VirtualBox

source: vbox/trunk/src/VBox/Devices/Audio/DevHDA.cpp@ 82362

Last change on this file since 82362 was 82345, checked in by vboxsync, 5 years ago

DevHDA,DevIchAc97: Moved the per-stream timers into the stream structures, dropping the ahTimers arrays in the device state structures. This eliminates bunch of unnecessary indexing and pThis parameter passing. bugref:9218

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 194.5 KB
Line 
1/* $Id: DevHDA.cpp 82345 2019-12-03 14:40:21Z vboxsync $ */
2/** @file
3 * DevHDA.cpp - VBox Intel HD Audio Controller.
4 *
5 * Implemented against the specifications found in "High Definition Audio
6 * Specification", Revision 1.0a June 17, 2010, and "Intel I/O Controller
7 * HUB 6 (ICH6) Family, Datasheet", document number 301473-002.
8 */
9
10/*
11 * Copyright (C) 2006-2019 Oracle Corporation
12 *
13 * This file is part of VirtualBox Open Source Edition (OSE), as
14 * available from http://www.virtualbox.org. This file is free software;
15 * you can redistribute it and/or modify it under the terms of the GNU
16 * General Public License (GPL) as published by the Free Software
17 * Foundation, in version 2 as it comes in the "COPYING" file of the
18 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
19 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
20 */
21
22
23/*********************************************************************************************************************************
24* Header Files *
25*********************************************************************************************************************************/
26#ifdef DEBUG_bird
27# define RT_NO_STRICT /* I'm tried of this crap asserting on save and restore of Maverics guests. */
28#endif
29#define LOG_GROUP LOG_GROUP_DEV_HDA
30#include <VBox/log.h>
31
32#include <VBox/vmm/pdmdev.h>
33#include <VBox/vmm/pdmaudioifs.h>
34#include <VBox/version.h>
35#include <VBox/AssertGuest.h>
36
37#include <iprt/assert.h>
38#include <iprt/asm.h>
39#include <iprt/asm-math.h>
40#include <iprt/file.h>
41#include <iprt/list.h>
42# include <iprt/string.h>
43#ifdef IN_RING3
44# include <iprt/mem.h>
45# include <iprt/semaphore.h>
46# include <iprt/uuid.h>
47#endif
48
49#include "VBoxDD.h"
50
51#include "AudioMixBuffer.h"
52#include "AudioMixer.h"
53
54#include "DevHDA.h"
55#include "DevHDACommon.h"
56
57#include "HDACodec.h"
58#include "HDAStream.h"
59#include "HDAStreamMap.h"
60#include "HDAStreamPeriod.h"
61
62#include "DrvAudio.h"
63
64
65/*********************************************************************************************************************************
66* Defined Constants And Macros *
67*********************************************************************************************************************************/
68//#define HDA_AS_PCI_EXPRESS
69
70/* Installs a DMA access handler (via PGM callback) to monitor
71 * HDA's DMA operations, that is, writing / reading audio stream data.
72 *
73 * !!! Note: Certain guests are *that* timing sensitive that when enabling !!!
74 * !!! such a handler will mess up audio completely (e.g. Windows 7). !!! */
75//#define HDA_USE_DMA_ACCESS_HANDLER
76#ifdef HDA_USE_DMA_ACCESS_HANDLER
77# include <VBox/vmm/pgm.h>
78#endif
79
80/* Uses the DMA access handler to read the written DMA audio (output) data.
81 * Only valid if HDA_USE_DMA_ACCESS_HANDLER is set.
82 *
83 * Also see the note / warning for HDA_USE_DMA_ACCESS_HANDLER. */
84//# define HDA_USE_DMA_ACCESS_HANDLER_WRITING
85
86/* Useful to debug the device' timing. */
87//#define HDA_DEBUG_TIMING
88
89/* To debug silence coming from the guest in form of audio gaps.
90 * Very crude implementation for now. */
91//#define HDA_DEBUG_SILENCE
92
93#if defined(VBOX_WITH_HP_HDA)
94/* HP Pavilion dv4t-1300 */
95# define HDA_PCI_VENDOR_ID 0x103c
96# define HDA_PCI_DEVICE_ID 0x30f7
97#elif defined(VBOX_WITH_INTEL_HDA)
98/* Intel HDA controller */
99# define HDA_PCI_VENDOR_ID 0x8086
100# define HDA_PCI_DEVICE_ID 0x2668
101#elif defined(VBOX_WITH_NVIDIA_HDA)
102/* nVidia HDA controller */
103# define HDA_PCI_VENDOR_ID 0x10de
104# define HDA_PCI_DEVICE_ID 0x0ac0
105#else
106# error "Please specify your HDA device vendor/device IDs"
107#endif
108
109/**
110 * Acquires the HDA lock.
111 */
112#define DEVHDA_LOCK(a_pDevIns, a_pThis) \
113 do { \
114 int rcLock = PDMDevHlpCritSectEnter((a_pDevIns), &(a_pThis)->CritSect, VERR_IGNORED); \
115 AssertRC(rcLock); \
116 } while (0)
117
118/**
119 * Acquires the HDA lock or returns.
120 */
121#define DEVHDA_LOCK_RETURN(a_pDevIns, a_pThis, a_rcBusy) \
122 do { \
123 int rcLock = PDMDevHlpCritSectEnter((a_pDevIns), &(a_pThis)->CritSect, a_rcBusy); \
124 if (rcLock == VINF_SUCCESS) \
125 { /* likely */ } \
126 else \
127 { \
128 AssertRC(rcLock); \
129 return rcLock; \
130 } \
131 } while (0)
132
133/**
134 * Acquires the HDA lock or returns.
135 */
136# define DEVHDA_LOCK_RETURN_VOID(a_pDevIns, a_pThis) \
137 do { \
138 int rcLock = PDMDevHlpCritSectEnter((a_pDevIns), &(a_pThis)->CritSect, VERR_IGNORED); \
139 if (rcLock == VINF_SUCCESS) \
140 { /* likely */ } \
141 else \
142 { \
143 AssertRC(rcLock); \
144 return; \
145 } \
146 } while (0)
147
148/**
149 * Releases the HDA lock.
150 */
151#define DEVHDA_UNLOCK(a_pDevIns, a_pThis) \
152 do { PDMDevHlpCritSectLeave((a_pDevIns), &(a_pThis)->CritSect); } while (0)
153
154/**
155 * Acquires the TM lock and HDA lock, returns on failure.
156 */
157#define DEVHDA_LOCK_BOTH_RETURN(a_pDevIns, a_pThis, a_pStream, a_rcBusy) \
158 do { \
159 VBOXSTRICTRC rcLock = PDMDevHlpTimerLockClock2(pDevIns, (a_pStream)->hTimer, &(a_pThis)->CritSect, (a_rcBusy)); \
160 if (RT_LIKELY(rcLock == VINF_SUCCESS)) \
161 { /* likely */ } \
162 else \
163 return VBOXSTRICTRC_TODO(rcLock); \
164 } while (0)
165
166/**
167 * Releases the HDA lock and TM lock.
168 */
169#define DEVHDA_UNLOCK_BOTH(a_pDevIns, a_pThis, a_pStream) \
170 PDMDevHlpTimerUnlockClock2(pDevIns, (a_pStream)->hTimer, &(a_pThis)->CritSect)
171
172
173/*********************************************************************************************************************************
174* Structures and Typedefs *
175*********************************************************************************************************************************/
176
177/**
178 * Structure defining a (host backend) driver stream.
179 * Each driver has its own instances of audio mixer streams, which then
180 * can go into the same (or even different) audio mixer sinks.
181 */
182typedef struct HDADRIVERSTREAM
183{
184 /** Associated mixer handle. */
185 R3PTRTYPE(PAUDMIXSTREAM) pMixStrm;
186} HDADRIVERSTREAM, *PHDADRIVERSTREAM;
187
188#ifdef HDA_USE_DMA_ACCESS_HANDLER
189/**
190 * Struct for keeping an HDA DMA access handler context.
191 */
192typedef struct HDADMAACCESSHANDLER
193{
194 /** Node for storing this handler in our list in HDASTREAMSTATE. */
195 RTLISTNODER3 Node;
196 /** Pointer to stream to which this access handler is assigned to. */
197 R3PTRTYPE(PHDASTREAM) pStream;
198 /** Access handler type handle. */
199 PGMPHYSHANDLERTYPE hAccessHandlerType;
200 /** First address this handler uses. */
201 RTGCPHYS GCPhysFirst;
202 /** Last address this handler uses. */
203 RTGCPHYS GCPhysLast;
204 /** Actual BDLE address to handle. */
205 RTGCPHYS BDLEAddr;
206 /** Actual BDLE buffer size to handle. */
207 RTGCPHYS BDLESize;
208 /** Whether the access handler has been registered or not. */
209 bool fRegistered;
210 uint8_t Padding[3];
211} HDADMAACCESSHANDLER, *PHDADMAACCESSHANDLER;
212#endif
213
214/**
215 * Struct for maintaining a host backend driver.
216 * This driver must be associated to one, and only one,
217 * HDA codec. The HDA controller does the actual multiplexing
218 * of HDA codec data to various host backend drivers then.
219 *
220 * This HDA device uses a timer in order to synchronize all
221 * read/write accesses across all attached LUNs / backends.
222 */
223typedef struct HDADRIVER
224{
225 /** Node for storing this driver in our device driver list of HDASTATE. */
226 RTLISTNODER3 Node;
227 /** Pointer to HDA controller (state). */
228 R3PTRTYPE(PHDASTATE) pHDAState;
229 /** Driver flags. */
230 PDMAUDIODRVFLAGS fFlags;
231 uint8_t u32Padding0[2];
232 /** LUN to which this driver has been assigned. */
233 uint8_t uLUN;
234 /** Whether this driver is in an attached state or not. */
235 bool fAttached;
236 /** Pointer to attached driver base interface. */
237 R3PTRTYPE(PPDMIBASE) pDrvBase;
238 /** Audio connector interface to the underlying host backend. */
239 R3PTRTYPE(PPDMIAUDIOCONNECTOR) pConnector;
240 /** Mixer stream for line input. */
241 HDADRIVERSTREAM LineIn;
242#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
243 /** Mixer stream for mic input. */
244 HDADRIVERSTREAM MicIn;
245#endif
246 /** Mixer stream for front output. */
247 HDADRIVERSTREAM Front;
248#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
249 /** Mixer stream for center/LFE output. */
250 HDADRIVERSTREAM CenterLFE;
251 /** Mixer stream for rear output. */
252 HDADRIVERSTREAM Rear;
253#endif
254} HDADRIVER;
255
256
257/*********************************************************************************************************************************
258* Internal Functions *
259*********************************************************************************************************************************/
260#ifndef VBOX_DEVICE_STRUCT_TESTCASE
261#ifdef IN_RING3
262static void hdaR3GCTLReset(PHDASTATE pThis);
263#endif
264
265/** @name Register read/write stubs.
266 * @{
267 */
268static int hdaRegReadUnimpl(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
269static int hdaRegWriteUnimpl(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
270/** @} */
271
272/** @name Global register set read/write functions.
273 * @{
274 */
275static int hdaRegWriteGCTL(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
276static int hdaRegReadLPIB(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
277static int hdaRegReadWALCLK(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
278static int hdaRegWriteCORBWP(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
279static int hdaRegWriteCORBRP(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
280static int hdaRegWriteCORBCTL(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
281static int hdaRegWriteCORBSIZE(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
282static int hdaRegWriteCORBSTS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
283static int hdaRegWriteRINTCNT(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
284static int hdaRegWriteRIRBWP(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
285static int hdaRegWriteRIRBSTS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
286static int hdaRegWriteSTATESTS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
287static int hdaRegWriteIRS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
288static int hdaRegReadIRS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
289static int hdaRegWriteBase(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
290/** @} */
291
292/** @name {IOB}SDn write functions.
293 * @{
294 */
295static int hdaRegWriteSDCBL(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
296static int hdaRegWriteSDCTL(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
297static int hdaRegWriteSDSTS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
298static int hdaRegWriteSDLVI(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
299static int hdaRegWriteSDFIFOW(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
300static int hdaRegWriteSDFIFOS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
301static int hdaRegWriteSDFMT(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
302static int hdaRegWriteSDBDPL(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
303static int hdaRegWriteSDBDPU(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
304/** @} */
305
306/** @name Generic register read/write functions.
307 * @{
308 */
309static int hdaRegReadU32(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
310static int hdaRegWriteU32(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
311static int hdaRegReadU24(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
312#ifdef IN_RING3
313static int hdaRegWriteU24(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
314#endif
315static int hdaRegReadU16(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
316static int hdaRegWriteU16(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
317static int hdaRegReadU8(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
318static int hdaRegWriteU8(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
319/** @} */
320
321/** @name HDA device functions.
322 * @{
323 */
324#ifdef IN_RING3
325static int hdaR3AddStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg);
326static int hdaR3RemoveStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg);
327# ifdef HDA_USE_DMA_ACCESS_HANDLER
328static DECLCALLBACK(VBOXSTRICTRC) hdaR3DMAAccessHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys,
329 void *pvBuf, size_t cbBuf,
330 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser);
331# endif
332#endif /* IN_RING3 */
333/** @} */
334
335/** @name HDA mixer functions.
336 * @{
337 */
338#ifdef IN_RING3
339static int hdaR3MixerAddDrvStream(PHDASTATE pThis, PAUDMIXSINK pMixSink, PPDMAUDIOSTREAMCFG pCfg, PHDADRIVER pDrv);
340#endif
341/** @} */
342
343#ifdef IN_RING3
344static FNSSMFIELDGETPUT hdaR3GetPutTrans_HDABDLEDESC_fFlags_6;
345static FNSSMFIELDGETPUT hdaR3GetPutTrans_HDABDLE_Desc_fFlags_1thru4;
346#endif
347
348
349/*********************************************************************************************************************************
350* Global Variables *
351*********************************************************************************************************************************/
352
353/** No register description (RD) flags defined. */
354#define HDA_RD_FLAG_NONE 0
355/** Writes to SD are allowed while RUN bit is set. */
356#define HDA_RD_FLAG_SD_WRITE_RUN RT_BIT(0)
357
358/** Emits a single audio stream register set (e.g. OSD0) at a specified offset. */
359#define HDA_REG_MAP_STRM(offset, name) \
360 /* offset size read mask write mask flags read callback write callback index + abbrev description */ \
361 /* ------- ------- ---------- ---------- ------------------------- -------------- ----------------- ----------------------------- ----------- */ \
362 /* Offset 0x80 (SD0) */ \
363 { offset, 0x00003, 0x00FF001F, 0x00F0001F, HDA_RD_FLAG_SD_WRITE_RUN, hdaRegReadU24 , hdaRegWriteSDCTL , HDA_REG_IDX_STRM(name, CTL) , #name " Stream Descriptor Control" }, \
364 /* Offset 0x83 (SD0) */ \
365 { offset + 0x3, 0x00001, 0x0000003C, 0x0000001C, HDA_RD_FLAG_SD_WRITE_RUN, hdaRegReadU8 , hdaRegWriteSDSTS , HDA_REG_IDX_STRM(name, STS) , #name " Status" }, \
366 /* Offset 0x84 (SD0) */ \
367 { offset + 0x4, 0x00004, 0xFFFFFFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadLPIB, hdaRegWriteU32 , HDA_REG_IDX_STRM(name, LPIB) , #name " Link Position In Buffer" }, \
368 /* Offset 0x88 (SD0) */ \
369 { offset + 0x8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteSDCBL , HDA_REG_IDX_STRM(name, CBL) , #name " Cyclic Buffer Length" }, \
370 /* Offset 0x8C (SD0) -- upper 8 bits are reserved */ \
371 { offset + 0xC, 0x00002, 0x0000FFFF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDLVI , HDA_REG_IDX_STRM(name, LVI) , #name " Last Valid Index" }, \
372 /* Reserved: FIFO Watermark. ** @todo Document this! */ \
373 { offset + 0xE, 0x00002, 0x00000007, 0x00000007, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDFIFOW, HDA_REG_IDX_STRM(name, FIFOW), #name " FIFO Watermark" }, \
374 /* Offset 0x90 (SD0) */ \
375 { offset + 0x10, 0x00002, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDFIFOS, HDA_REG_IDX_STRM(name, FIFOS), #name " FIFO Size" }, \
376 /* Offset 0x92 (SD0) */ \
377 { offset + 0x12, 0x00002, 0x00007F7F, 0x00007F7F, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDFMT , HDA_REG_IDX_STRM(name, FMT) , #name " Stream Format" }, \
378 /* Reserved: 0x94 - 0x98. */ \
379 /* Offset 0x98 (SD0) */ \
380 { offset + 0x18, 0x00004, 0xFFFFFF80, 0xFFFFFF80, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteSDBDPL , HDA_REG_IDX_STRM(name, BDPL) , #name " Buffer Descriptor List Pointer-Lower Base Address" }, \
381 /* Offset 0x9C (SD0) */ \
382 { offset + 0x1C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteSDBDPU , HDA_REG_IDX_STRM(name, BDPU) , #name " Buffer Descriptor List Pointer-Upper Base Address" }
383
384/** Defines a single audio stream register set (e.g. OSD0). */
385#define HDA_REG_MAP_DEF_STREAM(index, name) \
386 HDA_REG_MAP_STRM(HDA_REG_DESC_SD0_BASE + (index * 32 /* 0x20 */), name)
387
388/* See 302349 p 6.2. */
389const HDAREGDESC g_aHdaRegMap[HDA_NUM_REGS] =
390{
391 /* offset size read mask write mask flags read callback write callback index + abbrev */
392 /*------- ------- ---------- ---------- ----------------- ---------------- ------------------- ------------------------ */
393 { 0x00000, 0x00002, 0x0000FFFB, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(GCAP) }, /* Global Capabilities */
394 { 0x00002, 0x00001, 0x000000FF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(VMIN) }, /* Minor Version */
395 { 0x00003, 0x00001, 0x000000FF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(VMAJ) }, /* Major Version */
396 { 0x00004, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(OUTPAY) }, /* Output Payload Capabilities */
397 { 0x00006, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(INPAY) }, /* Input Payload Capabilities */
398 { 0x00008, 0x00004, 0x00000103, 0x00000103, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteGCTL , HDA_REG_IDX(GCTL) }, /* Global Control */
399 { 0x0000c, 0x00002, 0x00007FFF, 0x00007FFF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(WAKEEN) }, /* Wake Enable */
400 { 0x0000e, 0x00002, 0x00000007, 0x00000007, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteSTATESTS, HDA_REG_IDX(STATESTS) }, /* State Change Status */
401 { 0x00010, 0x00002, 0xFFFFFFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadUnimpl, hdaRegWriteUnimpl , HDA_REG_IDX(GSTS) }, /* Global Status */
402 { 0x00018, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(OUTSTRMPAY) }, /* Output Stream Payload Capability */
403 { 0x0001A, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(INSTRMPAY) }, /* Input Stream Payload Capability */
404 { 0x00020, 0x00004, 0xC00000FF, 0xC00000FF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(INTCTL) }, /* Interrupt Control */
405 { 0x00024, 0x00004, 0xC00000FF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteUnimpl , HDA_REG_IDX(INTSTS) }, /* Interrupt Status */
406 { 0x00030, 0x00004, 0xFFFFFFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadWALCLK, hdaRegWriteUnimpl , HDA_REG_IDX_NOMEM(WALCLK) }, /* Wall Clock Counter */
407 { 0x00034, 0x00004, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(SSYNC) }, /* Stream Synchronization */
408 { 0x00040, 0x00004, 0xFFFFFF80, 0xFFFFFF80, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(CORBLBASE) }, /* CORB Lower Base Address */
409 { 0x00044, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(CORBUBASE) }, /* CORB Upper Base Address */
410 { 0x00048, 0x00002, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteCORBWP , HDA_REG_IDX(CORBWP) }, /* CORB Write Pointer */
411 { 0x0004A, 0x00002, 0x000080FF, 0x00008000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteCORBRP , HDA_REG_IDX(CORBRP) }, /* CORB Read Pointer */
412 { 0x0004C, 0x00001, 0x00000003, 0x00000003, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteCORBCTL , HDA_REG_IDX(CORBCTL) }, /* CORB Control */
413 { 0x0004D, 0x00001, 0x00000001, 0x00000001, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteCORBSTS , HDA_REG_IDX(CORBSTS) }, /* CORB Status */
414 { 0x0004E, 0x00001, 0x000000F3, 0x00000003, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteCORBSIZE, HDA_REG_IDX(CORBSIZE) }, /* CORB Size */
415 { 0x00050, 0x00004, 0xFFFFFF80, 0xFFFFFF80, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(RIRBLBASE) }, /* RIRB Lower Base Address */
416 { 0x00054, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(RIRBUBASE) }, /* RIRB Upper Base Address */
417 { 0x00058, 0x00002, 0x000000FF, 0x00008000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteRIRBWP , HDA_REG_IDX(RIRBWP) }, /* RIRB Write Pointer */
418 { 0x0005A, 0x00002, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteRINTCNT , HDA_REG_IDX(RINTCNT) }, /* Response Interrupt Count */
419 { 0x0005C, 0x00001, 0x00000007, 0x00000007, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteU8 , HDA_REG_IDX(RIRBCTL) }, /* RIRB Control */
420 { 0x0005D, 0x00001, 0x00000005, 0x00000005, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteRIRBSTS , HDA_REG_IDX(RIRBSTS) }, /* RIRB Status */
421 { 0x0005E, 0x00001, 0x000000F3, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(RIRBSIZE) }, /* RIRB Size */
422 { 0x00060, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(IC) }, /* Immediate Command */
423 { 0x00064, 0x00004, 0x00000000, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteUnimpl , HDA_REG_IDX(IR) }, /* Immediate Response */
424 { 0x00068, 0x00002, 0x00000002, 0x00000002, HDA_RD_FLAG_NONE, hdaRegReadIRS , hdaRegWriteIRS , HDA_REG_IDX(IRS) }, /* Immediate Command Status */
425 { 0x00070, 0x00004, 0xFFFFFFFF, 0xFFFFFF81, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(DPLBASE) }, /* DMA Position Lower Base */
426 { 0x00074, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(DPUBASE) }, /* DMA Position Upper Base */
427 /* 4 Serial Data In (SDI). */
428 HDA_REG_MAP_DEF_STREAM(0, SD0),
429 HDA_REG_MAP_DEF_STREAM(1, SD1),
430 HDA_REG_MAP_DEF_STREAM(2, SD2),
431 HDA_REG_MAP_DEF_STREAM(3, SD3),
432 /* 4 Serial Data Out (SDO). */
433 HDA_REG_MAP_DEF_STREAM(4, SD4),
434 HDA_REG_MAP_DEF_STREAM(5, SD5),
435 HDA_REG_MAP_DEF_STREAM(6, SD6),
436 HDA_REG_MAP_DEF_STREAM(7, SD7)
437};
438
439const HDAREGALIAS g_aHdaRegAliases[] =
440{
441 { 0x2084, HDA_REG_SD0LPIB },
442 { 0x20a4, HDA_REG_SD1LPIB },
443 { 0x20c4, HDA_REG_SD2LPIB },
444 { 0x20e4, HDA_REG_SD3LPIB },
445 { 0x2104, HDA_REG_SD4LPIB },
446 { 0x2124, HDA_REG_SD5LPIB },
447 { 0x2144, HDA_REG_SD6LPIB },
448 { 0x2164, HDA_REG_SD7LPIB }
449};
450
451#ifdef IN_RING3
452
453/** HDABDLEDESC field descriptors for the v7 saved state. */
454static SSMFIELD const g_aSSMBDLEDescFields7[] =
455{
456 SSMFIELD_ENTRY(HDABDLEDESC, u64BufAddr),
457 SSMFIELD_ENTRY(HDABDLEDESC, u32BufSize),
458 SSMFIELD_ENTRY(HDABDLEDESC, fFlags),
459 SSMFIELD_ENTRY_TERM()
460};
461
462/** HDABDLEDESC field descriptors for the v6 saved states. */
463static SSMFIELD const g_aSSMBDLEDescFields6[] =
464{
465 SSMFIELD_ENTRY(HDABDLEDESC, u64BufAddr),
466 SSMFIELD_ENTRY(HDABDLEDESC, u32BufSize),
467 SSMFIELD_ENTRY_CALLBACK(HDABDLEDESC, fFlags, hdaR3GetPutTrans_HDABDLEDESC_fFlags_6),
468 SSMFIELD_ENTRY_TERM()
469};
470
471/** HDABDLESTATE field descriptors for the v6+ saved state. */
472static SSMFIELD const g_aSSMBDLEStateFields6[] =
473{
474 SSMFIELD_ENTRY(HDABDLESTATE, u32BDLIndex),
475 SSMFIELD_ENTRY(HDABDLESTATE, cbBelowFIFOW),
476 SSMFIELD_ENTRY_OLD(FIFO, HDA_FIFO_MAX), /* Deprecated; now is handled in the stream's circular buffer. */
477 SSMFIELD_ENTRY(HDABDLESTATE, u32BufOff),
478 SSMFIELD_ENTRY_TERM()
479};
480
481/** HDABDLESTATE field descriptors for the v7 saved state. */
482static SSMFIELD const g_aSSMBDLEStateFields7[] =
483{
484 SSMFIELD_ENTRY(HDABDLESTATE, u32BDLIndex),
485 SSMFIELD_ENTRY(HDABDLESTATE, cbBelowFIFOW),
486 SSMFIELD_ENTRY(HDABDLESTATE, u32BufOff),
487 SSMFIELD_ENTRY_TERM()
488};
489
490/** HDASTREAMSTATE field descriptors for the v6 saved state. */
491static SSMFIELD const g_aSSMStreamStateFields6[] =
492{
493 SSMFIELD_ENTRY_OLD(cBDLE, sizeof(uint16_t)), /* Deprecated. */
494 SSMFIELD_ENTRY(HDASTREAMSTATE, uCurBDLE),
495 SSMFIELD_ENTRY_OLD(fStop, 1), /* Deprecated; see SSMR3PutBool(). */
496 SSMFIELD_ENTRY_OLD(fRunning, 1), /* Deprecated; using the HDA_SDCTL_RUN bit is sufficient. */
497 SSMFIELD_ENTRY(HDASTREAMSTATE, fInReset),
498 SSMFIELD_ENTRY_TERM()
499};
500
501/** HDASTREAMSTATE field descriptors for the v7 saved state. */
502static SSMFIELD const g_aSSMStreamStateFields7[] =
503{
504 SSMFIELD_ENTRY(HDASTREAMSTATE, uCurBDLE),
505 SSMFIELD_ENTRY(HDASTREAMSTATE, fInReset),
506 SSMFIELD_ENTRY(HDASTREAMSTATE, tsTransferNext),
507 SSMFIELD_ENTRY_TERM()
508};
509
510/** HDASTREAMPERIOD field descriptors for the v7 saved state. */
511static SSMFIELD const g_aSSMStreamPeriodFields7[] =
512{
513 SSMFIELD_ENTRY(HDASTREAMPERIOD, u64StartWalClk),
514 SSMFIELD_ENTRY(HDASTREAMPERIOD, u64ElapsedWalClk),
515 SSMFIELD_ENTRY(HDASTREAMPERIOD, framesTransferred),
516 SSMFIELD_ENTRY(HDASTREAMPERIOD, cIntPending),
517 SSMFIELD_ENTRY_TERM()
518};
519
520/** HDABDLE field descriptors for the v1 thru v4 saved states. */
521static SSMFIELD const g_aSSMStreamBdleFields1234[] =
522{
523 SSMFIELD_ENTRY(HDABDLE, Desc.u64BufAddr), /* u64BdleCviAddr */
524 SSMFIELD_ENTRY_OLD(u32BdleMaxCvi, sizeof(uint32_t)), /* u32BdleMaxCvi */
525 SSMFIELD_ENTRY(HDABDLE, State.u32BDLIndex), /* u32BdleCvi */
526 SSMFIELD_ENTRY(HDABDLE, Desc.u32BufSize), /* u32BdleCviLen */
527 SSMFIELD_ENTRY(HDABDLE, State.u32BufOff), /* u32BdleCviPos */
528 SSMFIELD_ENTRY_CALLBACK(HDABDLE, Desc.fFlags, hdaR3GetPutTrans_HDABDLE_Desc_fFlags_1thru4), /* fBdleCviIoc */
529 SSMFIELD_ENTRY(HDABDLE, State.cbBelowFIFOW), /* cbUnderFifoW */
530 SSMFIELD_ENTRY_OLD(au8FIFO, 256), /* au8FIFO */
531 SSMFIELD_ENTRY_TERM()
532};
533
534/**
535 * 32-bit size indexed masks, i.e. g_afMasks[2 bytes] = 0xffff.
536 */
537static uint32_t const g_afMasks[5] =
538{
539 UINT32_C(0), UINT32_C(0x000000ff), UINT32_C(0x0000ffff), UINT32_C(0x00ffffff), UINT32_C(0xffffffff)
540};
541
542#endif /* IN_RING3 */
543
544
545
546/**
547 * Retrieves the number of bytes of a FIFOW register.
548 *
549 * @return Number of bytes of a given FIFOW register.
550 */
551DECLINLINE(uint8_t) hdaSDFIFOWToBytes(uint32_t u32RegFIFOW)
552{
553 uint32_t cb;
554 switch (u32RegFIFOW)
555 {
556 case HDA_SDFIFOW_8B: cb = 8; break;
557 case HDA_SDFIFOW_16B: cb = 16; break;
558 case HDA_SDFIFOW_32B: cb = 32; break;
559 default: cb = 0; break;
560 }
561
562 Assert(RT_IS_POWER_OF_TWO(cb));
563 return cb;
564}
565
566#ifdef IN_RING3
567/**
568 * Reschedules pending interrupts for all audio streams which have complete
569 * audio periods but did not have the chance to issue their (pending) interrupts yet.
570 *
571 * @param pThis The HDA device state.
572 */
573static void hdaR3ReschedulePendingInterrupts(PHDASTATE pThis)
574{
575 bool fInterrupt = false;
576
577 for (uint8_t i = 0; i < HDA_MAX_STREAMS; ++i)
578 {
579 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, i);
580 if (!pStream)
581 continue;
582
583 if ( hdaR3StreamPeriodIsComplete (&pStream->State.Period)
584 && hdaR3StreamPeriodNeedsInterrupt(&pStream->State.Period)
585 && hdaR3WalClkSet(pThis, hdaR3StreamPeriodGetAbsElapsedWalClk(&pStream->State.Period), false /* fForce */))
586 {
587 fInterrupt = true;
588 break;
589 }
590 }
591
592 LogFunc(("fInterrupt=%RTbool\n", fInterrupt));
593
594 HDA_PROCESS_INTERRUPT(pThis->pDevInsR3, pThis);
595}
596#endif /* IN_RING3 */
597
598/**
599 * Looks up a register at the exact offset given by @a offReg.
600 *
601 * @returns Register index on success, -1 if not found.
602 * @param offReg The register offset.
603 */
604static int hdaRegLookup(uint32_t offReg)
605{
606 /*
607 * Aliases.
608 */
609 if (offReg >= g_aHdaRegAliases[0].offReg)
610 {
611 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++)
612 if (offReg == g_aHdaRegAliases[i].offReg)
613 return g_aHdaRegAliases[i].idxAlias;
614 Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg);
615 return -1;
616 }
617
618 /*
619 * Binary search the
620 */
621 int idxEnd = RT_ELEMENTS(g_aHdaRegMap);
622 int idxLow = 0;
623 for (;;)
624 {
625 int idxMiddle = idxLow + (idxEnd - idxLow) / 2;
626 if (offReg < g_aHdaRegMap[idxMiddle].offset)
627 {
628 if (idxLow == idxMiddle)
629 break;
630 idxEnd = idxMiddle;
631 }
632 else if (offReg > g_aHdaRegMap[idxMiddle].offset)
633 {
634 idxLow = idxMiddle + 1;
635 if (idxLow >= idxEnd)
636 break;
637 }
638 else
639 return idxMiddle;
640 }
641
642#ifdef RT_STRICT
643 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
644 Assert(g_aHdaRegMap[i].offset != offReg);
645#endif
646 return -1;
647}
648
649#ifdef IN_RING3
650
651/**
652 * Looks up a register covering the offset given by @a offReg.
653 *
654 * @returns Register index on success, -1 if not found.
655 * @param offReg The register offset.
656 */
657static int hdaR3RegLookupWithin(uint32_t offReg)
658{
659 /*
660 * Aliases.
661 */
662 if (offReg >= g_aHdaRegAliases[0].offReg)
663 {
664 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++)
665 {
666 uint32_t off = offReg - g_aHdaRegAliases[i].offReg;
667 if (off < 4 && off < g_aHdaRegMap[g_aHdaRegAliases[i].idxAlias].size)
668 return g_aHdaRegAliases[i].idxAlias;
669 }
670 Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg);
671 return -1;
672 }
673
674 /*
675 * Binary search the register map.
676 */
677 int idxEnd = RT_ELEMENTS(g_aHdaRegMap);
678 int idxLow = 0;
679 for (;;)
680 {
681 int idxMiddle = idxLow + (idxEnd - idxLow) / 2;
682 if (offReg < g_aHdaRegMap[idxMiddle].offset)
683 {
684 if (idxLow == idxMiddle)
685 break;
686 idxEnd = idxMiddle;
687 }
688 else if (offReg >= g_aHdaRegMap[idxMiddle].offset + g_aHdaRegMap[idxMiddle].size)
689 {
690 idxLow = idxMiddle + 1;
691 if (idxLow >= idxEnd)
692 break;
693 }
694 else
695 return idxMiddle;
696 }
697
698# ifdef RT_STRICT
699 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
700 Assert(offReg - g_aHdaRegMap[i].offset >= g_aHdaRegMap[i].size);
701# endif
702 return -1;
703}
704
705
706/**
707 * Synchronizes the CORB / RIRB buffers between internal <-> device state.
708 *
709 * @returns IPRT status code.
710 * @param pThis HDA state.
711 * @param fLocal Specify true to synchronize HDA state's CORB buffer with the device state,
712 * or false to synchronize the device state's RIRB buffer with the HDA state.
713 *
714 * @todo r=andy Break this up into two functions?
715 */
716static int hdaR3CmdSync(PHDASTATE pThis, bool fLocal)
717{
718 int rc = VINF_SUCCESS;
719 if (fLocal)
720 {
721 if (pThis->u64CORBBase)
722 {
723 AssertPtr(pThis->pu32CorbBuf);
724 Assert(pThis->cbCorbBuf);
725
726/** @todo r=bird: An explanation is required why PDMDevHlpPhysRead is used with
727 * the CORB and PDMDevHlpPCIPhysWrite with RIRB below. There are
728 * similar unexplained inconsistencies in DevHDACommon.cpp. */
729 rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pThis->u64CORBBase, pThis->pu32CorbBuf, pThis->cbCorbBuf);
730 Log(("hdaR3CmdSync/CORB: read %RGp LB %#x (%Rrc)\n", pThis->u64CORBBase, pThis->cbCorbBuf, rc));
731 AssertRCReturn(rc, rc);
732 }
733 }
734 else
735 {
736 if (pThis->u64RIRBBase)
737 {
738 AssertPtr(pThis->pu64RirbBuf);
739 Assert(pThis->cbRirbBuf);
740
741 rc = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pThis->u64RIRBBase, pThis->pu64RirbBuf, pThis->cbRirbBuf);
742 Log(("hdaR3CmdSync/RIRB: phys read %RGp LB %#x (%Rrc)\n", pThis->u64RIRBBase, pThis->pu64RirbBuf, rc));
743 AssertRCReturn(rc, rc);
744 }
745 }
746
747# ifdef DEBUG_CMD_BUFFER
748 LogFunc(("fLocal=%RTbool\n", fLocal));
749
750 uint8_t i = 0;
751 do
752 {
753 LogFunc(("CORB%02x: ", i));
754 uint8_t j = 0;
755 do
756 {
757 const char *pszPrefix;
758 if ((i + j) == HDA_REG(pThis, CORBRP))
759 pszPrefix = "[R]";
760 else if ((i + j) == HDA_REG(pThis, CORBWP))
761 pszPrefix = "[W]";
762 else
763 pszPrefix = " "; /* three spaces */
764 Log((" %s%08x", pszPrefix, pThis->pu32CorbBuf[i + j]));
765 j++;
766 } while (j < 8);
767 Log(("\n"));
768 i += 8;
769 } while(i != 0);
770
771 do
772 {
773 LogFunc(("RIRB%02x: ", i));
774 uint8_t j = 0;
775 do
776 {
777 const char *prefix;
778 if ((i + j) == HDA_REG(pThis, RIRBWP))
779 prefix = "[W]";
780 else
781 prefix = " ";
782 Log((" %s%016lx", prefix, pThis->pu64RirbBuf[i + j]));
783 } while (++j < 8);
784 Log(("\n"));
785 i += 8;
786 } while (i != 0);
787# endif
788 return rc;
789}
790
791/**
792 * Processes the next CORB buffer command in the queue.
793 *
794 * This will invoke the HDA codec verb dispatcher.
795 *
796 * @returns IPRT status code.
797 * @param pThis HDA state.
798 */
799static int hdaR3CORBCmdProcess(PHDASTATE pThis)
800{
801 uint8_t corbRp = HDA_REG(pThis, CORBRP);
802 uint8_t corbWp = HDA_REG(pThis, CORBWP);
803 uint8_t rirbWp = HDA_REG(pThis, RIRBWP);
804
805 Log3Func(("CORB(RP:%x, WP:%x) RIRBWP:%x\n", corbRp, corbWp, rirbWp));
806
807 if (!(HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA))
808 {
809 LogFunc(("CORB DMA not active, skipping\n"));
810 return VINF_SUCCESS;
811 }
812
813 Assert(pThis->cbCorbBuf);
814
815 int rc = hdaR3CmdSync(pThis, true /* Sync from guest */);
816 AssertRCReturn(rc, rc);
817
818 uint16_t cIntCnt = HDA_REG(pThis, RINTCNT) & 0xff;
819
820 if (!cIntCnt) /* 0 means 256 interrupts. */
821 cIntCnt = HDA_MAX_RINTCNT;
822
823 Log3Func(("START CORB(RP:%x, WP:%x) RIRBWP:%x, RINTCNT:%RU8/%RU8\n",
824 corbRp, corbWp, rirbWp, pThis->u16RespIntCnt, cIntCnt));
825
826 while (corbRp != corbWp)
827 {
828 corbRp = (corbRp + 1) % (pThis->cbCorbBuf / HDA_CORB_ELEMENT_SIZE); /* Advance +1 as the first command(s) are at CORBWP + 1. */
829
830 uint32_t uCmd = pThis->pu32CorbBuf[corbRp];
831 uint64_t uResp = 0;
832
833 rc = pThis->pCodec->pfnLookup(pThis->pCodec, HDA_CODEC_CMD(uCmd, 0 /* Codec index */), &uResp);
834 if (RT_FAILURE(rc))
835 LogFunc(("Codec lookup failed with rc=%Rrc\n", rc));
836
837 Log3Func(("Codec verb %08x -> response %016lx\n", uCmd, uResp));
838
839 if ( (uResp & CODEC_RESPONSE_UNSOLICITED)
840 && !(HDA_REG(pThis, GCTL) & HDA_GCTL_UNSOL))
841 {
842 LogFunc(("Unexpected unsolicited response.\n"));
843 HDA_REG(pThis, CORBRP) = corbRp;
844
845 /** @todo r=andy No CORB/RIRB syncing to guest required in that case? */
846 return rc;
847 }
848
849 rirbWp = (rirbWp + 1) % HDA_RIRB_SIZE;
850
851 pThis->pu64RirbBuf[rirbWp] = uResp;
852
853 pThis->u16RespIntCnt++;
854
855 bool fSendInterrupt = false;
856
857 if (pThis->u16RespIntCnt == cIntCnt) /* Response interrupt count reached? */
858 {
859 pThis->u16RespIntCnt = 0; /* Reset internal interrupt response counter. */
860
861 Log3Func(("Response interrupt count reached (%RU16)\n", pThis->u16RespIntCnt));
862 fSendInterrupt = true;
863
864 }
865 else if (corbRp == corbWp) /* Did we reach the end of the current command buffer? */
866 {
867 Log3Func(("Command buffer empty\n"));
868 fSendInterrupt = true;
869 }
870
871 if (fSendInterrupt)
872 {
873 if (HDA_REG(pThis, RIRBCTL) & HDA_RIRBCTL_RINTCTL) /* Response Interrupt Control (RINTCTL) enabled? */
874 {
875 HDA_REG(pThis, RIRBSTS) |= HDA_RIRBSTS_RINTFL;
876
877 rc = HDA_PROCESS_INTERRUPT(pThis->pDevInsR3, pThis);
878 }
879 }
880 }
881
882 Log3Func(("END CORB(RP:%x, WP:%x) RIRBWP:%x, RINTCNT:%RU8/%RU8\n",
883 corbRp, corbWp, rirbWp, pThis->u16RespIntCnt, cIntCnt));
884
885 HDA_REG(pThis, CORBRP) = corbRp;
886 HDA_REG(pThis, RIRBWP) = rirbWp;
887
888 rc = hdaR3CmdSync(pThis, false /* Sync to guest */);
889 AssertRCReturn(rc, rc);
890
891 if (RT_FAILURE(rc))
892 AssertRCReturn(rc, rc);
893
894 return rc;
895}
896
897#endif /* IN_RING3 */
898
899/* Register access handlers. */
900
901static int hdaRegReadUnimpl(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
902{
903 RT_NOREF(pDevIns, pThis, iReg);
904 *pu32Value = 0;
905 return VINF_SUCCESS;
906}
907
908static int hdaRegWriteUnimpl(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
909{
910 RT_NOREF(pDevIns, pThis, iReg, u32Value);
911 return VINF_SUCCESS;
912}
913
914/* U8 */
915static int hdaRegReadU8(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
916{
917 Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffffff00) == 0);
918 return hdaRegReadU32(pDevIns, pThis, iReg, pu32Value);
919}
920
921static int hdaRegWriteU8(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
922{
923 Assert((u32Value & 0xffffff00) == 0);
924 return hdaRegWriteU32(pDevIns, pThis, iReg, u32Value);
925}
926
927/* U16 */
928static int hdaRegReadU16(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
929{
930 Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffff0000) == 0);
931 return hdaRegReadU32(pDevIns, pThis, iReg, pu32Value);
932}
933
934static int hdaRegWriteU16(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
935{
936 Assert((u32Value & 0xffff0000) == 0);
937 return hdaRegWriteU32(pDevIns, pThis, iReg, u32Value);
938}
939
940/* U24 */
941static int hdaRegReadU24(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
942{
943 Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xff000000) == 0);
944 return hdaRegReadU32(pDevIns, pThis, iReg, pu32Value);
945}
946
947#ifdef IN_RING3
948static int hdaRegWriteU24(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
949{
950 Assert((u32Value & 0xff000000) == 0);
951 return hdaRegWriteU32(pDevIns, pThis, iReg, u32Value);
952}
953#endif
954
955/* U32 */
956static int hdaRegReadU32(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
957{
958 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
959
960 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_READ);
961
962 *pu32Value = pThis->au32Regs[iRegMem] & g_aHdaRegMap[iReg].readable;
963
964 DEVHDA_UNLOCK(pDevIns, pThis);
965 return VINF_SUCCESS;
966}
967
968static int hdaRegWriteU32(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
969{
970 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
971
972 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
973
974 pThis->au32Regs[iRegMem] = (u32Value & g_aHdaRegMap[iReg].writable)
975 | (pThis->au32Regs[iRegMem] & ~g_aHdaRegMap[iReg].writable);
976 DEVHDA_UNLOCK(pDevIns, pThis);
977 return VINF_SUCCESS;
978}
979
980static int hdaRegWriteGCTL(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
981{
982 RT_NOREF_PV(iReg);
983#ifdef IN_RING3
984 DEVHDA_LOCK(pDevIns, pThis);
985#else
986 if (!(u32Value & HDA_GCTL_CRST))
987 return VINF_IOM_R3_MMIO_WRITE;
988 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
989#endif
990
991 if (u32Value & HDA_GCTL_CRST)
992 {
993 /* Set the CRST bit to indicate that we're leaving reset mode. */
994 HDA_REG(pThis, GCTL) |= HDA_GCTL_CRST;
995 LogFunc(("Guest leaving HDA reset\n"));
996 }
997 else
998 {
999#ifdef IN_RING3
1000 /* Enter reset state. */
1001 LogFunc(("Guest entering HDA reset with DMA(RIRB:%s, CORB:%s)\n",
1002 HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA ? "on" : "off",
1003 HDA_REG(pThis, RIRBCTL) & HDA_RIRBCTL_RDMAEN ? "on" : "off"));
1004
1005 /* Clear the CRST bit to indicate that we're in reset state. */
1006 HDA_REG(pThis, GCTL) &= ~HDA_GCTL_CRST;
1007
1008 hdaR3GCTLReset(pThis);
1009#else
1010 AssertFailedReturnStmt(DEVHDA_UNLOCK(pDevIns, pThis), VINF_IOM_R3_MMIO_WRITE);
1011#endif
1012 }
1013
1014 if (u32Value & HDA_GCTL_FCNTRL)
1015 {
1016 /* Flush: GSTS:1 set, see 6.2.6. */
1017 HDA_REG(pThis, GSTS) |= HDA_GSTS_FSTS; /* Set the flush status. */
1018 /* DPLBASE and DPUBASE should be initialized with initial value (see 6.2.6). */
1019 }
1020
1021 DEVHDA_UNLOCK(pDevIns, pThis);
1022 return VINF_SUCCESS;
1023}
1024
1025static int hdaRegWriteSTATESTS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1026{
1027 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
1028
1029 uint32_t v = HDA_REG_IND(pThis, iReg);
1030 uint32_t nv = u32Value & HDA_STATESTS_SCSF_MASK;
1031
1032 HDA_REG(pThis, STATESTS) &= ~(v & nv); /* Write of 1 clears corresponding bit. */
1033
1034 DEVHDA_UNLOCK(pDevIns, pThis);
1035 return VINF_SUCCESS;
1036}
1037
1038static int hdaRegReadLPIB(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
1039{
1040 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_READ);
1041
1042 const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, LPIB, iReg);
1043 uint32_t u32LPIB = HDA_STREAM_REG(pThis, LPIB, uSD);
1044#ifdef LOG_ENABLED
1045 const uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, uSD);
1046 LogFlowFunc(("[SD%RU8] LPIB=%RU32, CBL=%RU32\n", uSD, u32LPIB, u32CBL));
1047#endif
1048
1049 *pu32Value = u32LPIB;
1050
1051 DEVHDA_UNLOCK(pDevIns, pThis);
1052 return VINF_SUCCESS;
1053}
1054
1055#ifdef IN_RING3
1056/**
1057 * Returns the current maximum value the wall clock counter can be set to.
1058 * This maximum value depends on all currently handled HDA streams and their own current timing.
1059 *
1060 * @return Current maximum value the wall clock counter can be set to.
1061 * @param pThis HDA state.
1062 *
1063 * @remark Does not actually set the wall clock counter.
1064 */
1065static uint64_t hdaR3WalClkGetMax(PHDASTATE pThis)
1066{
1067 const uint64_t u64WalClkCur = ASMAtomicReadU64(&pThis->u64WalClk);
1068 const uint64_t u64FrontAbsWalClk = pThis->SinkFront.pStream
1069 ? hdaR3StreamPeriodGetAbsElapsedWalClk(&pThis->SinkFront.pStream->State.Period) : 0;
1070# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1071# error "Implement me!"
1072# endif
1073 const uint64_t u64LineInAbsWalClk = pThis->SinkLineIn.pStream
1074 ? hdaR3StreamPeriodGetAbsElapsedWalClk(&pThis->SinkLineIn.pStream->State.Period) : 0;
1075# ifdef VBOX_WITH_HDA_MIC_IN
1076 const uint64_t u64MicInAbsWalClk = pThis->SinkMicIn.pStream
1077 ? hdaR3StreamPeriodGetAbsElapsedWalClk(&pThis->SinkMicIn.pStream->State.Period) : 0;
1078# endif
1079
1080 uint64_t u64WalClkNew = RT_MAX(u64WalClkCur, u64FrontAbsWalClk);
1081# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1082# error "Implement me!"
1083# endif
1084 u64WalClkNew = RT_MAX(u64WalClkNew, u64LineInAbsWalClk);
1085# ifdef VBOX_WITH_HDA_MIC_IN
1086 u64WalClkNew = RT_MAX(u64WalClkNew, u64MicInAbsWalClk);
1087# endif
1088
1089 Log3Func(("%RU64 -> Front=%RU64, LineIn=%RU64 -> %RU64\n",
1090 u64WalClkCur, u64FrontAbsWalClk, u64LineInAbsWalClk, u64WalClkNew));
1091
1092 return u64WalClkNew;
1093}
1094#endif /* IN_RING3 */
1095
1096static int hdaRegReadWALCLK(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
1097{
1098#ifdef IN_RING3
1099 RT_NOREF(iReg);
1100
1101 DEVHDA_LOCK(pDevIns, pThis);
1102
1103 *pu32Value = RT_LO_U32(ASMAtomicReadU64(&pThis->u64WalClk));
1104
1105 Log3Func(("%RU32 (max @ %RU64)\n",*pu32Value, hdaR3WalClkGetMax(pThis)));
1106
1107 DEVHDA_UNLOCK(pDevIns, pThis);
1108 return VINF_SUCCESS;
1109#else
1110 RT_NOREF(pDevIns, pThis, iReg, pu32Value);
1111 return VINF_IOM_R3_MMIO_READ;
1112#endif
1113}
1114
1115static int hdaRegWriteCORBRP(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1116{
1117 RT_NOREF(iReg);
1118 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
1119
1120 if (u32Value & HDA_CORBRP_RST)
1121 {
1122 /* Do a CORB reset. */
1123 if (pThis->cbCorbBuf)
1124 {
1125#ifdef IN_RING3
1126 Assert(pThis->pu32CorbBuf);
1127 RT_BZERO((void *)pThis->pu32CorbBuf, pThis->cbCorbBuf);
1128#else
1129 DEVHDA_UNLOCK(pDevIns, pThis);
1130 return VINF_IOM_R3_MMIO_WRITE;
1131#endif
1132 }
1133
1134 LogRel2(("HDA: CORB reset\n"));
1135
1136 HDA_REG(pThis, CORBRP) = HDA_CORBRP_RST; /* Clears the pointer. */
1137 }
1138 else
1139 HDA_REG(pThis, CORBRP) &= ~HDA_CORBRP_RST; /* Only CORBRP_RST bit is writable. */
1140
1141 DEVHDA_UNLOCK(pDevIns, pThis);
1142 return VINF_SUCCESS;
1143}
1144
1145static int hdaRegWriteCORBCTL(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1146{
1147#ifdef IN_RING3
1148 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
1149
1150 int rc = hdaRegWriteU8(pDevIns, pThis, iReg, u32Value);
1151 AssertRC(rc);
1152
1153 if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Start DMA engine. */
1154 {
1155 rc = hdaR3CORBCmdProcess(pThis);
1156 }
1157 else
1158 LogFunc(("CORB DMA not running, skipping\n"));
1159
1160 DEVHDA_UNLOCK(pDevIns, pThis);
1161 return rc;
1162#else
1163 RT_NOREF(pDevIns, pThis, iReg, u32Value);
1164 return VINF_IOM_R3_MMIO_WRITE;
1165#endif
1166}
1167
1168static int hdaRegWriteCORBSIZE(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1169{
1170#ifdef IN_RING3
1171 RT_NOREF(iReg);
1172 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
1173
1174 if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Ignore request if CORB DMA engine is (still) running. */
1175 {
1176 LogFunc(("CORB DMA is (still) running, skipping\n"));
1177
1178 DEVHDA_UNLOCK(pDevIns, pThis);
1179 return VINF_SUCCESS;
1180 }
1181
1182 u32Value = (u32Value & HDA_CORBSIZE_SZ);
1183
1184 uint16_t cEntries = HDA_CORB_SIZE; /* Set default. */
1185
1186 switch (u32Value)
1187 {
1188 case 0: /* 8 byte; 2 entries. */
1189 cEntries = 2;
1190 break;
1191
1192 case 1: /* 64 byte; 16 entries. */
1193 cEntries = 16;
1194 break;
1195
1196 case 2: /* 1 KB; 256 entries. */
1197 /* Use default size. */
1198 break;
1199
1200 default:
1201 LogRel(("HDA: Guest tried to set an invalid CORB size (0x%x), keeping default\n", u32Value));
1202 u32Value = 2;
1203 /* Use default size. */
1204 break;
1205 }
1206
1207 uint32_t cbCorbBuf = cEntries * HDA_CORB_ELEMENT_SIZE;
1208 Assert(cbCorbBuf <= HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE); /* Paranoia. */
1209
1210 if (cbCorbBuf != pThis->cbCorbBuf)
1211 {
1212 RT_BZERO(pThis->pu32CorbBuf, HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE); /* Clear CORB when setting a new size. */
1213 pThis->cbCorbBuf = cbCorbBuf;
1214 }
1215
1216 LogFunc(("CORB buffer size is now %RU32 bytes (%u entries)\n", pThis->cbCorbBuf, pThis->cbCorbBuf / HDA_CORB_ELEMENT_SIZE));
1217
1218 HDA_REG(pThis, CORBSIZE) = u32Value;
1219
1220 DEVHDA_UNLOCK(pDevIns, pThis);
1221 return VINF_SUCCESS;
1222#else
1223 RT_NOREF(pDevIns, pThis, iReg, u32Value);
1224 return VINF_IOM_R3_MMIO_WRITE;
1225#endif
1226}
1227
1228static int hdaRegWriteCORBSTS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1229{
1230 RT_NOREF_PV(iReg);
1231 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
1232
1233 uint32_t v = HDA_REG(pThis, CORBSTS);
1234 HDA_REG(pThis, CORBSTS) &= ~(v & u32Value);
1235
1236 DEVHDA_UNLOCK(pDevIns, pThis);
1237 return VINF_SUCCESS;
1238}
1239
1240static int hdaRegWriteCORBWP(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1241{
1242#ifdef IN_RING3
1243 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
1244
1245 int rc = hdaRegWriteU16(pDevIns, pThis, iReg, u32Value);
1246 AssertRCSuccess(rc);
1247
1248 rc = hdaR3CORBCmdProcess(pThis);
1249
1250 DEVHDA_UNLOCK(pDevIns, pThis);
1251 return rc;
1252#else
1253 RT_NOREF(pDevIns, pThis, iReg, u32Value);
1254 return VINF_IOM_R3_MMIO_WRITE;
1255#endif
1256}
1257
1258static int hdaRegWriteSDCBL(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1259{
1260 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
1261
1262 int rc = hdaRegWriteU32(pDevIns, pThis, iReg, u32Value);
1263 AssertRCSuccess(rc);
1264
1265 DEVHDA_UNLOCK(pDevIns, pThis);
1266 return rc;
1267}
1268
1269static int hdaRegWriteSDCTL(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1270{
1271#ifdef IN_RING3
1272 /* Get the stream descriptor. */
1273 const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, CTL, iReg);
1274
1275 /*
1276 * Some guests write too much (that is, 32-bit with the top 8 bit being junk)
1277 * instead of 24-bit required for SDCTL. So just mask this here to be safe.
1278 */
1279 u32Value &= 0x00ffffff;
1280
1281 /*
1282 * Extract the stream tag the guest wants to use for this specific
1283 * stream descriptor (SDn). This only can happen if the stream is in a non-running
1284 * state, so we're doing the lookup and assignment here.
1285 *
1286 * So depending on the guest OS, SD3 can use stream tag 4, for example.
1287 */
1288 uint8_t uTag = (u32Value >> HDA_SDCTL_NUM_SHIFT) & HDA_SDCTL_NUM_MASK;
1289 ASSERT_GUEST_MSG_RETURN(uTag < RT_ELEMENTS(pThis->aTags),
1290 ("SD%RU8: Invalid stream tag %RU8 (u32Value=%#x)!\n", uSD, uTag, u32Value),
1291 VINF_SUCCESS /* Always return success to the MMIO handler. */);
1292
1293 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
1294 ASSERT_GUEST_LOGREL_MSG_RETURN(pStream, ("Guest tried writing SDCTL (0x%x) to unhandled stream #%RU8\n", u32Value, uSD),
1295 VINF_SUCCESS /* Always return success to the MMIO handler. */);
1296
1297 const bool fRun = RT_BOOL(u32Value & HDA_SDCTL_RUN);
1298 const bool fReset = RT_BOOL(u32Value & HDA_SDCTL_SRST);
1299
1300 /**
1301 * @todo r=bird: Must reduce the time we holding the virtual sync
1302 * clock lock here!
1303 */
1304 DEVHDA_LOCK_BOTH_RETURN(pDevIns, pThis, pStream, VINF_IOM_R3_MMIO_WRITE);
1305
1306 const bool fInRun = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_SDCTL_RUN);
1307 const bool fInReset = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_SDCTL_SRST);
1308
1309 /*LogFunc(("[SD%RU8] fRun=%RTbool, fInRun=%RTbool, fReset=%RTbool, fInReset=%RTbool, %R[sdctl]\n",
1310 uSD, fRun, fInRun, fReset, fInReset, u32Value));*/
1311 if (fInReset)
1312 {
1313 Assert(!fReset);
1314 Assert(!fInRun && !fRun);
1315
1316 /* Exit reset state. */
1317 ASMAtomicXchgBool(&pStream->State.fInReset, false);
1318
1319 /* Report that we're done resetting this stream by clearing SRST. */
1320 HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_SDCTL_SRST;
1321
1322 LogFunc(("[SD%RU8] Reset exit\n", uSD));
1323 }
1324 else if (fReset)
1325 {
1326 /* ICH6 datasheet 18.2.33 says that RUN bit should be cleared before initiation of reset. */
1327 Assert(!fInRun && !fRun);
1328
1329 LogFunc(("[SD%RU8] Reset enter\n", uSD));
1330
1331 hdaR3StreamLock(pStream);
1332
1333# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1334 hdaR3StreamAsyncIOLock(pStream);
1335# endif
1336 /* Make sure to remove the run bit before doing the actual stream reset. */
1337 HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_SDCTL_RUN;
1338
1339 hdaR3StreamReset(pThis, pStream, pStream->u8SD);
1340
1341# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1342 hdaR3StreamAsyncIOUnlock(pStream);
1343# endif
1344 hdaR3StreamUnlock(pStream);
1345 }
1346 else
1347 {
1348 /*
1349 * We enter here to change DMA states only.
1350 */
1351 if (fInRun != fRun)
1352 {
1353 Assert(!fReset && !fInReset);
1354 LogFunc(("[SD%RU8] State changed (fRun=%RTbool)\n", uSD, fRun));
1355
1356 hdaR3StreamLock(pStream);
1357
1358 int rc2 = VINF_SUCCESS;
1359
1360# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1361 if (fRun)
1362 rc2 = hdaR3StreamAsyncIOCreate(pStream);
1363
1364 hdaR3StreamAsyncIOLock(pStream);
1365# endif
1366 if (fRun)
1367 {
1368 if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_OUT)
1369 {
1370 const uint8_t uStripeCtl = ((u32Value >> HDA_SDCTL_STRIPE_SHIFT) & HDA_SDCTL_STRIPE_MASK) + 1;
1371 LogFunc(("[SD%RU8] Using %RU8 SDOs (stripe control)\n", uSD, uStripeCtl));
1372 if (uStripeCtl > 1)
1373 LogRel2(("HDA: Warning: Striping output over more than one SDO for stream #%RU8 currently is not implemented " \
1374 "(%RU8 SDOs requested)\n", uSD, uStripeCtl));
1375 }
1376
1377 PHDATAG pTag = &pThis->aTags[uTag];
1378 AssertPtr(pTag);
1379
1380 LogFunc(("[SD%RU8] Using stream tag=%RU8\n", uSD, uTag));
1381
1382 /* Assign new values. */
1383 pTag->uTag = uTag;
1384 pTag->pStream = hdaGetStreamFromSD(pThis, uSD);
1385
1386# ifdef LOG_ENABLED
1387 PDMAUDIOPCMPROPS Props;
1388 rc2 = hdaR3SDFMTToPCMProps(HDA_STREAM_REG(pThis, FMT, pStream->u8SD), &Props);
1389 AssertRC(rc2);
1390 LogFunc(("[SD%RU8] %RU32Hz, %RU8bit, %RU8 channel(s)\n",
1391 pStream->u8SD, Props.uHz, Props.cbSample * 8 /* Bit */, Props.cChannels));
1392# endif
1393 /* (Re-)initialize the stream with current values. */
1394 rc2 = hdaR3StreamInit(pDevIns, pStream, pStream->u8SD);
1395 if ( RT_SUCCESS(rc2)
1396 /* Any vital stream change occurred so that we need to (re-)add the stream to our setup?
1397 * Otherwise just skip this, as this costs a lot of performance. */
1398 && rc2 != VINF_NO_CHANGE)
1399 {
1400 /* Remove the old stream from the device setup. */
1401 rc2 = hdaR3RemoveStream(pThis, &pStream->State.Cfg);
1402 AssertRC(rc2);
1403
1404 /* Add the stream to the device setup. */
1405 rc2 = hdaR3AddStream(pThis, &pStream->State.Cfg);
1406 AssertRC(rc2);
1407 }
1408 }
1409
1410 if (RT_SUCCESS(rc2))
1411 {
1412 /* Enable/disable the stream. */
1413 rc2 = hdaR3StreamEnable(pStream, fRun /* fEnable */);
1414 AssertRC(rc2);
1415
1416 if (fRun)
1417 {
1418 /* Keep track of running streams. */
1419 pThis->cStreamsActive++;
1420
1421 /* (Re-)init the stream's period. */
1422 hdaR3StreamPeriodInit(&pStream->State.Period,
1423 pStream->u8SD, pStream->u16LVI, pStream->u32CBL, &pStream->State.Cfg);
1424
1425 /* Begin a new period for this stream. */
1426 rc2 = hdaR3StreamPeriodBegin(&pStream->State.Period, hdaWalClkGetCurrent(pThis)/* Use current wall clock time */);
1427 AssertRC(rc2);
1428
1429 uint64_t const tsNow = PDMDevHlpTimerGet(pDevIns, pStream->hTimer);
1430 rc2 = hdaR3TimerSet(pDevIns, pStream, tsNow + pStream->State.cTransferTicks, false /* fForce */, tsNow);
1431 AssertRC(rc2);
1432 }
1433 else
1434 {
1435 /* Keep track of running streams. */
1436 Assert(pThis->cStreamsActive);
1437 if (pThis->cStreamsActive)
1438 pThis->cStreamsActive--;
1439
1440 /* Make sure to (re-)schedule outstanding (delayed) interrupts. */
1441 hdaR3ReschedulePendingInterrupts(pThis);
1442
1443 /* Reset the period. */
1444 hdaR3StreamPeriodReset(&pStream->State.Period);
1445 }
1446 }
1447
1448# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1449 hdaR3StreamAsyncIOUnlock(pStream);
1450# endif
1451 /* Make sure to leave the lock before (eventually) starting the timer. */
1452 hdaR3StreamUnlock(pStream);
1453 }
1454 }
1455
1456 int rc2 = hdaRegWriteU24(pDevIns, pThis, iReg, u32Value);
1457 AssertRC(rc2);
1458
1459 DEVHDA_UNLOCK_BOTH(pDevIns, pThis, pStream);
1460 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1461#else /* !IN_RING3 */
1462 RT_NOREF(pDevIns, pThis, iReg, u32Value);
1463 return VINF_IOM_R3_MMIO_WRITE;
1464#endif /* !IN_RING3 */
1465}
1466
1467static int hdaRegWriteSDSTS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1468{
1469#ifdef IN_RING3
1470 const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, STS, iReg);
1471 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
1472 ASSERT_GUEST_LOGREL_MSG_RETURN(pStream, ("Guest tried writing SDSTS (0x%x) to unhandled stream #%RU8\n", u32Value, uSD),
1473 VINF_SUCCESS);
1474
1475 /**
1476 * @todo r=bird: Must reduce the time we holding the virtual sync
1477 * clock lock here!
1478 */
1479 DEVHDA_LOCK_BOTH_RETURN(pDevIns, pThis, pStream, VINF_IOM_R3_MMIO_WRITE);
1480
1481 hdaR3StreamLock(pStream);
1482
1483 uint32_t v = HDA_REG_IND(pThis, iReg);
1484
1485 /* Clear (zero) FIFOE, DESE and BCIS bits when writing 1 to it (6.2.33). */
1486 HDA_REG_IND(pThis, iReg) &= ~(u32Value & v);
1487
1488 /* Some guests tend to write SDnSTS even if the stream is not running.
1489 * So make sure to check if the RUN bit is set first. */
1490 const bool fRunning = pStream->State.fRunning;
1491
1492 Log3Func(("[SD%RU8] fRunning=%RTbool %R[sdsts]\n", pStream->u8SD, fRunning, v));
1493
1494 PHDASTREAMPERIOD pPeriod = &pStream->State.Period;
1495
1496 if (hdaR3StreamPeriodLock(pPeriod))
1497 {
1498 const bool fNeedsInterrupt = hdaR3StreamPeriodNeedsInterrupt(pPeriod);
1499 if (fNeedsInterrupt)
1500 hdaR3StreamPeriodReleaseInterrupt(pPeriod);
1501
1502 if (hdaR3StreamPeriodIsComplete(pPeriod))
1503 {
1504 /* Make sure to try to update the WALCLK register if a period is complete.
1505 * Use the maximum WALCLK value all (active) streams agree to. */
1506 const uint64_t uWalClkMax = hdaR3WalClkGetMax(pThis);
1507 if (uWalClkMax > hdaWalClkGetCurrent(pThis))
1508 hdaR3WalClkSet(pThis, uWalClkMax, false /* fForce */);
1509
1510 hdaR3StreamPeriodEnd(pPeriod);
1511
1512 if (fRunning)
1513 hdaR3StreamPeriodBegin(pPeriod, hdaWalClkGetCurrent(pThis) /* Use current wall clock time */);
1514 }
1515
1516 hdaR3StreamPeriodUnlock(pPeriod); /* Unlock before processing interrupt. */
1517 }
1518
1519 HDA_PROCESS_INTERRUPT(pDevIns, pThis);
1520
1521 const uint64_t tsNow = PDMDevHlpTimerGet(pDevIns, pStream->hTimer);
1522 Assert(tsNow >= pStream->State.tsTransferLast);
1523
1524 const uint64_t cTicksElapsed = tsNow - pStream->State.tsTransferLast;
1525# ifdef LOG_ENABLED
1526 const uint64_t cTicksTransferred = pStream->State.cbTransferProcessed * pStream->State.cTicksPerByte;
1527# endif
1528
1529 uint64_t cTicksToNext = pStream->State.cTransferTicks;
1530 if (cTicksToNext) /* Only do any calculations if the stream currently is set up for transfers. */
1531 {
1532 Log3Func(("[SD%RU8] cTicksElapsed=%RU64, cTicksTransferred=%RU64, cTicksToNext=%RU64\n",
1533 pStream->u8SD, cTicksElapsed, cTicksTransferred, cTicksToNext));
1534
1535 Log3Func(("[SD%RU8] cbTransferProcessed=%RU32, cbTransferChunk=%RU32, cbTransferSize=%RU32\n",
1536 pStream->u8SD, pStream->State.cbTransferProcessed, pStream->State.cbTransferChunk, pStream->State.cbTransferSize));
1537
1538 if (cTicksElapsed <= cTicksToNext)
1539 cTicksToNext = cTicksToNext - cTicksElapsed;
1540 else /* Catch up. */
1541 {
1542 Log3Func(("[SD%RU8] Warning: Lagging behind (%RU64 ticks elapsed, maximum allowed is %RU64)\n",
1543 pStream->u8SD, cTicksElapsed, cTicksToNext));
1544
1545 LogRelMax2(64, ("HDA: Stream #%RU8 interrupt lagging behind (expected %uus, got %uus), trying to catch up ...\n",
1546 pStream->u8SD,
1547 (PDMDevHlpTimerGetFreq(pDevIns, pStream->hTimer) / pThis->uTimerHz) / 1000,
1548 (tsNow - pStream->State.tsTransferLast) / 1000));
1549
1550 cTicksToNext = 0;
1551 }
1552
1553 Log3Func(("[SD%RU8] -> cTicksToNext=%RU64\n", pStream->u8SD, cTicksToNext));
1554
1555 /* Reset processed data counter. */
1556 pStream->State.cbTransferProcessed = 0;
1557 pStream->State.tsTransferNext = tsNow + cTicksToNext;
1558
1559 /* Only re-arm the timer if there were pending transfer interrupts left
1560 * -- it could happen that we land in here if a guest writes to SDnSTS
1561 * unconditionally. */
1562 if (pStream->State.cTransferPendingInterrupts)
1563 {
1564 pStream->State.cTransferPendingInterrupts--;
1565
1566 /* Re-arm the timer. */
1567 LogFunc(("Timer set SD%RU8\n", pStream->u8SD));
1568 hdaR3TimerSet(pDevIns, pStream, tsNow + cTicksToNext, true /* fForce - we just set tsTransferNext*/, 0 /*tsNow*/);
1569 }
1570 }
1571
1572 hdaR3StreamUnlock(pStream);
1573
1574 DEVHDA_UNLOCK_BOTH(pDevIns, pThis, pStream);
1575 return VINF_SUCCESS;
1576#else /* !IN_RING3 */
1577 RT_NOREF(pDevIns, pThis, iReg, u32Value);
1578 return VINF_IOM_R3_MMIO_WRITE;
1579#endif /* !IN_RING3 */
1580}
1581
1582static int hdaRegWriteSDLVI(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1583{
1584 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
1585
1586 const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, LVI, iReg);
1587
1588#ifdef HDA_USE_DMA_ACCESS_HANDLER
1589 if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_OUT)
1590 {
1591 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
1592
1593 /* Try registering the DMA handlers.
1594 * As we can't be sure in which order LVI + BDL base are set, try registering in both routines. */
1595 if ( pStream
1596 && hdaR3StreamRegisterDMAHandlers(pThis, pStream))
1597 {
1598 LogFunc(("[SD%RU8] DMA logging enabled\n", pStream->u8SD));
1599 }
1600 }
1601#endif
1602
1603 ASSERT_GUEST_LOGREL_MSG(u32Value <= UINT8_MAX, /* Should be covered by the register write mask, but just to make sure. */
1604 ("LVI for stream #%RU8 must not be bigger than %RU8\n", uSD, UINT8_MAX - 1));
1605
1606 int rc2 = hdaRegWriteU16(pDevIns, pThis, iReg, u32Value);
1607 AssertRC(rc2);
1608
1609 DEVHDA_UNLOCK(pDevIns, pThis);
1610 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1611}
1612
1613static int hdaRegWriteSDFIFOW(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1614{
1615 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
1616
1617 uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, FIFOW, iReg);
1618
1619 if (hdaGetDirFromSD(uSD) != PDMAUDIODIR_IN) /* FIFOW for input streams only. */
1620 {
1621#ifndef IN_RING0
1622 LogRel(("HDA: Warning: Guest tried to write read-only FIFOW to output stream #%RU8, ignoring\n", uSD));
1623 DEVHDA_UNLOCK(pDevIns, pThis);
1624 return VINF_SUCCESS;
1625#else
1626 DEVHDA_UNLOCK(pDevIns, pThis);
1627 return VINF_IOM_R3_MMIO_WRITE;
1628#endif
1629 }
1630
1631 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, HDA_SD_NUM_FROM_REG(pThis, FIFOW, iReg));
1632 if (!pStream)
1633 {
1634 DEVHDA_UNLOCK(pDevIns, pThis);
1635 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1636 }
1637
1638 uint32_t u32FIFOW = 0;
1639
1640 switch (u32Value)
1641 {
1642 case HDA_SDFIFOW_8B:
1643 case HDA_SDFIFOW_16B:
1644 case HDA_SDFIFOW_32B:
1645 u32FIFOW = u32Value;
1646 break;
1647 default:
1648 ASSERT_GUEST_LOGREL_MSG_FAILED(("Guest tried writing unsupported FIFOW (0x%x) to stream #%RU8, defaulting to 32 bytes\n",
1649 u32Value, uSD));
1650 u32FIFOW = HDA_SDFIFOW_32B;
1651 break;
1652 }
1653
1654 if (u32FIFOW)
1655 {
1656 pStream->u16FIFOW = hdaSDFIFOWToBytes(u32FIFOW);
1657 LogFunc(("[SD%RU8] Updating FIFOW to %RU32 bytes\n", uSD, pStream->u16FIFOW));
1658
1659 int rc2 = hdaRegWriteU16(pDevIns, pThis, iReg, u32FIFOW);
1660 AssertRC(rc2);
1661 }
1662
1663 DEVHDA_UNLOCK(pDevIns, pThis);
1664 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1665}
1666
1667/**
1668 * @note This method could be called for changing value on Output Streams only (ICH6 datasheet 18.2.39).
1669 */
1670static int hdaRegWriteSDFIFOS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1671{
1672 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
1673
1674 uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, FIFOS, iReg);
1675
1676 if (hdaGetDirFromSD(uSD) != PDMAUDIODIR_OUT) /* FIFOS for output streams only. */
1677 {
1678 ASSERT_GUEST_LOGREL_MSG_FAILED(("Guest tried writing read-only FIFOS to input stream #%RU8, ignoring\n", uSD));
1679 DEVHDA_UNLOCK(pDevIns, pThis);
1680 return VINF_SUCCESS;
1681 }
1682
1683 uint32_t u32FIFOS;
1684
1685 switch(u32Value)
1686 {
1687 case HDA_SDOFIFO_16B:
1688 case HDA_SDOFIFO_32B:
1689 case HDA_SDOFIFO_64B:
1690 case HDA_SDOFIFO_128B:
1691 case HDA_SDOFIFO_192B:
1692 case HDA_SDOFIFO_256B:
1693 u32FIFOS = u32Value;
1694 break;
1695
1696 default:
1697 ASSERT_GUEST_LOGREL_MSG_FAILED(("Guest tried writing unsupported FIFOS (0x%x) to stream #%RU8, defaulting to 192 bytes\n",
1698 u32Value, uSD));
1699 u32FIFOS = HDA_SDOFIFO_192B;
1700 break;
1701 }
1702
1703 int rc2 = hdaRegWriteU16(pDevIns, pThis, iReg, u32FIFOS);
1704 AssertRC(rc2);
1705
1706 DEVHDA_UNLOCK(pDevIns, pThis);
1707 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
1708}
1709
1710#ifdef IN_RING3
1711
1712/**
1713 * Adds an audio output stream to the device setup using the given configuration.
1714 *
1715 * @returns IPRT status code.
1716 * @param pThis Device state.
1717 * @param pCfg Stream configuration to use for adding a stream.
1718 */
1719static int hdaR3AddStreamOut(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
1720{
1721 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1722 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
1723
1724 AssertReturn(pCfg->enmDir == PDMAUDIODIR_OUT, VERR_INVALID_PARAMETER);
1725
1726 LogFlowFunc(("Stream=%s\n", pCfg->szName));
1727
1728 int rc = VINF_SUCCESS;
1729
1730 bool fUseFront = true; /* Always use front out by default. */
1731# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1732 bool fUseRear;
1733 bool fUseCenter;
1734 bool fUseLFE;
1735
1736 fUseRear = fUseCenter = fUseLFE = false;
1737
1738 /*
1739 * Use commonly used setups for speaker configurations.
1740 */
1741
1742 /** @todo Make the following configurable through mixer API and/or CFGM? */
1743 switch (pCfg->Props.cChannels)
1744 {
1745 case 3: /* 2.1: Front (Stereo) + LFE. */
1746 {
1747 fUseLFE = true;
1748 break;
1749 }
1750
1751 case 4: /* Quadrophonic: Front (Stereo) + Rear (Stereo). */
1752 {
1753 fUseRear = true;
1754 break;
1755 }
1756
1757 case 5: /* 4.1: Front (Stereo) + Rear (Stereo) + LFE. */
1758 {
1759 fUseRear = true;
1760 fUseLFE = true;
1761 break;
1762 }
1763
1764 case 6: /* 5.1: Front (Stereo) + Rear (Stereo) + Center/LFE. */
1765 {
1766 fUseRear = true;
1767 fUseCenter = true;
1768 fUseLFE = true;
1769 break;
1770 }
1771
1772 default: /* Unknown; fall back to 2 front channels (stereo). */
1773 {
1774 rc = VERR_NOT_SUPPORTED;
1775 break;
1776 }
1777 }
1778# endif /* !VBOX_WITH_AUDIO_HDA_51_SURROUND */
1779
1780 if (rc == VERR_NOT_SUPPORTED)
1781 {
1782 LogRel2(("HDA: Warning: Unsupported channel count (%RU8), falling back to stereo channels (2)\n", pCfg->Props.cChannels));
1783
1784 /* Fall back to 2 channels (see below in fUseFront block). */
1785 rc = VINF_SUCCESS;
1786 }
1787
1788 do
1789 {
1790 if (RT_FAILURE(rc))
1791 break;
1792
1793 if (fUseFront)
1794 {
1795 RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Front");
1796
1797 pCfg->u.enmDst = PDMAUDIOPLAYBACKDST_FRONT;
1798 pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED;
1799
1800 pCfg->Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pCfg->Props.cbSample, pCfg->Props.cChannels);
1801
1802 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_FRONT, pCfg);
1803 }
1804
1805# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1806 if ( RT_SUCCESS(rc)
1807 && (fUseCenter || fUseLFE))
1808 {
1809 RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Center/LFE");
1810
1811 pCfg->u.enmDst = PDMAUDIOPLAYBACKDST_CENTER_LFE;
1812 pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED;
1813
1814 pCfg->Props.cChannels = (fUseCenter && fUseLFE) ? 2 : 1;
1815 pCfg->Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pCfg->Props.cbSample, pCfg->Props.cChannels);
1816
1817 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_CENTER_LFE, pCfg);
1818 }
1819
1820 if ( RT_SUCCESS(rc)
1821 && fUseRear)
1822 {
1823 RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Rear");
1824
1825 pCfg->u.enmDst = PDMAUDIOPLAYBACKDST_REAR;
1826 pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED;
1827
1828 pCfg->Props.cChannels = 2;
1829 pCfg->Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pCfg->Props.cbSample, pCfg->Props.cChannels);
1830
1831 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_REAR, pCfg);
1832 }
1833# endif /* VBOX_WITH_AUDIO_HDA_51_SURROUND */
1834
1835 } while (0);
1836
1837 LogFlowFuncLeaveRC(rc);
1838 return rc;
1839}
1840
1841/**
1842 * Adds an audio input stream to the device setup using the given configuration.
1843 *
1844 * @returns IPRT status code.
1845 * @param pThis Device state.
1846 * @param pCfg Stream configuration to use for adding a stream.
1847 */
1848static int hdaR3AddStreamIn(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
1849{
1850 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1851 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
1852
1853 AssertReturn(pCfg->enmDir == PDMAUDIODIR_IN, VERR_INVALID_PARAMETER);
1854
1855 LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->u.enmSrc));
1856
1857 int rc;
1858
1859 switch (pCfg->u.enmSrc)
1860 {
1861 case PDMAUDIORECSRC_LINE:
1862 {
1863 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_LINE_IN, pCfg);
1864 break;
1865 }
1866# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
1867 case PDMAUDIORECSRC_MIC:
1868 {
1869 rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_MIC_IN, pCfg);
1870 break;
1871 }
1872# endif
1873 default:
1874 rc = VERR_NOT_SUPPORTED;
1875 break;
1876 }
1877
1878 LogFlowFuncLeaveRC(rc);
1879 return rc;
1880}
1881
1882/**
1883 * Adds an audio stream to the device setup using the given configuration.
1884 *
1885 * @returns IPRT status code.
1886 * @param pThis Device state.
1887 * @param pCfg Stream configuration to use for adding a stream.
1888 */
1889static int hdaR3AddStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
1890{
1891 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1892 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
1893
1894 int rc;
1895
1896 LogFlowFuncEnter();
1897
1898 switch (pCfg->enmDir)
1899 {
1900 case PDMAUDIODIR_OUT:
1901 rc = hdaR3AddStreamOut(pThis, pCfg);
1902 break;
1903
1904 case PDMAUDIODIR_IN:
1905 rc = hdaR3AddStreamIn(pThis, pCfg);
1906 break;
1907
1908 default:
1909 rc = VERR_NOT_SUPPORTED;
1910 AssertFailed();
1911 break;
1912 }
1913
1914 LogFlowFunc(("Returning %Rrc\n", rc));
1915
1916 return rc;
1917}
1918
1919/**
1920 * Removes an audio stream from the device setup using the given configuration.
1921 *
1922 * @returns IPRT status code.
1923 * @param pThis Device state.
1924 * @param pCfg Stream configuration to use for removing a stream.
1925 */
1926static int hdaR3RemoveStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg)
1927{
1928 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1929 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
1930
1931 int rc = VINF_SUCCESS;
1932
1933 PDMAUDIOMIXERCTL enmMixerCtl = PDMAUDIOMIXERCTL_UNKNOWN;
1934 switch (pCfg->enmDir)
1935 {
1936 case PDMAUDIODIR_IN:
1937 {
1938 LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->u.enmSrc));
1939
1940 switch (pCfg->u.enmSrc)
1941 {
1942 case PDMAUDIORECSRC_UNKNOWN: break;
1943 case PDMAUDIORECSRC_LINE: enmMixerCtl = PDMAUDIOMIXERCTL_LINE_IN; break;
1944# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
1945 case PDMAUDIORECSRC_MIC: enmMixerCtl = PDMAUDIOMIXERCTL_MIC_IN; break;
1946# endif
1947 default:
1948 rc = VERR_NOT_SUPPORTED;
1949 break;
1950 }
1951
1952 break;
1953 }
1954
1955 case PDMAUDIODIR_OUT:
1956 {
1957 LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->u.enmDst));
1958
1959 switch (pCfg->u.enmDst)
1960 {
1961 case PDMAUDIOPLAYBACKDST_UNKNOWN: break;
1962 case PDMAUDIOPLAYBACKDST_FRONT: enmMixerCtl = PDMAUDIOMIXERCTL_FRONT; break;
1963# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
1964 case PDMAUDIOPLAYBACKDST_CENTER_LFE: enmMixerCtl = PDMAUDIOMIXERCTL_CENTER_LFE; break;
1965 case PDMAUDIOPLAYBACKDST_REAR: enmMixerCtl = PDMAUDIOMIXERCTL_REAR; break;
1966# endif
1967 default:
1968 rc = VERR_NOT_SUPPORTED;
1969 break;
1970 }
1971 break;
1972 }
1973
1974 default:
1975 rc = VERR_NOT_SUPPORTED;
1976 break;
1977 }
1978
1979 if ( RT_SUCCESS(rc)
1980 && enmMixerCtl != PDMAUDIOMIXERCTL_UNKNOWN)
1981 {
1982 rc = hdaCodecRemoveStream(pThis->pCodec, enmMixerCtl);
1983 }
1984
1985 LogFlowFuncLeaveRC(rc);
1986 return rc;
1987}
1988#endif /* IN_RING3 */
1989
1990static int hdaRegWriteSDFMT(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
1991{
1992 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
1993
1994 /* Write the wanted stream format into the register in any case.
1995 *
1996 * This is important for e.g. MacOS guests, as those try to initialize streams which are not reported
1997 * by the device emulation (wants 4 channels, only have 2 channels at the moment).
1998 *
1999 * When ignoring those (invalid) formats, this leads to MacOS thinking that the device is malfunctioning
2000 * and therefore disabling the device completely. */
2001 int rc = hdaRegWriteU16(pDevIns, pThis, iReg, u32Value);
2002 AssertRC(rc);
2003
2004 DEVHDA_UNLOCK(pDevIns, pThis);
2005 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
2006}
2007
2008/* Note: Will be called for both, BDPL and BDPU, registers. */
2009DECLINLINE(int) hdaRegWriteSDBDPX(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value, uint8_t uSD)
2010{
2011#ifdef IN_RING3
2012 DEVHDA_LOCK(pDevIns, pThis);
2013
2014# ifdef HDA_USE_DMA_ACCESS_HANDLER
2015 if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_OUT)
2016 {
2017 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
2018
2019 /* Try registering the DMA handlers.
2020 * As we can't be sure in which order LVI + BDL base are set, try registering in both routines. */
2021 if ( pStream
2022 && hdaR3StreamRegisterDMAHandlers(pThis, pStream))
2023 {
2024 LogFunc(("[SD%RU8] DMA logging enabled\n", pStream->u8SD));
2025 }
2026 }
2027# else
2028 RT_NOREF(uSD);
2029# endif
2030
2031 int rc2 = hdaRegWriteU32(pDevIns, pThis, iReg, u32Value);
2032 AssertRC(rc2);
2033
2034 DEVHDA_UNLOCK(pDevIns, pThis);
2035 return VINF_SUCCESS; /* Always return success to the MMIO handler. */
2036#else /* !IN_RING3 */
2037 RT_NOREF(pDevIns, pThis, iReg, u32Value, uSD);
2038 return VINF_IOM_R3_MMIO_WRITE;
2039#endif /* !IN_RING3 */
2040}
2041
2042static int hdaRegWriteSDBDPL(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2043{
2044 return hdaRegWriteSDBDPX(pDevIns, pThis, iReg, u32Value, HDA_SD_NUM_FROM_REG(pThis, BDPL, iReg));
2045}
2046
2047static int hdaRegWriteSDBDPU(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2048{
2049 return hdaRegWriteSDBDPX(pDevIns, pThis, iReg, u32Value, HDA_SD_NUM_FROM_REG(pThis, BDPU, iReg));
2050}
2051
2052static int hdaRegReadIRS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
2053{
2054 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_READ);
2055
2056 /* regarding 3.4.3 we should mark IRS as busy in case CORB is active */
2057 if ( HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP)
2058 || (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA))
2059 {
2060 HDA_REG(pThis, IRS) = HDA_IRS_ICB; /* busy */
2061 }
2062
2063 int rc = hdaRegReadU32(pDevIns, pThis, iReg, pu32Value);
2064 DEVHDA_UNLOCK(pDevIns, pThis);
2065
2066 return rc;
2067}
2068
2069static int hdaRegWriteIRS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2070{
2071 RT_NOREF_PV(iReg);
2072 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
2073
2074 /*
2075 * If the guest set the ICB bit of IRS register, HDA should process the verb in IC register,
2076 * write the response to IR register, and set the IRV (valid in case of success) bit of IRS register.
2077 */
2078 if ( (u32Value & HDA_IRS_ICB)
2079 && !(HDA_REG(pThis, IRS) & HDA_IRS_ICB))
2080 {
2081#ifdef IN_RING3
2082 uint32_t uCmd = HDA_REG(pThis, IC);
2083
2084 if (HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP))
2085 {
2086 DEVHDA_UNLOCK(pDevIns, pThis);
2087
2088 /*
2089 * 3.4.3: Defines behavior of immediate Command status register.
2090 */
2091 LogRel(("HDA: Guest attempted process immediate verb (%x) with active CORB\n", uCmd));
2092 return VINF_SUCCESS;
2093 }
2094
2095 HDA_REG(pThis, IRS) = HDA_IRS_ICB; /* busy */
2096
2097 uint64_t uResp;
2098 int rc2 = pThis->pCodec->pfnLookup(pThis->pCodec,
2099 HDA_CODEC_CMD(uCmd, 0 /* LUN */), &uResp);
2100 if (RT_FAILURE(rc2))
2101 LogFunc(("Codec lookup failed with rc2=%Rrc\n", rc2));
2102
2103 HDA_REG(pThis, IR) = (uint32_t)uResp; /** @todo r=andy Do we need a 64-bit response? */
2104 HDA_REG(pThis, IRS) = HDA_IRS_IRV; /* result is ready */
2105 /** @todo r=michaln We just set the IRS value, why are we clearing unset bits? */
2106 HDA_REG(pThis, IRS) &= ~HDA_IRS_ICB; /* busy is clear */
2107
2108 DEVHDA_UNLOCK(pDevIns, pThis);
2109 return VINF_SUCCESS;
2110#else /* !IN_RING3 */
2111 DEVHDA_UNLOCK(pDevIns, pThis);
2112 return VINF_IOM_R3_MMIO_WRITE;
2113#endif /* !IN_RING3 */
2114 }
2115
2116 /*
2117 * Once the guest read the response, it should clear the IRV bit of the IRS register.
2118 */
2119 HDA_REG(pThis, IRS) &= ~(u32Value & HDA_IRS_IRV);
2120
2121 DEVHDA_UNLOCK(pDevIns, pThis);
2122 return VINF_SUCCESS;
2123}
2124
2125static int hdaRegWriteRIRBWP(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2126{
2127 RT_NOREF(iReg);
2128 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
2129
2130 if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Ignore request if CORB DMA engine is (still) running. */
2131 {
2132 LogFunc(("CORB DMA (still) running, skipping\n"));
2133
2134 DEVHDA_UNLOCK(pDevIns, pThis);
2135 return VINF_SUCCESS;
2136 }
2137
2138 if (u32Value & HDA_RIRBWP_RST)
2139 {
2140 /* Do a RIRB reset. */
2141 if (pThis->cbRirbBuf)
2142 {
2143 Assert(pThis->pu64RirbBuf);
2144 RT_BZERO((void *)pThis->pu64RirbBuf, pThis->cbRirbBuf);
2145 }
2146
2147 LogRel2(("HDA: RIRB reset\n"));
2148
2149 HDA_REG(pThis, RIRBWP) = 0;
2150 }
2151
2152 /* The remaining bits are O, see 6.2.22. */
2153
2154 DEVHDA_UNLOCK(pDevIns, pThis);
2155 return VINF_SUCCESS;
2156}
2157
2158static int hdaRegWriteRINTCNT(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2159{
2160 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
2161
2162 if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Ignore request if CORB DMA engine is (still) running. */
2163 {
2164 LogFunc(("CORB DMA is (still) running, skipping\n"));
2165
2166 DEVHDA_UNLOCK(pDevIns, pThis);
2167 return VINF_SUCCESS;
2168 }
2169
2170 int rc = hdaRegWriteU16(pDevIns, pThis, iReg, u32Value);
2171 AssertRC(rc);
2172
2173 LogFunc(("Response interrupt count is now %RU8\n", HDA_REG(pThis, RINTCNT) & 0xFF));
2174
2175 DEVHDA_UNLOCK(pDevIns, pThis);
2176 return rc;
2177}
2178
2179static int hdaRegWriteBase(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2180{
2181 uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
2182 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
2183
2184 int rc = hdaRegWriteU32(pDevIns, pThis, iReg, u32Value);
2185 AssertRCSuccess(rc);
2186
2187 switch (iReg)
2188 {
2189 case HDA_REG_CORBLBASE:
2190 pThis->u64CORBBase &= UINT64_C(0xFFFFFFFF00000000);
2191 pThis->u64CORBBase |= pThis->au32Regs[iRegMem];
2192 break;
2193 case HDA_REG_CORBUBASE:
2194 pThis->u64CORBBase &= UINT64_C(0x00000000FFFFFFFF);
2195 pThis->u64CORBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32);
2196 break;
2197 case HDA_REG_RIRBLBASE:
2198 pThis->u64RIRBBase &= UINT64_C(0xFFFFFFFF00000000);
2199 pThis->u64RIRBBase |= pThis->au32Regs[iRegMem];
2200 break;
2201 case HDA_REG_RIRBUBASE:
2202 pThis->u64RIRBBase &= UINT64_C(0x00000000FFFFFFFF);
2203 pThis->u64RIRBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32);
2204 break;
2205 case HDA_REG_DPLBASE:
2206 {
2207 pThis->u64DPBase = pThis->au32Regs[iRegMem] & DPBASE_ADDR_MASK;
2208 Assert(pThis->u64DPBase % 128 == 0); /* Must be 128-byte aligned. */
2209
2210 /* Also make sure to handle the DMA position enable bit. */
2211 pThis->fDMAPosition = pThis->au32Regs[iRegMem] & RT_BIT_32(0);
2212 LogRel(("HDA: %s DMA position buffer\n", pThis->fDMAPosition ? "Enabled" : "Disabled"));
2213 break;
2214 }
2215 case HDA_REG_DPUBASE:
2216 pThis->u64DPBase = RT_MAKE_U64(RT_LO_U32(pThis->u64DPBase) & DPBASE_ADDR_MASK, pThis->au32Regs[iRegMem]);
2217 break;
2218 default:
2219 AssertMsgFailed(("Invalid index\n"));
2220 break;
2221 }
2222
2223 LogFunc(("CORB base:%llx RIRB base: %llx DP base: %llx\n",
2224 pThis->u64CORBBase, pThis->u64RIRBBase, pThis->u64DPBase));
2225
2226 DEVHDA_UNLOCK(pDevIns, pThis);
2227 return rc;
2228}
2229
2230static int hdaRegWriteRIRBSTS(PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
2231{
2232 RT_NOREF_PV(iReg);
2233 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
2234
2235 uint8_t v = HDA_REG(pThis, RIRBSTS);
2236 HDA_REG(pThis, RIRBSTS) &= ~(v & u32Value);
2237
2238 int rc = HDA_PROCESS_INTERRUPT(pDevIns, pThis);
2239
2240 DEVHDA_UNLOCK(pDevIns, pThis);
2241 return rc;
2242}
2243
2244#ifdef IN_RING3
2245
2246/**
2247 * Retrieves a corresponding sink for a given mixer control.
2248 * Returns NULL if no sink is found.
2249 *
2250 * @return PHDAMIXERSINK
2251 * @param pThis HDA state.
2252 * @param enmMixerCtl Mixer control to get the corresponding sink for.
2253 */
2254static PHDAMIXERSINK hdaR3MixerControlToSink(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl)
2255{
2256 PHDAMIXERSINK pSink;
2257
2258 switch (enmMixerCtl)
2259 {
2260 case PDMAUDIOMIXERCTL_VOLUME_MASTER:
2261 /* Fall through is intentional. */
2262 case PDMAUDIOMIXERCTL_FRONT:
2263 pSink = &pThis->SinkFront;
2264 break;
2265# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2266 case PDMAUDIOMIXERCTL_CENTER_LFE:
2267 pSink = &pThis->SinkCenterLFE;
2268 break;
2269 case PDMAUDIOMIXERCTL_REAR:
2270 pSink = &pThis->SinkRear;
2271 break;
2272# endif
2273 case PDMAUDIOMIXERCTL_LINE_IN:
2274 pSink = &pThis->SinkLineIn;
2275 break;
2276# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2277 case PDMAUDIOMIXERCTL_MIC_IN:
2278 pSink = &pThis->SinkMicIn;
2279 break;
2280# endif
2281 default:
2282 pSink = NULL;
2283 AssertMsgFailed(("Unhandled mixer control\n"));
2284 break;
2285 }
2286
2287 return pSink;
2288}
2289
2290/**
2291 * Adds a specific HDA driver to the driver chain.
2292 *
2293 * @return IPRT status code.
2294 * @param pThis HDA state.
2295 * @param pDrv HDA driver to add.
2296 */
2297static int hdaR3MixerAddDrv(PHDASTATE pThis, PHDADRIVER pDrv)
2298{
2299 int rc = VINF_SUCCESS;
2300
2301 PHDASTREAM pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkLineIn);
2302 if ( pStream
2303 && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
2304 {
2305 int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkLineIn.pMixSink, &pStream->State.Cfg, pDrv);
2306 if (RT_SUCCESS(rc))
2307 rc = rc2;
2308 }
2309
2310# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2311 pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkMicIn);
2312 if ( pStream
2313 && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
2314 {
2315 int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkMicIn.pMixSink, &pStream->State.Cfg, pDrv);
2316 if (RT_SUCCESS(rc))
2317 rc = rc2;
2318 }
2319# endif
2320
2321 pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkFront);
2322 if ( pStream
2323 && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
2324 {
2325 int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkFront.pMixSink, &pStream->State.Cfg, pDrv);
2326 if (RT_SUCCESS(rc))
2327 rc = rc2;
2328 }
2329
2330# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2331 pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkCenterLFE);
2332 if ( pStream
2333 && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
2334 {
2335 int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkCenterLFE.pMixSink, &pStream->State.Cfg, pDrv);
2336 if (RT_SUCCESS(rc))
2337 rc = rc2;
2338 }
2339
2340 pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkRear);
2341 if ( pStream
2342 && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg))
2343 {
2344 int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkRear.pMixSink, &pStream->State.Cfg, pDrv);
2345 if (RT_SUCCESS(rc))
2346 rc = rc2;
2347 }
2348# endif
2349
2350 return rc;
2351}
2352
2353/**
2354 * Removes a specific HDA driver from the driver chain and destroys its
2355 * associated streams.
2356 *
2357 * @param pThis HDA state.
2358 * @param pDrv HDA driver to remove.
2359 */
2360static void hdaR3MixerRemoveDrv(PHDASTATE pThis, PHDADRIVER pDrv)
2361{
2362 AssertPtrReturnVoid(pThis);
2363 AssertPtrReturnVoid(pDrv);
2364
2365 if (pDrv->LineIn.pMixStrm)
2366 {
2367 if (AudioMixerSinkGetRecordingSource(pThis->SinkLineIn.pMixSink) == pDrv->LineIn.pMixStrm)
2368 AudioMixerSinkSetRecordingSource(pThis->SinkLineIn.pMixSink, NULL);
2369
2370 AudioMixerSinkRemoveStream(pThis->SinkLineIn.pMixSink, pDrv->LineIn.pMixStrm);
2371 AudioMixerStreamDestroy(pDrv->LineIn.pMixStrm);
2372 pDrv->LineIn.pMixStrm = NULL;
2373 }
2374
2375# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2376 if (pDrv->MicIn.pMixStrm)
2377 {
2378 if (AudioMixerSinkGetRecordingSource(pThis->SinkMicIn.pMixSink) == pDrv->MicIn.pMixStrm)
2379 AudioMixerSinkSetRecordingSource(&pThis->SinkMicIn.pMixSink, NULL);
2380
2381 AudioMixerSinkRemoveStream(pThis->SinkMicIn.pMixSink, pDrv->MicIn.pMixStrm);
2382 AudioMixerStreamDestroy(pDrv->MicIn.pMixStrm);
2383 pDrv->MicIn.pMixStrm = NULL;
2384 }
2385# endif
2386
2387 if (pDrv->Front.pMixStrm)
2388 {
2389 AudioMixerSinkRemoveStream(pThis->SinkFront.pMixSink, pDrv->Front.pMixStrm);
2390 AudioMixerStreamDestroy(pDrv->Front.pMixStrm);
2391 pDrv->Front.pMixStrm = NULL;
2392 }
2393
2394# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2395 if (pDrv->CenterLFE.pMixStrm)
2396 {
2397 AudioMixerSinkRemoveStream(pThis->SinkCenterLFE.pMixSink, pDrv->CenterLFE.pMixStrm);
2398 AudioMixerStreamDestroy(pDrv->CenterLFE.pMixStrm);
2399 pDrv->CenterLFE.pMixStrm = NULL;
2400 }
2401
2402 if (pDrv->Rear.pMixStrm)
2403 {
2404 AudioMixerSinkRemoveStream(pThis->SinkRear.pMixSink, pDrv->Rear.pMixStrm);
2405 AudioMixerStreamDestroy(pDrv->Rear.pMixStrm);
2406 pDrv->Rear.pMixStrm = NULL;
2407 }
2408# endif
2409
2410 RTListNodeRemove(&pDrv->Node);
2411}
2412
2413/**
2414 * Adds a driver stream to a specific mixer sink.
2415 *
2416 * @returns IPRT status code (ignored by caller).
2417 * @param pThis HDA state.
2418 * @param pMixSink Audio mixer sink to add audio streams to.
2419 * @param pCfg Audio stream configuration to use for the audio streams to add.
2420 * @param pDrv Driver stream to add.
2421 */
2422static int hdaR3MixerAddDrvStream(PHDASTATE pThis, PAUDMIXSINK pMixSink, PPDMAUDIOSTREAMCFG pCfg, PHDADRIVER pDrv)
2423{
2424 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2425 AssertPtrReturn(pMixSink, VERR_INVALID_POINTER);
2426 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
2427
2428 LogFunc(("szSink=%s, szStream=%s, cChannels=%RU8\n", pMixSink->pszName, pCfg->szName, pCfg->Props.cChannels));
2429
2430 PPDMAUDIOSTREAMCFG pStreamCfg = DrvAudioHlpStreamCfgDup(pCfg);
2431 if (!pStreamCfg)
2432 return VERR_NO_MEMORY;
2433
2434 LogFunc(("[LUN#%RU8] %s\n", pDrv->uLUN, pStreamCfg->szName));
2435
2436 int rc = VINF_SUCCESS;
2437
2438 PHDADRIVERSTREAM pDrvStream = NULL;
2439
2440 if (pStreamCfg->enmDir == PDMAUDIODIR_IN)
2441 {
2442 LogFunc(("enmRecSource=%d\n", pStreamCfg->u.enmSrc));
2443
2444 switch (pStreamCfg->u.enmSrc)
2445 {
2446 case PDMAUDIORECSRC_LINE:
2447 pDrvStream = &pDrv->LineIn;
2448 break;
2449# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2450 case PDMAUDIORECSRC_MIC:
2451 pDrvStream = &pDrv->MicIn;
2452 break;
2453# endif
2454 default:
2455 rc = VERR_NOT_SUPPORTED;
2456 break;
2457 }
2458 }
2459 else if (pStreamCfg->enmDir == PDMAUDIODIR_OUT)
2460 {
2461 LogFunc(("enmPlaybackDest=%d\n", pStreamCfg->u.enmDst));
2462
2463 switch (pStreamCfg->u.enmDst)
2464 {
2465 case PDMAUDIOPLAYBACKDST_FRONT:
2466 pDrvStream = &pDrv->Front;
2467 break;
2468# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2469 case PDMAUDIOPLAYBACKDST_CENTER_LFE:
2470 pDrvStream = &pDrv->CenterLFE;
2471 break;
2472 case PDMAUDIOPLAYBACKDST_REAR:
2473 pDrvStream = &pDrv->Rear;
2474 break;
2475# endif
2476 default:
2477 rc = VERR_NOT_SUPPORTED;
2478 break;
2479 }
2480 }
2481 else
2482 rc = VERR_NOT_SUPPORTED;
2483
2484 if (RT_SUCCESS(rc))
2485 {
2486 AssertPtr(pDrvStream);
2487 AssertMsg(pDrvStream->pMixStrm == NULL, ("[LUN#%RU8] Driver stream already present when it must not\n", pDrv->uLUN));
2488
2489 PAUDMIXSTREAM pMixStrm;
2490 rc = AudioMixerSinkCreateStream(pMixSink, pDrv->pConnector, pStreamCfg, 0 /* fFlags */, &pMixStrm);
2491 LogFlowFunc(("LUN#%RU8: Created stream \"%s\" for sink, rc=%Rrc\n", pDrv->uLUN, pStreamCfg->szName, rc));
2492 if (RT_SUCCESS(rc))
2493 {
2494 rc = AudioMixerSinkAddStream(pMixSink, pMixStrm);
2495 LogFlowFunc(("LUN#%RU8: Added stream \"%s\" to sink, rc=%Rrc\n", pDrv->uLUN, pStreamCfg->szName, rc));
2496 if (RT_SUCCESS(rc))
2497 {
2498 /* If this is an input stream, always set the latest (added) stream
2499 * as the recording source. */
2500 /** @todo Make the recording source dynamic (CFGM?). */
2501 if (pStreamCfg->enmDir == PDMAUDIODIR_IN)
2502 {
2503 PDMAUDIOBACKENDCFG Cfg;
2504 rc = pDrv->pConnector->pfnGetConfig(pDrv->pConnector, &Cfg);
2505 if (RT_SUCCESS(rc))
2506 {
2507 if (Cfg.cMaxStreamsIn) /* At least one input source available? */
2508 {
2509 rc = AudioMixerSinkSetRecordingSource(pMixSink, pMixStrm);
2510 LogFlowFunc(("LUN#%RU8: Recording source for '%s' -> '%s', rc=%Rrc\n",
2511 pDrv->uLUN, pStreamCfg->szName, Cfg.szName, rc));
2512
2513 if (RT_SUCCESS(rc))
2514 LogRel(("HDA: Set recording source for '%s' to '%s'\n",
2515 pStreamCfg->szName, Cfg.szName));
2516 }
2517 else
2518 LogRel(("HDA: Backend '%s' currently is not offering any recording source for '%s'\n",
2519 Cfg.szName, pStreamCfg->szName));
2520 }
2521 else if (RT_FAILURE(rc))
2522 LogFunc(("LUN#%RU8: Unable to retrieve backend configuration for '%s', rc=%Rrc\n",
2523 pDrv->uLUN, pStreamCfg->szName, rc));
2524 }
2525 }
2526 }
2527
2528 if (RT_SUCCESS(rc))
2529 pDrvStream->pMixStrm = pMixStrm;
2530 }
2531
2532 DrvAudioHlpStreamCfgFree(pStreamCfg);
2533
2534 LogFlowFuncLeaveRC(rc);
2535 return rc;
2536}
2537
2538/**
2539 * Adds all current driver streams to a specific mixer sink.
2540 *
2541 * @returns IPRT status code.
2542 * @param pThis HDA state.
2543 * @param pMixSink Audio mixer sink to add stream to.
2544 * @param pCfg Audio stream configuration to use for the audio streams to add.
2545 */
2546static int hdaR3MixerAddDrvStreams(PHDASTATE pThis, PAUDMIXSINK pMixSink, PPDMAUDIOSTREAMCFG pCfg)
2547{
2548 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2549 AssertPtrReturn(pMixSink, VERR_INVALID_POINTER);
2550 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
2551
2552 LogFunc(("Sink=%s, Stream=%s\n", pMixSink->pszName, pCfg->szName));
2553
2554 if (!DrvAudioHlpStreamCfgIsValid(pCfg))
2555 return VERR_INVALID_PARAMETER;
2556
2557 int rc = AudioMixerSinkSetFormat(pMixSink, &pCfg->Props);
2558 if (RT_FAILURE(rc))
2559 return rc;
2560
2561 PHDADRIVER pDrv;
2562 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
2563 {
2564 int rc2 = hdaR3MixerAddDrvStream(pThis, pMixSink, pCfg, pDrv);
2565 if (RT_FAILURE(rc2))
2566 LogFunc(("Attaching stream failed with %Rrc\n", rc2));
2567
2568 /* Do not pass failure to rc here, as there might be drivers which aren't
2569 * configured / ready yet. */
2570 }
2571
2572 return rc;
2573}
2574
2575/**
2576 * @interface_method_impl{HDACODEC,pfnCbMixerAddStream}
2577 *
2578 * Adds a new audio stream to a specific mixer control.
2579 *
2580 * Depending on the mixer control the stream then gets assigned to one of the internal
2581 * mixer sinks, which in turn then handle the mixing of all connected streams to that sink.
2582 *
2583 * @return IPRT status code.
2584 * @param pThis HDA state.
2585 * @param enmMixerCtl Mixer control to assign new stream to.
2586 * @param pCfg Stream configuration for the new stream.
2587 */
2588static DECLCALLBACK(int) hdaR3MixerAddStream(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, PPDMAUDIOSTREAMCFG pCfg)
2589{
2590 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2591 AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
2592
2593 int rc;
2594
2595 PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl);
2596 if (pSink)
2597 {
2598 rc = hdaR3MixerAddDrvStreams(pThis, pSink->pMixSink, pCfg);
2599
2600 AssertPtr(pSink->pMixSink);
2601 LogFlowFunc(("Sink=%s, Mixer control=%s\n", pSink->pMixSink->pszName, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl)));
2602 }
2603 else
2604 rc = VERR_NOT_FOUND;
2605
2606 LogFlowFuncLeaveRC(rc);
2607 return rc;
2608}
2609
2610/**
2611 * @interface_method_impl{HDACODEC,pfnCbMixerRemoveStream}
2612 *
2613 * Removes a specified mixer control from the HDA's mixer.
2614 *
2615 * @return IPRT status code.
2616 * @param pThis HDA state.
2617 * @param enmMixerCtl Mixer control to remove.
2618 *
2619 * @remarks Can be called as a callback by the HDA codec.
2620 */
2621static DECLCALLBACK(int) hdaR3MixerRemoveStream(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl)
2622{
2623 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
2624
2625 int rc;
2626
2627 PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl);
2628 if (pSink)
2629 {
2630 PHDADRIVER pDrv;
2631 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
2632 {
2633 PAUDMIXSTREAM pMixStream = NULL;
2634 switch (enmMixerCtl)
2635 {
2636 /*
2637 * Input.
2638 */
2639 case PDMAUDIOMIXERCTL_LINE_IN:
2640 pMixStream = pDrv->LineIn.pMixStrm;
2641 pDrv->LineIn.pMixStrm = NULL;
2642 break;
2643# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
2644 case PDMAUDIOMIXERCTL_MIC_IN:
2645 pMixStream = pDrv->MicIn.pMixStrm;
2646 pDrv->MicIn.pMixStrm = NULL;
2647 break;
2648# endif
2649 /*
2650 * Output.
2651 */
2652 case PDMAUDIOMIXERCTL_FRONT:
2653 pMixStream = pDrv->Front.pMixStrm;
2654 pDrv->Front.pMixStrm = NULL;
2655 break;
2656# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
2657 case PDMAUDIOMIXERCTL_CENTER_LFE:
2658 pMixStream = pDrv->CenterLFE.pMixStrm;
2659 pDrv->CenterLFE.pMixStrm = NULL;
2660 break;
2661 case PDMAUDIOMIXERCTL_REAR:
2662 pMixStream = pDrv->Rear.pMixStrm;
2663 pDrv->Rear.pMixStrm = NULL;
2664 break;
2665# endif
2666 default:
2667 AssertMsgFailed(("Mixer control %d not implemented\n", enmMixerCtl));
2668 break;
2669 }
2670
2671 if (pMixStream)
2672 {
2673 AudioMixerSinkRemoveStream(pSink->pMixSink, pMixStream);
2674 AudioMixerStreamDestroy(pMixStream);
2675
2676 pMixStream = NULL;
2677 }
2678 }
2679
2680 AudioMixerSinkRemoveAllStreams(pSink->pMixSink);
2681 rc = VINF_SUCCESS;
2682 }
2683 else
2684 rc = VERR_NOT_FOUND;
2685
2686 LogFunc(("Mixer control=%s, rc=%Rrc\n", DrvAudioHlpAudMixerCtlToStr(enmMixerCtl), rc));
2687 return rc;
2688}
2689
2690/**
2691 * @interface_method_impl{HDACODEC,pfnCbMixerControl}
2692 *
2693 * Controls an input / output converter widget, that is, which converter is connected
2694 * to which stream (and channel).
2695 *
2696 * @returns IPRT status code.
2697 * @param pThis HDA State.
2698 * @param enmMixerCtl Mixer control to set SD stream number and channel for.
2699 * @param uSD SD stream number (number + 1) to set. Set to 0 for unassign.
2700 * @param uChannel Channel to set. Only valid if a valid SD stream number is specified.
2701 *
2702 * @remarks Can be called as a callback by the HDA codec.
2703 */
2704static DECLCALLBACK(int) hdaR3MixerControl(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, uint8_t uSD, uint8_t uChannel)
2705{
2706 LogFunc(("enmMixerCtl=%s, uSD=%RU8, uChannel=%RU8\n", DrvAudioHlpAudMixerCtlToStr(enmMixerCtl), uSD, uChannel));
2707
2708 if (uSD == 0) /* Stream number 0 is reserved. */
2709 {
2710 Log2Func(("Invalid SDn (%RU8) number for mixer control '%s', ignoring\n", uSD, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl)));
2711 return VINF_SUCCESS;
2712 }
2713 /* uChannel is optional. */
2714
2715 /* SDn0 starts as 1. */
2716 Assert(uSD);
2717 uSD--;
2718
2719# ifndef VBOX_WITH_AUDIO_HDA_MIC_IN
2720 /* Only SDI0 (Line-In) is supported. */
2721 if ( hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN
2722 && uSD >= 1)
2723 {
2724 LogRel2(("HDA: Dedicated Mic-In support not imlpemented / built-in (stream #%RU8), using Line-In (stream #0) instead\n", uSD));
2725 uSD = 0;
2726 }
2727# endif
2728
2729 int rc = VINF_SUCCESS;
2730
2731 PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl);
2732 if (pSink)
2733 {
2734 AssertPtr(pSink->pMixSink);
2735
2736 /* If this an output stream, determine the correct SD#. */
2737 if ( (uSD < HDA_MAX_SDI)
2738 && AudioMixerSinkGetDir(pSink->pMixSink) == AUDMIXSINKDIR_OUTPUT)
2739 {
2740 uSD += HDA_MAX_SDI;
2741 }
2742
2743 /* Detach the existing stream from the sink. */
2744 if ( pSink->pStream
2745 && ( pSink->pStream->u8SD != uSD
2746 || pSink->pStream->u8Channel != uChannel)
2747 )
2748 {
2749 LogFunc(("Sink '%s' was assigned to stream #%RU8 (channel %RU8) before\n",
2750 pSink->pMixSink->pszName, pSink->pStream->u8SD, pSink->pStream->u8Channel));
2751
2752 hdaR3StreamLock(pSink->pStream);
2753
2754 /* Only disable the stream if the stream descriptor # has changed. */
2755 if (pSink->pStream->u8SD != uSD)
2756 hdaR3StreamEnable(pSink->pStream, false);
2757
2758 pSink->pStream->pMixSink = NULL;
2759
2760 hdaR3StreamUnlock(pSink->pStream);
2761
2762 pSink->pStream = NULL;
2763 }
2764
2765 Assert(uSD < HDA_MAX_STREAMS);
2766
2767 /* Attach the new stream to the sink.
2768 * Enabling the stream will be done by the gust via a separate SDnCTL call then. */
2769 if (pSink->pStream == NULL)
2770 {
2771 LogRel2(("HDA: Setting sink '%s' to stream #%RU8 (channel %RU8), mixer control=%s\n",
2772 pSink->pMixSink->pszName, uSD, uChannel, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl)));
2773
2774 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD);
2775 if (pStream)
2776 {
2777 hdaR3StreamLock(pStream);
2778
2779 pSink->pStream = pStream;
2780
2781 pStream->u8Channel = uChannel;
2782 pStream->pMixSink = pSink;
2783
2784 hdaR3StreamUnlock(pStream);
2785
2786 rc = VINF_SUCCESS;
2787 }
2788 else
2789 rc = VERR_NOT_IMPLEMENTED;
2790 }
2791 }
2792 else
2793 rc = VERR_NOT_FOUND;
2794
2795 if (RT_FAILURE(rc))
2796 LogRel(("HDA: Converter control for stream #%RU8 (channel %RU8) / mixer control '%s' failed with %Rrc, skipping\n",
2797 uSD, uChannel, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl), rc));
2798
2799 LogFlowFuncLeaveRC(rc);
2800 return rc;
2801}
2802
2803/**
2804 * @interface_method_impl{HDACODEC,pfnCbMixerSetVolume}
2805 *
2806 * Sets the volume of a specified mixer control.
2807 *
2808 * @return IPRT status code.
2809 * @param pThis HDA State.
2810 * @param enmMixerCtl Mixer control to set volume for.
2811 * @param pVol Pointer to volume data to set.
2812 *
2813 * @remarks Can be called as a callback by the HDA codec.
2814 */
2815static DECLCALLBACK(int) hdaR3MixerSetVolume(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, PPDMAUDIOVOLUME pVol)
2816{
2817 int rc;
2818
2819 PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl);
2820 if ( pSink
2821 && pSink->pMixSink)
2822 {
2823 LogRel2(("HDA: Setting volume for mixer sink '%s' to %RU8/%RU8 (%s)\n",
2824 pSink->pMixSink->pszName, pVol->uLeft, pVol->uRight, pVol->fMuted ? "Muted" : "Unmuted"));
2825
2826 /* Set the volume.
2827 * We assume that the codec already converted it to the correct range. */
2828 rc = AudioMixerSinkSetVolume(pSink->pMixSink, pVol);
2829 }
2830 else
2831 rc = VERR_NOT_FOUND;
2832
2833 LogFlowFuncLeaveRC(rc);
2834 return rc;
2835}
2836
2837/**
2838 * @callback_method_impl{FNTMTIMERDEV, Main routine for the stream's timer.}
2839 */
2840static DECLCALLBACK(void) hdaR3Timer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
2841{
2842 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
2843 PHDASTREAM pStream = (PHDASTREAM)pvUser;
2844 TMTIMERHANDLE hTimer = pStream->hTimer;
2845 RT_NOREF(pTimer);
2846
2847 AssertPtr(pStream);
2848 Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect));
2849 Assert(PDMDevHlpTimerIsLockOwner(pDevIns, hTimer));
2850
2851 hdaR3StreamUpdate(pDevIns, pStream, true /* fInTimer */);
2852
2853 /* Flag indicating whether to kick the timer again for a new data processing round. */
2854 bool fSinkActive = false;
2855 if (pStream->pMixSink)
2856 fSinkActive = AudioMixerSinkIsActive(pStream->pMixSink->pMixSink);
2857
2858 if (fSinkActive)
2859 {
2860 uint64_t const tsNow = PDMDevHlpTimerGet(pDevIns, hTimer); /* (For virtual sync this remains the same for the whole callout IIRC) */
2861 const bool fTimerScheduled = hdaR3StreamTransferIsScheduled(pStream, tsNow);
2862 Log3Func(("fSinksActive=%RTbool, fTimerScheduled=%RTbool\n", fSinkActive, fTimerScheduled));
2863 if (!fTimerScheduled)
2864 hdaR3TimerSet(pDevIns, pStream, tsNow + PDMDevHlpTimerGetFreq(pDevIns, hTimer) / pThis->uTimerHz,
2865 true /*fForce*/, tsNow /*fixed*/ );
2866 }
2867 else
2868 Log3Func(("fSinksActive=%RTbool\n", fSinkActive));
2869}
2870
2871# ifdef HDA_USE_DMA_ACCESS_HANDLER
2872/**
2873 * HC access handler for the FIFO.
2874 *
2875 * @returns VINF_SUCCESS if the handler have carried out the operation.
2876 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2877 * @param pVM VM Handle.
2878 * @param pVCpu The cross context CPU structure for the calling EMT.
2879 * @param GCPhys The physical address the guest is writing to.
2880 * @param pvPhys The HC mapping of that address.
2881 * @param pvBuf What the guest is reading/writing.
2882 * @param cbBuf How much it's reading/writing.
2883 * @param enmAccessType The access type.
2884 * @param enmOrigin Who is making the access.
2885 * @param pvUser User argument.
2886 */
2887static DECLCALLBACK(VBOXSTRICTRC) hdaR3DMAAccessHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys,
2888 void *pvBuf, size_t cbBuf,
2889 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
2890{
2891 RT_NOREF(pVM, pVCpu, pvPhys, pvBuf, enmOrigin);
2892
2893 PHDADMAACCESSHANDLER pHandler = (PHDADMAACCESSHANDLER)pvUser;
2894 AssertPtr(pHandler);
2895
2896 PHDASTREAM pStream = pHandler->pStream;
2897 AssertPtr(pStream);
2898
2899 Assert(GCPhys >= pHandler->GCPhysFirst);
2900 Assert(GCPhys <= pHandler->GCPhysLast);
2901 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2902
2903 /* Not within BDLE range? Bail out. */
2904 if ( (GCPhys < pHandler->BDLEAddr)
2905 || (GCPhys + cbBuf > pHandler->BDLEAddr + pHandler->BDLESize))
2906 {
2907 return VINF_PGM_HANDLER_DO_DEFAULT;
2908 }
2909
2910 switch (enmAccessType)
2911 {
2912 case PGMACCESSTYPE_WRITE:
2913 {
2914# ifdef DEBUG
2915 PHDASTREAMDBGINFO pStreamDbg = &pStream->Dbg;
2916
2917 const uint64_t tsNowNs = RTTimeNanoTS();
2918 const uint32_t tsElapsedMs = (tsNowNs - pStreamDbg->tsWriteSlotBegin) / 1000 / 1000;
2919
2920 uint64_t cWritesHz = ASMAtomicReadU64(&pStreamDbg->cWritesHz);
2921 uint64_t cbWrittenHz = ASMAtomicReadU64(&pStreamDbg->cbWrittenHz);
2922
2923 if (tsElapsedMs >= (1000 / HDA_TIMER_HZ_DEFAULT))
2924 {
2925 LogFunc(("[SD%RU8] %RU32ms elapsed, cbWritten=%RU64, cWritten=%RU64 -- %RU32 bytes on average per time slot (%zums)\n",
2926 pStream->u8SD, tsElapsedMs, cbWrittenHz, cWritesHz,
2927 ASMDivU64ByU32RetU32(cbWrittenHz, cWritesHz ? cWritesHz : 1), 1000 / HDA_TIMER_HZ_DEFAULT));
2928
2929 pStreamDbg->tsWriteSlotBegin = tsNowNs;
2930
2931 cWritesHz = 0;
2932 cbWrittenHz = 0;
2933 }
2934
2935 cWritesHz += 1;
2936 cbWrittenHz += cbBuf;
2937
2938 ASMAtomicIncU64(&pStreamDbg->cWritesTotal);
2939 ASMAtomicAddU64(&pStreamDbg->cbWrittenTotal, cbBuf);
2940
2941 ASMAtomicWriteU64(&pStreamDbg->cWritesHz, cWritesHz);
2942 ASMAtomicWriteU64(&pStreamDbg->cbWrittenHz, cbWrittenHz);
2943
2944 LogFunc(("[SD%RU8] Writing %3zu @ 0x%x (off %zu)\n",
2945 pStream->u8SD, cbBuf, GCPhys, GCPhys - pHandler->BDLEAddr));
2946
2947 LogFunc(("[SD%RU8] cWrites=%RU64, cbWritten=%RU64 -> %RU32 bytes on average\n",
2948 pStream->u8SD, pStreamDbg->cWritesTotal, pStreamDbg->cbWrittenTotal,
2949 ASMDivU64ByU32RetU32(pStreamDbg->cbWrittenTotal, pStreamDbg->cWritesTotal)));
2950# endif
2951
2952 if (pThis->fDebugEnabled)
2953 {
2954 RTFILE fh;
2955 RTFileOpen(&fh, VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH "hdaDMAAccessWrite.pcm",
2956 RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND | RTFILE_O_WRITE | RTFILE_O_DENY_NONE);
2957 RTFileWrite(fh, pvBuf, cbBuf, NULL);
2958 RTFileClose(fh);
2959 }
2960
2961# ifdef HDA_USE_DMA_ACCESS_HANDLER_WRITING
2962 PRTCIRCBUF pCircBuf = pStream->State.pCircBuf;
2963 AssertPtr(pCircBuf);
2964
2965 uint8_t *pbBuf = (uint8_t *)pvBuf;
2966 while (cbBuf)
2967 {
2968 /* Make sure we only copy as much as the stream's FIFO can hold (SDFIFOS, 18.2.39). */
2969 void *pvChunk;
2970 size_t cbChunk;
2971 RTCircBufAcquireWriteBlock(pCircBuf, cbBuf, &pvChunk, &cbChunk);
2972
2973 if (cbChunk)
2974 {
2975 memcpy(pvChunk, pbBuf, cbChunk);
2976
2977 pbBuf += cbChunk;
2978 Assert(cbBuf >= cbChunk);
2979 cbBuf -= cbChunk;
2980 }
2981 else
2982 {
2983 //AssertMsg(RTCircBufFree(pCircBuf), ("No more space but still %zu bytes to write\n", cbBuf));
2984 break;
2985 }
2986
2987 LogFunc(("[SD%RU8] cbChunk=%zu\n", pStream->u8SD, cbChunk));
2988
2989 RTCircBufReleaseWriteBlock(pCircBuf, cbChunk);
2990 }
2991# endif /* HDA_USE_DMA_ACCESS_HANDLER_WRITING */
2992 break;
2993 }
2994
2995 default:
2996 AssertMsgFailed(("Access type not implemented\n"));
2997 break;
2998 }
2999
3000 return VINF_PGM_HANDLER_DO_DEFAULT;
3001}
3002# endif /* HDA_USE_DMA_ACCESS_HANDLER */
3003
3004/**
3005 * Soft reset of the device triggered via GCTL.
3006 *
3007 * @param pThis HDA state.
3008 *
3009 */
3010static void hdaR3GCTLReset(PHDASTATE pThis)
3011{
3012 LogFlowFuncEnter();
3013
3014 pThis->cStreamsActive = 0;
3015
3016 HDA_REG(pThis, GCAP) = HDA_MAKE_GCAP(HDA_MAX_SDO, HDA_MAX_SDI, 0, 0, 1); /* see 6.2.1 */
3017 HDA_REG(pThis, VMIN) = 0x00; /* see 6.2.2 */
3018 HDA_REG(pThis, VMAJ) = 0x01; /* see 6.2.3 */
3019 HDA_REG(pThis, OUTPAY) = 0x003C; /* see 6.2.4 */
3020 HDA_REG(pThis, INPAY) = 0x001D; /* see 6.2.5 */
3021 HDA_REG(pThis, CORBSIZE) = 0x42; /* Up to 256 CORB entries see 6.2.1 */
3022 HDA_REG(pThis, RIRBSIZE) = 0x42; /* Up to 256 RIRB entries see 6.2.1 */
3023 HDA_REG(pThis, CORBRP) = 0x0;
3024 HDA_REG(pThis, CORBWP) = 0x0;
3025 HDA_REG(pThis, RIRBWP) = 0x0;
3026 /* Some guests (like Haiku) don't set RINTCNT explicitly but expect an interrupt after each
3027 * RIRB response -- so initialize RINTCNT to 1 by default. */
3028 HDA_REG(pThis, RINTCNT) = 0x1;
3029
3030 /*
3031 * Stop any audio currently playing and/or recording.
3032 */
3033 pThis->SinkFront.pStream = NULL;
3034 if (pThis->SinkFront.pMixSink)
3035 AudioMixerSinkReset(pThis->SinkFront.pMixSink);
3036# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
3037 pThis->SinkMicIn.pStream = NULL;
3038 if (pThis->SinkMicIn.pMixSink)
3039 AudioMixerSinkReset(pThis->SinkMicIn.pMixSink);
3040# endif
3041 pThis->SinkLineIn.pStream = NULL;
3042 if (pThis->SinkLineIn.pMixSink)
3043 AudioMixerSinkReset(pThis->SinkLineIn.pMixSink);
3044# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
3045 pThis->SinkCenterLFE = NULL;
3046 if (pThis->SinkCenterLFE.pMixSink)
3047 AudioMixerSinkReset(pThis->SinkCenterLFE.pMixSink);
3048 pThis->SinkRear.pStream = NULL;
3049 if (pThis->SinkRear.pMixSink)
3050 AudioMixerSinkReset(pThis->SinkRear.pMixSink);
3051# endif
3052
3053 /*
3054 * Reset the codec.
3055 */
3056 if ( pThis->pCodec
3057 && pThis->pCodec->pfnReset)
3058 {
3059 pThis->pCodec->pfnReset(pThis->pCodec);
3060 }
3061
3062 /*
3063 * Set some sensible defaults for which HDA sinks
3064 * are connected to which stream number.
3065 *
3066 * We use SD0 for input and SD4 for output by default.
3067 * These stream numbers can be changed by the guest dynamically lateron.
3068 */
3069# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
3070 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_MIC_IN , 1 /* SD0 */, 0 /* Channel */);
3071# endif
3072 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_LINE_IN , 1 /* SD0 */, 0 /* Channel */);
3073
3074 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_FRONT , 5 /* SD4 */, 0 /* Channel */);
3075# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
3076 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_CENTER_LFE, 5 /* SD4 */, 0 /* Channel */);
3077 hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_REAR , 5 /* SD4 */, 0 /* Channel */);
3078# endif
3079
3080 /* Reset CORB. */
3081 pThis->cbCorbBuf = HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE;
3082 RT_BZERO(pThis->pu32CorbBuf, pThis->cbCorbBuf);
3083
3084 /* Reset RIRB. */
3085 pThis->cbRirbBuf = HDA_RIRB_SIZE * HDA_RIRB_ELEMENT_SIZE;
3086 RT_BZERO(pThis->pu64RirbBuf, pThis->cbRirbBuf);
3087
3088 /* Clear our internal response interrupt counter. */
3089 pThis->u16RespIntCnt = 0;
3090
3091 for (uint8_t uSD = 0; uSD < HDA_MAX_STREAMS; ++uSD)
3092 {
3093 int rc2 = hdaR3StreamEnable(&pThis->aStreams[uSD], false /* fEnable */);
3094 if (RT_SUCCESS(rc2))
3095 {
3096 /* Remove the RUN bit from SDnCTL in case the stream was in a running state before. */
3097 HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_SDCTL_RUN;
3098 hdaR3StreamReset(pThis, &pThis->aStreams[uSD], uSD);
3099 }
3100 }
3101
3102 /* Clear stream tags <-> objects mapping table. */
3103 RT_ZERO(pThis->aTags);
3104
3105 /* Emulation of codec "wake up" (HDA spec 5.5.1 and 6.5). */
3106 HDA_REG(pThis, STATESTS) = 0x1;
3107
3108 LogFlowFuncLeave();
3109 LogRel(("HDA: Reset\n"));
3110}
3111
3112#endif /* IN_RING3 */
3113
3114/* MMIO callbacks */
3115
3116/**
3117 * @callback_method_impl{FNIOMMMIONEWREAD, Looks up and calls the appropriate handler.}
3118 *
3119 * @note During implementation, we discovered so-called "forgotten" or "hole"
3120 * registers whose description is not listed in the RPM, datasheet, or
3121 * spec.
3122 */
3123static DECLCALLBACK(VBOXSTRICTRC) hdaMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb)
3124{
3125 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
3126 int rc;
3127 RT_NOREF_PV(pvUser);
3128 Assert(pThis->uAlignmentCheckMagic == HDASTATE_ALIGNMENT_CHECK_MAGIC);
3129
3130 /*
3131 * Look up and log.
3132 */
3133 int idxRegDsc = hdaRegLookup(off); /* Register descriptor index. */
3134#ifdef LOG_ENABLED
3135 unsigned const cbLog = cb;
3136 uint32_t offRegLog = (uint32_t)off;
3137#endif
3138
3139 Log3Func(("off=%#x cb=%#x\n", offRegLog, cb));
3140 Assert(cb == 4); Assert((off & 3) == 0);
3141
3142 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_READ);
3143
3144 if (!(HDA_REG(pThis, GCTL) & HDA_GCTL_CRST) && idxRegDsc != HDA_REG_GCTL)
3145 LogFunc(("Access to registers except GCTL is blocked while reset\n"));
3146
3147 if (idxRegDsc == -1)
3148 LogRel(("HDA: Invalid read access @0x%x (bytes=%u)\n", (uint32_t)off, cb));
3149
3150 if (idxRegDsc != -1)
3151 {
3152 /* Leave lock before calling read function. */
3153 DEVHDA_UNLOCK(pDevIns, pThis);
3154
3155 /* ASSUMES gapless DWORD at end of map. */
3156 if (g_aHdaRegMap[idxRegDsc].size == 4)
3157 {
3158 /*
3159 * Straight forward DWORD access.
3160 */
3161 rc = g_aHdaRegMap[idxRegDsc].pfnRead(pDevIns, pThis, idxRegDsc, (uint32_t *)pv);
3162 Log3Func(("\tRead %s => %x (%Rrc)\n", g_aHdaRegMap[idxRegDsc].abbrev, *(uint32_t *)pv, rc));
3163 }
3164 else
3165 {
3166 /*
3167 * Multi register read (unless there are trailing gaps).
3168 * ASSUMES that only DWORD reads have sideeffects.
3169 */
3170#ifdef IN_RING3
3171 uint32_t u32Value = 0;
3172 unsigned cbLeft = 4;
3173 do
3174 {
3175 uint32_t const cbReg = g_aHdaRegMap[idxRegDsc].size;
3176 uint32_t u32Tmp = 0;
3177
3178 rc = g_aHdaRegMap[idxRegDsc].pfnRead(pDevIns, pThis, idxRegDsc, &u32Tmp);
3179 Log3Func(("\tRead %s[%db] => %x (%Rrc)*\n", g_aHdaRegMap[idxRegDsc].abbrev, cbReg, u32Tmp, rc));
3180 if (rc != VINF_SUCCESS)
3181 break;
3182 u32Value |= (u32Tmp & g_afMasks[cbReg]) << ((4 - cbLeft) * 8);
3183
3184 cbLeft -= cbReg;
3185 off += cbReg;
3186 idxRegDsc++;
3187 } while (cbLeft > 0 && g_aHdaRegMap[idxRegDsc].offset == off);
3188
3189 if (rc == VINF_SUCCESS)
3190 *(uint32_t *)pv = u32Value;
3191 else
3192 Assert(!IOM_SUCCESS(rc));
3193#else /* !IN_RING3 */
3194 /* Take the easy way out. */
3195 rc = VINF_IOM_R3_MMIO_READ;
3196#endif /* !IN_RING3 */
3197 }
3198 }
3199 else
3200 {
3201 DEVHDA_UNLOCK(pDevIns, pThis);
3202
3203 rc = VINF_IOM_MMIO_UNUSED_FF;
3204 Log3Func(("\tHole at %x is accessed for read\n", offRegLog));
3205 }
3206
3207 /*
3208 * Log the outcome.
3209 */
3210#ifdef LOG_ENABLED
3211 if (cbLog == 4)
3212 Log3Func(("\tReturning @%#05x -> %#010x %Rrc\n", offRegLog, *(uint32_t *)pv, rc));
3213 else if (cbLog == 2)
3214 Log3Func(("\tReturning @%#05x -> %#06x %Rrc\n", offRegLog, *(uint16_t *)pv, rc));
3215 else if (cbLog == 1)
3216 Log3Func(("\tReturning @%#05x -> %#04x %Rrc\n", offRegLog, *(uint8_t *)pv, rc));
3217#endif
3218 return rc;
3219}
3220
3221
3222DECLINLINE(int) hdaWriteReg(PPDMDEVINS pDevIns, PHDASTATE pThis, int idxRegDsc, uint32_t u32Value, char const *pszLog)
3223{
3224 DEVHDA_LOCK_RETURN(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE);
3225
3226 if (!(HDA_REG(pThis, GCTL) & HDA_GCTL_CRST) && idxRegDsc != HDA_REG_GCTL)
3227 {
3228 Log(("hdaWriteReg: Warning: Access to %s is blocked while controller is in reset mode\n", g_aHdaRegMap[idxRegDsc].abbrev));
3229 LogRel2(("HDA: Warning: Access to register %s is blocked while controller is in reset mode\n",
3230 g_aHdaRegMap[idxRegDsc].abbrev));
3231
3232 DEVHDA_UNLOCK(pDevIns, pThis);
3233 return VINF_SUCCESS;
3234 }
3235
3236 /*
3237 * Handle RD (register description) flags.
3238 */
3239
3240 /* For SDI / SDO: Check if writes to those registers are allowed while SDCTL's RUN bit is set. */
3241 if (idxRegDsc >= HDA_NUM_GENERAL_REGS)
3242 {
3243 const uint32_t uSDCTL = HDA_STREAM_REG(pThis, CTL, HDA_SD_NUM_FROM_REG(pThis, CTL, idxRegDsc));
3244
3245 /*
3246 * Some OSes (like Win 10 AU) violate the spec by writing stuff to registers which are not supposed to be be touched
3247 * while SDCTL's RUN bit is set. So just ignore those values.
3248 */
3249
3250 /* Is the RUN bit currently set? */
3251 if ( RT_BOOL(uSDCTL & HDA_SDCTL_RUN)
3252 /* Are writes to the register denied if RUN bit is set? */
3253 && !(g_aHdaRegMap[idxRegDsc].fFlags & HDA_RD_FLAG_SD_WRITE_RUN))
3254 {
3255 Log(("hdaWriteReg: Warning: Access to %s is blocked! %R[sdctl]\n", g_aHdaRegMap[idxRegDsc].abbrev, uSDCTL));
3256 LogRel2(("HDA: Warning: Access to register %s is blocked while the stream's RUN bit is set\n",
3257 g_aHdaRegMap[idxRegDsc].abbrev));
3258
3259 DEVHDA_UNLOCK(pDevIns, pThis);
3260 return VINF_SUCCESS;
3261 }
3262 }
3263
3264 /* Leave the lock before calling write function. */
3265 /** @todo r=bird: Why do we need to do that?? There is no
3266 * explanation why this is necessary here...
3267 *
3268 * More or less all write functions retake the lock, so why not let
3269 * those who need to drop the lock or take additional locks release
3270 * it? See, releasing a lock you already got always runs the risk
3271 * of someone else grabbing it and forcing you to wait, better to
3272 * do the two-three things a write handle needs to do than enter
3273 * and exit the lock all the time. */
3274 DEVHDA_UNLOCK(pDevIns, pThis);
3275
3276#ifdef LOG_ENABLED
3277 uint32_t const idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
3278 uint32_t const u32OldValue = pThis->au32Regs[idxRegMem];
3279#endif
3280 int rc = g_aHdaRegMap[idxRegDsc].pfnWrite(pDevIns, pThis, idxRegDsc, u32Value);
3281 Log3Func(("Written value %#x to %s[%d byte]; %x => %x%s, rc=%d\n", u32Value, g_aHdaRegMap[idxRegDsc].abbrev,
3282 g_aHdaRegMap[idxRegDsc].size, u32OldValue, pThis->au32Regs[idxRegMem], pszLog, rc));
3283 RT_NOREF(pszLog);
3284 return rc;
3285}
3286
3287
3288/**
3289 * @callback_method_impl{FNIOMMMIONEWWRITE,
3290 * Looks up and calls the appropriate handler.}
3291 */
3292static DECLCALLBACK(VBOXSTRICTRC) hdaMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb)
3293{
3294 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
3295 int rc;
3296 RT_NOREF_PV(pvUser);
3297 Assert(pThis->uAlignmentCheckMagic == HDASTATE_ALIGNMENT_CHECK_MAGIC);
3298
3299 /*
3300 * Look up and log the access.
3301 */
3302 int idxRegDsc = hdaRegLookup(off);
3303#if defined(IN_RING3) || defined(LOG_ENABLED)
3304 uint32_t idxRegMem = idxRegDsc != -1 ? g_aHdaRegMap[idxRegDsc].mem_idx : UINT32_MAX;
3305#endif
3306 uint64_t u64Value;
3307 if (cb == 4) u64Value = *(uint32_t const *)pv;
3308 else if (cb == 2) u64Value = *(uint16_t const *)pv;
3309 else if (cb == 1) u64Value = *(uint8_t const *)pv;
3310 else if (cb == 8) u64Value = *(uint64_t const *)pv;
3311 else
3312 ASSERT_GUEST_MSG_FAILED_RETURN(("cb=%u %.*Rhxs\n", cb, cb, pv),
3313 PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "odd write size: off=%RGp cb=%u\n", off, cb));
3314
3315 /*
3316 * The behavior of accesses that aren't aligned on natural boundraries is
3317 * undefined. Just reject them outright.
3318 */
3319 ASSERT_GUEST_MSG_RETURN((off & (cb - 1)) == 0, ("off=%RGp cb=%u %.*Rhxs\n", off, cb, cb, pv),
3320 PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "misaligned write access: off=%RGp cb=%u\n", off, cb));
3321
3322#ifdef LOG_ENABLED
3323 uint32_t const u32LogOldValue = idxRegDsc >= 0 ? pThis->au32Regs[idxRegMem] : UINT32_MAX;
3324 if (idxRegDsc == -1)
3325 Log3Func(("@%#05x u32=%#010x cb=%d\n", (uint32_t)off, *(uint32_t const *)pv, cb));
3326 else
3327 Log3Func(("@%#05x u%u=%#0*RX64 %s\n", (uint32_t)off, cb * 8, 2 + cb * 2, u64Value, g_aHdaRegMap[idxRegDsc].abbrev));
3328#endif
3329
3330 /*
3331 * Try for a direct hit first.
3332 */
3333 if (idxRegDsc >= 0 && g_aHdaRegMap[idxRegDsc].size == cb)
3334 {
3335 rc = hdaWriteReg(pDevIns, pThis, idxRegDsc, u64Value, "");
3336 Log3Func(("\t%#x -> %#x\n", u32LogOldValue, idxRegMem != UINT32_MAX ? pThis->au32Regs[idxRegMem] : UINT32_MAX));
3337 }
3338 /*
3339 * Partial or multiple register access, loop thru the requested memory.
3340 */
3341 else
3342 {
3343#ifdef IN_RING3
3344 if (idxRegDsc >= 0 && g_aHdaRegMap[idxRegDsc].size != cb)
3345 Log3Func(("\tSize mismatch: %RU32 (reg) vs %u (access)!!\n", g_aHdaRegMap[idxRegDsc].size, cb));
3346
3347 /*
3348 * If it's an access beyond the start of the register, shift the input
3349 * value and fill in missing bits. Natural alignment rules means we
3350 * will only see 1 or 2 byte accesses of this kind, so no risk of
3351 * shifting out input values.
3352 */
3353 if (idxRegDsc < 0 && (idxRegDsc = hdaR3RegLookupWithin(off)) != -1)
3354 {
3355 uint32_t const cbBefore = (uint32_t)off - g_aHdaRegMap[idxRegDsc].offset; Assert(cbBefore > 0 && cbBefore < 4);
3356 off -= cbBefore;
3357 idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
3358 u64Value <<= cbBefore * 8;
3359 u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbBefore];
3360 Log3Func(("\tWithin register, supplied %u leading bits: %#llx -> %#llx ...\n",
3361 cbBefore * 8, ~g_afMasks[cbBefore] & u64Value, u64Value));
3362 }
3363
3364 /* Loop thru the write area, it may cover multiple registers. */
3365 rc = VINF_SUCCESS;
3366 for (;;)
3367 {
3368 uint32_t cbReg;
3369 if (idxRegDsc >= 0)
3370 {
3371 idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
3372 cbReg = g_aHdaRegMap[idxRegDsc].size;
3373 if (cb < cbReg)
3374 {
3375 u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbReg] & ~g_afMasks[cb];
3376 Log3Func(("\tSupplying missing bits (%#x): %#llx -> %#llx ...\n",
3377 g_afMasks[cbReg] & ~g_afMasks[cb], u64Value & g_afMasks[cb], u64Value));
3378 }
3379# ifdef LOG_ENABLED
3380 uint32_t uLogOldVal = pThis->au32Regs[idxRegMem];
3381# endif
3382 rc = hdaWriteReg(pDevIns, pThis, idxRegDsc, u64Value, "*");
3383 Log3Func(("\t%#x -> %#x\n", uLogOldVal, pThis->au32Regs[idxRegMem]));
3384 }
3385 else
3386 {
3387 LogRel(("HDA: Invalid write access @0x%x\n", (uint32_t)off));
3388 cbReg = 1;
3389 }
3390 if (rc != VINF_SUCCESS)
3391 break;
3392 if (cbReg >= cb)
3393 break;
3394
3395 /* Advance. */
3396 off += cbReg;
3397 cb -= cbReg;
3398 u64Value >>= cbReg * 8;
3399 if (idxRegDsc == -1)
3400 idxRegDsc = hdaRegLookup(off);
3401 else
3402 {
3403 idxRegDsc++;
3404 if ( (unsigned)idxRegDsc >= RT_ELEMENTS(g_aHdaRegMap)
3405 || g_aHdaRegMap[idxRegDsc].offset != off)
3406 idxRegDsc = -1;
3407 }
3408 }
3409
3410#else /* !IN_RING3 */
3411 /* Take the simple way out. */
3412 rc = VINF_IOM_R3_MMIO_WRITE;
3413#endif /* !IN_RING3 */
3414 }
3415
3416 return rc;
3417}
3418
3419#ifdef IN_RING3
3420
3421
3422/*********************************************************************************************************************************
3423* Saved state *
3424*********************************************************************************************************************************/
3425
3426/**
3427 * @callback_method_impl{FNSSMFIELDGETPUT,
3428 * Version 6 saves the IOC flag in HDABDLEDESC::fFlags as a bool}
3429 */
3430static DECLCALLBACK(int)
3431hdaR3GetPutTrans_HDABDLEDESC_fFlags_6(PSSMHANDLE pSSM, const struct SSMFIELD *pField, void *pvStruct,
3432 uint32_t fFlags, bool fGetOrPut, void *pvUser)
3433{
3434 PPDMDEVINS pDevIns = (PPDMDEVINS)pvUser;
3435 RT_NOREF(pSSM, pField, pvStruct, fFlags);
3436 AssertReturn(fGetOrPut, VERR_INTERNAL_ERROR_4);
3437 bool fIoc;
3438 int rc = pDevIns->pHlpR3->pfnSSMGetBool(pSSM, &fIoc);
3439 if (RT_SUCCESS(rc))
3440 {
3441 PHDABDLEDESC pDesc = (PHDABDLEDESC)pvStruct;
3442 pDesc->fFlags = fIoc ? HDA_BDLE_FLAG_IOC : 0;
3443 }
3444 return rc;
3445}
3446
3447
3448/**
3449 * @callback_method_impl{FNSSMFIELDGETPUT,
3450 * Versions 1 thru 4 save the IOC flag in HDASTREAMSTATE::DescfFlags as a bool}
3451 */
3452static DECLCALLBACK(int)
3453hdaR3GetPutTrans_HDABDLE_Desc_fFlags_1thru4(PSSMHANDLE pSSM, const struct SSMFIELD *pField, void *pvStruct,
3454 uint32_t fFlags, bool fGetOrPut, void *pvUser)
3455{
3456 PPDMDEVINS pDevIns = (PPDMDEVINS)pvUser;
3457 RT_NOREF(pSSM, pField, pvStruct, fFlags);
3458 AssertReturn(fGetOrPut, VERR_INTERNAL_ERROR_4);
3459 bool fIoc;
3460 int rc = pDevIns->pHlpR3->pfnSSMGetBool(pSSM, &fIoc);
3461 if (RT_SUCCESS(rc))
3462 {
3463 PHDABDLE pState = (PHDABDLE)pvStruct;
3464 pState->Desc.fFlags = fIoc ? HDA_BDLE_FLAG_IOC : 0;
3465 }
3466 return rc;
3467}
3468
3469
3470static int hdaR3SaveStream(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, PHDASTREAM pStream)
3471{
3472 PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
3473# ifdef LOG_ENABLED
3474 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
3475# endif
3476
3477 Log2Func(("[SD%RU8]\n", pStream->u8SD));
3478
3479 /* Save stream ID. */
3480 int rc = pHlp->pfnSSMPutU8(pSSM, pStream->u8SD);
3481 AssertRCReturn(rc, rc);
3482 Assert(pStream->u8SD < HDA_MAX_STREAMS);
3483
3484 rc = pHlp->pfnSSMPutStructEx(pSSM, &pStream->State, sizeof(HDASTREAMSTATE), 0 /*fFlags*/, g_aSSMStreamStateFields7, NULL);
3485 AssertRCReturn(rc, rc);
3486
3487 rc = pHlp->pfnSSMPutStructEx(pSSM, &pStream->State.BDLE.Desc, sizeof(HDABDLEDESC), 0 /*fFlags*/, g_aSSMBDLEDescFields7, NULL);
3488 AssertRCReturn(rc, rc);
3489
3490 rc = pHlp->pfnSSMPutStructEx(pSSM, &pStream->State.BDLE.State, sizeof(HDABDLESTATE), 0 /*fFlags*/, g_aSSMBDLEStateFields7, NULL);
3491 AssertRCReturn(rc, rc);
3492
3493 rc = pHlp->pfnSSMPutStructEx(pSSM, &pStream->State.Period, sizeof(HDASTREAMPERIOD), 0 /* fFlags */, g_aSSMStreamPeriodFields7, NULL);
3494 AssertRCReturn(rc, rc);
3495
3496 uint32_t cbCircBufSize = 0;
3497 uint32_t cbCircBufUsed = 0;
3498
3499 if (pStream->State.pCircBuf)
3500 {
3501 cbCircBufSize = (uint32_t)RTCircBufSize(pStream->State.pCircBuf);
3502 cbCircBufUsed = (uint32_t)RTCircBufUsed(pStream->State.pCircBuf);
3503 }
3504
3505 rc = pHlp->pfnSSMPutU32(pSSM, cbCircBufSize);
3506 AssertRCReturn(rc, rc);
3507
3508 rc = pHlp->pfnSSMPutU32(pSSM, cbCircBufUsed);
3509 AssertRCReturn(rc, rc);
3510
3511 if (cbCircBufUsed)
3512 {
3513 /*
3514 * We now need to get the circular buffer's data without actually modifying
3515 * the internal read / used offsets -- otherwise we would end up with broken audio
3516 * data after saving the state.
3517 *
3518 * So get the current read offset and serialize the buffer data manually based on that.
3519 */
3520 size_t const offBuf = RTCircBufOffsetRead(pStream->State.pCircBuf);
3521 void *pvBuf;
3522 size_t cbBuf;
3523 RTCircBufAcquireReadBlock(pStream->State.pCircBuf, cbCircBufUsed, &pvBuf, &cbBuf);
3524 Assert(cbBuf);
3525 if (cbBuf)
3526 {
3527 rc = pHlp->pfnSSMPutMem(pSSM, pvBuf, cbBuf);
3528 AssertRC(rc);
3529 if ( RT_SUCCESS(rc)
3530 && cbBuf < cbCircBufUsed)
3531 {
3532 rc = pHlp->pfnSSMPutMem(pSSM, (uint8_t *)pvBuf - offBuf, cbCircBufUsed - cbBuf);
3533 }
3534 }
3535 RTCircBufReleaseReadBlock(pStream->State.pCircBuf, 0 /* Don't advance read pointer -- see comment above */);
3536 }
3537
3538 Log2Func(("[SD%RU8] LPIB=%RU32, CBL=%RU32, LVI=%RU32\n",
3539 pStream->u8SD,
3540 HDA_STREAM_REG(pThis, LPIB, pStream->u8SD), HDA_STREAM_REG(pThis, CBL, pStream->u8SD), HDA_STREAM_REG(pThis, LVI, pStream->u8SD)));
3541
3542#ifdef LOG_ENABLED
3543 hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1);
3544#endif
3545
3546 return rc;
3547}
3548
3549/**
3550 * @callback_method_impl{FNSSMDEVSAVEEXEC}
3551 */
3552static DECLCALLBACK(int) hdaR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
3553{
3554 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
3555 PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
3556
3557 /* Save Codec nodes states. */
3558 hdaCodecSaveState(pDevIns, pThis->pCodec, pSSM);
3559
3560 /* Save MMIO registers. */
3561 pHlp->pfnSSMPutU32(pSSM, RT_ELEMENTS(pThis->au32Regs));
3562 pHlp->pfnSSMPutMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
3563
3564 /* Save controller-specifc internals. */
3565 pHlp->pfnSSMPutU64(pSSM, pThis->u64WalClk);
3566 pHlp->pfnSSMPutU8(pSSM, pThis->u8IRQL);
3567
3568 /* Save number of streams. */
3569 pHlp->pfnSSMPutU32(pSSM, HDA_MAX_STREAMS);
3570
3571 /* Save stream states. */
3572 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
3573 {
3574 int rc = hdaR3SaveStream(pDevIns, pSSM, &pThis->aStreams[i]);
3575 AssertRCReturn(rc, rc);
3576 }
3577
3578 return VINF_SUCCESS;
3579}
3580
3581/**
3582 * Does required post processing when loading a saved state.
3583 *
3584 * @param pDevIns The device instance.
3585 * @param pThis Pointer to HDA state.
3586 */
3587static int hdaR3LoadExecPost(PPDMDEVINS pDevIns, PHDASTATE pThis)
3588{
3589 int rc = VINF_SUCCESS;
3590
3591 /*
3592 * Enable all previously active streams.
3593 */
3594 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
3595 {
3596 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, i);
3597 if (pStream)
3598 {
3599 int rc2;
3600
3601 bool fActive = RT_BOOL(HDA_STREAM_REG(pThis, CTL, i) & HDA_SDCTL_RUN);
3602 if (fActive)
3603 {
3604#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
3605 /* Make sure to also create the async I/O thread before actually enabling the stream. */
3606 rc2 = hdaR3StreamAsyncIOCreate(pStream);
3607 AssertRC(rc2);
3608
3609 /* ... and enabling it. */
3610 hdaR3StreamAsyncIOEnable(pStream, true /* fEnable */);
3611#endif
3612 /* Resume the stream's period. */
3613 hdaR3StreamPeriodResume(&pStream->State.Period);
3614
3615 /* (Re-)enable the stream. */
3616 rc2 = hdaR3StreamEnable(pStream, true /* fEnable */);
3617 AssertRC(rc2);
3618
3619 /* Add the stream to the device setup. */
3620 rc2 = hdaR3AddStream(pThis, &pStream->State.Cfg);
3621 AssertRC(rc2);
3622
3623#ifdef HDA_USE_DMA_ACCESS_HANDLER
3624 /* (Re-)install the DMA handler. */
3625 hdaR3StreamRegisterDMAHandlers(pThis, pStream);
3626#endif
3627 if (hdaR3StreamTransferIsScheduled(pStream, PDMDevHlpTimerGet(pDevIns, pStream->hTimer)))
3628 hdaR3TimerSet(pDevIns, pStream, hdaR3StreamTransferGetNext(pStream), true /*fForce*/, 0 /*tsNow*/);
3629
3630 /* Also keep track of the currently active streams. */
3631 pThis->cStreamsActive++;
3632 }
3633 }
3634 }
3635
3636 LogFlowFuncLeaveRC(rc);
3637 return rc;
3638}
3639
3640
3641/**
3642 * Handles loading of all saved state versions older than the current one.
3643 *
3644 * @param pDevIns The device instance.
3645 * @param pThis Pointer to HDA state.
3646 * @param pSSM Pointer to SSM handle.
3647 * @param uVersion Saved state version to load.
3648 */
3649static int hdaR3LoadExecLegacy(PPDMDEVINS pDevIns, PHDASTATE pThis, PSSMHANDLE pSSM, uint32_t uVersion)
3650{
3651 PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
3652 int rc;
3653
3654 /*
3655 * Load MMIO registers.
3656 */
3657 uint32_t cRegs;
3658 switch (uVersion)
3659 {
3660 case HDA_SAVED_STATE_VERSION_1:
3661 /* Starting with r71199, we would save 112 instead of 113
3662 registers due to some code cleanups. This only affected trunk
3663 builds in the 4.1 development period. */
3664 cRegs = 113;
3665 if (pHlp->pfnSSMHandleRevision(pSSM) >= 71199)
3666 {
3667 uint32_t uVer = pHlp->pfnSSMHandleVersion(pSSM);
3668 if ( VBOX_FULL_VERSION_GET_MAJOR(uVer) == 4
3669 && VBOX_FULL_VERSION_GET_MINOR(uVer) == 0
3670 && VBOX_FULL_VERSION_GET_BUILD(uVer) >= 51)
3671 cRegs = 112;
3672 }
3673 break;
3674
3675 case HDA_SAVED_STATE_VERSION_2:
3676 case HDA_SAVED_STATE_VERSION_3:
3677 cRegs = 112;
3678 AssertCompile(RT_ELEMENTS(pThis->au32Regs) >= 112);
3679 break;
3680
3681 /* Since version 4 we store the register count to stay flexible. */
3682 case HDA_SAVED_STATE_VERSION_4:
3683 case HDA_SAVED_STATE_VERSION_5:
3684 case HDA_SAVED_STATE_VERSION_6:
3685 rc = pHlp->pfnSSMGetU32(pSSM, &cRegs);
3686 AssertRCReturn(rc, rc);
3687 if (cRegs != RT_ELEMENTS(pThis->au32Regs))
3688 LogRel(("HDA: SSM version cRegs is %RU32, expected %RU32\n", cRegs, RT_ELEMENTS(pThis->au32Regs)));
3689 break;
3690
3691 default:
3692 AssertLogRelMsgFailedReturn(("HDA: Internal Error! Didn't expect saved state version %RU32 ending up in hdaR3LoadExecLegacy!\n",
3693 uVersion), VERR_INTERNAL_ERROR_5);
3694 }
3695
3696 if (cRegs >= RT_ELEMENTS(pThis->au32Regs))
3697 {
3698 pHlp->pfnSSMGetMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
3699 pHlp->pfnSSMSkip(pSSM, sizeof(uint32_t) * (cRegs - RT_ELEMENTS(pThis->au32Regs)));
3700 }
3701 else
3702 pHlp->pfnSSMGetMem(pSSM, pThis->au32Regs, sizeof(uint32_t) * cRegs);
3703
3704 /* Make sure to update the base addresses first before initializing any streams down below. */
3705 pThis->u64CORBBase = RT_MAKE_U64(HDA_REG(pThis, CORBLBASE), HDA_REG(pThis, CORBUBASE));
3706 pThis->u64RIRBBase = RT_MAKE_U64(HDA_REG(pThis, RIRBLBASE), HDA_REG(pThis, RIRBUBASE));
3707 pThis->u64DPBase = RT_MAKE_U64(HDA_REG(pThis, DPLBASE) & DPBASE_ADDR_MASK, HDA_REG(pThis, DPUBASE));
3708
3709 /* Also make sure to update the DMA position bit if this was enabled when saving the state. */
3710 pThis->fDMAPosition = RT_BOOL(HDA_REG(pThis, DPLBASE) & RT_BIT_32(0));
3711
3712 /*
3713 * Load BDLEs (Buffer Descriptor List Entries) and DMA counters.
3714 *
3715 * Note: Saved states < v5 store LVI (u32BdleMaxCvi) for
3716 * *every* BDLE state, whereas it only needs to be stored
3717 * *once* for every stream. Most of the BDLE state we can
3718 * get out of the registers anyway, so just ignore those values.
3719 *
3720 * Also, only the current BDLE was saved, regardless whether
3721 * there were more than one (and there are at least two entries,
3722 * according to the spec).
3723 */
3724 switch (uVersion)
3725 {
3726 case HDA_SAVED_STATE_VERSION_1:
3727 case HDA_SAVED_STATE_VERSION_2:
3728 case HDA_SAVED_STATE_VERSION_3:
3729 case HDA_SAVED_STATE_VERSION_4:
3730 {
3731 /* Only load the internal states.
3732 * The rest will be initialized from the saved registers later. */
3733
3734 /* Note 1: Only the *current* BDLE for a stream was saved! */
3735 /* Note 2: The stream's saving order is/was fixed, so don't touch! */
3736
3737 /* Output */
3738 PHDASTREAM pStream = &pThis->aStreams[4];
3739 rc = hdaR3StreamInit(pDevIns, pStream, 4 /* Stream descriptor, hardcoded */);
3740 AssertRCReturn(rc, rc);
3741 rc = pHlp->pfnSSMGetStructEx(pSSM, &pStream->State.BDLE, sizeof(pStream->State.BDLE),
3742 0 /* fFlags */, g_aSSMStreamBdleFields1234, pDevIns);
3743 AssertRCReturn(rc, rc);
3744 pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex;
3745
3746 /* Microphone-In */
3747 pStream = &pThis->aStreams[2];
3748 rc = hdaR3StreamInit(pDevIns, pStream, 2 /* Stream descriptor, hardcoded */);
3749 AssertRCReturn(rc, rc);
3750 rc = pHlp->pfnSSMGetStructEx(pSSM, &pStream->State.BDLE, sizeof(pStream->State.BDLE),
3751 0 /* fFlags */, g_aSSMStreamBdleFields1234, pDevIns);
3752 AssertRCReturn(rc, rc);
3753 pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex;
3754
3755 /* Line-In */
3756 pStream = &pThis->aStreams[0];
3757 rc = hdaR3StreamInit(pDevIns, pStream, 0 /* Stream descriptor, hardcoded */);
3758 AssertRCReturn(rc, rc);
3759 rc = pHlp->pfnSSMGetStructEx(pSSM, &pStream->State.BDLE, sizeof(pStream->State.BDLE),
3760 0 /* fFlags */, g_aSSMStreamBdleFields1234, pDevIns);
3761 AssertRCReturn(rc, rc);
3762 pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex;
3763 break;
3764 }
3765
3766 /*
3767 * v5 & v6 - Since v5 we support flexible stream and BDLE counts.
3768 */
3769 default:
3770 {
3771 /* Stream count. */
3772 uint32_t cStreams;
3773 rc = pHlp->pfnSSMGetU32(pSSM, &cStreams);
3774 AssertRCReturn(rc, rc);
3775 if (cStreams > HDA_MAX_STREAMS)
3776 return pHlp->pfnSSMSetLoadError(pSSM, VERR_SSM_DATA_UNIT_FORMAT_CHANGED, RT_SRC_POS,
3777 N_("State contains %u streams while %u is the maximum supported"),
3778 cStreams, HDA_MAX_STREAMS);
3779
3780 /* Load stream states. */
3781 for (uint32_t i = 0; i < cStreams; i++)
3782 {
3783 uint8_t idStream;
3784 rc = pHlp->pfnSSMGetU8(pSSM, &idStream);
3785 AssertRCReturn(rc, rc);
3786
3787 HDASTREAM StreamDummy;
3788 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, idStream);
3789 if (!pStream)
3790 {
3791 pStream = &StreamDummy;
3792 LogRel2(("HDA: Warning: Stream ID=%RU32 not supported, skipping loading it ...\n", idStream));
3793 }
3794
3795 rc = hdaR3StreamInit(pDevIns, pStream, idStream);
3796 if (RT_FAILURE(rc))
3797 {
3798 LogRel(("HDA: Stream #%RU32: Initialization of stream %RU8 failed, rc=%Rrc\n", i, idStream, rc));
3799 break;
3800 }
3801
3802 /*
3803 * Load BDLEs (Buffer Descriptor List Entries) and DMA counters.
3804 */
3805 if (uVersion == HDA_SAVED_STATE_VERSION_5)
3806 {
3807 struct V5HDASTREAMSTATE /* HDASTREAMSTATE + HDABDLE */
3808 {
3809 uint16_t cBLDEs;
3810 uint16_t uCurBDLE;
3811 uint32_t u32BDLEIndex;
3812 uint32_t cbBelowFIFOW;
3813 uint32_t u32BufOff;
3814 } Tmp;
3815 static SSMFIELD const g_aV5State1Fields[] =
3816 {
3817 SSMFIELD_ENTRY(V5HDASTREAMSTATE, cBLDEs),
3818 SSMFIELD_ENTRY(V5HDASTREAMSTATE, uCurBDLE),
3819 SSMFIELD_ENTRY_TERM()
3820 };
3821 rc = pHlp->pfnSSMGetStructEx(pSSM, &Tmp, sizeof(Tmp), 0 /* fFlags */, g_aV5State1Fields, NULL);
3822 AssertRCReturn(rc, rc);
3823 pStream->State.uCurBDLE = Tmp.uCurBDLE;
3824
3825 for (uint16_t a = 0; a < Tmp.cBLDEs; a++)
3826 {
3827 static SSMFIELD const g_aV5State2Fields[] =
3828 {
3829 SSMFIELD_ENTRY(V5HDASTREAMSTATE, u32BDLEIndex),
3830 SSMFIELD_ENTRY_OLD(au8FIFO, 256),
3831 SSMFIELD_ENTRY(V5HDASTREAMSTATE, cbBelowFIFOW),
3832 SSMFIELD_ENTRY_TERM()
3833 };
3834 rc = pHlp->pfnSSMGetStructEx(pSSM, &Tmp, sizeof(Tmp), 0 /* fFlags */, g_aV5State2Fields, NULL);
3835 AssertRCReturn(rc, rc);
3836 if (Tmp.u32BDLEIndex == pStream->State.uCurBDLE)
3837 {
3838 pStream->State.BDLE.State.cbBelowFIFOW = Tmp.cbBelowFIFOW;
3839 pStream->State.BDLE.State.u32BufOff = Tmp.u32BufOff;
3840 }
3841 }
3842 }
3843 else
3844 {
3845 rc = pHlp->pfnSSMGetStructEx(pSSM, &pStream->State, sizeof(HDASTREAMSTATE),
3846 0 /* fFlags */, g_aSSMStreamStateFields6, NULL);
3847 AssertRCReturn(rc, rc);
3848
3849 rc = pHlp->pfnSSMGetStructEx(pSSM, &pStream->State.BDLE.Desc, sizeof(pStream->State.BDLE.Desc),
3850 0 /* fFlags */, g_aSSMBDLEDescFields6, pDevIns);
3851 AssertRCReturn(rc, rc);
3852
3853 rc = pHlp->pfnSSMGetStructEx(pSSM, &pStream->State.BDLE.State, sizeof(HDABDLESTATE),
3854 0 /* fFlags */, g_aSSMBDLEStateFields6, NULL);
3855 AssertRCReturn(rc, rc);
3856
3857 Log2Func(("[SD%RU8] LPIB=%RU32, CBL=%RU32, LVI=%RU32\n", idStream, HDA_STREAM_REG(pThis, LPIB, idStream),
3858 HDA_STREAM_REG(pThis, CBL, idStream), HDA_STREAM_REG(pThis, LVI, idStream)));
3859#ifdef LOG_ENABLED
3860 hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1);
3861#endif
3862 }
3863
3864 } /* for cStreams */
3865 break;
3866 } /* default */
3867 }
3868
3869 return rc;
3870}
3871
3872/**
3873 * @callback_method_impl{FNSSMDEVLOADEXEC}
3874 */
3875static DECLCALLBACK(int) hdaR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3876{
3877 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
3878 PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
3879
3880 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3881
3882 LogRel2(("hdaR3LoadExec: uVersion=%RU32, uPass=0x%x\n", uVersion, uPass));
3883
3884 /*
3885 * Load Codec nodes states.
3886 */
3887 int rc = hdaCodecLoadState(pDevIns, pThis->pCodec, pSSM, uVersion);
3888 if (RT_FAILURE(rc))
3889 {
3890 LogRel(("HDA: Failed loading codec state (version %RU32, pass 0x%x), rc=%Rrc\n", uVersion, uPass, rc));
3891 return rc;
3892 }
3893
3894 if (uVersion <= HDA_SAVED_STATE_VERSION_6) /* Handle older saved states? */
3895 {
3896 rc = hdaR3LoadExecLegacy(pDevIns, pThis, pSSM, uVersion);
3897 if (RT_SUCCESS(rc))
3898 rc = hdaR3LoadExecPost(pDevIns, pThis);
3899 return rc;
3900 }
3901
3902 /*
3903 * Load MMIO registers.
3904 */
3905 uint32_t cRegs;
3906 rc = pHlp->pfnSSMGetU32(pSSM, &cRegs); AssertRCReturn(rc, rc);
3907 AssertRCReturn(rc, rc);
3908 if (cRegs != RT_ELEMENTS(pThis->au32Regs))
3909 LogRel(("HDA: SSM version cRegs is %RU32, expected %RU32\n", cRegs, RT_ELEMENTS(pThis->au32Regs)));
3910
3911 if (cRegs >= RT_ELEMENTS(pThis->au32Regs))
3912 {
3913 pHlp->pfnSSMGetMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
3914 rc = pHlp->pfnSSMSkip(pSSM, sizeof(uint32_t) * (cRegs - RT_ELEMENTS(pThis->au32Regs)));
3915 AssertRCReturn(rc, rc);
3916 }
3917 else
3918 {
3919 rc = pHlp->pfnSSMGetMem(pSSM, pThis->au32Regs, sizeof(uint32_t) * cRegs);
3920 AssertRCReturn(rc, rc);
3921 }
3922
3923 /* Make sure to update the base addresses first before initializing any streams down below. */
3924 pThis->u64CORBBase = RT_MAKE_U64(HDA_REG(pThis, CORBLBASE), HDA_REG(pThis, CORBUBASE));
3925 pThis->u64RIRBBase = RT_MAKE_U64(HDA_REG(pThis, RIRBLBASE), HDA_REG(pThis, RIRBUBASE));
3926 pThis->u64DPBase = RT_MAKE_U64(HDA_REG(pThis, DPLBASE) & DPBASE_ADDR_MASK, HDA_REG(pThis, DPUBASE));
3927
3928 /* Also make sure to update the DMA position bit if this was enabled when saving the state. */
3929 pThis->fDMAPosition = RT_BOOL(HDA_REG(pThis, DPLBASE) & RT_BIT_32(0));
3930
3931 /*
3932 * Load controller-specifc internals.
3933 * Don't annoy other team mates (forgot this for state v7).
3934 */
3935 if ( pHlp->pfnSSMHandleRevision(pSSM) >= 116273
3936 || pHlp->pfnSSMHandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(5, 2, 0))
3937 {
3938 pHlp->pfnSSMGetU64(pSSM, &pThis->u64WalClk);
3939 rc = pHlp->pfnSSMGetU8(pSSM, &pThis->u8IRQL);
3940 AssertRCReturn(rc, rc);
3941 }
3942
3943 /*
3944 * Load streams.
3945 */
3946 uint32_t cStreams;
3947 rc = pHlp->pfnSSMGetU32(pSSM, &cStreams);
3948 AssertRCReturn(rc, rc);
3949 if (cStreams > HDA_MAX_STREAMS)
3950 return pHlp->pfnSSMSetLoadError(pSSM, VERR_SSM_DATA_UNIT_FORMAT_CHANGED, RT_SRC_POS,
3951 N_("State contains %u streams while %u is the maximum supported"),
3952 cStreams, HDA_MAX_STREAMS);
3953 Log2Func(("cStreams=%RU32\n", cStreams));
3954
3955 /* Load stream states. */
3956 for (uint32_t i = 0; i < cStreams; i++)
3957 {
3958 uint8_t idStream;
3959 rc = pHlp->pfnSSMGetU8(pSSM, &idStream);
3960 AssertRCReturn(rc, rc);
3961
3962 PHDASTREAM pStream = hdaGetStreamFromSD(pThis, idStream);
3963 HDASTREAM StreamDummy;
3964
3965 if (!pStream)
3966 {
3967 RT_ZERO(StreamDummy);
3968 pStream = &StreamDummy;
3969 LogRel2(("HDA: Warning: Loading of stream #%RU8 not supported, skipping to load ...\n", idStream));
3970 }
3971
3972 rc = hdaR3StreamInit(pDevIns, pStream, idStream);
3973 if (RT_FAILURE(rc))
3974 {
3975 LogRel(("HDA: Stream #%RU8: Loading initialization failed, rc=%Rrc\n", idStream, rc));
3976 /* Continue. */
3977 }
3978
3979 rc = pHlp->pfnSSMGetStructEx(pSSM, &pStream->State, sizeof(HDASTREAMSTATE),
3980 0 /* fFlags */, g_aSSMStreamStateFields7, NULL);
3981 AssertRCReturn(rc, rc);
3982
3983 /*
3984 * Load BDLEs (Buffer Descriptor List Entries) and DMA counters.
3985 */
3986 rc = pHlp->pfnSSMGetStructEx(pSSM, &pStream->State.BDLE.Desc, sizeof(HDABDLEDESC),
3987 0 /* fFlags */, g_aSSMBDLEDescFields7, NULL);
3988 AssertRCReturn(rc, rc);
3989
3990 rc = pHlp->pfnSSMGetStructEx(pSSM, &pStream->State.BDLE.State, sizeof(HDABDLESTATE),
3991 0 /* fFlags */, g_aSSMBDLEStateFields7, NULL);
3992 AssertRCReturn(rc, rc);
3993
3994 Log2Func(("[SD%RU8] %R[bdle]\n", pStream->u8SD, &pStream->State.BDLE));
3995
3996 /*
3997 * Load period state.
3998 */
3999 hdaR3StreamPeriodInit(&pStream->State.Period, pStream->u8SD, pStream->u16LVI, pStream->u32CBL, &pStream->State.Cfg);
4000
4001 rc = pHlp->pfnSSMGetStructEx(pSSM, &pStream->State.Period, sizeof(HDASTREAMPERIOD),
4002 0 /* fFlags */, g_aSSMStreamPeriodFields7, NULL);
4003 AssertRCReturn(rc, rc);
4004
4005 /*
4006 * Load internal (FIFO) buffer.
4007 */
4008 uint32_t cbCircBufSize = 0;
4009 pHlp->pfnSSMGetU32(pSSM, &cbCircBufSize); /* cbCircBuf */
4010 uint32_t cbCircBufUsed = 0;
4011 rc = pHlp->pfnSSMGetU32(pSSM, &cbCircBufUsed); /* cbCircBuf */
4012 AssertRCReturn(rc, rc);
4013
4014 if (cbCircBufSize) /* If 0, skip the buffer. */
4015 {
4016 /* Paranoia. */
4017 AssertLogRelMsgReturn(cbCircBufSize <= _1M,
4018 ("HDA: Saved state contains bogus DMA buffer size (%RU32) for stream #%RU8",
4019 cbCircBufSize, idStream),
4020 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
4021 AssertLogRelMsgReturn(cbCircBufUsed <= cbCircBufSize,
4022 ("HDA: Saved state contains invalid DMA buffer usage (%RU32/%RU32) for stream #%RU8",
4023 cbCircBufUsed, cbCircBufSize, idStream),
4024 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
4025
4026 /* Do we need to cre-create the circular buffer do fit the data size? */
4027 if ( pStream->State.pCircBuf
4028 && cbCircBufSize != (uint32_t)RTCircBufSize(pStream->State.pCircBuf))
4029 {
4030 RTCircBufDestroy(pStream->State.pCircBuf);
4031 pStream->State.pCircBuf = NULL;
4032 }
4033
4034 rc = RTCircBufCreate(&pStream->State.pCircBuf, cbCircBufSize);
4035 AssertRCReturn(rc, rc);
4036
4037 if (cbCircBufUsed)
4038 {
4039 void *pvBuf;
4040 size_t cbBuf;
4041 RTCircBufAcquireWriteBlock(pStream->State.pCircBuf, cbCircBufUsed, &pvBuf, &cbBuf);
4042
4043 AssertLogRelMsgReturn(cbBuf == cbCircBufUsed, ("cbBuf=%zu cbCircBufUsed=%zu\n", cbBuf, cbCircBufUsed),
4044 VERR_INTERNAL_ERROR_3);
4045 rc = pHlp->pfnSSMGetMem(pSSM, pvBuf, cbBuf);
4046 AssertRCReturn(rc, rc);
4047
4048 RTCircBufReleaseWriteBlock(pStream->State.pCircBuf, cbBuf);
4049
4050 Assert(cbBuf == cbCircBufUsed);
4051 }
4052 }
4053
4054 Log2Func(("[SD%RU8] LPIB=%RU32, CBL=%RU32, LVI=%RU32\n", idStream, HDA_STREAM_REG(pThis, LPIB, idStream),
4055 HDA_STREAM_REG(pThis, CBL, idStream), HDA_STREAM_REG(pThis, LVI, idStream)));
4056#ifdef LOG_ENABLED
4057 hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1);
4058#endif
4059 /** @todo (Re-)initialize active periods? */
4060
4061 } /* for cStreams */
4062
4063 rc = hdaR3LoadExecPost(pDevIns, pThis);
4064 AssertRC(rc);
4065
4066 LogFlowFuncLeaveRC(rc);
4067 return rc;
4068}
4069
4070
4071/*********************************************************************************************************************************
4072* IPRT format type handlers *
4073*********************************************************************************************************************************/
4074
4075/**
4076 * @callback_method_impl{FNRTSTRFORMATTYPE}
4077 */
4078static DECLCALLBACK(size_t) hdaR3StrFmtBDLE(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4079 const char *pszType, void const *pvValue,
4080 int cchWidth, int cchPrecision, unsigned fFlags,
4081 void *pvUser)
4082{
4083 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4084 PHDABDLE pBDLE = (PHDABDLE)pvValue;
4085 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
4086 "BDLE(idx:%RU32, off:%RU32, fifow:%RU32, IOC:%RTbool, DMA[%RU32 bytes @ 0x%x])",
4087 pBDLE->State.u32BDLIndex, pBDLE->State.u32BufOff, pBDLE->State.cbBelowFIFOW,
4088 pBDLE->Desc.fFlags & HDA_BDLE_FLAG_IOC, pBDLE->Desc.u32BufSize, pBDLE->Desc.u64BufAddr);
4089}
4090
4091/**
4092 * @callback_method_impl{FNRTSTRFORMATTYPE}
4093 */
4094static DECLCALLBACK(size_t) hdaR3StrFmtSDCTL(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4095 const char *pszType, void const *pvValue,
4096 int cchWidth, int cchPrecision, unsigned fFlags,
4097 void *pvUser)
4098{
4099 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4100 uint32_t uSDCTL = (uint32_t)(uintptr_t)pvValue;
4101 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
4102 "SDCTL(raw:%#x, DIR:%s, TP:%RTbool, STRIPE:%x, DEIE:%RTbool, FEIE:%RTbool, IOCE:%RTbool, RUN:%RTbool, RESET:%RTbool)",
4103 uSDCTL,
4104 uSDCTL & HDA_SDCTL_DIR ? "OUT" : "IN",
4105 RT_BOOL(uSDCTL & HDA_SDCTL_TP),
4106 (uSDCTL & HDA_SDCTL_STRIPE_MASK) >> HDA_SDCTL_STRIPE_SHIFT,
4107 RT_BOOL(uSDCTL & HDA_SDCTL_DEIE),
4108 RT_BOOL(uSDCTL & HDA_SDCTL_FEIE),
4109 RT_BOOL(uSDCTL & HDA_SDCTL_IOCE),
4110 RT_BOOL(uSDCTL & HDA_SDCTL_RUN),
4111 RT_BOOL(uSDCTL & HDA_SDCTL_SRST));
4112}
4113
4114/**
4115 * @callback_method_impl{FNRTSTRFORMATTYPE}
4116 */
4117static DECLCALLBACK(size_t) hdaR3StrFmtSDFIFOS(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4118 const char *pszType, void const *pvValue,
4119 int cchWidth, int cchPrecision, unsigned fFlags,
4120 void *pvUser)
4121{
4122 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4123 uint32_t uSDFIFOS = (uint32_t)(uintptr_t)pvValue;
4124 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOS(raw:%#x, sdfifos:%RU8 B)", uSDFIFOS, uSDFIFOS ? uSDFIFOS + 1 : 0);
4125}
4126
4127/**
4128 * @callback_method_impl{FNRTSTRFORMATTYPE}
4129 */
4130static DECLCALLBACK(size_t) hdaR3StrFmtSDFIFOW(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4131 const char *pszType, void const *pvValue,
4132 int cchWidth, int cchPrecision, unsigned fFlags,
4133 void *pvUser)
4134{
4135 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4136 uint32_t uSDFIFOW = (uint32_t)(uintptr_t)pvValue;
4137 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOW(raw: %#0x, sdfifow:%d B)", uSDFIFOW, hdaSDFIFOWToBytes(uSDFIFOW));
4138}
4139
4140/**
4141 * @callback_method_impl{FNRTSTRFORMATTYPE}
4142 */
4143static DECLCALLBACK(size_t) hdaR3StrFmtSDSTS(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
4144 const char *pszType, void const *pvValue,
4145 int cchWidth, int cchPrecision, unsigned fFlags,
4146 void *pvUser)
4147{
4148 RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser);
4149 uint32_t uSdSts = (uint32_t)(uintptr_t)pvValue;
4150 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
4151 "SDSTS(raw:%#0x, fifordy:%RTbool, dese:%RTbool, fifoe:%RTbool, bcis:%RTbool)",
4152 uSdSts,
4153 RT_BOOL(uSdSts & HDA_SDSTS_FIFORDY),
4154 RT_BOOL(uSdSts & HDA_SDSTS_DESE),
4155 RT_BOOL(uSdSts & HDA_SDSTS_FIFOE),
4156 RT_BOOL(uSdSts & HDA_SDSTS_BCIS));
4157}
4158
4159
4160/*********************************************************************************************************************************
4161* Debug Info Item Handlers *
4162*********************************************************************************************************************************/
4163
4164static int hdaR3DbgLookupRegByName(const char *pszArgs)
4165{
4166 int iReg = 0;
4167 for (; iReg < HDA_NUM_REGS; ++iReg)
4168 if (!RTStrICmp(g_aHdaRegMap[iReg].abbrev, pszArgs))
4169 return iReg;
4170 return -1;
4171}
4172
4173
4174static void hdaR3DbgPrintRegister(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iHdaIndex)
4175{
4176 Assert( pThis
4177 && iHdaIndex >= 0
4178 && iHdaIndex < HDA_NUM_REGS);
4179 pHlp->pfnPrintf(pHlp, "%s: 0x%x\n", g_aHdaRegMap[iHdaIndex].abbrev, pThis->au32Regs[g_aHdaRegMap[iHdaIndex].mem_idx]);
4180}
4181
4182/**
4183 * @callback_method_impl{FNDBGFHANDLERDEV}
4184 */
4185static DECLCALLBACK(void) hdaR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4186{
4187 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
4188 int iHdaRegisterIndex = hdaR3DbgLookupRegByName(pszArgs);
4189 if (iHdaRegisterIndex != -1)
4190 hdaR3DbgPrintRegister(pThis, pHlp, iHdaRegisterIndex);
4191 else
4192 {
4193 for(iHdaRegisterIndex = 0; (unsigned int)iHdaRegisterIndex < HDA_NUM_REGS; ++iHdaRegisterIndex)
4194 hdaR3DbgPrintRegister(pThis, pHlp, iHdaRegisterIndex);
4195 }
4196}
4197
4198static void hdaR3DbgPrintStream(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iIdx)
4199{
4200 Assert( pThis
4201 && iIdx >= 0
4202 && iIdx < HDA_MAX_STREAMS);
4203
4204 const PHDASTREAM pStream = &pThis->aStreams[iIdx];
4205
4206 pHlp->pfnPrintf(pHlp, "Stream #%d:\n", iIdx);
4207 pHlp->pfnPrintf(pHlp, "\tSD%dCTL : %R[sdctl]\n", iIdx, HDA_STREAM_REG(pThis, CTL, iIdx));
4208 pHlp->pfnPrintf(pHlp, "\tSD%dCTS : %R[sdsts]\n", iIdx, HDA_STREAM_REG(pThis, STS, iIdx));
4209 pHlp->pfnPrintf(pHlp, "\tSD%dFIFOS: %R[sdfifos]\n", iIdx, HDA_STREAM_REG(pThis, FIFOS, iIdx));
4210 pHlp->pfnPrintf(pHlp, "\tSD%dFIFOW: %R[sdfifow]\n", iIdx, HDA_STREAM_REG(pThis, FIFOW, iIdx));
4211 pHlp->pfnPrintf(pHlp, "\tBDLE : %R[bdle]\n", &pStream->State.BDLE);
4212}
4213
4214static void hdaR3DbgPrintBDLE(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iIdx)
4215{
4216 Assert( pThis
4217 && iIdx >= 0
4218 && iIdx < HDA_MAX_STREAMS);
4219
4220 const PHDASTREAM pStream = &pThis->aStreams[iIdx];
4221 const PHDABDLE pBDLE = &pStream->State.BDLE;
4222
4223 pHlp->pfnPrintf(pHlp, "Stream #%d BDLE:\n", iIdx);
4224
4225 uint64_t u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, iIdx),
4226 HDA_STREAM_REG(pThis, BDPU, iIdx));
4227 uint16_t u16LVI = HDA_STREAM_REG(pThis, LVI, iIdx);
4228 uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, iIdx);
4229
4230 if (!u64BaseDMA)
4231 return;
4232
4233 pHlp->pfnPrintf(pHlp, "\tCurrent: %R[bdle]\n\n", pBDLE);
4234
4235 pHlp->pfnPrintf(pHlp, "\tMemory:\n");
4236
4237 uint32_t cbBDLE = 0;
4238 for (uint16_t i = 0; i < u16LVI + 1; i++)
4239 {
4240 HDABDLEDESC bd;
4241 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BaseDMA + i * sizeof(HDABDLEDESC), &bd, sizeof(bd));
4242
4243 pHlp->pfnPrintf(pHlp, "\t\t%s #%03d BDLE(adr:0x%llx, size:%RU32, ioc:%RTbool)\n",
4244 pBDLE->State.u32BDLIndex == i ? "*" : " ", i, bd.u64BufAddr, bd.u32BufSize, bd.fFlags & HDA_BDLE_FLAG_IOC);
4245
4246 cbBDLE += bd.u32BufSize;
4247 }
4248
4249 pHlp->pfnPrintf(pHlp, "Total: %RU32 bytes\n", cbBDLE);
4250
4251 if (cbBDLE != u32CBL)
4252 pHlp->pfnPrintf(pHlp, "Warning: %RU32 bytes does not match CBL (%RU32)!\n", cbBDLE, u32CBL);
4253
4254 pHlp->pfnPrintf(pHlp, "DMA counters (base @ 0x%llx):\n", u64BaseDMA);
4255 if (!u64BaseDMA) /* No DMA base given? Bail out. */
4256 {
4257 pHlp->pfnPrintf(pHlp, "\tNo counters found\n");
4258 return;
4259 }
4260
4261 for (int i = 0; i < u16LVI + 1; i++)
4262 {
4263 uint32_t uDMACnt;
4264 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), (pThis->u64DPBase & DPBASE_ADDR_MASK) + (i * 2 * sizeof(uint32_t)),
4265 &uDMACnt, sizeof(uDMACnt));
4266
4267 pHlp->pfnPrintf(pHlp, "\t#%03d DMA @ 0x%x\n", i , uDMACnt);
4268 }
4269}
4270
4271static int hdaR3DbgLookupStrmIdx(PHDASTATE pThis, const char *pszArgs)
4272{
4273 RT_NOREF(pThis, pszArgs);
4274 /** @todo Add args parsing. */
4275 return -1;
4276}
4277
4278/**
4279 * @callback_method_impl{FNDBGFHANDLERDEV}
4280 */
4281static DECLCALLBACK(void) hdaR3DbgInfoStream(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4282{
4283 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
4284 int iHdaStreamdex = hdaR3DbgLookupStrmIdx(pThis, pszArgs);
4285 if (iHdaStreamdex != -1)
4286 hdaR3DbgPrintStream(pThis, pHlp, iHdaStreamdex);
4287 else
4288 for(iHdaStreamdex = 0; iHdaStreamdex < HDA_MAX_STREAMS; ++iHdaStreamdex)
4289 hdaR3DbgPrintStream(pThis, pHlp, iHdaStreamdex);
4290}
4291
4292/**
4293 * @callback_method_impl{FNDBGFHANDLERDEV}
4294 */
4295static DECLCALLBACK(void) hdaR3DbgInfoBDLE(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4296{
4297 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
4298 int iHdaStreamdex = hdaR3DbgLookupStrmIdx(pThis, pszArgs);
4299 if (iHdaStreamdex != -1)
4300 hdaR3DbgPrintBDLE(pThis, pHlp, iHdaStreamdex);
4301 else
4302 for (iHdaStreamdex = 0; iHdaStreamdex < HDA_MAX_STREAMS; ++iHdaStreamdex)
4303 hdaR3DbgPrintBDLE(pThis, pHlp, iHdaStreamdex);
4304}
4305
4306/**
4307 * @callback_method_impl{FNDBGFHANDLERDEV}
4308 */
4309static DECLCALLBACK(void) hdaR3DbgInfoCodecNodes(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4310{
4311 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
4312
4313 if (pThis->pCodec->pfnDbgListNodes)
4314 pThis->pCodec->pfnDbgListNodes(pThis->pCodec, pHlp, pszArgs);
4315 else
4316 pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n");
4317}
4318
4319/**
4320 * @callback_method_impl{FNDBGFHANDLERDEV}
4321 */
4322static DECLCALLBACK(void) hdaR3DbgInfoCodecSelector(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4323{
4324 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
4325
4326 if (pThis->pCodec->pfnDbgSelector)
4327 pThis->pCodec->pfnDbgSelector(pThis->pCodec, pHlp, pszArgs);
4328 else
4329 pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n");
4330}
4331
4332/**
4333 * @callback_method_impl{FNDBGFHANDLERDEV}
4334 */
4335static DECLCALLBACK(void) hdaR3DbgInfoMixer(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
4336{
4337 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
4338
4339 if (pThis->pMixer)
4340 AudioMixerDebug(pThis->pMixer, pHlp, pszArgs);
4341 else
4342 pHlp->pfnPrintf(pHlp, "Mixer not available\n");
4343}
4344
4345
4346/*********************************************************************************************************************************
4347* PDMIBASE *
4348*********************************************************************************************************************************/
4349
4350/**
4351 * @interface_method_impl{PDMIBASE,pfnQueryInterface}
4352 */
4353static DECLCALLBACK(void *) hdaR3QueryInterface(struct PDMIBASE *pInterface, const char *pszIID)
4354{
4355 PHDASTATE pThis = RT_FROM_MEMBER(pInterface, HDASTATE, IBase);
4356 Assert(&pThis->IBase == pInterface);
4357
4358 PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase);
4359 return NULL;
4360}
4361
4362
4363/*********************************************************************************************************************************
4364* PDMDEVREGR3 *
4365*********************************************************************************************************************************/
4366
4367/**
4368 * Attach command, internal version.
4369 *
4370 * This is called to let the device attach to a driver for a specified LUN
4371 * during runtime. This is not called during VM construction, the device
4372 * constructor has to attach to all the available drivers.
4373 *
4374 * @returns VBox status code.
4375 * @param pThis HDA state.
4376 * @param uLUN The logical unit which is being detached.
4377 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
4378 * @param ppDrv Attached driver instance on success. Optional.
4379 */
4380static int hdaR3AttachInternal(PHDASTATE pThis, unsigned uLUN, uint32_t fFlags, PHDADRIVER *ppDrv)
4381{
4382 RT_NOREF(fFlags);
4383
4384 /*
4385 * Attach driver.
4386 */
4387 char *pszDesc;
4388 if (RTStrAPrintf(&pszDesc, "Audio driver port (HDA) for LUN#%u", uLUN) <= 0)
4389 AssertLogRelFailedReturn(VERR_NO_MEMORY);
4390
4391 PPDMIBASE pDrvBase;
4392 int rc = PDMDevHlpDriverAttach(pThis->pDevInsR3, uLUN,
4393 &pThis->IBase, &pDrvBase, pszDesc);
4394 if (RT_SUCCESS(rc))
4395 {
4396 PHDADRIVER pDrv = (PHDADRIVER)RTMemAllocZ(sizeof(HDADRIVER));
4397 if (pDrv)
4398 {
4399 pDrv->pDrvBase = pDrvBase;
4400 pDrv->pConnector = PDMIBASE_QUERY_INTERFACE(pDrvBase, PDMIAUDIOCONNECTOR);
4401 AssertMsg(pDrv->pConnector != NULL, ("Configuration error: LUN#%u has no host audio interface, rc=%Rrc\n", uLUN, rc));
4402 pDrv->pHDAState = pThis;
4403 pDrv->uLUN = uLUN;
4404
4405 /*
4406 * For now we always set the driver at LUN 0 as our primary
4407 * host backend. This might change in the future.
4408 */
4409 if (pDrv->uLUN == 0)
4410 pDrv->fFlags |= PDMAUDIODRVFLAGS_PRIMARY;
4411
4412 LogFunc(("LUN#%u: pCon=%p, drvFlags=0x%x\n", uLUN, pDrv->pConnector, pDrv->fFlags));
4413
4414 /* Attach to driver list if not attached yet. */
4415 if (!pDrv->fAttached)
4416 {
4417 RTListAppend(&pThis->lstDrv, &pDrv->Node);
4418 pDrv->fAttached = true;
4419 }
4420
4421 if (ppDrv)
4422 *ppDrv = pDrv;
4423 }
4424 else
4425 rc = VERR_NO_MEMORY;
4426 }
4427 else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
4428 LogFunc(("No attached driver for LUN #%u\n", uLUN));
4429
4430 if (RT_FAILURE(rc))
4431 {
4432 /* Only free this string on failure;
4433 * must remain valid for the live of the driver instance. */
4434 RTStrFree(pszDesc);
4435 }
4436
4437 LogFunc(("uLUN=%u, fFlags=0x%x, rc=%Rrc\n", uLUN, fFlags, rc));
4438 return rc;
4439}
4440
4441/**
4442 * Detach command, internal version.
4443 *
4444 * This is called to let the device detach from a driver for a specified LUN
4445 * during runtime.
4446 *
4447 * @returns VBox status code.
4448 * @param pThis HDA state.
4449 * @param pDrv Driver to detach from device.
4450 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
4451 */
4452static int hdaR3DetachInternal(PHDASTATE pThis, PHDADRIVER pDrv, uint32_t fFlags)
4453{
4454 RT_NOREF(fFlags);
4455
4456 /* First, remove the driver from our list and destory it's associated streams.
4457 * This also will un-set the driver as a recording source (if associated). */
4458 hdaR3MixerRemoveDrv(pThis, pDrv);
4459
4460 /* Next, search backwards for a capable (attached) driver which now will be the
4461 * new recording source. */
4462 PHDADRIVER pDrvCur;
4463 RTListForEachReverse(&pThis->lstDrv, pDrvCur, HDADRIVER, Node)
4464 {
4465 if (!pDrvCur->pConnector)
4466 continue;
4467
4468 PDMAUDIOBACKENDCFG Cfg;
4469 int rc2 = pDrvCur->pConnector->pfnGetConfig(pDrvCur->pConnector, &Cfg);
4470 if (RT_FAILURE(rc2))
4471 continue;
4472
4473 PHDADRIVERSTREAM pDrvStrm;
4474# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
4475 pDrvStrm = &pDrvCur->MicIn;
4476 if ( pDrvStrm
4477 && pDrvStrm->pMixStrm)
4478 {
4479 rc2 = AudioMixerSinkSetRecordingSource(pThis->SinkMicIn.pMixSink, pDrvStrm->pMixStrm);
4480 if (RT_SUCCESS(rc2))
4481 LogRel2(("HDA: Set new recording source for 'Mic In' to '%s'\n", Cfg.szName));
4482 }
4483# endif
4484 pDrvStrm = &pDrvCur->LineIn;
4485 if ( pDrvStrm
4486 && pDrvStrm->pMixStrm)
4487 {
4488 rc2 = AudioMixerSinkSetRecordingSource(pThis->SinkLineIn.pMixSink, pDrvStrm->pMixStrm);
4489 if (RT_SUCCESS(rc2))
4490 LogRel2(("HDA: Set new recording source for 'Line In' to '%s'\n", Cfg.szName));
4491 }
4492 }
4493
4494 LogFunc(("uLUN=%u, fFlags=0x%x\n", pDrv->uLUN, fFlags));
4495 return VINF_SUCCESS;
4496}
4497
4498/**
4499 * @interface_method_impl{PDMDEVREG,pfnAttach}
4500 */
4501static DECLCALLBACK(int) hdaR3Attach(PPDMDEVINS pDevIns, unsigned uLUN, uint32_t fFlags)
4502{
4503 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
4504
4505 DEVHDA_LOCK_RETURN(pDevIns, pThis, VERR_IGNORED);
4506
4507 LogFunc(("uLUN=%u, fFlags=0x%x\n", uLUN, fFlags));
4508
4509 PHDADRIVER pDrv;
4510 int rc2 = hdaR3AttachInternal(pThis, uLUN, fFlags, &pDrv);
4511 if (RT_SUCCESS(rc2))
4512 rc2 = hdaR3MixerAddDrv(pThis, pDrv);
4513
4514 if (RT_FAILURE(rc2))
4515 LogFunc(("Failed with %Rrc\n", rc2));
4516
4517 DEVHDA_UNLOCK(pDevIns, pThis);
4518
4519 return VINF_SUCCESS;
4520}
4521
4522/**
4523 * @interface_method_impl{PDMDEVREG,pfnDetach}
4524 */
4525static DECLCALLBACK(void) hdaR3Detach(PPDMDEVINS pDevIns, unsigned uLUN, uint32_t fFlags)
4526{
4527 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
4528
4529 DEVHDA_LOCK(pDevIns, pThis);
4530
4531 LogFunc(("uLUN=%u, fFlags=0x%x\n", uLUN, fFlags));
4532
4533 PHDADRIVER pDrv, pDrvNext;
4534 RTListForEachSafe(&pThis->lstDrv, pDrv, pDrvNext, HDADRIVER, Node)
4535 {
4536 if (pDrv->uLUN == uLUN)
4537 {
4538 int rc2 = hdaR3DetachInternal(pThis, pDrv, fFlags);
4539 if (RT_SUCCESS(rc2))
4540 {
4541 RTMemFree(pDrv);
4542 pDrv = NULL;
4543 }
4544
4545 break;
4546 }
4547 }
4548
4549 DEVHDA_UNLOCK(pDevIns, pThis);
4550}
4551
4552/**
4553 * Powers off the device.
4554 *
4555 * @param pDevIns Device instance to power off.
4556 */
4557static DECLCALLBACK(void) hdaR3PowerOff(PPDMDEVINS pDevIns)
4558{
4559 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
4560
4561 DEVHDA_LOCK_RETURN_VOID(pDevIns, pThis);
4562
4563 LogRel2(("HDA: Powering off ...\n"));
4564
4565 /* Ditto goes for the codec, which in turn uses the mixer. */
4566 hdaCodecPowerOff(pThis->pCodec);
4567
4568 /*
4569 * Note: Destroy the mixer while powering off and *not* in hdaR3Destruct,
4570 * giving the mixer the chance to release any references held to
4571 * PDM audio streams it maintains.
4572 */
4573 if (pThis->pMixer)
4574 {
4575 AudioMixerDestroy(pThis->pMixer);
4576 pThis->pMixer = NULL;
4577 }
4578
4579 DEVHDA_UNLOCK(pDevIns, pThis);
4580}
4581
4582/**
4583 * Replaces a driver with a the NullAudio drivers.
4584 *
4585 * @returns VBox status code.
4586 * @param pThis Device instance.
4587 * @param iLun The logical unit which is being replaced.
4588 */
4589static int hdaR3ReconfigLunWithNullAudio(PHDASTATE pThis, unsigned iLun)
4590{
4591 int rc = PDMDevHlpDriverReconfigure2(pThis->pDevInsR3, iLun, "AUDIO", "NullAudio");
4592 if (RT_SUCCESS(rc))
4593 rc = hdaR3AttachInternal(pThis, iLun, 0 /* fFlags */, NULL /* ppDrv */);
4594 LogFunc(("pThis=%p, iLun=%u, rc=%Rrc\n", pThis, iLun, rc));
4595 return rc;
4596}
4597
4598
4599/**
4600 * @interface_method_impl{PDMDEVREG,pfnReset}
4601 */
4602static DECLCALLBACK(void) hdaR3Reset(PPDMDEVINS pDevIns)
4603{
4604 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
4605
4606 LogFlowFuncEnter();
4607
4608 DEVHDA_LOCK_RETURN_VOID(pDevIns, pThis);
4609
4610 /*
4611 * 18.2.6,7 defines that values of this registers might be cleared on power on/reset
4612 * hdaR3Reset shouldn't affects these registers.
4613 */
4614 HDA_REG(pThis, WAKEEN) = 0x0;
4615
4616 hdaR3GCTLReset(pThis);
4617
4618 /* Indicate that HDA is not in reset. The firmware is supposed to (un)reset HDA,
4619 * but we can take a shortcut.
4620 */
4621 HDA_REG(pThis, GCTL) = HDA_GCTL_CRST;
4622
4623 DEVHDA_UNLOCK(pDevIns, pThis);
4624}
4625
4626
4627/**
4628 * @interface_method_impl{PDMDEVREG,pfnDestruct}
4629 */
4630static DECLCALLBACK(int) hdaR3Destruct(PPDMDEVINS pDevIns)
4631{
4632 PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns); /* this shall come first */
4633 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
4634 DEVHDA_LOCK(pDevIns, pThis); /** @todo r=bird: this will fail on early constructor failure. */
4635
4636 PHDADRIVER pDrv;
4637 while (!RTListIsEmpty(&pThis->lstDrv))
4638 {
4639 pDrv = RTListGetFirst(&pThis->lstDrv, HDADRIVER, Node);
4640
4641 RTListNodeRemove(&pDrv->Node);
4642 RTMemFree(pDrv);
4643 }
4644
4645 if (pThis->pCodec)
4646 {
4647 hdaCodecDestruct(pThis->pCodec);
4648
4649 RTMemFree(pThis->pCodec);
4650 pThis->pCodec = NULL;
4651 }
4652
4653 RTMemFree(pThis->pu32CorbBuf);
4654 pThis->pu32CorbBuf = NULL;
4655
4656 RTMemFree(pThis->pu64RirbBuf);
4657 pThis->pu64RirbBuf = NULL;
4658
4659 for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++)
4660 hdaR3StreamDestroy(&pThis->aStreams[i]);
4661
4662 DEVHDA_UNLOCK(pDevIns, pThis);
4663 return VINF_SUCCESS;
4664}
4665
4666
4667/**
4668 * @interface_method_impl{PDMDEVREG,pfnConstruct}
4669 */
4670static DECLCALLBACK(int) hdaR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
4671{
4672 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); /* this shall come first */
4673 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
4674 PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
4675 Assert(iInstance == 0); RT_NOREF(iInstance);
4676
4677 /*
4678 * Initialize the state sufficently to make the destructor work.
4679 */
4680 pThis->uAlignmentCheckMagic = HDASTATE_ALIGNMENT_CHECK_MAGIC;
4681 RTListInit(&pThis->lstDrv);
4682 /** @todo r=bird: There are probably other things which should be
4683 * initialized here before we start failing. */
4684
4685 /*
4686 * Validate and read configuration.
4687 */
4688 PDMDEV_VALIDATE_CONFIG_RETURN(pDevIns, "TimerHz|PosAdjustEnabled|PosAdjustFrames|DebugEnabled|DebugPathOut", "");
4689
4690 int rc = pHlp->pfnCFGMQueryU16Def(pCfg, "TimerHz", &pThis->uTimerHz, HDA_TIMER_HZ_DEFAULT /* Default value, if not set. */);
4691 if (RT_FAILURE(rc))
4692 return PDMDEV_SET_ERROR(pDevIns, rc,
4693 N_("HDA configuration error: failed to read Hertz (Hz) rate as unsigned integer"));
4694
4695 if (pThis->uTimerHz != HDA_TIMER_HZ_DEFAULT)
4696 LogRel(("HDA: Using custom device timer rate (%RU16Hz)\n", pThis->uTimerHz));
4697
4698 rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "PosAdjustEnabled", &pThis->fPosAdjustEnabled, true);
4699 if (RT_FAILURE(rc))
4700 return PDMDEV_SET_ERROR(pDevIns, rc,
4701 N_("HDA configuration error: failed to read position adjustment enabled as boolean"));
4702
4703 if (!pThis->fPosAdjustEnabled)
4704 LogRel(("HDA: Position adjustment is disabled\n"));
4705
4706 rc = pHlp->pfnCFGMQueryU16Def(pCfg, "PosAdjustFrames", &pThis->cPosAdjustFrames, HDA_POS_ADJUST_DEFAULT);
4707 if (RT_FAILURE(rc))
4708 return PDMDEV_SET_ERROR(pDevIns, rc,
4709 N_("HDA configuration error: failed to read position adjustment frames as unsigned integer"));
4710
4711 if (pThis->cPosAdjustFrames)
4712 LogRel(("HDA: Using custom position adjustment (%RU16 audio frames)\n", pThis->cPosAdjustFrames));
4713
4714 rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "DebugEnabled", &pThis->Dbg.fEnabled, false);
4715 if (RT_FAILURE(rc))
4716 return PDMDEV_SET_ERROR(pDevIns, rc,
4717 N_("HDA configuration error: failed to read debugging enabled flag as boolean"));
4718
4719 rc = pHlp->pfnCFGMQueryStringDef(pCfg, "DebugPathOut", pThis->Dbg.szOutPath, sizeof(pThis->Dbg.szOutPath),
4720 VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH);
4721 if (RT_FAILURE(rc))
4722 return PDMDEV_SET_ERROR(pDevIns, rc,
4723 N_("HDA configuration error: failed to read debugging output path flag as string"));
4724
4725 if (pThis->Dbg.fEnabled)
4726 LogRel2(("HDA: Debug output will be saved to '%s'\n", pThis->Dbg.szOutPath));
4727
4728 /*
4729 * Use our own critical section for the device instead of the default
4730 * one provided by PDM. This allows fine-grained locking in combination
4731 * with TM when timer-specific stuff is being called in e.g. the MMIO handlers.
4732 */
4733 rc = PDMDevHlpCritSectInit(pDevIns, &pThis->CritSect, RT_SRC_POS, "HDA");
4734 AssertRCReturn(rc, rc);
4735
4736 rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
4737 AssertRCReturn(rc, rc);
4738
4739 /*
4740 * Initialize data (most of it anyway).
4741 */
4742 pThis->pDevInsR3 = pDevIns;
4743 /* IBase */
4744 pThis->IBase.pfnQueryInterface = hdaR3QueryInterface;
4745
4746 /* PCI Device */
4747 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
4748 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
4749
4750 PDMPciDevSetVendorId( pPciDev, HDA_PCI_VENDOR_ID); /* nVidia */
4751 PDMPciDevSetDeviceId( pPciDev, HDA_PCI_DEVICE_ID); /* HDA */
4752
4753 PDMPciDevSetCommand( pPciDev, 0x0000); /* 04 rw,ro - pcicmd. */
4754 PDMPciDevSetStatus( pPciDev, VBOX_PCI_STATUS_CAP_LIST); /* 06 rwc?,ro? - pcists. */
4755 PDMPciDevSetRevisionId( pPciDev, 0x01); /* 08 ro - rid. */
4756 PDMPciDevSetClassProg( pPciDev, 0x00); /* 09 ro - pi. */
4757 PDMPciDevSetClassSub( pPciDev, 0x03); /* 0a ro - scc; 03 == HDA. */
4758 PDMPciDevSetClassBase( pPciDev, 0x04); /* 0b ro - bcc; 04 == multimedia. */
4759 PDMPciDevSetHeaderType( pPciDev, 0x00); /* 0e ro - headtyp. */
4760 PDMPciDevSetBaseAddress( pPciDev, 0, /* 10 rw - MMIO */
4761 false /* fIoSpace */, false /* fPrefetchable */, true /* f64Bit */, 0x00000000);
4762 PDMPciDevSetInterruptLine( pPciDev, 0x00); /* 3c rw. */
4763 PDMPciDevSetInterruptPin( pPciDev, 0x01); /* 3d ro - INTA#. */
4764
4765#if defined(HDA_AS_PCI_EXPRESS)
4766 PDMPciDevSetCapabilityList(pPciDev, 0x80);
4767#elif defined(VBOX_WITH_MSI_DEVICES)
4768 PDMPciDevSetCapabilityList(pPciDev, 0x60);
4769#else
4770 PDMPciDevSetCapabilityList(pPciDev, 0x50); /* ICH6 datasheet 18.1.16 */
4771#endif
4772
4773 /// @todo r=michaln: If there are really no PDMPciDevSetXx for these, the
4774 /// meaning of these values needs to be properly documented!
4775 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
4776 PDMPciDevSetByte( pPciDev, 0x40, 0x01);
4777
4778 /* Power Management */
4779 PDMPciDevSetByte( pPciDev, 0x50 + 0, VBOX_PCI_CAP_ID_PM);
4780 PDMPciDevSetByte( pPciDev, 0x50 + 1, 0x0); /* next */
4781 PDMPciDevSetWord( pPciDev, 0x50 + 2, VBOX_PCI_PM_CAP_DSI | 0x02 /* version, PM1.1 */ );
4782
4783#ifdef HDA_AS_PCI_EXPRESS
4784 /* PCI Express */
4785 PDMPciDevSetByte( pPciDev, 0x80 + 0, VBOX_PCI_CAP_ID_EXP); /* PCI_Express */
4786 PDMPciDevSetByte( pPciDev, 0x80 + 1, 0x60); /* next */
4787 /* Device flags */
4788 PDMPciDevSetWord( pPciDev, 0x80 + 2,
4789 1 /* version */
4790 | (VBOX_PCI_EXP_TYPE_ROOT_INT_EP << 4) /* Root Complex Integrated Endpoint */
4791 | (100 << 9) /* MSI */ );
4792 /* Device capabilities */
4793 PDMPciDevSetDWord( pPciDev, 0x80 + 4, VBOX_PCI_EXP_DEVCAP_FLRESET);
4794 /* Device control */
4795 PDMPciDevSetWord( pPciDev, 0x80 + 8, 0);
4796 /* Device status */
4797 PDMPciDevSetWord( pPciDev, 0x80 + 10, 0);
4798 /* Link caps */
4799 PDMPciDevSetDWord( pPciDev, 0x80 + 12, 0);
4800 /* Link control */
4801 PDMPciDevSetWord( pPciDev, 0x80 + 16, 0);
4802 /* Link status */
4803 PDMPciDevSetWord( pPciDev, 0x80 + 18, 0);
4804 /* Slot capabilities */
4805 PDMPciDevSetDWord( pPciDev, 0x80 + 20, 0);
4806 /* Slot control */
4807 PDMPciDevSetWord( pPciDev, 0x80 + 24, 0);
4808 /* Slot status */
4809 PDMPciDevSetWord( pPciDev, 0x80 + 26, 0);
4810 /* Root control */
4811 PDMPciDevSetWord( pPciDev, 0x80 + 28, 0);
4812 /* Root capabilities */
4813 PDMPciDevSetWord( pPciDev, 0x80 + 30, 0);
4814 /* Root status */
4815 PDMPciDevSetDWord( pPciDev, 0x80 + 32, 0);
4816 /* Device capabilities 2 */
4817 PDMPciDevSetDWord( pPciDev, 0x80 + 36, 0);
4818 /* Device control 2 */
4819 PDMPciDevSetQWord( pPciDev, 0x80 + 40, 0);
4820 /* Link control 2 */
4821 PDMPciDevSetQWord( pPciDev, 0x80 + 48, 0);
4822 /* Slot control 2 */
4823 PDMPciDevSetWord( pPciDev, 0x80 + 56, 0);
4824#endif
4825
4826 /*
4827 * Register the PCI device.
4828 */
4829 rc = PDMDevHlpPCIRegister(pDevIns, pPciDev);
4830 AssertRCReturn(rc, rc);
4831
4832 rc = PDMDevHlpPCIIORegionCreateMmio(pDevIns, 0, 0x4000, PCI_ADDRESS_SPACE_MEM, hdaMMIOWrite, hdaMMIORead, NULL /*pvUser*/,
4833 IOMMMIO_FLAGS_READ_DWORD | IOMMMIO_FLAGS_WRITE_PASSTHRU, "HDA", &pThis->hMmio);
4834 AssertRCReturn(rc, rc);
4835
4836#ifdef VBOX_WITH_MSI_DEVICES
4837 PDMMSIREG MsiReg;
4838 RT_ZERO(MsiReg);
4839 MsiReg.cMsiVectors = 1;
4840 MsiReg.iMsiCapOffset = 0x60;
4841 MsiReg.iMsiNextOffset = 0x50;
4842 rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg);
4843 if (RT_FAILURE(rc))
4844 {
4845 /* That's OK, we can work without MSI */
4846 PDMPciDevSetCapabilityList(pPciDev, 0x50);
4847 }
4848#endif
4849
4850 rc = PDMDevHlpSSMRegister(pDevIns, HDA_SAVED_STATE_VERSION, sizeof(*pThis), hdaR3SaveExec, hdaR3LoadExec);
4851 AssertRCReturn(rc, rc);
4852
4853#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
4854 LogRel(("HDA: Asynchronous I/O enabled\n"));
4855#endif
4856
4857 /*
4858 * Attach drivers. We ASSUME they are configured consecutively without any
4859 * gaps, so we stop when we hit the first LUN w/o a driver configured.
4860 */
4861 for (unsigned iLun = 0; ; iLun++)
4862 {
4863 AssertBreak(iLun < UINT8_MAX);
4864 LogFunc(("Trying to attach driver for LUN#%u ...\n", iLun));
4865 rc = hdaR3AttachInternal(pThis, iLun, 0 /* fFlags */, NULL /* ppDrv */);
4866 if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
4867 {
4868 LogFunc(("cLUNs=%u\n", iLun));
4869 break;
4870 }
4871 if (rc == VERR_AUDIO_BACKEND_INIT_FAILED)
4872 {
4873 hdaR3ReconfigLunWithNullAudio(pThis, iLun); /* Pretend attaching to the NULL audio backend will never fail. */
4874 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding",
4875 N_("Host audio backend initialization has failed. Selecting the NULL audio backend with the consequence that no sound is audible"));
4876 }
4877 else
4878 AssertLogRelMsgReturn(RT_SUCCESS(rc), ("LUN#%u: rc=%Rrc\n", iLun, rc), rc);
4879 }
4880
4881 /*
4882 * Create the mixer.
4883 */
4884 rc = AudioMixerCreate("HDA Mixer", 0 /* uFlags */, &pThis->pMixer);
4885 AssertRCReturn(rc, rc);
4886
4887 /*
4888 * Add mixer output sinks.
4889 */
4890#ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
4891 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Front", AUDMIXSINKDIR_OUTPUT, &pThis->SinkFront.pMixSink);
4892 AssertRCReturn(rc, rc);
4893 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Center / Subwoofer", AUDMIXSINKDIR_OUTPUT, &pThis->SinkCenterLFE.pMixSink);
4894 AssertRCReturn(rc, rc);
4895 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Rear", AUDMIXSINKDIR_OUTPUT, &pThis->SinkRear.pMixSink);
4896 AssertRCReturn(rc, rc);
4897#else
4898 rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] PCM Output", AUDMIXSINKDIR_OUTPUT, &pThis->SinkFront.pMixSink);
4899 AssertRCReturn(rc, rc);
4900#endif
4901
4902 /*
4903 * Add mixer input sinks.
4904 */
4905 rc = AudioMixerCreateSink(pThis->pMixer, "[Recording] Line In", AUDMIXSINKDIR_INPUT, &pThis->SinkLineIn.pMixSink);
4906 AssertRCReturn(rc, rc);
4907#ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
4908 rc = AudioMixerCreateSink(pThis->pMixer, "[Recording] Microphone In", AUDMIXSINKDIR_INPUT, &pThis->SinkMicIn.pMixSink);
4909 AssertRCReturn(rc, rc);
4910#endif
4911
4912 /* There is no master volume control. Set the master to max. */
4913 PDMAUDIOVOLUME vol = { false, 255, 255 };
4914 rc = AudioMixerSetMasterVolume(pThis->pMixer, &vol);
4915 AssertRCReturn(rc, rc);
4916
4917 /* Allocate CORB buffer. */
4918 pThis->cbCorbBuf = HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE;
4919 pThis->pu32CorbBuf = (uint32_t *)RTMemAllocZ(pThis->cbCorbBuf);
4920 AssertReturn(pThis->pu32CorbBuf, VERR_NO_MEMORY);
4921
4922 /* Allocate RIRB buffer. */
4923 pThis->cbRirbBuf = HDA_RIRB_SIZE * HDA_RIRB_ELEMENT_SIZE;
4924 pThis->pu64RirbBuf = (uint64_t *)RTMemAllocZ(pThis->cbRirbBuf);
4925 AssertReturn(pThis->pu64RirbBuf, VERR_NO_MEMORY);
4926
4927 /* Allocate codec. */
4928 pThis->pCodec = (PHDACODEC)RTMemAllocZ(sizeof(HDACODEC));
4929 AssertReturn(pThis->pCodec, VERR_NO_MEMORY);
4930
4931 /* Set codec callbacks to this controller. */
4932 pThis->pCodec->pfnCbMixerAddStream = hdaR3MixerAddStream;
4933 pThis->pCodec->pfnCbMixerRemoveStream = hdaR3MixerRemoveStream;
4934 pThis->pCodec->pfnCbMixerControl = hdaR3MixerControl;
4935 pThis->pCodec->pfnCbMixerSetVolume = hdaR3MixerSetVolume;
4936
4937 pThis->pCodec->pHDAState = pThis; /* Assign HDA controller state to codec. */
4938
4939 /* Construct the codec. */
4940 rc = hdaCodecConstruct(pDevIns, pThis->pCodec, 0 /* Codec index */, pCfg);
4941 AssertRCReturn(rc, rc);
4942
4943 /* ICH6 datasheet defines 0 values for SVID and SID (18.1.14-15), which together with values returned for
4944 verb F20 should provide device/codec recognition. */
4945 Assert(pThis->pCodec->u16VendorId);
4946 Assert(pThis->pCodec->u16DeviceId);
4947 PDMPciDevSetSubSystemVendorId(pPciDev, pThis->pCodec->u16VendorId); /* 2c ro - intel.) */
4948 PDMPciDevSetSubSystemId( pPciDev, pThis->pCodec->u16DeviceId); /* 2e ro. */
4949
4950 /*
4951 * Create the per stream timers and the asso.
4952 *
4953 * We must the critical section for the timers as the device has a
4954 * noop section associated with it.
4955 *
4956 * Note: Use TMCLOCK_VIRTUAL_SYNC here, as the guest's HDA driver relies
4957 * on exact (virtual) DMA timing and uses DMA Position Buffers
4958 * instead of the LPIB registers.
4959 */
4960 static const char * const s_apszNames[] =
4961 {
4962 "HDA SD0", "HDA SD1", "HDA SD2", "HDA SD3",
4963 "HDA SD4", "HDA SD5", "HDA SD6", "HDA SD7",
4964 };
4965 AssertCompile(RT_ELEMENTS(s_apszNames) == HDA_MAX_STREAMS);
4966 for (size_t i = 0; i < HDA_MAX_STREAMS; i++)
4967 {
4968 rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, hdaR3Timer, &pThis->aStreams[i],
4969 TMTIMER_FLAGS_NO_CRIT_SECT, s_apszNames[i], &pThis->aStreams[i].hTimer);
4970 AssertRCReturn(rc, rc);
4971
4972 rc = PDMDevHlpTimerSetCritSect(pDevIns, pThis->aStreams[i].hTimer, &pThis->CritSect);
4973 AssertRCReturn(rc, rc);
4974 }
4975
4976 /*
4977 * Create all hardware streams.
4978 */
4979 for (uint8_t i = 0; i < HDA_MAX_STREAMS; ++i)
4980 {
4981 rc = hdaR3StreamCreate(&pThis->aStreams[i], pThis, i /* u8SD */);
4982 AssertRCReturn(rc, rc);
4983 }
4984
4985#ifdef VBOX_WITH_AUDIO_HDA_ONETIME_INIT
4986 /*
4987 * Initialize the driver chain.
4988 */
4989 PHDADRIVER pDrv;
4990 RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node)
4991 {
4992 /*
4993 * Only primary drivers are critical for the VM to run. Everything else
4994 * might not worth showing an own error message box in the GUI.
4995 */
4996 if (!(pDrv->fFlags & PDMAUDIODRVFLAGS_PRIMARY))
4997 continue;
4998
4999 PPDMIAUDIOCONNECTOR pCon = pDrv->pConnector;
5000 AssertPtr(pCon);
5001
5002 bool fValidLineIn = AudioMixerStreamIsValid(pDrv->LineIn.pMixStrm);
5003# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5004 bool fValidMicIn = AudioMixerStreamIsValid(pDrv->MicIn.pMixStrm);
5005# endif
5006 bool fValidOut = AudioMixerStreamIsValid(pDrv->Front.pMixStrm);
5007# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
5008 /** @todo Anything to do here? */
5009# endif
5010
5011 if ( !fValidLineIn
5012# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5013 && !fValidMicIn
5014# endif
5015 && !fValidOut)
5016 {
5017 LogRel(("HDA: Falling back to NULL backend (no sound audible)\n"));
5018 hdaR3Reset(pDevIns);
5019 hdaR3ReconfigLunWithNullAudio(pThis, pDrv->uLUN);
5020 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding",
5021 N_("No audio devices could be opened. "
5022 "Selecting the NULL audio backend with the consequence that no sound is audible"));
5023 }
5024 else
5025 {
5026 bool fWarn = false;
5027
5028 PDMAUDIOBACKENDCFG BackendCfg;
5029 int rc2 = pCon->pfnGetConfig(pCon, &BackendCfg);
5030 if (RT_SUCCESS(rc2))
5031 {
5032 if (BackendCfg.cMaxStreamsIn)
5033 {
5034# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5035 /* If the audio backend supports two or more input streams at once,
5036 * warn if one of our two inputs (microphone-in and line-in) failed to initialize. */
5037 if (BackendCfg.cMaxStreamsIn >= 2)
5038 fWarn = !fValidLineIn || !fValidMicIn;
5039 /* If the audio backend only supports one input stream at once (e.g. pure ALSA, and
5040 * *not* ALSA via PulseAudio plugin!), only warn if both of our inputs failed to initialize.
5041 * One of the two simply is not in use then. */
5042 else if (BackendCfg.cMaxStreamsIn == 1)
5043 fWarn = !fValidLineIn && !fValidMicIn;
5044 /* Don't warn if our backend is not able of supporting any input streams at all. */
5045# else /* !VBOX_WITH_AUDIO_HDA_MIC_IN */
5046 /* We only have line-in as input source. */
5047 fWarn = !fValidLineIn;
5048# endif /* !VBOX_WITH_AUDIO_HDA_MIC_IN */
5049 }
5050
5051 if ( !fWarn
5052 && BackendCfg.cMaxStreamsOut)
5053 fWarn = !fValidOut;
5054 }
5055 else
5056 {
5057 LogRel(("HDA: Unable to retrieve audio backend configuration for LUN #%RU8, rc=%Rrc\n", pDrv->uLUN, rc2));
5058 fWarn = true;
5059 }
5060
5061 if (fWarn)
5062 {
5063 char szMissingStreams[255];
5064 size_t len = 0;
5065 if (!fValidLineIn)
5066 {
5067 LogRel(("HDA: WARNING: Unable to open PCM line input for LUN #%RU8!\n", pDrv->uLUN));
5068 len = RTStrPrintf(szMissingStreams, sizeof(szMissingStreams), "PCM Input");
5069 }
5070# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
5071 if (!fValidMicIn)
5072 {
5073 LogRel(("HDA: WARNING: Unable to open PCM microphone input for LUN #%RU8!\n", pDrv->uLUN));
5074 len += RTStrPrintf(szMissingStreams + len,
5075 sizeof(szMissingStreams) - len, len ? ", PCM Microphone" : "PCM Microphone");
5076 }
5077# endif
5078 if (!fValidOut)
5079 {
5080 LogRel(("HDA: WARNING: Unable to open PCM output for LUN #%RU8!\n", pDrv->uLUN));
5081 len += RTStrPrintf(szMissingStreams + len,
5082 sizeof(szMissingStreams) - len, len ? ", PCM Output" : "PCM Output");
5083 }
5084
5085 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding",
5086 N_("Some HDA audio streams (%s) could not be opened. "
5087 "Guest applications generating audio output or depending on audio input may hang. "
5088 "Make sure your host audio device is working properly. "
5089 "Check the logfile for error messages of the audio subsystem"), szMissingStreams);
5090 }
5091 }
5092 }
5093#endif /* VBOX_WITH_AUDIO_HDA_ONETIME_INIT */
5094
5095 hdaR3Reset(pDevIns);
5096
5097 /*
5098 * Info items and string formatter types. The latter is non-optional as
5099 * the info handles use (at least some of) the custom types and we cannot
5100 * accept screwing formatting.
5101 */
5102 PDMDevHlpDBGFInfoRegister(pDevIns, "hda", "HDA info. (hda [register case-insensitive])", hdaR3DbgInfo);
5103 PDMDevHlpDBGFInfoRegister(pDevIns, "hdabdle", "HDA stream BDLE info. (hdabdle [stream number])", hdaR3DbgInfoBDLE);
5104 PDMDevHlpDBGFInfoRegister(pDevIns, "hdastream", "HDA stream info. (hdastream [stream number])", hdaR3DbgInfoStream);
5105 PDMDevHlpDBGFInfoRegister(pDevIns, "hdcnodes", "HDA codec nodes.", hdaR3DbgInfoCodecNodes);
5106 PDMDevHlpDBGFInfoRegister(pDevIns, "hdcselector", "HDA codec's selector states [node number].", hdaR3DbgInfoCodecSelector);
5107 PDMDevHlpDBGFInfoRegister(pDevIns, "hdamixer", "HDA mixer state.", hdaR3DbgInfoMixer);
5108
5109 rc = RTStrFormatTypeRegister("bdle", hdaR3StrFmtBDLE, NULL);
5110 AssertMsgReturn(RT_SUCCESS(rc) || rc == VERR_ALREADY_EXISTS, ("%Rrc\n", rc), rc);
5111 rc = RTStrFormatTypeRegister("sdctl", hdaR3StrFmtSDCTL, NULL);
5112 AssertMsgReturn(RT_SUCCESS(rc) || rc == VERR_ALREADY_EXISTS, ("%Rrc\n", rc), rc);
5113 rc = RTStrFormatTypeRegister("sdsts", hdaR3StrFmtSDSTS, NULL);
5114 AssertMsgReturn(RT_SUCCESS(rc) || rc == VERR_ALREADY_EXISTS, ("%Rrc\n", rc), rc);
5115 rc = RTStrFormatTypeRegister("sdfifos", hdaR3StrFmtSDFIFOS, NULL);
5116 AssertMsgReturn(RT_SUCCESS(rc) || rc == VERR_ALREADY_EXISTS, ("%Rrc\n", rc), rc);
5117 rc = RTStrFormatTypeRegister("sdfifow", hdaR3StrFmtSDFIFOW, NULL);
5118 AssertMsgReturn(RT_SUCCESS(rc) || rc == VERR_ALREADY_EXISTS, ("%Rrc\n", rc), rc);
5119
5120 /*
5121 * Asserting sanity.
5122 */
5123 for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
5124 {
5125 struct HDAREGDESC const *pReg = &g_aHdaRegMap[i];
5126 struct HDAREGDESC const *pNextReg = i + 1 < RT_ELEMENTS(g_aHdaRegMap) ? &g_aHdaRegMap[i + 1] : NULL;
5127
5128 /* binary search order. */
5129 AssertReleaseMsg(!pNextReg || pReg->offset + pReg->size <= pNextReg->offset,
5130 ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
5131 i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size));
5132
5133 /* alignment. */
5134 AssertReleaseMsg( pReg->size == 1
5135 || (pReg->size == 2 && (pReg->offset & 1) == 0)
5136 || (pReg->size == 3 && (pReg->offset & 3) == 0)
5137 || (pReg->size == 4 && (pReg->offset & 3) == 0),
5138 ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
5139
5140 /* registers are packed into dwords - with 3 exceptions with gaps at the end of the dword. */
5141 AssertRelease(((pReg->offset + pReg->size) & 3) == 0 || pNextReg);
5142 if (pReg->offset & 3)
5143 {
5144 struct HDAREGDESC const *pPrevReg = i > 0 ? &g_aHdaRegMap[i - 1] : NULL;
5145 AssertReleaseMsg(pPrevReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
5146 if (pPrevReg)
5147 AssertReleaseMsg(pPrevReg->offset + pPrevReg->size == pReg->offset,
5148 ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
5149 i - 1, pPrevReg->offset, pPrevReg->size, i + 1, pReg->offset, pReg->size));
5150 }
5151#if 0
5152 if ((pReg->offset + pReg->size) & 3)
5153 {
5154 AssertReleaseMsg(pNextReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
5155 if (pNextReg)
5156 AssertReleaseMsg(pReg->offset + pReg->size == pNextReg->offset,
5157 ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
5158 i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size));
5159 }
5160#endif
5161 /* The final entry is a full DWORD, no gaps! Allows shortcuts. */
5162 AssertReleaseMsg(pNextReg || ((pReg->offset + pReg->size) & 3) == 0,
5163 ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
5164 }
5165
5166# ifdef VBOX_WITH_STATISTICS
5167 /*
5168 * Register statistics.
5169 */
5170 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTimer, STAMTYPE_PROFILE, "/Devices/HDA/Timer", STAMUNIT_TICKS_PER_CALL, "Profiling hdaR3Timer.");
5171 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIn, STAMTYPE_PROFILE, "/Devices/HDA/Input", STAMUNIT_TICKS_PER_CALL, "Profiling input.");
5172 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatOut, STAMTYPE_PROFILE, "/Devices/HDA/Output", STAMUNIT_TICKS_PER_CALL, "Profiling output.");
5173 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatBytesRead, STAMTYPE_COUNTER, "/Devices/HDA/BytesRead" , STAMUNIT_BYTES, "Bytes read from HDA emulation.");
5174 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatBytesWritten, STAMTYPE_COUNTER, "/Devices/HDA/BytesWritten", STAMUNIT_BYTES, "Bytes written to HDA emulation.");
5175# endif
5176
5177 return VINF_SUCCESS;
5178}
5179
5180#else /* !IN_RING3 */
5181
5182/**
5183 * @callback_method_impl{PDMDEVREGR0,pfnConstruct}
5184 */
5185static DECLCALLBACK(int) hdaRZConstruct(PPDMDEVINS pDevIns)
5186{
5187 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); /* this shall come first */
5188 PHDASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
5189
5190 int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
5191 AssertRCReturn(rc, rc);
5192
5193 rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmio, hdaMMIOWrite, hdaMMIORead, NULL /*pvUser*/);
5194 AssertRCReturn(rc, rc);
5195
5196 return VINF_SUCCESS;
5197}
5198
5199#endif /* !IN_RING3 */
5200
5201/**
5202 * The device registration structure.
5203 */
5204const PDMDEVREG g_DeviceHDA =
5205{
5206 /* .u32Version = */ PDM_DEVREG_VERSION,
5207 /* .uReserved0 = */ 0,
5208 /* .szName = */ "hda",
5209 /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ,
5210 /* .fClass = */ PDM_DEVREG_CLASS_AUDIO,
5211 /* .cMaxInstances = */ 1,
5212 /* .uSharedVersion = */ 42,
5213 /* .cbInstanceShared = */ sizeof(HDASTATE),
5214 /* .cbInstanceCC = */ 0,
5215 /* .cbInstanceRC = */ 0,
5216 /* .cMaxPciDevices = */ 1,
5217 /* .cMaxMsixVectors = */ 0,
5218 /* .pszDescription = */ "Intel HD Audio Controller",
5219#if defined(IN_RING3)
5220 /* .pszRCMod = */ "VBoxDDRC.rc",
5221 /* .pszR0Mod = */ "VBoxDDR0.r0",
5222 /* .pfnConstruct = */ hdaR3Construct,
5223 /* .pfnDestruct = */ hdaR3Destruct,
5224 /* .pfnRelocate = */ NULL,
5225 /* .pfnMemSetup = */ NULL,
5226 /* .pfnPowerOn = */ NULL,
5227 /* .pfnReset = */ hdaR3Reset,
5228 /* .pfnSuspend = */ NULL,
5229 /* .pfnResume = */ NULL,
5230 /* .pfnAttach = */ hdaR3Attach,
5231 /* .pfnDetach = */ hdaR3Detach,
5232 /* .pfnQueryInterface = */ NULL,
5233 /* .pfnInitComplete = */ NULL,
5234 /* .pfnPowerOff = */ hdaR3PowerOff,
5235 /* .pfnSoftReset = */ NULL,
5236 /* .pfnReserved0 = */ NULL,
5237 /* .pfnReserved1 = */ NULL,
5238 /* .pfnReserved2 = */ NULL,
5239 /* .pfnReserved3 = */ NULL,
5240 /* .pfnReserved4 = */ NULL,
5241 /* .pfnReserved5 = */ NULL,
5242 /* .pfnReserved6 = */ NULL,
5243 /* .pfnReserved7 = */ NULL,
5244#elif defined(IN_RING0)
5245 /* .pfnEarlyConstruct = */ NULL,
5246 /* .pfnConstruct = */ hdaRZConstruct,
5247 /* .pfnDestruct = */ NULL,
5248 /* .pfnFinalDestruct = */ NULL,
5249 /* .pfnRequest = */ NULL,
5250 /* .pfnReserved0 = */ NULL,
5251 /* .pfnReserved1 = */ NULL,
5252 /* .pfnReserved2 = */ NULL,
5253 /* .pfnReserved3 = */ NULL,
5254 /* .pfnReserved4 = */ NULL,
5255 /* .pfnReserved5 = */ NULL,
5256 /* .pfnReserved6 = */ NULL,
5257 /* .pfnReserved7 = */ NULL,
5258#elif defined(IN_RC)
5259 /* .pfnConstruct = */ hdaRZConstruct,
5260 /* .pfnReserved0 = */ NULL,
5261 /* .pfnReserved1 = */ NULL,
5262 /* .pfnReserved2 = */ NULL,
5263 /* .pfnReserved3 = */ NULL,
5264 /* .pfnReserved4 = */ NULL,
5265 /* .pfnReserved5 = */ NULL,
5266 /* .pfnReserved6 = */ NULL,
5267 /* .pfnReserved7 = */ NULL,
5268#else
5269# error "Not in IN_RING3, IN_RING0 or IN_RC!"
5270#endif
5271 /* .u32VersionEnd = */ PDM_DEVREG_VERSION
5272};
5273
5274#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
5275
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette