1 | /* $Id: DevHDACommon.cpp 69119 2017-10-17 19:08:38Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * DevHDACommon.cpp - Shared HDA device functions.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2017 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #include <iprt/assert.h>
|
---|
23 | #include <iprt/err.h>
|
---|
24 |
|
---|
25 | #define LOG_GROUP LOG_GROUP_DEV_HDA
|
---|
26 | #include <VBox/log.h>
|
---|
27 |
|
---|
28 |
|
---|
29 | #include "DevHDA.h"
|
---|
30 | #include "DevHDACommon.h"
|
---|
31 |
|
---|
32 | #include "HDAStream.h"
|
---|
33 |
|
---|
34 |
|
---|
35 | #ifndef DEBUG
|
---|
36 | /**
|
---|
37 | * Processes (de/asserts) the interrupt according to the HDA's current state.
|
---|
38 | *
|
---|
39 | * @returns IPRT status code.
|
---|
40 | * @param pThis HDA state.
|
---|
41 | */
|
---|
42 | int hdaProcessInterrupt(PHDASTATE pThis)
|
---|
43 | #else
|
---|
44 | /**
|
---|
45 | * Processes (de/asserts) the interrupt according to the HDA's current state.
|
---|
46 | * Debug version.
|
---|
47 | *
|
---|
48 | * @returns IPRT status code.
|
---|
49 | * @param pThis HDA state.
|
---|
50 | * @param pszSource Caller information.
|
---|
51 | */
|
---|
52 | int hdaProcessInterrupt(PHDASTATE pThis, const char *pszSource)
|
---|
53 | #endif
|
---|
54 | {
|
---|
55 | HDA_REG(pThis, INTSTS) = hdaGetINTSTS(pThis);
|
---|
56 |
|
---|
57 | Log3Func(("IRQL=%RU8\n", pThis->u8IRQL));
|
---|
58 |
|
---|
59 | /* NB: It is possible to have GIS set even when CIE/SIEn are all zero; the GIS bit does
|
---|
60 | * not control the interrupt signal. See Figure 4 on page 54 of the HDA 1.0a spec.
|
---|
61 | */
|
---|
62 |
|
---|
63 | /* If global interrupt enable (GIE) is set, check if any enabled interrupts are set. */
|
---|
64 | if ( (HDA_REG(pThis, INTCTL) & HDA_INTCTL_GIE)
|
---|
65 | && (HDA_REG(pThis, INTSTS) & HDA_REG(pThis, INTCTL) & (HDA_INTCTL_CIE | HDA_STRMINT_MASK)))
|
---|
66 | {
|
---|
67 | if (!pThis->u8IRQL)
|
---|
68 | {
|
---|
69 | #ifdef DEBUG
|
---|
70 | if (!pThis->Dbg.IRQ.tsProcessedLastNs)
|
---|
71 | pThis->Dbg.IRQ.tsProcessedLastNs = RTTimeNanoTS();
|
---|
72 |
|
---|
73 | const uint64_t tsLastElapsedNs = RTTimeNanoTS() - pThis->Dbg.IRQ.tsProcessedLastNs;
|
---|
74 |
|
---|
75 | if (!pThis->Dbg.IRQ.tsAssertedNs)
|
---|
76 | pThis->Dbg.IRQ.tsAssertedNs = RTTimeNanoTS();
|
---|
77 |
|
---|
78 | const uint64_t tsAssertedElapsedNs = RTTimeNanoTS() - pThis->Dbg.IRQ.tsAssertedNs;
|
---|
79 |
|
---|
80 | pThis->Dbg.IRQ.cAsserted++;
|
---|
81 | pThis->Dbg.IRQ.tsAssertedTotalNs += tsAssertedElapsedNs;
|
---|
82 |
|
---|
83 | const uint64_t avgAssertedUs = (pThis->Dbg.IRQ.tsAssertedTotalNs / pThis->Dbg.IRQ.cAsserted) / 1000;
|
---|
84 |
|
---|
85 | if (avgAssertedUs > (1000 / HDA_TIMER_HZ) /* ms */ * 1000) /* Exceeds time slot? */
|
---|
86 | Log3Func(("Asserted (%s): %zuus elapsed (%zuus on average) -- %zuus alternation delay\n",
|
---|
87 | pszSource, tsAssertedElapsedNs / 1000,
|
---|
88 | avgAssertedUs,
|
---|
89 | (pThis->Dbg.IRQ.tsDeassertedNs - pThis->Dbg.IRQ.tsAssertedNs) / 1000));
|
---|
90 | #endif
|
---|
91 | Log3Func(("Asserted (%s): %RU64us between alternation (WALCLK=%RU64)\n",
|
---|
92 | pszSource, tsLastElapsedNs / 1000, pThis->u64WalClk));
|
---|
93 |
|
---|
94 | PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0, 1 /* Assert */);
|
---|
95 | pThis->u8IRQL = 1;
|
---|
96 |
|
---|
97 | #ifdef DEBUG
|
---|
98 | pThis->Dbg.IRQ.tsAssertedNs = RTTimeNanoTS();
|
---|
99 | pThis->Dbg.IRQ.tsProcessedLastNs = pThis->Dbg.IRQ.tsAssertedNs;
|
---|
100 | #endif
|
---|
101 | }
|
---|
102 | }
|
---|
103 | else
|
---|
104 | {
|
---|
105 | if (pThis->u8IRQL)
|
---|
106 | {
|
---|
107 | #ifdef DEBUG
|
---|
108 | if (!pThis->Dbg.IRQ.tsProcessedLastNs)
|
---|
109 | pThis->Dbg.IRQ.tsProcessedLastNs = RTTimeNanoTS();
|
---|
110 |
|
---|
111 | const uint64_t tsLastElapsedNs = RTTimeNanoTS() - pThis->Dbg.IRQ.tsProcessedLastNs;
|
---|
112 |
|
---|
113 | if (!pThis->Dbg.IRQ.tsDeassertedNs)
|
---|
114 | pThis->Dbg.IRQ.tsDeassertedNs = RTTimeNanoTS();
|
---|
115 |
|
---|
116 | const uint64_t tsDeassertedElapsedNs = RTTimeNanoTS() - pThis->Dbg.IRQ.tsDeassertedNs;
|
---|
117 |
|
---|
118 | pThis->Dbg.IRQ.cDeasserted++;
|
---|
119 | pThis->Dbg.IRQ.tsDeassertedTotalNs += tsDeassertedElapsedNs;
|
---|
120 |
|
---|
121 | const uint64_t avgDeassertedUs = (pThis->Dbg.IRQ.tsDeassertedTotalNs / pThis->Dbg.IRQ.cDeasserted) / 1000;
|
---|
122 |
|
---|
123 | if (avgDeassertedUs > (1000 / HDA_TIMER_HZ) /* ms */ * 1000) /* Exceeds time slot? */
|
---|
124 | Log3Func(("Deasserted (%s): %zuus elapsed (%zuus on average)\n",
|
---|
125 | pszSource, tsDeassertedElapsedNs / 1000, avgDeassertedUs));
|
---|
126 |
|
---|
127 | Log3Func(("Deasserted (%s): %RU64us between alternation (WALCLK=%RU64)\n",
|
---|
128 | pszSource, tsLastElapsedNs / 1000, pThis->u64WalClk));
|
---|
129 | #endif
|
---|
130 | PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0, 0 /* Deassert */);
|
---|
131 | pThis->u8IRQL = 0;
|
---|
132 |
|
---|
133 | #ifdef DEBUG
|
---|
134 | pThis->Dbg.IRQ.tsDeassertedNs = RTTimeNanoTS();
|
---|
135 | pThis->Dbg.IRQ.tsProcessedLastNs = pThis->Dbg.IRQ.tsDeassertedNs;
|
---|
136 | #endif
|
---|
137 | }
|
---|
138 | }
|
---|
139 |
|
---|
140 | return VINF_SUCCESS;
|
---|
141 | }
|
---|
142 |
|
---|
143 | /**
|
---|
144 | * Retrieves the currently set value for the wall clock.
|
---|
145 | *
|
---|
146 | * @return IPRT status code.
|
---|
147 | * @return Currently set wall clock value.
|
---|
148 | * @param pThis HDA state.
|
---|
149 | *
|
---|
150 | * @remark Operation is atomic.
|
---|
151 | */
|
---|
152 | uint64_t hdaWalClkGetCurrent(PHDASTATE pThis)
|
---|
153 | {
|
---|
154 | return ASMAtomicReadU64(&pThis->u64WalClk);
|
---|
155 | }
|
---|
156 |
|
---|
157 | #ifdef IN_RING3
|
---|
158 | /**
|
---|
159 | * Sets the actual WALCLK register to the specified wall clock value.
|
---|
160 | * The specified wall clock value only will be set (unless fForce is set to true) if all
|
---|
161 | * handled HDA streams have passed (in time) that value. This guarantees that the WALCLK
|
---|
162 | * register stays in sync with all handled HDA streams.
|
---|
163 | *
|
---|
164 | * @return true if the WALCLK register has been updated, false if not.
|
---|
165 | * @param pThis HDA state.
|
---|
166 | * @param u64WalClk Wall clock value to set WALCLK register to.
|
---|
167 | * @param fForce Whether to force setting the wall clock value or not.
|
---|
168 | */
|
---|
169 | bool hdaWalClkSet(PHDASTATE pThis, uint64_t u64WalClk, bool fForce)
|
---|
170 | {
|
---|
171 | const bool fFrontPassed = hdaStreamPeriodHasPassedAbsWalClk (&hdaGetStreamFromSink(pThis, &pThis->SinkFront)->State.Period,
|
---|
172 | u64WalClk);
|
---|
173 | const uint64_t u64FrontAbsWalClk = hdaStreamPeriodGetAbsElapsedWalClk(&hdaGetStreamFromSink(pThis, &pThis->SinkFront)->State.Period);
|
---|
174 | #ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
|
---|
175 | # error "Implement me!"
|
---|
176 | #endif
|
---|
177 |
|
---|
178 | const bool fLineInPassed = hdaStreamPeriodHasPassedAbsWalClk (&hdaGetStreamFromSink(pThis, &pThis->SinkLineIn)->State.Period, u64WalClk);
|
---|
179 | const uint64_t u64LineInAbsWalClk = hdaStreamPeriodGetAbsElapsedWalClk(&hdaGetStreamFromSink(pThis, &pThis->SinkLineIn)->State.Period);
|
---|
180 | #ifdef VBOX_WITH_HDA_MIC_IN
|
---|
181 | const bool fMicInPassed = hdaStreamPeriodHasPassedAbsWalClk (&hdaGetStreamFromSink(pThis, &pThis->SinkMicIn)->State.Period, u64WalClk);
|
---|
182 | const uint64_t u64MicInAbsWalClk = hdaStreamPeriodGetAbsElapsedWalClk(&hdaGetStreamFromSink(pThis, &pThis->SinkMicIn)->State.Period);
|
---|
183 | #endif
|
---|
184 |
|
---|
185 | #ifdef VBOX_STRICT
|
---|
186 | const uint64_t u64WalClkCur = ASMAtomicReadU64(&pThis->u64WalClk);
|
---|
187 | #endif
|
---|
188 | uint64_t u64WalClkSet = u64WalClk;
|
---|
189 |
|
---|
190 | /* Only drive the WALCLK register forward if all (active) stream periods have passed
|
---|
191 | * the specified point in time given by u64WalClk. */
|
---|
192 | if ( ( fFrontPassed
|
---|
193 | #ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
|
---|
194 | # error "Implement me!"
|
---|
195 | #endif
|
---|
196 | && fLineInPassed
|
---|
197 | #ifdef VBOX_WITH_HDA_MIC_IN
|
---|
198 | && fMicInPassed
|
---|
199 | #endif
|
---|
200 | )
|
---|
201 | || fForce)
|
---|
202 | {
|
---|
203 | if (!fForce)
|
---|
204 | {
|
---|
205 | /* Get the maximum value of all periods we need to handle.
|
---|
206 | * Not the most elegant solution, but works for now ... */
|
---|
207 | u64WalClk = RT_MAX(u64WalClkSet, u64FrontAbsWalClk);
|
---|
208 | #ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
|
---|
209 | # error "Implement me!"
|
---|
210 | #endif
|
---|
211 | u64WalClk = RT_MAX(u64WalClkSet, u64LineInAbsWalClk);
|
---|
212 | #ifdef VBOX_WITH_HDA_MIC_IN
|
---|
213 | u64WalClk = RT_MAX(u64WalClkSet, u64MicInAbsWalClk);
|
---|
214 | #endif
|
---|
215 |
|
---|
216 | #ifdef VBOX_STRICT
|
---|
217 | AssertMsg(u64WalClkSet >= u64WalClkCur,
|
---|
218 | ("Setting WALCLK to a value going backwards does not make any sense (old %RU64 vs. new %RU64)\n",
|
---|
219 | u64WalClkCur, u64WalClkSet));
|
---|
220 | if (u64WalClkSet == u64WalClkCur) /* Setting a stale value? */
|
---|
221 | {
|
---|
222 | if (pThis->u8WalClkStaleCnt++ > 3)
|
---|
223 | AssertMsgFailed(("Setting WALCLK to a stale value (%RU64) too often isn't a good idea really. "
|
---|
224 | "Good luck with stuck audio stuff.\n", u64WalClkSet));
|
---|
225 | }
|
---|
226 | else
|
---|
227 | pThis->u8WalClkStaleCnt = 0;
|
---|
228 | #endif
|
---|
229 | }
|
---|
230 |
|
---|
231 | /* Set the new WALCLK value. */
|
---|
232 | ASMAtomicWriteU64(&pThis->u64WalClk, u64WalClkSet);
|
---|
233 | }
|
---|
234 |
|
---|
235 | const uint64_t u64WalClkNew = hdaWalClkGetCurrent(pThis);
|
---|
236 |
|
---|
237 | Log3Func(("Cur: %RU64, New: %RU64 (force %RTbool) -> %RU64 %s\n",
|
---|
238 | u64WalClkCur, u64WalClk, fForce,
|
---|
239 | u64WalClkNew, u64WalClkNew == u64WalClk ? "[OK]" : "[DELAYED]"));
|
---|
240 |
|
---|
241 | return (u64WalClkNew == u64WalClk);
|
---|
242 | }
|
---|
243 |
|
---|
244 | /**
|
---|
245 | * Returns the audio direction of a specified stream descriptor.
|
---|
246 | *
|
---|
247 | * The register layout specifies that input streams (SDI) come first,
|
---|
248 | * followed by the output streams (SDO). So every stream ID below HDA_MAX_SDI
|
---|
249 | * is an input stream, whereas everything >= HDA_MAX_SDI is an output stream.
|
---|
250 | *
|
---|
251 | * Note: SDnFMT register does not provide that information, so we have to judge
|
---|
252 | * for ourselves.
|
---|
253 | *
|
---|
254 | * @return Audio direction.
|
---|
255 | */
|
---|
256 | PDMAUDIODIR hdaGetDirFromSD(uint8_t uSD)
|
---|
257 | {
|
---|
258 | AssertReturn(uSD < HDA_MAX_STREAMS, PDMAUDIODIR_UNKNOWN);
|
---|
259 |
|
---|
260 | if (uSD < HDA_MAX_SDI)
|
---|
261 | return PDMAUDIODIR_IN;
|
---|
262 |
|
---|
263 | return PDMAUDIODIR_OUT;
|
---|
264 | }
|
---|
265 |
|
---|
266 | /**
|
---|
267 | * Returns the HDA stream of specified stream descriptor number.
|
---|
268 | *
|
---|
269 | * @return Pointer to HDA stream, or NULL if none found.
|
---|
270 | */
|
---|
271 | PHDASTREAM hdaGetStreamFromSD(PHDASTATE pThis, uint8_t uSD)
|
---|
272 | {
|
---|
273 | AssertPtrReturn(pThis, NULL);
|
---|
274 | AssertReturn(uSD < HDA_MAX_STREAMS, NULL);
|
---|
275 |
|
---|
276 | if (uSD >= HDA_MAX_STREAMS)
|
---|
277 | {
|
---|
278 | AssertMsgFailed(("Invalid / non-handled SD%RU8\n", uSD));
|
---|
279 | return NULL;
|
---|
280 | }
|
---|
281 |
|
---|
282 | return &pThis->aStreams[uSD];
|
---|
283 | }
|
---|
284 |
|
---|
285 | /**
|
---|
286 | * Returns the HDA stream of specified HDA sink.
|
---|
287 | *
|
---|
288 | * @return Pointer to HDA stream, or NULL if none found.
|
---|
289 | */
|
---|
290 | PHDASTREAM hdaGetStreamFromSink(PHDASTATE pThis, PHDAMIXERSINK pSink)
|
---|
291 | {
|
---|
292 | AssertPtrReturn(pThis, NULL);
|
---|
293 | AssertPtrReturn(pSink, NULL);
|
---|
294 |
|
---|
295 | /** @todo Do something with the channel mapping here? */
|
---|
296 | return hdaGetStreamFromSD(pThis, pSink->uSD);
|
---|
297 | }
|
---|
298 |
|
---|
299 | /**
|
---|
300 | * Reads DMA data from a given HDA output stream into its associated FIFO buffer.
|
---|
301 | *
|
---|
302 | * @return IPRT status code.
|
---|
303 | * @param pThis HDA state.
|
---|
304 | * @param pStream HDA output stream to read DMA data from.
|
---|
305 | * @param cbToRead How much (in bytes) to read from DMA.
|
---|
306 | * @param pcbRead Returns read bytes from DMA. Optional.
|
---|
307 | */
|
---|
308 | int hdaDMARead(PHDASTATE pThis, PHDASTREAM pStream, uint32_t cbToRead, uint32_t *pcbRead)
|
---|
309 | {
|
---|
310 | AssertPtrReturn(pThis, VERR_INVALID_POINTER);
|
---|
311 | AssertPtrReturn(pStream, VERR_INVALID_POINTER);
|
---|
312 | /* pcbRead is optional. */
|
---|
313 |
|
---|
314 | int rc = VINF_SUCCESS;
|
---|
315 |
|
---|
316 | uint32_t cbReadTotal = 0;
|
---|
317 |
|
---|
318 | PHDABDLE pBDLE = &pStream->State.BDLE;
|
---|
319 | PRTCIRCBUF pCircBuf = pStream->State.pCircBuf;
|
---|
320 | AssertPtr(pCircBuf);
|
---|
321 |
|
---|
322 | #ifdef HDA_DEBUG_SILENCE
|
---|
323 | uint64_t csSilence = 0;
|
---|
324 |
|
---|
325 | pStream->Dbg.cSilenceThreshold = 100;
|
---|
326 | pStream->Dbg.cbSilenceReadMin = _1M;
|
---|
327 | #endif
|
---|
328 |
|
---|
329 | while (cbToRead)
|
---|
330 | {
|
---|
331 | /* Make sure we only copy as much as the stream's FIFO can hold (SDFIFOS, 18.2.39). */
|
---|
332 | void *pvBuf;
|
---|
333 | size_t cbBuf;
|
---|
334 | RTCircBufAcquireWriteBlock(pCircBuf, RT_MIN(cbToRead, pStream->u16FIFOS), &pvBuf, &cbBuf);
|
---|
335 |
|
---|
336 | if (cbBuf)
|
---|
337 | {
|
---|
338 | /*
|
---|
339 | * Read from the current BDLE's DMA buffer.
|
---|
340 | */
|
---|
341 | int rc2 = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns),
|
---|
342 | pBDLE->Desc.u64BufAdr + pBDLE->State.u32BufOff + cbReadTotal, pvBuf, cbBuf);
|
---|
343 | AssertRC(rc2);
|
---|
344 |
|
---|
345 | #ifdef HDA_DEBUG_SILENCE
|
---|
346 | uint16_t *pu16Buf = (uint16_t *)pvBuf;
|
---|
347 | for (size_t i = 0; i < cbBuf / sizeof(uint16_t); i++)
|
---|
348 | {
|
---|
349 | if (*pu16Buf == 0)
|
---|
350 | {
|
---|
351 | csSilence++;
|
---|
352 | }
|
---|
353 | else
|
---|
354 | break;
|
---|
355 | pu16Buf++;
|
---|
356 | }
|
---|
357 | #endif
|
---|
358 |
|
---|
359 | #ifdef VBOX_AUDIO_DEBUG_DUMP_PCM_DATA
|
---|
360 | if (cbBuf)
|
---|
361 | {
|
---|
362 | RTFILE fh;
|
---|
363 | rc2 = RTFileOpen(&fh, VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH "hdaDMARead.pcm",
|
---|
364 | RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND | RTFILE_O_WRITE | RTFILE_O_DENY_NONE);
|
---|
365 | if (RT_SUCCESS(rc2))
|
---|
366 | {
|
---|
367 | RTFileWrite(fh, pvBuf, cbBuf, NULL);
|
---|
368 | RTFileClose(fh);
|
---|
369 | }
|
---|
370 | else
|
---|
371 | AssertRC(rc2);
|
---|
372 | }
|
---|
373 | #endif
|
---|
374 |
|
---|
375 | #if 0
|
---|
376 | pStream->Dbg.cbReadTotal += cbBuf;
|
---|
377 | const uint64_t cbWritten = ASMAtomicReadU64(&pStream->Dbg.cbWrittenTotal);
|
---|
378 | Log3Func(("cbRead=%RU64, cbWritten=%RU64 -> %RU64 bytes %s\n",
|
---|
379 | pStream->Dbg.cbReadTotal, cbWritten,
|
---|
380 | pStream->Dbg.cbReadTotal >= cbWritten ? pStream->Dbg.cbReadTotal - cbWritten : cbWritten - pStream->Dbg.cbReadTotal,
|
---|
381 | pStream->Dbg.cbReadTotal > cbWritten ? "too much" : "too little"));
|
---|
382 | #endif
|
---|
383 |
|
---|
384 | #ifdef VBOX_WITH_STATISTICS
|
---|
385 | STAM_COUNTER_ADD(&pThis->StatBytesRead, cbBuf);
|
---|
386 | #endif
|
---|
387 | }
|
---|
388 |
|
---|
389 | RTCircBufReleaseWriteBlock(pCircBuf, cbBuf);
|
---|
390 |
|
---|
391 | if (!cbBuf)
|
---|
392 | {
|
---|
393 | rc = VERR_BUFFER_OVERFLOW;
|
---|
394 | break;
|
---|
395 | }
|
---|
396 |
|
---|
397 | cbReadTotal += (uint32_t)cbBuf;
|
---|
398 | Assert(pBDLE->State.u32BufOff + cbReadTotal <= pBDLE->Desc.u32BufSize);
|
---|
399 |
|
---|
400 | Assert(cbToRead >= cbBuf);
|
---|
401 | cbToRead -= (uint32_t)cbBuf;
|
---|
402 | }
|
---|
403 |
|
---|
404 | #ifdef HDA_DEBUG_SILENCE
|
---|
405 |
|
---|
406 | if (csSilence)
|
---|
407 | pStream->Dbg.csSilence += csSilence;
|
---|
408 |
|
---|
409 | if ( csSilence == 0
|
---|
410 | && pStream->Dbg.csSilence > pStream->Dbg.cSilenceThreshold
|
---|
411 | && pStream->Dbg.cbReadTotal >= pStream->Dbg.cbSilenceReadMin)
|
---|
412 | {
|
---|
413 | LogFunc(("Silent block detected: %RU64 audio samples\n", pStream->Dbg.csSilence));
|
---|
414 | pStream->Dbg.csSilence = 0;
|
---|
415 | }
|
---|
416 | #endif
|
---|
417 |
|
---|
418 | if (RT_SUCCESS(rc))
|
---|
419 | {
|
---|
420 | if (pcbRead)
|
---|
421 | *pcbRead = cbReadTotal;
|
---|
422 | }
|
---|
423 |
|
---|
424 | return rc;
|
---|
425 | }
|
---|
426 |
|
---|
427 | /**
|
---|
428 | * Writes audio data from an HDA input stream's FIFO to its associated DMA area.
|
---|
429 | *
|
---|
430 | * @return IPRT status code.
|
---|
431 | * @param pThis HDA state.
|
---|
432 | * @param pStream HDA input stream to write audio data to.
|
---|
433 | * @param cbToWrite How much (in bytes) to write.
|
---|
434 | * @param pcbWritten Returns written bytes on success. Optional.
|
---|
435 | */
|
---|
436 | int hdaDMAWrite(PHDASTATE pThis, PHDASTREAM pStream, uint32_t cbToWrite, uint32_t *pcbWritten)
|
---|
437 | {
|
---|
438 | AssertPtrReturn(pThis, VERR_INVALID_POINTER);
|
---|
439 | AssertPtrReturn(pStream, VERR_INVALID_POINTER);
|
---|
440 | /* pcbWritten is optional. */
|
---|
441 |
|
---|
442 | PHDABDLE pBDLE = &pStream->State.BDLE;
|
---|
443 | PRTCIRCBUF pCircBuf = pStream->State.pCircBuf;
|
---|
444 | AssertPtr(pCircBuf);
|
---|
445 |
|
---|
446 | int rc = VINF_SUCCESS;
|
---|
447 |
|
---|
448 | uint32_t cbWrittenTotal = 0;
|
---|
449 |
|
---|
450 | void *pvBuf = NULL;
|
---|
451 | size_t cbBuf = 0;
|
---|
452 |
|
---|
453 | uint8_t abSilence[HDA_FIFO_MAX + 1] = { 0 };
|
---|
454 |
|
---|
455 | while (cbToWrite)
|
---|
456 | {
|
---|
457 | size_t cbChunk = RT_MIN(cbToWrite, pStream->u16FIFOS);
|
---|
458 |
|
---|
459 | size_t cbBlock = 0;
|
---|
460 | RTCircBufAcquireReadBlock(pCircBuf, cbChunk, &pvBuf, &cbBlock);
|
---|
461 |
|
---|
462 | if (cbBlock)
|
---|
463 | {
|
---|
464 | cbBuf = cbBlock;
|
---|
465 | }
|
---|
466 | else /* No audio data available? Send silence. */
|
---|
467 | {
|
---|
468 | pvBuf = &abSilence;
|
---|
469 | cbBuf = cbChunk;
|
---|
470 | }
|
---|
471 |
|
---|
472 | /* Sanity checks. */
|
---|
473 | Assert(cbBuf <= pBDLE->Desc.u32BufSize - pBDLE->State.u32BufOff);
|
---|
474 | Assert(cbBuf % HDA_FRAME_SIZE == 0);
|
---|
475 | Assert((cbBuf >> 1) >= 1);
|
---|
476 |
|
---|
477 | #ifdef VBOX_AUDIO_DEBUG_DUMP_PCM_DATA
|
---|
478 | RTFILE fh;
|
---|
479 | RTFileOpen(&fh, VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH "hdaDMAWrite.pcm",
|
---|
480 | RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND | RTFILE_O_WRITE | RTFILE_O_DENY_NONE);
|
---|
481 | RTFileWrite(fh, pvBuf, cbBuf, NULL);
|
---|
482 | RTFileClose(fh);
|
---|
483 | #endif
|
---|
484 | int rc2 = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns),
|
---|
485 | pBDLE->Desc.u64BufAdr + pBDLE->State.u32BufOff + cbWrittenTotal,
|
---|
486 | pvBuf, cbBuf);
|
---|
487 | AssertRC(rc2);
|
---|
488 |
|
---|
489 | #ifdef VBOX_WITH_STATISTICS
|
---|
490 | STAM_COUNTER_ADD(&pThis->StatBytesWritten, cbBuf);
|
---|
491 | #endif
|
---|
492 | if (cbBlock)
|
---|
493 | RTCircBufReleaseReadBlock(pCircBuf, cbBlock);
|
---|
494 |
|
---|
495 | Assert(cbToWrite >= cbBuf);
|
---|
496 | cbToWrite -= (uint32_t)cbBuf;
|
---|
497 |
|
---|
498 | cbWrittenTotal += (uint32_t)cbBuf;
|
---|
499 | }
|
---|
500 |
|
---|
501 | if (RT_SUCCESS(rc))
|
---|
502 | {
|
---|
503 | if (pcbWritten)
|
---|
504 | *pcbWritten = cbWrittenTotal;
|
---|
505 | }
|
---|
506 | else
|
---|
507 | LogFunc(("Failed with %Rrc\n", rc));
|
---|
508 |
|
---|
509 | return rc;
|
---|
510 | }
|
---|
511 | #endif /* IN_RING3 */
|
---|
512 |
|
---|
513 | /**
|
---|
514 | * Returns a new INTSTS value based on the current device state.
|
---|
515 | *
|
---|
516 | * @returns Determined INTSTS register value.
|
---|
517 | * @param pThis HDA state.
|
---|
518 | *
|
---|
519 | * @remark This function does *not* set INTSTS!
|
---|
520 | */
|
---|
521 | uint32_t hdaGetINTSTS(PHDASTATE pThis)
|
---|
522 | {
|
---|
523 | uint32_t intSts = 0;
|
---|
524 |
|
---|
525 | /* Check controller interrupts (RIRB, STATEST). */
|
---|
526 | if ( (HDA_REG(pThis, RIRBSTS) & HDA_REG(pThis, RIRBCTL) & (HDA_RIRBCTL_ROIC | HDA_RIRBCTL_RINTCTL))
|
---|
527 | /* SDIN State Change Status Flags (SCSF). */
|
---|
528 | || (HDA_REG(pThis, STATESTS) & HDA_STATESTS_SCSF_MASK))
|
---|
529 | {
|
---|
530 | intSts |= HDA_INTSTS_CIS; /* Set the Controller Interrupt Status (CIS). */
|
---|
531 | }
|
---|
532 |
|
---|
533 | if (HDA_REG(pThis, STATESTS) & HDA_REG(pThis, WAKEEN))
|
---|
534 | {
|
---|
535 | intSts |= HDA_INTSTS_CIS; /* Touch Controller Interrupt Status (CIS). */
|
---|
536 | }
|
---|
537 |
|
---|
538 | /* For each stream, check if any interrupt status bit is set and enabled. */
|
---|
539 | for (uint8_t iStrm = 0; iStrm < HDA_MAX_STREAMS; ++iStrm)
|
---|
540 | {
|
---|
541 | if (HDA_STREAM_REG(pThis, STS, iStrm) & HDA_STREAM_REG(pThis, CTL, iStrm) & (HDA_SDCTL_DEIE | HDA_SDCTL_FEIE | HDA_SDCTL_IOCE))
|
---|
542 | {
|
---|
543 | Log3Func(("[SD%d] interrupt status set\n", iStrm));
|
---|
544 | intSts |= RT_BIT(iStrm);
|
---|
545 | }
|
---|
546 | }
|
---|
547 |
|
---|
548 | if (intSts)
|
---|
549 | intSts |= HDA_INTSTS_GIS; /* Set the Global Interrupt Status (GIS). */
|
---|
550 |
|
---|
551 | Log3Func(("-> 0x%x\n", intSts));
|
---|
552 |
|
---|
553 | return intSts;
|
---|
554 | }
|
---|
555 |
|
---|
556 | /**
|
---|
557 | * Converts an HDA stream's SDFMT register into a given PCM properties structure.
|
---|
558 | *
|
---|
559 | * @return IPRT status code.
|
---|
560 | * @param u32SDFMT The HDA stream's SDFMT value to convert.
|
---|
561 | * @param pProps PCM properties structure to hold converted result on success.
|
---|
562 | */
|
---|
563 | int hdaSDFMTToPCMProps(uint32_t u32SDFMT, PPDMAUDIOPCMPROPS pProps)
|
---|
564 | {
|
---|
565 | AssertPtrReturn(pProps, VERR_INVALID_POINTER);
|
---|
566 |
|
---|
567 | # define EXTRACT_VALUE(v, mask, shift) ((v & ((mask) << (shift))) >> (shift))
|
---|
568 |
|
---|
569 | int rc = VINF_SUCCESS;
|
---|
570 |
|
---|
571 | uint32_t u32Hz = EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_BASE_RATE_MASK, HDA_SDFMT_BASE_RATE_SHIFT)
|
---|
572 | ? 44100 : 48000;
|
---|
573 | uint32_t u32HzMult = 1;
|
---|
574 | uint32_t u32HzDiv = 1;
|
---|
575 |
|
---|
576 | switch (EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_MULT_MASK, HDA_SDFMT_MULT_SHIFT))
|
---|
577 | {
|
---|
578 | case 0: u32HzMult = 1; break;
|
---|
579 | case 1: u32HzMult = 2; break;
|
---|
580 | case 2: u32HzMult = 3; break;
|
---|
581 | case 3: u32HzMult = 4; break;
|
---|
582 | default:
|
---|
583 | LogFunc(("Unsupported multiplier %x\n",
|
---|
584 | EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_MULT_MASK, HDA_SDFMT_MULT_SHIFT)));
|
---|
585 | rc = VERR_NOT_SUPPORTED;
|
---|
586 | break;
|
---|
587 | }
|
---|
588 | switch (EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_DIV_MASK, HDA_SDFMT_DIV_SHIFT))
|
---|
589 | {
|
---|
590 | case 0: u32HzDiv = 1; break;
|
---|
591 | case 1: u32HzDiv = 2; break;
|
---|
592 | case 2: u32HzDiv = 3; break;
|
---|
593 | case 3: u32HzDiv = 4; break;
|
---|
594 | case 4: u32HzDiv = 5; break;
|
---|
595 | case 5: u32HzDiv = 6; break;
|
---|
596 | case 6: u32HzDiv = 7; break;
|
---|
597 | case 7: u32HzDiv = 8; break;
|
---|
598 | default:
|
---|
599 | LogFunc(("Unsupported divisor %x\n",
|
---|
600 | EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_DIV_MASK, HDA_SDFMT_DIV_SHIFT)));
|
---|
601 | rc = VERR_NOT_SUPPORTED;
|
---|
602 | break;
|
---|
603 | }
|
---|
604 |
|
---|
605 | uint8_t cBits = 0;
|
---|
606 | switch (EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_BITS_MASK, HDA_SDFMT_BITS_SHIFT))
|
---|
607 | {
|
---|
608 | case 0:
|
---|
609 | cBits = 8;
|
---|
610 | break;
|
---|
611 | case 1:
|
---|
612 | cBits = 16;
|
---|
613 | break;
|
---|
614 | case 4:
|
---|
615 | cBits = 32;
|
---|
616 | break;
|
---|
617 | default:
|
---|
618 | AssertMsgFailed(("Unsupported bits per sample %x\n",
|
---|
619 | EXTRACT_VALUE(u32SDFMT, HDA_SDFMT_BITS_MASK, HDA_SDFMT_BITS_SHIFT)));
|
---|
620 | rc = VERR_NOT_SUPPORTED;
|
---|
621 | break;
|
---|
622 | }
|
---|
623 |
|
---|
624 | if (RT_SUCCESS(rc))
|
---|
625 | {
|
---|
626 | RT_BZERO(pProps, sizeof(PDMAUDIOPCMPROPS));
|
---|
627 |
|
---|
628 | pProps->cBits = cBits;
|
---|
629 | pProps->fSigned = true;
|
---|
630 | pProps->cChannels = (u32SDFMT & 0xf) + 1;
|
---|
631 | pProps->uHz = u32Hz * u32HzMult / u32HzDiv;
|
---|
632 | pProps->cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pProps->cBits, pProps->cChannels);
|
---|
633 | }
|
---|
634 |
|
---|
635 | # undef EXTRACT_VALUE
|
---|
636 | return rc;
|
---|
637 | }
|
---|
638 |
|
---|
639 | #ifdef IN_RING3
|
---|
640 | /**
|
---|
641 | * Fetches a Bundle Descriptor List Entry (BDLE) from the DMA engine.
|
---|
642 | *
|
---|
643 | * @param pThis Pointer to HDA state.
|
---|
644 | * @param pBDLE Where to store the fetched result.
|
---|
645 | * @param u64BaseDMA Address base of DMA engine to use.
|
---|
646 | * @param u16Entry BDLE entry to fetch.
|
---|
647 | */
|
---|
648 | int hdaBDLEFetch(PHDASTATE pThis, PHDABDLE pBDLE, uint64_t u64BaseDMA, uint16_t u16Entry)
|
---|
649 | {
|
---|
650 | AssertPtrReturn(pThis, VERR_INVALID_POINTER);
|
---|
651 | AssertPtrReturn(pBDLE, VERR_INVALID_POINTER);
|
---|
652 | AssertReturn(u64BaseDMA, VERR_INVALID_PARAMETER);
|
---|
653 |
|
---|
654 | if (!u64BaseDMA)
|
---|
655 | {
|
---|
656 | LogRel2(("HDA: Unable to fetch BDLE #%RU16 - no base DMA address set (yet)\n", u16Entry));
|
---|
657 | return VERR_NOT_FOUND;
|
---|
658 | }
|
---|
659 | /** @todo Compare u16Entry with LVI. */
|
---|
660 |
|
---|
661 | int rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BaseDMA + (u16Entry * sizeof(HDABDLEDESC)),
|
---|
662 | &pBDLE->Desc, sizeof(pBDLE->Desc));
|
---|
663 |
|
---|
664 | if (RT_SUCCESS(rc))
|
---|
665 | {
|
---|
666 | /* Reset internal state. */
|
---|
667 | RT_ZERO(pBDLE->State);
|
---|
668 | pBDLE->State.u32BDLIndex = u16Entry;
|
---|
669 | }
|
---|
670 |
|
---|
671 | Log3Func(("Entry #%d @ 0x%x: %R[bdle], rc=%Rrc\n", u16Entry, u64BaseDMA + (u16Entry * sizeof(HDABDLEDESC)), pBDLE, rc));
|
---|
672 |
|
---|
673 |
|
---|
674 | return VINF_SUCCESS;
|
---|
675 | }
|
---|
676 |
|
---|
677 | /**
|
---|
678 | * Tells whether a given BDLE is complete or not.
|
---|
679 | *
|
---|
680 | * @return true if BDLE is complete, false if not.
|
---|
681 | * @param pBDLE BDLE to retrieve status for.
|
---|
682 | */
|
---|
683 | bool hdaBDLEIsComplete(PHDABDLE pBDLE)
|
---|
684 | {
|
---|
685 | bool fIsComplete = false;
|
---|
686 |
|
---|
687 | if ( !pBDLE->Desc.u32BufSize /* There can be BDLEs with 0 size. */
|
---|
688 | || (pBDLE->State.u32BufOff >= pBDLE->Desc.u32BufSize))
|
---|
689 | {
|
---|
690 | Assert(pBDLE->State.u32BufOff == pBDLE->Desc.u32BufSize);
|
---|
691 | fIsComplete = true;
|
---|
692 | }
|
---|
693 |
|
---|
694 | Log3Func(("%R[bdle] => %s\n", pBDLE, fIsComplete ? "COMPLETE" : "INCOMPLETE"));
|
---|
695 |
|
---|
696 | return fIsComplete;
|
---|
697 | }
|
---|
698 |
|
---|
699 | /**
|
---|
700 | * Tells whether a given BDLE needs an interrupt or not.
|
---|
701 | *
|
---|
702 | * @return true if BDLE needs an interrupt, false if not.
|
---|
703 | * @param pBDLE BDLE to retrieve status for.
|
---|
704 | */
|
---|
705 | bool hdaBDLENeedsInterrupt(PHDABDLE pBDLE)
|
---|
706 | {
|
---|
707 | return (pBDLE->Desc.fFlags & HDA_BDLE_FLAG_IOC);
|
---|
708 | }
|
---|
709 | #endif /* IN_RING3 */
|
---|
710 |
|
---|