VirtualBox

source: vbox/trunk/src/VBox/Devices/Audio/DevHdaStream.cpp@ 107876

Last change on this file since 107876 was 107622, checked in by vboxsync, 6 weeks ago

src/VBox/Devices/Audio/DevHdaStream.cpp: Fixed warnings found by Parfait (repeated expansion of macro argument with side-effect). Harmless. jiraref:VBP-1424

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 104.4 KB
Line 
1/* $Id: DevHdaStream.cpp 107622 2025-01-10 10:03:16Z vboxsync $ */
2/** @file
3 * Intel HD Audio Controller Emulation - Streams.
4 */
5
6/*
7 * Copyright (C) 2017-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_DEV_HDA
33#include <VBox/log.h>
34
35#include <iprt/mem.h>
36#include <iprt/semaphore.h>
37#include <iprt/zero.h>
38
39#include <VBox/AssertGuest.h>
40#include <VBox/vmm/pdmdev.h>
41#include <VBox/vmm/pdmaudioifs.h>
42#include <VBox/vmm/pdmaudioinline.h>
43
44#include "AudioHlp.h"
45
46#include "DevHda.h"
47
48#ifdef VBOX_WITH_DTRACE
49# include "dtrace/VBoxDD.h"
50#endif
51
52
53/*********************************************************************************************************************************
54* Internal Functions *
55*********************************************************************************************************************************/
56#if defined(IN_RING3) || defined(VBOX_HDA_WITH_ON_REG_ACCESS_DMA)
57static void hdaStreamSetPositionAbs(PHDASTREAM pStreamShared, PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t uLPIB);
58#endif
59#ifdef IN_RING3
60# ifdef VBOX_HDA_WITH_ON_REG_ACCESS_DMA
61static void hdaR3StreamFlushDmaBounceBufferOutput(PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3);
62# endif
63static uint32_t hdaR3StreamHandleDmaBufferOverrun(PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, PAUDMIXSINK pSink,
64 uint32_t cbNeeded, uint64_t nsNow,
65 const char *pszCaller, uint32_t const cbStreamFree);
66static void hdaR3StreamUpdateDma(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTATER3 pThisCC,
67 PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3);
68#endif
69
70
71#ifdef IN_RING3
72
73/**
74 * Creates an HDA stream.
75 *
76 * @returns VBox status code.
77 * @param pStreamShared The HDA stream to construct - shared bits.
78 * @param pStreamR3 The HDA stream to construct - ring-3 bits.
79 * @param pThis The shared HDA device instance.
80 * @param pThisCC The ring-3 HDA device instance.
81 * @param uSD Stream descriptor number to assign.
82 */
83int hdaR3StreamConstruct(PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, PHDASTATE pThis, PHDASTATER3 pThisCC, uint8_t uSD)
84{
85 pStreamR3->u8SD = uSD;
86 pStreamShared->u8SD = uSD;
87 pStreamR3->pMixSink = NULL;
88 pStreamR3->pHDAStateShared = pThis;
89 pStreamR3->pHDAStateR3 = pThisCC;
90 Assert(pStreamShared->hTimer != NIL_TMTIMERHANDLE); /* hdaR3Construct initalized this one already. */
91
92 pStreamShared->State.fInReset = false;
93 pStreamShared->State.fRunning = false;
94
95 AssertPtr(pStreamR3->pHDAStateR3);
96 AssertPtr(pStreamR3->pHDAStateR3->pDevIns);
97
98 const bool fIsInput = hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN;
99
100 if (fIsInput)
101 {
102 pStreamShared->State.Cfg.enmPath = PDMAUDIOPATH_UNKNOWN;
103 pStreamShared->State.Cfg.enmDir = PDMAUDIODIR_IN;
104 }
105 else
106 {
107 pStreamShared->State.Cfg.enmPath = PDMAUDIOPATH_UNKNOWN;
108 pStreamShared->State.Cfg.enmDir = PDMAUDIODIR_OUT;
109 }
110
111 pStreamR3->Dbg.Runtime.fEnabled = pThisCC->Dbg.fEnabled;
112
113 if (pStreamR3->Dbg.Runtime.fEnabled)
114 {
115 int rc2 = AudioHlpFileCreateF(&pStreamR3->Dbg.Runtime.pFileStream, AUDIOHLPFILE_FLAGS_NONE, AUDIOHLPFILETYPE_WAV,
116 pThisCC->Dbg.pszOutPath, AUDIOHLPFILENAME_FLAGS_NONE, 0 /*uInstance*/,
117 fIsInput ? "hdaStreamWriteSD%RU8" : "hdaStreamReadSD%RU8", uSD);
118 AssertRC(rc2);
119
120 /* pFileDMARaw */
121 rc2 = AudioHlpFileCreateF(&pStreamR3->Dbg.Runtime.pFileDMARaw, AUDIOHLPFILE_FLAGS_NONE, AUDIOHLPFILETYPE_WAV,
122 pThisCC->Dbg.pszOutPath, AUDIOHLPFILENAME_FLAGS_NONE, 0 /*uInstance*/,
123 fIsInput ? "hdaDMARawWriteSD%RU8" : "hdaDMARawReadSD%RU8", uSD);
124 AssertRC(rc2);
125
126 /* pFileDMAMapped */
127 rc2 = AudioHlpFileCreateF(&pStreamR3->Dbg.Runtime.pFileDMAMapped, AUDIOHLPFILE_FLAGS_NONE, AUDIOHLPFILETYPE_WAV,
128 pThisCC->Dbg.pszOutPath, AUDIOHLPFILENAME_FLAGS_NONE, 0 /*uInstance*/,
129 fIsInput ? "hdaDMAWriteMappedSD%RU8" : "hdaDMAReadMappedSD%RU8", uSD);
130 AssertRC(rc2);
131
132 /* Delete stale debugging files from a former run. */
133 AudioHlpFileDelete(pStreamR3->Dbg.Runtime.pFileStream);
134 AudioHlpFileDelete(pStreamR3->Dbg.Runtime.pFileDMARaw);
135 AudioHlpFileDelete(pStreamR3->Dbg.Runtime.pFileDMAMapped);
136 }
137
138 return VINF_SUCCESS;
139}
140
141/**
142 * Destroys an HDA stream.
143 *
144 * @param pStreamR3 The HDA stream to destroy - ring-3 bits.
145 */
146void hdaR3StreamDestroy(PHDASTREAMR3 pStreamR3)
147{
148 LogFlowFunc(("[SD%RU8] Destroying ...\n", pStreamR3->u8SD));
149 int rc2;
150
151 if (pStreamR3->State.pAioRegSink)
152 {
153 rc2 = AudioMixerSinkRemoveUpdateJob(pStreamR3->State.pAioRegSink, hdaR3StreamUpdateAsyncIoJob, pStreamR3);
154 AssertRC(rc2);
155 pStreamR3->State.pAioRegSink = NULL;
156 }
157
158 if (pStreamR3->State.pCircBuf)
159 {
160 RTCircBufDestroy(pStreamR3->State.pCircBuf);
161 pStreamR3->State.pCircBuf = NULL;
162 pStreamR3->State.StatDmaBufSize = 0;
163 pStreamR3->State.StatDmaBufUsed = 0;
164 }
165
166 if (pStreamR3->Dbg.Runtime.fEnabled)
167 {
168 AudioHlpFileDestroy(pStreamR3->Dbg.Runtime.pFileStream);
169 pStreamR3->Dbg.Runtime.pFileStream = NULL;
170
171 AudioHlpFileDestroy(pStreamR3->Dbg.Runtime.pFileDMARaw);
172 pStreamR3->Dbg.Runtime.pFileDMARaw = NULL;
173
174 AudioHlpFileDestroy(pStreamR3->Dbg.Runtime.pFileDMAMapped);
175 pStreamR3->Dbg.Runtime.pFileDMAMapped = NULL;
176 }
177
178 LogFlowFuncLeave();
179}
180
181
182/**
183 * Converts an HDA stream's SDFMT register into a given PCM properties structure.
184 *
185 * @returns VBox status code.
186 * @param u16SDFMT The HDA stream's SDFMT value to convert.
187 * @param pProps PCM properties structure to hold converted result on success.
188 */
189int hdaR3SDFMTToPCMProps(uint16_t u16SDFMT, PPDMAUDIOPCMPROPS pProps)
190{
191 AssertPtrReturn(pProps, VERR_INVALID_POINTER);
192
193# define EXTRACT_VALUE(v, mask, shift) ((v & ((mask) << (shift))) >> (shift))
194
195 int rc = VINF_SUCCESS;
196
197 uint32_t u32Hz = EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_BASE_RATE_MASK, HDA_SDFMT_BASE_RATE_SHIFT)
198 ? 44100 : 48000;
199 uint32_t u32HzMult = 1;
200 uint32_t u32HzDiv = 1;
201
202 switch (EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_MULT_MASK, HDA_SDFMT_MULT_SHIFT))
203 {
204 case 0: u32HzMult = 1; break;
205 case 1: u32HzMult = 2; break;
206 case 2: u32HzMult = 3; break;
207 case 3: u32HzMult = 4; break;
208 default:
209 LogFunc(("Unsupported multiplier %x\n",
210 EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_MULT_MASK, HDA_SDFMT_MULT_SHIFT)));
211 rc = VERR_NOT_SUPPORTED;
212 break;
213 }
214 switch (EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_DIV_MASK, HDA_SDFMT_DIV_SHIFT))
215 {
216 case 0: u32HzDiv = 1; break;
217 case 1: u32HzDiv = 2; break;
218 case 2: u32HzDiv = 3; break;
219 case 3: u32HzDiv = 4; break;
220 case 4: u32HzDiv = 5; break;
221 case 5: u32HzDiv = 6; break;
222 case 6: u32HzDiv = 7; break;
223 case 7: u32HzDiv = 8; break;
224 default:
225 LogFunc(("Unsupported divisor %x\n",
226 EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_DIV_MASK, HDA_SDFMT_DIV_SHIFT)));
227 rc = VERR_NOT_SUPPORTED;
228 break;
229 }
230
231 uint8_t cbSample = 0;
232 switch (EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_BITS_MASK, HDA_SDFMT_BITS_SHIFT))
233 {
234 case 0:
235 cbSample = 1;
236 break;
237 case 1:
238 cbSample = 2;
239 break;
240 case 4:
241 cbSample = 4;
242 break;
243 default:
244 AssertMsgFailed(("Unsupported bits per sample %x\n",
245 EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_BITS_MASK, HDA_SDFMT_BITS_SHIFT)));
246 rc = VERR_NOT_SUPPORTED;
247 break;
248 }
249
250 if (RT_SUCCESS(rc))
251 {
252 PDMAudioPropsInit(pProps, cbSample, true /*fSigned*/, (u16SDFMT & 0xf) + 1 /*cChannels*/, u32Hz * u32HzMult / u32HzDiv);
253 /** @todo is there anything we need to / can do about channel assignments? */
254 }
255
256# undef EXTRACT_VALUE
257 return rc;
258}
259
260# ifdef LOG_ENABLED
261void hdaR3BDLEDumpAll(PPDMDEVINS pDevIns, PHDASTATE pThis, uint64_t u64BDLBase, uint16_t cBDLE)
262{
263 LogFlowFunc(("BDLEs @ 0x%x (%RU16):\n", u64BDLBase, cBDLE));
264 if (!u64BDLBase)
265 return;
266
267 uint32_t cbBDLE = 0;
268 for (uint16_t i = 0; i < cBDLE; i++)
269 {
270 HDABDLEDESC bd;
271 PDMDevHlpPhysRead(pDevIns, u64BDLBase + i * sizeof(HDABDLEDESC), &bd, sizeof(bd));
272
273 LogFunc(("\t#%03d BDLE(adr:0x%llx, size:%RU32, ioc:%RTbool)\n",
274 i, bd.u64BufAddr, bd.u32BufSize, bd.fFlags & HDA_BDLE_F_IOC));
275
276 cbBDLE += bd.u32BufSize;
277 }
278
279 LogFlowFunc(("Total: %RU32 bytes\n", cbBDLE));
280
281 if (!pThis->u64DPBase) /* No DMA base given? Bail out. */
282 return;
283
284 LogFlowFunc(("DMA counters:\n"));
285
286 for (int i = 0; i < cBDLE; i++)
287 {
288 uint32_t uDMACnt;
289 PDMDevHlpPhysRead(pDevIns, (pThis->u64DPBase & DPBASE_ADDR_MASK) + (i * 2 * sizeof(uint32_t)),
290 &uDMACnt, sizeof(uDMACnt));
291
292 LogFlowFunc(("\t#%03d DMA @ 0x%x\n", i , uDMACnt));
293 }
294}
295# endif /* LOG_ENABLED */
296
297
298/**
299 * Appends a item to the scheduler.
300 *
301 * @returns VBox status code.
302 * @param pStreamShared The stream which scheduler should be modified.
303 * @param cbCur The period length in guest bytes.
304 * @param cbMaxPeriod The max period in guest bytes.
305 * @param idxLastBdle The last BDLE in the period.
306 * @param pProps The PCM properties.
307 * @param pcbBorrow Where to account for bytes borrowed across buffers
308 * to align scheduling items on frame boundraries.
309 */
310static int hdaR3StreamAddScheduleItem(PHDASTREAM pStreamShared, uint32_t cbCur, uint32_t cbMaxPeriod,
311 uint32_t idxLastBdle, PCPDMAUDIOPCMPROPS pProps, uint32_t *pcbBorrow)
312{
313 /* Check that we've got room (shouldn't ever be a problem). */
314 size_t idx = pStreamShared->State.cSchedule;
315 AssertLogRelReturn(idx + 1 < RT_ELEMENTS(pStreamShared->State.aSchedule), VERR_INTERNAL_ERROR_5);
316
317 /* Figure out the BDLE range for this period. */
318 uint32_t const idxFirstBdle = idx == 0 ? 0
319 : RT_MIN((uint32_t)( pStreamShared->State.aSchedule[idx - 1].idxFirst
320 + pStreamShared->State.aSchedule[idx - 1].cEntries),
321 idxLastBdle);
322
323 pStreamShared->State.aSchedule[idx].idxFirst = (uint8_t)idxFirstBdle;
324 pStreamShared->State.aSchedule[idx].cEntries = idxLastBdle >= idxFirstBdle
325 ? idxLastBdle - idxFirstBdle + 1
326 : pStreamShared->State.cBdles - idxFirstBdle + idxLastBdle + 1;
327
328 /* Deal with borrowing due to unaligned IOC buffers. */
329 uint32_t const cbBorrowed = *pcbBorrow;
330 if (cbBorrowed < cbCur)
331 cbCur -= cbBorrowed;
332 else
333 {
334 /* Note. We can probably gloss over this, but it's not a situation a sane guest would put us, so don't bother for now. */
335 ASSERT_GUEST_MSG_FAILED(("#%u: cbBorrow=%#x cbCur=%#x BDLE[%u..%u]\n",
336 pStreamShared->u8SD, cbBorrowed, cbCur, idxFirstBdle, idxLastBdle));
337 LogRelMax(32, ("HDA: Stream #%u has a scheduling error: cbBorrow=%#x cbCur=%#x BDLE[%u..%u]\n",
338 pStreamShared->u8SD, cbBorrowed, cbCur, idxFirstBdle, idxLastBdle));
339 return VERR_OUT_OF_RANGE;
340 }
341
342 uint32_t cbCurAligned = PDMAudioPropsRoundUpBytesToFrame(pProps, cbCur);
343 *pcbBorrow = cbCurAligned - cbCur;
344
345 /* Do we need to split up the period? */
346 if (cbCurAligned <= cbMaxPeriod)
347 {
348 pStreamShared->State.aSchedule[idx].cbPeriod = cbCurAligned;
349 pStreamShared->State.aSchedule[idx].cLoops = 1;
350 }
351 else
352 {
353 /* Reduce till we've below the threshold. */
354 uint32_t cbLoop = cbCurAligned;
355 do
356 cbLoop = cbLoop / 2;
357 while (cbLoop > cbMaxPeriod);
358 cbLoop = PDMAudioPropsRoundUpBytesToFrame(pProps, cbLoop);
359
360 /* Complete the scheduling item. */
361 pStreamShared->State.aSchedule[idx].cbPeriod = cbLoop;
362 pStreamShared->State.aSchedule[idx].cLoops = cbCurAligned / cbLoop;
363
364 /* If there is a remainder, add it as a separate entry (this is
365 why the schedule must be more than twice the size of the BDL).*/
366 cbCurAligned %= cbLoop;
367 if (cbCurAligned)
368 {
369 pStreamShared->State.aSchedule[idx + 1] = pStreamShared->State.aSchedule[idx];
370 idx++;
371 pStreamShared->State.aSchedule[idx].cbPeriod = cbCurAligned;
372 pStreamShared->State.aSchedule[idx].cLoops = 1;
373 }
374 }
375
376 /* Done. */
377 pStreamShared->State.cSchedule = (uint16_t)(idx + 1);
378
379 return VINF_SUCCESS;
380}
381
382/**
383 * Creates the DMA timer schedule for the stream
384 *
385 * This is called from the stream setup code.
386 *
387 * @returns VBox status code.
388 * @param pStreamShared The stream to create a schedule for. The BDL
389 * must be loaded.
390 * @param cSegments Number of BDL segments.
391 * @param cBufferIrqs Number of the BDLEs with IOC=1.
392 * @param cbTotal The total BDL length in guest bytes.
393 * @param cbMaxPeriod Max period in guest bytes. This is in case the
394 * guest want to play the whole "Der Ring des
395 * Nibelungen" cycle in one go.
396 * @param cTimerTicksPerSec The DMA timer frequency.
397 * @param pProps The PCM properties.
398 */
399static int hdaR3StreamCreateSchedule(PHDASTREAM pStreamShared, uint32_t cSegments, uint32_t cBufferIrqs, uint32_t cbTotal,
400 uint32_t cbMaxPeriod, uint64_t cTimerTicksPerSec, PCPDMAUDIOPCMPROPS pProps)
401{
402 int rc;
403
404 /*
405 * Reset scheduling state.
406 */
407 RT_ZERO(pStreamShared->State.aSchedule);
408 pStreamShared->State.cSchedule = 0;
409 pStreamShared->State.cSchedulePrologue = 0;
410 pStreamShared->State.idxSchedule = 0;
411 pStreamShared->State.idxScheduleLoop = 0;
412
413 /*
414 * Do the basic schedule compilation.
415 */
416 uint32_t cPotentialPrologue = 0;
417 uint32_t cbBorrow = 0;
418 uint32_t cbCur = 0;
419 uint32_t cbMin = UINT32_MAX;
420 pStreamShared->State.aSchedule[0].idxFirst = 0;
421 for (uint32_t i = 0; i < cSegments; i++)
422 {
423 cbCur += pStreamShared->State.aBdl[i].cb;
424 if (pStreamShared->State.aBdl[i].cb < cbMin)
425 cbMin = pStreamShared->State.aBdl[i].cb;
426 if (pStreamShared->State.aBdl[i].fFlags & HDA_BDLE_F_IOC)
427 {
428 rc = hdaR3StreamAddScheduleItem(pStreamShared, cbCur, cbMaxPeriod, i, pProps, &cbBorrow);
429 ASSERT_GUEST_RC_RETURN(rc, rc);
430
431 if (cPotentialPrologue == 0)
432 cPotentialPrologue = pStreamShared->State.cSchedule;
433 cbCur = 0;
434 }
435 }
436
437 /*
438 * Deal with any loose ends.
439 */
440 if (cbCur && cBufferIrqs == 0)
441 {
442 /*
443 * No IOC. Vista ends up here, typically with three buffers configured.
444 *
445 * The perferred option here is to aim at processing one average BDLE with
446 * each DMA timer period, since that best matches how we update LPIB at
447 * present.
448 *
449 * The second alternative is to divide the whole span up into 3-4 periods
450 * to try increase our chances of keeping ahead of the guest. We may need
451 * to pick this if there are too few buffer descriptor or they are too small.
452 *
453 * However, what we probably should be doing is to do real DMA work whenever
454 * the guest reads a DMA related register (like LPIB) and just do 3-4 DMA
455 * timer periods, however we'll be postponing the DMA timer every time we
456 * return to ring-3 and signal the AIO, so in the end we'd probably not use
457 * the timer callback at all. (This is assuming a small shared per-stream
458 * buffer for keeping the DMA data in and that it's size will force a return
459 * to ring-3 often enough to keep the AIO thread going at a reasonable rate.)
460 */
461 Assert(cbCur == cbTotal);
462
463 /* Match the BDLEs 1:1 if there are 3 or more and that the smallest one
464 is at least 5ms big. */
465 if (cSegments >= 3 && PDMAudioPropsBytesToMilli(pProps, cbMin) >= 5 /*ms*/)
466 {
467 for (uint32_t i = 0; i < cSegments; i++)
468 {
469 rc = hdaR3StreamAddScheduleItem(pStreamShared, pStreamShared->State.aBdl[i].cb, cbMaxPeriod, i, pProps, &cbBorrow);
470 ASSERT_GUEST_RC_RETURN(rc, rc);
471 }
472 }
473 /* Otherwise, just divide the work into 3 or 4 portions and hope for the best.
474 It seems, though, that this only really work for windows vista if we avoid
475 working accross buffer lines. */
476 /** @todo This can be simplified/relaxed/uncluttered if we do DMA work when LPIB
477 * is read, assuming ofc that LPIB is read before each buffer update. */
478 else
479 {
480 uint32_t const cPeriods = cSegments != 3 && PDMAudioPropsBytesToMilli(pProps, cbCur) >= 4 * 5 /*ms*/
481 ? 4 : cSegments != 2 ? 3 : 2;
482 uint32_t const cbPeriod = PDMAudioPropsFloorBytesToFrame(pProps, cbCur / cPeriods);
483 uint32_t iBdle = 0;
484 uint32_t offBdle = 0;
485 for (uint32_t iPeriod = 0; iPeriod < cPeriods; iPeriod++)
486 {
487 if (iPeriod + 1 < cPeriods)
488 {
489 offBdle += cbPeriod;
490 while (iBdle < cSegments && offBdle >= pStreamShared->State.aBdl[iBdle].cb)
491 offBdle -= pStreamShared->State.aBdl[iBdle++].cb;
492 rc = hdaR3StreamAddScheduleItem(pStreamShared, cbPeriod, cbMaxPeriod, offBdle != 0 ? iBdle : iBdle - 1,
493 pProps, &cbBorrow);
494 }
495 else
496 rc = hdaR3StreamAddScheduleItem(pStreamShared, cbCur - iPeriod * cbPeriod, cbMaxPeriod, cSegments - 1,
497 pProps, &cbBorrow);
498 ASSERT_GUEST_RC_RETURN(rc, rc);
499 }
500
501 }
502 }
503 else if (cbCur)
504 {
505 /* The last BDLE didn't have IOC set, so we must continue processing
506 from the start till we hit one that has. */
507 uint32_t i;
508 for (i = 0; i < cSegments; i++)
509 {
510 cbCur += pStreamShared->State.aBdl[i].cb;
511 if (pStreamShared->State.aBdl[i].fFlags & HDA_BDLE_F_IOC)
512 break;
513 }
514 rc = hdaR3StreamAddScheduleItem(pStreamShared, cbCur, cbMaxPeriod, i, pProps, &cbBorrow);
515 ASSERT_GUEST_RC_RETURN(rc, rc);
516
517 /* The initial scheduling items covering the wrap around area are
518 considered a prologue and must not repeated later. */
519 Assert(cPotentialPrologue);
520 pStreamShared->State.cSchedulePrologue = (uint8_t)cPotentialPrologue;
521 }
522
523 AssertLogRelMsgReturn(cbBorrow == 0, ("HDA: Internal scheduling error on stream #%u: cbBorrow=%#x cbTotal=%#x cbCur=%#x\n",
524 pStreamShared->u8SD, cbBorrow, cbTotal, cbCur),
525 VERR_INTERNAL_ERROR_3);
526
527 /*
528 * If there is just one BDLE with IOC set, we have to make sure
529 * we've got at least two periods scheduled, otherwise there is
530 * a very good chance the guest will overwrite the start of the
531 * buffer before we ever get around to reading it.
532 */
533 if (cBufferIrqs == 1)
534 {
535 uint32_t i = pStreamShared->State.cSchedulePrologue;
536 Assert(i < pStreamShared->State.cSchedule);
537 if ( i + 1 == pStreamShared->State.cSchedule
538 && pStreamShared->State.aSchedule[i].cLoops == 1)
539 {
540 uint32_t const cbFirstHalf = PDMAudioPropsFloorBytesToFrame(pProps, pStreamShared->State.aSchedule[i].cbPeriod / 2);
541 uint32_t const cbOtherHalf = pStreamShared->State.aSchedule[i].cbPeriod - cbFirstHalf;
542 pStreamShared->State.aSchedule[i].cbPeriod = cbFirstHalf;
543 if (cbFirstHalf == cbOtherHalf)
544 pStreamShared->State.aSchedule[i].cLoops = 2;
545 else
546 {
547 pStreamShared->State.aSchedule[i + 1] = pStreamShared->State.aSchedule[i];
548 pStreamShared->State.aSchedule[i].cbPeriod = cbOtherHalf;
549 pStreamShared->State.cSchedule++;
550 }
551 }
552 }
553
554 /*
555 * Go over the schduling entries and calculate the timer ticks for each period.
556 */
557 LogRel2(("HDA: Stream #%u schedule: %u items, %u prologue\n",
558 pStreamShared->u8SD, pStreamShared->State.cSchedule, pStreamShared->State.cSchedulePrologue));
559 uint64_t const cbPerSec = PDMAudioPropsFramesToBytes(pProps, pProps->uHz);
560 for (uint32_t i = 0; i < pStreamShared->State.cSchedule; i++)
561 {
562 uint64_t const cTicks = ASMMultU64ByU32DivByU32(cTimerTicksPerSec, pStreamShared->State.aSchedule[i].cbPeriod, cbPerSec);
563 AssertLogRelMsgReturn((uint32_t)cTicks == cTicks, ("cTicks=%RU64 (%#RX64)\n", cTicks, cTicks), VERR_INTERNAL_ERROR_4);
564 pStreamShared->State.aSchedule[i].cPeriodTicks = RT_MAX((uint32_t)cTicks, 16);
565 LogRel2(("HDA: #%u: %u ticks / %u bytes, %u loops, BDLE%u L %u\n", i, pStreamShared->State.aSchedule[i].cPeriodTicks,
566 pStreamShared->State.aSchedule[i].cbPeriod, pStreamShared->State.aSchedule[i].cLoops,
567 pStreamShared->State.aSchedule[i].idxFirst, pStreamShared->State.aSchedule[i].cEntries));
568 }
569
570 return VINF_SUCCESS;
571}
572
573
574/**
575 * Sets up ((re-)iniitalizes) an HDA stream.
576 *
577 * @returns VBox status code. VINF_NO_CHANGE if the stream does not need
578 * be set-up again because the stream's (hardware) parameters did
579 * not change.
580 * @param pDevIns The device instance.
581 * @param pThis The shared HDA device state (for HW register
582 * parameters).
583 * @param pStreamShared HDA stream to set up, shared portion.
584 * @param pStreamR3 HDA stream to set up, ring-3 portion.
585 * @param uSD Stream descriptor number to assign it.
586 */
587int hdaR3StreamSetUp(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, uint8_t uSD)
588{
589 /* This must be valid all times. */
590 AssertReturn(uSD < HDA_MAX_STREAMS, VERR_INVALID_PARAMETER);
591
592 /* These member can only change on data corruption, despite what the code does further down (bird). */
593 AssertReturn(pStreamShared->u8SD == uSD, VERR_WRONG_ORDER);
594 AssertReturn(pStreamR3->u8SD == uSD, VERR_WRONG_ORDER);
595
596 const uint64_t u64BDLBase = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, uSD),
597 HDA_STREAM_REG(pThis, BDPU, uSD));
598 const uint16_t u16LVI = HDA_STREAM_REG(pThis, LVI, uSD);
599 const uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, uSD);
600 const uint8_t u8FIFOS = HDA_STREAM_REG(pThis, FIFOS, uSD) + 1;
601 uint8_t u8FIFOW = hdaSDFIFOWToBytes(HDA_STREAM_REG(pThis, FIFOW, uSD));
602 const uint16_t u16FMT = HDA_STREAM_REG(pThis, FMT, uSD);
603
604 /* Is the bare minimum set of registers configured for the stream?
605 * If not, bail out early, as there's nothing to do here for us (yet). */
606 if ( !u64BDLBase
607 || !u16LVI
608 || !u32CBL
609 || !u8FIFOS
610 || !u8FIFOW
611 || !u16FMT)
612 {
613 LogFunc(("[SD%RU8] Registers not set up yet, skipping (re-)initialization\n", uSD));
614 return VINF_SUCCESS;
615 }
616
617 /*
618 * Convert the config to PDM PCM properties and configure the stream.
619 */
620 PPDMAUDIOSTREAMCFG pCfg = &pStreamShared->State.Cfg;
621 int rc = hdaR3SDFMTToPCMProps(u16FMT, &pCfg->Props);
622 if (RT_SUCCESS(rc))
623 pCfg->enmDir = hdaGetDirFromSD(uSD);
624 else
625 {
626 LogRelMax(32, ("HDA: Warning: Format 0x%x for stream #%RU8 not supported\n", HDA_STREAM_REG(pThis, FMT, uSD), uSD));
627 return rc;
628 }
629
630 ASSERT_GUEST_LOGREL_MSG_RETURN( PDMAudioPropsFrameSize(&pCfg->Props) > 0
631 && u32CBL % PDMAudioPropsFrameSize(&pCfg->Props) == 0,
632 ("CBL for stream #%RU8 does not align to frame size (u32CBL=%u cbFrameSize=%u)\n",
633 uSD, u32CBL, PDMAudioPropsFrameSize(&pCfg->Props)),
634 VERR_INVALID_PARAMETER);
635
636 /* Make sure the guest behaves regarding the stream's FIFO. */
637 ASSERT_GUEST_LOGREL_MSG_STMT(u8FIFOW <= u8FIFOS,
638 ("Guest tried setting a bigger FIFOW (%RU8) than FIFOS (%RU8), limiting\n", u8FIFOW, u8FIFOS),
639 u8FIFOW = u8FIFOS /* ASSUMES that u8FIFOS has been validated. */);
640
641 pStreamShared->u8SD = uSD;
642
643 /* Update all register copies so that we later know that something has changed. */
644 pStreamShared->u64BDLBase = u64BDLBase;
645 pStreamShared->u16LVI = u16LVI;
646 pStreamShared->u32CBL = u32CBL;
647 pStreamShared->u8FIFOS = u8FIFOS;
648 pStreamShared->u8FIFOW = u8FIFOW;
649 pStreamShared->u16FMT = u16FMT;
650
651 /* The the stream's name, based on the direction. */
652 switch (pCfg->enmDir)
653 {
654 case PDMAUDIODIR_IN:
655# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
656# error "Implement me!"
657# else
658 pCfg->enmPath = PDMAUDIOPATH_IN_LINE;
659 RTStrCopy(pCfg->szName, sizeof(pCfg->szName), "Line In");
660# endif
661 break;
662
663 case PDMAUDIODIR_OUT:
664 /* Destination(s) will be set in hdaR3AddStreamOut(),
665 * based on the channels / stream layout. */
666 break;
667
668 default:
669 AssertFailedReturn(VERR_NOT_SUPPORTED);
670 break;
671 }
672
673 LogRel2(("HDA: Stream #%RU8 DMA @ 0x%x (%RU32 bytes = %RU64ms total)\n", uSD, pStreamShared->u64BDLBase,
674 pStreamShared->u32CBL, PDMAudioPropsBytesToMilli(&pCfg->Props, pStreamShared->u32CBL)));
675
676 /*
677 * Load the buffer descriptor list.
678 *
679 * Section 3.6.2 states that "the BDL should not be modified unless the RUN
680 * bit is 0", so it should be within the specs to read it once here and not
681 * re-read any BDLEs later.
682 */
683 /* Reset BDL state. */
684 RT_ZERO(pStreamShared->State.aBdl);
685 pStreamShared->State.offCurBdle = 0;
686 pStreamShared->State.idxCurBdle = 0;
687
688 uint32_t /*const*/ cTransferFragments = (pStreamShared->u16LVI & 0xff) + 1;
689 if (cTransferFragments <= 1)
690 LogRel(("HDA: Warning: Stream #%RU8 transfer buffer count invalid: (%RU16)! Buggy guest audio driver!\n", uSD, pStreamShared->u16LVI));
691 AssertLogRelReturn(cTransferFragments <= RT_ELEMENTS(pStreamShared->State.aBdl), VERR_INTERNAL_ERROR_5);
692 pStreamShared->State.cBdles = cTransferFragments;
693
694 /* Load them. */
695 rc = PDMDevHlpPCIPhysRead(pDevIns, u64BDLBase, pStreamShared->State.aBdl,
696 sizeof(pStreamShared->State.aBdl[0]) * cTransferFragments);
697 AssertRC(rc);
698
699 /* Check what we just loaded. Refuse overly large buffer lists. */
700 uint64_t cbTotal = 0;
701 uint32_t cBufferIrqs = 0;
702 for (uint32_t i = 0; i < cTransferFragments; i++)
703 {
704 if (pStreamShared->State.aBdl[i].fFlags & HDA_BDLE_F_IOC)
705 cBufferIrqs++;
706 cbTotal += pStreamShared->State.aBdl[i].cb;
707 }
708 ASSERT_GUEST_STMT_RETURN(cbTotal < _2G,
709 LogRelMax(32, ("HDA: Error: Stream #%u is configured with an insane amount of buffer space - refusing do work with it: %RU64 (%#RX64) bytes.\n",
710 uSD, cbTotal, cbTotal)),
711 VERR_NOT_SUPPORTED);
712 ASSERT_GUEST_STMT_RETURN(cbTotal == u32CBL,
713 LogRelMax(32, ("HDA: Warning: Stream #%u has a mismatch between CBL and configured buffer space: %RU32 (%#RX32) vs %RU64 (%#RX64)\n",
714 uSD, u32CBL, u32CBL, cbTotal, cbTotal)),
715 VERR_NOT_SUPPORTED);
716
717 /*
718 * Create a DMA timer schedule.
719 */
720 rc = hdaR3StreamCreateSchedule(pStreamShared, cTransferFragments, cBufferIrqs, (uint32_t)cbTotal,
721 PDMAudioPropsMilliToBytes(&pCfg->Props, 100 /** @todo make configurable */),
722 PDMDevHlpTimerGetFreq(pDevIns, pStreamShared->hTimer), &pCfg->Props);
723 if (RT_FAILURE(rc))
724 return rc;
725
726 pStreamShared->State.cbCurDmaPeriod = pStreamShared->State.aSchedule[0].cbPeriod;
727
728 /*
729 * Calculate the transfer Hz for use in the circular buffer calculation
730 * and the average period for the scheduling hint.
731 */
732 uint32_t cbMaxPeriod = 0;
733 uint32_t cbMinPeriod = UINT32_MAX;
734 uint64_t cTicks = 0;
735 uint32_t cPeriods = 0;
736 for (uint32_t i = pStreamShared->State.cSchedulePrologue; i < pStreamShared->State.cSchedule; i++)
737 {
738 uint32_t cbPeriod = pStreamShared->State.aSchedule[i].cbPeriod;
739 cbMaxPeriod = RT_MAX(cbMaxPeriod, cbPeriod);
740 cbMinPeriod = RT_MIN(cbMinPeriod, cbPeriod);
741 cPeriods += pStreamShared->State.aSchedule[i].cLoops;
742 cTicks += pStreamShared->State.aSchedule[i].cPeriodTicks * pStreamShared->State.aSchedule[i].cLoops;
743 }
744 /* Only consider the prologue in relation to the max period. */
745 for (uint32_t i = 0; i < pStreamShared->State.cSchedulePrologue; i++)
746 cbMaxPeriod = RT_MAX(cbMaxPeriod, pStreamShared->State.aSchedule[i].cbPeriod);
747
748 AssertLogRelReturn(cPeriods > 0, VERR_INTERNAL_ERROR_3);
749 uint32_t const cbFramesPerSec = PDMAudioPropsFramesToBytes(&pCfg->Props, pCfg->Props.uHz);
750 uint64_t const cbTransferPerSec = RT_MAX(cbFramesPerSec,
751 4096 /* zero div prevention: min is 6kHz, picked 4k in case I'm mistaken */);
752 unsigned uTransferHz = cbTransferPerSec * 1000 / cbMaxPeriod;
753 LogRel2(("HDA: Stream #%RU8 needs a %u.%03u Hz timer rate (period: %u..%u host bytes)\n",
754 uSD, uTransferHz / 1000, uTransferHz % 1000, cbMinPeriod, cbMaxPeriod));
755 uTransferHz /= 1000;
756
757 if (uTransferHz > 400) /* Anything above 400 Hz looks fishy -- tell the user. */
758 LogRelMax(32, ("HDA: Warning: Calculated transfer Hz rate for stream #%RU8 looks incorrect (%u), please re-run with audio debug mode and report a bug\n",
759 uSD, uTransferHz));
760
761 pStreamShared->State.cbAvgTransfer = (uint32_t)(cbTotal + cPeriods - 1) / cPeriods;
762
763 /* Calculate the average scheduling period length in nanoseconds. */
764 uint64_t const cTimerResolution = PDMDevHlpTimerGetFreq(pDevIns, pStreamShared->hTimer);
765 Assert(cTimerResolution <= UINT32_MAX);
766 uint64_t const cNsPerPeriod = ASMMultU64ByU32DivByU32(cTicks / cPeriods, RT_NS_1SEC, cTimerResolution);
767 AssertLogRelReturn(cNsPerPeriod > 0, VERR_INTERNAL_ERROR_3);
768
769 /* For input streams we must determin a pre-buffering requirement.
770 We use the initial delay as a basis here, though we must have at
771 least two max periods worth of data queued up due to the way we
772 work the AIO thread. */
773 pStreamShared->State.fInputPreBuffered = false;
774 pStreamShared->State.cbInputPreBuffer = cbMaxPeriod * 2;
775
776 /*
777 * Set up data transfer stuff.
778 */
779 /* Set I/O scheduling hint for the backends. */
780 pCfg->Device.cMsSchedulingHint = cNsPerPeriod > RT_NS_1MS ? (cNsPerPeriod + RT_NS_1MS / 2) / RT_NS_1MS : 1;
781 LogRel2(("HDA: Stream #%RU8 set scheduling hint for the backends to %RU32ms\n", uSD, pCfg->Device.cMsSchedulingHint));
782
783 /* Make sure to also update the stream's DMA counter (based on its current LPIB value). */
784 /** @todo r=bird: We use LPIB as-is here, so if it's not zero we have to
785 * locate the right place in the schedule and whatnot...
786 *
787 * This is a similar scenario as when loading state saved, btw.
788 */
789 if (HDA_STREAM_REG(pThis, LPIB, uSD) != 0)
790 LogRel2(("HDA: Warning! Stream #%RU8 is set up with LPIB=%#RX32 instead of zero!\n", uSD, HDA_STREAM_REG(pThis, LPIB, uSD)));
791 hdaStreamSetPositionAbs(pStreamShared, pDevIns, pThis, HDA_STREAM_REG(pThis, LPIB, uSD));
792
793# ifdef LOG_ENABLED
794 hdaR3BDLEDumpAll(pDevIns, pThis, pStreamShared->u64BDLBase, pStreamShared->u16LVI + 1);
795# endif
796
797 /*
798 * Set up internal ring buffer.
799 */
800
801 /*
802 * The default internal ring buffer size must be:
803 *
804 * - Large enough for at least three periodic DMA transfers.
805 *
806 * It is critically important that we don't experience underruns
807 * in the DMA OUT code, because it will cause the buffer processing
808 * to get skewed and possibly overlap with what the guest is updating.
809 * At the time of writing (2021-03-05) there is no code for getting
810 * back into sync there.
811 *
812 * - Large enough for at least three I/O scheduling hints.
813 *
814 * We want to lag behind a DMA period or two, but there must be
815 * sufficent space for the AIO thread to get schedule and shuffle
816 * data thru the mixer and onto the host audio hardware.
817 *
818 * - Both above with plenty to spare.
819 *
820 * So, just take the longest of the two periods and multipling it by 6.
821 * We aren't not talking about very large base buffers heres, so size isn't
822 * an issue.
823 *
824 * Note: Use pCfg->Props as PCM properties here, as we only want to store the
825 * samples we actually need, in other words, skipping the interleaved
826 * channels we don't support / need to save space.
827 */
828 uint32_t cbCircBuf = PDMAudioPropsMilliToBytes(&pCfg->Props, RT_MS_1SEC * 6 / uTransferHz);
829 LogRel2(("HDA: Stream #%RU8 default ring buffer size is %RU32 bytes / %RU64 ms\n",
830 uSD, cbCircBuf, PDMAudioPropsBytesToMilli(&pCfg->Props, cbCircBuf)));
831
832 uint32_t msCircBufCfg = hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN ? pThis->cMsCircBufIn : pThis->cMsCircBufOut;
833 if (msCircBufCfg) /* Anything set via CFGM? */
834 {
835 cbCircBuf = PDMAudioPropsMilliToBytes(&pCfg->Props, msCircBufCfg);
836 LogRel2(("HDA: Stream #%RU8 is using a custom ring buffer size of %RU32 bytes / %RU64 ms\n",
837 uSD, cbCircBuf, PDMAudioPropsBytesToMilli(&pCfg->Props, cbCircBuf)));
838 }
839
840 /* Serious paranoia: */
841 ASSERT_GUEST_LOGREL_MSG_STMT(cbCircBuf % PDMAudioPropsFrameSize(&pCfg->Props) == 0,
842 ("Ring buffer size (%RU32) for stream #%RU8 not aligned to the (host) frame size (%RU8)\n",
843 cbCircBuf, uSD, PDMAudioPropsFrameSize(&pCfg->Props)),
844 rc = VERR_INVALID_PARAMETER);
845 ASSERT_GUEST_LOGREL_MSG_STMT(cbCircBuf, ("Ring buffer size for stream #%RU8 is invalid\n", uSD),
846 rc = VERR_INVALID_PARAMETER);
847 if (RT_SUCCESS(rc))
848 {
849 /**
850 * Note: Only re-create the DMA buffer if the size actually has changed.
851 *
852 * Otherwise do *not* reset the stream's circular buffer here, as the audio mixer still relies on
853 * previously announced DMA data (via AudioMixerSinkDrainAndStop()) and processes it asynchronously.
854 * Resetting the buffer here will cause a race condition. See @bugref{10354}. */
855 if (pStreamR3->State.StatDmaBufSize != cbCircBuf)
856 {
857 /* (Re-)Allocate the stream's internal DMA buffer,
858 * based on the timing *and* PCM properties we just got above. */
859 if (pStreamR3->State.pCircBuf)
860 {
861 RTCircBufDestroy(pStreamR3->State.pCircBuf);
862 pStreamR3->State.pCircBuf = NULL;
863 pStreamR3->State.StatDmaBufSize = 0;
864 pStreamR3->State.StatDmaBufUsed = 0;
865 }
866 pStreamShared->State.offWrite = 0;
867 pStreamShared->State.offRead = 0;
868
869 rc = RTCircBufCreate(&pStreamR3->State.pCircBuf, cbCircBuf);
870 if (RT_SUCCESS(rc))
871 {
872 pStreamR3->State.StatDmaBufSize = cbCircBuf;
873
874 /*
875 * Forward the timer frequency hint to TM as well for better accuracy on
876 * systems w/o preemption timers (also good for 'info timers').
877 */
878 PDMDevHlpTimerSetFrequencyHint(pDevIns, pStreamShared->hTimer, uTransferHz);
879 }
880 }
881 }
882
883 if (RT_FAILURE(rc))
884 LogRelMax(32, ("HDA: Initializing stream #%RU8 failed with %Rrc\n", uSD, rc));
885
886# ifdef VBOX_WITH_DTRACE
887 VBOXDD_HDA_STREAM_SETUP((uint32_t)uSD, rc, pStreamShared->State.Cfg.Props.uHz,
888 pStreamShared->State.aSchedule[pStreamShared->State.cSchedule - 1].cPeriodTicks,
889 pStreamShared->State.aSchedule[pStreamShared->State.cSchedule - 1].cbPeriod);
890# endif
891 return rc;
892}
893
894
895/**
896 * Worker for hdaR3StreamReset().
897 *
898 * @returns The default mixer sink, NULL if none found.
899 * @param pThisCC The ring-3 HDA device state.
900 * @param uSD SD# to return mixer sink for.
901 * NULL if not found / handled.
902 */
903static PHDAMIXERSINK hdaR3GetDefaultSink(PHDASTATER3 pThisCC, uint8_t uSD)
904{
905 if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN)
906 {
907 const uint8_t uFirstSDI = 0;
908
909 if (uSD == uFirstSDI) /* First SDI. */
910 return &pThisCC->SinkLineIn;
911# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
912 if (uSD == uFirstSDI + 1)
913 return &pThisCC->SinkMicIn;
914# else
915 /* If we don't have a dedicated Mic-In sink, use the always present Line-In sink. */
916 return &pThisCC->SinkLineIn;
917# endif
918 }
919 else
920 {
921 const uint8_t uFirstSDO = HDA_MAX_SDI;
922
923 if (uSD == uFirstSDO)
924 return &pThisCC->SinkFront;
925# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
926 if (uSD == uFirstSDO + 1)
927 return &pThisCC->SinkCenterLFE;
928 if (uSD == uFirstSDO + 2)
929 return &pThisCC->SinkRear;
930# endif
931 }
932
933 return NULL;
934}
935
936
937/**
938 * Resets an HDA stream.
939 *
940 * @param pThis The shared HDA device state.
941 * @param pThisCC The ring-3 HDA device state.
942 * @param pStreamShared HDA stream to reset (shared).
943 * @param pStreamR3 HDA stream to reset (ring-3).
944 * @param uSD Stream descriptor (SD) number to use for this stream.
945 */
946void hdaR3StreamReset(PHDASTATE pThis, PHDASTATER3 pThisCC, PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, uint8_t uSD)
947{
948 LogFunc(("[SD%RU8] Reset\n", uSD));
949
950 /*
951 * Assert some sanity.
952 */
953 AssertPtr(pThis);
954 AssertPtr(pStreamShared);
955 AssertPtr(pStreamR3);
956 Assert(uSD < HDA_MAX_STREAMS);
957 Assert(pStreamShared->u8SD == uSD);
958 Assert(pStreamR3->u8SD == uSD);
959 AssertMsg(!pStreamShared->State.fRunning, ("[SD%RU8] Cannot reset stream while in running state\n", uSD));
960
961 /*
962 * Set reset state.
963 */
964 Assert(ASMAtomicReadBool(&pStreamShared->State.fInReset) == false); /* No nested calls. */
965 ASMAtomicXchgBool(&pStreamShared->State.fInReset, true);
966
967 /*
968 * Second, initialize the registers.
969 */
970 /* See 6.2.33: Clear on reset. */
971 HDA_STREAM_REG(pThis, STS, uSD) = 0;
972 /* According to the ICH6 datasheet, 0x40000 is the default value for stream descriptor register 23:20
973 * bits are reserved for stream number 18.2.33, resets SDnCTL except SRST bit. */
974 HDA_STREAM_REG(pThis, CTL, uSD) = HDA_SDCTL_TP | (HDA_STREAM_REG(pThis, CTL, uSD) & HDA_SDCTL_SRST);
975 /* ICH6 defines default values (120 bytes for input and 192 bytes for output descriptors) of FIFO size. 18.2.39. */
976 HDA_STREAM_REG(pThis, FIFOS, uSD) = hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN ? HDA_SDIFIFO_120B : HDA_SDOFIFO_192B;
977 /* See 18.2.38: Always defaults to 0x4 (32 bytes). */
978 HDA_STREAM_REG(pThis, FIFOW, uSD) = HDA_SDFIFOW_32B;
979 HDA_STREAM_REG(pThis, LPIB, uSD) = 0;
980 HDA_STREAM_REG(pThis, CBL, uSD) = 0;
981 HDA_STREAM_REG(pThis, LVI, uSD) = 0;
982 HDA_STREAM_REG(pThis, FMT, uSD) = 0;
983 HDA_STREAM_REG(pThis, BDPU, uSD) = 0;
984 HDA_STREAM_REG(pThis, BDPL, uSD) = 0;
985
986 /* Assign the default mixer sink to the stream. */
987 pStreamR3->pMixSink = hdaR3GetDefaultSink(pThisCC, uSD);
988 if (pStreamR3->State.pAioRegSink)
989 {
990 int rc2 = AudioMixerSinkRemoveUpdateJob(pStreamR3->State.pAioRegSink, hdaR3StreamUpdateAsyncIoJob, pStreamR3);
991 AssertRC(rc2);
992 pStreamR3->State.pAioRegSink = NULL;
993 }
994
995 /* Reset transfer stuff. */
996 pStreamShared->State.cTransferPendingInterrupts = 0;
997 pStreamShared->State.tsTransferLast = 0;
998 pStreamShared->State.tsTransferNext = 0;
999
1000 /* Initialize timestamps. */
1001 pStreamShared->State.tsLastTransferNs = 0;
1002 pStreamShared->State.tsLastReadNs = 0;
1003 pStreamShared->State.tsStart = 0;
1004
1005 RT_ZERO(pStreamShared->State.aBdl);
1006 RT_ZERO(pStreamShared->State.aSchedule);
1007 pStreamShared->State.offCurBdle = 0;
1008 pStreamShared->State.cBdles = 0;
1009 pStreamShared->State.idxCurBdle = 0;
1010 pStreamShared->State.cSchedulePrologue = 0;
1011 pStreamShared->State.cSchedule = 0;
1012 pStreamShared->State.idxSchedule = 0;
1013 pStreamShared->State.idxScheduleLoop = 0;
1014 pStreamShared->State.fInputPreBuffered = false;
1015
1016 /* Note: Do *not* reset the stream's circular buffer here, as the audio mixer still relies on
1017 * previously announced DMA data (via AudioMixerSinkDrainAndStop()) and processes it asynchronously.
1018 * Resetting the buffer here will cause a race condition. See @bugref{10354}. */
1019
1020 /* Report that we're done resetting this stream. */
1021 HDA_STREAM_REG(pThis, CTL, uSD) = 0;
1022
1023# ifdef VBOX_WITH_DTRACE
1024 VBOXDD_HDA_STREAM_RESET((uint32_t)uSD);
1025# endif
1026 LogFunc(("[SD%RU8] Reset\n", uSD));
1027
1028 /* Exit reset mode. */
1029 ASMAtomicXchgBool(&pStreamShared->State.fInReset, false);
1030}
1031
1032/**
1033 * Enables or disables an HDA audio stream.
1034 *
1035 * @returns VBox status code.
1036 * @param pThis The shared HDA device state.
1037 * @param pStreamShared HDA stream to enable or disable - shared bits.
1038 * @param pStreamR3 HDA stream to enable or disable - ring-3 bits.
1039 * @param fEnable Whether to enable or disble the stream.
1040 */
1041int hdaR3StreamEnable(PHDASTATE pThis, PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, bool fEnable)
1042{
1043 AssertPtr(pStreamR3);
1044 AssertPtr(pStreamShared);
1045
1046 LogFunc(("[SD%RU8] fEnable=%RTbool, pMixSink=%p\n", pStreamShared->u8SD, fEnable, pStreamR3->pMixSink));
1047
1048 /* First, enable or disable the stream and the stream's sink, if any. */
1049 int rc = VINF_SUCCESS;
1050 PAUDMIXSINK const pSink = pStreamR3->pMixSink ? pStreamR3->pMixSink->pMixSink : NULL;
1051 if (pSink)
1052 {
1053 AudioMixerSinkLock(pSink);
1054
1055 if (fEnable)
1056 {
1057 if (pStreamR3->State.pAioRegSink != pSink)
1058 {
1059 if (pStreamR3->State.pAioRegSink)
1060 {
1061 rc = AudioMixerSinkRemoveUpdateJob(pStreamR3->State.pAioRegSink, hdaR3StreamUpdateAsyncIoJob, pStreamR3);
1062 AssertRC(rc);
1063 }
1064 rc = AudioMixerSinkAddUpdateJob(pSink, hdaR3StreamUpdateAsyncIoJob, pStreamR3,
1065 pStreamShared->State.Cfg.Device.cMsSchedulingHint);
1066 AssertLogRelRC(rc);
1067 pStreamR3->State.pAioRegSink = RT_SUCCESS(rc) ? pSink : NULL;
1068 }
1069 rc = AudioMixerSinkStart(pSink);
1070 }
1071 else
1072 rc = AudioMixerSinkDrainAndStop(pSink,
1073 pStreamR3->State.pCircBuf ? (uint32_t)RTCircBufUsed(pStreamR3->State.pCircBuf) : 0);
1074
1075 AudioMixerSinkUnlock(pSink);
1076 }
1077 if ( RT_SUCCESS(rc)
1078 && fEnable
1079 && pStreamR3->Dbg.Runtime.fEnabled)
1080 {
1081 Assert(AudioHlpPcmPropsAreValidAndSupported(&pStreamShared->State.Cfg.Props));
1082
1083 if (!AudioHlpFileIsOpen(pStreamR3->Dbg.Runtime.pFileStream))
1084 {
1085 int rc2 = AudioHlpFileOpen(pStreamR3->Dbg.Runtime.pFileStream, AUDIOHLPFILE_DEFAULT_OPEN_FLAGS,
1086 &pStreamShared->State.Cfg.Props);
1087 AssertRC(rc2);
1088 }
1089
1090 if (!AudioHlpFileIsOpen(pStreamR3->Dbg.Runtime.pFileDMARaw))
1091 {
1092 int rc2 = AudioHlpFileOpen(pStreamR3->Dbg.Runtime.pFileDMARaw, AUDIOHLPFILE_DEFAULT_OPEN_FLAGS,
1093 &pStreamShared->State.Cfg.Props);
1094 AssertRC(rc2);
1095 }
1096
1097 if (!AudioHlpFileIsOpen(pStreamR3->Dbg.Runtime.pFileDMAMapped))
1098 {
1099 int rc2 = AudioHlpFileOpen(pStreamR3->Dbg.Runtime.pFileDMAMapped, AUDIOHLPFILE_DEFAULT_OPEN_FLAGS,
1100 &pStreamShared->State.Cfg.Props);
1101 AssertRC(rc2);
1102 }
1103 }
1104
1105 if (RT_SUCCESS(rc))
1106 {
1107 if (fEnable)
1108 pStreamShared->State.tsTransferLast = 0; /* Make sure it's not stale and messes up WALCLK calculations. */
1109 pStreamShared->State.fRunning = fEnable;
1110
1111 /*
1112 * Set the FIFORDY bit when we start running and clear it when stopping.
1113 *
1114 * This prevents Linux from timing out in snd_hdac_stream_sync when starting
1115 * a stream. Technically, Linux also uses the SSYNC feature there, but we
1116 * can get away with just setting the FIFORDY bit for now.
1117 */
1118 if (fEnable)
1119 HDA_STREAM_REG(pThis, STS, pStreamShared->u8SD) |= HDA_SDSTS_FIFORDY;
1120 else
1121 HDA_STREAM_REG(pThis, STS, pStreamShared->u8SD) &= ~HDA_SDSTS_FIFORDY;
1122 }
1123
1124 LogFunc(("[SD%RU8] rc=%Rrc\n", pStreamShared->u8SD, rc));
1125 return rc;
1126}
1127
1128/**
1129 * Marks the stream as started.
1130 *
1131 * Used after the stream has been enabled and the DMA timer has been armed.
1132 */
1133void hdaR3StreamMarkStarted(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTREAM pStreamShared, uint64_t tsNow)
1134{
1135 pStreamShared->State.tsLastReadNs = RTTimeNanoTS();
1136 pStreamShared->State.tsStart = tsNow;
1137 Log3Func(("#%u: tsStart=%RU64 tsLastReadNs=%RU64\n",
1138 pStreamShared->u8SD, pStreamShared->State.tsStart, pStreamShared->State.tsLastReadNs));
1139 RT_NOREF(pDevIns, pThis);
1140}
1141
1142/**
1143 * Marks the stream as stopped.
1144 */
1145void hdaR3StreamMarkStopped(PHDASTREAM pStreamShared)
1146{
1147 Log3Func(("#%u\n", pStreamShared->u8SD));
1148 RT_NOREF(pStreamShared);
1149}
1150
1151#endif /* IN_RING3 */
1152#if defined(IN_RING3) || defined(VBOX_HDA_WITH_ON_REG_ACCESS_DMA)
1153
1154/**
1155 * Updates an HDA stream's current read or write buffer position (depending on the stream type) by
1156 * setting its associated LPIB register and DMA position buffer (if enabled) to an absolute value.
1157 *
1158 * @param pStreamShared HDA stream to update read / write position for (shared).
1159 * @param pDevIns The device instance.
1160 * @param pThis The shared HDA device state.
1161 * @param uLPIB Absolute position (in bytes) to set current read / write position to.
1162 */
1163static void hdaStreamSetPositionAbs(PHDASTREAM pStreamShared, PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t uLPIB)
1164{
1165 AssertPtrReturnVoid(pStreamShared);
1166 AssertMsgStmt(uLPIB <= pStreamShared->u32CBL, ("%#x\n", uLPIB), uLPIB = pStreamShared->u32CBL);
1167
1168 Log3Func(("[SD%RU8] LPIB=%RU32 (DMA Position Buffer Enabled: %RTbool)\n", pStreamShared->u8SD, uLPIB, pThis->fDMAPosition));
1169
1170 /* Update LPIB in any case. */
1171 HDA_STREAM_REG(pThis, LPIB, pStreamShared->u8SD) = uLPIB;
1172
1173 /* Do we need to tell the current DMA position? */
1174 if (pThis->fDMAPosition)
1175 {
1176 /*
1177 * Linux switched to using the position buffers some time during 2.6.x.
1178 * 2.6.12 used LPIB, 2.6.17 defaulted to DMA position buffers, between
1179 * the two version things were being changing quite a bit.
1180 *
1181 * Since 2.6.17, they will treat a zero DMA position value during the first
1182 * period/IRQ as reason to fall back to LPIB mode (see azx_position_ok in
1183 * 2.6.27+, and azx_pcm_pointer before that). They later also added
1184 * UINT32_MAX to the values causing same.
1185 *
1186 * Since 2.6.35 azx_position_ok will read the wall clock register before
1187 * determining the position.
1188 */
1189 int rc2 = PDMDevHlpPCIPhysWrite(pDevIns,
1190 pThis->u64DPBase + (pStreamShared->u8SD * 2 * sizeof(uint32_t)),
1191 (void *)&uLPIB, sizeof(uint32_t));
1192 AssertRC(rc2);
1193 }
1194}
1195
1196
1197/**
1198 * Updates an HDA stream's current read or write buffer position (depending on the stream type) by
1199 * adding a value to its associated LPIB register and DMA position buffer (if enabled).
1200 *
1201 * @note Handles automatic CBL wrap-around.
1202 *
1203 * @param pStreamShared HDA stream to update read / write position for (shared).
1204 * @param pDevIns The device instance.
1205 * @param pThis The shared HDA device state.
1206 * @param cbToAdd Position (in bytes) to add to the current read / write position.
1207 */
1208static void hdaStreamSetPositionAdd(PHDASTREAM pStreamShared, PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t cbToAdd)
1209{
1210 if (cbToAdd) /* No need to update anything if 0. */
1211 {
1212 uint32_t const uCBL = pStreamShared->u32CBL;
1213 if (uCBL) /* paranoia */
1214 {
1215 uint32_t uNewLpid = HDA_STREAM_REG(pThis, LPIB, pStreamShared->u8SD) + cbToAdd;
1216# if 1 /** @todo r=bird: this is wrong according to the spec */
1217 uNewLpid %= uCBL;
1218# else
1219 /* The spec says it goes to CBL then wraps arpimd to 1, not back to zero. See 3.3.37. */
1220 if (uNewLpid > uCBL)
1221 uNewLpid %= uCBL;
1222# endif
1223 hdaStreamSetPositionAbs(pStreamShared, pDevIns, pThis, uNewLpid);
1224 }
1225 }
1226}
1227
1228#endif /* IN_RING3 || VBOX_HDA_WITH_ON_REG_ACCESS_DMA */
1229#ifdef IN_RING3
1230
1231/**
1232 * Retrieves the available size of (buffered) audio data (in bytes) of a given HDA stream.
1233 *
1234 * @returns Available data (in bytes).
1235 * @param pStreamR3 HDA stream to retrieve size for (ring-3).
1236 */
1237static uint32_t hdaR3StreamGetUsed(PHDASTREAMR3 pStreamR3)
1238{
1239 AssertPtrReturn(pStreamR3, 0);
1240
1241 if (pStreamR3->State.pCircBuf)
1242 return (uint32_t)RTCircBufUsed(pStreamR3->State.pCircBuf);
1243 return 0;
1244}
1245
1246/**
1247 * Retrieves the free size of audio data (in bytes) of a given HDA stream.
1248 *
1249 * @returns Free data (in bytes).
1250 * @param pStreamR3 HDA stream to retrieve size for (ring-3).
1251 */
1252static uint32_t hdaR3StreamGetFree(PHDASTREAMR3 pStreamR3)
1253{
1254 AssertPtrReturn(pStreamR3, 0);
1255
1256 if (pStreamR3->State.pCircBuf)
1257 return (uint32_t)RTCircBufFree(pStreamR3->State.pCircBuf);
1258 return 0;
1259}
1260
1261#endif /* IN_RING3 */
1262#if defined(IN_RING3) || defined(VBOX_HDA_WITH_ON_REG_ACCESS_DMA)
1263
1264/**
1265 * Get the current address and number of bytes left in the current BDLE.
1266 *
1267 * @returns The current physical address.
1268 * @param pStreamShared The stream to check.
1269 * @param pcbLeft The number of bytes left at the returned address.
1270 */
1271DECLINLINE(RTGCPHYS) hdaStreamDmaBufGet(PHDASTREAM pStreamShared, uint32_t *pcbLeft)
1272{
1273 uint8_t idxBdle = pStreamShared->State.idxCurBdle;
1274 AssertStmt(idxBdle < pStreamShared->State.cBdles, idxBdle = 0);
1275
1276 uint32_t const cbCurBdl = pStreamShared->State.aBdl[idxBdle].cb;
1277 uint32_t offCurBdle = pStreamShared->State.offCurBdle;
1278 AssertStmt(pStreamShared->State.offCurBdle <= cbCurBdl, offCurBdle = cbCurBdl);
1279
1280 *pcbLeft = cbCurBdl - offCurBdle;
1281 return pStreamShared->State.aBdl[idxBdle].GCPhys + offCurBdle;
1282}
1283
1284/**
1285 * Checks if the current BDLE is completed.
1286 *
1287 * @retval true if complete
1288 * @retval false if not.
1289 * @param pStreamShared The stream to check.
1290 */
1291DECLINLINE(bool) hdaStreamDmaBufIsComplete(PHDASTREAM pStreamShared)
1292{
1293 uint8_t const idxBdle = pStreamShared->State.idxCurBdle;
1294 AssertReturn(idxBdle < pStreamShared->State.cBdles, true);
1295
1296 uint32_t const cbCurBdl = pStreamShared->State.aBdl[idxBdle].cb;
1297 uint32_t const offCurBdle = pStreamShared->State.offCurBdle;
1298 Assert(offCurBdle <= cbCurBdl);
1299 return offCurBdle >= cbCurBdl;
1300}
1301
1302/**
1303 * Checks if the current BDLE needs a completion IRQ.
1304 *
1305 * @retval true if IRQ is needed.
1306 * @retval false if not.
1307 * @param pStreamShared The stream to check.
1308 */
1309DECLINLINE(bool) hdaStreamDmaBufNeedsIrq(PHDASTREAM pStreamShared)
1310{
1311 uint8_t const idxBdle = pStreamShared->State.idxCurBdle;
1312 AssertReturn(idxBdle < pStreamShared->State.cBdles, false);
1313 return (pStreamShared->State.aBdl[idxBdle].fFlags & HDA_BDLE_F_IOC) != 0;
1314}
1315
1316/**
1317 * Advances the DMA engine to the next BDLE.
1318 *
1319 * @param pStreamShared The stream which DMA engine is to be updated.
1320 */
1321DECLINLINE(void) hdaStreamDmaBufAdvanceToNext(PHDASTREAM pStreamShared)
1322{
1323 uint8_t idxBdle = pStreamShared->State.idxCurBdle;
1324 Assert(pStreamShared->State.offCurBdle == pStreamShared->State.aBdl[idxBdle].cb);
1325
1326 if (idxBdle < pStreamShared->State.cBdles - 1)
1327 idxBdle++;
1328 else
1329 idxBdle = 0;
1330 pStreamShared->State.idxCurBdle = idxBdle;
1331 pStreamShared->State.offCurBdle = 0;
1332}
1333
1334#endif /* defined(IN_RING3) || defined(VBOX_HDA_WITH_ON_REG_ACCESS_DMA) */
1335#ifdef IN_RING3
1336
1337/**
1338 * Common do-DMA prologue code.
1339 *
1340 * @retval true if DMA processing can take place
1341 * @retval false if caller should return immediately.
1342 * @param pThis The shared HDA device state.
1343 * @param pStreamShared HDA stream to update (shared).
1344 * @param pStreamR3 HDA stream to update (ring-3).
1345 * @param uSD The stream ID (for asserting).
1346 * @param tsNowNs The current RTTimeNano() value.
1347 * @param pszFunction The function name (for logging).
1348 */
1349DECLINLINE(bool) hdaR3StreamDoDmaPrologue(PHDASTATE pThis, PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, uint8_t uSD,
1350 uint64_t tsNowNs, const char *pszFunction)
1351{
1352 RT_NOREF(uSD, pszFunction);
1353
1354 /*
1355 * Check if we should skip town...
1356 */
1357 /* Stream not running (anymore)? */
1358 if (pStreamShared->State.fRunning)
1359 { /* likely */ }
1360 else
1361 {
1362 Log3(("%s: [SD%RU8] Not running, skipping transfer\n", pszFunction, uSD));
1363 return false;
1364 }
1365
1366 if (!(HDA_STREAM_REG(pThis, STS, uSD) & HDA_SDSTS_BCIS))
1367 { /* likely */ }
1368 else
1369 {
1370 /** @todo r=bird: This is a bit fishy. We should make effort the reschedule
1371 * the transfer immediately after the guest clears the interrupt.
1372 * The same fishy code is present in AC'97 with just a little
1373 * explanation as here, see @bugref{9890#c95}.
1374 *
1375 * The reasoning is probably that the developer noticed some windows
1376 * versions don't like having their BCIS interrupts bundled. There were
1377 * comments to that effect elsewhere, probably as a result of a fixed
1378 * uTimerHz approach to DMA scheduling. However, pausing DMA for a
1379 * period isn't going to help us with the host backends, as they don't
1380 * pause and will want samples ASAP. So, we should at least unpause
1381 * DMA as quickly as we possible when BCIS is cleared. We might even
1382 * not skip it iff the DMA work here doesn't involve raising any IOC,
1383 * which is possible although unlikely. */
1384 Log3(("%s: [SD%RU8] BCIS bit set, skipping transfer\n", pszFunction, uSD));
1385 STAM_REL_COUNTER_INC(&pStreamR3->State.StatDmaSkippedPendingBcis);
1386 Log(("%s: [SD%RU8] BCIS bit set, skipping transfer\n", pszFunction, uSD));
1387# ifdef HDA_STRICT
1388 /* Timing emulation bug or guest is misbehaving -- let me know. */
1389 AssertMsgFailed(("%s: BCIS bit for stream #%RU8 still set when it shouldn't\n", pszFunction, uSD));
1390# endif
1391 return false;
1392 }
1393
1394 /*
1395 * Stream sanity checks.
1396 */
1397 /* Register sanity checks. */
1398 Assert(uSD < HDA_MAX_STREAMS);
1399 Assert(pStreamShared->u64BDLBase);
1400 Assert(pStreamShared->u32CBL);
1401 Assert(pStreamShared->u8FIFOS);
1402
1403 /* State sanity checks. */
1404 Assert(ASMAtomicReadBool(&pStreamShared->State.fInReset) == false);
1405 Assert(ASMAtomicReadBool(&pStreamShared->State.fRunning));
1406
1407 /*
1408 * Some timestamp stuff for logging/debugging.
1409 */
1410 /*const uint64_t tsNowNs = RTTimeNanoTS();*/
1411 Log3(("%s: [SD%RU8] tsDeltaNs=%'RU64 ns\n", pszFunction, uSD, tsNowNs - pStreamShared->State.tsLastTransferNs));
1412 pStreamShared->State.tsLastTransferNs = tsNowNs;
1413
1414 return true;
1415}
1416
1417/**
1418 * Common do-DMA epilogue.
1419 *
1420 * @param pDevIns The device instance.
1421 * @param pStreamShared The HDA stream (shared).
1422 * @param pStreamR3 The HDA stream (ring-3).
1423 */
1424DECLINLINE(void) hdaR3StreamDoDmaEpilogue(PPDMDEVINS pDevIns, PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3)
1425{
1426 /*
1427 * We must update this in the epilogue rather than in the prologue
1428 * as it is used for WALCLK calculation and we must make sure the
1429 * guest doesn't think we've processed the current period till we
1430 * actually have.
1431 */
1432 pStreamShared->State.tsTransferLast = PDMDevHlpTimerGet(pDevIns, pStreamShared->hTimer);
1433
1434 /*
1435 * Update the buffer statistics.
1436 */
1437 pStreamR3->State.StatDmaBufUsed = (uint32_t)RTCircBufUsed(pStreamR3->State.pCircBuf);
1438}
1439
1440#endif /* IN_RING3 */
1441
1442#if defined(IN_RING3) || defined(VBOX_HDA_WITH_ON_REG_ACCESS_DMA)
1443/**
1444 * Completes a BDLE at the end of a DMA loop iteration, if possible.
1445 *
1446 * @retval true if buffer completed and new loaded.
1447 * @retval false if buffer not completed.
1448 * @param pDevIns The device instance.
1449 * @param pThis The shared HDA device state.
1450 * @param pStreamShared HDA stream to update (shared).
1451 * @param pszFunction The function name (for logging).
1452 */
1453DECLINLINE(bool) hdaStreamDoDmaMaybeCompleteBuffer(PPDMDEVINS pDevIns, PHDASTATE pThis,
1454 PHDASTREAM pStreamShared, const char *pszFunction)
1455{
1456 RT_NOREF(pszFunction);
1457
1458 /*
1459 * Is the buffer descriptor complete.
1460 */
1461 if (hdaStreamDmaBufIsComplete(pStreamShared))
1462 {
1463 Log3(("%s: [SD%RU8] Completed BDLE%u %#RX64 LB %#RX32 fFlags=%#x\n", pszFunction, pStreamShared->u8SD,
1464 pStreamShared->State.idxCurBdle, pStreamShared->State.aBdl[pStreamShared->State.idxCurBdle].GCPhys,
1465 pStreamShared->State.aBdl[pStreamShared->State.idxCurBdle].cb,
1466 pStreamShared->State.aBdl[pStreamShared->State.idxCurBdle].fFlags));
1467
1468 /* Does the current BDLE require an interrupt to be sent? */
1469 if (hdaStreamDmaBufNeedsIrq(pStreamShared))
1470 {
1471 /* If the IOCE ("Interrupt On Completion Enable") bit of the SDCTL
1472 register is set we need to generate an interrupt. */
1473 if (HDA_STREAM_REG(pThis, CTL, pStreamShared->u8SD) & HDA_SDCTL_IOCE)
1474 {
1475 /* Assert the interrupt before actually fetching the next BDLE below. */
1476 pStreamShared->State.cTransferPendingInterrupts = 1;
1477 Log3(("%s: [SD%RU8] Scheduling interrupt\n", pszFunction, pStreamShared->u8SD));
1478
1479 /* Trigger an interrupt first and let hdaRegWriteSDSTS() deal with
1480 * ending / beginning of a period. */
1481 /** @todo r=bird: What does the above comment mean? */
1482 HDA_STREAM_REG(pThis, STS, pStreamShared->u8SD) |= HDA_SDSTS_BCIS;
1483 HDA_PROCESS_INTERRUPT(pDevIns, pThis);
1484 }
1485 }
1486
1487 /*
1488 * Advance to the next BDLE.
1489 */
1490 hdaStreamDmaBufAdvanceToNext(pStreamShared);
1491 return true;
1492 }
1493
1494 Log3(("%s: [SD%RU8] Incomplete BDLE%u %#RX64 LB %#RX32 fFlags=%#x: off=%#RX32\n", pszFunction, pStreamShared->u8SD,
1495 pStreamShared->State.idxCurBdle, pStreamShared->State.aBdl[pStreamShared->State.idxCurBdle].GCPhys,
1496 pStreamShared->State.aBdl[pStreamShared->State.idxCurBdle].cb,
1497 pStreamShared->State.aBdl[pStreamShared->State.idxCurBdle].fFlags, pStreamShared->State.offCurBdle));
1498 return false;
1499}
1500#endif /* IN_RING3 || VBOX_HDA_WITH_ON_REG_ACCESS_DMA */
1501
1502#ifdef IN_RING3
1503
1504/**
1505 * Does DMA transfer for an HDA input stream.
1506 *
1507 * Reads audio data from the HDA stream's internal DMA buffer and writing to
1508 * guest memory.
1509 *
1510 * @param pDevIns The device instance.
1511 * @param pThis The shared HDA device state.
1512 * @param pStreamShared HDA stream to update (shared).
1513 * @param pStreamR3 HDA stream to update (ring-3).
1514 * @param cbToConsume The max amount of data to consume from the
1515 * internal DMA buffer. The caller will make sure
1516 * this is always the transfer size fo the current
1517 * period (unless something is seriously wrong).
1518 * @param fWriteSilence Whether to feed the guest silence rather than
1519 * fetching bytes from the internal DMA buffer.
1520 * This is set initially while we pre-buffer a
1521 * little bit of input, so we can better handle
1522 * time catch-ups and other schduling fun.
1523 * @param tsNowNs The current RTTimeNano() value.
1524 *
1525 * @remarks Caller owns the stream lock.
1526 */
1527static void hdaR3StreamDoDmaInput(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTREAM pStreamShared,
1528 PHDASTREAMR3 pStreamR3, uint32_t const cbToConsume, bool fWriteSilence, uint64_t tsNowNs)
1529{
1530 uint8_t const uSD = pStreamShared->u8SD;
1531 LogFlowFunc(("ENTER - #%u cbToConsume=%#x%s\n", uSD, cbToConsume, fWriteSilence ? " silence" : ""));
1532
1533 /*
1534 * Common prologue.
1535 */
1536 if (hdaR3StreamDoDmaPrologue(pThis, pStreamShared, pStreamR3, uSD, tsNowNs, "hdaR3StreamDoDmaInput"))
1537 { /* likely */ }
1538 else
1539 return;
1540
1541 /*
1542 *
1543 * The DMA copy loop.
1544 *
1545 * Note! Unaligned BDLEs shouldn't be a problem since the circular buffer
1546 * doesn't care about alignment. Only, we have to read the rest
1547 * of the incomplete frame from it ASAP.
1548 */
1549 PRTCIRCBUF pCircBuf = pStreamR3->State.pCircBuf;
1550 uint32_t cbLeft = cbToConsume;
1551 Assert(cbLeft == pStreamShared->State.cbCurDmaPeriod);
1552 Assert(PDMAudioPropsIsSizeAligned(&pStreamShared->State.Cfg.Props, cbLeft));
1553
1554 while (cbLeft > 0)
1555 {
1556 STAM_PROFILE_START(&pThis->StatIn, a);
1557
1558 /*
1559 * Figure out how much we can read & write in this iteration.
1560 */
1561 uint32_t cbChunk = 0;
1562 RTGCPHYS GCPhys = hdaStreamDmaBufGet(pStreamShared, &cbChunk);
1563
1564 if (cbChunk <= cbLeft)
1565 { /* very likely */ }
1566 else
1567 cbChunk = cbLeft;
1568
1569 uint32_t cbWritten = 0;
1570 if (!fWriteSilence)
1571 {
1572 /*
1573 * Write the host data directly into the guest buffers.
1574 */
1575 while (cbChunk > 0)
1576 {
1577 /* Grab internal DMA buffer space and read into it. */
1578 void /*const*/ *pvBufSrc;
1579 size_t cbBufSrc;
1580 RTCircBufAcquireReadBlock(pCircBuf, cbChunk, &pvBufSrc, &cbBufSrc);
1581 AssertBreakStmt(cbBufSrc, RTCircBufReleaseReadBlock(pCircBuf, 0));
1582
1583 int rc2 = PDMDevHlpPCIPhysWrite(pDevIns, GCPhys, pvBufSrc, cbBufSrc);
1584 AssertRC(rc2);
1585
1586# ifdef HDA_DEBUG_SILENCE
1587 fix me if relevant;
1588# endif
1589 if (RT_LIKELY(!pStreamR3->Dbg.Runtime.pFileDMARaw))
1590 { /* likely */ }
1591 else
1592 AudioHlpFileWrite(pStreamR3->Dbg.Runtime.pFileDMARaw, pvBufSrc, cbBufSrc);
1593
1594# ifdef VBOX_WITH_DTRACE
1595 VBOXDD_HDA_STREAM_DMA_IN((uint32_t)uSD, (uint32_t)cbBufSrc, pStreamShared->State.offRead);
1596# endif
1597 pStreamShared->State.offRead += cbBufSrc;
1598 RTCircBufReleaseReadBlock(pCircBuf, cbBufSrc);
1599 STAM_COUNTER_ADD(&pThis->StatBytesWritten, cbBufSrc);
1600
1601 /* advance */
1602 cbChunk -= (uint32_t)cbBufSrc;
1603 cbWritten += (uint32_t)cbBufSrc;
1604 GCPhys += cbBufSrc;
1605 pStreamShared->State.offCurBdle += (uint32_t)cbBufSrc;
1606 }
1607 }
1608 /*
1609 * Write silence. Since we only do signed formats, we can use the zero
1610 * buffers from IPRT as source here.
1611 */
1612 else
1613 {
1614 Assert(PDMAudioPropsIsSigned(&pStreamShared->State.Cfg.Props));
1615 while (cbChunk > 0)
1616 {
1617 /* Write it to the guest buffer. */
1618 uint32_t cbToWrite = RT_MIN(sizeof(g_abRTZero64K), cbChunk);
1619 int rc2 = PDMDevHlpPCIPhysWrite(pDevIns, GCPhys, g_abRTZero64K, cbToWrite);
1620 AssertRC(rc2);
1621 STAM_COUNTER_ADD(&pThis->StatBytesWritten, cbToWrite);
1622
1623 /* advance */
1624 cbWritten += cbToWrite;
1625 cbChunk -= cbToWrite;
1626 GCPhys += cbToWrite;
1627 pStreamShared->State.offCurBdle += cbToWrite;
1628 }
1629 }
1630
1631 cbLeft -= cbWritten;
1632 STAM_PROFILE_STOP(&pThis->StatIn, a);
1633
1634 /*
1635 * Complete the buffer if necessary (common with the output DMA code).
1636 *
1637 * Must update the DMA position before we do this as the buffer IRQ may
1638 * fire on another vCPU and run in parallel to us, although it is very
1639 * unlikely it can make much progress as long as we're sitting on the
1640 * lock, it could still read the DMA position (Linux won't, as it reads
1641 * WALCLK and possibly SDnSTS before the DMA position).
1642 */
1643 hdaStreamSetPositionAdd(pStreamShared, pDevIns, pThis, cbWritten);
1644 hdaStreamDoDmaMaybeCompleteBuffer(pDevIns, pThis, pStreamShared, "hdaR3StreamDoDmaInput");
1645 }
1646
1647 Assert(cbLeft == 0); /* There shall be no break statements in the above loop, so cbLeft is always zero here! */
1648
1649 /*
1650 * Common epilogue.
1651 */
1652 hdaR3StreamDoDmaEpilogue(pDevIns, pStreamShared, pStreamR3);
1653
1654 /*
1655 * Log and leave.
1656 */
1657 Log3Func(("LEAVE - [SD%RU8] %#RX32/%#RX32 @ %#RX64 - cTransferPendingInterrupts=%RU8\n",
1658 uSD, cbToConsume, pStreamShared->State.cbCurDmaPeriod, pStreamShared->State.offRead - cbToConsume,
1659 pStreamShared->State.cTransferPendingInterrupts));
1660}
1661
1662
1663/**
1664 * Input streams: Pulls data from the mixer, putting it in the internal DMA
1665 * buffer.
1666 *
1667 * @param pStreamShared HDA stream to update (shared).
1668 * @param pStreamR3 HDA stream to update (ring-3 bits).
1669 * @param pSink The mixer sink to pull from.
1670 */
1671static void hdaR3StreamPullFromMixer(PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, PAUDMIXSINK pSink)
1672{
1673# ifdef LOG_ENABLED
1674 uint64_t const offWriteOld = pStreamShared->State.offWrite;
1675# endif
1676 pStreamShared->State.offWrite = AudioMixerSinkTransferToCircBuf(pSink,
1677 pStreamR3->State.pCircBuf,
1678 pStreamShared->State.offWrite,
1679 pStreamR3->u8SD,
1680 pStreamR3->Dbg.Runtime.fEnabled
1681 ? pStreamR3->Dbg.Runtime.pFileStream : NULL);
1682
1683 Log3Func(("[SD%RU8] transferred=%#RX64 bytes -> @%#RX64\n", pStreamR3->u8SD,
1684 pStreamShared->State.offWrite - offWriteOld, pStreamShared->State.offWrite));
1685
1686 /* Update buffer stats. */
1687 pStreamR3->State.StatDmaBufUsed = (uint32_t)RTCircBufUsed(pStreamR3->State.pCircBuf);
1688}
1689
1690
1691/**
1692 * Does DMA transfer for an HDA output stream.
1693 *
1694 * This transfers one DMA timer period worth of data from the guest and into the
1695 * internal DMA buffer.
1696 *
1697 * @param pDevIns The device instance.
1698 * @param pThis The shared HDA device state.
1699 * @param pStreamShared HDA stream to update (shared).
1700 * @param pStreamR3 HDA stream to update (ring-3).
1701 * @param cbToProduce The max amount of data to produce (i.e. put into
1702 * the circular buffer). Unless something is going
1703 * seriously wrong, this will always be transfer
1704 * size for the current period.
1705 * @param tsNowNs The current RTTimeNano() value.
1706 *
1707 * @remarks Caller owns the stream lock.
1708 */
1709static void hdaR3StreamDoDmaOutput(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTREAM pStreamShared,
1710 PHDASTREAMR3 pStreamR3, uint32_t const cbToProduce, uint64_t tsNowNs)
1711{
1712 uint8_t const uSD = pStreamShared->u8SD;
1713 LogFlowFunc(("ENTER - #%u cbToProduce=%#x\n", uSD, cbToProduce));
1714
1715 /*
1716 * Common prologue.
1717 */
1718 if (hdaR3StreamDoDmaPrologue(pThis, pStreamShared, pStreamR3, uSD, tsNowNs, "hdaR3StreamDoDmaOutput"))
1719 { /* likely */ }
1720 else
1721 return;
1722
1723 /*
1724 *
1725 * The DMA copy loop.
1726 *
1727 * Note! Unaligned BDLEs shouldn't be a problem since the circular buffer
1728 * doesn't care about alignment. Only, we have to write the rest
1729 * of the incomplete frame to it ASAP.
1730 */
1731 PRTCIRCBUF pCircBuf = pStreamR3->State.pCircBuf;
1732 uint32_t cbLeft = cbToProduce;
1733# ifdef VBOX_HDA_WITH_ON_REG_ACCESS_DMA
1734 Assert(cbLeft <= pStreamShared->State.cbCurDmaPeriod); /* a little pointless with the DMA'ing on LPIB read. */
1735# else
1736 Assert(cbLeft == pStreamShared->State.cbCurDmaPeriod);
1737# endif
1738 Assert(PDMAudioPropsIsSizeAligned(&pStreamShared->State.Cfg.Props, cbLeft));
1739
1740 while (cbLeft > 0)
1741 {
1742 STAM_PROFILE_START(&pThis->StatOut, a);
1743
1744 /*
1745 * Figure out how much we can read & write in this iteration.
1746 */
1747 uint32_t cbChunk = 0;
1748 RTGCPHYS GCPhys = hdaStreamDmaBufGet(pStreamShared, &cbChunk);
1749
1750 if (cbChunk <= cbLeft)
1751 { /* very likely */ }
1752 else
1753 cbChunk = cbLeft;
1754
1755 /*
1756 * Read the guest data directly into the internal DMA buffer.
1757 */
1758 uint32_t cbRead = 0;
1759 while (cbChunk > 0)
1760 {
1761 /* Grab internal DMA buffer space and read into it. */
1762 void *pvBufDst;
1763 size_t cbBufDst;
1764 RTCircBufAcquireWriteBlock(pCircBuf, cbChunk, &pvBufDst, &cbBufDst);
1765 AssertBreakStmt(cbBufDst, RTCircBufReleaseWriteBlock(pCircBuf, 0));
1766
1767 int rc2 = PDMDevHlpPCIPhysRead(pDevIns, GCPhys, pvBufDst, cbBufDst);
1768 AssertRC(rc2);
1769
1770# ifdef HDA_DEBUG_SILENCE
1771 fix me if relevant;
1772# endif
1773 if (RT_LIKELY(!pStreamR3->Dbg.Runtime.pFileDMARaw))
1774 { /* likely */ }
1775 else
1776 AudioHlpFileWrite(pStreamR3->Dbg.Runtime.pFileDMARaw, pvBufDst, cbBufDst);
1777
1778# ifdef VBOX_WITH_DTRACE
1779 VBOXDD_HDA_STREAM_DMA_OUT((uint32_t)uSD, (uint32_t)cbBufDst, pStreamShared->State.offWrite);
1780# endif
1781 pStreamShared->State.offWrite += cbBufDst;
1782 RTCircBufReleaseWriteBlock(pCircBuf, cbBufDst);
1783 STAM_COUNTER_ADD(&pThis->StatBytesRead, cbBufDst);
1784
1785 /* advance */
1786 cbChunk -= (uint32_t)cbBufDst;
1787 cbRead += (uint32_t)cbBufDst;
1788 GCPhys += cbBufDst;
1789 pStreamShared->State.offCurBdle += (uint32_t)cbBufDst;
1790 }
1791
1792 cbLeft -= cbRead;
1793 STAM_PROFILE_STOP(&pThis->StatOut, a);
1794
1795 /*
1796 * Complete the buffer if necessary (common with the input DMA code).
1797 *
1798 * Must update the DMA position before we do this as the buffer IRQ may
1799 * fire on another vCPU and run in parallel to us, although it is very
1800 * unlikely it can make much progress as long as we're sitting on the
1801 * lock, it could still read the DMA position (Linux won't, as it reads
1802 * WALCLK and possibly SDnSTS before the DMA position).
1803 */
1804 hdaStreamSetPositionAdd(pStreamShared, pDevIns, pThis, cbRead);
1805 hdaStreamDoDmaMaybeCompleteBuffer(pDevIns, pThis, pStreamShared, "hdaR3StreamDoDmaOutput");
1806 }
1807
1808 Assert(cbLeft == 0); /* There shall be no break statements in the above loop, so cbLeft is always zero here! */
1809
1810 /*
1811 * Common epilogue.
1812 */
1813 hdaR3StreamDoDmaEpilogue(pDevIns, pStreamShared, pStreamR3);
1814
1815 /*
1816 * Log and leave.
1817 */
1818 Log3Func(("LEAVE - [SD%RU8] %#RX32/%#RX32 @ %#RX64 - cTransferPendingInterrupts=%RU8\n",
1819 uSD, cbToProduce, pStreamShared->State.cbCurDmaPeriod, pStreamShared->State.offWrite - cbToProduce,
1820 pStreamShared->State.cTransferPendingInterrupts));
1821}
1822
1823#endif /* IN_RING3 */
1824#ifdef VBOX_HDA_WITH_ON_REG_ACCESS_DMA
1825
1826/**
1827 * Do DMA output transfer on LPIB/WALCLK register access.
1828 *
1829 * @returns VINF_SUCCESS or VINF_IOM_R3_MMIO_READ.
1830 * @param pDevIns The device instance.
1831 * @param pThis The shared instance data.
1832 * @param pStreamShared The shared stream data.
1833 * @param tsNow The current time on the timer clock.
1834 * @param cbToTransfer How much to transfer.
1835 */
1836VBOXSTRICTRC hdaStreamDoOnAccessDmaOutput(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTREAM pStreamShared,
1837 uint64_t tsNow, uint32_t cbToTransfer)
1838{
1839 AssertReturn(cbToTransfer > 0, VINF_SUCCESS);
1840 int rc = VINF_SUCCESS;
1841
1842 /*
1843 * Check if we're exceeding the available buffer, go to ring-3 to
1844 * handle that (we would perhaps always take this path when in ring-3).
1845 */
1846 uint32_t cbDma = pStreamShared->State.cbDma;
1847 ASMCompilerBarrier();
1848 if ( cbDma >= sizeof(pStreamShared->State.abDma) /* paranoia */
1849 || cbToTransfer >= sizeof(pStreamShared->State.abDma) /* paranoia */
1850 || cbDma + cbToTransfer > sizeof(pStreamShared->State.abDma))
1851 {
1852# ifndef IN_RING3
1853 STAM_REL_COUNTER_INC(&pThis->StatAccessDmaOutputToR3);
1854 LogFlowFunc(("[SD%RU8] out of DMA buffer space (%#x, need %#x) -> VINF_IOM_R3_MMIO_READ\n",
1855 pStreamShared->u8SD, sizeof(pStreamShared->State.abDma) - pStreamShared->State.cbDma, cbToTransfer));
1856 return VINF_IOM_R3_MMIO_READ;
1857# else /* IN_RING3 */
1858 /*
1859 * Flush the bounce buffer, then do direct transfers to the
1860 * internal DMA buffer (updates LPIB).
1861 */
1862 PHDASTATER3 const pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PHDASTATER3);
1863 uintptr_t const idxStream = pStreamShared->u8SD;
1864 AssertReturn(idxStream < RT_ELEMENTS(pThisCC->aStreams), VERR_INTERNAL_ERROR_4);
1865 PHDASTREAMR3 const pStreamR3 = &pThisCC->aStreams[idxStream];
1866
1867 hdaR3StreamFlushDmaBounceBufferOutput(pStreamShared, pStreamR3);
1868
1869 uint32_t cbStreamFree = hdaR3StreamGetFree(pStreamR3);
1870 if (cbStreamFree >= cbToTransfer)
1871 { /* likely */ }
1872 else
1873 {
1874 PAUDMIXSINK pSink = pStreamR3->pMixSink ? pStreamR3->pMixSink->pMixSink : NULL;
1875 if (pSink)
1876 cbStreamFree = hdaR3StreamHandleDmaBufferOverrun(pStreamShared, pStreamR3, pSink, cbToTransfer, RTTimeNanoTS(),
1877 "hdaStreamDoOnAccessDmaOutput", cbStreamFree);
1878 else
1879 {
1880 LogFunc(("[SD%RU8] No sink and insufficient internal DMA buffer space (%#x) - won't do anything\n",
1881 pStreamShared->u8SD, cbStreamFree));
1882 return VINF_SUCCESS;
1883 }
1884 cbToTransfer = RT_MIN(cbToTransfer, cbStreamFree);
1885 if (cbToTransfer < PDMAudioPropsFrameSize(&pStreamShared->State.Cfg.Props))
1886 {
1887 LogFunc(("[SD%RU8] No internal DMA buffer space (%#x) - won't do anything\n", pStreamShared->u8SD, cbStreamFree));
1888 return VINF_SUCCESS;
1889 }
1890 }
1891 hdaR3StreamDoDmaOutput(pDevIns, pThis, pStreamShared, pStreamR3, cbToTransfer, RTTimeNanoTS());
1892 pStreamShared->State.cbDmaTotal += cbToTransfer;
1893# endif /* IN_RING3 */
1894 }
1895 else
1896 {
1897 /*
1898 * Transfer into the DMA bounce buffer.
1899 */
1900 LogFlowFunc(("[SD%RU8] Transfering %#x bytes to DMA bounce buffer (cbDma=%#x cbDmaTotal=%#x) (%p/%u)\n",
1901 pStreamShared->u8SD, cbToTransfer, cbDma, pStreamShared->State.cbDmaTotal, pStreamShared, pStreamShared->u8SD));
1902 uint32_t cbLeft = cbToTransfer;
1903 do
1904 {
1905 uint32_t cbChunk = 0;
1906 RTGCPHYS GCPhys = hdaStreamDmaBufGet(pStreamShared, &cbChunk);
1907
1908 bool fMustAdvanceBuffer;
1909 if (cbLeft < cbChunk)
1910 {
1911 fMustAdvanceBuffer = false;
1912 cbChunk = cbLeft;
1913 }
1914 else
1915 fMustAdvanceBuffer = true;
1916
1917 /* Read the guest data directly into the DMA bounce buffer. */
1918 int rc2 = PDMDevHlpPCIPhysRead(pDevIns, GCPhys, &pStreamShared->State.abDma[cbDma], cbChunk);
1919 AssertRC(rc2);
1920
1921 /* We update offWrite and StatBytesRead here even if we haven't moved the data
1922 to the internal DMA buffer yet, because we want the dtrace even to fire here. */
1923# ifdef VBOX_WITH_DTRACE
1924 VBOXDD_HDA_STREAM_DMA_OUT((uint32_t)pStreamShared->u8SD, cbChunk, pStreamShared->State.offWrite);
1925# endif
1926 pStreamShared->State.offWrite += cbChunk;
1927 STAM_COUNTER_ADD(&pThis->StatBytesRead, cbChunk);
1928
1929 /* advance */
1930 pStreamShared->State.offCurBdle += cbChunk;
1931 pStreamShared->State.cbDmaTotal += cbChunk;
1932 cbDma += cbChunk;
1933 pStreamShared->State.cbDma = cbDma;
1934 cbLeft -= cbChunk;
1935 Log6Func(("cbLeft=%#x cbDma=%#x cbDmaTotal=%#x offCurBdle=%#x idxCurBdle=%#x (%p/%u)\n",
1936 cbLeft, cbDma, pStreamShared->State.cbDmaTotal, pStreamShared->State.offCurBdle,
1937 pStreamShared->State.idxCurBdle, pStreamShared, pStreamShared->u8SD));
1938
1939 /* Next buffer. */
1940 bool fAdvanced = hdaStreamDoDmaMaybeCompleteBuffer(pDevIns, pThis, pStreamShared, "hdaStreamDoOnAccessDmaOutput");
1941 AssertMsgStmt(fMustAdvanceBuffer == fAdvanced, ("%d %d\n", fMustAdvanceBuffer, fAdvanced), rc = VERR_INTERNAL_ERROR_3);
1942 } while (cbLeft > 0);
1943
1944 /*
1945 * Advance LPIB and update the last transfer time (for WALCLK).
1946 */
1947 pStreamShared->State.tsTransferLast = tsNow;
1948 hdaStreamSetPositionAdd(pStreamShared, pDevIns, pThis, cbToTransfer - cbLeft);
1949 }
1950
1951# ifdef VBOX_STRICT
1952 uint32_t idxSched = pStreamShared->State.idxSchedule;
1953 AssertStmt(idxSched < RT_MIN(RT_ELEMENTS(pStreamShared->State.aSchedule), pStreamShared->State.cSchedule), idxSched = 0);
1954 uint32_t const cbPeriod = pStreamShared->State.aSchedule[idxSched].cbPeriod;
1955 AssertMsg(pStreamShared->State.cbDmaTotal < cbPeriod, ("%#x vs %#x\n", pStreamShared->State.cbDmaTotal, cbPeriod));
1956# endif
1957
1958 STAM_REL_COUNTER_INC(&pThis->StatAccessDmaOutput);
1959 return rc;
1960}
1961
1962
1963/**
1964 * Consider doing DMA output transfer on LPIB/WALCLK register access.
1965 *
1966 * @returns VINF_SUCCESS or VINF_IOM_R3_MMIO_READ.
1967 * @param pDevIns The device instance.
1968 * @param pThis The shared instance data.
1969 * @param pStreamShared The shared stream data.
1970 * @param tsNow The current time on the timer clock. Used to do the
1971 * calculation.
1972 */
1973VBOXSTRICTRC hdaStreamMaybeDoOnAccessDmaOutput(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTREAM pStreamShared, uint64_t tsNow)
1974{
1975 Assert(pStreamShared->State.fRunning); /* caller should check this */
1976
1977 /*
1978 * Calculate where the DMA engine should be according to the clock, if we can.
1979 */
1980 uint32_t const cbFrame = PDMAudioPropsFrameSize(&pStreamShared->State.Cfg.Props);
1981 uint32_t const cbPeriod = pStreamShared->State.cbCurDmaPeriod;
1982 if (cbPeriod > cbFrame)
1983 {
1984 AssertMsg(pStreamShared->State.cbDmaTotal < cbPeriod, ("%#x vs %#x\n", pStreamShared->State.cbDmaTotal, cbPeriod));
1985 uint64_t const tsTransferNext = pStreamShared->State.tsTransferNext;
1986 uint32_t cbFuture;
1987 if (tsNow < tsTransferNext)
1988 {
1989 /** @todo ASSUMES nanosecond clock ticks, need to make this
1990 * resolution independent. */
1991 cbFuture = PDMAudioPropsNanoToBytes(&pStreamShared->State.Cfg.Props, tsTransferNext - tsNow);
1992 cbFuture = RT_MIN(cbFuture, cbPeriod - cbFrame);
1993 }
1994 else
1995 {
1996 /* We've hit/overshot the timer deadline. Return to ring-3 if we're
1997 not already there to increase the chance that we'll help expidite
1998 the timer. If we're already in ring-3, do all but the last frame. */
1999# ifndef IN_RING3
2000 LogFunc(("[SD%RU8] DMA period expired: tsNow=%RU64 >= tsTransferNext=%RU64 -> VINF_IOM_R3_MMIO_READ\n",
2001 tsNow, tsTransferNext));
2002 return VINF_IOM_R3_MMIO_READ;
2003# else
2004 cbFuture = cbPeriod - cbFrame;
2005 LogFunc(("[SD%RU8] DMA period expired: tsNow=%RU64 >= tsTransferNext=%RU64 -> cbFuture=%#x (cbPeriod=%#x - cbFrame=%#x)\n",
2006 tsNow, tsTransferNext, cbFuture, cbPeriod, cbFrame));
2007# endif
2008 }
2009 uint32_t const offNow = PDMAudioPropsFloorBytesToFrame(&pStreamShared->State.Cfg.Props, cbPeriod - cbFuture);
2010
2011 /*
2012 * Should we transfer a little? Minimum is 64 bytes (semi-random,
2013 * suspect real hardware might be doing some cache aligned stuff,
2014 * which might soon get complicated if you take unaligned buffers
2015 * into consideration and which cache line size (128 bytes is just
2016 * as likely as 64 or 32 bytes)).
2017 */
2018 uint32_t cbDmaTotal = pStreamShared->State.cbDmaTotal;
2019 if (cbDmaTotal + 64 <= offNow)
2020 {
2021# ifdef LOG_ENABLED
2022 uint32_t const uOldLpib = HDA_STREAM_REG(pThis, CBL, pStreamShared->u8SD);
2023# endif
2024 VBOXSTRICTRC rcStrict = hdaStreamDoOnAccessDmaOutput(pDevIns, pThis, pStreamShared, tsNow, offNow - cbDmaTotal);
2025 LogFlowFunc(("[SD%RU8] LPIB=%#RX32 -> LPIB=%#RX32 offNow=%#x rcStrict=%Rrc\n", pStreamShared->u8SD,
2026 uOldLpib, HDA_STREAM_REG(pThis, LPIB, pStreamShared->u8SD), offNow, VBOXSTRICTRC_VAL(rcStrict) ));
2027 return rcStrict;
2028 }
2029
2030 /*
2031 * Do nothing.
2032 */
2033 LogFlowFunc(("[SD%RU8] Skipping DMA transfer: cbDmaTotal=%#x offNow=%#x\n", pStreamShared->u8SD, cbDmaTotal, offNow));
2034 }
2035 else
2036 LogFunc(("[SD%RU8] cbPeriod=%#x <= cbFrame=%#x\n", pStreamShared->u8SD, cbPeriod, cbFrame));
2037 return VINF_SUCCESS;
2038}
2039
2040#endif /* VBOX_HDA_WITH_ON_REG_ACCESS_DMA */
2041#ifdef IN_RING3
2042
2043/**
2044 * Output streams: Pushes data to the mixer.
2045 *
2046 * @param pStreamShared HDA stream to update (shared bits).
2047 * @param pStreamR3 HDA stream to update (ring-3 bits).
2048 * @param pSink The mixer sink to push to.
2049 * @param nsNow The current RTTimeNanoTS() value.
2050 */
2051static void hdaR3StreamPushToMixer(PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, PAUDMIXSINK pSink, uint64_t nsNow)
2052{
2053# ifdef LOG_ENABLED
2054 uint64_t const offReadOld = pStreamShared->State.offRead;
2055# endif
2056 pStreamShared->State.offRead = AudioMixerSinkTransferFromCircBuf(pSink,
2057 pStreamR3->State.pCircBuf,
2058 pStreamShared->State.offRead,
2059 pStreamR3->u8SD,
2060 pStreamR3->Dbg.Runtime.fEnabled
2061 ? pStreamR3->Dbg.Runtime.pFileStream : NULL);
2062
2063 Assert(nsNow >= pStreamShared->State.tsLastReadNs);
2064 Log3Func(("[SD%RU8] nsDeltaLastRead=%RI64 transferred=%#RX64 bytes -> @%#RX64\n", pStreamR3->u8SD,
2065 nsNow - pStreamShared->State.tsLastReadNs, pStreamShared->State.offRead - offReadOld, pStreamShared->State.offRead));
2066 RT_NOREF(pStreamShared, nsNow);
2067
2068 /* Update buffer stats. */
2069 pStreamR3->State.StatDmaBufUsed = (uint32_t)RTCircBufUsed(pStreamR3->State.pCircBuf);
2070}
2071
2072
2073/**
2074 * Deals with a DMA buffer overrun.
2075 *
2076 * Makes sure we return with @a cbNeeded bytes of free space in pCircBuf.
2077 *
2078 * @returns Number of bytes free in the internal DMA buffer.
2079 * @param pStreamShared The shared data for the HDA stream.
2080 * @param pStreamR3 The ring-3 data for the HDA stream.
2081 * @param pSink The mixer sink (valid).
2082 * @param cbNeeded How much space we need (in bytes).
2083 * @param nsNow Current RTNanoTimeTS() timestamp.
2084 * @param cbStreamFree The current amount of free buffer space.
2085 * @param pszCaller The caller (for logging).
2086 */
2087static uint32_t hdaR3StreamHandleDmaBufferOverrun(PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, PAUDMIXSINK pSink,
2088 uint32_t cbNeeded, uint64_t nsNow,
2089 const char *pszCaller, uint32_t const cbStreamFree)
2090{
2091 STAM_REL_COUNTER_INC(&pStreamR3->State.StatDmaFlowProblems);
2092 Log(("%s: Warning! Stream #%u has insufficient space free: %#x bytes, need %#x. Will try move data out of the buffer...\n",
2093 pszCaller, pStreamShared->u8SD, cbStreamFree, cbNeeded));
2094 RT_NOREF(pszCaller, cbStreamFree);
2095
2096 int rc = AudioMixerSinkTryLock(pSink);
2097 if (RT_SUCCESS(rc))
2098 {
2099 hdaR3StreamPushToMixer(pStreamShared, pStreamR3, pSink, nsNow);
2100 AudioMixerSinkUpdate(pSink, 0, 0);
2101 AudioMixerSinkUnlock(pSink);
2102 }
2103 else
2104 RTThreadYield();
2105
2106 uint32_t const cbRet = hdaR3StreamGetFree(pStreamR3);
2107 Log(("%s: Gained %u bytes.\n", pszCaller, cbRet - cbStreamFree));
2108 if (cbRet >= cbNeeded)
2109 return cbRet;
2110
2111 /*
2112 * Unable to make sufficient space. Drop the whole buffer content.
2113 *
2114 * This is needed in order to keep the device emulation running at a
2115 * constant rate, at the cost of losing valid (but too much) data.
2116 */
2117 STAM_REL_COUNTER_INC(&pStreamR3->State.StatDmaFlowErrors);
2118 LogRel2(("HDA: Warning: Hit stream #%RU8 overflow, dropping %u bytes of audio data (%s)\n",
2119 pStreamShared->u8SD, hdaR3StreamGetUsed(pStreamR3), pszCaller));
2120# ifdef HDA_STRICT
2121 AssertMsgFailed(("Hit stream #%RU8 overflow -- timing bug?\n", pStreamShared->u8SD));
2122# endif
2123/**
2124 *
2125 * @todo r=bird: I don't think RTCircBufReset is entirely safe w/o
2126 * owning the AIO lock. See the note in the documentation about it not being
2127 * multi-threading aware (safe). Wish I'd verified this code much earlier.
2128 * Sigh^3!
2129 *
2130 */
2131 RTCircBufReset(pStreamR3->State.pCircBuf);
2132 pStreamShared->State.offWrite = 0;
2133 pStreamShared->State.offRead = 0;
2134 return hdaR3StreamGetFree(pStreamR3);
2135}
2136
2137
2138# ifdef VBOX_HDA_WITH_ON_REG_ACCESS_DMA
2139/**
2140 * Flushes the DMA bounce buffer content to the internal DMA buffer.
2141 *
2142 * @param pStreamShared The shared data of the stream to have its DMA bounce
2143 * buffer flushed.
2144 * @param pStreamR3 The ring-3 stream data for same.
2145 */
2146static void hdaR3StreamFlushDmaBounceBufferOutput(PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3)
2147{
2148 uint32_t cbDma = pStreamShared->State.cbDma;
2149 LogFlowFunc(("cbDma=%#x\n", cbDma));
2150 if (cbDma)
2151 {
2152 AssertReturnVoid(cbDma <= sizeof(pStreamShared->State.abDma));
2153 PRTCIRCBUF const pCircBuf = pStreamR3->State.pCircBuf;
2154 if (pCircBuf)
2155 {
2156 uint32_t offDma = 0;
2157 while (offDma < cbDma)
2158 {
2159 uint32_t const cbSrcLeft = cbDma - offDma;
2160
2161 /*
2162 * Grab a chunk of the internal DMA buffer.
2163 */
2164 void *pvBufDst = NULL;
2165 size_t cbBufDst = 0;
2166 RTCircBufAcquireWriteBlock(pCircBuf, cbSrcLeft, &pvBufDst, &cbBufDst);
2167 if (cbBufDst > 0)
2168 { /* likely */ }
2169 else
2170 {
2171 /* We've got buffering trouble. */
2172 RTCircBufReleaseWriteBlock(pCircBuf, 0);
2173
2174 PAUDMIXSINK pSink = pStreamR3->pMixSink ? pStreamR3->pMixSink->pMixSink : NULL;
2175 if (pSink)
2176 hdaR3StreamHandleDmaBufferOverrun(pStreamShared, pStreamR3, pSink, cbSrcLeft, RTTimeNanoTS(),
2177 "hdaR3StreamFlushDmaBounceBufferOutput", 0 /*cbStreamFree*/);
2178 else
2179 {
2180 LogFunc(("Stream #%u has no sink. Dropping the rest of the data\n", pStreamR3->u8SD));
2181 break;
2182 }
2183
2184 RTCircBufAcquireWriteBlock(pCircBuf, cbSrcLeft, &pvBufDst, &cbBufDst);
2185 AssertBreakStmt(cbBufDst, RTCircBufReleaseWriteBlock(pCircBuf, 0));
2186 }
2187
2188 /*
2189 * Copy the samples into it and write it to the debug file if open.
2190 *
2191 * We do not fire the dtrace probe here nor update offRead as that was
2192 * done already (not sure that was a good idea?).
2193 */
2194 memcpy(pvBufDst, &pStreamShared->State.abDma[offDma], cbBufDst);
2195
2196 if (RT_LIKELY(!pStreamR3->Dbg.Runtime.pFileDMARaw))
2197 { /* likely */ }
2198 else
2199 AudioHlpFileWrite(pStreamR3->Dbg.Runtime.pFileDMARaw, pvBufDst, cbBufDst);
2200
2201 RTCircBufReleaseWriteBlock(pCircBuf, cbBufDst);
2202
2203 offDma += (uint32_t)cbBufDst;
2204 }
2205 }
2206
2207 /*
2208 * Mark the buffer empty.
2209 */
2210 pStreamShared->State.cbDma = 0;
2211 }
2212}
2213# endif /* VBOX_HDA_WITH_ON_REG_ACCESS_DMA */
2214
2215
2216/**
2217 * The stream's main function when called by the timer.
2218 *
2219 * @note This function also will be called without timer invocation when
2220 * starting (enabling) the stream to minimize startup latency.
2221 *
2222 * @returns Current timer time if the timer is enabled, otherwise zero.
2223 * @param pDevIns The device instance.
2224 * @param pThis The shared HDA device state.
2225 * @param pThisCC The ring-3 HDA device state.
2226 * @param pStreamShared HDA stream to update (shared bits).
2227 * @param pStreamR3 HDA stream to update (ring-3 bits).
2228 */
2229uint64_t hdaR3StreamTimerMain(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTATER3 pThisCC,
2230 PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3)
2231{
2232 Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect));
2233 Assert(PDMDevHlpTimerIsLockOwner(pDevIns, pStreamShared->hTimer));
2234
2235 /* Do the work: */
2236 hdaR3StreamUpdateDma(pDevIns, pThis, pThisCC, pStreamShared, pStreamR3);
2237
2238 /* Re-arm the timer if the sink is still active: */
2239 if ( pStreamShared->State.fRunning
2240 && pStreamR3->pMixSink
2241 && AudioMixerSinkIsActive(pStreamR3->pMixSink->pMixSink))
2242 {
2243 /* Advance the schduling: */
2244 uint32_t idxSched = pStreamShared->State.idxSchedule;
2245 AssertStmt(idxSched < RT_ELEMENTS(pStreamShared->State.aSchedule), idxSched = 0);
2246 uint32_t idxLoop = pStreamShared->State.idxScheduleLoop + 1;
2247 if (idxLoop >= pStreamShared->State.aSchedule[idxSched].cLoops)
2248 {
2249 idxSched += 1;
2250 if ( idxSched >= pStreamShared->State.cSchedule
2251 || idxSched >= RT_ELEMENTS(pStreamShared->State.aSchedule) /*paranoia^2*/)
2252 {
2253 idxSched = pStreamShared->State.cSchedulePrologue;
2254 AssertStmt(idxSched < RT_ELEMENTS(pStreamShared->State.aSchedule), idxSched = 0);
2255 }
2256 pStreamShared->State.idxSchedule = idxSched;
2257 idxLoop = 0;
2258 }
2259 pStreamShared->State.idxScheduleLoop = (uint16_t)idxLoop;
2260
2261 /* Do the actual timer re-arming. */
2262 uint64_t const tsNow = PDMDevHlpTimerGet(pDevIns, pStreamShared->hTimer); /* (For virtual sync this remains the same for the whole callout IIRC) */
2263 uint64_t const tsTransferNext = tsNow + pStreamShared->State.aSchedule[idxSched].cPeriodTicks;
2264 Log3Func(("[SD%RU8] fSinkActive=true, tsTransferNext=%RU64 (in %RU64)\n",
2265 pStreamShared->u8SD, tsTransferNext, tsTransferNext - tsNow));
2266 int rc = PDMDevHlpTimerSet(pDevIns, pStreamShared->hTimer, tsTransferNext);
2267 AssertRC(rc);
2268
2269 /* Some legacy stuff: */
2270 pStreamShared->State.tsTransferNext = tsTransferNext;
2271 pStreamShared->State.cbCurDmaPeriod = pStreamShared->State.aSchedule[idxSched].cbPeriod;
2272
2273 return tsNow;
2274 }
2275
2276 Log3Func(("[SD%RU8] fSinkActive=false\n", pStreamShared->u8SD));
2277 return 0;
2278}
2279
2280
2281/**
2282 * Updates a HDA stream by doing DMA transfers.
2283 *
2284 * Will do mixer transfers too to try fix an overrun/underrun situation.
2285 *
2286 * The host sink(s) set the overall pace (bird: no it doesn't, the DMA timer
2287 * does - we just hope like heck it matches the speed at which the *backend*
2288 * host audio driver processes samples).
2289 *
2290 * @param pDevIns The device instance.
2291 * @param pThis The shared HDA device state.
2292 * @param pThisCC The ring-3 HDA device state.
2293 * @param pStreamShared HDA stream to update (shared bits).
2294 * @param pStreamR3 HDA stream to update (ring-3 bits).
2295 */
2296static void hdaR3StreamUpdateDma(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTATER3 pThisCC,
2297 PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3)
2298{
2299 RT_NOREF(pThisCC);
2300 int rc2;
2301
2302 /*
2303 * Make sure we're running and got an active mixer sink.
2304 */
2305 if (RT_LIKELY(pStreamShared->State.fRunning))
2306 { /* likely */ }
2307 else
2308 return;
2309
2310 PAUDMIXSINK pSink = NULL;
2311 if (pStreamR3->pMixSink)
2312 pSink = pStreamR3->pMixSink->pMixSink;
2313 if (RT_LIKELY(AudioMixerSinkIsActive(pSink)))
2314 { /* likely */ }
2315 else
2316 return;
2317
2318 /*
2319 * Get scheduling info common to both input and output streams.
2320 */
2321 const uint64_t tsNowNs = RTTimeNanoTS();
2322 uint32_t idxSched = pStreamShared->State.idxSchedule;
2323 AssertStmt(idxSched < RT_MIN(RT_ELEMENTS(pStreamShared->State.aSchedule), pStreamShared->State.cSchedule), idxSched = 0);
2324 uint32_t cbPeriod = pStreamShared->State.aSchedule[idxSched].cbPeriod;
2325
2326 /*
2327 * Output streams (SDO).
2328 */
2329 if (hdaGetDirFromSD(pStreamShared->u8SD) == PDMAUDIODIR_OUT)
2330 {
2331# ifdef VBOX_HDA_WITH_ON_REG_ACCESS_DMA
2332 /* Subtract already transferred bytes and flush the DMA bounce buffer. */
2333 uint32_t cbDmaTotal = pStreamShared->State.cbDmaTotal;
2334 if (cbDmaTotal > 0)
2335 {
2336 AssertStmt(cbDmaTotal < cbPeriod, cbDmaTotal = cbPeriod);
2337 cbPeriod -= cbDmaTotal;
2338 pStreamShared->State.cbDmaTotal = 0;
2339 hdaR3StreamFlushDmaBounceBufferOutput(pStreamShared, pStreamR3);
2340 }
2341 else
2342 Assert(pStreamShared->State.cbDma == 0);
2343# endif
2344
2345 /*
2346 * Check how much room we have in our DMA buffer. There should be at
2347 * least one period worth of space there or we're in an overflow situation.
2348 */
2349 uint32_t cbStreamFree = hdaR3StreamGetFree(pStreamR3);
2350 if (cbStreamFree >= cbPeriod)
2351 { /* likely */ }
2352 else
2353 cbStreamFree = hdaR3StreamHandleDmaBufferOverrun(pStreamShared, pStreamR3, pSink, cbPeriod, tsNowNs,
2354 "hdaR3StreamUpdateDma", cbStreamFree);
2355
2356 /*
2357 * Do the DMA transfer.
2358 */
2359 uint64_t const offWriteBefore = pStreamShared->State.offWrite;
2360 hdaR3StreamDoDmaOutput(pDevIns, pThis, pStreamShared, pStreamR3, RT_MIN(cbStreamFree, cbPeriod), tsNowNs);
2361
2362 /*
2363 * Should we push data to down thru the mixer to and to the host drivers?
2364 */
2365 bool fKickAioThread = pStreamShared->State.offWrite > offWriteBefore
2366 || hdaR3StreamGetFree(pStreamR3) < pStreamShared->State.cbAvgTransfer * 2;
2367
2368 Log3Func(("msDelta=%RU64 (vs %u) cbStreamFree=%#x (vs %#x) => fKickAioThread=%RTbool\n",
2369 (tsNowNs - pStreamShared->State.tsLastReadNs) / RT_NS_1MS,
2370 pStreamShared->State.Cfg.Device.cMsSchedulingHint, cbStreamFree,
2371 pStreamShared->State.cbAvgTransfer * 2, fKickAioThread));
2372
2373 if (fKickAioThread)
2374 {
2375 /* Notify the async I/O worker thread that there's work to do. */
2376 Log5Func(("Notifying AIO thread\n"));
2377 rc2 = AudioMixerSinkSignalUpdateJob(pSink);
2378 AssertRC(rc2);
2379 /* Update last read timestamp for logging/debugging. */
2380 pStreamShared->State.tsLastReadNs = tsNowNs;
2381 }
2382 }
2383 /*
2384 * Input stream (SDI).
2385 */
2386 else
2387 {
2388 Assert(hdaGetDirFromSD(pStreamShared->u8SD) == PDMAUDIODIR_IN);
2389
2390 /*
2391 * See how much data we've got buffered...
2392 */
2393 bool fWriteSilence = false;
2394 uint32_t cbStreamUsed = hdaR3StreamGetUsed(pStreamR3);
2395 if (pStreamShared->State.fInputPreBuffered && cbStreamUsed >= cbPeriod)
2396 { /*likely*/ }
2397 /*
2398 * Because it may take a while for the input stream to get going (at
2399 * least with pulseaudio), we feed the guest silence till we've
2400 * pre-buffer a reasonable amount of audio.
2401 */
2402 else if (!pStreamShared->State.fInputPreBuffered)
2403 {
2404 if (cbStreamUsed < pStreamShared->State.cbInputPreBuffer)
2405 {
2406 Log3(("hdaR3StreamUpdateDma: Pre-buffering (got %#x out of %#x bytes)...\n",
2407 cbStreamUsed, pStreamShared->State.cbInputPreBuffer));
2408 fWriteSilence = true;
2409 }
2410 else
2411 {
2412 Log3(("hdaR3StreamUpdateDma: Completed pre-buffering (got %#x, needed %#x bytes).\n",
2413 cbStreamUsed, pStreamShared->State.cbInputPreBuffer));
2414 pStreamShared->State.fInputPreBuffered = true;
2415 fWriteSilence = true; /* For now, just do the most conservative thing. */
2416 }
2417 cbStreamUsed = cbPeriod;
2418 }
2419 /*
2420 * When we're low on data, we must really try fetch some ourselves
2421 * as buffer underruns must not happen.
2422 */
2423 else
2424 {
2425 /** @todo We're ending up here to frequently with pulse audio at least (just
2426 * watch the stream stats in the statistcs viewer, and way to often we
2427 * have to inject silence bytes. I suspect part of the problem is
2428 * that the HDA device require a much better latency than what the
2429 * pulse audio is configured for by default (10 ms vs 150ms). */
2430 STAM_REL_COUNTER_INC(&pStreamR3->State.StatDmaFlowProblems);
2431 Log(("hdaR3StreamUpdateDma: Warning! Stream #%u has insufficient data available: %u bytes, need %u. Will try move pull more data into the buffer...\n",
2432 pStreamShared->u8SD, cbStreamUsed, cbPeriod));
2433 int rc = AudioMixerSinkTryLock(pSink);
2434 if (RT_SUCCESS(rc))
2435 {
2436 AudioMixerSinkUpdate(pSink, cbStreamUsed, cbPeriod);
2437 hdaR3StreamPullFromMixer(pStreamShared, pStreamR3, pSink);
2438 AudioMixerSinkUnlock(pSink);
2439 }
2440 else
2441 RTThreadYield();
2442 Log(("hdaR3StreamUpdateDma: Gained %u bytes.\n", hdaR3StreamGetUsed(pStreamR3) - cbStreamUsed));
2443 cbStreamUsed = hdaR3StreamGetUsed(pStreamR3);
2444 if (cbStreamUsed < cbPeriod)
2445 {
2446 /* Unable to find sufficient input data by simple prodding.
2447 In order to keep a constant byte stream following thru the DMA
2448 engine into the guest, we will try again and then fall back on
2449 filling the gap with silence. */
2450 uint32_t cbSilence = 0;
2451 do
2452 {
2453 AudioMixerSinkLock(pSink);
2454
2455 cbStreamUsed = hdaR3StreamGetUsed(pStreamR3);
2456 if (cbStreamUsed < cbPeriod)
2457 {
2458 hdaR3StreamPullFromMixer(pStreamShared, pStreamR3, pSink);
2459 cbStreamUsed = hdaR3StreamGetUsed(pStreamR3);
2460 while (cbStreamUsed < cbPeriod)
2461 {
2462 void *pvDstBuf;
2463 size_t cbDstBuf;
2464 RTCircBufAcquireWriteBlock(pStreamR3->State.pCircBuf, cbPeriod - cbStreamUsed,
2465 &pvDstBuf, &cbDstBuf);
2466 RT_BZERO(pvDstBuf, cbDstBuf);
2467 RTCircBufReleaseWriteBlock(pStreamR3->State.pCircBuf, cbDstBuf);
2468 cbSilence += (uint32_t)cbDstBuf;
2469 cbStreamUsed += (uint32_t)cbDstBuf;
2470 }
2471 }
2472
2473 AudioMixerSinkUnlock(pSink);
2474 } while (cbStreamUsed < cbPeriod);
2475 if (cbSilence > 0)
2476 {
2477 STAM_REL_COUNTER_INC(&pStreamR3->State.StatDmaFlowErrors);
2478 STAM_REL_COUNTER_ADD(&pStreamR3->State.StatDmaFlowErrorBytes, cbSilence);
2479 LogRel2(("HDA: Warning: Stream #%RU8 underrun, added %u bytes of silence (%u us)\n", pStreamShared->u8SD,
2480 cbSilence, PDMAudioPropsBytesToMicro(&pStreamShared->State.Cfg.Props, cbSilence)));
2481 }
2482 }
2483 }
2484
2485 /*
2486 * Do the DMA'ing.
2487 */
2488 if (cbStreamUsed)
2489 hdaR3StreamDoDmaInput(pDevIns, pThis, pStreamShared, pStreamR3,
2490 RT_MIN(cbStreamUsed, cbPeriod), fWriteSilence, tsNowNs);
2491
2492 /*
2493 * We should always kick the AIO thread.
2494 */
2495 /** @todo This isn't entirely ideal. If we get into an underrun situation,
2496 * we ideally want the AIO thread to run right before the DMA timer
2497 * rather than right after it ran. */
2498 Log5Func(("Notifying AIO thread\n"));
2499 rc2 = AudioMixerSinkSignalUpdateJob(pSink);
2500 AssertRC(rc2);
2501 pStreamShared->State.tsLastReadNs = tsNowNs;
2502 }
2503}
2504
2505
2506/**
2507 * @callback_method_impl{FNAUDMIXSINKUPDATE}
2508 *
2509 * For output streams this moves data from the internal DMA buffer (in which
2510 * hdaR3StreamUpdateDma put it), thru the mixer and to the various backend audio
2511 * devices.
2512 *
2513 * For input streams this pulls data from the backend audio device(s), thru the
2514 * mixer and puts it in the internal DMA buffer ready for hdaR3StreamUpdateDma
2515 * to pump into guest memory.
2516 */
2517DECLCALLBACK(void) hdaR3StreamUpdateAsyncIoJob(PPDMDEVINS pDevIns, PAUDMIXSINK pSink, void *pvUser)
2518{
2519 PHDASTATE const pThis = PDMDEVINS_2_DATA(pDevIns, PHDASTATE);
2520 PHDASTATER3 const pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PHDASTATER3);
2521 PHDASTREAMR3 const pStreamR3 = (PHDASTREAMR3)pvUser;
2522 PHDASTREAM const pStreamShared = &pThis->aStreams[pStreamR3 - &pThisCC->aStreams[0]];
2523 Assert(pStreamR3 - &pThisCC->aStreams[0] == pStreamR3->u8SD);
2524 Assert(pStreamShared->u8SD == pStreamR3->u8SD);
2525 RT_NOREF(pSink);
2526
2527 /*
2528 * Make sure we haven't change sink and that it's still active (it
2529 * should be or we wouldn't have been called).
2530 */
2531 AssertReturnVoid(pStreamR3->pMixSink && pSink == pStreamR3->pMixSink->pMixSink);
2532 AssertReturnVoid(AudioMixerSinkIsActive(pSink));
2533
2534 /*
2535 * Output streams (SDO).
2536 */
2537 if (hdaGetDirFromSD(pStreamShared->u8SD) == PDMAUDIODIR_OUT)
2538 hdaR3StreamPushToMixer(pStreamShared, pStreamR3, pSink, RTTimeNanoTS());
2539 /*
2540 * Input stream (SDI).
2541 */
2542 else
2543 {
2544 Assert(hdaGetDirFromSD(pStreamShared->u8SD) == PDMAUDIODIR_IN);
2545 hdaR3StreamPullFromMixer(pStreamShared, pStreamR3, pSink);
2546 }
2547}
2548
2549#endif /* IN_RING3 */
2550
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette