1006 /* Offset 0x88 (SD0) */ \
1007 { offset + 0x8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32, hdaRegWriteSDCBL , HDA_REG_IDX_STRM(name, CBL) , #name " Cyclic Buffer Length" }, \
1008 /* Offset 0x8C (SD0) */ \
1009 { offset + 0xC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16, hdaRegWriteSDLVI , HDA_REG_IDX_STRM(name, LVI) , #name " Last Valid Index" }, \
1010 /* Reserved: FIFO Watermark. ** @todo Document this! */ \
1011 { offset + 0xE, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16, hdaRegWriteU16, HDA_REG_IDX_STRM(name, FIFOW), #name " FIFO Watermark" }, \
1012 /* Offset 0x90 (SD0) */ \
1013 { offset + 0x10, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16, hdaRegWriteU16, HDA_REG_IDX_STRM(name, FIFOS), #name " FIFO Size" }, \
1014 /* Offset 0x92 (SD0) */ \
1015 { offset + 0x12, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16, hdaRegWriteSDFMT , HDA_REG_IDX_STRM(name, FMT) , #name " Stream Format" }, \
1016 /* Reserved: 0x94 - 0x98. */ \
1017 /* Offset 0x98 (SD0) */ \
1018 { offset + 0x18, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32, hdaRegWriteSDBDPL , HDA_REG_IDX_STRM(name, BDPL) , #name " Buffer Descriptor List Pointer-Lower Base Address" }, \
1019 /* Offset 0x9C (SD0) */ \
1020 { offset + 0x1C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32, hdaRegWriteSDBDPU , HDA_REG_IDX_STRM(name, BDPU) , #name " Buffer Descriptor List Pointer-Upper Base Address" }
1021
1022/** Defines a single audio stream register set (e.g. OSD0). */
1023#define HDA_REG_MAP_DEF_STREAM(index, name) \
1024 HDA_REG_MAP_STRM(HDA_REG_DESC_SD0_BASE + (index * 32 /* 0x20 */), name)
1025
1026/* See 302349 p 6.2. */
1027static const struct HDAREGDESC
1028{
1029 /** Register offset in the register space. */
1030 uint32_t offset;
1031 /** Size in bytes. Registers of size > 4 are in fact tables. */
1032 uint32_t size;
1033 /** Readable bits. */
1034 uint32_t readable;
1035 /** Writable bits. */
1036 uint32_t writable;
1037 /** Read callback. */
1038 int (*pfnRead)(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
1039 /** Write callback. */
1040 int (*pfnWrite)(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
1041 /** Index into the register storage array. */
1042 uint32_t mem_idx;
1043 /** Abbreviated name. */
1044 const char *abbrev;
1045 /** Descripton. */
1046 const char *desc;
1047} g_aHdaRegMap[HDA_NUM_REGS] =
1048
1049{
1050 /* offset size read mask write mask read callback write callback index + abbrev */
1051 /*------- ------- ---------- ---------- ----------------------- ---------------------- ---------------- */
1052 { 0x00000, 0x00002, 0x0000FFFB, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(GCAP) }, /* Global Capabilities */
1053 { 0x00002, 0x00001, 0x000000FF, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(VMIN) }, /* Minor Version */
1054 { 0x00003, 0x00001, 0x000000FF, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(VMAJ) }, /* Major Version */
1055 { 0x00004, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(OUTPAY) }, /* Output Payload Capabilities */
1056 { 0x00006, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(INPAY) }, /* Input Payload Capabilities */
1057 { 0x00008, 0x00004, 0x00000103, 0x00000103, hdaRegReadU32 , hdaRegWriteGCTL , HDA_REG_IDX(GCTL) }, /* Global Control */
1058 { 0x0000c, 0x00002, 0x00007FFF, 0x00007FFF, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(WAKEEN) }, /* Wake Enable */
1059 { 0x0000e, 0x00002, 0x00000007, 0x00000007, hdaRegReadU8 , hdaRegWriteSTATESTS , HDA_REG_IDX(STATESTS) }, /* State Change Status */
1060 { 0x00010, 0x00002, 0xFFFFFFFF, 0x00000000, hdaRegReadUnimpl , hdaRegWriteUnimpl , HDA_REG_IDX(GSTS) }, /* Global Status */
1061 { 0x00018, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(OUTSTRMPAY) }, /* Output Stream Payload Capability */
1062 { 0x0001A, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(INSTRMPAY) }, /* Input Stream Payload Capability */
1063 { 0x00020, 0x00004, 0xC00000FF, 0xC00000FF, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(INTCTL) }, /* Interrupt Control */
1064 { 0x00024, 0x00004, 0xC00000FF, 0x00000000, hdaRegReadINTSTS , hdaRegWriteUnimpl , HDA_REG_IDX(INTSTS) }, /* Interrupt Status */
1065 { 0x00030, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadWALCLK , hdaRegWriteUnimpl , HDA_REG_IDX_LOCAL(WALCLK) }, /* Wall Clock Counter */
1066 { 0x00034, 0x00004, 0x000000FF, 0x000000FF, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(SSYNC) }, /* Stream Synchronization */
1067 { 0x00040, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(CORBLBASE) }, /* CORB Lower Base Address */
1068 { 0x00044, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(CORBUBASE) }, /* CORB Upper Base Address */
1069 { 0x00048, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteCORBWP , HDA_REG_IDX(CORBWP) }, /* CORB Write Pointer */
1070 { 0x0004A, 0x00002, 0x000080FF, 0x000080FF, hdaRegReadU16 , hdaRegWriteCORBRP , HDA_REG_IDX(CORBRP) }, /* CORB Read Pointer */
1071 { 0x0004C, 0x00001, 0x00000003, 0x00000003, hdaRegReadU8 , hdaRegWriteCORBCTL , HDA_REG_IDX(CORBCTL) }, /* CORB Control */
1072 { 0x0004D, 0x00001, 0x00000001, 0x00000001, hdaRegReadU8 , hdaRegWriteCORBSTS , HDA_REG_IDX(CORBSTS) }, /* CORB Status */
1073 { 0x0004E, 0x00001, 0x000000F3, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(CORBSIZE) }, /* CORB Size */
1074 { 0x00050, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(RIRBLBASE) }, /* RIRB Lower Base Address */
1075 { 0x00054, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(RIRBUBASE) }, /* RIRB Upper Base Address */
1076 { 0x00058, 0x00002, 0x000000FF, 0x00008000, hdaRegReadU8 , hdaRegWriteRIRBWP , HDA_REG_IDX(RIRBWP) }, /* RIRB Write Pointer */
1077 { 0x0005A, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(RINTCNT) }, /* Response Interrupt Count */
1078 { 0x0005C, 0x00001, 0x00000007, 0x00000007, hdaRegReadU8 , hdaRegWriteU8 , HDA_REG_IDX(RIRBCTL) }, /* RIRB Control */
1079 { 0x0005D, 0x00001, 0x00000005, 0x00000005, hdaRegReadU8 , hdaRegWriteRIRBSTS , HDA_REG_IDX(RIRBSTS) }, /* RIRB Status */
1080 { 0x0005E, 0x00001, 0x000000F3, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(RIRBSIZE) }, /* RIRB Size */
1081 { 0x00060, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(IC) }, /* Immediate Command */
1082 { 0x00064, 0x00004, 0x00000000, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteUnimpl , HDA_REG_IDX(IR) }, /* Immediate Response */
1083 { 0x00068, 0x00002, 0x00000002, 0x00000002, hdaRegReadIRS , hdaRegWriteIRS , HDA_REG_IDX(IRS) }, /* Immediate Command Status */
1084 { 0x00070, 0x00004, 0xFFFFFFFF, 0xFFFFFF81, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(DPLBASE) }, /* DMA Position Lower Base */
1085 { 0x00074, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(DPUBASE) }, /* DMA Position Upper Base */
1086 /* 4 Serial Data In (SDI). */
1087 HDA_REG_MAP_DEF_STREAM(0, SD0),
1088 HDA_REG_MAP_DEF_STREAM(1, SD1),
1089 HDA_REG_MAP_DEF_STREAM(2, SD2),
1090 HDA_REG_MAP_DEF_STREAM(3, SD3),
1091 /* 4 Serial Data Out (SDO). */
1092 HDA_REG_MAP_DEF_STREAM(4, SD4),
1093 HDA_REG_MAP_DEF_STREAM(5, SD5),
1094 HDA_REG_MAP_DEF_STREAM(6, SD6),
1095 HDA_REG_MAP_DEF_STREAM(7, SD7)
1096};
1097
1098/**
1099 * HDA register aliases (HDA spec 3.3.45).
1100 * @remarks Sorted by offReg.
1101 */
1102static const struct
1103{
1104 /** The alias register offset. */
1105 uint32_t offReg;
1106 /** The register index. */
1107 int idxAlias;
1108} g_aHdaRegAliases[] =
1109{
1110 { 0x2084, HDA_REG_SD0LPIB },
1111 { 0x20a4, HDA_REG_SD1LPIB },
1112 { 0x20c4, HDA_REG_SD2LPIB },
1113 { 0x20e4, HDA_REG_SD3LPIB },
1114 { 0x2104, HDA_REG_SD4LPIB },
1115 { 0x2124, HDA_REG_SD5LPIB },
1116 { 0x2144, HDA_REG_SD6LPIB },
1117 { 0x2164, HDA_REG_SD7LPIB },
1118};
1119
1120#ifdef IN_RING3
1121/** HDABDLE field descriptors for the v6+ saved state. */
1122static SSMFIELD const g_aSSMBDLEFields6[] =
1123{
1124 SSMFIELD_ENTRY(HDABDLE, u64BufAdr),
1125 SSMFIELD_ENTRY(HDABDLE, u32BufSize),
1126 SSMFIELD_ENTRY(HDABDLE, fIntOnCompletion),
1127 SSMFIELD_ENTRY_TERM()
1128};
1129
1130/** HDABDLESTATE field descriptors for the v6+ saved state. */
1131static SSMFIELD const g_aSSMBDLEStateFields6[] =
1132{
1133 SSMFIELD_ENTRY(HDABDLESTATE, u32BDLIndex),
1134 SSMFIELD_ENTRY(HDABDLESTATE, cbBelowFIFOW),
1135 SSMFIELD_ENTRY(HDABDLESTATE, au8FIFO),
1136 SSMFIELD_ENTRY(HDABDLESTATE, u32BufOff),
1137 SSMFIELD_ENTRY_TERM()
1138};
1139
1140/** HDASTREAMSTATE field descriptors for the v6+ saved state. */
1141static SSMFIELD const g_aSSMStreamStateFields6[] =
1142{
1143 SSMFIELD_ENTRY_OLD(cBDLE, 2),
1144 SSMFIELD_ENTRY(HDASTREAMSTATE, uCurBDLE),
1145 SSMFIELD_ENTRY(HDASTREAMSTATE, fDoStop),
1146 SSMFIELD_ENTRY(HDASTREAMSTATE, fActive),
1147 SSMFIELD_ENTRY(HDASTREAMSTATE, fInReset),
1148 SSMFIELD_ENTRY_TERM()
1149};
1150#endif
1151
1152/**
1153 * 32-bit size indexed masks, i.e. g_afMasks[2 bytes] = 0xffff.
1154 */
1155static uint32_t const g_afMasks[5] =
1156{
1157 UINT32_C(0), UINT32_C(0x000000ff), UINT32_C(0x0000ffff), UINT32_C(0x00ffffff), UINT32_C(0xffffffff)
1158};
1159
1160#ifdef IN_RING3
1161
1162DECLINLINE(uint32_t) hdaStreamUpdateLPIB(PHDASTATE pThis, PHDASTREAM pStream, uint32_t u32LPIB)
1163{
1164 AssertPtrReturn(pThis, 0);
1165 AssertPtrReturn(pStream, 0);
1166
1167 Assert(u32LPIB <= pStream->u32CBL);
1168
1169 LogFlowFunc(("[SD%RU8]: LPIB=%RU32 (DMA Position Buffer Enabled: %RTbool)\n",
1170 pStream->u8SD, u32LPIB, pThis->fDMAPosition));
1171
1172 /* Update LPIB in any case. */
1173 HDA_STREAM_REG(pThis, LPIB, pStream->u8SD) = u32LPIB;
1174
1175 /* Do we need to tell the current DMA position? */
1176 if (pThis->fDMAPosition)
1177 {
1178 int rc2 = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns),
1179 (pThis->u64DPBase & DPBASE_ADDR_MASK) + (pStream->u8SD * 2 * sizeof(uint32_t)),
1180 (void *)&u32LPIB, sizeof(uint32_t));
1181 AssertRC(rc2);
1182 }
1183
1184 return u32LPIB;
1185}
1186
1187
1188/**
1189 * Retrieves the number of bytes of a FIFOS register.
1190 *
1191 * @return Number of bytes of a given FIFOS register.
1192 */
1193DECLINLINE(uint16_t) hdaSDFIFOSToBytes(uint32_t u32RegFIFOS)
1194{
1195 uint16_t cb;
1196 switch (u32RegFIFOS)
1197 {
1198 /* Input */
1199 case HDA_SDIFIFO_120B: cb = 120; break;
1200 case HDA_SDIFIFO_160B: cb = 160; break;
1201
1202 /* Output */
1203 case HDA_SDOFIFO_16B: cb = 16; break;
1204 case HDA_SDOFIFO_32B: cb = 32; break;
1205 case HDA_SDOFIFO_64B: cb = 64; break;
1206 case HDA_SDOFIFO_128B: cb = 128; break;
1207 case HDA_SDOFIFO_192B: cb = 192; break;
1208 case HDA_SDOFIFO_256B: cb = 256; break;
1209 default:
1210 {
1211 cb = 0; /* Can happen on stream reset. */
1212 break;
1213 }
1214 }
1215
1216 return cb;
1217}
1218
1219
1220# if defined(IN_RING3) && (defined(DEBUG) || defined(VBOX_HDA_WITH_FIFO))
1221/**
1222 * Retrieves the number of bytes of a FIFOW register.
1223 *
1224 * @return Number of bytes of a given FIFOW register.
1225 */
1226DECLINLINE(uint8_t) hdaSDFIFOWToBytes(uint32_t u32RegFIFOW)
1227{
1228 uint32_t cb;
1229 switch (u32RegFIFOW)
1230 {
1231 case HDA_SDFIFOW_8B: cb = 8; break;
1232 case HDA_SDFIFOW_16B: cb = 16; break;
1233 case HDA_SDFIFOW_32B: cb = 32; break;
1234 default: cb = 0; break;
1235 }
1236
1237 Assert(RT_IS_POWER_OF_TWO(cb));
1238 return cb;
1239}
1240#endif
1241
1242
1243/**
1244 * Fetches the next BDLE to use for a stream.
1245 *
1246 * @return IPRT status code.
1247 */
1248DECLINLINE(int) hdaStreamGetNextBDLE(PHDASTATE pThis, PHDASTREAM pStream)
1249{
1250 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1251 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
1252
1253 NOREF(pThis);
1254
1255 Assert(pStream->State.uCurBDLE < pStream->u16LVI + 1);
1256
1257 LogFlowFuncEnter();
1258
1259# ifdef LOG_ENABLED
1260 uint32_t const uOldBDLE = pStream->State.uCurBDLE;
1261# endif
1262
1263 PHDABDLE pBDLE = &pStream->State.BDLE;
1264
1265 /*
1266 * Switch to the next BDLE entry and do a wrap around
1267 * if we reached the end of the Buffer Descriptor List (BDL).
1268 */
1269 pStream->State.uCurBDLE++;
1270 if (pStream->State.uCurBDLE == pStream->u16LVI + 1)
1271 {
1272 pStream->State.uCurBDLE = 0;
1273
1274 hdaStreamUpdateLPIB(pThis, pStream, 0);
1275 }
1276
1277 Assert(pStream->State.uCurBDLE < pStream->u16LVI + 1);
1278
1279 /* Fetch the next BDLE entry. */
1280 int rc = hdaBDLEFetch(pThis, pBDLE, pStream->u64BDLBase, pStream->State.uCurBDLE);
1281
1282 LogFlowFunc(("[SD%RU8]: uOldBDLE=%RU16, uCurBDLE=%RU16, LVI=%RU32, rc=%Rrc, %R[bdle]\n",
1283 pStream->u8SD, uOldBDLE, pStream->State.uCurBDLE, pStream->u16LVI, rc, pBDLE));
1284 return rc;
1285}
1286
1287
1288/**
1289 * Returns the audio direction of a specified stream descriptor.
1290 *
1291 * The register layout specifies that input streams (SDI) come first,
1292 * followed by the output streams (SDO). So every stream ID below HDA_MAX_SDI
1293 * is an input stream, whereas everything >= HDA_MAX_SDI is an output stream.
1294 *
1295 * Note: SDnFMT register does not provide that information, so we have to judge
1296 * for ourselves.
1297 *
1298 * @return Audio direction.
1299 */
1300DECLINLINE(PDMAUDIODIR) hdaGetDirFromSD(uint8_t uSD)
1301{
1302 AssertReturn(uSD <= HDA_MAX_STREAMS, PDMAUDIODIR_UNKNOWN);
1303
1304 if (uSD < HDA_MAX_SDI)
1305 return PDMAUDIODIR_IN;
1306
1307 return PDMAUDIODIR_OUT;
1308}
1309
1310
1311/**
1312 * Returns the HDA stream of specified stream descriptor number.
1313 *
1314 * @return Pointer to HDA stream, or NULL if none found.
1315 */
1316DECLINLINE(PHDASTREAM) hdaStreamFromSD(PHDASTATE pThis, uint8_t uSD)
1317{
1318 AssertPtrReturn(pThis, NULL);
1319 AssertReturn(uSD <= HDA_MAX_STREAMS, NULL);
1320
1321 if (uSD >= HDA_MAX_STREAMS)
1322 return NULL;
1323
1324 return &pThis->aStreams[uSD];
1325}
1326
1327
1328/**
1329 * Returns the HDA stream of specified HDA sink.
1330 *
1331 * @return Pointer to HDA stream, or NULL if none found.
1332 */
1333DECLINLINE(PHDASTREAM) hdaGetStreamFromSink(PHDASTATE pThis, PHDAMIXERSINK pSink)
1334{
1335 AssertPtrReturn(pThis, NULL);
1336 AssertPtrReturn(pSink, NULL);
1337
1338 /** @todo Do something with the channel mapping here? */
1339 return hdaStreamFromSD(pThis, pSink->uSD);
1340}
1341
1342/**
1343 * Retrieves the minimum number of bytes accumulated/free in the
1344 * FIFO before the controller will start a fetch/eviction of data.
1345 *
1346 * Uses SDFIFOW (FIFO Watermark Register).
1347 *
1348 * @return Number of bytes accumulated/free in the FIFO.
1349 */
1350DECLINLINE(uint8_t) hdaStreamGetFIFOW(PHDASTATE pThis, PHDASTREAM pStream)
1351{
1352 AssertPtrReturn(pThis, 0);
1353 AssertPtrReturn(pStream, 0);
1354
1355# ifdef VBOX_HDA_WITH_FIFO
1356 return hdaSDFIFOWToBytes(HDA_STREAM_REG(pThis, FIFOW, pStream->u8SD));
1357# else
1358 return 0;
1359# endif
1360}
1361
1362#endif /* IN_RING3 */
1363
1364static int hdaProcessInterrupt(PHDASTATE pThis)
1365{
1366#define IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, num) \
1367 ( INTCTL_SX((pThis), num) \
1368 && (SDSTS(pThis, num) & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS)))
1369
1370 int iLevel = 0;
1371
1372 /** @todo Optimize IRQ handling. */
1373
1374 if (/* Controller Interrupt Enable (CIE). */
1375 HDA_REG_FLAG_VALUE(pThis, INTCTL, CIE)
1376 && ( HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RINTFL)
1377 || HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RIRBOIS)
1378 || (HDA_REG(pThis, STATESTS) & HDA_REG(pThis, WAKEEN))))
1379 {
1380 iLevel = 1;
1381 }
1382
1383 if ( IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 0)
1384 || IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 1)
1385 || IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 2)
1386 || IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 3)
1387 || IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 4)
1388 || IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 5)
1389 || IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 6)
1390 || IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 7))
1391 {
1392 iLevel = 1;
1393 }
1394
1395 if (HDA_REG_FLAG_VALUE(pThis, INTCTL, GIE))
1396 {
1397 Log3Func(("Level=%d\n", iLevel));
1398 PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0 , iLevel);
1399 }
1400
1401#undef IS_INTERRUPT_OCCURED_AND_ENABLED
1402
1403 return VINF_SUCCESS;
1404}
1405
1406/**
1407 * Looks up a register at the exact offset given by @a offReg.
1408 *
1409 * @returns Register index on success, -1 if not found.
1410 * @param offReg The register offset.
1411 */
1412static int hdaRegLookup(uint32_t offReg)
1413{
1414 /*
1415 * Aliases.
1416 */
1417 if (offReg >= g_aHdaRegAliases[0].offReg)
1418 {
1419 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++)
1420 if (offReg == g_aHdaRegAliases[i].offReg)
1421 return g_aHdaRegAliases[i].idxAlias;
1422 Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg);
1423 return -1;
1424 }
1425
1426 /*
1427 * Binary search the
1428 */
1429 int idxEnd = RT_ELEMENTS(g_aHdaRegMap);
1430 int idxLow = 0;
1431 for (;;)
1432 {
1433 int idxMiddle = idxLow + (idxEnd - idxLow) / 2;
1434 if (offReg < g_aHdaRegMap[idxMiddle].offset)
1435 {
1436 if (idxLow == idxMiddle)
1437 break;
1438 idxEnd = idxMiddle;
1439 }
1440 else if (offReg > g_aHdaRegMap[idxMiddle].offset)
1441 {
1442 idxLow = idxMiddle + 1;
1443 if (idxLow >= idxEnd)
1444 break;
1445 }
1446 else
1447 return idxMiddle;
1448 }
1449
1450#ifdef RT_STRICT
1451 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
1452 Assert(g_aHdaRegMap[i].offset != offReg);
1453#endif
1454 return -1;
1455}
1456
1457/**
1458 * Looks up a register covering the offset given by @a offReg.
1459 *
1460 * @returns Register index on success, -1 if not found.
1461 * @param offReg The register offset.
1462 */
1463static int hdaRegLookupWithin(uint32_t offReg)
1464{
1465 /*
1466 * Aliases.
1467 */
1468 if (offReg >= g_aHdaRegAliases[0].offReg)
1469 {
1470 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++)
1471 {
1472 uint32_t off = offReg - g_aHdaRegAliases[i].offReg;
1473 if (off < 4 && off < g_aHdaRegMap[g_aHdaRegAliases[i].idxAlias].size)
1474 return g_aHdaRegAliases[i].idxAlias;
1475 }
1476 Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg);
1477 return -1;
1478 }
1479
1480 /*
1481 * Binary search the register map.
1482 */
1483 int idxEnd = RT_ELEMENTS(g_aHdaRegMap);
1484 int idxLow = 0;
1485 for (;;)
1486 {
1487 int idxMiddle = idxLow + (idxEnd - idxLow) / 2;
1488 if (offReg < g_aHdaRegMap[idxMiddle].offset)
1489 {
1490 if (idxLow == idxMiddle)
1491 break;
1492 idxEnd = idxMiddle;
1493 }
1494 else if (offReg >= g_aHdaRegMap[idxMiddle].offset + g_aHdaRegMap[idxMiddle].size)
1495 {
1496 idxLow = idxMiddle + 1;
1497 if (idxLow >= idxEnd)
1498 break;
1499 }
1500 else
1501 return idxMiddle;
1502 }
1503
1504#ifdef RT_STRICT
1505 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
1506 Assert(offReg - g_aHdaRegMap[i].offset >= g_aHdaRegMap[i].size);
1507#endif
1508 return -1;
1509}
1510
1511#ifdef IN_RING3
1512
1513static int hdaCmdSync(PHDASTATE pThis, bool fLocal)
1514{
1515 int rc = VINF_SUCCESS;
1516 if (fLocal)
1517 {
1518 Assert((HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA)));
1519 Assert(pThis->u64CORBBase);
1520 AssertPtr(pThis->pu32CorbBuf);
1521 Assert(pThis->cbCorbBuf);
1522
1523 rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pThis->u64CORBBase, pThis->pu32CorbBuf, pThis->cbCorbBuf);
1524 if (RT_FAILURE(rc))
1525 AssertRCReturn(rc, rc);
1526# ifdef DEBUG_CMD_BUFFER
1527 uint8_t i = 0;
1528 do
1529 {
1530 LogFunc(("CORB%02x: ", i));
1531 uint8_t j = 0;
1532 do
1533 {
1534 const char *pszPrefix;
1535 if ((i + j) == HDA_REG(pThis, CORBRP));
1536 pszPrefix = "[R]";
1537 else if ((i + j) == HDA_REG(pThis, CORBWP));
1538 pszPrefix = "[W]";
1539 else
1540 pszPrefix = " "; /* three spaces */
1541 LogFunc(("%s%08x", pszPrefix, pThis->pu32CorbBuf[i + j]));
1542 j++;
1543 } while (j < 8);
1544 LogFunc(("\n"));
1545 i += 8;
1546 } while(i != 0);
1547# endif
1548 }
1549 else
1550 {
1551 Assert((HDA_REG_FLAG_VALUE(pThis, RIRBCTL, DMA)));
1552 rc = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pThis->u64RIRBBase, pThis->pu64RirbBuf, pThis->cbRirbBuf);
1553 if (RT_FAILURE(rc))
1554 AssertRCReturn(rc, rc);
1555# ifdef DEBUG_CMD_BUFFER
1556 uint8_t i = 0;
1557 do {
1558 LogFunc(("RIRB%02x: ", i));
1559 uint8_t j = 0;
1560 do {
1561 const char *prefix;
1562 if ((i + j) == HDA_REG(pThis, RIRBWP))
1563 prefix = "[W]";
1564 else
1565 prefix = " ";
1566 LogFunc((" %s%016lx", prefix, pThis->pu64RirbBuf[i + j]));
1567 } while (++j < 8);
1568 LogFunc(("\n"));
1569 i += 8;
1570 } while (i != 0);
1571# endif
1572 }
1573 return rc;
1574}
1575
1576static int hdaCORBCmdProcess(PHDASTATE pThis)
1577{
1578 int rc = hdaCmdSync(pThis, true);
1579 if (RT_FAILURE(rc))
1580 AssertRCReturn(rc, rc);
1581
1582 uint8_t corbRp = HDA_REG(pThis, CORBRP);
1583 uint8_t corbWp = HDA_REG(pThis, CORBWP);
1584 uint8_t rirbWp = HDA_REG(pThis, RIRBWP);
1585
1586 Assert((corbWp != corbRp));
1587 Log3Func(("CORB(RP:%x, WP:%x) RIRBWP:%x\n", HDA_REG(pThis, CORBRP), HDA_REG(pThis, CORBWP), HDA_REG(pThis, RIRBWP)));
1588
1589 while (corbRp != corbWp)
1590 {
1591 uint64_t uResp;
1592 uint32_t uCmd = pThis->pu32CorbBuf[++corbRp];
1593
1594 int rc2 = pThis->pCodec->pfnLookup(pThis->pCodec, HDA_CODEC_CMD(uCmd, 0 /* Codec index */), &uResp);
1595 if (RT_FAILURE(rc2))
1596 LogFunc(("Codec lookup failed with rc=%Rrc\n", rc2));
1597
1598 (rirbWp)++;
1599
1600 if ( (uResp & CODEC_RESPONSE_UNSOLICITED)
1601 && !HDA_REG_FLAG_VALUE(pThis, GCTL, UR))
1602 {
1603 LogFunc(("Unexpected unsolicited response\n"));
1604 HDA_REG(pThis, CORBRP) = corbRp;
1605 return rc;
1606 }
1607
1608 pThis->pu64RirbBuf[rirbWp] = uResp;
1609
1610 pThis->u8RespIntCnt++;
1611 if (pThis->u8RespIntCnt == RINTCNT_N(pThis))
1612 break;
1613 }
1614
1615 HDA_REG(pThis, CORBRP) = corbRp;
1616 HDA_REG(pThis, RIRBWP) = rirbWp;
1617
1618 rc = hdaCmdSync(pThis, false);
1619
1620 Log3Func(("CORB(RP:%x, WP:%x) RIRBWP:%x\n", HDA_REG(pThis, CORBRP), HDA_REG(pThis, CORBWP), HDA_REG(pThis, RIRBWP)));
1621
1622 if (HDA_REG_FLAG_VALUE(pThis, RIRBCTL, RIC))
1623 {
1624 HDA_REG(pThis, RIRBSTS) |= HDA_REG_FIELD_FLAG_MASK(RIRBSTS,RINTFL);
1625
1626 pThis->u8RespIntCnt = 0;
1627 rc = hdaProcessInterrupt(pThis);
1628 }
1629
1630 if (RT_FAILURE(rc))
1631 AssertRCReturn(rc, rc);
1632 return rc;
1633}
1634
1635static int hdaStreamCreate(PHDASTREAM pStream, uint8_t uSD)
1636{
1637 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
1638 AssertReturn(uSD <= HDA_MAX_STREAMS, VERR_INVALID_PARAMETER);
1639
1640 int rc = RTSemEventCreate(&pStream->State.hStateChangedEvent);
1641 if (RT_SUCCESS(rc))
1642 rc = RTCritSectInit(&pStream->State.CritSect);
1643
1644 if (RT_SUCCESS(rc))
1645 {
1646 pStream->u8SD = uSD;
1647 pStream->pMixSink = NULL;
1648
1649 pStream->State.fActive = false;
1650 pStream->State.fInReset = false;
1651 pStream->State.fDoStop = false;
1652 }
1653
1654 LogFlowFunc(("uSD=%RU8\n", uSD));
1655 return rc;
1656}
1657
1658static void hdaStreamDestroy(PHDASTREAM pStream)
1659{
1660 AssertPtrReturnVoid(pStream);
1661
1662 LogFlowFunc(("[SD%RU8]: Destroying ...\n", pStream->u8SD));
1663
1664 int rc2 = hdaStreamStop(pStream);
1665 AssertRC(rc2);
1666
1667 hdaStreamMapDestroy(&pStream->State.Mapping);
1668
1669 rc2 = RTCritSectDelete(&pStream->State.CritSect);
1670 AssertRC(rc2);
1671
1672 if (pStream->State.hStateChangedEvent != NIL_RTSEMEVENT)
1673 {
1674 rc2 = RTSemEventDestroy(pStream->State.hStateChangedEvent);
1675 AssertRC(rc2);
1676 pStream->State.hStateChangedEvent = NIL_RTSEMEVENT;
1677 }
1678
1679 LogFlowFuncLeave();
1680}
1681
1682static int hdaStreamInit(PHDASTATE pThis, PHDASTREAM pStream, uint8_t u8SD)
1683{
1684 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1685 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
1686
1687 pStream->u8SD = u8SD;
1688 pStream->u64BDLBase = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, pStream->u8SD),
1689 HDA_STREAM_REG(pThis, BDPU, pStream->u8SD));
1690 pStream->u16LVI = HDA_STREAM_REG(pThis, LVI, pStream->u8SD);
1691 pStream->u32CBL = HDA_STREAM_REG(pThis, CBL, pStream->u8SD);
1692 pStream->u16FIFOS = hdaSDFIFOSToBytes(HDA_STREAM_REG(pThis, FIFOS, pStream->u8SD));
1693
1694 RT_ZERO(pStream->State.BDLE);
1695 pStream->State.uCurBDLE = 0;
1696
1697 hdaStreamMapReset(&pStream->State.Mapping);
1698
1699 LogFlowFunc(("[SD%RU8]: DMA @ 0x%x (%RU32 bytes), LVI=%RU16, FIFOS=%RU16\n",
1700 pStream->u8SD, pStream->u64BDLBase, pStream->u32CBL, pStream->u16LVI, pStream->u16FIFOS));
1701
1702# ifdef DEBUG
1703 uint64_t u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, pStream->u8SD),
1704 HDA_STREAM_REG(pThis, BDPU, pStream->u8SD));
1705 uint16_t u16LVI = HDA_STREAM_REG(pThis, LVI, pStream->u8SD);
1706 uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, pStream->u8SD);
1707
1708 LogFlowFunc(("\t-> DMA @ 0x%x, LVI=%RU16, CBL=%RU32\n", u64BaseDMA, u16LVI, u32CBL));
1709
1710 hdaBDLEDumpAll(pThis, u64BaseDMA, u16LVI + 1);
1711# endif
1712
1713 return VINF_SUCCESS;
1714}
1715
1716static void hdaStreamReset(PHDASTATE pThis, PHDASTREAM pStream)
1717{
1718 AssertPtrReturnVoid(pThis);
1719 AssertPtrReturnVoid(pStream);
1720
1721 const uint8_t uSD = pStream->u8SD;
1722
1723# ifdef VBOX_STRICT
1724 AssertReleaseMsg(!RT_BOOL(HDA_STREAM_REG(pThis, CTL, uSD) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)),
1725 ("[SD%RU8] Cannot reset stream while in running state\n", uSD));
1726# endif
1727
1728 LogFunc(("[SD%RU8]: Reset\n", uSD));
1729
1730 /*
1731 * Set reset state.
1732 */
1733 Assert(ASMAtomicReadBool(&pStream->State.fInReset) == false); /* No nested calls. */
1734 ASMAtomicXchgBool(&pStream->State.fInReset, true);
1735
1736 /*
1737 * First, reset the internal stream state.
1738 */
1739 RT_ZERO(pStream->State.BDLE);
1740 pStream->State.uCurBDLE = 0;
1741
1742 /*
1743 * Second, initialize the registers.
1744 */
1745 HDA_STREAM_REG(pThis, STS, uSD) = HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY);
1746 /* According to the ICH6 datasheet, 0x40000 is the default value for stream descriptor register 23:20
1747 * bits are reserved for stream number 18.2.33, resets SDnCTL except SRST bit. */
1748 HDA_STREAM_REG(pThis, CTL, uSD) = 0x40000 | (HDA_STREAM_REG(pThis, CTL, uSD) & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST));
1749 /* ICH6 defines default values (0x77 for input and 0xBF for output descriptors) of FIFO size. 18.2.39. */
1750 HDA_STREAM_REG(pThis, FIFOS, uSD) = hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN ? HDA_SDIFIFO_120B : HDA_SDOFIFO_192B;
1751 /* See 18.2.38: Always defaults to 0x4 (32 bytes). */
1752 HDA_STREAM_REG(pThis, FIFOW, uSD) = HDA_SDFIFOW_32B;
1753 HDA_STREAM_REG(pThis, LPIB, uSD) = 0;
1754 HDA_STREAM_REG(pThis, CBL, uSD) = 0;
1755 HDA_STREAM_REG(pThis, LVI, uSD) = 0;
1756 HDA_STREAM_REG(pThis, FMT, uSD) = HDA_SDFMT_MAKE(HDA_SDFMT_TYPE_PCM, HDA_SDFMT_BASE_44KHZ,
1757 HDA_SDFMT_MULT_1X, HDA_SDFMT_DIV_1X, HDA_SDFMT_16_BIT,
1758 HDA_SDFMT_CHAN_STEREO);
1759 HDA_STREAM_REG(pThis, BDPU, uSD) = 0;
1760 HDA_STREAM_REG(pThis, BDPL, uSD) = 0;
1761
1762 int rc2 = hdaStreamInit(pThis, pStream, uSD);
1763 AssertRC(rc2);
1764
1765 /* Report that we're done resetting this stream. */
1766 HDA_STREAM_REG(pThis, CTL, uSD) = 0;
1767
1768 /* Exit reset state. */
1769 ASMAtomicXchgBool(&pStream->State.fInReset, false);
1770}
1771
1772# if 0 /* unused */
1773static bool hdaStreamIsActive(PHDASTATE pThis, PHDASTREAM pStream)
1774{
1775 AssertPtrReturn(pThis, false);
1776 AssertPtrReturn(pStream, false);
1777
1778 bool fActive = pStream->State.fActive;
1779
1780 LogFlowFunc(("SD=%RU8, fActive=%RTbool\n", pStream->u8SD, fActive));
1781 return fActive;
1782}
1783# endif
1784
1785static int hdaStreamSetActive(PHDASTATE pThis, PHDASTREAM pStream, bool fActive)
1786{
1787 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1788 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
1789
1790 LogFlowFunc(("[SD%RU8]: fActive=%RTbool, pMixSink=%p\n", pStream->u8SD, fActive, pStream->pMixSink));
1791
1792 if (pStream->State.fActive == fActive) /* No change required? */
1793 {
1794 LogFlowFunc(("[SD%RU8]: No change\n", pStream->u8SD));
1795 return VINF_SUCCESS;
1796 }
1797
1798 int rc = VINF_SUCCESS;
1799
1800 if (pStream->pMixSink) /* Stream attached to a sink? */
1801 {
1802 AUDMIXSINKCMD enmCmd = fActive
1803 ? AUDMIXSINKCMD_ENABLE : AUDMIXSINKCMD_DISABLE;
1804
1805 /* First, enable or disable the stream and the stream's sink, if any. */
1806 if (pStream->pMixSink->pMixSink)
1807 rc = AudioMixerSinkCtl(pStream->pMixSink->pMixSink, enmCmd);
1808 }
1809 else
1810 rc = VINF_SUCCESS;
1811
1812 if (RT_FAILURE(rc))
1813 {
1814 LogFunc(("Failed with rc=%Rrc\n", rc));
1815 return rc;
1816 }
1817
1818 pStream->State.fActive = fActive;
1819
1820 /* Second, see if we need to start or stop the timer. */
1821 if (!fActive)
1822 {
1823 if (pThis->cStreamsActive) /* Disable can be called mupltiple times. */
1824 pThis->cStreamsActive--;
1825
1826# ifndef VBOX_WITH_AUDIO_HDA_CALLBACKS
1827 hdaTimerMaybeStop(pThis);
1828# endif
1829 }
1830 else
1831 {
1832 pThis->cStreamsActive++;
1833# ifndef VBOX_WITH_AUDIO_HDA_CALLBACKS
1834 hdaTimerMaybeStart(pThis);
1835# endif
1836 }
1837
1838 LogFlowFunc(("u8Strm=%RU8, fActive=%RTbool, cStreamsActive=%RU8\n", pStream->u8SD, fActive, pThis->cStreamsActive));
1839 return VINF_SUCCESS;
1840}
1841
1842static void hdaStreamAssignToSink(PHDASTREAM pStream, PHDAMIXERSINK pMixSink)
1843{
1844 AssertPtrReturnVoid(pStream);
1845
1846 int rc2 = RTCritSectEnter(&pStream->State.CritSect);
1847 if (RT_SUCCESS(rc2))
1848 {
1849 pStream->pMixSink = pMixSink;
1850
1851 rc2 = RTCritSectLeave(&pStream->State.CritSect);
1852 AssertRC(rc2);
1853 }
1854}
1855
1856# if 0 /** @todo hdaStreamStart is unused */
1857static int hdaStreamStart(PHDASTREAM pStream)
1858{
1859 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
1860
1861 ASMAtomicXchgBool(&pStream->State.fDoStop, false);
1862 ASMAtomicXchgBool(&pStream->State.fActive, true);
1863
1864 LogFlowFuncLeave();
1865 return VINF_SUCCESS;
1866}
1867# endif /* unused */
1868
1869static int hdaStreamStop(PHDASTREAM pStream)
1870{
1871 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
1872
1873 /* Already in stopped state? */
1874 bool fActive = ASMAtomicReadBool(&pStream->State.fActive);
1875 if (!fActive)
1876 return VINF_SUCCESS;
1877
1878# if 0 /** @todo Does not work (yet), as EMT deadlocks then. */
1879 /*
1880 * Wait for the stream to stop.
1881 */
1882 ASMAtomicXchgBool(&pStream->State.fDoStop, true);
1883
1884 int rc = hdaStreamWaitForStateChange(pStream, 60 * 1000 /* ms timeout */);
1885 fActive = ASMAtomicReadBool(&pStream->State.fActive);
1886 if ( /* Waiting failed? */
1887 RT_FAILURE(rc)
1888 /* Stream is still active? */
1889 || fActive)
1890 {
1891 AssertRC(rc);
1892 LogRel(("HDA: Warning: Unable to stop stream %RU8 (state: %s), rc=%Rrc\n",
1893 pStream->u8Strm, fActive ? "active" : "stopped", rc));
1894 }
1895# else
1896 int rc = VINF_SUCCESS;
1897# endif
1898
1899 LogFlowFuncLeaveRC(rc);
1900 return rc;
1901}
1902
1903# if defined(VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT) || defined(VBOX_WITH_AUDIO_HDA_51_SURROUND)
1904static int hdaStreamChannelExtract(PPDMAUDIOSTREAMCHANNEL pChan, const void *pvBuf, size_t cbBuf)
1905{
1906 AssertPtrReturn(pChan, VERR_INVALID_POINTER);
1907 AssertPtrReturn(pvBuf, VERR_INVALID_POINTER);
1908 AssertReturn(cbBuf, VERR_INVALID_PARAMETER);
1909
1910 AssertRelease(pChan->cbOff <= cbBuf);
1911
1912 const uint8_t *pu8Buf = (const uint8_t *)pvBuf;
1913
1914 size_t cbSrc = cbBuf - pChan->cbOff;
1915 const uint8_t *pvSrc = &pu8Buf[pChan->cbOff];
1916
1917 size_t cbDst;
1918 uint8_t *pvDst;
1919 RTCircBufAcquireWriteBlock(pChan->Data.pCircBuf, cbBuf, (void **)&pvDst, &cbDst);
1920
1921 cbSrc = RT_MIN(cbSrc, cbDst);
1922
1923 while (cbSrc)
1924 {
1925 AssertBreak(cbDst >= cbSrc);
1926
1927 /* Enough data for at least one next frame? */
1928 if (cbSrc < pChan->cbFrame)
1929 break;
1930
1931 memcpy(pvDst, pvSrc, pChan->cbFrame);
1932
1933 /* Advance to next channel frame in stream. */
1934 pvSrc += pChan->cbStep;
1935 Assert(cbSrc >= pChan->cbStep);
1936 cbSrc -= pChan->cbStep;
1937
1938 /* Advance destination by one frame. */
1939 pvDst += pChan->cbFrame;
1940 Assert(cbDst >= pChan->cbFrame);
1941 cbDst -= pChan->cbFrame;
1942
1943 /* Adjust offset. */
1944 pChan->cbOff += pChan->cbFrame;
1945 }
1946
1947 RTCircBufReleaseWriteBlock(pChan->Data.pCircBuf, cbDst);
1948
1949 return VINF_SUCCESS;
1950}
1951# endif /* defined(VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT) || defined(VBOX_WITH_AUDIO_HDA_51_SURROUND) */
1952
1953# if 0 /** @todo hdaStreamChannelAdvance is unused */
1954static int hdaStreamChannelAdvance(PPDMAUDIOSTREAMCHANNEL pChan, size_t cbAdv)
1955{
1956 AssertPtrReturn(pChan, VERR_INVALID_POINTER);
1957
1958 if (!cbAdv)
1959 return VINF_SUCCESS;
1960
1961 return VINF_SUCCESS;
1962}
1963# endif
1964
1965static int hdaStreamChannelDataInit(PPDMAUDIOSTREAMCHANNELDATA pChanData, uint32_t fFlags)
1966{
1967 int rc = RTCircBufCreate(&pChanData->pCircBuf, 256); /** @todo Make this configurable? */
1968 if (RT_SUCCESS(rc))
1969 {
1970 pChanData->fFlags = fFlags;
1971 }
1972
1973 return rc;
1974}
1975
1976/**
1977 * Frees a stream channel data block again.
1978 *
1979 * @param pChanData Pointer to channel data to free.
1980 */
1981static void hdaStreamChannelDataDestroy(PPDMAUDIOSTREAMCHANNELDATA pChanData)
1982{
1983 if (!pChanData)
1984 return;
1985
1986 if (pChanData->pCircBuf)
1987 {
1988 RTCircBufDestroy(pChanData->pCircBuf);
1989 pChanData->pCircBuf = NULL;
1990 }
1991
1992 pChanData->fFlags = PDMAUDIOSTREAMCHANNELDATA_FLAG_NONE;
1993}
1994
1995# if defined(VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT) || defined(VBOX_WITH_AUDIO_HDA_51_SURROUND)
1996
1997static int hdaStreamChannelAcquireData(PPDMAUDIOSTREAMCHANNELDATA pChanData, void *pvData, size_t *pcbData)
1998{
1999 AssertPtrReturn(pChanData, VERR_INVALID_POINTER);
2000 AssertPtrReturn(pvData, VERR_INVALID_POINTER);
2001 AssertPtrReturn(pcbData, VERR_INVALID_POINTER);
2002
2003 RTCircBufAcquireReadBlock(pChanData->pCircBuf, 256 /** @todo Make this configurarble? */, &pvData, &pChanData->cbAcq);
2004
2005 *pcbData = pChanData->cbAcq;
2006 return VINF_SUCCESS;
2007}
2008
2009static int hdaStreamChannelReleaseData(PPDMAUDIOSTREAMCHANNELDATA pChanData)
2010{
2011 AssertPtrReturn(pChanData, VERR_INVALID_POINTER);
2012 RTCircBufReleaseReadBlock(pChanData->pCircBuf, pChanData->cbAcq);
2013
2014 return VINF_SUCCESS;
2015}
2016
2017# endif /* defined(VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT) || defined(VBOX_WITH_AUDIO_HDA_51_SURROUND) */
2018
2019# if 0 /* currently unused */
2020static int hdaStreamWaitForStateChange(PHDASTREAM pStream, RTMSINTERVAL msTimeout)
2021{
2022 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
2023
2024 LogFlowFunc(("[SD%RU8]: msTimeout=%RU32\n", pStream->u8SD, msTimeout));
2025 return RTSemEventWait(pStream->State.hStateChangedEvent, msTimeout);
2026}
2027# endif /* currently unused */
2028
2029#endif /* IN_RING3 */
2030
2031/* Register access handlers. */
2032
2033static int hdaRegReadUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
2034{
2035 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg);
2036 *pu32Value = 0;
2037 return VINF_SUCCESS;
2038}
2039
2040static int hdaRegWriteUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2041{
2042 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value);
2043 return VINF_SUCCESS;
2044}
2045
2046/* U8 */
2047static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
2048{
2049 Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffffff00) == 0);
2050 return hdaRegReadU32(pThis, iReg, pu32Value);
2051}
2052
2053static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2054{
2055 Assert((u32Value & 0xffffff00) == 0);
2056 return hdaRegWriteU32(pThis, iReg, u32Value);
2057}
2058
2059/* U16 */
2060static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
2061{
2062 Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffff0000) == 0);
2063 return hdaRegReadU32(pThis, iReg, pu32Value);
2064}
2065
2066static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2067{
2068 Assert((u32Value & 0xffff0000) == 0);
2069 return hdaRegWriteU32(pThis, iReg, u32Value);
2070}
2071
2072/* U24 */
2073static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
2074{
2075 Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xff000000) == 0);
2076 return hdaRegReadU32(pThis, iReg, pu32Value);
2077}
2078
2079#ifdef IN_RING3
2080static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2081{
2082 Assert((u32Value & 0xff000000) == 0);
2083 return hdaRegWriteU32(pThis, iReg, u32Value);
2084}
2085#endif
2086
2087/* U32 */
2088static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
2089{
2090 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
2091
2092 *pu32Value = pThis->au32Regs[iRegMem] & g_aHdaRegMap[iReg].readable;
2093 return VINF_SUCCESS;
2094}
2095
2096static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2097{
2098 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
2099
2100 pThis->au32Regs[iRegMem] = (u32Value & g_aHdaRegMap[iReg].writable)
2101 | (pThis->au32Regs[iRegMem] & ~g_aHdaRegMap[iReg].writable);
2102 return VINF_SUCCESS;
2103}
2104
2105static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2106{
2107 RT_NOREF_PV(iReg);
2108
2109 if (u32Value & HDA_REG_FIELD_FLAG_MASK(GCTL, RST))
2110 {
2111 /* Set the CRST bit to indicate that we're leaving reset mode. */
2112 HDA_REG(pThis, GCTL) |= HDA_REG_FIELD_FLAG_MASK(GCTL, RST);
2113
2114 if (pThis->fInReset)
2115 {
2116 LogFunc(("Guest leaving HDA reset\n"));
2117 pThis->fInReset = false;
2118 }
2119 }
2120 else
2121 {
2122#ifdef IN_RING3
2123 /* Enter reset state. */
2124 LogFunc(("Guest entering HDA reset with DMA(RIRB:%s, CORB:%s)\n",
2125 HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA) ? "on" : "off",
2126 HDA_REG_FLAG_VALUE(pThis, RIRBCTL, DMA) ? "on" : "off"));
2127
2128 /* Clear the CRST bit to indicate that we're in reset state. */
2129 HDA_REG(pThis, GCTL) &= ~HDA_REG_FIELD_FLAG_MASK(GCTL, RST);
2130 pThis->fInReset = true;
2131
2132 hdaReset(pThis->CTX_SUFF(pDevIns));
2133#else
2134 return VINF_IOM_R3_MMIO_WRITE;
2135#endif
2136 }
2137
2138 if (u32Value & HDA_REG_FIELD_FLAG_MASK(GCTL, FSH))
2139 {
2140 /* Flush: GSTS:1 set, see 6.2.6. */
2141 HDA_REG(pThis, GSTS) |= HDA_REG_FIELD_FLAG_MASK(GSTS, FSH); /* Set the flush state. */
2142 /* DPLBASE and DPUBASE should be initialized with initial value (see 6.2.6). */
2143 }
2144 return VINF_SUCCESS;
2145}
2146
2147static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2148{
2149 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
2150
2151 uint32_t v = pThis->au32Regs[iRegMem];
2152 uint32_t nv = u32Value & HDA_STATES_SCSF;
2153 pThis->au32Regs[iRegMem] &= ~(v & nv); /* write of 1 clears corresponding bit */
2154 return VINF_SUCCESS;
2155}
2156
2157static int hdaRegReadINTSTS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
2158{
2159 RT_NOREF_PV(iReg);
2160
2161 uint32_t v = 0;
2162 if ( HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RIRBOIS)
2163 || HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RINTFL)
2164 || HDA_REG_FLAG_VALUE(pThis, CORBSTS, CMEI)
2165 || HDA_REG(pThis, STATESTS))
2166 {
2167 v |= RT_BIT(30); /* Touch CIS. */
2168 }
2169
2170#define HDA_MARK_STREAM(x) \
2171 if (/* Descriptor Error */ \
2172 (SDSTS((pThis), x) & HDA_REG_FIELD_FLAG_MASK(SDSTS, DE)) \
2173 /* FIFO Error */ \
2174 || (SDSTS((pThis), x) & HDA_REG_FIELD_FLAG_MASK(SDSTS, FE)) \
2175 /* Buffer Completion Interrupt Status */ \
2176 || (SDSTS((pThis), x) & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS))) \
2177 { \
2178 Log3Func(("[SD%RU8] BCIS: Marked\n", x)); \
2179 v |= RT_BIT(x); \
2180 }
2181
2182 HDA_MARK_STREAM(0);
2183 HDA_MARK_STREAM(1);
2184 HDA_MARK_STREAM(2);
2185 HDA_MARK_STREAM(3);
2186 HDA_MARK_STREAM(4);
2187 HDA_MARK_STREAM(5);
2188 HDA_MARK_STREAM(6);
2189 HDA_MARK_STREAM(7);
2190
2191#undef HDA_MARK_STREAM
2192
2193 /* "OR" bit of all interrupt status bits. */
2194 v |= v ? RT_BIT(31) : 0;
2195
2196 *pu32Value = v;
2197 return VINF_SUCCESS;
2198}
2199
2200static int hdaRegReadLPIB(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
2201{
2202 const uint8_t u8Strm = HDA_SD_NUM_FROM_REG(pThis, LPIB, iReg);
2203 uint32_t u32LPIB = HDA_STREAM_REG(pThis, LPIB, u8Strm);
2204#ifdef LOG_ENABLED
2205 const uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, u8Strm);
2206 LogFlowFunc(("[SD%RU8]: LPIB=%RU32, CBL=%RU32\n", u8Strm, u32LPIB, u32CBL));
2207#endif
2208
2209 *pu32Value = u32LPIB;
2210 return VINF_SUCCESS;
2211}
2212
2213static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
2214{
2215 RT_NOREF_PV(iReg);
2216
2217 /* HDA spec (1a): 3.3.16 WALCLK counter ticks with 24Mhz bitclock rate. */
2218 *pu32Value = (uint32_t)ASMMultU64ByU32DivByU32(PDMDevHlpTMTimeVirtGetNano(pThis->CTX_SUFF(pDevIns))
2219 - pThis->u64BaseTS, 24, 1000);
2220 LogFlowFunc(("%RU32\n", *pu32Value));
2221 return VINF_SUCCESS;
2222}
2223
2224#if 0 /** @todo hdaRegReadSSYNC & hdaRegWriteSSYNC are unused */
2225
2226static int hdaRegReadSSYNC(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
2227{
2228 RT_NOREF_PV(iReg);
2229
2230 /* HDA spec (1a): 3.3.16 WALCLK counter ticks with 24Mhz bitclock rate. */
2231 *pu32Value = HDA_REG(pThis, SSYNC);
2232 LogFlowFunc(("%RU32\n", *pu32Value));
2233 return VINF_SUCCESS;
2234}
2235
2236static int hdaRegWriteSSYNC(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2237{
2238 LogFlowFunc(("%RU32\n", u32Value));
2239 return hdaRegWriteU32(pThis, iReg, u32Value);
2240}
2241
2242#endif /* unused */
2243
2244static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2245{
2246 RT_NOREF_PV(iReg);
2247
2248 if (u32Value & HDA_REG_FIELD_FLAG_MASK(CORBRP, RST))
2249 {
2250 HDA_REG(pThis, CORBRP) = 0;
2251 }
2252#ifndef BIRD_THINKS_CORBRP_IS_MOSTLY_RO
2253 else
2254 return hdaRegWriteU8(pThis, iReg, u32Value);
2255#endif
2256 return VINF_SUCCESS;
2257}
2258
2259static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2260{
2261#ifdef IN_RING3
2262 int rc = hdaRegWriteU8(pThis, iReg, u32Value);
2263 AssertRC(rc);
2264 if ( HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP)
2265 && HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA) != 0)
2266 {
2267 return hdaCORBCmdProcess(pThis);
2268 }
2269 return rc;
2270#else
2271 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value);
2272 return VINF_IOM_R3_MMIO_WRITE;
2273#endif
2274}
2275
2276static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2277{
2278 RT_NOREF_PV(iReg);
2279
2280 uint32_t v = HDA_REG(pThis, CORBSTS);
2281 HDA_REG(pThis, CORBSTS) &= ~(v & u32Value);
2282 return VINF_SUCCESS;
2283}
2284
2285static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2286{
2287#ifdef IN_RING3
2288 int rc;
2289 rc = hdaRegWriteU16(pThis, iReg, u32Value);
2290 if (RT_FAILURE(rc))
2291 AssertRCReturn(rc, rc);
2292 if (HDA_REG(pThis, CORBWP) == HDA_REG(pThis, CORBRP))
2293 return VINF_SUCCESS;
2294 if (!HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA))
2295 return VINF_SUCCESS;
2296 rc = hdaCORBCmdProcess(pThis);
2297 return rc;
2298#else /* !IN_RING3 */
2299 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value);
2300 return VINF_IOM_R3_MMIO_WRITE;
2301#endif /* IN_RING3 */
2302}
2303
2304static int hdaRegWriteSDCBL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2305{
2306#ifdef IN_RING3
2307 if (HDA_REG_IND(pThis, iReg) == u32Value) /* Value already set? */
2308 return VINF_SUCCESS;
2309
2310 PHDASTREAM pStream = hdaStreamFromSD(pThis, HDA_SD_NUM_FROM_REG(pThis, CBL, iReg));
2311 if (!pStream)
2312 {
2313 LogFunc(("[SD%RU8]: Warning: Changing SDCBL on non-attached stream (0x%x)\n", HDA_SD_NUM_FROM_REG(pThis, CTL, iReg), u32Value));
2314 return hdaRegWriteU32(pThis, iReg, u32Value);
2315 }
2316
2317 int rc2 = hdaRegWriteSDLock(pThis, pStream, iReg, u32Value);
2318 AssertRC(rc2);
2319
2320 pStream->u32CBL = u32Value;
2321
2322 /* Reset BDLE state. */
2323 RT_ZERO(pStream->State.BDLE);
2324 pStream->State.uCurBDLE = 0;
2325
2326 rc2 = hdaRegWriteU32(pThis, iReg, u32Value);
2327 AssertRC(rc2);
2328
2329 LogFlowFunc(("[SD%RU8]: CBL=%RU32\n", pStream->u8SD, u32Value));
2330 hdaRegWriteSDUnlock(pStream);
2331
2332 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
2333#else /* !IN_RING3 */
2334 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value);
2335 return VINF_IOM_R3_MMIO_WRITE;
2336#endif /* IN_RING3 */
2337}
2338
2339static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2340{
2341#ifdef IN_RING3
2342 bool fRun = RT_BOOL(u32Value & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
2343 bool fInRun = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
2344
2345 bool fReset = RT_BOOL(u32Value & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST));
2346 bool fInReset = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST));
2347
2348 if (HDA_REG_IND(pThis, iReg) == u32Value) /* Value already set? */
2349 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
2350
2351 /* Get the stream descriptor. */
2352 uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, CTL, iReg);
2353
2354 /*
2355 * Extract the stream tag the guest wants to use for this specific
2356 * stream descriptor (SDn). This only can happen if the stream is in a non-running
2357 * state, so we're doing the lookup and assignment here.
2358 *
2359 * So depending on the guest OS, SD3 can use stream tag 4, for example.
2360 */
2361 uint8_t uTag = (u32Value >> HDA_SDCTL_NUM_SHIFT) & HDA_SDCTL_NUM_MASK;
2362 if (uTag > HDA_MAX_TAGS)
2363 {
2364 LogFunc(("[SD%RU8]: Warning: Invalid stream tag %RU8 specified!\n", uSD, uTag));
2365 return hdaRegWriteU24(pThis, iReg, u32Value);
2366 }
2367
2368 PHDATAG pTag = &pThis->aTags[uTag];
2369 AssertPtr(pTag);
2370
2371 LogFunc(("[SD%RU8]: Using stream tag=%RU8\n", uSD, uTag));
2372
2373 /* Assign new values. */
2374 pTag->uTag = uTag;
2375 pTag->pStrm = hdaStreamFromSD(pThis, uSD);
2376
2377 PHDASTREAM pStream = pTag->pStrm;
2378 AssertPtr(pStream);
2379
2380 /* Note: Do not use hdaRegWriteSDLock() here, as SDnCTL might change the RUN bit. */
2381 int rc2 = RTCritSectEnter(&pStream->State.CritSect);
2382 AssertRC(rc2);
2383
2384 LogFunc(("[SD%RU8]: fRun=%RTbool, fInRun=%RTbool, fReset=%RTbool, fInReset=%RTbool, %R[sdctl]\n",
2385 uSD, fRun, fInRun, fReset, fInReset, u32Value));
2386
2387 if (fInReset)
2388 {
2389 Assert(!fReset);
2390 Assert(!fInRun && !fRun);
2391
2392 /* Report that we're done resetting this stream by clearing SRST. */
2393 HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST);
2394
2395 LogFunc(("[SD%RU8]: Guest initiated exit of stream reset\n", uSD));
2396 }
2397 else if (fReset)
2398 {
2399 /* ICH6 datasheet 18.2.33 says that RUN bit should be cleared before initiation of reset. */
2400 Assert(!fInRun && !fRun);
2401
2402 LogFunc(("[SD%RU8]: Guest initiated enter to stream reset\n", pStream->u8SD));
2403 hdaStreamReset(pThis, pStream);
2404 }
2405 else
2406 {
2407 /*
2408 * We enter here to change DMA states only.
2409 */
2410 if (fInRun != fRun)
2411 {
2412 Assert(!fReset && !fInReset);
2413 LogFunc(("[SD%RU8]: State changed (fRun=%RTbool)\n", pStream->u8SD, fRun));
2414
2415 hdaStreamSetActive(pThis, pStream, fRun);
2416
2417 if (fRun)
2418 {
2419 /* (Re-)Fetch the current BDLE entry. */
2420 rc2 = hdaBDLEFetch(pThis, &pStream->State.BDLE, pStream->u64BDLBase, pStream->State.uCurBDLE);
2421 AssertRC(rc2);
2422 }
2423 }
2424
2425 if (!fInRun && !fRun)
2426 hdaStreamInit(pThis, pStream, pStream->u8SD);
2427 }
2428
2429 /* Make sure to handle interrupts here as well. */
2430 hdaProcessInterrupt(pThis);
2431
2432 rc2 = hdaRegWriteU24(pThis, iReg, u32Value);
2433 AssertRC(rc2);
2434
2435 hdaRegWriteSDUnlock(pStream);
2436 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
2437#else /* !IN_RING3 */
2438 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value);
2439 return VINF_IOM_R3_MMIO_WRITE;
2440#endif /* IN_RING3 */
2441}
2442
2443static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2444{
2445 uint32_t v = HDA_REG_IND(pThis, iReg);
2446 /* Clear (zero) FIFOE and DESE bits when writing 1 to it. */
2447 v &= ~(u32Value & v);
2448
2449 HDA_REG_IND(pThis, iReg) = v;
2450
2451 hdaProcessInterrupt(pThis);
2452 return VINF_SUCCESS;
2453}
2454
2455static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2456{
2457#ifdef IN_RING3
2458 if (HDA_REG_IND(pThis, iReg) == u32Value) /* Value already set? */
2459 return VINF_SUCCESS;
2460
2461 PHDASTREAM pStream = hdaStreamFromSD(pThis, HDA_SD_NUM_FROM_REG(pThis, LVI, iReg));
2462 if (!pStream)
2463 {
2464 LogFunc(("[SD%RU8]: Warning: Changing SDLVI on non-attached stream (0x%x)\n", HDA_SD_NUM_FROM_REG(pThis, CTL, iReg), u32Value));
2465 return hdaRegWriteU16(pThis, iReg, u32Value);
2466 }
2467
2468 int rc2 = hdaRegWriteSDLock(pThis, pStream, iReg, u32Value);
2469 AssertRC(rc2);
2470
2471 /** @todo Validate LVI. */
2472 pStream->u16LVI = u32Value;
2473
2474 /* Reset BDLE state. */
2475 RT_ZERO(pStream->State.BDLE);
2476 pStream->State.uCurBDLE = 0;
2477
2478 rc2 = hdaRegWriteU16(pThis, iReg, u32Value);
2479 AssertRC(rc2);
2480
2481 LogFlowFunc(("[SD%RU8]: LVI=%RU32\n", pStream->u8SD, u32Value));
2482 hdaRegWriteSDUnlock(pStream);
2483
2484 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
2485
2486#else /* !IN_RING3 */
2487 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value);
2488 return VINF_IOM_R3_MMIO_WRITE;
2489#endif /* IN_RING3 */
2490}
2491
2492#if 0 /** @todo hdaRegWriteSDFIFOW & hdaRegWriteSDFIFOS are unused */
2493static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2494{
2495 uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, FIFOW, iReg);
2496 /** @todo Only allow updating FIFOS if RUN bit is 0? */
2497 uint32_t u32FIFOW = 0;
2498
2499 if (hdaGetDirFromSD(uSD) != PDMAUDIODIR_IN) /* FIFOW for input streams only. */
2500 {
2501 LogRel(("HDA: Warning: Guest tried to write read-only FIFOW to stream #%RU8, ignoring\n", uSD));
2502 return VINF_SUCCESS;
2503 }
2504
2505 switch (u32Value)
2506 {
2507 case HDA_SDFIFOW_8B:
2508 case HDA_SDFIFOW_16B:
2509 case HDA_SDFIFOW_32B:
2510 u32FIFOW = u32Value;
2511 break;
2512 default:
2513 LogRel(("HDA: Warning: Guest tried write unsupported FIFOW (0x%x) to stream #%RU8, defaulting to 32 bytes\n",
2514 u32Value, uSD));
2515 u32FIFOW = HDA_SDFIFOW_32B;
2516 break;
2517 }
2518
2519 if (u32FIFOW)
2520 {
2521 LogFunc(("[SD%RU8]: Updating FIFOW to %RU32 bytes\n", uSD, hdaSDFIFOSToBytes(u32FIFOW)));
2522 /** @todo Update internal stream state with new FIFOS. */
2523
2524 return hdaRegWriteU16(pThis, iReg, u32FIFOW);
2525 }
2526
2527 return VINF_SUCCESS; /* Never reached. */
2528}
2529
2530/**
2531 * @note This method could be called for changing value on Output Streams
2532 * only (ICH6 datasheet 18.2.39).
2533 */
2534static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2535{
2536 uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, FIFOS, iReg);
2537 /** @todo Only allow updating FIFOS if RUN bit is 0? */
2538 uint32_t u32FIFOS = 0;
2539
2540 if (hdaGetDirFromSD(uSD) != PDMAUDIODIR_OUT) /* FIFOS for output streams only. */
2541 {
2542 LogRel(("HDA: Warning: Guest tried to write read-only FIFOS to stream #%RU8, ignoring\n", uSD));
2543 return VINF_SUCCESS;
2544 }
2545
2546 switch(u32Value)
2547 {
2548 case HDA_SDOFIFO_16B:
2549 case HDA_SDOFIFO_32B:
2550 case HDA_SDOFIFO_64B:
2551 case HDA_SDOFIFO_128B:
2552 case HDA_SDOFIFO_192B:
2553 u32FIFOS = u32Value;
2554 break;
2555
2556 case HDA_SDOFIFO_256B: /** @todo r=andy Investigate this. */
2557 LogFunc(("256-bit is unsupported, HDA is switched into 192-bit mode\n"));
2558 /* Fall through is intentional. */
2559 default:
2560 LogRel(("HDA: Warning: Guest tried write unsupported FIFOS (0x%x) to stream #%RU8, defaulting to 192 bytes\n",
2561 u32Value, uSD));
2562 u32FIFOS = HDA_SDOFIFO_192B;
2563 break;
2564 }
2565
2566 if (u32FIFOS)
2567 {
2568 LogFunc(("[SD%RU8]: Updating FIFOS to %RU32 bytes\n",
2569 HDA_SD_NUM_FROM_REG(pThis, FIFOS, iReg), hdaSDFIFOSToBytes(u32FIFOS)));
2570 /** @todo Update internal stream state with new FIFOS. */
2571
2572 return hdaRegWriteU16(pThis, iReg, u32FIFOS);
2573 }
2574
2575 return VINF_SUCCESS;
2576}
2577
2578#endif /* unused */
2579
2580#ifdef IN_RING3
2581static int hdaSDFMTToStrmCfg(uint32_t u32SDFMT, PPDMAUDIOSTREAMCFG pStrmCfg)
2582{
2583 AssertPtrReturn(pStrmCfg, VERR_INVALID_POINTER);
2584
2585# define EXTRACT_VALUE(v, mask, shift) ((v & ((mask) << (shift))) >> (shift))
2586
2587 int rc = VINF_SUCCESS;
2588
2589 uint32_t u32Hz = EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_BASE_RATE_MASK, HDA_SDFMT_BASE_RATE_SHIFT)
2590 ? 44100 : 48000;
2591 uint32_t u32HzMult = 1;
2592 uint32_t u32HzDiv = 1;
2593
2594 switch (EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_MULT_MASK, HDA_SDFMT_MULT_SHIFT))
2595 {
2596 case 0: u32HzMult = 1; break;
2597 case 1: u32HzMult = 2; break;
2598 case 2: u32HzMult = 3; break;
2599 case 3: u32HzMult = 4; break;
2600 default:
2601 LogFunc(("Unsupported multiplier %x\n",
2602 EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_MULT_MASK, HDA_SDFMT_MULT_SHIFT)));
2603 rc = VERR_NOT_SUPPORTED;
2604 break;
2605 }
2606 switch (EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_DIV_MASK, HDA_SDFMT_DIV_SHIFT))
2607 {
2608 case 0: u32HzDiv = 1; break;
2609 case 1: u32HzDiv = 2; break;
2610 case 2: u32HzDiv = 3; break;
2611 case 3: u32HzDiv = 4; break;
2612 case 4: u32HzDiv = 5; break;
2613 case 5: u32HzDiv = 6; break;
2614 case 6: u32HzDiv = 7; break;
2615 case 7: u32HzDiv = 8; break;
2616 default:
2617 LogFunc(("Unsupported divisor %x\n",
2618 EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_DIV_MASK, HDA_SDFMT_DIV_SHIFT)));
2619 rc = VERR_NOT_SUPPORTED;
2620 break;
2621 }
2622
2623 PDMAUDIOFMT enmFmt;
2624 switch (EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_BITS_MASK, HDA_SDFMT_BITS_SHIFT))
2625 {
2626 case 0:
2627 enmFmt = PDMAUDIOFMT_S8;
2628 break;
2629 case 1:
2630 enmFmt = PDMAUDIOFMT_S16;
2631 break;
2632 case 4:
2633 enmFmt = PDMAUDIOFMT_S32;
2634 break;
2635 default:
2636 AssertMsgFailed(("Unsupported bits per sample %x\n",
2637 EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_BITS_MASK, HDA_SDFMT_BITS_SHIFT)));
2638 enmFmt = PDMAUDIOFMT_INVALID;
2639 rc = VERR_NOT_SUPPORTED;
2640 break;
2641 }
2642
2643 if (RT_SUCCESS(rc))
2644 {
2645 pStrmCfg->uHz = u32Hz * u32HzMult / u32HzDiv;
2646 pStrmCfg->cChannels = (u32SDFMT & 0xf) + 1;
2647 pStrmCfg->enmFormat = enmFmt;
2648 pStrmCfg->enmEndianness = PDMAUDIOHOSTENDIANNESS;
2649 }
2650
2651# undef EXTRACT_VALUE
2652 return rc;
2653}
2654
2655static int hdaAddStreamOut(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
2656{
2657 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2658 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
2659
2660 AssertReturn(pCfg->enmDir == PDMAUDIODIR_OUT, VERR_INVALID_PARAMETER);
2661
2662 LogFlowFunc(("Stream=%s\n", pCfg->szName));
2663
2664 int rc = VINF_SUCCESS;
2665
2666 bool fUseFront = true; /* Always use front out by default. */
2667#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2668 bool fUseRear;
2669 bool fUseCenter;
2670 bool fUseLFE;
2671
2672 fUseRear = fUseCenter = fUseLFE = false;
2673
2674 /*
2675 * Use commonly used setups for speaker configurations.
2676 */
2677
2678 /** @todo Make the following configurable through mixer API and/or CFGM? */
2679 switch (pCfg->cChannels)
2680 {
2681 case 3: /* 2.1: Front (Stereo) + LFE. */
2682 {
2683 fUseLFE = true;
2684 break;
2685 }
2686
2687 case 4: /* Quadrophonic: Front (Stereo) + Rear (Stereo). */
2688 {
2689 fUseRear = true;
2690 break;
2691 }
2692
2693 case 5: /* 4.1: Front (Stereo) + Rear (Stereo) + LFE. */
2694 {
2695 fUseRear = true;
2696 fUseLFE = true;
2697 break;
2698 }
2699
2700 case 6: /* 5.1: Front (Stereo) + Rear (Stereo) + Center/LFE. */
2701 {
2702 fUseRear = true;
2703 fUseCenter = true;
2704 fUseLFE = true;
2705 break;
2706 }
2707
2708 default: /* Unknown; fall back to 2 front channels (stereo). */
2709 {
2710 rc = VERR_NOT_SUPPORTED;
2711 break;
2712 }
2713 }
2714#else /* !VBOX_WITH_AUDIO_HDA_51_SURROUND */
2715 /* Only support mono or stereo channels. */
2716 if ( pCfg->cChannels != 1 /* Mono */
2717 && pCfg->cChannels != 2 /* Stereo */)
2718 {
2719 rc = VERR_NOT_SUPPORTED;
2720 }
2721#endif
2722
2723 if (rc == VERR_NOT_SUPPORTED)
2724 {
2725 LogRel(("HDA: Unsupported channel count (%RU8), falling back to stereo channels\n", pCfg->cChannels));
2726 pCfg->cChannels = 2;
2727
2728 rc = VINF_SUCCESS;
2729 }
2730
2731 do
2732 {
2733 if (RT_FAILURE(rc))
2734 break;
2735
2736 if (fUseFront)
2737 {
2738 RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Front");
2739 pCfg->DestSource.Dest = PDMAUDIOPLAYBACKDEST_FRONT;
2740 pCfg->cChannels = 2;
2741
2742 rc = hdaCodecRemoveStream(pThis->pCodec, PDMAUDIOMIXERCTL_FRONT);
2743 if (RT_SUCCESS(rc))
2744 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_FRONT, pCfg);
2745 }
2746
2747#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2748 if ( RT_SUCCESS(rc)
2749 && (fUseCenter || fUseLFE))
2750 {
2751 RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Center/LFE");
2752 pCfg->DestSource.Dest = PDMAUDIOPLAYBACKDEST_CENTER_LFE;
2753 pCfg->cChannels = (fUseCenter && fUseLFE) ? 2 : 1;
2754
2755 rc = hdaCodecRemoveStream(pThis->pCodec, PDMAUDIOMIXERCTL_CENTER_LFE);
2756 if (RT_SUCCESS(rc))
2757 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_CENTER_LFE, pCfg);
2758 }
2759
2760 if ( RT_SUCCESS(rc)
2761 && fUseRear)
2762 {
2763 RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Rear");
2764 pCfg->DestSource.Dest = PDMAUDIOPLAYBACKDEST_REAR;
2765 pCfg->cChannels = 2;
2766
2767 rc = hdaCodecRemoveStream(pThis->pCodec, PDMAUDIOMIXERCTL_REAR);
2768 if (RT_SUCCESS(rc))
2769 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_REAR, pCfg);
2770 }
2771#endif /* VBOX_WITH_AUDIO_HDA_51_SURROUND */
2772
2773 } while (0);
2774
2775 LogFlowFuncLeaveRC(rc);
2776 return rc;
2777}
2778
2779static int hdaAddStreamIn(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
2780{
2781 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2782 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
2783
2784 AssertReturn(pCfg->enmDir == PDMAUDIODIR_IN, VERR_INVALID_PARAMETER);
2785
2786 LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->DestSource.Source));
2787
2788 int rc;
2789
2790 switch (pCfg->DestSource.Source)
2791 {
2792 case PDMAUDIORECSOURCE_LINE:
2793 {
2794 rc = hdaCodecRemoveStream(pThis->pCodec, PDMAUDIOMIXERCTL_LINE_IN);
2795 if (RT_SUCCESS(rc))
2796 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_LINE_IN, pCfg);
2797 break;
2798 }
2799#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2800 case PDMAUDIORECSOURCE_MIC:
2801 {
2802 rc = hdaCodecRemoveStream(pThis->pCodec, PDMAUDIOMIXERCTL_MIC_IN);
2803 if (RT_SUCCESS(rc))
2804 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_MIC_IN, pCfg);
2805 break;
2806 }
2807#endif
2808 default:
2809 rc = VERR_NOT_SUPPORTED;
2810 break;
2811 }
2812
2813 LogFlowFuncLeaveRC(rc);
2814 return rc;
2815}
2816#endif /* IN_RING3 */
2817
2818static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2819{
2820#ifdef IN_RING3
2821 PDMAUDIOSTREAMCFG strmCfg;
2822 RT_ZERO(strmCfg);
2823
2824 int rc = hdaSDFMTToStrmCfg(u32Value, &strmCfg);
2825 if (RT_FAILURE(rc))
2826 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
2827
2828 PHDASTREAM pStream = hdaStreamFromSD(pThis, HDA_SD_NUM_FROM_REG(pThis, FMT, iReg));
2829 if (!pStream)
2830 {
2831 LogFunc(("[SD%RU8]: Warning: Changing SDFMT on non-attached stream (0x%x)\n",
2832 HDA_SD_NUM_FROM_REG(pThis, FMT, iReg), u32Value));
2833 return hdaRegWriteU16(pThis, iReg, u32Value);
2834 }
2835
2836 int rcSem = hdaRegWriteSDLock(pThis, pStream, iReg, u32Value);
2837 AssertRC(rcSem);
2838
2839 LogFunc(("[SD%RU8]: Hz=%RU32, Channels=%RU8, enmFmt=%RU32\n",
2840 pStream->u8SD, strmCfg.uHz, strmCfg.cChannels, strmCfg.enmFormat));
2841
2842 /* Set audio direction. */
2843 strmCfg.enmDir = hdaGetDirFromSD(pStream->u8SD);
2844 switch (strmCfg.enmDir)
2845 {
2846 case PDMAUDIODIR_IN:
2847# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2848# error "Implement me!"
2849# else
2850 strmCfg.DestSource.Source = PDMAUDIORECSOURCE_LINE;
2851 RTStrCopy(strmCfg.szName, sizeof(strmCfg.szName), "Line In");
2852# endif
2853 break;
2854
2855 case PDMAUDIODIR_OUT:
2856 /* Destination(s) will be set in hdaAddStreamOut(),
2857 * based on the channels / stream layout. */
2858 break;
2859
2860 default:
2861 rc = VERR_NOT_SUPPORTED;
2862 break;
2863 }
2864
2865 /*
2866 * Initialize the stream mapping in any case, regardless if
2867 * we support surround audio or not. This is needed to handle
2868 * the supported channels within a single audio stream, e.g. mono/stereo.
2869 *
2870 * In other words, the stream mapping *always* knowns the real
2871 * number of channels in a single audio stream.
2872 */
2873 if (RT_SUCCESS(rc))
2874 {
2875 rc = hdaStreamMapInit(&pStream->State.Mapping, &strmCfg);
2876 AssertRC(rc);
2877 }
2878
2879 if (RT_SUCCESS(rc))
2880 {
2881 PHDADRIVER pDrv;
2882 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
2883 {
2884 int rc2;
2885 switch (strmCfg.enmDir)
2886 {
2887 case PDMAUDIODIR_OUT:
2888 rc2 = hdaAddStreamOut(pThis, &strmCfg);
2889 break;
2890
2891 case PDMAUDIODIR_IN:
2892 rc2 = hdaAddStreamIn(pThis, &strmCfg);
2893 break;
2894
2895 default:
2896 rc2 = VERR_NOT_SUPPORTED;
2897 AssertFailed();
2898 break;
2899 }
2900
2901 if ( RT_FAILURE(rc2)
2902 && (pDrv->Flags & PDMAUDIODRVFLAGS_PRIMARY)) /* We only care about primary drivers here, the rest may fail. */
2903 {
2904 if (RT_SUCCESS(rc))
2905 rc = rc2;
2906 /* Keep going. */
2907 }
2908 }
2909
2910 /* If (re-)opening the stream by the codec above failed, don't write the new
2911 * format to the register so that the guest is aware it didn't work. */
2912 if (RT_SUCCESS(rc))
2913 {
2914 rc = hdaRegWriteU16(pThis, iReg, u32Value);
2915 AssertRC(rc);
2916 }
2917 else
2918 LogFunc(("[SD%RU8]: (Re-)Opening stream failed with rc=%Rrc\n", pStream->u8SD, rc));
2919 }
2920
2921 if (RT_SUCCESS(rcSem))
2922 hdaRegWriteSDUnlock(pStream);
2923
2924 return VINF_SUCCESS; /* Never return failure. */
2925#else /* !IN_RING3 */
2926 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value);
2927 return VINF_IOM_R3_MMIO_WRITE;
2928#endif
2929}
2930
2931/* Note: Will be called for both, BDPL and BDPU, registers. */
2932DECLINLINE(int) hdaRegWriteSDBDPX(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value, uint8_t u8Strm)
2933{
2934#ifdef IN_RING3
2935 if (HDA_REG_IND(pThis, iReg) == u32Value) /* Value already set? */
2936 return VINF_SUCCESS;
2937
2938 PHDASTREAM pStream = hdaStreamFromSD(pThis, u8Strm);
2939 if (!pStream)
2940 {
2941 LogFunc(("[SD%RU8]: Warning: Changing SDBPL/SDBPU on non-attached stream (0x%x)\n", HDA_SD_NUM_FROM_REG(pThis, CTL, iReg), u32Value));
2942 return hdaRegWriteU32(pThis, iReg, u32Value);
2943 }
2944
2945 int rc2 = hdaRegWriteSDLock(pThis, pStream, iReg, u32Value);
2946 AssertRC(rc2);
2947
2948 rc2 = hdaRegWriteU32(pThis, iReg, u32Value);
2949 AssertRC(rc2);
2950
2951 /* Update BDL base. */
2952 pStream->u64BDLBase = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, u8Strm),
2953 HDA_STREAM_REG(pThis, BDPU, u8Strm));
2954 /* Reset BDLE state. */
2955 RT_ZERO(pStream->State.BDLE);
2956 pStream->State.uCurBDLE = 0;
2957
2958 LogFlowFunc(("[SD%RU8]: BDLBase=0x%x\n", pStream->u8SD, pStream->u64BDLBase));
2959 hdaRegWriteSDUnlock(pStream);
2960
2961 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
2962#else /* !IN_RING3 */
2963 RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value); RT_NOREF_PV(u8Strm);
2964 return VINF_IOM_R3_MMIO_WRITE;
2965#endif /* IN_RING3 */
2966}
2967
2968static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2969{
2970 return hdaRegWriteSDBDPX(pThis, iReg, u32Value, HDA_SD_NUM_FROM_REG(pThis, BDPL, iReg));
2971}
2972
2973static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2974{
2975 return hdaRegWriteSDBDPX(pThis, iReg, u32Value, HDA_SD_NUM_FROM_REG(pThis, BDPU, iReg));
2976}
2977
2978#ifdef IN_RING3
2979/**
2980 * XXX
2981 *
2982 * @return VBox status code. ALL THE CALLERS IGNORES THIS. DUH.
2983 *
2984 * @param pThis Pointer to HDA state.
2985 * @param iReg Register to write (logging only).
2986 * @param u32Value Value to write (logging only).
2987 */
2988DECLINLINE(int) hdaRegWriteSDLock(PHDASTATE pThis, PHDASTREAM pStream, uint32_t iReg, uint32_t u32Value)
2989{
2990 RT_NOREF(pThis, iReg, u32Value);
2991 AssertPtr(pThis); /* don't bother returning errors */
2992 AssertPtr(pStream);
2993
2994# ifdef VBOX_STRICT
2995 /* Check if the SD's RUN bit is set. */
2996 uint32_t u32SDCTL = HDA_STREAM_REG(pThis, CTL, pStream->u8SD);
2997 bool fIsRunning = RT_BOOL(u32SDCTL & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
2998 if (fIsRunning)
2999 {
3000 LogFunc(("[SD%RU8]: Warning: Cannot write to register 0x%x (0x%x) when RUN bit is set (%R[sdctl])\n",
3001 pStream->u8SD, iReg, u32Value, u32SDCTL));
3002# ifdef DEBUG_andy
3003 AssertFailed();
3004# endif
3005 return VERR_ACCESS_DENIED;
3006 }
3007# endif
3008
3009 return RTCritSectEnter(&pStream->State.CritSect);
3010}
3011
3012DECLINLINE(void) hdaRegWriteSDUnlock(PHDASTREAM pStream)
3013{
3014 AssertPtrReturnVoid(pStream);
3015
3016 int rc2 = RTCritSectLeave(&pStream->State.CritSect);
3017 AssertRC(rc2);
3018}
3019#endif /* IN_RING3 */
3020
3021static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
3022{
3023 /* regarding 3.4.3 we should mark IRS as busy in case CORB is active */
3024 if ( HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP)
3025 || HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA))
3026 {
3027 HDA_REG(pThis, IRS) = HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy */
3028 }
3029
3030 return hdaRegReadU32(pThis, iReg, pu32Value);
3031}
3032
3033static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
3034{
3035 RT_NOREF_PV(iReg);
3036
3037 /*
3038 * If the guest set the ICB bit of IRS register, HDA should process the verb in IC register,
3039 * write the response to IR register, and set the IRV (valid in case of success) bit of IRS register.
3040 */
3041 if ( u32Value & HDA_REG_FIELD_FLAG_MASK(IRS, ICB)
3042 && !HDA_REG_FLAG_VALUE(pThis, IRS, ICB))
3043 {
3044#ifdef IN_RING3
3045 uint32_t uCmd = HDA_REG(pThis, IC);
3046
3047 if (HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP))
3048 {
3049 /*
3050 * 3.4.3: Defines behavior of immediate Command status register.
3051 */
3052 LogRel(("HDA: Guest attempted process immediate verb (%x) with active CORB\n", uCmd));
3053 return VINF_SUCCESS;
3054 }
3055
3056 HDA_REG(pThis, IRS) = HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy */
3057
3058 uint64_t uResp;
3059 int rc2 = pThis->pCodec->pfnLookup(pThis->pCodec,
3060 HDA_CODEC_CMD(uCmd, 0 /* LUN */), &uResp);
3061 if (RT_FAILURE(rc2))
3062 LogFunc(("Codec lookup failed with rc2=%Rrc\n", rc2));
3063
3064 HDA_REG(pThis, IR) = (uint32_t)uResp; /** @todo r=andy Do we need a 64-bit response? */
3065 HDA_REG(pThis, IRS) = HDA_REG_FIELD_FLAG_MASK(IRS, IRV); /* result is ready */
3066 HDA_REG(pThis, IRS) &= ~HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy is clear */
3067 return VINF_SUCCESS;
3068#else /* !IN_RING3 */
3069 return VINF_IOM_R3_MMIO_WRITE;
3070#endif /* !IN_RING3 */
3071 }
3072
3073 /*
3074 * Once the guest read the response, it should clean the IRV bit of the IRS register.
3075 */
3076 if ( u32Value & HDA_REG_FIELD_FLAG_MASK(IRS, IRV)
3077 && HDA_REG_FLAG_VALUE(pThis, IRS, IRV))
3078 HDA_REG(pThis, IRS) &= ~HDA_REG_FIELD_FLAG_MASK(IRS, IRV);
3079 return VINF_SUCCESS;
3080}
3081
3082static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
3083{
3084 RT_NOREF_PV(iReg);
3085
3086 if (u32Value & HDA_REG_FIELD_FLAG_MASK(RIRBWP, RST))
3087 HDA_REG(pThis, RIRBWP) = 0;
3088
3089 /* The remaining bits are O, see 6.2.22. */
3090 return VINF_SUCCESS;
3091}
3092
3093static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
3094{
3095 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
3096 int rc = hdaRegWriteU32(pThis, iReg, u32Value);
3097 if (RT_FAILURE(rc))
3098 AssertRCReturn(rc, rc);
3099
3100 switch(iReg)
3101 {
3102 case HDA_REG_CORBLBASE:
3103 pThis->u64CORBBase &= UINT64_C(0xFFFFFFFF00000000);
3104 pThis->u64CORBBase |= pThis->au32Regs[iRegMem];
3105 break;
3106 case HDA_REG_CORBUBASE:
3107 pThis->u64CORBBase &= UINT64_C(0x00000000FFFFFFFF);
3108 pThis->u64CORBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32);
3109 break;
3110 case HDA_REG_RIRBLBASE:
3111 pThis->u64RIRBBase &= UINT64_C(0xFFFFFFFF00000000);
3112 pThis->u64RIRBBase |= pThis->au32Regs[iRegMem];
3113 break;
3114 case HDA_REG_RIRBUBASE:
3115 pThis->u64RIRBBase &= UINT64_C(0x00000000FFFFFFFF);
3116 pThis->u64RIRBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32);
3117 break;
3118 case HDA_REG_DPLBASE:
3119 {
3120 pThis->u64DPBase &= UINT64_C(0xFFFFFFFF00000000);
3121 pThis->u64DPBase |= pThis->au32Regs[iRegMem];
3122
3123 /* Also make sure to handle the DMA position enable bit. */
3124 pThis->fDMAPosition = RT_BOOL(pThis->u64DPBase & RT_BIT_64(0));
3125 LogRel2(("HDA: %s DMA position buffer\n", pThis->fDMAPosition ? "Enabled" : "Disabled"));
3126 break;
3127 }
3128 case HDA_REG_DPUBASE:
3129 pThis->u64DPBase &= UINT64_C(0x00000000FFFFFFFF);
3130 pThis->u64DPBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32);
3131 break;
3132 default:
3133 AssertMsgFailed(("Invalid index\n"));
3134 break;
3135 }
3136
3137 LogFunc(("CORB base:%llx RIRB base: %llx DP base: %llx\n",
3138 pThis->u64CORBBase, pThis->u64RIRBBase, pThis->u64DPBase));
3139 return rc;
3140}
3141
3142static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
3143{
3144 RT_NOREF_PV(iReg);
3145
3146 uint8_t v = HDA_REG(pThis, RIRBSTS);
3147 HDA_REG(pThis, RIRBSTS) &= ~(v & u32Value);
3148
3149 return hdaProcessInterrupt(pThis);
3150}
3151
3152#ifdef IN_RING3
3153#ifdef LOG_ENABLED
3154static void hdaBDLEDumpAll(PHDASTATE pThis, uint64_t u64BDLBase, uint16_t cBDLE)
3155{
3156 LogFlowFunc(("BDLEs @ 0x%x (%RU16):\n", u64BDLBase, cBDLE));
3157 if (!u64BDLBase)
3158 return;
3159
3160 uint32_t cbBDLE = 0;
3161 for (uint16_t i = 0; i < cBDLE; i++)
3162 {
3163 uint8_t bdle[16]; /** @todo Use a define. */
3164 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BDLBase + i * 16, bdle, 16); /** @todo Use a define. */
3165
3166 uint64_t addr = *(uint64_t *)bdle;
3167 uint32_t len = *(uint32_t *)&bdle[8];
3168 uint32_t ioc = *(uint32_t *)&bdle[12];
3169
3170 LogFlowFunc(("\t#%03d BDLE(adr:0x%llx, size:%RU32, ioc:%RTbool)\n",
3171 i, addr, len, RT_BOOL(ioc & 0x1)));
3172
3173 cbBDLE += len;
3174 }
3175
3176 LogFlowFunc(("Total: %RU32 bytes\n", cbBDLE));
3177
3178 if (!pThis->u64DPBase) /* No DMA base given? Bail out. */
3179 return;
3180
3181 LogFlowFunc(("DMA counters:\n"));
3182
3183 for (int i = 0; i < cBDLE; i++)
3184 {
3185 uint32_t uDMACnt;
3186 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), (pThis->u64DPBase & DPBASE_ADDR_MASK) + (i * 2 * sizeof(uint32_t)),
3187 &uDMACnt, sizeof(uDMACnt));
3188
3189 LogFlowFunc(("\t#%03d DMA @ 0x%x\n", i , uDMACnt));
3190 }
3191}
3192#endif
3193
3194/**
3195 * Fetches a Bundle Descriptor List Entry (BDLE) from the DMA engine.
3196 *
3197 * @param pThis Pointer to HDA state.
3198 * @param pBDLE Where to store the fetched result.
3199 * @param u64BaseDMA Address base of DMA engine to use.
3200 * @param u16Entry BDLE entry to fetch.
3201 */
3202static int hdaBDLEFetch(PHDASTATE pThis, PHDABDLE pBDLE, uint64_t u64BaseDMA, uint16_t u16Entry)
3203{
3204 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
3205 AssertPtrReturn(pBDLE, VERR_INVALID_POINTER);
3206 AssertReturn(u64BaseDMA, VERR_INVALID_PARAMETER);
3207
3208 if (!u64BaseDMA)
3209 {
3210 LogRel2(("HDA: Unable to fetch BDLE #%RU16 - no base DMA address set (yet)\n", u16Entry));
3211 return VERR_NOT_FOUND;
3212 }
3213 /** @todo Compare u16Entry with LVI. */
3214
3215 uint8_t uBundleEntry[16]; /** @todo Define a BDLE length. */
3216 int rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BaseDMA + u16Entry * 16, /** @todo Define a BDLE length. */
3217 uBundleEntry, RT_ELEMENTS(uBundleEntry));
3218 if (RT_FAILURE(rc))
3219 return rc;
3220
3221 RT_BZERO(pBDLE, sizeof(HDABDLE));
3222
3223 pBDLE->State.u32BDLIndex = u16Entry;
3224 pBDLE->u64BufAdr = *(uint64_t *) uBundleEntry;
3225 pBDLE->u32BufSize = *(uint32_t *)&uBundleEntry[8];
3226 if (pBDLE->u32BufSize < sizeof(uint16_t)) /* Must be at least one word. */
3227 return VERR_INVALID_STATE;
3228
3229 pBDLE->fIntOnCompletion = (*(uint32_t *)&uBundleEntry[12]) & RT_BIT(0);
3230
3231 return VINF_SUCCESS;
3232}
3233
3234/**
3235 * Returns the number of outstanding stream data bytes which need to be processed
3236 * by the DMA engine assigned to this stream.
3237 *
3238 * @return Number of bytes for the DMA engine to process.
3239 */
3240DECLINLINE(uint32_t) hdaStreamGetTransferSize(PHDASTATE pThis, PHDASTREAM pStream, uint32_t cbMax)
3241{
3242 AssertPtrReturn(pThis, 0);
3243 AssertPtrReturn(pStream, 0);
3244
3245 if (!cbMax)
3246 return 0;
3247
3248 PHDABDLE pBDLE = &pStream->State.BDLE;
3249
3250 uint32_t u32LPIB = HDA_STREAM_REG(pThis, LPIB, pStream->u8SD);
3251 Assert(u32LPIB <= pStream->u32CBL);
3252
3253 uint32_t cbFree = pStream->u32CBL - u32LPIB;
3254 if (cbFree)
3255 {
3256 /* Limit to the available free space of the current BDLE. */
3257 cbFree = RT_MIN(cbFree, pBDLE->u32BufSize - pBDLE->State.u32BufOff);
3258
3259 /* Make sure we only copy as much as the stream's FIFO can hold (SDFIFOS, 18.2.39). */
3260 cbFree = RT_MIN(cbFree, uint32_t(pStream->u16FIFOS));
3261
3262 /* Make sure we only transfer as many bytes as requested. */
3263 cbFree = RT_MIN(cbFree, cbMax);
3264
3265 if (pBDLE->State.cbBelowFIFOW)
3266 {
3267 /* Are we not going to reach (or exceed) the FIFO watermark yet with the data to copy?
3268 * No need to read data from DMA then. */
3269 if (cbFree > pBDLE->State.cbBelowFIFOW)
3270 {
3271 /* Subtract the amount of bytes that still would fit in the stream's FIFO
3272 * and therefore do not need to be processed by DMA. */
3273 cbFree -= pBDLE->State.cbBelowFIFOW;
3274 }
3275 }
3276 }
3277
3278 LogFlowFunc(("[SD%RU8]: CBL=%RU32, LPIB=%RU32, FIFOS=%RU16, cbFree=%RU32, %R[bdle]\n", pStream->u8SD,
3279 pStream->u32CBL, HDA_STREAM_REG(pThis, LPIB, pStream->u8SD), pStream->u16FIFOS, cbFree, pBDLE));
3280 return cbFree;
3281}
3282
3283DECLINLINE(void) hdaBDLEUpdate(PHDABDLE pBDLE, uint32_t cbData, uint32_t cbProcessed)
3284{
3285 AssertPtrReturnVoid(pBDLE);
3286
3287 if (!cbData || !cbProcessed)
3288 return;
3289
3290 /* Fewer than cbBelowFIFOW bytes were copied.
3291 * Probably we need to move the buffer, but it is rather hard to imagine a situation
3292 * where it might happen. */
3293 AssertMsg((cbProcessed == pBDLE->State.cbBelowFIFOW + cbData), /* we assume that we write the entire buffer including unreported bytes */
3294 ("cbProcessed=%RU32 != pBDLE->State.cbBelowFIFOW=%RU32 + cbData=%RU32\n",
3295 cbProcessed, pBDLE->State.cbBelowFIFOW, cbData));
3296
3297#if 0
3298 if ( pBDLE->State.cbBelowFIFOW
3299 && pBDLE->State.cbBelowFIFOW <= cbWritten)
3300 {
3301 LogFlowFunc(("BDLE(cbUnderFifoW:%RU32, off:%RU32, size:%RU32)\n",
3302 pBDLE->State.cbBelowFIFOW, pBDLE->State.u32BufOff, pBDLE->u32BufSize));
3303 }
3304#endif
3305
3306 pBDLE->State.cbBelowFIFOW -= RT_MIN(pBDLE->State.cbBelowFIFOW, cbProcessed);
3307 Assert(pBDLE->State.cbBelowFIFOW == 0);
3308
3309 /* We always increment the position of DMA buffer counter because we're always reading
3310 * into an intermediate buffer. */
3311 pBDLE->State.u32BufOff += cbData;
3312 Assert(pBDLE->State.u32BufOff <= pBDLE->u32BufSize);
3313
3314 LogFlowFunc(("cbData=%RU32, cbProcessed=%RU32, %R[bdle]\n", cbData, cbProcessed, pBDLE));
3315}
3316
3317#ifdef IN_RING3
3318/**
3319 * Initializes a stream mapping structure according to the given stream configuration.
3320 *
3321 * @return IPRT status code.
3322 * @param pMapping Pointer to mapping to initialize.
3323 * @param pCfg Pointer to stream configuration to use.
3324 */
3325static int hdaStreamMapInit(PHDASTREAMMAPPING pMapping, PPDMAUDIOSTREAMCFG pCfg)
3326{
3327 AssertPtrReturn(pMapping, VERR_INVALID_POINTER);
3328 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
3329
3330 AssertReturn(pCfg->cChannels, VERR_INVALID_PARAMETER);
3331
3332 hdaStreamMapReset(pMapping);
3333
3334 pMapping->paChannels = (PPDMAUDIOSTREAMCHANNEL)RTMemAlloc(sizeof(PDMAUDIOSTREAMCHANNEL) * pCfg->cChannels);
3335 if (!pMapping->paChannels)
3336 return VERR_NO_MEMORY;
3337
3338 PDMAUDIOPCMPROPS Props;
3339 int rc = DrvAudioHlpStreamCfgToProps(pCfg, &Props);
3340 if (RT_FAILURE(rc))
3341 return rc;
3342
3343 Assert(RT_IS_POWER_OF_TWO(Props.cBits));
3344
3345 /** @todo We assume all channels in a stream have the same format. */
3346 PPDMAUDIOSTREAMCHANNEL pChan = pMapping->paChannels;
3347 for (uint8_t i = 0; i < pCfg->cChannels; i++)
3348 {
3349 pChan->uChannel = i;
3350 pChan->cbStep = (Props.cBits / 2);
3351 pChan->cbFrame = pChan->cbStep * pCfg->cChannels;
3352 pChan->cbFirst = i * pChan->cbStep;
3353 pChan->cbOff = pChan->cbFirst;
3354
3355 int rc2 = hdaStreamChannelDataInit(&pChan->Data, PDMAUDIOSTREAMCHANNELDATA_FLAG_NONE);
3356 if (RT_SUCCESS(rc))
3357 rc = rc2;
3358
3359 if (RT_FAILURE(rc))
3360 break;
3361
3362 pChan++;
3363 }
3364
3365 if ( RT_SUCCESS(rc)
3366 /* Create circular buffer if not created yet. */
3367 && !pMapping->pCircBuf)
3368 {
3369 rc = RTCircBufCreate(&pMapping->pCircBuf, _4K); /** @todo Make size configurable? */
3370 }
3371
3372 if (RT_SUCCESS(rc))
3373 {
3374 pMapping->cChannels = pCfg->cChannels;
3375#ifdef VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT
3376 pMapping->enmLayout = PDMAUDIOSTREAMLAYOUT_INTERLEAVED;
3377#else
3378 pMapping->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED;
3379#endif
3380 }
3381
3382 return rc;
3383}
3384
3385/**
3386 * Destroys a given stream mapping.
3387 *
3388 * @param pMapping Pointer to mapping to destroy.
3389 */
3390static void hdaStreamMapDestroy(PHDASTREAMMAPPING pMapping)
3391{
3392 hdaStreamMapReset(pMapping);
3393
3394 if (pMapping->pCircBuf)
3395 {
3396 RTCircBufDestroy(pMapping->pCircBuf);
3397 pMapping->pCircBuf = NULL;
3398 }
3399}
3400
3401/**
3402 * Resets a given stream mapping.
3403 *
3404 * @param pMapping Pointer to mapping to reset.
3405 */
3406static void hdaStreamMapReset(PHDASTREAMMAPPING pMapping)
3407{
3408 AssertPtrReturnVoid(pMapping);
3409
3410 pMapping->enmLayout = PDMAUDIOSTREAMLAYOUT_UNKNOWN;
3411
3412 if (pMapping->cChannels)
3413 {
3414 for (uint8_t i = 0; i < pMapping->cChannels; i++)
3415 hdaStreamChannelDataDestroy(&pMapping->paChannels[i].Data);
3416
3417 AssertPtr(pMapping->paChannels);
3418 RTMemFree(pMapping->paChannels);
3419 pMapping->paChannels = NULL;
3420
3421 pMapping->cChannels = 0;
3422 }
3423}
3424#endif /* IN_RING3 */
3425
3426DECLINLINE(bool) hdaStreamNeedsNextBDLE(PHDASTATE pThis, PHDASTREAM pStream)
3427{
3428 AssertPtrReturn(pThis, false);
3429 AssertPtrReturn(pStream, false);
3430
3431 PHDABDLE pBDLE = &pStream->State.BDLE;
3432 uint32_t u32LPIB = HDA_STREAM_REG(pThis, LPIB, pStream->u8SD);
3433
3434 /* Did we reach the CBL (Cyclic Buffer List) limit? */
3435 bool fCBLLimitReached = u32LPIB >= pStream->u32CBL;
3436
3437 /* Do we need to use the next BDLE entry? Either because we reached
3438 * the CBL limit or our internal DMA buffer is full. */
3439 bool fNeedsNextBDLE = ( fCBLLimitReached
3440 || (pBDLE->State.u32BufOff >= pBDLE->u32BufSize));
3441
3442 Assert(u32LPIB <= pStream->u32CBL);
3443 Assert(pBDLE->State.u32BufOff <= pBDLE->u32BufSize);
3444
3445 LogFlowFunc(("[SD%RU8]: LPIB=%RU32, CBL=%RU32, fCBLLimitReached=%RTbool, fNeedsNextBDLE=%RTbool, %R[bdle]\n",
3446 pStream->u8SD, u32LPIB, pStream->u32CBL, fCBLLimitReached, fNeedsNextBDLE, pBDLE));
3447
3448 return fNeedsNextBDLE;
3449}
3450
3451DECLINLINE(void) hdaStreamTransferUpdate(PHDASTATE pThis, PHDASTREAM pStream, uint32_t cbInc)
3452{
3453 AssertPtrReturnVoid(pThis);
3454 AssertPtrReturnVoid(pStream);
3455
3456 LogFlowFunc(("[SD%RU8]: cbInc=%RU32\n", pStream->u8SD, cbInc));
3457
3458 //Assert(cbInc <= pStream->u16FIFOS);
3459
3460 if (!cbInc) /* Nothing to do? Bail out early. */
3461 return;
3462
3463 PHDABDLE pBDLE = &pStream->State.BDLE;
3464
3465 /*
3466 * If we're below the FIFO watermark (SDFIFOW), it's expected that HDA
3467 * doesn't fetch anything via DMA, so just update LPIB.
3468 * (ICH6 datasheet 18.2.38).
3469 */
3470 if (pBDLE->State.cbBelowFIFOW == 0) /* Did we hit (or exceed) the watermark? */
3471 {
3472 uint32_t u32LPIB = HDA_STREAM_REG(pThis, LPIB, pStream->u8SD);
3473
3474 AssertMsg(((u32LPIB + cbInc) <= pStream->u32CBL),
3475 ("[SD%RU8] Increment (%RU32) exceeds CBL (%RU32): LPIB (%RU32)\n",
3476 pStream->u8SD, cbInc, pStream->u32CBL, u32LPIB));
3477
3478 u32LPIB = RT_MIN(u32LPIB + cbInc, pStream->u32CBL);
3479
3480 LogFlowFunc(("[SD%RU8]: LPIB: %RU32 -> %RU32, CBL=%RU32\n",
3481 pStream->u8SD,
3482 HDA_STREAM_REG(pThis, LPIB, pStream->u8SD), HDA_STREAM_REG(pThis, LPIB, pStream->u8SD) + cbInc,
3483 pStream->u32CBL));
3484
3485 hdaStreamUpdateLPIB(pThis, pStream, u32LPIB);
3486 }
3487}
3488
3489static bool hdaStreamTransferIsComplete(PHDASTATE pThis, PHDASTREAM pStream, bool *pfInterrupt)
3490{
3491 AssertPtrReturn(pThis, true);
3492 AssertPtrReturn(pStream, true);
3493
3494 bool fInterrupt = false;
3495 bool fIsComplete = false;
3496
3497 PHDABDLE pBDLE = &pStream->State.BDLE;
3498#ifdef LOG_ENABLED
3499 const uint32_t u32LPIB = HDA_STREAM_REG(pThis, LPIB, pStream->u8SD);
3500#endif
3501
3502 /* Check if the current BDLE entry is complete (full). */
3503 if (pBDLE->State.u32BufOff >= pBDLE->u32BufSize)
3504 {
3505 Assert(pBDLE->State.u32BufOff <= pBDLE->u32BufSize);
3506
3507 if (/* IOC (Interrupt On Completion) bit set? */
3508 pBDLE->fIntOnCompletion
3509 /* All data put into the DMA FIFO? */
3510 && pBDLE->State.cbBelowFIFOW == 0
3511 )
3512 {
3513 LogFlowFunc(("[SD%RU8]: %R[bdle] => COMPLETE\n", pStream->u8SD, pBDLE));
3514
3515 /*
3516 * If the ICE (IOCE, "Interrupt On Completion Enable") bit of the SDCTL register is set
3517 * we need to generate an interrupt.
3518 */
3519 if (HDA_STREAM_REG(pThis, CTL, pStream->u8SD) & HDA_REG_FIELD_FLAG_MASK(SDCTL, ICE))
3520 fInterrupt = true;
3521 }
3522
3523 fIsComplete = true;
3524 }
3525
3526 if (pfInterrupt)
3527 *pfInterrupt = fInterrupt;
3528
3529 LogFlowFunc(("[SD%RU8]: u32LPIB=%RU32, CBL=%RU32, fIsComplete=%RTbool, fInterrupt=%RTbool, %R[bdle]\n",
3530 pStream->u8SD, u32LPIB, pStream->u32CBL, fIsComplete, fInterrupt, pBDLE));
3531
3532 return fIsComplete;
3533}
3534
3535/**
3536 * hdaReadAudio - copies samples from audio backend to DMA.
3537 * Note: This function writes to the DMA buffer immediately,
3538 * but "reports bytes" when all conditions are met (FIFOW).
3539 */
3540static int hdaReadAudio(PHDASTATE pThis, PHDASTREAM pStream, uint32_t cbToRead, uint32_t *pcbRead)
3541{
3542 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
3543 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
3544 /* pcbRead is optional. */
3545
3546 int rc;
3547 uint32_t cbRead = 0;
3548
3549 do
3550 {
3551 PHDABDLE pBDLE = &pStream->State.BDLE;
3552
3553 if (!cbToRead)
3554 {
3555 rc = VINF_EOF;
3556 break;
3557 }
3558
3559 AssertPtr(pStream->pMixSink);
3560 AssertPtr(pStream->pMixSink->pMixSink);
3561 rc = AudioMixerSinkRead(pStream->pMixSink->pMixSink, AUDMIXOP_BLEND, pBDLE->State.au8FIFO, cbToRead, &cbRead);
3562 if (RT_FAILURE(rc))
3563 break;
3564
3565 if (!cbRead)
3566 {
3567 rc = VINF_EOF;
3568 break;
3569 }
3570
3571 /* Sanity checks. */
3572 Assert(cbRead <= cbToRead);
3573 Assert(cbRead <= sizeof(pBDLE->State.au8FIFO));
3574 Assert(cbRead <= pBDLE->u32BufSize - pBDLE->State.u32BufOff);
3575
3576 /*
3577 * Write to the BDLE's DMA buffer.
3578 */
3579 rc = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns),
3580 pBDLE->u64BufAdr + pBDLE->State.u32BufOff,
3581 pBDLE->State.au8FIFO, cbRead);
3582 AssertRC(rc);
3583
3584#ifdef HDA_DEBUG_DUMP_PCM_DATA
3585 RTFILE fh;
3586 RTFileOpen(&fh, HDA_DEBUG_DUMP_PCM_DATA_PATH "hdaReadAudio-hda.pcm",
3587 RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND | RTFILE_O_WRITE | RTFILE_O_DENY_NONE);
3588 RTFileWrite(fh, pBDLE->State.au8FIFO, cbRead, NULL);
3589 RTFileClose(fh);
3590#endif
3591 if (pBDLE->State.cbBelowFIFOW + cbRead > hdaStreamGetFIFOW(pThis, pStream))
3592 {
3593 Assert(pBDLE->State.u32BufOff + cbRead <= pBDLE->u32BufSize);
3594 pBDLE->State.u32BufOff += cbRead;
3595 pBDLE->State.cbBelowFIFOW = 0;
3596 //hdaBackendReadTransferReported(pBDLE, cbDMAData, cbRead, &cbRead, pcbAvail);
3597 }
3598 else
3599 {
3600 Assert(pBDLE->State.u32BufOff + cbRead <= pBDLE->u32BufSize);
3601 pBDLE->State.u32BufOff += cbRead;
3602 pBDLE->State.cbBelowFIFOW += cbRead;
3603 Assert(pBDLE->State.cbBelowFIFOW <= hdaStreamGetFIFOW(pThis, pStream));
3604 //hdaBackendTransferUnreported(pThis, pBDLE, pStreamDesc, cbRead, pcbAvail);
3605
3606 rc = VERR_NO_DATA;
3607 }
3608
3609 } while (0);
3610
3611 if (RT_SUCCESS(rc))
3612 {
3613 if (pcbRead)
3614 *pcbRead = cbRead;
3615 }
3616
3617 if (RT_FAILURE(rc))
3618 LogFlowFunc(("Failed with %Rrc\n", rc));
3619
3620 return rc;
3621}
3622
3623static int hdaWriteAudio(PHDASTATE pThis, PHDASTREAM pStream, uint32_t cbToWrite, uint32_t *pcbWritten)
3624{
3625 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
3626 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
3627 /* pcbWritten is optional. */
3628
3629 PHDABDLE pBDLE = &pStream->State.BDLE;
3630
3631 uint32_t cbWritten = 0;
3632
3633 /*
3634 * Copy from DMA to the corresponding stream buffer (if there are any bytes from the
3635 * previous unreported transfer we write at offset 'pBDLE->State.cbUnderFifoW').
3636 */
3637 int rc;
3638 if (!cbToWrite)
3639 {
3640 rc = VINF_EOF;
3641 }
3642 else
3643 {
3644 void *pvBuf = pBDLE->State.au8FIFO + pBDLE->State.cbBelowFIFOW;
3645 Assert(cbToWrite >= pBDLE->State.cbBelowFIFOW);
3646 uint32_t cbBuf = cbToWrite - pBDLE->State.cbBelowFIFOW;
3647
3648 /*
3649 * Read from the current BDLE's DMA buffer.
3650 */
3651 rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns),
3652 pBDLE->u64BufAdr + pBDLE->State.u32BufOff,
3653 pvBuf, cbBuf);
3654 AssertRC(rc);
3655
3656#ifdef HDA_DEBUG_DUMP_PCM_DATA
3657 RTFILE fh;
3658 RTFileOpen(&fh, HDA_DEBUG_DUMP_PCM_DATA_PATH "hdaWriteAudio-hda.pcm",
3659 RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND | RTFILE_O_WRITE | RTFILE_O_DENY_NONE);
3660 RTFileWrite(fh, pvBuf, cbBuf, NULL);
3661 RTFileClose(fh);
3662#endif
3663
3664#ifdef VBOX_WITH_STATISTICS
3665 STAM_COUNTER_ADD(&pThis->StatBytesRead, cbBuf);
3666#endif
3667 /*
3668 * Write to audio backend. We should ensure that we have enough bytes to copy to the backend.
3669 */
3670 if (cbBuf >= hdaStreamGetFIFOW(pThis, pStream))
3671 {
3672#if defined(VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT) || defined(VBOX_WITH_AUDIO_HDA_51_SURROUND)
3673 PHDASTREAMMAPPING pMapping = &pStream->State.Mapping;
3674#endif
3675
3676 /** @todo Which channel is which? */
3677#ifdef VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT
3678 PPDMAUDIOSTREAMCHANNEL pChanFront = &pMapping->paChannels[0];
3679#endif
3680#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
3681 PPDMAUDIOSTREAMCHANNEL pChanCenterLFE = &pMapping->paChannels[2]; /** @todo FIX! */
3682 PPDMAUDIOSTREAMCHANNEL pChanRear = &pMapping->paChannels[4]; /** @todo FIX! */
3683#endif
3684 int rc2;
3685
3686 void *pvDataFront = NULL;
3687 size_t cbDataFront;
3688#ifdef VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT
3689 rc2 = hdaStreamChannelExtract(pChanFront, pvBuf, cbBuf);
3690 AssertRC(rc2);
3691
3692 rc2 = hdaStreamChannelAcquireData(&pChanFront->Data, pvDataFront, &cbDataFront);
3693 AssertRC(rc2);
3694#else
3695 /* Use stuff in the whole FIFO to use for the channel data. */
3696 pvDataFront = pvBuf;
3697 cbDataFront = cbBuf;
3698#endif
3699#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
3700 void *pvDataCenterLFE;
3701 size_t cbDataCenterLFE;
3702 rc2 = hdaStreamChannelExtract(pChanCenterLFE, pvBuf, cbBuf);
3703 AssertRC(rc2);
3704
3705 rc2 = hdaStreamChannelAcquireData(&pChanCenterLFE->Data, pvDataCenterLFE, &cbDataCenterLFE);
3706 AssertRC(rc2);
3707
3708 void *pvDataRear;
3709 size_t cbDataRear;
3710 rc2 = hdaStreamChannelExtract(pChanRear, pvBuf, cbBuf);
3711 AssertRC(rc2);
3712
3713 rc2 = hdaStreamChannelAcquireData(&pChanRear->Data, pvDataRear, &cbDataRear);
3714 AssertRC(rc2);
3715#endif
3716 /*
3717 * Write data to according mixer sinks.
3718 */
3719 rc2 = AudioMixerSinkWrite(pThis->SinkFront.pMixSink, AUDMIXOP_COPY, pvDataFront, (uint32_t)cbDataFront,
3720 NULL /* pcbWritten */);
3721 AssertRC(rc2);
3722#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
3723 rc2 = AudioMixerSinkWrite(pThis->SinkCenterLFE, AUDMIXOP_COPY, pvDataCenterLFE, cbDataCenterLFE,
3724 NULL /* pcbWritten */);
3725 AssertRC(rc2);
3726 rc2 = AudioMixerSinkWrite(pThis->SinkRear, AUDMIXOP_COPY, pvDataRear, cbDataRear,
3727 NULL /* pcbWritten */);
3728 AssertRC(rc2);
3729#endif
3730
3731#ifdef VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT
3732 hdaStreamChannelReleaseData(&pChanFront->Data);
3733#endif
3734#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
3735 hdaStreamChannelReleaseData(&pChanCenterLFE->Data);
3736 hdaStreamChannelReleaseData(&pChanRear->Data);
3737#endif
3738
3739 /* Always report all data as being written;
3740 * backends who were not able to catch up have to deal with it themselves. */
3741 cbWritten = cbToWrite;
3742
3743 hdaBDLEUpdate(pBDLE, cbToWrite, cbWritten);
3744 }
3745 else
3746 {
3747 Assert(pBDLE->State.u32BufOff + cbWritten <= pBDLE->u32BufSize);
3748 pBDLE->State.u32BufOff += cbWritten;
3749 pBDLE->State.cbBelowFIFOW += cbWritten;
3750 Assert(pBDLE->State.cbBelowFIFOW <= hdaStreamGetFIFOW(pThis, pStream));
3751
3752 /* Not enough bytes to be processed and reported, we'll try our luck next time around. */
3753 //hdaBackendTransferUnreported(pThis, pBDLE, pStreamDesc, cbAvail, NULL);
3754 rc = VINF_EOF;
3755 }
3756 }
3757
3758 //Assert(cbWritten <= pStream->u16FIFOS);
3759
3760 if (RT_SUCCESS(rc))
3761 {
3762 if (pcbWritten)
3763 *pcbWritten = cbWritten;
3764 }
3765
3766 if (RT_FAILURE(rc))
3767 LogFlowFunc(("Failed with %Rrc\n", rc));
3768
3769 return rc;
3770}
3771
3772/**
3773 * Retrieves a corresponding sink for a given mixer control.
3774 * Returns NULL if no sink is found.
3775 *
3776 * @return PHDAMIXERSINK
3777 * @param pThis HDA state.
3778 * @param enmMixerCtl Mixer control to get the corresponding sink for.
3779 */
3780static PHDAMIXERSINK hdaMixerControlToSink(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl)
3781{
3782 PHDAMIXERSINK pSink;
3783
3784 switch (enmMixerCtl)
3785 {
3786 case PDMAUDIOMIXERCTL_VOLUME_MASTER:
3787 /* Fall through is intentional. */
3788 case PDMAUDIOMIXERCTL_FRONT:
3789 pSink = &pThis->SinkFront;
3790 break;
3791#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
3792 case PDMAUDIOMIXERCTL_CENTER_LFE:
3793 pSink = &pThis->SinkCenterLFE;
3794 break;
3795 case PDMAUDIOMIXERCTL_REAR:
3796 pSink = &pThis->SinkRear;
3797 break;
3798#endif
3799 case PDMAUDIOMIXERCTL_LINE_IN:
3800 pSink = &pThis->SinkLineIn;
3801 break;
3802#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
3803 case PDMAUDIOMIXERCTL_MIC_IN:
3804 pSink = &pThis->SinkMicIn;
3805 break;
3806#endif
3807 default:
3808 pSink = NULL;
3809 AssertMsgFailed(("Unhandled mixer control\n"));
3810 break;
3811 }
3812
3813 return pSink;
3814}
3815
3816static DECLCALLBACK(int) hdaMixerAddStream(PHDASTATE pThis, PHDAMIXERSINK pSink, PPDMAUDIOSTREAMCFG pCfg)
3817{
3818 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
3819 AssertPtrReturn(pSink, VERR_INVALID_POINTER);
3820 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
3821
3822 LogFunc(("Sink=%s, Stream=%s\n", pSink->pMixSink->pszName, pCfg->szName));
3823
3824 /* Update the sink's format. */
3825 PDMAUDIOPCMPROPS PCMProps;
3826 int rc = DrvAudioHlpStreamCfgToProps(pCfg, &PCMProps);
3827 if (RT_SUCCESS(rc))
3828 rc = AudioMixerSinkSetFormat(pSink->pMixSink, &PCMProps);
3829
3830 if (RT_FAILURE(rc))
3831 return rc;
3832
3833 PHDADRIVER pDrv;
3834 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
3835 {
3836 int rc2 = VINF_SUCCESS;
3837 PHDAMIXERSTREAM pStream = NULL;
3838
3839 PPDMAUDIOSTREAMCFG pStreamCfg = (PPDMAUDIOSTREAMCFG)RTMemDup(pCfg, sizeof(PDMAUDIOSTREAMCFG));
3840 if (!pStreamCfg)
3841 {
3842 rc = VERR_NO_MEMORY;
3843 break;
3844 }
3845
3846 /* Include the driver's LUN in the stream name for easier identification. */
3847 RTStrPrintf(pStreamCfg->szName, RT_ELEMENTS(pStreamCfg->szName), "[LUN#%RU8] %s", pDrv->uLUN, pCfg->szName);
3848
3849 if (pStreamCfg->enmDir == PDMAUDIODIR_IN)
3850 {
3851 LogFunc(("enmRecSource=%d\n", pStreamCfg->DestSource.Source));
3852
3853 switch (pStreamCfg->DestSource.Source)
3854 {
3855 case PDMAUDIORECSOURCE_LINE:
3856 pStream = &pDrv->LineIn;
3857 break;
3858#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
3859 case PDMAUDIORECSOURCE_MIC:
3860 pStream = &pDrv->MicIn;
3861 break;
3862#endif
3863 default:
3864 rc2 = VERR_NOT_SUPPORTED;
3865 break;
3866 }
3867 }
3868 else if (pStreamCfg->enmDir == PDMAUDIODIR_OUT)
3869 {
3870 LogFunc(("enmPlaybackDest=%d\n", pStreamCfg->DestSource.Dest));
3871
3872 switch (pStreamCfg->DestSource.Dest)
3873 {
3874 case PDMAUDIOPLAYBACKDEST_FRONT:
3875 pStream = &pDrv->Front;
3876 break;
3877#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
3878 case PDMAUDIOPLAYBACKDEST_CENTER_LFE:
3879 pStream = &pDrv->CenterLFE;
3880 break;
3881 case PDMAUDIOPLAYBACKDEST_REAR:
3882 pStream = &pDrv->Rear;
3883 break;
3884#endif
3885 default:
3886 rc2 = VERR_NOT_SUPPORTED;
3887 break;
3888 }
3889 }
3890 else
3891 rc2 = VERR_NOT_SUPPORTED;
3892
3893 if (RT_SUCCESS(rc2))
3894 {
3895 AssertPtr(pStream);
3896
3897 AudioMixerSinkRemoveStream(pSink->pMixSink, pStream->pMixStrm);
3898
3899 AudioMixerStreamDestroy(pStream->pMixStrm);
3900 pStream->pMixStrm = NULL;
3901
3902 PAUDMIXSTREAM pMixStrm;
3903 rc2 = AudioMixerSinkCreateStream(pSink->pMixSink, pDrv->pConnector, pStreamCfg, 0 /* fFlags */, &pMixStrm);
3904 if (RT_SUCCESS(rc2))
3905 {
3906 rc2 = AudioMixerSinkAddStream(pSink->pMixSink, pMixStrm);
3907 LogFlowFunc(("LUN#%RU8: Added \"%s\" to sink, rc=%Rrc\n", pDrv->uLUN, pStreamCfg->szName , rc2));
3908 }
3909
3910 if (RT_SUCCESS(rc2))
3911 pStream->pMixStrm = pMixStrm;
3912 }
3913
3914 if (RT_SUCCESS(rc))
3915 rc = rc2;
3916
3917 if (pStreamCfg)
3918 {
3919 RTMemFree(pStreamCfg);
3920 pStreamCfg = NULL;
3921 }
3922 }
3923
3924 LogFlowFuncLeaveRC(rc);
3925 return rc;
3926}
3927
3928/**
3929 * Adds a new audio stream to a specific mixer control.
3930 * Depending on the mixer control the stream then gets assigned to one of the internal
3931 * mixer sinks, which in turn then handle the mixing of all connected streams to that sink.
3932 *
3933 * @return IPRT status code.
3934 * @param pThis HDA state.
3935 * @param enmMixerCtl Mixer control to assign new stream to.
3936 * @param pCfg Stream configuration for the new stream.
3937 */
3938static DECLCALLBACK(int) hdaMixerAddStream(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, PPDMAUDIOSTREAMCFG pCfg)
3939{
3940 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
3941 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
3942
3943 int rc;
3944
3945 PHDAMIXERSINK pSink = hdaMixerControlToSink(pThis, enmMixerCtl);
3946 if (pSink)
3947 {
3948 rc = hdaMixerAddStream(pThis, pSink, pCfg);
3949
3950 AssertPtr(pSink->pMixSink);
3951 LogFlowFunc(("Sink=%s, enmMixerCtl=%d\n", pSink->pMixSink->pszName, enmMixerCtl));
3952 }
3953 else
3954 rc = VERR_NOT_FOUND;
3955
3956 LogFlowFuncLeaveRC(rc);
3957 return rc;
3958}
3959
3960/**
3961 * Removes a specified mixer control from the HDA's mixer.
3962 *
3963 * @return IPRT status code.
3964 * @param pThis HDA state.
3965 * @param enmMixerCtl Mixer control to remove.
3966 */
3967static DECLCALLBACK(int) hdaMixerRemoveStream(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl)
3968{
3969 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
3970
3971 int rc;
3972
3973 PHDAMIXERSINK pSink = hdaMixerControlToSink(pThis, enmMixerCtl);
3974 if (pSink)
3975 {
3976 PHDADRIVER pDrv;
3977 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
3978 {
3979 PAUDMIXSTREAM pMixStream = NULL;
3980 switch (enmMixerCtl)
3981 {
3982 /*
3983 * Input.
3984 */
3985 case PDMAUDIOMIXERCTL_LINE_IN:
3986 pMixStream = pDrv->LineIn.pMixStrm;
3987 pDrv->LineIn.pMixStrm = NULL;
3988 break;
3989#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
3990 case PDMAUDIOMIXERCTL_MIC_IN:
3991 pMixStream = pDrv->MicIn.pMixStrm;
3992 pDrv->MicIn.pMixStrm = NULL;
3993 break;
3994#endif
3995 /*
3996 * Output.
3997 */
3998 case PDMAUDIOMIXERCTL_FRONT:
3999 pMixStream = pDrv->Front.pMixStrm;
4000 pDrv->Front.pMixStrm = NULL;
4001 break;
4002#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
4003 case PDMAUDIOMIXERCTL_CENTER_LFE:
4004 pMixStream = pDrv->CenterLFE.pMixStrm;
4005 pDrv->CenterLFE.pMixStrm = NULL;
4006 break;
4007 case PDMAUDIOMIXERCTL_REAR:
4008 pMixStream = pDrv->Rear.pMixStrm;
4009 pDrv->Rear.pMixStrm = NULL;
4010 break;
4011#endif
4012 default:
4013 AssertMsgFailed(("Mixer control %d not implemented\n", enmMixerCtl));
4014 break;
4015 }
4016
4017 if (pMixStream)
4018 {
4019 AudioMixerSinkRemoveStream(pSink->pMixSink, pMixStream);
4020 AudioMixerStreamDestroy(pMixStream);
4021
4022 pMixStream = NULL;
4023 }
4024 }
4025
4026 AudioMixerSinkRemoveAllStreams(pSink->pMixSink);
4027 rc = VINF_SUCCESS;
4028 }
4029 else
4030 rc = VERR_NOT_FOUND;
4031
4032 LogFlowFunc(("enmMixerCtl=%d, rc=%Rrc\n", enmMixerCtl, rc));
4033 return rc;
4034}
4035
4036/**
4037 * Sets a SDn stream number and channel to a particular mixer control.
4038 *
4039 * @returns IPRT status code.
4040 * @param pThis HDA State.
4041 * @param enmMixerCtl Mixer control to set SD stream number and channel for.
4042 * @param uSD SD stream number (number + 1) to set. Set to 0 for unassign.
4043 * @param uChannel Channel to set. Only valid if a valid SD stream number is specified.
4044 */
4045static DECLCALLBACK(int) hdaMixerSetStream(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, uint8_t uSD, uint8_t uChannel)
4046{
4047 LogFlowFunc(("enmMixerCtl=%RU32, uSD=%RU8, uChannel=%RU8\n", enmMixerCtl, uSD, uChannel));
4048
4049 if (uSD == 0) /* Stream number 0 is reserved. */
4050 {
4051 LogFlowFunc(("Invalid SDn (%RU8) number for mixer control %d, ignoring\n", uSD, enmMixerCtl));
4052 return VINF_SUCCESS;
4053 }
4054 /* uChannel is optional. */
4055
4056 /* SDn0 starts as 1. */
4057 Assert(uSD);
4058 uSD--;
4059
4060 int rc;
4061
4062 PHDAMIXERSINK pSink = hdaMixerControlToSink(pThis, enmMixerCtl);
4063 if (pSink)
4064 {
4065 if ( (uSD < HDA_MAX_SDI)
4066 && AudioMixerSinkGetDir(pSink->pMixSink) == AUDMIXSINKDIR_OUTPUT)
4067 {
4068 uSD += HDA_MAX_SDI;
4069 }
4070
4071 LogFlowFunc(("%s: Setting to stream ID=%RU8, channel=%RU8, enmMixerCtl=%RU32\n",
4072 pSink->pMixSink->pszName, uSD, uChannel, enmMixerCtl));
4073
4074 Assert(uSD < HDA_MAX_STREAMS);
4075
4076 PHDASTREAM pStream = hdaStreamFromSD(pThis, uSD);
4077 if (pStream)
4078 {
4079 pSink->uSD = uSD;
4080 pSink->uChannel = uChannel;
4081
4082 /* Make sure that the stream also has this sink set. */
4083 hdaStreamAssignToSink(pStream, pSink);
4084
4085 rc = VINF_SUCCESS;
4086 }
4087 else
4088 {
4089 LogRel(("HDA: Guest wanted to assign invalid stream ID=%RU8 (channel %RU8) to mixer control %RU32, skipping\n",
4090 uSD, uChannel, enmMixerCtl));
4091 rc = VERR_INVALID_PARAMETER;
4092 }
4093 }
4094 else
4095 rc = VERR_NOT_FOUND;
4096
4097 LogFlowFuncLeaveRC(rc);
4098 return rc;
4099}
4100
4101/**
4102 * Sets the volume of a specified mixer control.
4103 *
4104 * @return IPRT status code.
4105 * @param pThis HDA State.
4106 * @param enmMixerCtl Mixer control to set volume for.
4107 * @param pVol Pointer to volume data to set.
4108 */
4109static DECLCALLBACK(int) hdaMixerSetVolume(PHDASTATE pThis,
4110 PDMAUDIOMIXERCTL enmMixerCtl, PPDMAUDIOVOLUME pVol)
4111{
4112 int rc;
4113
4114 PHDAMIXERSINK pSink = hdaMixerControlToSink(pThis, enmMixerCtl);
4115 if (pSink)
4116 {
4117 /* Set the volume.
4118 * We assume that the codec already converted it to the correct range. */
4119 rc = AudioMixerSinkSetVolume(pSink->pMixSink, pVol);
4120 }
4121 else
4122 rc = VERR_NOT_FOUND;
4123
4124 LogFlowFuncLeaveRC(rc);
4125 return rc;
4126}
4127
4128#ifndef VBOX_WITH_AUDIO_HDA_CALLBACKS
4129static void hdaTimerMaybeStart(PHDASTATE pThis)
4130{
4131 if (pThis->cStreamsActive == 0) /* Only start the timer if there are no active streams. */
4132 return;
4133
4134 if (!pThis->pTimer)
4135 return;
4136
4137 LogFlowFuncEnter();
4138
4139 LogFlowFunc(("Starting timer\n"));
4140
4141 /* Set timer flag. */
4142 ASMAtomicXchgBool(&pThis->fTimerActive, true);
4143
4144 /* Update current time timestamp. */
4145 pThis->uTimerTS = TMTimerGet(pThis->pTimer);
4146
4147 /* Fire off timer. */
4148 TMTimerSet(pThis->pTimer, TMTimerGet(pThis->pTimer) + pThis->cTimerTicks);
4149}
4150
4151static void hdaTimerMaybeStop(PHDASTATE pThis)
4152{
4153 if (pThis->cStreamsActive) /* Some streams still active? Bail out. */
4154 return;
4155
4156 if (!pThis->pTimer)
4157 return;
4158
4159 LogFlowFunc(("Stopping timer\n"));
4160
4161 /* Set timer flag. */
4162 ASMAtomicXchgBool(&pThis->fTimerActive, false);
4163}
4164
4165static DECLCALLBACK(void) hdaTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
4166{
4167 RT_NOREF(pDevIns);
4168 PHDASTATE pThis = (PHDASTATE)pvUser;
4169 Assert(pThis == PDMINS_2_DATA(pDevIns, PHDASTATE));
4170 AssertPtr(pThis);
4171
4172 STAM_PROFILE_START(&pThis->StatTimer, a);
4173
4174 uint64_t cTicksNow = TMTimerGet(pTimer);
4175
4176 LogFlowFuncEnter();
4177
4178 /* Update current time timestamp. */
4179 pThis->uTimerTS = cTicksNow;
4180
4181 /* Flag indicating whether to kick the timer again for a
4182 * new data processing round. */
4183 bool fKickTimer = false;
4184
4185 PHDASTREAM pStreamLineIn = hdaGetStreamFromSink(pThis, &pThis->SinkLineIn);
4186#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
4187 PHDASTREAM pStreamMicIn = hdaGetStreamFromSink(pThis, &pThis->SinkMicIn);
4188#endif
4189 PHDASTREAM pStreamFront = hdaGetStreamFromSink(pThis, &pThis->SinkFront);
4190#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
4191 /** @todo See note below. */
4192#endif
4193
4194 uint32_t cbToProcess;
4195 int rc = AudioMixerSinkUpdate(pThis->SinkLineIn.pMixSink);
4196 if (RT_SUCCESS(rc))
4197 {
4198 cbToProcess = AudioMixerSinkGetReadable(pThis->SinkLineIn.pMixSink);
4199 if (cbToProcess)
4200 {
4201 rc = hdaTransfer(pThis, pStreamLineIn, cbToProcess, NULL /* pcbProcessed */);
4202 fKickTimer |= RT_SUCCESS(rc);
4203 }
4204 }
4205
4206#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
4207 rc = AudioMixerSinkUpdate(pThis->SinkMicIn.pMixSink);
4208 if (RT_SUCCESS(rc))
4209 {
4210 cbToProcess = AudioMixerSinkGetReadable(pThis->SinkMicIn.pMixSink);
4211 if (cbToProcess)
4212 {
4213 rc = hdaTransfer(pThis, pStreamMicIn, cbToProcess, NULL /* pcbProcessed */);
4214 fKickTimer |= RT_SUCCESS(rc);
4215 }
4216 }
4217#endif
4218
4219#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
4220 rc = AudioMixerSinkUpdate(pThis->SinkCenterLFE.pMixSink);
4221 if (RT_SUCCESS(rc))
4222 {
4223
4224 }
4225
4226 rc = AudioMixerSinkUpdate(pThis->SinkRear.pMixSink);
4227 if (RT_SUCCESS(rc))
4228 {
4229
4230 }
4231 /** @todo Check for stream interleaving and only call hdaTransfer() if required! */
4232
4233 /*
4234 * Only call hdaTransfer if CenterLFE and/or Rear are on different SDs,
4235 * otherwise we have to use the interleaved streams support for getting the data
4236 * out of the Front sink (depending on the mapping layout).
4237 */
4238#endif
4239 rc = AudioMixerSinkUpdate(pThis->SinkFront.pMixSink);
4240 if (RT_SUCCESS(rc))
4241 {
4242 cbToProcess = AudioMixerSinkGetWritable(pThis->SinkFront.pMixSink);
4243 if (cbToProcess)
4244 {
4245 rc = hdaTransfer(pThis, pStreamFront, cbToProcess, NULL /* pcbProcessed */);
4246 fKickTimer |= RT_SUCCESS(rc);
4247 }
4248 }
4249
4250 if ( ASMAtomicReadBool(&pThis->fTimerActive)
4251 || fKickTimer)
4252 {
4253 /* Kick the timer again. */
4254 uint64_t cTicks = pThis->cTimerTicks;
4255 /** @todo adjust cTicks down by now much cbOutMin represents. */
4256 TMTimerSet(pThis->pTimer, cTicksNow + cTicks);
4257 }
4258
4259 LogFlowFuncLeave();
4260
4261 STAM_PROFILE_STOP(&pThis->StatTimer, a);
4262}
4263
4264#else /* VBOX_WITH_AUDIO_HDA_CALLBACKS */
4265
4266static DECLCALLBACK(int) hdaCallbackInput(PDMAUDIOCBTYPE enmType, void *pvCtx, size_t cbCtx, void *pvUser, size_t cbUser)
4267{
4268 Assert(enmType == PDMAUDIOCALLBACKTYPE_INPUT);
4269 AssertPtrReturn(pvCtx, VERR_INVALID_POINTER);
4270 AssertReturn(cbCtx, VERR_INVALID_PARAMETER);
4271 AssertPtrReturn(pvUser, VERR_INVALID_POINTER);
4272 AssertReturn(cbUser, VERR_INVALID_PARAMETER);
4273
4274 PHDACALLBACKCTX pCtx = (PHDACALLBACKCTX)pvCtx;
4275 AssertReturn(cbCtx == sizeof(HDACALLBACKCTX), VERR_INVALID_PARAMETER);
4276
4277 PPDMAUDIOCBDATA_DATA_INPUT pData = (PPDMAUDIOCBDATA_DATA_INPUT)pvUser;
4278 AssertReturn(cbUser == sizeof(PDMAUDIOCBDATA_DATA_INPUT), VERR_INVALID_PARAMETER);
4279
4280 return hdaTransfer(pCtx->pThis, PI_INDEX, UINT32_MAX, &pData->cbOutRead);
4281}
4282
4283static DECLCALLBACK(int) hdaCallbackOutput(PDMAUDIOCBTYPE enmType, void *pvCtx, size_t cbCtx, void *pvUser, size_t cbUser)
4284{
4285 Assert(enmType == PDMAUDIOCALLBACKTYPE_OUTPUT);
4286 AssertPtrReturn(pvCtx, VERR_INVALID_POINTER);
4287 AssertReturn(cbCtx, VERR_INVALID_PARAMETER);
4288 AssertPtrReturn(pvUser, VERR_INVALID_POINTER);
4289 AssertReturn(cbUser, VERR_INVALID_PARAMETER);
4290
4291 PHDACALLBACKCTX pCtx = (PHDACALLBACKCTX)pvCtx;
4292 AssertReturn(cbCtx == sizeof(HDACALLBACKCTX), VERR_INVALID_PARAMETER);
4293
4294 PPDMAUDIOCBDATA_DATA_OUTPUT pData = (PPDMAUDIOCBDATA_DATA_OUTPUT)pvUser;
4295 AssertReturn(cbUser == sizeof(PDMAUDIOCBDATA_DATA_OUTPUT), VERR_INVALID_PARAMETER);
4296
4297 PHDASTATE pThis = pCtx->pThis;
4298
4299 int rc = hdaTransfer(pCtx->pThis, PO_INDEX, UINT32_MAX, &pData->cbOutWritten);
4300 if ( RT_SUCCESS(rc)
4301 && pData->cbOutWritten)
4302 {
4303 PHDADRIVER pDrv;
4304 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
4305 {
4306 uint32_t cSamplesPlayed;
4307 int rc2 = pDrv->pConnector->pfnPlay(pDrv->pConnector, &cSamplesPlayed);
4308 LogFlowFunc(("LUN#%RU8: cSamplesPlayed=%RU32, rc=%Rrc\n", pDrv->uLUN, cSamplesPlayed, rc2));
4309 }
4310 }
4311}
4312#endif /* VBOX_WITH_AUDIO_HDA_CALLBACKS */
4313
4314static int hdaTransfer(PHDASTATE pThis, PHDASTREAM pStream, uint32_t cbToProcess, uint32_t *pcbProcessed)
4315{
4316 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
4317 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
4318 /* pcbProcessed is optional. */
4319
4320 if (ASMAtomicReadBool(&pThis->fInReset)) /* HDA controller in reset mode? Bail out. */
4321 {
4322 LogFlowFunc(("HDA in reset mode, skipping\n"));
4323
4324 if (pcbProcessed)
4325 *pcbProcessed = 0;
4326 return VINF_SUCCESS;
4327 }
4328
4329 bool fProceed = true;
4330 int rc = RTCritSectEnter(&pStream->State.CritSect);
4331 if (RT_FAILURE(rc))
4332 return rc;
4333
4334 Log3Func(("[SD%RU8] fActive=%RTbool, cbToProcess=%RU32\n", pStream->u8SD, pStream->State.fActive, cbToProcess));
4335
4336 /* Stop request received? */
4337 if ( !pStream->State.fActive
4338 || pStream->State.fDoStop)
4339 {
4340 pStream->State.fActive = false;
4341
4342 rc = RTSemEventSignal(pStream->State.hStateChangedEvent);
4343 AssertRC(rc);
4344
4345 fProceed = false;
4346 }
4347 /* Is the stream not in a running state currently? */
4348 else if (!(HDA_STREAM_REG(pThis, CTL, pStream->u8SD) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)))
4349 fProceed = false;
4350 /* Nothing to process? */
4351 else if (!cbToProcess)
4352 fProceed = false;
4353
4354 if ((HDA_STREAM_REG(pThis, STS, pStream->u8SD) & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS)))
4355 {
4356 Log3Func(("[SD%RU8]: BCIS set\n", pStream->u8SD));
4357 fProceed = false;
4358 }
4359
4360 if (!fProceed)
4361 {
4362 Log3Func(("[SD%RU8]: Skipping\n", pStream->u8SD));
4363
4364 rc = RTCritSectLeave(&pStream->State.CritSect);
4365 AssertRC(rc);
4366
4367 if (pcbProcessed)
4368 *pcbProcessed = 0;
4369 return VINF_SUCCESS;
4370 }
4371
4372 /* Sanity checks. */
4373 Assert(pStream->u8SD <= HDA_MAX_STREAMS);
4374 Assert(pStream->u64BDLBase);
4375 Assert(pStream->u32CBL);
4376
4377 /* State sanity checks. */
4378 Assert(pStream->State.fInReset == false);
4379 Assert(HDA_STREAM_REG(pThis, LPIB, pStream->u8SD) <= pStream->u32CBL);
4380
4381 bool fInterrupt = false;
4382
4383#ifdef DEBUG_andy
4384//# define DEBUG_SIMPLE
4385#endif
4386
4387#ifdef DEBUG_SIMPLE
4388 uint8_t u8FIFO[_16K+1];
4389 size_t u8FIFOff = 0;
4390#endif
4391
4392 uint32_t cbLeft = cbToProcess;
4393 uint32_t cbTotal = 0;
4394 uint32_t cbChunk = 0;
4395 uint32_t cbChunkProcessed = 0;
4396
4397 /* Set the FIFORDY bit on the stream while doing the transfer. */
4398 HDA_STREAM_REG(pThis, STS, pStream->u8SD) |= HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY);
4399
4400 while (cbLeft)
4401 {
4402 /* Do we need to fetch the next Buffer Descriptor Entry (BDLE)? */
4403 if (hdaStreamNeedsNextBDLE(pThis, pStream))
4404 {
4405 rc = hdaStreamGetNextBDLE(pThis, pStream);
4406 if (RT_FAILURE(rc))
4407 break;
4408 }
4409
4410 cbChunk = hdaStreamGetTransferSize(pThis, pStream, cbLeft);
4411 cbChunkProcessed = 0;
4412
4413 if (hdaGetDirFromSD(pStream->u8SD) == PDMAUDIODIR_IN)
4414 rc = hdaReadAudio(pThis, pStream, cbChunk, &cbChunkProcessed);
4415 else
4416 {
4417#ifndef DEBUG_SIMPLE
4418 rc = hdaWriteAudio(pThis, pStream, cbChunk, &cbChunkProcessed);
4419#else
4420 void *pvBuf = u8FIFO + u8FIFOff;
4421 int32_t cbBuf = cbChunk;
4422
4423 PHDABDLE pBDLE = &pStream->State.BDLE;
4424
4425 if (cbBuf)
4426 rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns),
4427 pBDLE->u64BufAdr + pBDLE->State.u32BufOff,
4428 pvBuf, cbBuf);
4429
4430 cbChunkProcessed = cbChunk;
4431
4432 hdaBDLEUpdate(pBDLE, cbChunkProcessed, cbChunkProcessed);
4433
4434 u8FIFOff += cbChunkProcessed;
4435 Assert((u8FIFOff & 1) == 0);
4436 Assert(u8FIFOff <= sizeof(u8FIFO));
4437#endif
4438 }
4439
4440 if (RT_FAILURE(rc))
4441 break;
4442
4443 hdaStreamTransferUpdate(pThis, pStream, cbChunkProcessed);
4444
4445 Assert(cbLeft >= cbChunkProcessed);
4446 cbLeft -= cbChunkProcessed;
4447 cbTotal += cbChunkProcessed;
4448
4449 if (rc == VINF_EOF)
4450 break;
4451
4452 if (hdaStreamTransferIsComplete(pThis, pStream, &fInterrupt))
4453 break;
4454 }
4455
4456 /* Remove the FIFORDY bit again. */
4457 HDA_STREAM_REG(pThis, STS, pStream->u8SD) &= ~HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY);
4458
4459 LogFlowFunc(("[SD%RU8]: %RU32 / %RU32, rc=%Rrc\n", pStream->u8SD, cbTotal, cbToProcess, rc));
4460
4461#ifdef DEBUG_SIMPLE
4462# ifdef HDA_DEBUG_DUMP_PCM_DATA
4463 RTFILE fh;
4464 RTFileOpen(&fh, HDA_DEBUG_DUMP_PCM_DATA_PATH "hdaWriteAudio.pcm",
4465 RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND | RTFILE_O_WRITE | RTFILE_O_DENY_NONE);
4466 RTFileWrite(fh, u8FIFO, u8FIFOff, NULL);
4467 RTFileClose(fh);
4468# endif
4469
4470 AudioMixerSinkWrite(pThis->SinkFront.pMixSink, AUDMIXOP_COPY, u8FIFO, u8FIFOff,
4471 NULL /* pcbWritten */);
4472#endif /* DEBUG_SIMPLE */
4473
4474 if (fInterrupt)
4475 {
4476 /**
4477 * Set the BCIS (Buffer Completion Interrupt Status) flag as the
4478 * last byte of data for the current descriptor has been fetched
4479 * from memory and put into the DMA FIFO.
4480 *
4481 * Speech synthesis works fine on Mac Guest if this bit isn't set
4482 * but in general sound quality gets worse.
4483 *
4484 * This must be set in *any* case.
4485 */
4486 HDA_STREAM_REG(pThis, STS, pStream->u8SD) |= HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS);
4487 Log3Func(("[SD%RU8]: BCIS: Set\n", pStream->u8SD));
4488
4489 hdaProcessInterrupt(pThis);
4490 }
4491
4492 if (RT_SUCCESS(rc))
4493 {
4494 if (pcbProcessed)
4495 *pcbProcessed = cbTotal;
4496 }
4497
4498 int rc2 = RTCritSectLeave(&pStream->State.CritSect);
4499 if (RT_SUCCESS(rc))
4500 rc = rc2;
4501
4502 return rc;
4503}
4504#endif /* IN_RING3 */
4505
4506/* MMIO callbacks */
4507
4508/**
4509 * @callback_method_impl{FNIOMMMIOREAD, Looks up and calls the appropriate handler.}
4510 *
4511 * @note During implementation, we discovered so-called "forgotten" or "hole"
4512 * registers whose description is not listed in the RPM, datasheet, or
4513 * spec.
4514 */
4515PDMBOTHCBDECL(int) hdaMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
4516{
4517 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4518 int rc;
4519 RT_NOREF_PV(pvUser);
4520
4521 /*
4522 * Look up and log.
4523 */
4524 uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr;
4525 int idxRegDsc = hdaRegLookup(offReg); /* Register descriptor index. */
4526#ifdef LOG_ENABLED
4527 unsigned const cbLog = cb;
4528 uint32_t offRegLog = offReg;
4529#endif
4530
4531 Log3Func(("offReg=%#x cb=%#x\n", offReg, cb));
4532 Assert(cb == 4); Assert((offReg & 3) == 0);
4533
4534 if (pThis->fInReset && idxRegDsc != HDA_REG_GCTL)
4535 LogFunc(("Access to registers except GCTL is blocked while reset\n"));
4536
4537 if (idxRegDsc == -1)
4538 LogRel(("HDA: Invalid read access @0x%x (bytes=%u)\n", offReg, cb));
4539
4540 if (idxRegDsc != -1)
4541 {
4542 /* ASSUMES gapless DWORD at end of map. */
4543 if (g_aHdaRegMap[idxRegDsc].size == 4)
4544 {
4545 /*
4546 * Straight forward DWORD access.
4547 */
4548 rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, (uint32_t *)pv);
4549 Log3Func(("\tRead %s => %x (%Rrc)\n", g_aHdaRegMap[idxRegDsc].abbrev, *(uint32_t *)pv, rc));
4550 }
4551 else
4552 {
4553 /*
4554 * Multi register read (unless there are trailing gaps).
4555 * ASSUMES that only DWORD reads have sideeffects.
4556 */
4557 uint32_t u32Value = 0;
4558 unsigned cbLeft = 4;
4559 do
4560 {
4561 uint32_t const cbReg = g_aHdaRegMap[idxRegDsc].size;
4562 uint32_t u32Tmp = 0;
4563
4564 rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, &u32Tmp);
4565 Log3Func(("\tRead %s[%db] => %x (%Rrc)*\n", g_aHdaRegMap[idxRegDsc].abbrev, cbReg, u32Tmp, rc));
4566 if (rc != VINF_SUCCESS)
4567 break;
4568 u32Value |= (u32Tmp & g_afMasks[cbReg]) << ((4 - cbLeft) * 8);
4569
4570 cbLeft -= cbReg;
4571 offReg += cbReg;
4572 idxRegDsc++;
4573 } while (cbLeft > 0 && g_aHdaRegMap[idxRegDsc].offset == offReg);
4574
4575 if (rc == VINF_SUCCESS)
4576 *(uint32_t *)pv = u32Value;
4577 else
4578 Assert(!IOM_SUCCESS(rc));
4579 }
4580 }
4581 else
4582 {
4583 rc = VINF_IOM_MMIO_UNUSED_FF;
4584 Log3Func(("\tHole at %x is accessed for read\n", offReg));
4585 }
4586
4587 /*
4588 * Log the outcome.
4589 */
4590#ifdef LOG_ENABLED
4591 if (cbLog == 4)
4592 Log3Func(("\tReturning @%#05x -> %#010x %Rrc\n", offRegLog, *(uint32_t *)pv, rc));
4593 else if (cbLog == 2)
4594 Log3Func(("\tReturning @%#05x -> %#06x %Rrc\n", offRegLog, *(uint16_t *)pv, rc));
4595 else if (cbLog == 1)
4596 Log3Func(("\tReturning @%#05x -> %#04x %Rrc\n", offRegLog, *(uint8_t *)pv, rc));
4597#endif
4598 return rc;
4599}
4600
4601
4602DECLINLINE(int) hdaWriteReg(PHDASTATE pThis, int idxRegDsc, uint32_t u32Value, char const *pszLog)
4603{
4604 if (pThis->fInReset && idxRegDsc != HDA_REG_GCTL)
4605 {
4606 LogRel2(("HDA: Warning: Access to register 0x%x is blocked while reset\n", idxRegDsc));
4607 return VINF_SUCCESS;
4608 }
4609
4610#ifdef LOG_ENABLED
4611 uint32_t const idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
4612 uint32_t const u32CurValue = pThis->au32Regs[idxRegMem];
4613#endif
4614 int rc = g_aHdaRegMap[idxRegDsc].pfnWrite(pThis, idxRegDsc, u32Value);
4615 Log3Func(("Written value %#x to %s[%d byte]; %x => %x%s\n", u32Value, g_aHdaRegMap[idxRegDsc].abbrev,
4616 g_aHdaRegMap[idxRegDsc].size, u32CurValue, pThis->au32Regs[idxRegMem], pszLog));
4617 RT_NOREF1(pszLog);
4618 return rc;
4619}
4620
4621
4622/**
4623 * @callback_method_impl{FNIOMMMIOWRITE, Looks up and calls the appropriate handler.}
4624 */
4625PDMBOTHCBDECL(int) hdaMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb)
4626{
4627 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4628 int rc;
4629 RT_NOREF_PV(pvUser);
4630
4631 /*
4632 * The behavior of accesses that aren't aligned on natural boundraries is
4633 * undefined. Just reject them outright.
4634 */
4635 /** @todo IOM could check this, it could also split the 8 byte accesses for us. */
4636 Assert(cb == 1 || cb == 2 || cb == 4 || cb == 8);
4637 if (GCPhysAddr & (cb - 1))
4638 return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "misaligned write access: GCPhysAddr=%RGp cb=%u\n", GCPhysAddr, cb);
4639
4640 /*
4641 * Look up and log the access.
4642 */
4643 uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr;
4644 int idxRegDsc = hdaRegLookup(offReg);
4645 uint32_t idxRegMem = idxRegDsc != -1 ? g_aHdaRegMap[idxRegDsc].mem_idx : UINT32_MAX;
4646 uint64_t u64Value;
4647 if (cb == 4) u64Value = *(uint32_t const *)pv;
4648 else if (cb == 2) u64Value = *(uint16_t const *)pv;
4649 else if (cb == 1) u64Value = *(uint8_t const *)pv;
4650 else if (cb == 8) u64Value = *(uint64_t const *)pv;
4651 else
4652 {
4653 u64Value = 0; /* shut up gcc. */
4654 AssertReleaseMsgFailed(("%u\n", cb));
4655 }
4656
4657#ifdef LOG_ENABLED
4658 uint32_t const u32LogOldValue = idxRegDsc >= 0 ? pThis->au32Regs[idxRegMem] : UINT32_MAX;
4659 if (idxRegDsc == -1)
4660 Log3Func(("@%#05x u32=%#010x cb=%d\n", offReg, *(uint32_t const *)pv, cb));
4661 else if (cb == 4)
4662 Log3Func(("@%#05x u32=%#010x %s\n", offReg, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev));
4663 else if (cb == 2)
4664 Log3Func(("@%#05x u16=%#06x (%#010x) %s\n", offReg, *(uint16_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev));
4665 else if (cb == 1)
4666 Log3Func(("@%#05x u8=%#04x (%#010x) %s\n", offReg, *(uint8_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev));
4667
4668 if (idxRegDsc >= 0 && g_aHdaRegMap[idxRegDsc].size != cb)
4669 Log3Func(("\tsize=%RU32 != cb=%u!!\n", g_aHdaRegMap[idxRegDsc].size, cb));
4670#endif
4671
4672 /*
4673 * Try for a direct hit first.
4674 */
4675 if (idxRegDsc != -1 && g_aHdaRegMap[idxRegDsc].size == cb)
4676 {
4677 rc = hdaWriteReg(pThis, idxRegDsc, u64Value, "");
4678 Log3Func(("\t%#x -> %#x\n", u32LogOldValue, idxRegMem != UINT32_MAX ? pThis->au32Regs[idxRegMem] : UINT32_MAX));
4679 }
4680 /*
4681 * Partial or multiple register access, loop thru the requested memory.
4682 */
4683 else
4684 {
4685 /*
4686 * If it's an access beyond the start of the register, shift the input
4687 * value and fill in missing bits. Natural alignment rules means we
4688 * will only see 1 or 2 byte accesses of this kind, so no risk of
4689 * shifting out input values.
4690 */
4691 if (idxRegDsc == -1 && (idxRegDsc = hdaRegLookupWithin(offReg)) != -1)
4692 {
4693 uint32_t const cbBefore = offReg - g_aHdaRegMap[idxRegDsc].offset; Assert(cbBefore > 0 && cbBefore < 4);
4694 offReg -= cbBefore;
4695 idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
4696 u64Value <<= cbBefore * 8;
4697 u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbBefore];
4698 Log3Func(("\tWithin register, supplied %u leading bits: %#llx -> %#llx ...\n",
4699 cbBefore * 8, ~g_afMasks[cbBefore] & u64Value, u64Value));
4700 }
4701
4702 /* Loop thru the write area, it may cover multiple registers. */
4703 rc = VINF_SUCCESS;
4704 for (;;)
4705 {
4706 uint32_t cbReg;
4707 if (idxRegDsc != -1)
4708 {
4709 idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
4710 cbReg = g_aHdaRegMap[idxRegDsc].size;
4711 if (cb < cbReg)
4712 {
4713 u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbReg] & ~g_afMasks[cb];
4714 Log3Func(("\tSupplying missing bits (%#x): %#llx -> %#llx ...\n",
4715 g_afMasks[cbReg] & ~g_afMasks[cb], u64Value & g_afMasks[cb], u64Value));
4716 }
4717#ifdef LOG_ENABLED
4718 uint32_t uLogOldVal = pThis->au32Regs[idxRegMem];
4719#endif
4720 rc = hdaWriteReg(pThis, idxRegDsc, u64Value, "*");
4721 Log3Func(("\t%#x -> %#x\n", uLogOldVal, pThis->au32Regs[idxRegMem]));
4722 }
4723 else
4724 {
4725 LogRel(("HDA: Invalid write access @0x%x\n", offReg));
4726 cbReg = 1;
4727 }
4728 if (rc != VINF_SUCCESS)
4729 break;
4730 if (cbReg >= cb)
4731 break;
4732
4733 /* Advance. */
4734 offReg += cbReg;
4735 cb -= cbReg;
4736 u64Value >>= cbReg * 8;
4737 if (idxRegDsc == -1)
4738 idxRegDsc = hdaRegLookup(offReg);
4739 else
4740 {
4741 idxRegDsc++;
4742 if ( (unsigned)idxRegDsc >= RT_ELEMENTS(g_aHdaRegMap)
4743 || g_aHdaRegMap[idxRegDsc].offset != offReg)
4744 {
4745 idxRegDsc = -1;
4746 }
4747 }
4748 }
4749 }
4750
4751 return rc;
4752}
4753
4754
4755/* PCI callback. */
4756
4757#ifdef IN_RING3
4758/**
4759 * @callback_method_impl{FNPCIIOREGIONMAP}
4760 */
4761static DECLCALLBACK(int) hdaPciIoRegionMap(PPDMDEVINS pDevIns, PPDMPCIDEV pPciDev, uint32_t iRegion,
4762 RTGCPHYS GCPhysAddress, RTGCPHYS cb, PCIADDRESSSPACE enmType)
4763{
4764 RT_NOREF(iRegion, enmType);
4765 PHDASTATE pThis = RT_FROM_MEMBER(pPciDev, HDASTATE, PciDev);
4766
4767 /*
4768 * 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word.
4769 *
4770 * Let IOM talk DWORDs when reading, saves a lot of complications. On
4771 * writing though, we have to do it all ourselves because of sideeffects.
4772 */
4773 Assert(enmType == PCI_ADDRESS_SPACE_MEM);
4774 int rc = PDMDevHlpMMIORegister(pDevIns, GCPhysAddress, cb, NULL /*pvUser*/,
4775 IOMMMIO_FLAGS_READ_DWORD | IOMMMIO_FLAGS_WRITE_PASSTHRU,
4776 hdaMMIOWrite, hdaMMIORead, "HDA");
4777 if (RT_FAILURE(rc))
4778 return rc;
4779
4780 if (pThis->fR0Enabled)
4781 {
4782 rc = PDMDevHlpMMIORegisterR0(pDevIns, GCPhysAddress, cb, NIL_RTR0PTR /*pvUser*/,
4783 "hdaMMIOWrite", "hdaMMIORead");
4784 if (RT_FAILURE(rc))
4785 return rc;
4786 }
4787
4788 if (pThis->fRCEnabled)
4789 {
4790 rc = PDMDevHlpMMIORegisterRC(pDevIns, GCPhysAddress, cb, NIL_RTRCPTR /*pvUser*/,
4791 "hdaMMIOWrite", "hdaMMIORead");
4792 if (RT_FAILURE(rc))
4793 return rc;
4794 }
4795
4796 pThis->MMIOBaseAddr = GCPhysAddress;
4797 return VINF_SUCCESS;
4798}
4799
4800
4801/* Saved state callbacks. */
4802
4803static int hdaSaveStream(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, PHDASTREAM pStrm)
4804{
4805 RT_NOREF(pDevIns);
4806#ifdef DEBUG
4807 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4808#endif
4809 LogFlowFunc(("[SD%RU8]\n", pStrm->u8SD));
4810
4811 /* Save stream ID. */
4812 int rc = SSMR3PutU8(pSSM, pStrm->u8SD);
4813 AssertRCReturn(rc, rc);
4814 Assert(pStrm->u8SD <= HDA_MAX_STREAMS);
4815
4816 rc = SSMR3PutStructEx(pSSM, &pStrm->State, sizeof(HDASTREAMSTATE), 0 /*fFlags*/, g_aSSMStreamStateFields6, NULL);
4817 AssertRCReturn(rc, rc);
4818
4819#ifdef DEBUG /* Sanity checks. */
4820 uint64_t u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, pStrm->u8SD),
4821 HDA_STREAM_REG(pThis, BDPU, pStrm->u8SD));
4822 uint16_t u16LVI = HDA_STREAM_REG(pThis, LVI, pStrm->u8SD);
4823 uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, pStrm->u8SD);
4824
4825 hdaBDLEDumpAll(pThis, u64BaseDMA, u16LVI + 1);
4826
4827 Assert(u64BaseDMA == pStrm->u64BDLBase);
4828 Assert(u16LVI == pStrm->u16LVI);
4829 Assert(u32CBL == pStrm->u32CBL);
4830#endif
4831
4832 rc = SSMR3PutStructEx(pSSM, &pStrm->State.BDLE, sizeof(HDABDLE),
4833 0 /*fFlags*/, g_aSSMBDLEFields6, NULL);
4834 AssertRCReturn(rc, rc);
4835
4836 rc = SSMR3PutStructEx(pSSM, &pStrm->State.BDLE.State, sizeof(HDABDLESTATE),
4837 0 /*fFlags*/, g_aSSMBDLEStateFields6, NULL);
4838 AssertRCReturn(rc, rc);
4839
4840#ifdef DEBUG /* Sanity checks. */
4841 PHDABDLE pBDLE = &pStrm->State.BDLE;
4842 if (u64BaseDMA)
4843 {
4844 Assert(pStrm->State.uCurBDLE <= u16LVI + 1);
4845
4846 HDABDLE curBDLE;
4847 rc = hdaBDLEFetch(pThis, &curBDLE, u64BaseDMA, pStrm->State.uCurBDLE);
4848 AssertRC(rc);
4849
4850 Assert(curBDLE.u32BufSize == pBDLE->u32BufSize);
4851 Assert(curBDLE.u64BufAdr == pBDLE->u64BufAdr);
4852 Assert(curBDLE.fIntOnCompletion == pBDLE->fIntOnCompletion);
4853 }
4854 else
4855 {
4856 Assert(pBDLE->u64BufAdr == 0);
4857 Assert(pBDLE->u32BufSize == 0);
4858 }
4859#endif
4860 return rc;
4861}
4862
4863/**
4864 * @callback_method_impl{FNSSMDEVSAVEEXEC}
4865 */
4866static DECLCALLBACK(int) hdaSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
4867{
4868 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4869
4870 /* Save Codec nodes states. */
4871 hdaCodecSaveState(pThis->pCodec, pSSM);
4872
4873 /* Save MMIO registers. */
4874 SSMR3PutU32(pSSM, RT_ELEMENTS(pThis->au32Regs));
4875 SSMR3PutMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
4876
4877 /* Save number of streams. */
4878 SSMR3PutU32(pSSM, HDA_MAX_STREAMS);
4879
4880 /* Save stream states. */
4881 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
4882 {
4883 int rc = hdaSaveStream(pDevIns, pSSM, &pThis->aStreams[i]);
4884 AssertRCReturn(rc, rc);
4885 }
4886
4887 return VINF_SUCCESS;
4888}
4889
4890
4891/**
4892 * @callback_method_impl{FNSSMDEVLOADEXEC}
4893 */
4894static DECLCALLBACK(int) hdaLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
4895{
4896 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
4897
4898 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
4899
4900 LogRel2(("hdaLoadExec: uVersion=%RU32, uPass=0x%x\n", uVersion, uPass));
4901
4902 /*
4903 * Load Codec nodes states.
4904 */
4905 int rc = hdaCodecLoadState(pThis->pCodec, pSSM, uVersion);
4906 if (RT_FAILURE(rc))
4907 {
4908 LogRel(("HDA: Failed loading codec state (version %RU32, pass 0x%x), rc=%Rrc\n", uVersion, uPass, rc));
4909 return rc;
4910 }
4911
4912 /*
4913 * Load MMIO registers.
4914 */
4915 uint32_t cRegs;
4916 switch (uVersion)
4917 {
4918 case HDA_SSM_VERSION_1:
4919 /* Starting with r71199, we would save 112 instead of 113
4920 registers due to some code cleanups. This only affected trunk
4921 builds in the 4.1 development period. */
4922 cRegs = 113;
4923 if (SSMR3HandleRevision(pSSM) >= 71199)
4924 {
4925 uint32_t uVer = SSMR3HandleVersion(pSSM);
4926 if ( VBOX_FULL_VERSION_GET_MAJOR(uVer) == 4
4927 && VBOX_FULL_VERSION_GET_MINOR(uVer) == 0
4928 && VBOX_FULL_VERSION_GET_BUILD(uVer) >= 51)
4929 cRegs = 112;
4930 }
4931 break;
4932
4933 case HDA_SSM_VERSION_2:
4934 case HDA_SSM_VERSION_3:
4935 cRegs = 112;
4936 AssertCompile(RT_ELEMENTS(pThis->au32Regs) >= 112);
4937 break;
4938
4939 /* Since version 4 we store the register count to stay flexible. */
4940 case HDA_SSM_VERSION_4:
4941 case HDA_SSM_VERSION_5:
4942 case HDA_SSM_VERSION:
4943 rc = SSMR3GetU32(pSSM, &cRegs); AssertRCReturn(rc, rc);
4944 if (cRegs != RT_ELEMENTS(pThis->au32Regs))
4945 LogRel(("HDA: SSM version cRegs is %RU32, expected %RU32\n", cRegs, RT_ELEMENTS(pThis->au32Regs)));
4946 break;
4947
4948 default:
4949 LogRel(("HDA: Unsupported / too new saved state version (%RU32)\n", uVersion));
4950 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
4951 }
4952
4953 if (cRegs >= RT_ELEMENTS(pThis->au32Regs))
4954 {
4955 SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
4956 SSMR3Skip(pSSM, sizeof(uint32_t) * (cRegs - RT_ELEMENTS(pThis->au32Regs)));
4957 }
4958 else
4959 SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(uint32_t) * cRegs);
4960
4961 /*
4962 * Note: Saved states < v5 store LVI (u32BdleMaxCvi) for
4963 * *every* BDLE state, whereas it only needs to be stored
4964 * *once* for every stream. Most of the BDLE state we can
4965 * get out of the registers anyway, so just ignore those values.
4966 *
4967 * Also, only the current BDLE was saved, regardless whether
4968 * there were more than one (and there are at least two entries,
4969 * according to the spec).
4970 */
4971#define HDA_SSM_LOAD_BDLE_STATE_PRE_V5(v, x) \
4972 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* Begin marker */ \
4973 AssertRCReturn(rc, rc); \
4974 rc = SSMR3GetU64(pSSM, &x.u64BufAdr); /* u64BdleCviAddr */ \
4975 AssertRCReturn(rc, rc); \
4976 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* u32BdleMaxCvi */ \
4977 AssertRCReturn(rc, rc); \
4978 rc = SSMR3GetU32(pSSM, &x.State.u32BDLIndex); /* u32BdleCvi */ \
4979 AssertRCReturn(rc, rc); \
4980 rc = SSMR3GetU32(pSSM, &x.u32BufSize); /* u32BdleCviLen */ \
4981 AssertRCReturn(rc, rc); \
4982 rc = SSMR3GetU32(pSSM, &x.State.u32BufOff); /* u32BdleCviPos */ \
4983 AssertRCReturn(rc, rc); \
4984 rc = SSMR3GetBool(pSSM, &x.fIntOnCompletion); /* fBdleCviIoc */ \
4985 AssertRCReturn(rc, rc); \
4986 rc = SSMR3GetU32(pSSM, &x.State.cbBelowFIFOW); /* cbUnderFifoW */ \
4987 AssertRCReturn(rc, rc); \
4988 rc = SSMR3GetMem(pSSM, &x.State.au8FIFO, sizeof(x.State.au8FIFO)); \
4989 AssertRCReturn(rc, rc); \
4990 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* End marker */ \
4991 AssertRCReturn(rc, rc); \
4992
4993 /*
4994 * Load BDLEs (Buffer Descriptor List Entries) and DMA counters.
4995 */
4996 switch (uVersion)
4997 {
4998 case HDA_SSM_VERSION_1:
4999 case HDA_SSM_VERSION_2:
5000 case HDA_SSM_VERSION_3:
5001 case HDA_SSM_VERSION_4:
5002 {
5003 /* Only load the internal states.
5004 * The rest will be initialized from the saved registers later. */
5005
5006 /* Note 1: Only the *current* BDLE for a stream was saved! */
5007 /* Note 2: The stream's saving order is/was fixed, so don't touch! */
5008
5009 /* Output */
5010 PHDASTREAM pStream = &pThis->aStreams[4];
5011 rc = hdaStreamInit(pThis, pStream, 4 /* Stream descriptor, hardcoded */);
5012 if (RT_FAILURE(rc))
5013 break;
5014 HDA_SSM_LOAD_BDLE_STATE_PRE_V5(uVersion, pStream->State.BDLE);
5015 pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex;
5016
5017 /* Microphone-In */
5018 pStream = &pThis->aStreams[2];
5019 rc = hdaStreamInit(pThis, pStream, 2 /* Stream descriptor, hardcoded */);
5020 if (RT_FAILURE(rc))
5021 break;
5022 HDA_SSM_LOAD_BDLE_STATE_PRE_V5(uVersion, pStream->State.BDLE);
5023 pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex;
5024
5025 /* Line-In */
5026 pStream = &pThis->aStreams[0];
5027 rc = hdaStreamInit(pThis, pStream, 0 /* Stream descriptor, hardcoded */);
5028 if (RT_FAILURE(rc))
5029 break;
5030 HDA_SSM_LOAD_BDLE_STATE_PRE_V5(uVersion, pStream->State.BDLE);
5031 pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex;
5032 break;
5033 }
5034
5035 /* Since v5 we support flexible stream and BDLE counts. */
5036 case HDA_SSM_VERSION_5:
5037 case HDA_SSM_VERSION:
5038 {
5039 uint32_t cStreams;
5040 rc = SSMR3GetU32(pSSM, &cStreams);
5041 if (RT_FAILURE(rc))
5042 break;
5043
5044 LogRel2(("hdaLoadExec: cStreams=%RU32\n", cStreams));
5045
5046 /* Load stream states. */
5047 for (uint32_t i = 0; i < cStreams; i++)
5048 {
5049 uint8_t uSD;
5050 rc = SSMR3GetU8(pSSM, &uSD);
5051 if (RT_FAILURE(rc))
5052 break;
5053
5054 PHDASTREAM pStrm = hdaStreamFromSD(pThis, uSD);
5055 HDASTREAM StreamDummy;
5056
5057 if (!pStrm)
5058 {
5059 RT_ZERO(StreamDummy);
5060 pStrm = &StreamDummy;
5061 LogRel2(("HDA: Warning: Stream ID=%RU32 not supported, skipping to load ...\n", uSD));
5062 break;
5063 }
5064
5065 rc = hdaStreamInit(pThis, pStrm, uSD);
5066 if (RT_FAILURE(rc))
5067 {
5068 LogRel(("HDA: Stream #%RU32: Initialization of stream %RU8 failed, rc=%Rrc\n", i, uSD, rc));
5069 break;
5070 }
5071
5072 if (uVersion == HDA_SSM_VERSION_5)
5073 {
5074 /* Get the current BDLE entry and skip the rest. */
5075 uint16_t cBDLE;
5076
5077 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* Begin marker */
5078 AssertRC(rc);
5079 rc = SSMR3GetU16(pSSM, &cBDLE); /* cBDLE */
5080 AssertRC(rc);
5081 rc = SSMR3GetU16(pSSM, &pStrm->State.uCurBDLE); /* uCurBDLE */
5082 AssertRC(rc);
5083 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* End marker */
5084 AssertRC(rc);
5085
5086 uint32_t u32BDLEIndex;
5087 for (uint16_t a = 0; a < cBDLE; a++)
5088 {
5089 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* Begin marker */
5090 AssertRC(rc);
5091 rc = SSMR3GetU32(pSSM, &u32BDLEIndex); /* u32BDLIndex */
5092 AssertRC(rc);
5093
5094 /* Does the current BDLE index match the current BDLE to process? */
5095 if (u32BDLEIndex == pStrm->State.uCurBDLE)
5096 {
5097 rc = SSMR3GetU32(pSSM, &pStrm->State.BDLE.State.cbBelowFIFOW); /* cbBelowFIFOW */
5098 AssertRC(rc);
5099 rc = SSMR3GetMem(pSSM,
5100 &pStrm->State.BDLE.State.au8FIFO,
5101 sizeof(pStrm->State.BDLE.State.au8FIFO)); /* au8FIFO */
5102 AssertRC(rc);
5103 rc = SSMR3GetU32(pSSM, &pStrm->State.BDLE.State.u32BufOff); /* u32BufOff */
5104 AssertRC(rc);
5105 rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* End marker */
5106 AssertRC(rc);
5107 }
5108 else /* Skip not current BDLEs. */
5109 {
5110 rc = SSMR3Skip(pSSM, sizeof(uint32_t) /* cbBelowFIFOW */
5111 + sizeof(uint8_t) * 256 /* au8FIFO */
5112 + sizeof(uint32_t) /* u32BufOff */
5113 + sizeof(uint32_t)); /* End marker */
5114 AssertRC(rc);
5115 }
5116 }
5117 }
5118 else
5119 {
5120 rc = SSMR3GetStructEx(pSSM, &pStrm->State, sizeof(HDASTREAMSTATE),
5121 0 /* fFlags */, g_aSSMStreamStateFields6, NULL);
5122 if (RT_FAILURE(rc))
5123 break;
5124
5125 rc = SSMR3GetStructEx(pSSM, &pStrm->State.BDLE, sizeof(HDABDLE),
5126 0 /* fFlags */, g_aSSMBDLEFields6, NULL);
5127 if (RT_FAILURE(rc))
5128 break;
5129
5130 rc = SSMR3GetStructEx(pSSM, &pStrm->State.BDLE.State, sizeof(HDABDLESTATE),
5131 0 /* fFlags */, g_aSSMBDLEStateFields6, NULL);
5132 if (RT_FAILURE(rc))
5133 break;
5134 }
5135 }
5136 break;
5137 }
5138
5139 default:
5140 AssertReleaseFailed(); /* Never reached. */
5141 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
5142 }
5143
5144#undef HDA_SSM_LOAD_BDLE_STATE_PRE_V5
5145
5146 if (RT_SUCCESS(rc))
5147 {
5148 pThis->u64CORBBase = RT_MAKE_U64(HDA_REG(pThis, CORBLBASE), HDA_REG(pThis, CORBUBASE));
5149 pThis->u64RIRBBase = RT_MAKE_U64(HDA_REG(pThis, RIRBLBASE), HDA_REG(pThis, RIRBUBASE));
5150 pThis->u64DPBase = RT_MAKE_U64(HDA_REG(pThis, DPLBASE), HDA_REG(pThis, DPUBASE));
5151
5152 /* Also make sure to update the DMA position bit if this was enabled when saving the state. */
5153 pThis->fDMAPosition = RT_BOOL(pThis->u64DPBase & RT_BIT_64(0));
5154 }
5155
5156 if (RT_SUCCESS(rc))
5157 {
5158 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
5159 {
5160 PHDASTREAM pStream = hdaStreamFromSD(pThis, i);
5161 if (pStream)
5162 {
5163 /* Deactive first. */
5164 int rc2 = hdaStreamSetActive(pThis, pStream, false);
5165 AssertRC(rc2);
5166
5167 bool fActive = RT_BOOL(HDA_STREAM_REG(pThis, CTL, i) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
5168
5169 /* Activate, if needed. */
5170 rc2 = hdaStreamSetActive(pThis, pStream, fActive);
5171 AssertRC(rc2);
5172 }
5173 }
5174 }
5175
5176 if (RT_FAILURE(rc))
5177 LogRel(("HDA: Failed loading device state (version %RU32, pass 0x%x), rc=%Rrc\n", uVersion, uPass, rc));
5178
5179 LogFlowFuncLeaveRC(rc);
5180 return rc;
5181}
5182
5183#ifdef DEBUG
5184/* Debug and log type formatters. */
5185
5186/**
5187 * @callback_method_impl{FNRTSTRFORMATTYPE}
5188 */
5189static DECLCALLBACK(size_t) hdaDbgFmtBDLE(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
5190 const char *pszType, void const *pvValue,
5191 int cchWidth, int cchPrecision, unsigned fFlags,
5192 void *pvUser)
5193{
5194 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
5195 PHDABDLE pBDLE = (PHDABDLE)pvValue;
5196 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
5197 "BDLE(idx:%RU32, off:%RU32, fifow:%RU32, IOC:%RTbool, DMA[%RU32 bytes @ 0x%x])",
5198 pBDLE->State.u32BDLIndex, pBDLE->State.u32BufOff, pBDLE->State.cbBelowFIFOW, pBDLE->fIntOnCompletion,
5199 pBDLE->u32BufSize, pBDLE->u64BufAdr);
5200}
5201
5202/**
5203 * @callback_method_impl{FNRTSTRFORMATTYPE}
5204 */
5205static DECLCALLBACK(size_t) hdaDbgFmtSDCTL(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
5206 const char *pszType, void const *pvValue,
5207 int cchWidth, int cchPrecision, unsigned fFlags,
5208 void *pvUser)
5209{
5210 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
5211 uint32_t uSDCTL = (uint32_t)(uintptr_t)pvValue;
5212 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
5213 "SDCTL(raw:%#x, DIR:%s, TP:%RTbool, STRIPE:%x, DEIE:%RTbool, FEIE:%RTbool, IOCE:%RTbool, RUN:%RTbool, RESET:%RTbool)",
5214 uSDCTL,
5215 (uSDCTL & HDA_REG_FIELD_FLAG_MASK(SDCTL, DIR)) ? "OUT" : "IN",
5216 RT_BOOL(uSDCTL & HDA_REG_FIELD_FLAG_MASK(SDCTL, TP)),
5217 (uSDCTL & HDA_REG_FIELD_MASK(SDCTL, STRIPE)) >> HDA_SDCTL_STRIPE_SHIFT,
5218 RT_BOOL(uSDCTL & HDA_REG_FIELD_FLAG_MASK(SDCTL, DEIE)),
5219 RT_BOOL(uSDCTL & HDA_REG_FIELD_FLAG_MASK(SDCTL, FEIE)),
5220 RT_BOOL(uSDCTL & HDA_REG_FIELD_FLAG_MASK(SDCTL, ICE)),
5221 RT_BOOL(uSDCTL & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)),
5222 RT_BOOL(uSDCTL & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST)));
5223}
5224
5225/**
5226 * @callback_method_impl{FNRTSTRFORMATTYPE}
5227 */
5228static DECLCALLBACK(size_t) hdaDbgFmtSDFIFOS(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
5229 const char *pszType, void const *pvValue,
5230 int cchWidth, int cchPrecision, unsigned fFlags,
5231 void *pvUser)
5232{
5233 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
5234 uint32_t uSDFIFOS = (uint32_t)(uintptr_t)pvValue;
5235 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOS(raw:%#x, sdfifos:%RU8 B)", uSDFIFOS, hdaSDFIFOSToBytes(uSDFIFOS));
5236}
5237
5238/**
5239 * @callback_method_impl{FNRTSTRFORMATTYPE}
5240 */
5241static DECLCALLBACK(size_t) hdaDbgFmtSDFIFOW(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
5242 const char *pszType, void const *pvValue,
5243 int cchWidth, int cchPrecision, unsigned fFlags,
5244 void *pvUser)
5245{
5246 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
5247 uint32_t uSDFIFOW = (uint32_t)(uintptr_t)pvValue;
5248 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOW(raw: %#0x, sdfifow:%d B)", uSDFIFOW, hdaSDFIFOWToBytes(uSDFIFOW));
5249}
5250
5251/**
5252 * @callback_method_impl{FNRTSTRFORMATTYPE}
5253 */
5254static DECLCALLBACK(size_t) hdaDbgFmtSDSTS(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
5255 const char *pszType, void const *pvValue,
5256 int cchWidth, int cchPrecision, unsigned fFlags,
5257 void *pvUser)
5258{
5259 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
5260 uint32_t uSdSts = (uint32_t)(uintptr_t)pvValue;
5261 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
5262 "SDSTS(raw:%#0x, fifordy:%RTbool, dese:%RTbool, fifoe:%RTbool, bcis:%RTbool)",
5263 uSdSts,
5264 RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY)),
5265 RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, DE)),
5266 RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, FE)),
5267 RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS)));
5268}
5269
5270static int hdaDbgLookupRegByName(const char *pszArgs)
5271{
5272 int iReg = 0;
5273 for (; iReg < HDA_NUM_REGS; ++iReg)
5274 if (!RTStrICmp(g_aHdaRegMap[iReg].abbrev, pszArgs))
5275 return iReg;
5276 return -1;
5277}
5278
5279
5280static void hdaDbgPrintRegister(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iHdaIndex)
5281{
5282 Assert( pThis
5283 && iHdaIndex >= 0
5284 && iHdaIndex < HDA_NUM_REGS);
5285 pHlp->pfnPrintf(pHlp, "%s: 0x%x\n", g_aHdaRegMap[iHdaIndex].abbrev, pThis->au32Regs[g_aHdaRegMap[iHdaIndex].mem_idx]);
5286}
5287
5288/**
5289 * @callback_method_impl{FNDBGFHANDLERDEV}
5290 */
5291static DECLCALLBACK(void) hdaDbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
5292{
5293 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
5294 int iHdaRegisterIndex = hdaDbgLookupRegByName(pszArgs);
5295 if (iHdaRegisterIndex != -1)
5296 hdaDbgPrintRegister(pThis, pHlp, iHdaRegisterIndex);
5297 else
5298 {
5299 for(iHdaRegisterIndex = 0; (unsigned int)iHdaRegisterIndex < HDA_NUM_REGS; ++iHdaRegisterIndex)
5300 hdaDbgPrintRegister(pThis, pHlp, iHdaRegisterIndex);
5301 }
5302}
5303
5304static void hdaDbgPrintStream(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iIdx)
5305{
5306 Assert( pThis
5307 && iIdx >= 0
5308 && iIdx < HDA_MAX_STREAMS);
5309
5310 const PHDASTREAM pStrm = &pThis->aStreams[iIdx];
5311
5312 pHlp->pfnPrintf(pHlp, "Stream #%d:\n", iIdx);
5313 pHlp->pfnPrintf(pHlp, "\tSD%dCTL : %R[sdctl]\n", iIdx, HDA_STREAM_REG(pThis, CTL, iIdx));
5314 pHlp->pfnPrintf(pHlp, "\tSD%dCTS : %R[sdsts]\n", iIdx, HDA_STREAM_REG(pThis, STS, iIdx));
5315 pHlp->pfnPrintf(pHlp, "\tSD%dFIFOS: %R[sdfifos]\n", iIdx, HDA_STREAM_REG(pThis, FIFOS, iIdx));
5316 pHlp->pfnPrintf(pHlp, "\tSD%dFIFOW: %R[sdfifow]\n", iIdx, HDA_STREAM_REG(pThis, FIFOW, iIdx));
5317 pHlp->pfnPrintf(pHlp, "\tBDLE : %R[bdle]\n", &pStrm->State.BDLE);
5318}
5319
5320static void hdaDbgPrintBDLE(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iIdx)
5321{
5322 Assert( pThis
5323 && iIdx >= 0
5324 && iIdx < HDA_MAX_STREAMS);
5325
5326 const PHDASTREAM pStrm = &pThis->aStreams[iIdx];
5327 const PHDABDLE pBDLE = &pStrm->State.BDLE;
5328
5329 pHlp->pfnPrintf(pHlp, "Stream #%d BDLE:\n", iIdx);
5330 pHlp->pfnPrintf(pHlp, "\t%R[bdle]\n", pBDLE);
5331
5332 uint64_t u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, iIdx),
5333 HDA_STREAM_REG(pThis, BDPU, iIdx));
5334 uint16_t u16LVI = HDA_STREAM_REG(pThis, LVI, iIdx);
5335 /*uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, iIdx); - unused */
5336
5337 if (!u64BaseDMA)
5338 return;
5339
5340 uint32_t cbBDLE = 0;
5341 for (uint16_t i = 0; i < u16LVI + 1; i++)
5342 {
5343 uint8_t bdle[16]; /** @todo Use a define. */
5344 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BaseDMA + i * 16, bdle, 16); /** @todo Use a define. */
5345
5346 uint64_t addr = *(uint64_t *)bdle;
5347 uint32_t len = *(uint32_t *)&bdle[8];
5348 uint32_t ioc = *(uint32_t *)&bdle[12];
5349
5350 pHlp->pfnPrintf(pHlp, "\t#%03d BDLE(adr:0x%llx, size:%RU32, ioc:%RTbool)\n",
5351 i, addr, len, RT_BOOL(ioc & 0x1));
5352
5353 cbBDLE += len;
5354 }
5355
5356 pHlp->pfnPrintf(pHlp, "Total: %RU32 bytes\n", cbBDLE);
5357
5358 pHlp->pfnPrintf(pHlp, "DMA counters (base @ 0x%llx):\n", pThis->u64DPBase);
5359 if (!pThis->u64DPBase) /* No DMA base given? Bail out. */
5360 {
5361 pHlp->pfnPrintf(pHlp, "No counters found\n");
5362 return;
5363 }
5364
5365 for (int i = 0; i < u16LVI + 1; i++)
5366 {
5367 uint32_t uDMACnt;
5368 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), (pThis->u64DPBase & DPBASE_ADDR_MASK) + (i * 2 * sizeof(uint32_t)),
5369 &uDMACnt, sizeof(uDMACnt));
5370
5371 pHlp->pfnPrintf(pHlp, "\t#%03d DMA @ 0x%x\n", i , uDMACnt);
5372 }
5373}
5374
5375static int hdaDbgLookupStrmIdx(PHDASTATE pThis, const char *pszArgs)
5376{
5377 RT_NOREF(pThis, pszArgs);
5378 /** @todo Add args parsing. */
5379 return -1;
5380}
5381
5382/**
5383 * @callback_method_impl{FNDBGFHANDLERDEV}
5384 */
5385static DECLCALLBACK(void) hdaDbgInfoStream(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
5386{
5387 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
5388 int iHdaStreamdex = hdaDbgLookupStrmIdx(pThis, pszArgs);
5389 if (iHdaStreamdex != -1)
5390 hdaDbgPrintStream(pThis, pHlp, iHdaStreamdex);
5391 else
5392 for(iHdaStreamdex = 0; iHdaStreamdex < HDA_MAX_STREAMS; ++iHdaStreamdex)
5393 hdaDbgPrintStream(pThis, pHlp, iHdaStreamdex);
5394}
5395
5396/**
5397 * @callback_method_impl{FNDBGFHANDLERDEV}
5398 */
5399static DECLCALLBACK(void) hdaDbgInfoBDLE(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
5400{
5401 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
5402 int iHdaStreamdex = hdaDbgLookupStrmIdx(pThis, pszArgs);
5403 if (iHdaStreamdex != -1)
5404 hdaDbgPrintBDLE(pThis, pHlp, iHdaStreamdex);
5405 else
5406 for(iHdaStreamdex = 0; iHdaStreamdex < HDA_MAX_STREAMS; ++iHdaStreamdex)
5407 hdaDbgPrintBDLE(pThis, pHlp, iHdaStreamdex);
5408}
5409
5410/**
5411 * @callback_method_impl{FNDBGFHANDLERDEV}
5412 */
5413static DECLCALLBACK(void) hdaDbgInfoCodecNodes(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
5414{
5415 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
5416
5417 if (pThis->pCodec->pfnDbgListNodes)
5418 pThis->pCodec->pfnDbgListNodes(pThis->pCodec, pHlp, pszArgs);
5419 else
5420 pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n");
5421}
5422
5423/**
5424 * @callback_method_impl{FNDBGFHANDLERDEV}
5425 */
5426static DECLCALLBACK(void) hdaDbgInfoCodecSelector(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
5427{
5428 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
5429
5430 if (pThis->pCodec->pfnDbgSelector)
5431 pThis->pCodec->pfnDbgSelector(pThis->pCodec, pHlp, pszArgs);
5432 else
5433 pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n");
5434}
5435
5436/**
5437 * @callback_method_impl{FNDBGFHANDLERDEV}
5438 */
5439static DECLCALLBACK(void) hdaDbgInfoMixer(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
5440{
5441 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
5442
5443 if (pThis->pMixer)
5444 AudioMixerDebug(pThis->pMixer, pHlp, pszArgs);
5445 else
5446 pHlp->pfnPrintf(pHlp, "Mixer not available\n");
5447}
5448#endif /* DEBUG */
5449
5450/* PDMIBASE */
5451
5452/**
5453 * @interface_method_impl{PDMIBASE,pfnQueryInterface}
5454 */
5455static DECLCALLBACK(void *) hdaQueryInterface(struct PDMIBASE *pInterface, const char *pszIID)
5456{
5457 PHDASTATE pThis = RT_FROM_MEMBER(pInterface, HDASTATE, IBase);
5458 Assert(&pThis->IBase == pInterface);
5459
5460 PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase);
5461 return NULL;
5462}
5463
5464
5465/* PDMDEVREG */
5466
5467/**
5468 * Reset notification.
5469 *
5470 * @returns VBox status code.
5471 * @param pDevIns The device instance data.
5472 *
5473 * @remark The original sources didn't install a reset handler, but it seems to
5474 * make sense to me so we'll do it.
5475 */
5476static DECLCALLBACK(void) hdaReset(PPDMDEVINS pDevIns)
5477{
5478 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
5479
5480 LogFlowFuncEnter();
5481
5482# ifndef VBOX_WITH_AUDIO_HDA_CALLBACKS
5483 /*
5484 * Stop the timer, if any.
5485 */
5486 hdaTimerMaybeStop(pThis);
5487# endif
5488
5489 /* See 6.2.1. */
5490 HDA_REG(pThis, GCAP) = HDA_MAKE_GCAP(HDA_MAX_SDO /* Ouput streams */,
5491 HDA_MAX_SDI /* Input streams */,
5492 0 /* Bidirectional output streams */,
5493 0 /* Serial data out signals */,
5494 1 /* 64-bit */);
5495 HDA_REG(pThis, VMIN) = 0x00; /* see 6.2.2 */
5496 HDA_REG(pThis, VMAJ) = 0x01; /* see 6.2.3 */
5497 /* Announce the full 60 words output payload. */
5498 HDA_REG(pThis, OUTPAY) = 0x003C; /* see 6.2.4 */
5499 /* Announce the full 29 words input payload. */
5500 HDA_REG(pThis, INPAY) = 0x001D; /* see 6.2.5 */
5501 HDA_REG(pThis, CORBSIZE) = 0x42; /* see 6.2.1 */
5502 HDA_REG(pThis, RIRBSIZE) = 0x42; /* see 6.2.1 */
5503 HDA_REG(pThis, CORBRP) = 0x0;
5504 HDA_REG(pThis, RIRBWP) = 0x0;
5505
5506 /*
5507 * Stop any audio currently playing and/or recording.
5508 */
5509 AudioMixerSinkCtl(pThis->SinkFront.pMixSink, AUDMIXSINKCMD_DISABLE);
5510# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5511 AudioMixerSinkCtl(pThis->SinkMicIn.pMixSink, AUDMIXSINKCMD_DISABLE);
5512# endif
5513 AudioMixerSinkCtl(pThis->SinkLineIn.pMixSink, AUDMIXSINKCMD_DISABLE);
5514# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
5515 AudioMixerSinkCtl(pThis->SinkCenterLFE.pMixSink, AUDMIXSINKCMD_DISABLE);
5516 AudioMixerSinkCtl(pThis->SinkRear.pMixSink, AUDMIXSINKCMD_DISABLE);
5517# endif
5518
5519 /*
5520 * Reset the codec.
5521 */
5522 if ( pThis->pCodec
5523 && pThis->pCodec->pfnReset)
5524 {
5525 pThis->pCodec->pfnReset(pThis->pCodec);
5526 }
5527
5528 /*
5529 * Set some sensible defaults for which HDA sinks
5530 * are connected to which stream number.
5531 *
5532 * We use SD0 for input and SD4 for output by default.
5533 * These stream numbers can be changed by the guest dynamically lateron.
5534 */
5535#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5536 hdaMixerSetStream(pThis, PDMAUDIOMIXERCTL_MIC_IN , 1 /* SD0 */, 0 /* Channel */);
5537#endif
5538 hdaMixerSetStream(pThis, PDMAUDIOMIXERCTL_LINE_IN , 1 /* SD0 */, 0 /* Channel */);
5539
5540 hdaMixerSetStream(pThis, PDMAUDIOMIXERCTL_FRONT , 5 /* SD4 */, 0 /* Channel */);
5541#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
5542 hdaMixerSetStream(pThis, PDMAUDIOMIXERCTL_CENTER_LFE, 5 /* SD4 */, 0 /* Channel */);
5543 hdaMixerSetStream(pThis, PDMAUDIOMIXERCTL_REAR , 5 /* SD4 */, 0 /* Channel */);
5544#endif
5545
5546 pThis->cbCorbBuf = 256 * sizeof(uint32_t); /** @todo Use a define here. */
5547
5548 if (pThis->pu32CorbBuf)
5549 RT_BZERO(pThis->pu32CorbBuf, pThis->cbCorbBuf);
5550 else
5551 pThis->pu32CorbBuf = (uint32_t *)RTMemAllocZ(pThis->cbCorbBuf);
5552
5553 pThis->cbRirbBuf = 256 * sizeof(uint64_t); /** @todo Use a define here. */
5554 if (pThis->pu64RirbBuf)
5555 RT_BZERO(pThis->pu64RirbBuf, pThis->cbRirbBuf);
5556 else
5557 pThis->pu64RirbBuf = (uint64_t *)RTMemAllocZ(pThis->cbRirbBuf);
5558
5559 pThis->u64BaseTS = PDMDevHlpTMTimeVirtGetNano(pDevIns);
5560
5561 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
5562 {
5563 /* Remove the RUN bit from SDnCTL in case the stream was in a running state before. */
5564 HDA_STREAM_REG(pThis, CTL, i) &= ~HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN);
5565 hdaStreamReset(pThis, &pThis->aStreams[i]);
5566 }
5567
5568 /* Clear stream tags <-> objects mapping table. */
5569 RT_ZERO(pThis->aTags);
5570
5571 /* Emulation of codec "wake up" (HDA spec 5.5.1 and 6.5). */
5572 HDA_REG(pThis, STATESTS) = 0x1;
5573
5574# ifndef VBOX_WITH_AUDIO_HDA_CALLBACKS
5575 hdaTimerMaybeStart(pThis);
5576# endif
5577
5578 LogFlowFuncLeave();
5579 LogRel(("HDA: Reset\n"));
5580}
5581
5582/**
5583 * @interface_method_impl{PDMDEVREG,pfnDestruct}
5584 */
5585static DECLCALLBACK(int) hdaDestruct(PPDMDEVINS pDevIns)
5586{
5587 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
5588
5589 PHDADRIVER pDrv;
5590 while (!RTListIsEmpty(&pThis->lstDrv))
5591 {
5592 pDrv = RTListGetFirst(&pThis->lstDrv, HDADRIVER, Node);
5593
5594 RTListNodeRemove(&pDrv->Node);
5595 RTMemFree(pDrv);
5596 }
5597
5598 if (pThis->pCodec)
5599 {
5600 hdaCodecDestruct(pThis->pCodec);
5601
5602 RTMemFree(pThis->pCodec);
5603 pThis->pCodec = NULL;
5604 }
5605
5606 RTMemFree(pThis->pu32CorbBuf);
5607 pThis->pu32CorbBuf = NULL;
5608
5609 RTMemFree(pThis->pu64RirbBuf);
5610 pThis->pu64RirbBuf = NULL;
5611
5612 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
5613 hdaStreamDestroy(&pThis->aStreams[i]);
5614
5615 return VINF_SUCCESS;
5616}
5617
5618
5619/**
5620 * Attach command, internal version.
5621 *
5622 * This is called to let the device attach to a driver for a specified LUN
5623 * during runtime. This is not called during VM construction, the device
5624 * constructor has to attach to all the available drivers.
5625 *
5626 * @returns VBox status code.
5627 * @param pDevIns The device instance.
5628 * @param pDrv Driver to (re-)use for (re-)attaching to.
5629 * If NULL is specified, a new driver will be created and appended
5630 * to the driver list.
5631 * @param uLUN The logical unit which is being detached.
5632 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
5633 */
5634static int hdaAttachInternal(PPDMDEVINS pDevIns, PHDADRIVER pDrv, unsigned uLUN, uint32_t fFlags)
5635{
5636 RT_NOREF(fFlags);
5637 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
5638
5639 /*
5640 * Attach driver.
5641 */
5642 char *pszDesc = NULL;
5643 if (RTStrAPrintf(&pszDesc, "Audio driver port (HDA) for LUN#%u", uLUN) <= 0)
5644 AssertReleaseMsgReturn(pszDesc,
5645 ("Not enough memory for HDA driver port description of LUN #%u\n", uLUN),
5646 VERR_NO_MEMORY);
5647
5648 PPDMIBASE pDrvBase;
5649 int rc = PDMDevHlpDriverAttach(pDevIns, uLUN,
5650 &pThis->IBase, &pDrvBase, pszDesc);
5651 if (RT_SUCCESS(rc))
5652 {
5653 if (pDrv == NULL)
5654 pDrv = (PHDADRIVER)RTMemAllocZ(sizeof(HDADRIVER));
5655 if (pDrv)
5656 {
5657 pDrv->pDrvBase = pDrvBase;
5658 pDrv->pConnector = PDMIBASE_QUERY_INTERFACE(pDrvBase, PDMIAUDIOCONNECTOR);
5659 AssertMsg(pDrv->pConnector != NULL, ("Configuration error: LUN#%u has no host audio interface, rc=%Rrc\n", uLUN, rc));
5660 pDrv->pHDAState = pThis;
5661 pDrv->uLUN = uLUN;
5662
5663 /*
5664 * For now we always set the driver at LUN 0 as our primary
5665 * host backend. This might change in the future.
5666 */
5667 if (pDrv->uLUN == 0)
5668 pDrv->Flags |= PDMAUDIODRVFLAGS_PRIMARY;
5669
5670 LogFunc(("LUN#%u: pCon=%p, drvFlags=0x%x\n", uLUN, pDrv->pConnector, pDrv->Flags));
5671
5672 /* Attach to driver list if not attached yet. */
5673 if (!pDrv->fAttached)
5674 {
5675 RTListAppend(&pThis->lstDrv, &pDrv->Node);
5676 pDrv->fAttached = true;
5677 }
5678 }
5679 else
5680 rc = VERR_NO_MEMORY;
5681 }
5682 else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
5683 LogFunc(("No attached driver for LUN #%u\n", uLUN));
5684
5685 if (RT_FAILURE(rc))
5686 {
5687 /* Only free this string on failure;
5688 * must remain valid for the live of the driver instance. */
5689 RTStrFree(pszDesc);
5690 }
5691
5692 LogFunc(("uLUN=%u, fFlags=0x%x, rc=%Rrc\n", uLUN, fFlags, rc));
5693 return rc;
5694}
5695
5696/**
5697 * Attach command.
5698 *
5699 * This is called to let the device attach to a driver for a specified LUN
5700 * during runtime. This is not called during VM construction, the device
5701 * constructor has to attach to all the available drivers.
5702 *
5703 * @returns VBox status code.
5704 * @param pDevIns The device instance.
5705 * @param uLUN The logical unit which is being detached.
5706 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
5707 */
5708static DECLCALLBACK(int) hdaAttach(PPDMDEVINS pDevIns, unsigned uLUN, uint32_t fFlags)
5709{
5710 return hdaAttachInternal(pDevIns, NULL /* pDrv */, uLUN, fFlags);
5711}
5712
5713static DECLCALLBACK(void) hdaDetach(PPDMDEVINS pDevIns, unsigned uLUN, uint32_t fFlags)
5714{
5715 RT_NOREF(pDevIns, uLUN, fFlags);
5716 LogFunc(("iLUN=%u, fFlags=0x%x\n", uLUN, fFlags));
5717}
5718
5719/**
5720 * Powers off the device.
5721 *
5722 * @param pDevIns Device instance to power off.
5723 */
5724static DECLCALLBACK(void) hdaPowerOff(PPDMDEVINS pDevIns)
5725{
5726 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
5727
5728 LogRel2(("HDA: Powering off ...\n"));
5729
5730 /* Ditto goes for the codec, which in turn uses the mixer. */
5731 hdaCodecPowerOff(pThis->pCodec);
5732
5733 /**
5734 * Note: Destroy the mixer while powering off and *not* in hdaDestruct,
5735 * giving the mixer the chance to release any references held to
5736 * PDM audio streams it maintains.
5737 */
5738 if (pThis->pMixer)
5739 {
5740 AudioMixerDestroy(pThis->pMixer);
5741 pThis->pMixer = NULL;
5742 }
5743}
5744
5745/**
5746 * Re-attaches a new driver to the device's driver chain.
5747 *
5748 * @returns VBox status code.
5749 * @param pThis Device instance to re-attach driver to.
5750 * @param pDrv Driver instance used for attaching to.
5751 * If NULL is specified, a new driver will be created and appended
5752 * to the driver list.
5753 * @param uLUN The logical unit which is being re-detached.
5754 * @param pszDriver Driver name.
5755 */
5756static int hdaReattach(PHDASTATE pThis, PHDADRIVER pDrv, uint8_t uLUN, const char *pszDriver)
5757{
5758 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
5759 AssertPtrReturn(pszDriver, VERR_INVALID_POINTER);
5760
5761 PVM pVM = PDMDevHlpGetVM(pThis->pDevInsR3);
5762 PCFGMNODE pRoot = CFGMR3GetRoot(pVM);
5763 PCFGMNODE pDev0 = CFGMR3GetChild(pRoot, "Devices/hda/0/");
5764
5765 /* Remove LUN branch. */
5766 CFGMR3RemoveNode(CFGMR3GetChildF(pDev0, "LUN#%u/", uLUN));
5767
5768 if (pDrv)
5769 {
5770 /* Re-use a driver instance => detach the driver before. */
5771 int rc = PDMDevHlpDriverDetach(pThis->pDevInsR3, PDMIBASE_2_PDMDRV(pDrv->pDrvBase), 0 /* fFlags */);
5772 if (RT_FAILURE(rc))
5773 return rc;
5774 }
5775
5776#define RC_CHECK() if (RT_FAILURE(rc)) { AssertReleaseRC(rc); break; }
5777
5778 int rc = VINF_SUCCESS;
5779 do
5780 {
5781 PCFGMNODE pLunL0;
5782 rc = CFGMR3InsertNodeF(pDev0, &pLunL0, "LUN#%u/", uLUN); RC_CHECK();
5783 rc = CFGMR3InsertString(pLunL0, "Driver", "AUDIO"); RC_CHECK();
5784 rc = CFGMR3InsertNode(pLunL0, "Config/", NULL); RC_CHECK();
5785
5786 PCFGMNODE pLunL1, pLunL2;
5787 rc = CFGMR3InsertNode (pLunL0, "AttachedDriver/", &pLunL1); RC_CHECK();
5788 rc = CFGMR3InsertNode (pLunL1, "Config/", &pLunL2); RC_CHECK();
5789 rc = CFGMR3InsertString(pLunL1, "Driver", pszDriver); RC_CHECK();
5790
5791 rc = CFGMR3InsertString(pLunL2, "AudioDriver", pszDriver); RC_CHECK();
5792
5793 } while (0);
5794
5795 if (RT_SUCCESS(rc))
5796 rc = hdaAttachInternal(pThis->pDevInsR3, pDrv, uLUN, 0 /* fFlags */);
5797
5798 LogFunc(("pThis=%p, uLUN=%u, pszDriver=%s, rc=%Rrc\n", pThis, uLUN, pszDriver, rc));
5799
5800#undef RC_CHECK
5801
5802 return rc;
5803}
5804
5805/**
5806 * @interface_method_impl{PDMDEVREG,pfnConstruct}
5807 */
5808static DECLCALLBACK(int) hdaConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
5809{
5810 RT_NOREF(iInstance);
5811 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
5812 PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
5813 Assert(iInstance == 0);
5814
5815 /*
5816 * Validations.
5817 */
5818 if (!CFGMR3AreValuesValid(pCfg, "R0Enabled\0"
5819 "RCEnabled\0"
5820 "TimerHz\0"))
5821 return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES,
5822 N_ ("Invalid configuration for the Intel HDA device"));
5823
5824 int rc = CFGMR3QueryBoolDef(pCfg, "RCEnabled", &pThis->fRCEnabled, false);
5825 if (RT_FAILURE(rc))
5826 return PDMDEV_SET_ERROR(pDevIns, rc,
5827 N_("HDA configuration error: failed to read RCEnabled as boolean"));
5828 rc = CFGMR3QueryBoolDef(pCfg, "R0Enabled", &pThis->fR0Enabled, false);
5829 if (RT_FAILURE(rc))
5830 return PDMDEV_SET_ERROR(pDevIns, rc,
5831 N_("HDA configuration error: failed to read R0Enabled as boolean"));
5832#ifndef VBOX_WITH_AUDIO_HDA_CALLBACKS
5833 uint16_t uTimerHz;
5834 rc = CFGMR3QueryU16Def(pCfg, "TimerHz", &uTimerHz, 200 /* Hz */);
5835 if (RT_FAILURE(rc))
5836 return PDMDEV_SET_ERROR(pDevIns, rc,
5837 N_("HDA configuration error: failed to read Hertz (Hz) rate as unsigned integer"));
5838#endif
5839
5840 /*
5841 * Initialize data (most of it anyway).
5842 */
5843 pThis->pDevInsR3 = pDevIns;
5844 pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
5845 pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
5846 /* IBase */
5847 pThis->IBase.pfnQueryInterface = hdaQueryInterface;
5848
5849 /* PCI Device */
5850 PCIDevSetVendorId (&pThis->PciDev, HDA_PCI_VENDOR_ID); /* nVidia */
5851 PCIDevSetDeviceId (&pThis->PciDev, HDA_PCI_DEVICE_ID); /* HDA */
5852
5853 PCIDevSetCommand (&pThis->PciDev, 0x0000); /* 04 rw,ro - pcicmd. */
5854 PCIDevSetStatus (&pThis->PciDev, VBOX_PCI_STATUS_CAP_LIST); /* 06 rwc?,ro? - pcists. */
5855 PCIDevSetRevisionId (&pThis->PciDev, 0x01); /* 08 ro - rid. */
5856 PCIDevSetClassProg (&pThis->PciDev, 0x00); /* 09 ro - pi. */
5857 PCIDevSetClassSub (&pThis->PciDev, 0x03); /* 0a ro - scc; 03 == HDA. */
5858 PCIDevSetClassBase (&pThis->PciDev, 0x04); /* 0b ro - bcc; 04 == multimedia. */
5859 PCIDevSetHeaderType (&pThis->PciDev, 0x00); /* 0e ro - headtyp. */
5860 PCIDevSetBaseAddress (&pThis->PciDev, 0, /* 10 rw - MMIO */
5861 false /* fIoSpace */, false /* fPrefetchable */, true /* f64Bit */, 0x00000000);
5862 PCIDevSetInterruptLine (&pThis->PciDev, 0x00); /* 3c rw. */
5863 PCIDevSetInterruptPin (&pThis->PciDev, 0x01); /* 3d ro - INTA#. */
5864
5865#if defined(HDA_AS_PCI_EXPRESS)
5866 PCIDevSetCapabilityList (&pThis->PciDev, 0x80);
5867#elif defined(VBOX_WITH_MSI_DEVICES)
5868 PCIDevSetCapabilityList (&pThis->PciDev, 0x60);
5869#else
5870 PCIDevSetCapabilityList (&pThis->PciDev, 0x50); /* ICH6 datasheet 18.1.16 */
5871#endif
5872
5873 /// @todo r=michaln: If there are really no PCIDevSetXx for these, the meaning
5874 /// of these values needs to be properly documented!
5875 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
5876 PCIDevSetByte(&pThis->PciDev, 0x40, 0x01);
5877
5878 /* Power Management */
5879 PCIDevSetByte(&pThis->PciDev, 0x50 + 0, VBOX_PCI_CAP_ID_PM);
5880 PCIDevSetByte(&pThis->PciDev, 0x50 + 1, 0x0); /* next */
5881 PCIDevSetWord(&pThis->PciDev, 0x50 + 2, VBOX_PCI_PM_CAP_DSI | 0x02 /* version, PM1.1 */ );
5882
5883#ifdef HDA_AS_PCI_EXPRESS
5884 /* PCI Express */
5885 PCIDevSetByte(&pThis->PciDev, 0x80 + 0, VBOX_PCI_CAP_ID_EXP); /* PCI_Express */
5886 PCIDevSetByte(&pThis->PciDev, 0x80 + 1, 0x60); /* next */
5887 /* Device flags */
5888 PCIDevSetWord(&pThis->PciDev, 0x80 + 2,
5889 /* version */ 0x1 |
5890 /* Root Complex Integrated Endpoint */ (VBOX_PCI_EXP_TYPE_ROOT_INT_EP << 4) |
5891 /* MSI */ (100) << 9 );
5892 /* Device capabilities */
5893 PCIDevSetDWord(&pThis->PciDev, 0x80 + 4, VBOX_PCI_EXP_DEVCAP_FLRESET);
5894 /* Device control */
5895 PCIDevSetWord( &pThis->PciDev, 0x80 + 8, 0);
5896 /* Device status */
5897 PCIDevSetWord( &pThis->PciDev, 0x80 + 10, 0);
5898 /* Link caps */
5899 PCIDevSetDWord(&pThis->PciDev, 0x80 + 12, 0);
5900 /* Link control */
5901 PCIDevSetWord( &pThis->PciDev, 0x80 + 16, 0);
5902 /* Link status */
5903 PCIDevSetWord( &pThis->PciDev, 0x80 + 18, 0);
5904 /* Slot capabilities */
5905 PCIDevSetDWord(&pThis->PciDev, 0x80 + 20, 0);
5906 /* Slot control */
5907 PCIDevSetWord( &pThis->PciDev, 0x80 + 24, 0);
5908 /* Slot status */
5909 PCIDevSetWord( &pThis->PciDev, 0x80 + 26, 0);
5910 /* Root control */
5911 PCIDevSetWord( &pThis->PciDev, 0x80 + 28, 0);
5912 /* Root capabilities */
5913 PCIDevSetWord( &pThis->PciDev, 0x80 + 30, 0);
5914 /* Root status */
5915 PCIDevSetDWord(&pThis->PciDev, 0x80 + 32, 0);
5916 /* Device capabilities 2 */
5917 PCIDevSetDWord(&pThis->PciDev, 0x80 + 36, 0);
5918 /* Device control 2 */
5919 PCIDevSetQWord(&pThis->PciDev, 0x80 + 40, 0);
5920 /* Link control 2 */
5921 PCIDevSetQWord(&pThis->PciDev, 0x80 + 48, 0);
5922 /* Slot control 2 */
5923 PCIDevSetWord( &pThis->PciDev, 0x80 + 56, 0);
5924#endif
5925
5926 /*
5927 * Register the PCI device.
5928 */
5929 rc = PDMDevHlpPCIRegister(pDevIns, &pThis->PciDev);
5930 if (RT_FAILURE(rc))
5931 return rc;
5932
5933 rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, 0x4000, PCI_ADDRESS_SPACE_MEM, hdaPciIoRegionMap);
5934 if (RT_FAILURE(rc))
5935 return rc;
5936
5937#ifdef VBOX_WITH_MSI_DEVICES
5938 PDMMSIREG MsiReg;
5939 RT_ZERO(MsiReg);
5940 MsiReg.cMsiVectors = 1;
5941 MsiReg.iMsiCapOffset = 0x60;
5942 MsiReg.iMsiNextOffset = 0x50;
5943 rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg);
5944 if (RT_FAILURE(rc))
5945 {
5946 /* That's OK, we can work without MSI */
5947 PCIDevSetCapabilityList(&pThis->PciDev, 0x50);
5948 }
5949#endif
5950
5951 rc = PDMDevHlpSSMRegister(pDevIns, HDA_SSM_VERSION, sizeof(*pThis), hdaSaveExec, hdaLoadExec);
5952 if (RT_FAILURE(rc))
5953 return rc;
5954
5955 RTListInit(&pThis->lstDrv);
5956
5957 uint8_t uLUN;
5958 for (uLUN = 0; uLUN < UINT8_MAX; ++uLUN)
5959 {
5960 LogFunc(("Trying to attach driver for LUN #%RU32 ...\n", uLUN));
5961 rc = hdaAttachInternal(pDevIns, NULL /* pDrv */, uLUN, 0 /* fFlags */);
5962 if (RT_FAILURE(rc))
5963 {
5964 if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
5965 rc = VINF_SUCCESS;
5966 else if (rc == VERR_AUDIO_BACKEND_INIT_FAILED)
5967 {
5968 hdaReattach(pThis, NULL /* pDrv */, uLUN, "NullAudio");
5969 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding",
5970 N_("Host audio backend initialization has failed. Selecting the NULL audio backend "
5971 "with the consequence that no sound is audible"));
5972 /* Attaching to the NULL audio backend will never fail. */
5973 rc = VINF_SUCCESS;
5974 }
5975 break;
5976 }
5977 }
5978
5979 LogFunc(("cLUNs=%RU8, rc=%Rrc\n", uLUN, rc));
5980
5981 if (RT_SUCCESS(rc))
5982 {
5983 rc = AudioMixerCreate("HDA Mixer", 0 /* uFlags */, &pThis->pMixer);
5984 if (RT_SUCCESS(rc))
5985 {
5986 /*
5987 * Add mixer output sinks.
5988 */
5989#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
5990 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Front",
5991 AUDMIXSINKDIR_OUTPUT, &pThis->SinkFront.pMixSink);
5992 AssertRC(rc);
5993 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Center / Subwoofer",
5994 AUDMIXSINKDIR_OUTPUT, &pThis->SinkCenterLFE.pMixSink);
5995 AssertRC(rc);
5996 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Rear",
5997 AUDMIXSINKDIR_OUTPUT, &pThis->SinkRear.pMixSink);
5998 AssertRC(rc);
5999#else
6000 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] PCM Output",
6001 AUDMIXSINKDIR_OUTPUT, &pThis->SinkFront.pMixSink);
6002 AssertRC(rc);
6003#endif
6004 /*
6005 * Add mixer input sinks.
6006 */
6007 rc = AudioMixerCreateSink(pThis->pMixer, "[Recording] Line In",
6008 AUDMIXSINKDIR_INPUT, &pThis->SinkLineIn.pMixSink);
6009 AssertRC(rc);
6010#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
6011 rc = AudioMixerCreateSink(pThis->pMixer, "[Recording] Microphone In",
6012 AUDMIXSINKDIR_INPUT, &pThis->SinkMicIn.pMixSink);
6013 AssertRC(rc);
6014#endif
6015 /* There is no master volume control. Set the master to max. */
6016 PDMAUDIOVOLUME vol = { false, 255, 255 };
6017 rc = AudioMixerSetMasterVolume(pThis->pMixer, &vol);
6018 AssertRC(rc);
6019 }
6020 }
6021
6022 if (RT_SUCCESS(rc))
6023 {
6024 /* Construct codec. */
6025 pThis->pCodec = (PHDACODEC)RTMemAllocZ(sizeof(HDACODEC));
6026 if (!pThis->pCodec)
6027 return PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Out of memory allocating HDA codec state"));
6028
6029 /* Set codec callbacks to this controller. */
6030 pThis->pCodec->pfnCbMixerAddStream = hdaMixerAddStream;
6031 pThis->pCodec->pfnCbMixerRemoveStream = hdaMixerRemoveStream;
6032 pThis->pCodec->pfnCbMixerSetStream = hdaMixerSetStream;
6033 pThis->pCodec->pfnCbMixerSetVolume = hdaMixerSetVolume;
6034
6035 pThis->pCodec->pHDAState = pThis; /* Assign HDA controller state to codec. */
6036
6037 /* Construct the codec. */
6038 rc = hdaCodecConstruct(pDevIns, pThis->pCodec, 0 /* Codec index */, pCfg);
6039 if (RT_FAILURE(rc))
6040 AssertRCReturn(rc, rc);
6041
6042 /* ICH6 datasheet defines 0 values for SVID and SID (18.1.14-15), which together with values returned for
6043 verb F20 should provide device/codec recognition. */
6044 Assert(pThis->pCodec->u16VendorId);
6045 Assert(pThis->pCodec->u16DeviceId);
6046 PCIDevSetSubSystemVendorId(&pThis->PciDev, pThis->pCodec->u16VendorId); /* 2c ro - intel.) */
6047 PCIDevSetSubSystemId( &pThis->PciDev, pThis->pCodec->u16DeviceId); /* 2e ro. */
6048 }
6049
6050 if (RT_SUCCESS(rc))
6051 {
6052 /*
6053 * Create all hardware streams.
6054 */
6055 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
6056 {
6057 rc = hdaStreamCreate(&pThis->aStreams[i], i /* uSD */);
6058 AssertRC(rc);
6059 }
6060
6061#ifdef VBOX_WITH_AUDIO_HDA_ONETIME_INIT
6062 /*
6063 * Initialize the driver chain.
6064 */
6065 PHDADRIVER pDrv;
6066 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
6067 {
6068 /*
6069 * Only primary drivers are critical for the VM to run. Everything else
6070 * might not worth showing an own error message box in the GUI.
6071 */
6072 if (!(pDrv->Flags & PDMAUDIODRVFLAGS_PRIMARY))
6073 continue;
6074
6075 PPDMIAUDIOCONNECTOR pCon = pDrv->pConnector;
6076 AssertPtr(pCon);
6077
6078 bool fValidLineIn = AudioMixerStreamIsValid(pDrv->LineIn.pMixStrm);
6079# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
6080 bool fValidMicIn = AudioMixerStreamIsValid(pDrv->MicIn.pMixStrm);
6081# endif
6082 bool fValidOut = AudioMixerStreamIsValid(pDrv->Front.pMixStrm);
6083# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
6084 /** @todo Anything to do here? */
6085# endif
6086
6087 if ( !fValidLineIn
6088# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
6089 && !fValidMicIn
6090# endif
6091 && !fValidOut)
6092 {
6093 LogRel(("HDA: Falling back to NULL backend (no sound audible)\n"));
6094
6095 hdaReset(pDevIns);
6096 hdaReattach(pThis, pDrv, pDrv->uLUN, "NullAudio");
6097
6098 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding",
6099 N_("No audio devices could be opened. Selecting the NULL audio backend "
6100 "with the consequence that no sound is audible"));
6101 }
6102 else
6103 {
6104 bool fWarn = false;
6105
6106 PDMAUDIOBACKENDCFG backendCfg;
6107 int rc2 = pCon->pfnGetConfig(pCon, &backendCfg);
6108 if (RT_SUCCESS(rc2))
6109 {
6110 if (backendCfg.cMaxStreamsIn)
6111 {
6112# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
6113 /* If the audio backend supports two or more input streams at once,
6114 * warn if one of our two inputs (microphone-in and line-in) failed to initialize. */
6115 if (backendCfg.cMaxStreamsIn >= 2)
6116 fWarn = !fValidLineIn || !fValidMicIn;
6117 /* If the audio backend only supports one input stream at once (e.g. pure ALSA, and
6118 * *not* ALSA via PulseAudio plugin!), only warn if both of our inputs failed to initialize.
6119 * One of the two simply is not in use then. */
6120 else if (backendCfg.cMaxStreamsIn == 1)
6121 fWarn = !fValidLineIn && !fValidMicIn;
6122 /* Don't warn if our backend is not able of supporting any input streams at all. */
6123# else /* !VBOX_WITH_AUDIO_HDA_MIC_IN */
6124 /* We only have line-in as input source. */
6125 fWarn = !fValidLineIn;
6126# endif /* VBOX_WITH_AUDIO_HDA_MIC_IN */
6127 }
6128
6129 if ( !fWarn
6130 && backendCfg.cMaxStreamsOut)
6131 {
6132 fWarn = !fValidOut;
6133 }
6134 }
6135 else
6136 {
6137 LogRel(("HDA: Unable to retrieve audio backend configuration for LUN #%RU8, rc=%Rrc\n", pDrv->uLUN, rc2));
6138 fWarn = true;
6139 }
6140
6141 if (fWarn)
6142 {
6143 char szMissingStreams[255];
6144 size_t len = 0;
6145 if (!fValidLineIn)
6146 {
6147 LogRel(("HDA: WARNING: Unable to open PCM line input for LUN #%RU8!\n", pDrv->uLUN));
6148 len = RTStrPrintf(szMissingStreams, sizeof(szMissingStreams), "PCM Input");
6149 }
6150# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
6151 if (!fValidMicIn)
6152 {
6153 LogRel(("HDA: WARNING: Unable to open PCM microphone input for LUN #%RU8!\n", pDrv->uLUN));
6154 len += RTStrPrintf(szMissingStreams + len,
6155 sizeof(szMissingStreams) - len, len ? ", PCM Microphone" : "PCM Microphone");
6156 }
6157# endif /* VBOX_WITH_AUDIO_HDA_MIC_IN */
6158 if (!fValidOut)
6159 {
6160 LogRel(("HDA: WARNING: Unable to open PCM output for LUN #%RU8!\n", pDrv->uLUN));
6161 len += RTStrPrintf(szMissingStreams + len,
6162 sizeof(szMissingStreams) - len, len ? ", PCM Output" : "PCM Output");
6163 }
6164
6165 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding",
6166 N_("Some HDA audio streams (%s) could not be opened. Guest applications generating audio "
6167 "output or depending on audio input may hang. Make sure your host audio device "
6168 "is working properly. Check the logfile for error messages of the audio "
6169 "subsystem"), szMissingStreams);
6170 }
6171 }
6172 }
6173#endif /* VBOX_WITH_AUDIO_HDA_ONETIME_INIT */
6174 }
6175
6176 if (RT_SUCCESS(rc))
6177 {
6178 hdaReset(pDevIns);
6179
6180 /*
6181 * 18.2.6,7 defines that values of this registers might be cleared on power on/reset
6182 * hdaReset shouldn't affects these registers.
6183 */
6184 HDA_REG(pThis, WAKEEN) = 0x0;
6185 HDA_REG(pThis, STATESTS) = 0x0;
6186
6187#ifdef DEBUG
6188 /*
6189 * Debug and string formatter types.
6190 */
6191 PDMDevHlpDBGFInfoRegister(pDevIns, "hda", "HDA info. (hda [register case-insensitive])", hdaDbgInfo);
6192 PDMDevHlpDBGFInfoRegister(pDevIns, "hdabdle", "HDA stream BDLE info. (hdabdle [stream number])", hdaDbgInfoBDLE);
6193 PDMDevHlpDBGFInfoRegister(pDevIns, "hdastrm", "HDA stream info. (hdastrm [stream number])", hdaDbgInfoStream);
6194 PDMDevHlpDBGFInfoRegister(pDevIns, "hdcnodes", "HDA codec nodes.", hdaDbgInfoCodecNodes);
6195 PDMDevHlpDBGFInfoRegister(pDevIns, "hdcselector", "HDA codec's selector states [node number].", hdaDbgInfoCodecSelector);
6196 PDMDevHlpDBGFInfoRegister(pDevIns, "hdamixer", "HDA mixer state.", hdaDbgInfoMixer);
6197
6198 rc = RTStrFormatTypeRegister("bdle", hdaDbgFmtBDLE, NULL);
6199 AssertRC(rc);
6200 rc = RTStrFormatTypeRegister("sdctl", hdaDbgFmtSDCTL, NULL);
6201 AssertRC(rc);
6202 rc = RTStrFormatTypeRegister("sdsts", hdaDbgFmtSDSTS, NULL);
6203 AssertRC(rc);
6204 rc = RTStrFormatTypeRegister("sdfifos", hdaDbgFmtSDFIFOS, NULL);
6205 AssertRC(rc);
6206 rc = RTStrFormatTypeRegister("sdfifow", hdaDbgFmtSDFIFOW, NULL);
6207 AssertRC(rc);
6208#endif /* DEBUG */
6209
6210 /*
6211 * Some debug assertions.
6212 */
6213 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
6214 {
6215 struct HDAREGDESC const *pReg = &g_aHdaRegMap[i];
6216 struct HDAREGDESC const *pNextReg = i + 1 < RT_ELEMENTS(g_aHdaRegMap) ? &g_aHdaRegMap[i + 1] : NULL;
6217
6218 /* binary search order. */
6219 AssertReleaseMsg(!pNextReg || pReg->offset + pReg->size <= pNextReg->offset,
6220 ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
6221 i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size));
6222
6223 /* alignment. */
6224 AssertReleaseMsg( pReg->size == 1
6225 || (pReg->size == 2 && (pReg->offset & 1) == 0)
6226 || (pReg->size == 3 && (pReg->offset & 3) == 0)
6227 || (pReg->size == 4 && (pReg->offset & 3) == 0),
6228 ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
6229
6230 /* registers are packed into dwords - with 3 exceptions with gaps at the end of the dword. */
6231 AssertRelease(((pReg->offset + pReg->size) & 3) == 0 || pNextReg);
6232 if (pReg->offset & 3)
6233 {
6234 struct HDAREGDESC const *pPrevReg = i > 0 ? &g_aHdaRegMap[i - 1] : NULL;
6235 AssertReleaseMsg(pPrevReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
6236 if (pPrevReg)
6237 AssertReleaseMsg(pPrevReg->offset + pPrevReg->size == pReg->offset,
6238 ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
6239 i - 1, pPrevReg->offset, pPrevReg->size, i + 1, pReg->offset, pReg->size));
6240 }
6241#if 0
6242 if ((pReg->offset + pReg->size) & 3)
6243 {
6244 AssertReleaseMsg(pNextReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
6245 if (pNextReg)
6246 AssertReleaseMsg(pReg->offset + pReg->size == pNextReg->offset,
6247 ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
6248 i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size));
6249 }
6250#endif
6251 /* The final entry is a full DWORD, no gaps! Allows shortcuts. */
6252 AssertReleaseMsg(pNextReg || ((pReg->offset + pReg->size) & 3) == 0,
6253 ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
6254 }
6255 }
6256
6257# ifndef VBOX_WITH_AUDIO_HDA_CALLBACKS
6258 if (RT_SUCCESS(rc))
6259 {
6260 /* Start the emulation timer. */
6261 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, hdaTimer, pThis,
6262 TMTIMER_FLAGS_NO_CRIT_SECT, "DevHDA", &pThis->pTimer);
6263 AssertRCReturn(rc, rc);
6264
6265 if (RT_SUCCESS(rc))
6266 {
6267 pThis->cTimerTicks = TMTimerGetFreq(pThis->pTimer) / uTimerHz;
6268 pThis->uTimerTS = TMTimerGet(pThis->pTimer);
6269 LogFunc(("Timer ticks=%RU64 (%RU16 Hz)\n", pThis->cTimerTicks, uTimerHz));
6270
6271 hdaTimerMaybeStart(pThis);
6272 }
6273 }
6274# else
6275 if (RT_SUCCESS(rc))
6276 {
6277 PHDADRIVER pDrv;
6278 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
6279 {
6280 /* Only register primary driver.
6281 * The device emulation does the output multiplexing then. */
6282 if (pDrv->Flags != PDMAUDIODRVFLAGS_PRIMARY)
6283 continue;
6284
6285 PDMAUDIOCALLBACK AudioCallbacks[2];
6286
6287 HDACALLBACKCTX Ctx = { pThis, pDrv };
6288
6289 AudioCallbacks[0].enmType = PDMAUDIOCALLBACKTYPE_INPUT;
6290 AudioCallbacks[0].pfnCallback = hdaCallbackInput;
6291 AudioCallbacks[0].pvCtx = &Ctx;
6292 AudioCallbacks[0].cbCtx = sizeof(HDACALLBACKCTX);
6293
6294 AudioCallbacks[1].enmType = PDMAUDIOCALLBACKTYPE_OUTPUT;
6295 AudioCallbacks[1].pfnCallback = hdaCallbackOutput;
6296 AudioCallbacks[1].pvCtx = &Ctx;
6297 AudioCallbacks[1].cbCtx = sizeof(HDACALLBACKCTX);
6298
6299 rc = pDrv->pConnector->pfnRegisterCallbacks(pDrv->pConnector, AudioCallbacks, RT_ELEMENTS(AudioCallbacks));
6300 if (RT_FAILURE(rc))
6301 break;
6302 }
6303 }
6304# endif
6305
6306# ifdef VBOX_WITH_STATISTICS
6307 if (RT_SUCCESS(rc))
6308 {
6309 /*
6310 * Register statistics.
6311 */
6312# ifndef VBOX_WITH_AUDIO_HDA_CALLBACKS
6313 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTimer, STAMTYPE_PROFILE, "/Devices/HDA/Timer", STAMUNIT_TICKS_PER_CALL, "Profiling hdaTimer.");
6314# endif
6315 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatBytesRead, STAMTYPE_COUNTER, "/Devices/HDA/BytesRead" , STAMUNIT_BYTES, "Bytes read from HDA emulation.");
6316 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatBytesWritten, STAMTYPE_COUNTER, "/Devices/HDA/BytesWritten", STAMUNIT_BYTES, "Bytes written to HDA emulation.");
6317 }
6318# endif
6319
6320 LogFlowFuncLeaveRC(rc);
6321 return rc;
6322}
6323
6324/**
6325 * The device registration structure.
6326 */
6327const PDMDEVREG g_DeviceHDA =
6328{
6329 /* u32Version */
6330 PDM_DEVREG_VERSION,
6331 /* szName */
6332 "hda",
6333 /* szRCMod */
6334 "VBoxDDRC.rc",
6335 /* szR0Mod */
6336 "VBoxDDR0.r0",
6337 /* pszDescription */
6338 "Intel HD Audio Controller",
6339 /* fFlags */
6340 PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0,
6341 /* fClass */
6342 PDM_DEVREG_CLASS_AUDIO,
6343 /* cMaxInstances */
6344 1,
6345 /* cbInstance */
6346 sizeof(HDASTATE),
6347 /* pfnConstruct */
6348 hdaConstruct,
6349 /* pfnDestruct */
6350 hdaDestruct,
6351 /* pfnRelocate */
6352 NULL,
6353 /* pfnMemSetup */
6354 NULL,
6355 /* pfnPowerOn */
6356 NULL,
6357 /* pfnReset */
6358 hdaReset,
6359 /* pfnSuspend */
6360 NULL,
6361 /* pfnResume */
6362 NULL,
6363 /* pfnAttach */
6364 hdaAttach,
6365 /* pfnDetach */
6366 hdaDetach,
6367 /* pfnQueryInterface. */
6368 NULL,
6369 /* pfnInitComplete */
6370 NULL,
6371 /* pfnPowerOff */
6372 hdaPowerOff,
6373 /* pfnSoftReset */
6374 NULL,
6375 /* u32VersionEnd */
6376 PDM_DEVREG_VERSION
6377};
6378
6379#endif /* IN_RING3 */
6380#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette