VirtualBox

source: vbox/trunk/src/VBox/Devices/Audio/HDAStream.cpp@ 71963

Last change on this file since 71963 was 71736, checked in by vboxsync, 7 years ago

DevHDA: Use hdaR3 as prefix for ring-3 only methods to make it less complicated to follow code.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 63.3 KB
Line 
1/* $Id: HDAStream.cpp 71736 2018-04-07 21:29:18Z vboxsync $ */
2/** @file
3 * HDAStream.cpp - Stream functions for HD Audio.
4 */
5
6/*
7 * Copyright (C) 2017-2018 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DEV_HDA
23#include <VBox/log.h>
24
25#include <iprt/mem.h>
26#include <iprt/semaphore.h>
27
28#include <VBox/vmm/pdmdev.h>
29#include <VBox/vmm/pdmaudioifs.h>
30
31#include "DrvAudio.h"
32
33#include "DevHDA.h"
34#include "HDAStream.h"
35
36
37#ifdef IN_RING3
38
39/**
40 * Creates an HDA stream.
41 *
42 * @returns IPRT status code.
43 * @param pStream HDA stream to create.
44 * @param pThis HDA state to assign the HDA stream to.
45 * @param u8SD Stream descriptor number to assign.
46 */
47int hdaR3StreamCreate(PHDASTREAM pStream, PHDASTATE pThis, uint8_t u8SD)
48{
49 RT_NOREF(pThis);
50 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
51
52 pStream->u8SD = u8SD;
53 pStream->pMixSink = NULL;
54 pStream->pHDAState = pThis;
55 pStream->pTimer = pThis->pTimer[u8SD];
56 AssertPtr(pStream->pTimer);
57
58 pStream->State.fInReset = false;
59 pStream->State.fRunning = false;
60#ifdef HDA_USE_DMA_ACCESS_HANDLER
61 RTListInit(&pStream->State.lstDMAHandlers);
62#endif
63
64 int rc = RTCritSectInit(&pStream->CritSect);
65 AssertRCReturn(rc, rc);
66
67 rc = RTCircBufCreate(&pStream->State.pCircBuf, _64K); /** @todo Make this configurable. */
68 AssertRCReturn(rc, rc);
69
70 rc = hdaR3StreamPeriodCreate(&pStream->State.Period);
71 AssertRCReturn(rc, rc);
72
73#ifdef DEBUG
74 rc = RTCritSectInit(&pStream->Dbg.CritSect);
75 AssertRCReturn(rc, rc);
76#endif
77
78 pStream->Dbg.Runtime.fEnabled = pThis->Dbg.fEnabled;
79
80 if (pStream->Dbg.Runtime.fEnabled)
81 {
82 char szFile[64];
83
84 if (hdaGetDirFromSD(pStream->u8SD) == PDMAUDIODIR_IN)
85 RTStrPrintf(szFile, sizeof(szFile), "hdaStreamWriteSD%RU8", pStream->u8SD);
86 else
87 RTStrPrintf(szFile, sizeof(szFile), "hdaStreamReadSD%RU8", pStream->u8SD);
88
89 char szPath[RTPATH_MAX + 1];
90 int rc2 = DrvAudioHlpGetFileName(szPath, sizeof(szPath), pThis->Dbg.szOutPath, szFile,
91 0 /* uInst */, PDMAUDIOFILETYPE_WAV, PDMAUDIOFILENAME_FLAG_NONE);
92 AssertRC(rc2);
93 rc2 = DrvAudioHlpFileCreate(PDMAUDIOFILETYPE_WAV, szPath, PDMAUDIOFILE_FLAG_NONE, &pStream->Dbg.Runtime.pFileStream);
94 AssertRC(rc2);
95
96 if (hdaGetDirFromSD(pStream->u8SD) == PDMAUDIODIR_IN)
97 RTStrPrintf(szFile, sizeof(szFile), "hdaDMAWriteSD%RU8", pStream->u8SD);
98 else
99 RTStrPrintf(szFile, sizeof(szFile), "hdaDMAReadSD%RU8", pStream->u8SD);
100
101 rc2 = DrvAudioHlpGetFileName(szPath, sizeof(szPath), pThis->Dbg.szOutPath, szFile,
102 0 /* uInst */, PDMAUDIOFILETYPE_WAV, PDMAUDIOFILENAME_FLAG_NONE);
103 AssertRC(rc2);
104
105 rc2 = DrvAudioHlpFileCreate(PDMAUDIOFILETYPE_WAV, szPath, PDMAUDIOFILE_FLAG_NONE, &pStream->Dbg.Runtime.pFileDMA);
106 AssertRC(rc2);
107
108 /* Delete stale debugging files from a former run. */
109 DrvAudioHlpFileDelete(pStream->Dbg.Runtime.pFileStream);
110 DrvAudioHlpFileDelete(pStream->Dbg.Runtime.pFileDMA);
111 }
112
113 return rc;
114}
115
116/**
117 * Destroys an HDA stream.
118 *
119 * @param pStream HDA stream to destroy.
120 */
121void hdaR3StreamDestroy(PHDASTREAM pStream)
122{
123 AssertPtrReturnVoid(pStream);
124
125 LogFlowFunc(("[SD%RU8]: Destroying ...\n", pStream->u8SD));
126
127 hdaR3StreamMapDestroy(&pStream->State.Mapping);
128
129 int rc2;
130
131#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
132 rc2 = hdaR3StreamAsyncIODestroy(pStream);
133 AssertRC(rc2);
134#endif
135
136 if (RTCritSectIsInitialized(&pStream->CritSect))
137 {
138 rc2 = RTCritSectDelete(&pStream->CritSect);
139 AssertRC(rc2);
140 }
141
142 if (pStream->State.pCircBuf)
143 {
144 RTCircBufDestroy(pStream->State.pCircBuf);
145 pStream->State.pCircBuf = NULL;
146 }
147
148 hdaR3StreamPeriodDestroy(&pStream->State.Period);
149
150#ifdef DEBUG
151 if (RTCritSectIsInitialized(&pStream->Dbg.CritSect))
152 {
153 rc2 = RTCritSectDelete(&pStream->Dbg.CritSect);
154 AssertRC(rc2);
155 }
156#endif
157
158 if (pStream->Dbg.Runtime.fEnabled)
159 {
160 DrvAudioHlpFileDestroy(pStream->Dbg.Runtime.pFileStream);
161 pStream->Dbg.Runtime.pFileStream = NULL;
162
163 DrvAudioHlpFileDestroy(pStream->Dbg.Runtime.pFileDMA);
164 pStream->Dbg.Runtime.pFileDMA = NULL;
165 }
166
167 LogFlowFuncLeave();
168}
169
170/**
171 * Initializes an HDA stream.
172 *
173 * @returns IPRT status code.
174 * @param pStream HDA stream to initialize.
175 * @param uSD SD (stream descriptor) number to assign the HDA stream to.
176 */
177int hdaR3StreamInit(PHDASTREAM pStream, uint8_t uSD)
178{
179 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
180
181 PHDASTATE pThis = pStream->pHDAState;
182 AssertPtr(pThis);
183
184 pStream->u8SD = uSD;
185 pStream->u64BDLBase = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, pStream->u8SD),
186 HDA_STREAM_REG(pThis, BDPU, pStream->u8SD));
187 pStream->u16LVI = HDA_STREAM_REG(pThis, LVI, pStream->u8SD);
188 pStream->u32CBL = HDA_STREAM_REG(pThis, CBL, pStream->u8SD);
189 pStream->u16FIFOS = HDA_STREAM_REG(pThis, FIFOS, pStream->u8SD) + 1;
190
191 PPDMAUDIOSTREAMCFG pCfg = &pStream->State.Cfg;
192
193 int rc = hdaR3SDFMTToPCMProps(HDA_STREAM_REG(pThis, FMT, uSD), &pCfg->Props);
194 if (RT_FAILURE(rc))
195 {
196 LogRel(("HDA: Warning: Format 0x%x for stream #%RU8 not supported\n", HDA_STREAM_REG(pThis, FMT, uSD), uSD));
197 return rc;
198 }
199
200 /* Set the stream's direction. */
201 pCfg->enmDir = hdaGetDirFromSD(pStream->u8SD);
202
203 /* The the stream's name, based on the direction. */
204 switch (pCfg->enmDir)
205 {
206 case PDMAUDIODIR_IN:
207# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
208# error "Implement me!"
209# else
210 pCfg->DestSource.Source = PDMAUDIORECSOURCE_LINE;
211 pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED;
212 RTStrCopy(pCfg->szName, sizeof(pCfg->szName), "Line In");
213# endif
214 break;
215
216 case PDMAUDIODIR_OUT:
217 /* Destination(s) will be set in hdaAddStreamOut(),
218 * based on the channels / stream layout. */
219 break;
220
221 default:
222 rc = VERR_NOT_SUPPORTED;
223 break;
224 }
225
226 if ( !pStream->u32CBL
227 || !pStream->u16LVI
228 || !pStream->u64BDLBase
229 || !pStream->u16FIFOS)
230 {
231 return VINF_SUCCESS;
232 }
233
234 /* Set the stream's frame size. */
235 pStream->State.cbFrameSize = pCfg->Props.cChannels * (pCfg->Props.cBits / 8 /* To bytes */);
236 LogFunc(("[SD%RU8] cChannels=%RU8, cBits=%RU8 -> cbFrameSize=%RU32\n",
237 pStream->u8SD, pCfg->Props.cChannels, pCfg->Props.cBits, pStream->State.cbFrameSize));
238 Assert(pStream->State.cbFrameSize); /* Frame size must not be 0. */
239
240 /*
241 * Initialize the stream mapping in any case, regardless if
242 * we support surround audio or not. This is needed to handle
243 * the supported channels within a single audio stream, e.g. mono/stereo.
244 *
245 * In other words, the stream mapping *always* knows the real
246 * number of channels in a single audio stream.
247 */
248 rc = hdaR3StreamMapInit(&pStream->State.Mapping, &pCfg->Props);
249 AssertRCReturn(rc, rc);
250
251 LogFunc(("[SD%RU8] DMA @ 0x%x (%RU32 bytes), LVI=%RU16, FIFOS=%RU16, Hz=%RU32, rc=%Rrc\n",
252 pStream->u8SD, pStream->u64BDLBase, pStream->u32CBL, pStream->u16LVI, pStream->u16FIFOS,
253 pStream->State.Cfg.Props.uHz, rc));
254
255 /* Make sure that mandatory parameters are set up correctly. */
256 AssertStmt(pStream->u32CBL % pStream->State.cbFrameSize == 0, rc = VERR_INVALID_PARAMETER);
257 AssertStmt(pStream->u16LVI >= 1, rc = VERR_INVALID_PARAMETER);
258
259 if (RT_SUCCESS(rc))
260 {
261 /* Make sure that the chosen Hz rate dividable by the stream's rate. */
262 if (pStream->State.Cfg.Props.uHz % pThis->u16TimerHz != 0)
263 LogRel(("HDA: Device timer (%RU32) does not fit to stream #RU8 timing (%RU32)\n",
264 pThis->u16TimerHz, pStream->State.Cfg.Props.uHz));
265
266 /* Figure out how many transfer fragments we're going to use for this stream. */
267 /** @todo Use a more dynamic fragment size? */
268 Assert(pStream->u16LVI <= UINT8_MAX - 1);
269 uint8_t cFragments = pStream->u16LVI + 1;
270 if (cFragments <= 1)
271 cFragments = 2; /* At least two fragments (BDLEs) must be present. */
272
273 /*
274 * Handle the stream's position adjustment.
275 */
276 uint32_t cfPosAdjust = 0;
277
278 LogFunc(("[SD%RU8] fPosAdjustEnabled=%RTbool, cPosAdjustFrames=%RU16\n",
279 pStream->u8SD, pThis->fPosAdjustEnabled, pThis->cPosAdjustFrames));
280
281 if (pThis->fPosAdjustEnabled) /* Is the position adjustment enabled at all? */
282 {
283 HDABDLE BDLE;
284 RT_ZERO(BDLE);
285
286 int rc2 = hdaR3BDLEFetch(pThis, &BDLE, pStream->u64BDLBase, 0 /* Entry */);
287 AssertRC(rc2);
288
289 /* Note: Do *not* check if this BDLE aligns to the stream's frame size.
290 * It can happen that this isn't the case on some guests, e.g.
291 * on Windows with a 5.1 speaker setup.
292 *
293 * The only thing which counts is that the stream's CBL value
294 * properly aligns to the stream's frame size.
295 */
296
297 /* If no custom set position adjustment is set, apply some
298 * simple heuristics to detect the appropriate position adjustment. */
299 if ( !pThis->cPosAdjustFrames
300 /* Position adjustmenet buffer *must* have the IOC bit set! */
301 && hdaR3BDLENeedsInterrupt(&BDLE))
302 {
303 /** @todo Implement / use a (dynamic) table once this gets more complicated. */
304#ifdef VBOX_WITH_INTEL_HDA
305 /* Intel ICH / PCH: 1 frame. */
306 if (BDLE.Desc.u32BufSize == 1 * pStream->State.cbFrameSize)
307 {
308 cfPosAdjust = 1;
309 }
310 /* Intel Baytrail / Braswell: 32 frames. */
311 else if (BDLE.Desc.u32BufSize == 32 * pStream->State.cbFrameSize)
312 {
313 cfPosAdjust = 32;
314 }
315#endif
316 }
317 else /* Go with the set default. */
318 cfPosAdjust = pThis->cPosAdjustFrames;
319
320 if (cfPosAdjust)
321 {
322 /* Also adjust the number of fragments, as the position adjustment buffer
323 * does not count as an own fragment as such.
324 *
325 * This e.g. can happen on (newer) Ubuntu guests which use
326 * 4 (IOC) + 4408 (IOC) + 4408 (IOC) + 4408 (IOC) + 4404 (= 17632) bytes,
327 * where the first buffer (4) is used as position adjustment.
328 *
329 * Only skip a fragment if the whole buffer fragment is used for
330 * position adjustment.
331 */
332 if ( (cfPosAdjust * pStream->State.cbFrameSize) == BDLE.Desc.u32BufSize
333 && cFragments)
334 {
335 cFragments--;
336 }
337
338 /* Initialize position adjustment counter. */
339 pStream->State.cPosAdjustFramesLeft = cfPosAdjust;
340 LogRel2(("HDA: Position adjustment for stream #%RU8 active (%RU32 frames)\n", pStream->u8SD, cfPosAdjust));
341 }
342 }
343
344 LogFunc(("[SD%RU8] cfPosAdjust=%RU32, cFragments=%RU8\n", pStream->u8SD, cfPosAdjust, cFragments));
345
346 /*
347 * Set up data transfer transfer stuff.
348 */
349
350 /* Calculate the fragment size the guest OS expects interrupt delivery at. */
351 pStream->State.cbTransferSize = pStream->u32CBL / cFragments;
352 Assert(pStream->State.cbTransferSize);
353 Assert(pStream->State.cbTransferSize % pStream->State.cbFrameSize == 0);
354
355 /* Calculate the bytes we need to transfer to / from the stream's DMA per iteration.
356 * This is bound to the device's Hz rate and thus to the (virtual) timing the device expects. */
357 pStream->State.cbTransferChunk = (pStream->State.Cfg.Props.uHz / pThis->u16TimerHz) * pStream->State.cbFrameSize;
358 Assert(pStream->State.cbTransferChunk);
359 Assert(pStream->State.cbTransferChunk % pStream->State.cbFrameSize == 0);
360
361 /* Make sure that the transfer chunk does not exceed the overall transfer size. */
362 if (pStream->State.cbTransferChunk > pStream->State.cbTransferSize)
363 pStream->State.cbTransferChunk = pStream->State.cbTransferSize;
364
365 pStream->State.cbTransferProcessed = 0;
366 pStream->State.cTransferPendingInterrupts = 0;
367 pStream->State.cbDMALeft = 0;
368
369 const uint64_t cTicksPerHz = TMTimerGetFreq(pStream->pTimer) / pThis->u16TimerHz;
370
371 /* Calculate the timer ticks per byte for this stream. */
372 pStream->State.cTicksPerByte = cTicksPerHz / pStream->State.cbTransferChunk;
373 Assert(pStream->State.cTicksPerByte);
374
375 /* Calculate timer ticks per transfer. */
376 pStream->State.cTransferTicks = pStream->State.cbTransferChunk * pStream->State.cTicksPerByte;
377 Assert(pStream->State.cTransferTicks);
378
379 /* Initialize the transfer timestamps. */
380 pStream->State.tsTransferLast = 0;
381 pStream->State.tsTransferNext = 0;
382
383 LogFunc(("[SD%RU8] Timer %uHz (%RU64 ticks per Hz), cTicksPerByte=%RU64, cbTransferChunk=%RU32, cTransferTicks=%RU64, " \
384 "cbTransferSize=%RU32\n",
385 pStream->u8SD, pThis->u16TimerHz, cTicksPerHz, pStream->State.cTicksPerByte,
386 pStream->State.cbTransferChunk, pStream->State.cTransferTicks, pStream->State.cbTransferSize));
387
388 /* Make sure to also update the stream's DMA counter (based on its current LPIB value). */
389 hdaR3StreamSetPosition(pStream, HDA_STREAM_REG(pThis, LPIB, pStream->u8SD));
390
391#ifdef LOG_ENABLED
392 hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1);
393#endif
394 }
395
396 if (RT_FAILURE(rc))
397 LogRel(("HDA: Initializing stream #%RU8 failed with %Rrc\n", pStream->u8SD, rc));
398
399 return rc;
400}
401
402/**
403 * Resets an HDA stream.
404 *
405 * @param pThis HDA state.
406 * @param pStream HDA stream to reset.
407 * @param uSD Stream descriptor (SD) number to use for this stream.
408 */
409void hdaR3StreamReset(PHDASTATE pThis, PHDASTREAM pStream, uint8_t uSD)
410{
411 AssertPtrReturnVoid(pThis);
412 AssertPtrReturnVoid(pStream);
413 AssertReturnVoid(uSD < HDA_MAX_STREAMS);
414
415# ifdef VBOX_STRICT
416 AssertReleaseMsg(!pStream->State.fRunning, ("[SD%RU8] Cannot reset stream while in running state\n", uSD));
417# endif
418
419 LogFunc(("[SD%RU8]: Reset\n", uSD));
420
421 /*
422 * Set reset state.
423 */
424 Assert(ASMAtomicReadBool(&pStream->State.fInReset) == false); /* No nested calls. */
425 ASMAtomicXchgBool(&pStream->State.fInReset, true);
426
427 /*
428 * Second, initialize the registers.
429 */
430 HDA_STREAM_REG(pThis, STS, uSD) = HDA_SDSTS_FIFORDY;
431 /* According to the ICH6 datasheet, 0x40000 is the default value for stream descriptor register 23:20
432 * bits are reserved for stream number 18.2.33, resets SDnCTL except SRST bit. */
433 HDA_STREAM_REG(pThis, CTL, uSD) = 0x40000 | (HDA_STREAM_REG(pThis, CTL, uSD) & HDA_SDCTL_SRST);
434 /* ICH6 defines default values (120 bytes for input and 192 bytes for output descriptors) of FIFO size. 18.2.39. */
435 HDA_STREAM_REG(pThis, FIFOS, uSD) = hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN ? HDA_SDIFIFO_120B : HDA_SDOFIFO_192B;
436 /* See 18.2.38: Always defaults to 0x4 (32 bytes). */
437 HDA_STREAM_REG(pThis, FIFOW, uSD) = HDA_SDFIFOW_32B;
438 HDA_STREAM_REG(pThis, LPIB, uSD) = 0;
439 HDA_STREAM_REG(pThis, CBL, uSD) = 0;
440 HDA_STREAM_REG(pThis, LVI, uSD) = 0;
441 HDA_STREAM_REG(pThis, FMT, uSD) = 0;
442 HDA_STREAM_REG(pThis, BDPU, uSD) = 0;
443 HDA_STREAM_REG(pThis, BDPL, uSD) = 0;
444
445#ifdef HDA_USE_DMA_ACCESS_HANDLER
446 hdaR3StreamUnregisterDMAHandlers(pThis, pStream);
447#endif
448
449 /* Assign the default mixer sink to the stream. */
450 pStream->pMixSink = hdaR3GetDefaultSink(pThis, uSD);
451
452 pStream->State.tsTransferLast = 0;
453 pStream->State.tsTransferNext = 0;
454
455 RT_ZERO(pStream->State.BDLE);
456 pStream->State.uCurBDLE = 0;
457
458 if (pStream->State.pCircBuf)
459 RTCircBufReset(pStream->State.pCircBuf);
460
461 /* Reset stream map. */
462 hdaR3StreamMapReset(&pStream->State.Mapping);
463
464 /* (Re-)initialize the stream with current values. */
465 int rc2 = hdaR3StreamInit(pStream, uSD);
466 AssertRC(rc2);
467
468 /* Reset the stream's period. */
469 hdaR3StreamPeriodReset(&pStream->State.Period);
470
471#ifdef DEBUG
472 pStream->Dbg.cReadsTotal = 0;
473 pStream->Dbg.cbReadTotal = 0;
474 pStream->Dbg.tsLastReadNs = 0;
475 pStream->Dbg.cWritesTotal = 0;
476 pStream->Dbg.cbWrittenTotal = 0;
477 pStream->Dbg.cWritesHz = 0;
478 pStream->Dbg.cbWrittenHz = 0;
479 pStream->Dbg.tsWriteSlotBegin = 0;
480#endif
481
482 /* Report that we're done resetting this stream. */
483 HDA_STREAM_REG(pThis, CTL, uSD) = 0;
484
485 LogFunc(("[SD%RU8] Reset\n", uSD));
486
487 /* Exit reset mode. */
488 ASMAtomicXchgBool(&pStream->State.fInReset, false);
489}
490
491/**
492 * Enables or disables an HDA audio stream.
493 *
494 * @returns IPRT status code.
495 * @param pStream HDA stream to enable or disable.
496 * @param fEnable Whether to enable or disble the stream.
497 */
498int hdaR3StreamEnable(PHDASTREAM pStream, bool fEnable)
499{
500 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
501
502 LogFunc(("[SD%RU8]: fEnable=%RTbool, pMixSink=%p\n", pStream->u8SD, fEnable, pStream->pMixSink));
503
504 int rc = VINF_SUCCESS;
505
506 AUDMIXSINKCMD enmCmd = fEnable
507 ? AUDMIXSINKCMD_ENABLE : AUDMIXSINKCMD_DISABLE;
508
509 /* First, enable or disable the stream and the stream's sink, if any. */
510 if ( pStream->pMixSink
511 && pStream->pMixSink->pMixSink)
512 rc = AudioMixerSinkCtl(pStream->pMixSink->pMixSink, enmCmd);
513
514 if ( RT_SUCCESS(rc)
515 && fEnable
516 && pStream->Dbg.Runtime.fEnabled)
517 {
518 Assert(DrvAudioHlpPCMPropsAreValid(&pStream->State.Cfg.Props));
519
520 if (fEnable)
521 {
522 if (!DrvAudioHlpFileIsOpen(pStream->Dbg.Runtime.pFileStream))
523 {
524 int rc2 = DrvAudioHlpFileOpen(pStream->Dbg.Runtime.pFileStream, PDMAUDIOFILE_DEFAULT_OPEN_FLAGS,
525 &pStream->State.Cfg.Props);
526 AssertRC(rc2);
527 }
528
529 if (!DrvAudioHlpFileIsOpen(pStream->Dbg.Runtime.pFileDMA))
530 {
531 int rc2 = DrvAudioHlpFileOpen(pStream->Dbg.Runtime.pFileDMA, PDMAUDIOFILE_DEFAULT_OPEN_FLAGS,
532 &pStream->State.Cfg.Props);
533 AssertRC(rc2);
534 }
535 }
536 }
537
538 if (RT_SUCCESS(rc))
539 {
540 pStream->State.fRunning = fEnable;
541 }
542
543 LogFunc(("[SD%RU8] rc=%Rrc\n", pStream->u8SD, rc));
544 return rc;
545}
546
547uint32_t hdaR3StreamGetPosition(PHDASTATE pThis, PHDASTREAM pStream)
548{
549 return HDA_STREAM_REG(pThis, LPIB, pStream->u8SD);
550}
551
552/**
553 * Updates an HDA stream's current read or write buffer position (depending on the stream type) by
554 * updating its associated LPIB register and DMA position buffer (if enabled).
555 *
556 * @param pStream HDA stream to update read / write position for.
557 * @param u32LPIB Absolute position (in bytes) to set current read / write position to.
558 */
559void hdaR3StreamSetPosition(PHDASTREAM pStream, uint32_t u32LPIB)
560{
561 AssertPtrReturnVoid(pStream);
562
563 Log3Func(("[SD%RU8] LPIB=%RU32 (DMA Position Buffer Enabled: %RTbool)\n",
564 pStream->u8SD, u32LPIB, pStream->pHDAState->fDMAPosition));
565
566 /* Update LPIB in any case. */
567 HDA_STREAM_REG(pStream->pHDAState, LPIB, pStream->u8SD) = u32LPIB;
568
569 /* Do we need to tell the current DMA position? */
570 if (pStream->pHDAState->fDMAPosition)
571 {
572 int rc2 = PDMDevHlpPCIPhysWrite(pStream->pHDAState->CTX_SUFF(pDevIns),
573 pStream->pHDAState->u64DPBase + (pStream->u8SD * 2 * sizeof(uint32_t)),
574 (void *)&u32LPIB, sizeof(uint32_t));
575 AssertRC(rc2);
576 }
577}
578
579/**
580 * Retrieves the available size of (buffered) audio data (in bytes) of a given HDA stream.
581 *
582 * @returns Available data (in bytes).
583 * @param pStream HDA stream to retrieve size for.
584 */
585uint32_t hdaR3StreamGetUsed(PHDASTREAM pStream)
586{
587 AssertPtrReturn(pStream, 0);
588
589 if (!pStream->State.pCircBuf)
590 return 0;
591
592 return (uint32_t)RTCircBufUsed(pStream->State.pCircBuf);
593}
594
595/**
596 * Retrieves the free size of audio data (in bytes) of a given HDA stream.
597 *
598 * @returns Free data (in bytes).
599 * @param pStream HDA stream to retrieve size for.
600 */
601uint32_t hdaR3StreamGetFree(PHDASTREAM pStream)
602{
603 AssertPtrReturn(pStream, 0);
604
605 if (!pStream->State.pCircBuf)
606 return 0;
607
608 return (uint32_t)RTCircBufFree(pStream->State.pCircBuf);
609}
610
611/**
612 * Returns whether a next transfer for a given stream is scheduled or not.
613 * This takes pending stream interrupts into account as well as the next scheduled
614 * transfer timestamp.
615 *
616 * @returns True if a next transfer is scheduled, false if not.
617 * @param pStream HDA stream to retrieve schedule status for.
618 */
619bool hdaR3StreamTransferIsScheduled(PHDASTREAM pStream)
620{
621 if (pStream)
622 {
623 AssertPtrReturn(pStream->pHDAState, false);
624
625 if (pStream->State.fRunning)
626 {
627 if (pStream->State.cTransferPendingInterrupts)
628 {
629 Log3Func(("[SD%RU8] Scheduled (%RU8 IRQs pending)\n", pStream->u8SD, pStream->State.cTransferPendingInterrupts));
630 return true;
631 }
632
633 const uint64_t tsNow = TMTimerGet(pStream->pTimer);
634 if (pStream->State.tsTransferNext > tsNow)
635 {
636 Log3Func(("[SD%RU8] Scheduled in %RU64\n", pStream->u8SD, pStream->State.tsTransferNext - tsNow));
637 return true;
638 }
639 }
640 }
641 return false;
642}
643
644/**
645 * Returns the (virtual) clock timestamp of the next transfer, if any.
646 * Will return 0 if no new transfer is scheduled.
647 *
648 * @returns The (virtual) clock timestamp of the next transfer.
649 * @param pStream HDA stream to retrieve timestamp for.
650 */
651uint64_t hdaR3StreamTransferGetNext(PHDASTREAM pStream)
652{
653 return pStream->State.tsTransferNext;
654}
655
656/**
657 * Writes audio data from a mixer sink into an HDA stream's DMA buffer.
658 *
659 * @returns IPRT status code.
660 * @param pStream HDA stream to write to.
661 * @param pvBuf Data buffer to write.
662 * If NULL, silence will be written.
663 * @param cbBuf Number of bytes of data buffer to write.
664 * @param pcbWritten Number of bytes written. Optional.
665 */
666int hdaR3StreamWrite(PHDASTREAM pStream, const void *pvBuf, uint32_t cbBuf, uint32_t *pcbWritten)
667{
668 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
669 /* pvBuf is optional. */
670 AssertReturn(cbBuf, VERR_INVALID_PARAMETER);
671 /* pcbWritten is optional. */
672
673 PRTCIRCBUF pCircBuf = pStream->State.pCircBuf;
674 AssertPtr(pCircBuf);
675
676 int rc = VINF_SUCCESS;
677
678 uint32_t cbWrittenTotal = 0;
679 uint32_t cbLeft = RT_MIN(cbBuf, (uint32_t)RTCircBufFree(pCircBuf));
680
681 while (cbLeft)
682 {
683 void *pvDst;
684 size_t cbDst;
685
686 RTCircBufAcquireWriteBlock(pCircBuf, cbLeft, &pvDst, &cbDst);
687
688 if (cbDst)
689 {
690 if (pvBuf)
691 {
692 memcpy(pvDst, (uint8_t *)pvBuf + cbWrittenTotal, cbDst);
693 }
694 else /* Send silence. */
695 {
696 /** @todo Use a sample spec for "silence" based on the PCM parameters.
697 * For now we ASSUME that silence equals NULLing the data. */
698 RT_BZERO(pvDst, cbDst);
699 }
700
701 if (pStream->Dbg.Runtime.fEnabled)
702 DrvAudioHlpFileWrite(pStream->Dbg.Runtime.pFileStream, pvDst, cbDst, 0 /* fFlags */);
703 }
704
705 RTCircBufReleaseWriteBlock(pCircBuf, cbDst);
706
707 if (RT_FAILURE(rc))
708 break;
709
710 Assert(cbLeft >= (uint32_t)cbDst);
711 cbLeft -= (uint32_t)cbDst;
712
713 cbWrittenTotal += (uint32_t)cbDst;
714 }
715
716 Log3Func(("cbWrittenTotal=%RU32\n", cbWrittenTotal));
717
718 if (pcbWritten)
719 *pcbWritten = cbWrittenTotal;
720
721 return rc;
722}
723
724
725/**
726 * Reads audio data from an HDA stream's DMA buffer and writes into a specified mixer sink.
727 *
728 * @returns IPRT status code.
729 * @param pStream HDA stream to read audio data from.
730 * @param cbToRead Number of bytes to read.
731 * @param pcbRead Number of bytes read. Optional.
732 */
733int hdaR3StreamRead(PHDASTREAM pStream, uint32_t cbToRead, uint32_t *pcbRead)
734{
735 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
736 AssertReturn(cbToRead, VERR_INVALID_PARAMETER);
737 /* pcbWritten is optional. */
738
739 PHDAMIXERSINK pSink = pStream->pMixSink;
740 if (!pSink)
741 {
742 AssertMsgFailed(("[SD%RU8]: Can't read from a stream with no sink attached\n", pStream->u8SD));
743
744 if (pcbRead)
745 *pcbRead = 0;
746 return VINF_SUCCESS;
747 }
748
749 PRTCIRCBUF pCircBuf = pStream->State.pCircBuf;
750 AssertPtr(pCircBuf);
751
752 int rc = VINF_SUCCESS;
753
754 uint32_t cbReadTotal = 0;
755 uint32_t cbLeft = RT_MIN(cbToRead, (uint32_t)RTCircBufUsed(pCircBuf));
756
757 while (cbLeft)
758 {
759 void *pvSrc;
760 size_t cbSrc;
761
762 uint32_t cbWritten = 0;
763
764 RTCircBufAcquireReadBlock(pCircBuf, cbLeft, &pvSrc, &cbSrc);
765
766 if (cbSrc)
767 {
768 if (pStream->Dbg.Runtime.fEnabled)
769 DrvAudioHlpFileWrite(pStream->Dbg.Runtime.pFileStream, pvSrc, cbSrc, 0 /* fFlags */);
770
771 rc = AudioMixerSinkWrite(pSink->pMixSink, AUDMIXOP_COPY, pvSrc, (uint32_t)cbSrc, &cbWritten);
772 AssertRC(rc);
773
774 Assert(cbSrc >= cbWritten);
775 Log2Func(("[SD%RU8]: %zu/%zu bytes read\n", pStream->u8SD, cbWritten, cbSrc));
776 }
777
778 RTCircBufReleaseReadBlock(pCircBuf, cbWritten);
779
780 if (RT_FAILURE(rc))
781 break;
782
783 Assert(cbLeft >= cbWritten);
784 cbLeft -= cbWritten;
785
786 cbReadTotal += cbWritten;
787 }
788
789 if (pcbRead)
790 *pcbRead = cbReadTotal;
791
792 return rc;
793}
794
795/**
796 * Transfers data of an HDA stream according to its usage (input / output).
797 *
798 * For an SDO (output) stream this means reading DMA data from the device to
799 * the HDA stream's internal FIFO buffer.
800 *
801 * For an SDI (input) stream this is reading audio data from the HDA stream's
802 * internal FIFO buffer and writing it as DMA data to the device.
803 *
804 * @returns IPRT status code.
805 * @param pStream HDA stream to update.
806 * @param cbToProcessMax How much data (in bytes) to process as maximum.
807 */
808int hdaR3StreamTransfer(PHDASTREAM pStream, uint32_t cbToProcessMax)
809{
810 AssertPtrReturn(pStream, VERR_INVALID_POINTER);
811
812 hdaR3StreamLock(pStream);
813
814 PHDASTATE pThis = pStream->pHDAState;
815 AssertPtr(pThis);
816
817 PHDASTREAMPERIOD pPeriod = &pStream->State.Period;
818 if (!hdaR3StreamPeriodLock(pPeriod))
819 return VERR_ACCESS_DENIED;
820
821 bool fProceed = true;
822
823 /* Stream not running? */
824 if (!pStream->State.fRunning)
825 {
826 Log3Func(("[SD%RU8] Not running\n", pStream->u8SD));
827 fProceed = false;
828 }
829 else if (HDA_STREAM_REG(pThis, STS, pStream->u8SD) & HDA_SDSTS_BCIS)
830 {
831 Log3Func(("[SD%RU8] BCIS bit set\n", pStream->u8SD));
832 fProceed = false;
833 }
834
835 if (!fProceed)
836 {
837 hdaR3StreamPeriodUnlock(pPeriod);
838 hdaR3StreamUnlock(pStream);
839 return VINF_SUCCESS;
840 }
841
842 const uint64_t tsNow = TMTimerGet(pStream->pTimer);
843
844 if (!pStream->State.tsTransferLast)
845 pStream->State.tsTransferLast = tsNow;
846
847#ifdef DEBUG
848 const int64_t iTimerDelta = tsNow - pStream->State.tsTransferLast;
849 Log3Func(("[SD%RU8] Time now=%RU64, last=%RU64 -> %RI64 ticks delta\n",
850 pStream->u8SD, tsNow, pStream->State.tsTransferLast, iTimerDelta));
851#endif
852
853 pStream->State.tsTransferLast = tsNow;
854
855 /* Sanity checks. */
856 Assert(pStream->u8SD < HDA_MAX_STREAMS);
857 Assert(pStream->u64BDLBase);
858 Assert(pStream->u32CBL);
859 Assert(pStream->u16FIFOS);
860
861 /* State sanity checks. */
862 Assert(ASMAtomicReadBool(&pStream->State.fInReset) == false);
863
864 int rc = VINF_SUCCESS;
865
866 /* Fetch first / next BDL entry. */
867 PHDABDLE pBDLE = &pStream->State.BDLE;
868 if (hdaR3BDLEIsComplete(pBDLE))
869 {
870 rc = hdaR3BDLEFetch(pThis, pBDLE, pStream->u64BDLBase, pStream->State.uCurBDLE);
871 AssertRC(rc);
872 }
873
874 uint32_t cbToProcess = RT_MIN(pStream->State.cbTransferSize - pStream->State.cbTransferProcessed,
875 pStream->State.cbTransferChunk);
876
877 Log3Func(("[SD%RU8] cbToProcess=%RU32, cbToProcessMax=%RU32\n", pStream->u8SD, cbToProcess, cbToProcessMax));
878
879 if (cbToProcess > cbToProcessMax)
880 {
881 if (pStream->State.Cfg.enmDir == PDMAUDIODIR_IN)
882 LogRelMax2(64, ("HDA: Warning: FIFO underflow for stream #%RU8 (still %RU32 bytes needed)\n",
883 pStream->u8SD, cbToProcess - cbToProcessMax));
884 else
885 LogRelMax2(64, ("HDA: Warning: FIFO overflow for stream #%RU8 (%RU32 bytes outstanding)\n",
886 pStream->u8SD, cbToProcess - cbToProcessMax));
887
888 LogFunc(("[SD%RU8] Warning: Limiting transfer (cbToProcess=%RU32, cbToProcessMax=%RU32)\n",
889 pStream->u8SD, cbToProcess, cbToProcessMax));
890
891 /* Never process more than a stream currently can handle. */
892 cbToProcess = cbToProcessMax;
893 }
894
895 uint32_t cbProcessed = 0;
896 uint32_t cbLeft = cbToProcess;
897
898 uint8_t abChunk[HDA_FIFO_MAX + 1];
899 while (cbLeft)
900 {
901 /* Limit the chunk to the stream's FIFO size and what's left to process. */
902 uint32_t cbChunk = RT_MIN(cbLeft, pStream->u16FIFOS);
903
904 /* Limit the chunk to the remaining data of the current BDLE. */
905 cbChunk = RT_MIN(cbChunk, pBDLE->Desc.u32BufSize - pBDLE->State.u32BufOff);
906
907 /* If there are position adjustment frames left to be processed,
908 * make sure that we process them first as a whole. */
909 if (pStream->State.cPosAdjustFramesLeft)
910 cbChunk = RT_MIN(cbChunk, uint32_t(pStream->State.cPosAdjustFramesLeft * pStream->State.cbFrameSize));
911
912 Log3Func(("[SD%RU8] cbChunk=%RU32, cPosAdjustFramesLeft=%RU16\n",
913 pStream->u8SD, cbChunk, pStream->State.cPosAdjustFramesLeft));
914
915 if (!cbChunk)
916 break;
917
918 uint32_t cbDMA = 0;
919 PRTCIRCBUF pCircBuf = pStream->State.pCircBuf;
920
921 if (hdaGetDirFromSD(pStream->u8SD) == PDMAUDIODIR_IN) /* Input (SDI). */
922 {
923 STAM_PROFILE_START(&pThis->StatIn, a);
924
925 uint32_t cbDMAWritten = 0;
926 uint32_t cbDMAToWrite = cbChunk;
927
928 /** @todo Do we need interleaving streams support here as well?
929 * Never saw anything else besides mono/stereo mics (yet). */
930 while (cbDMAToWrite)
931 {
932 void *pvBuf; size_t cbBuf;
933 RTCircBufAcquireReadBlock(pCircBuf, cbDMAToWrite, &pvBuf, &cbBuf);
934
935 if ( !cbBuf
936 && !RTCircBufUsed(pCircBuf))
937 break;
938
939 memcpy(abChunk + cbDMAWritten, pvBuf, cbBuf);
940
941 RTCircBufReleaseReadBlock(pCircBuf, cbBuf);
942
943 Assert(cbDMAToWrite >= cbBuf);
944 cbDMAToWrite -= (uint32_t)cbBuf;
945 cbDMAWritten += (uint32_t)cbBuf;
946 Assert(cbDMAWritten <= cbChunk);
947 }
948
949 if (cbDMAToWrite)
950 {
951 LogRel2(("HDA: FIFO underflow for stream #%RU8 (%RU32 bytes outstanding)\n", pStream->u8SD, cbDMAToWrite));
952
953 Assert(cbChunk == cbDMAWritten + cbDMAToWrite);
954 memset((uint8_t *)abChunk + cbDMAWritten, 0, cbDMAToWrite);
955 cbDMAWritten = cbChunk;
956 }
957
958 rc = hdaR3DMAWrite(pThis, pStream, abChunk, cbDMAWritten, &cbDMA /* pcbWritten */);
959 if (RT_FAILURE(rc))
960 LogRel(("HDA: Writing to stream #%RU8 DMA failed with %Rrc\n", pStream->u8SD, rc));
961
962 STAM_PROFILE_STOP(&pThis->StatIn, a);
963 }
964 else if (hdaGetDirFromSD(pStream->u8SD) == PDMAUDIODIR_OUT) /* Output (SDO). */
965 {
966 STAM_PROFILE_START(&pThis->StatOut, a);
967
968 rc = hdaR3DMARead(pThis, pStream, abChunk, cbChunk, &cbDMA /* pcbRead */);
969 if (RT_SUCCESS(rc))
970 {
971#ifndef VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT
972 /*
973 * Most guests don't use different stream frame sizes than
974 * the default one, so save a bit of CPU time and don't go into
975 * the frame extraction code below.
976 *
977 * Only macOS guests need the frame extraction branch below at the moment AFAIK.
978 */
979 if (pStream->State.cbFrameSize == HDA_FRAME_SIZE)
980 {
981 uint32_t cbDMARead = 0;
982 uint32_t cbDMALeft = RT_MIN(cbDMA, (uint32_t)RTCircBufFree(pCircBuf));
983
984 while (cbDMALeft)
985 {
986 void *pvBuf; size_t cbBuf;
987 RTCircBufAcquireWriteBlock(pCircBuf, cbDMALeft, &pvBuf, &cbBuf);
988
989 if (cbBuf)
990 {
991 memcpy(pvBuf, abChunk + cbDMARead, cbBuf);
992 cbDMARead += (uint32_t)cbBuf;
993 cbDMALeft -= (uint32_t)cbBuf;
994 }
995
996 RTCircBufReleaseWriteBlock(pCircBuf, cbBuf);
997 }
998 }
999 else
1000 {
1001 /*
1002 * The following code extracts the required audio stream (channel) data
1003 * of non-interleaved *and* interleaved audio streams.
1004 *
1005 * We by default only support 2 channels with 16-bit samples (HDA_FRAME_SIZE),
1006 * but an HDA audio stream can have interleaved audio data of multiple audio
1007 * channels in such a single stream ("AA,AA,AA vs. AA,BB,AA,BB").
1008 *
1009 * So take this into account by just handling the first channel in such a stream ("A")
1010 * and just discard the other channel's data.
1011 *
1012 */
1013 /** @todo Optimize this stuff -- copying only one frame a time is expensive. */
1014 uint32_t cbDMARead = pStream->State.cbDMALeft ? pStream->State.cbFrameSize - pStream->State.cbDMALeft : 0;
1015 uint32_t cbDMALeft = RT_MIN(cbDMA, (uint32_t)RTCircBufFree(pCircBuf));
1016
1017 while (cbDMALeft >= pStream->State.cbFrameSize)
1018 {
1019 void *pvBuf; size_t cbBuf;
1020 RTCircBufAcquireWriteBlock(pCircBuf, HDA_FRAME_SIZE, &pvBuf, &cbBuf);
1021
1022 AssertBreak(cbDMARead <= sizeof(abChunk));
1023
1024 if (cbBuf)
1025 memcpy(pvBuf, abChunk + cbDMARead, cbBuf);
1026
1027 RTCircBufReleaseWriteBlock(pCircBuf, cbBuf);
1028
1029 Assert(cbDMALeft >= pStream->State.cbFrameSize);
1030 cbDMALeft -= pStream->State.cbFrameSize;
1031 cbDMARead += pStream->State.cbFrameSize;
1032 }
1033
1034 pStream->State.cbDMALeft = cbDMALeft;
1035 Assert(pStream->State.cbDMALeft < pStream->State.cbFrameSize);
1036 }
1037
1038 const size_t cbFree = RTCircBufFree(pCircBuf);
1039 if (!cbFree)
1040 LogRel2(("HDA: FIFO of stream #%RU8 full, discarding audio data\n", pStream->u8SD));
1041#else
1042 /** @todo This needs making use of HDAStreamMap + HDAStreamChannel. */
1043# error "Implement reading interleaving streams support here."
1044#endif
1045 }
1046 else
1047 LogRel(("HDA: Reading from stream #%RU8 DMA failed with %Rrc\n", pStream->u8SD, rc));
1048
1049 STAM_PROFILE_STOP(&pThis->StatOut, a);
1050 }
1051
1052 else /** @todo Handle duplex streams? */
1053 AssertFailed();
1054
1055 if (cbDMA)
1056 {
1057 /* We always increment the position of DMA buffer counter because we're always reading
1058 * into an intermediate buffer. */
1059 pBDLE->State.u32BufOff += (uint32_t)cbDMA;
1060 Assert(pBDLE->State.u32BufOff <= pBDLE->Desc.u32BufSize);
1061
1062 /* Are we done doing the position adjustment?
1063 * Only then do the transfer accounting .*/
1064 if (pStream->State.cPosAdjustFramesLeft == 0)
1065 {
1066 Assert(cbLeft >= cbDMA);
1067 cbLeft -= cbDMA;
1068
1069 cbProcessed += cbDMA;
1070 }
1071
1072 /*
1073 * Update the stream's current position.
1074 * Do this as accurate and close to the actual data transfer as possible.
1075 * All guetsts rely on this, depending on the mechanism they use (LPIB register or DMA counters).
1076 */
1077 uint32_t cbStreamPos = hdaR3StreamGetPosition(pThis, pStream);
1078 if (cbStreamPos == pStream->u32CBL)
1079 cbStreamPos = 0;
1080
1081 hdaR3StreamSetPosition(pStream, cbStreamPos + cbDMA);
1082 }
1083
1084 if (hdaR3BDLEIsComplete(pBDLE))
1085 {
1086 Log3Func(("[SD%RU8] Complete: %R[bdle]\n", pStream->u8SD, pBDLE));
1087
1088 /* Does the current BDLE require an interrupt to be sent? */
1089 if ( hdaR3BDLENeedsInterrupt(pBDLE)
1090 /* Are we done doing the position adjustment?
1091 * It can happen that a BDLE which is handled while doing the
1092 * position adjustment requires an interrupt on completion (IOC) being set.
1093 *
1094 * In such a case we need to skip such an interrupt and just move on. */
1095 && pStream->State.cPosAdjustFramesLeft == 0)
1096 {
1097 /* If the IOCE ("Interrupt On Completion Enable") bit of the SDCTL register is set
1098 * we need to generate an interrupt.
1099 */
1100 if (HDA_STREAM_REG(pThis, CTL, pStream->u8SD) & HDA_SDCTL_IOCE)
1101 {
1102 pStream->State.cTransferPendingInterrupts++;
1103
1104 AssertMsg(pStream->State.cTransferPendingInterrupts <= 32,
1105 ("Too many pending interrupts (%RU8) for stream #%RU8\n",
1106 pStream->State.cTransferPendingInterrupts, pStream->u8SD));
1107 }
1108 }
1109
1110 if (pStream->State.uCurBDLE == pStream->u16LVI)
1111 {
1112 pStream->State.uCurBDLE = 0;
1113 }
1114 else
1115 pStream->State.uCurBDLE++;
1116
1117 /* Fetch the next BDLE entry. */
1118 hdaR3BDLEFetch(pThis, pBDLE, pStream->u64BDLBase, pStream->State.uCurBDLE);
1119 }
1120
1121 /* Do the position adjustment accounting. */
1122 pStream->State.cPosAdjustFramesLeft -= RT_MIN(pStream->State.cPosAdjustFramesLeft, cbDMA / pStream->State.cbFrameSize);
1123
1124 if (RT_FAILURE(rc))
1125 break;
1126 }
1127
1128 Log3Func(("[SD%RU8] cbToProcess=%RU32, cbProcessed=%RU32, cbLeft=%RU32, %R[bdle], rc=%Rrc\n",
1129 pStream->u8SD, cbToProcess, cbProcessed, cbLeft, pBDLE, rc));
1130
1131 /* Sanity. */
1132 Assert(cbProcessed == cbToProcess);
1133 Assert(cbLeft == 0);
1134
1135 /* Only do the data accounting if we don't have to do any position
1136 * adjustment anymore. */
1137 if (pStream->State.cPosAdjustFramesLeft == 0)
1138 {
1139 hdaR3StreamPeriodInc(pPeriod, RT_MIN(cbProcessed / pStream->State.cbFrameSize,
1140 hdaR3StreamPeriodGetRemainingFrames(pPeriod)));
1141
1142 pStream->State.cbTransferProcessed += cbProcessed;
1143 }
1144
1145 /* Make sure that we never report more stuff processed than initially announced. */
1146 if (pStream->State.cbTransferProcessed > pStream->State.cbTransferSize)
1147 pStream->State.cbTransferProcessed = pStream->State.cbTransferSize;
1148
1149 uint32_t cbTransferLeft = pStream->State.cbTransferSize - pStream->State.cbTransferProcessed;
1150 bool fTransferComplete = !cbTransferLeft;
1151 uint64_t tsTransferNext = 0;
1152
1153 if (fTransferComplete)
1154 {
1155 /*
1156 * Try updating the wall clock.
1157 *
1158 * Note 1) Only certain guests (like Linux' snd_hda_intel) rely on the WALCLK register
1159 * in order to determine the correct timing of the sound device. Other guests
1160 * like Windows 7 + 10 (or even more exotic ones like Haiku) will completely
1161 * ignore this.
1162 *
1163 * Note 2) When updating the WALCLK register too often / early (or even in a non-monotonic
1164 * fashion) this *will* upset guest device drivers and will completely fuck up the
1165 * sound output. Running VLC on the guest will tell!
1166 */
1167 const bool fWalClkSet = hdaR3WalClkSet(pThis,
1168 hdaWalClkGetCurrent(pThis)
1169 + hdaR3StreamPeriodFramesToWalClk(pPeriod,
1170 pStream->State.cbTransferProcessed
1171 / pStream->State.cbFrameSize),
1172 false /* fForce */);
1173 RT_NOREF(fWalClkSet);
1174 }
1175
1176 /* Does the period have any interrupts outstanding? */
1177 if (pStream->State.cTransferPendingInterrupts)
1178 {
1179 Log3Func(("[SD%RU8] Scheduling interrupt\n", pStream->u8SD));
1180
1181 /*
1182 * Set the stream's BCIS bit.
1183 *
1184 * Note: This only must be done if the whole period is complete, and not if only
1185 * one specific BDL entry is complete (if it has the IOC bit set).
1186 *
1187 * This will otherwise confuses the guest when it 1) deasserts the interrupt,
1188 * 2) reads SDSTS (with BCIS set) and then 3) too early reads a (wrong) WALCLK value.
1189 *
1190 * snd_hda_intel on Linux will tell.
1191 */
1192 HDA_STREAM_REG(pThis, STS, pStream->u8SD) |= HDA_SDSTS_BCIS;
1193
1194 /* Trigger an interrupt first and let hdaRegWriteSDSTS() deal with
1195 * ending / beginning a period. */
1196#ifndef LOG_ENABLED
1197 hdaProcessInterrupt(pThis);
1198#else
1199 hdaProcessInterrupt(pThis, __FUNCTION__);
1200#endif
1201 }
1202 else /* Transfer still in-flight -- schedule the next timing slot. */
1203 {
1204 uint32_t cbTransferNext = cbTransferLeft;
1205
1206 /* No data left to transfer anymore or do we have more data left
1207 * than we can transfer per timing slot? Clamp. */
1208 if ( !cbTransferNext
1209 || cbTransferNext > pStream->State.cbTransferChunk)
1210 {
1211 cbTransferNext = pStream->State.cbTransferChunk;
1212 }
1213
1214 tsTransferNext = tsNow + (cbTransferNext * pStream->State.cTicksPerByte);
1215
1216 /*
1217 * If the current transfer is complete, reset our counter.
1218 *
1219 * This can happen for examlpe if the guest OS (like macOS) sets up
1220 * big BDLEs without IOC bits set (but for the last one) and the
1221 * transfer is complete before we reach such a BDL entry.
1222 */
1223 if (fTransferComplete)
1224 pStream->State.cbTransferProcessed = 0;
1225 }
1226
1227 /* If we need to do another transfer, (re-)arm the device timer. */
1228 if (tsTransferNext) /* Can be 0 if no next transfer is needed. */
1229 {
1230 Log3Func(("[SD%RU8] Scheduling timer\n", pStream->u8SD));
1231
1232 TMTimerUnlock(pStream->pTimer);
1233
1234 LogFunc(("Timer set SD%RU8\n", pStream->u8SD));
1235 hdaR3TimerSet(pStream->pHDAState, pStream, tsTransferNext, false /* fForce */);
1236
1237 TMTimerLock(pStream->pTimer, VINF_SUCCESS);
1238
1239 pStream->State.tsTransferNext = tsTransferNext;
1240 }
1241
1242 pStream->State.tsTransferLast = tsNow;
1243
1244 Log3Func(("[SD%RU8] cbTransferLeft=%RU32 -- %RU32/%RU32\n",
1245 pStream->u8SD, cbTransferLeft, pStream->State.cbTransferProcessed, pStream->State.cbTransferSize));
1246 Log3Func(("[SD%RU8] fTransferComplete=%RTbool, cTransferPendingInterrupts=%RU8\n",
1247 pStream->u8SD, fTransferComplete, pStream->State.cTransferPendingInterrupts));
1248 Log3Func(("[SD%RU8] tsNow=%RU64, tsTransferNext=%RU64 (in %RU64 ticks)\n",
1249 pStream->u8SD, tsNow, tsTransferNext, tsTransferNext - tsNow));
1250
1251 hdaR3StreamPeriodUnlock(pPeriod);
1252 hdaR3StreamUnlock(pStream);
1253
1254 return VINF_SUCCESS;
1255}
1256
1257/**
1258 * Updates a HDA stream by doing its required data transfers.
1259 * The host sink(s) set the overall pace.
1260 *
1261 * This routine is called by both, the synchronous and the asynchronous, implementations.
1262 *
1263 * @param pStream HDA stream to update.
1264 * @param fInTimer Whether to this function was called from the timer
1265 * context or an asynchronous I/O stream thread (if supported).
1266 */
1267void hdaR3StreamUpdate(PHDASTREAM pStream, bool fInTimer)
1268{
1269 if (!pStream)
1270 return;
1271
1272 PAUDMIXSINK pSink = NULL;
1273 if ( pStream->pMixSink
1274 && pStream->pMixSink->pMixSink)
1275 {
1276 pSink = pStream->pMixSink->pMixSink;
1277 }
1278
1279 if (!AudioMixerSinkIsActive(pSink)) /* No sink available? Bail out. */
1280 return;
1281
1282 int rc2;
1283
1284 if (hdaGetDirFromSD(pStream->u8SD) == PDMAUDIODIR_OUT) /* Output (SDO). */
1285 {
1286 /* Is the HDA stream ready to be written (guest output data) to? If so, by how much? */
1287 const uint32_t cbFree = hdaR3StreamGetFree(pStream);
1288
1289 if ( fInTimer
1290 && cbFree)
1291 {
1292 Log3Func(("[SD%RU8] cbFree=%RU32\n", pStream->u8SD, cbFree));
1293
1294 /* Do the DMA transfer. */
1295 rc2 = hdaR3StreamTransfer(pStream, cbFree);
1296 AssertRC(rc2);
1297 }
1298
1299 /* How much (guest output) data is available at the moment for the HDA stream? */
1300 uint32_t cbUsed = hdaR3StreamGetUsed(pStream);
1301
1302#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1303 if ( fInTimer
1304 && cbUsed)
1305 {
1306 rc2 = hdaR3StreamAsyncIONotify(pStream);
1307 AssertRC(rc2);
1308 }
1309 else
1310 {
1311#endif
1312 const uint32_t cbSinkWritable = AudioMixerSinkGetWritable(pSink);
1313
1314 /* Do not write more than the sink can hold at the moment.
1315 * The host sets the overall pace. */
1316 if (cbUsed > cbSinkWritable)
1317 cbUsed = cbSinkWritable;
1318
1319 if (cbUsed)
1320 {
1321 /* Read (guest output) data and write it to the stream's sink. */
1322 rc2 = hdaR3StreamRead(pStream, cbUsed, NULL /* pcbRead */);
1323 AssertRC(rc2);
1324 }
1325
1326 /* When running synchronously, update the associated sink here.
1327 * Otherwise this will be done in the stream's dedicated async I/O thread. */
1328 rc2 = AudioMixerSinkUpdate(pSink);
1329 AssertRC(rc2);
1330
1331#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1332 }
1333#endif
1334 }
1335 else /* Input (SDI). */
1336 {
1337#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1338 if (!fInTimer)
1339 {
1340#endif
1341 rc2 = AudioMixerSinkUpdate(pSink);
1342 AssertRC(rc2);
1343
1344 /* Is the sink ready to be read (host input data) from? If so, by how much? */
1345 uint32_t cbReadable = AudioMixerSinkGetReadable(pSink);
1346
1347 /* How much (guest input) data is available for writing at the moment for the HDA stream? */
1348 const uint32_t cbFree = hdaR3StreamGetFree(pStream);
1349
1350 Log3Func(("[SD%RU8] cbReadable=%RU32, cbFree=%RU32\n", pStream->u8SD, cbReadable, cbFree));
1351
1352 /* Do not write more than the sink can hold at the moment.
1353 * The host sets the overall pace. */
1354 if (cbReadable > cbFree)
1355 cbReadable = cbFree;
1356
1357 if (cbReadable)
1358 {
1359 uint8_t abFIFO[HDA_FIFO_MAX + 1];
1360 while (cbReadable)
1361 {
1362 uint32_t cbRead;
1363 rc2 = AudioMixerSinkRead(pSink, AUDMIXOP_COPY,
1364 abFIFO, RT_MIN(cbReadable, (uint32_t)sizeof(abFIFO)), &cbRead);
1365 AssertRCBreak(rc2);
1366
1367 if (!cbRead)
1368 {
1369 AssertMsgFailed(("Nothing read from sink, even if %RU32 bytes were (still) announced\n", cbReadable));
1370 break;
1371 }
1372
1373 /* Write (guest input) data to the stream which was read from stream's sink before. */
1374 uint32_t cbWritten;
1375 rc2 = hdaR3StreamWrite(pStream, abFIFO, cbRead, &cbWritten);
1376 AssertRCBreak(rc2);
1377
1378 if (!cbWritten)
1379 {
1380 AssertFailed(); /* Should never happen, as we know how much we can write. */
1381 break;
1382 }
1383
1384 Assert(cbReadable >= cbRead);
1385 cbReadable -= cbRead;
1386 }
1387 }
1388 #if 0
1389 else /* Send silence as input. */
1390 {
1391 cbReadable = pStream->State.cbTransferSize - pStream->State.cbTransferProcessed;
1392
1393 Log3Func(("[SD%RU8] Sending silence (%RU32 bytes)\n", pStream->u8SD, cbReadable));
1394
1395 if (cbReadable)
1396 {
1397 rc2 = hdaR3StreamWrite(pStream, NULL /* Silence */, cbReadable, NULL /* pcbWritten */);
1398 AssertRC(rc2);
1399 }
1400 }
1401 #endif
1402#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1403 }
1404 else /* fInTimer */
1405 {
1406#endif
1407 const uint64_t tsNow = RTTimeMilliTS();
1408 static uint64_t s_lasti = 0;
1409 if (s_lasti == 0)
1410 s_lasti = tsNow;
1411
1412 if (tsNow - s_lasti >= 10) /** @todo Fix this properly. */
1413 {
1414 rc2 = hdaR3StreamAsyncIONotify(pStream);
1415 AssertRC(rc2);
1416
1417 s_lasti = tsNow;
1418 }
1419
1420 const uint32_t cbToTransfer = hdaR3StreamGetUsed(pStream);
1421 if (cbToTransfer)
1422 {
1423 rc2 = hdaR3StreamTransfer(pStream, cbToTransfer);
1424 AssertRC(rc2);
1425 }
1426#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1427 }
1428#endif
1429 }
1430}
1431
1432/**
1433 * Locks an HDA stream for serialized access.
1434 *
1435 * @returns IPRT status code.
1436 * @param pStream HDA stream to lock.
1437 */
1438void hdaR3StreamLock(PHDASTREAM pStream)
1439{
1440 AssertPtrReturnVoid(pStream);
1441 int rc2 = RTCritSectEnter(&pStream->CritSect);
1442 AssertRC(rc2);
1443}
1444
1445/**
1446 * Unlocks a formerly locked HDA stream.
1447 *
1448 * @returns IPRT status code.
1449 * @param pStream HDA stream to unlock.
1450 */
1451void hdaR3StreamUnlock(PHDASTREAM pStream)
1452{
1453 AssertPtrReturnVoid(pStream);
1454 int rc2 = RTCritSectLeave(&pStream->CritSect);
1455 AssertRC(rc2);
1456}
1457
1458/**
1459 * Updates an HDA stream's current read or write buffer position (depending on the stream type) by
1460 * updating its associated LPIB register and DMA position buffer (if enabled).
1461 *
1462 * @returns Set LPIB value.
1463 * @param pStream HDA stream to update read / write position for.
1464 * @param u32LPIB New LPIB (position) value to set.
1465 */
1466uint32_t hdaR3StreamUpdateLPIB(PHDASTREAM pStream, uint32_t u32LPIB)
1467{
1468 AssertPtrReturn(pStream, 0);
1469
1470 AssertMsg(u32LPIB <= pStream->u32CBL,
1471 ("[SD%RU8] New LPIB (%RU32) exceeds CBL (%RU32)\n", pStream->u8SD, u32LPIB, pStream->u32CBL));
1472
1473 const PHDASTATE pThis = pStream->pHDAState;
1474
1475 u32LPIB = RT_MIN(u32LPIB, pStream->u32CBL);
1476
1477 LogFlowFunc(("[SD%RU8]: LPIB=%RU32 (DMA Position Buffer Enabled: %RTbool)\n",
1478 pStream->u8SD, u32LPIB, pThis->fDMAPosition));
1479
1480 /* Update LPIB in any case. */
1481 HDA_STREAM_REG(pThis, LPIB, pStream->u8SD) = u32LPIB;
1482
1483 /* Do we need to tell the current DMA position? */
1484 if (pThis->fDMAPosition)
1485 {
1486 int rc2 = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns),
1487 pThis->u64DPBase + (pStream->u8SD * 2 * sizeof(uint32_t)),
1488 (void *)&u32LPIB, sizeof(uint32_t));
1489 AssertRC(rc2);
1490 }
1491
1492 return u32LPIB;
1493}
1494
1495# ifdef HDA_USE_DMA_ACCESS_HANDLER
1496/**
1497 * Registers access handlers for a stream's BDLE DMA accesses.
1498 *
1499 * @returns true if registration was successful, false if not.
1500 * @param pStream HDA stream to register BDLE access handlers for.
1501 */
1502bool hdaR3StreamRegisterDMAHandlers(PHDASTREAM pStream)
1503{
1504 /* At least LVI and the BDL base must be set. */
1505 if ( !pStream->u16LVI
1506 || !pStream->u64BDLBase)
1507 {
1508 return false;
1509 }
1510
1511 hdaR3StreamUnregisterDMAHandlers(pStream);
1512
1513 LogFunc(("Registering ...\n"));
1514
1515 int rc = VINF_SUCCESS;
1516
1517 /*
1518 * Create BDLE ranges.
1519 */
1520
1521 struct BDLERANGE
1522 {
1523 RTGCPHYS uAddr;
1524 uint32_t uSize;
1525 } arrRanges[16]; /** @todo Use a define. */
1526
1527 size_t cRanges = 0;
1528
1529 for (uint16_t i = 0; i < pStream->u16LVI + 1; i++)
1530 {
1531 HDABDLE BDLE;
1532 rc = hdaR3BDLEFetch(pThis, &BDLE, pStream->u64BDLBase, i /* Index */);
1533 if (RT_FAILURE(rc))
1534 break;
1535
1536 bool fAddRange = true;
1537 BDLERANGE *pRange;
1538
1539 if (cRanges)
1540 {
1541 pRange = &arrRanges[cRanges - 1];
1542
1543 /* Is the current range a direct neighbor of the current BLDE? */
1544 if ((pRange->uAddr + pRange->uSize) == BDLE.Desc.u64BufAdr)
1545 {
1546 /* Expand the current range by the current BDLE's size. */
1547 pRange->uSize += BDLE.Desc.u32BufSize;
1548
1549 /* Adding a new range in this case is not needed anymore. */
1550 fAddRange = false;
1551
1552 LogFunc(("Expanding range %zu by %RU32 (%RU32 total now)\n", cRanges - 1, BDLE.Desc.u32BufSize, pRange->uSize));
1553 }
1554 }
1555
1556 /* Do we need to add a new range? */
1557 if ( fAddRange
1558 && cRanges < RT_ELEMENTS(arrRanges))
1559 {
1560 pRange = &arrRanges[cRanges];
1561
1562 pRange->uAddr = BDLE.Desc.u64BufAdr;
1563 pRange->uSize = BDLE.Desc.u32BufSize;
1564
1565 LogFunc(("Adding range %zu - 0x%x (%RU32)\n", cRanges, pRange->uAddr, pRange->uSize));
1566
1567 cRanges++;
1568 }
1569 }
1570
1571 LogFunc(("%zu ranges total\n", cRanges));
1572
1573 /*
1574 * Register all ranges as DMA access handlers.
1575 */
1576
1577 for (size_t i = 0; i < cRanges; i++)
1578 {
1579 BDLERANGE *pRange = &arrRanges[i];
1580
1581 PHDADMAACCESSHANDLER pHandler = (PHDADMAACCESSHANDLER)RTMemAllocZ(sizeof(HDADMAACCESSHANDLER));
1582 if (!pHandler)
1583 {
1584 rc = VERR_NO_MEMORY;
1585 break;
1586 }
1587
1588 RTListAppend(&pStream->State.lstDMAHandlers, &pHandler->Node);
1589
1590 pHandler->pStream = pStream; /* Save a back reference to the owner. */
1591
1592 char szDesc[32];
1593 RTStrPrintf(szDesc, sizeof(szDesc), "HDA[SD%RU8 - RANGE%02zu]", pStream->u8SD, i);
1594
1595 int rc2 = PGMR3HandlerPhysicalTypeRegister(PDMDevHlpGetVM(pStream->pHDAState->pDevInsR3), PGMPHYSHANDLERKIND_WRITE,
1596 hdaDMAAccessHandler,
1597 NULL, NULL, NULL,
1598 NULL, NULL, NULL,
1599 szDesc, &pHandler->hAccessHandlerType);
1600 AssertRCBreak(rc2);
1601
1602 pHandler->BDLEAddr = pRange->uAddr;
1603 pHandler->BDLESize = pRange->uSize;
1604
1605 /* Get first and last pages of the BDLE range. */
1606 RTGCPHYS pgFirst = pRange->uAddr & ~PAGE_OFFSET_MASK;
1607 RTGCPHYS pgLast = RT_ALIGN(pgFirst + pRange->uSize, PAGE_SIZE);
1608
1609 /* Calculate the region size (in pages). */
1610 RTGCPHYS regionSize = RT_ALIGN(pgLast - pgFirst, PAGE_SIZE);
1611
1612 pHandler->GCPhysFirst = pgFirst;
1613 pHandler->GCPhysLast = pHandler->GCPhysFirst + (regionSize - 1);
1614
1615 LogFunc(("\tRegistering region '%s': 0x%x - 0x%x (region size: %zu)\n",
1616 szDesc, pHandler->GCPhysFirst, pHandler->GCPhysLast, regionSize));
1617 LogFunc(("\tBDLE @ 0x%x - 0x%x (%RU32)\n",
1618 pHandler->BDLEAddr, pHandler->BDLEAddr + pHandler->BDLESize, pHandler->BDLESize));
1619
1620 rc2 = PGMHandlerPhysicalRegister(PDMDevHlpGetVM(pStream->pHDAState->pDevInsR3),
1621 pHandler->GCPhysFirst, pHandler->GCPhysLast,
1622 pHandler->hAccessHandlerType, pHandler, NIL_RTR0PTR, NIL_RTRCPTR,
1623 szDesc);
1624 AssertRCBreak(rc2);
1625
1626 pHandler->fRegistered = true;
1627 }
1628
1629 LogFunc(("Registration ended with rc=%Rrc\n", rc));
1630
1631 return RT_SUCCESS(rc);
1632}
1633
1634/**
1635 * Unregisters access handlers of a stream's BDLEs.
1636 *
1637 * @param pStream HDA stream to unregister BDLE access handlers for.
1638 */
1639void hdaR3StreamUnregisterDMAHandlers(PHDASTREAM pStream)
1640{
1641 LogFunc(("\n"));
1642
1643 PHDADMAACCESSHANDLER pHandler, pHandlerNext;
1644 RTListForEachSafe(&pStream->State.lstDMAHandlers, pHandler, pHandlerNext, HDADMAACCESSHANDLER, Node)
1645 {
1646 if (!pHandler->fRegistered) /* Handler not registered? Skip. */
1647 continue;
1648
1649 LogFunc(("Unregistering 0x%x - 0x%x (%zu)\n",
1650 pHandler->GCPhysFirst, pHandler->GCPhysLast, pHandler->GCPhysLast - pHandler->GCPhysFirst));
1651
1652 int rc2 = PGMHandlerPhysicalDeregister(PDMDevHlpGetVM(pStream->pHDAState->pDevInsR3),
1653 pHandler->GCPhysFirst);
1654 AssertRC(rc2);
1655
1656 RTListNodeRemove(&pHandler->Node);
1657
1658 RTMemFree(pHandler);
1659 pHandler = NULL;
1660 }
1661
1662 Assert(RTListIsEmpty(&pStream->State.lstDMAHandlers));
1663}
1664# endif /* HDA_USE_DMA_ACCESS_HANDLER */
1665
1666# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1667/**
1668 * Asynchronous I/O thread for a HDA stream.
1669 * This will do the heavy lifting work for us as soon as it's getting notified by another thread.
1670 *
1671 * @returns IPRT status code.
1672 * @param hThreadSelf Thread handle.
1673 * @param pvUser User argument. Must be of type PHDASTREAMTHREADCTX.
1674 */
1675DECLCALLBACK(int) hdaR3StreamAsyncIOThread(RTTHREAD hThreadSelf, void *pvUser)
1676{
1677 PHDASTREAMTHREADCTX pCtx = (PHDASTREAMTHREADCTX)pvUser;
1678 AssertPtr(pCtx);
1679
1680 PHDASTREAM pStream = pCtx->pStream;
1681 AssertPtr(pStream);
1682
1683 PHDASTREAMSTATEAIO pAIO = &pCtx->pStream->State.AIO;
1684
1685 ASMAtomicXchgBool(&pAIO->fStarted, true);
1686
1687 RTThreadUserSignal(hThreadSelf);
1688
1689 LogFunc(("[SD%RU8]: Started\n", pStream->u8SD));
1690
1691 for (;;)
1692 {
1693 int rc2 = RTSemEventWait(pAIO->Event, RT_INDEFINITE_WAIT);
1694 if (RT_FAILURE(rc2))
1695 break;
1696
1697 if (ASMAtomicReadBool(&pAIO->fShutdown))
1698 break;
1699
1700 rc2 = RTCritSectEnter(&pAIO->CritSect);
1701 if (RT_SUCCESS(rc2))
1702 {
1703 if (!pAIO->fEnabled)
1704 {
1705 RTCritSectLeave(&pAIO->CritSect);
1706 continue;
1707 }
1708
1709 hdaR3StreamUpdate(pStream, false /* fInTimer */);
1710
1711 int rc3 = RTCritSectLeave(&pAIO->CritSect);
1712 AssertRC(rc3);
1713 }
1714
1715 AssertRC(rc2);
1716 }
1717
1718 LogFunc(("[SD%RU8]: Ended\n", pStream->u8SD));
1719
1720 ASMAtomicXchgBool(&pAIO->fStarted, false);
1721
1722 return VINF_SUCCESS;
1723}
1724
1725/**
1726 * Creates the async I/O thread for a specific HDA audio stream.
1727 *
1728 * @returns IPRT status code.
1729 * @param pStream HDA audio stream to create the async I/O thread for.
1730 */
1731int hdaR3StreamAsyncIOCreate(PHDASTREAM pStream)
1732{
1733 PHDASTREAMSTATEAIO pAIO = &pStream->State.AIO;
1734
1735 int rc;
1736
1737 if (!ASMAtomicReadBool(&pAIO->fStarted))
1738 {
1739 pAIO->fShutdown = false;
1740
1741 rc = RTSemEventCreate(&pAIO->Event);
1742 if (RT_SUCCESS(rc))
1743 {
1744 rc = RTCritSectInit(&pAIO->CritSect);
1745 if (RT_SUCCESS(rc))
1746 {
1747 HDASTREAMTHREADCTX Ctx = { pStream->pHDAState, pStream };
1748
1749 char szThreadName[64];
1750 RTStrPrintf2(szThreadName, sizeof(szThreadName), "hdaAIO%RU8", pStream->u8SD);
1751
1752 rc = RTThreadCreate(&pAIO->Thread, hdaR3StreamAsyncIOThread, &Ctx,
1753 0, RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, szThreadName);
1754 if (RT_SUCCESS(rc))
1755 rc = RTThreadUserWait(pAIO->Thread, 10 * 1000 /* 10s timeout */);
1756 }
1757 }
1758 }
1759 else
1760 rc = VINF_SUCCESS;
1761
1762 LogFunc(("[SD%RU8]: Returning %Rrc\n", pStream->u8SD, rc));
1763 return rc;
1764}
1765
1766/**
1767 * Destroys the async I/O thread of a specific HDA audio stream.
1768 *
1769 * @returns IPRT status code.
1770 * @param pStream HDA audio stream to destroy the async I/O thread for.
1771 */
1772int hdaR3StreamAsyncIODestroy(PHDASTREAM pStream)
1773{
1774 PHDASTREAMSTATEAIO pAIO = &pStream->State.AIO;
1775
1776 if (!ASMAtomicReadBool(&pAIO->fStarted))
1777 return VINF_SUCCESS;
1778
1779 ASMAtomicWriteBool(&pAIO->fShutdown, true);
1780
1781 int rc = hdaR3StreamAsyncIONotify(pStream);
1782 AssertRC(rc);
1783
1784 int rcThread;
1785 rc = RTThreadWait(pAIO->Thread, 30 * 1000 /* 30s timeout */, &rcThread);
1786 LogFunc(("Async I/O thread ended with %Rrc (%Rrc)\n", rc, rcThread));
1787
1788 if (RT_SUCCESS(rc))
1789 {
1790 rc = RTCritSectDelete(&pAIO->CritSect);
1791 AssertRC(rc);
1792
1793 rc = RTSemEventDestroy(pAIO->Event);
1794 AssertRC(rc);
1795
1796 pAIO->fStarted = false;
1797 pAIO->fShutdown = false;
1798 pAIO->fEnabled = false;
1799 }
1800
1801 LogFunc(("[SD%RU8]: Returning %Rrc\n", pStream->u8SD, rc));
1802 return rc;
1803}
1804
1805/**
1806 * Lets the stream's async I/O thread know that there is some data to process.
1807 *
1808 * @returns IPRT status code.
1809 * @param pStream HDA stream to notify async I/O thread for.
1810 */
1811int hdaR3StreamAsyncIONotify(PHDASTREAM pStream)
1812{
1813 return RTSemEventSignal(pStream->State.AIO.Event);
1814}
1815
1816/**
1817 * Locks the async I/O thread of a specific HDA audio stream.
1818 *
1819 * @param pStream HDA stream to lock async I/O thread for.
1820 */
1821void hdaR3StreamAsyncIOLock(PHDASTREAM pStream)
1822{
1823 PHDASTREAMSTATEAIO pAIO = &pStream->State.AIO;
1824
1825 if (!ASMAtomicReadBool(&pAIO->fStarted))
1826 return;
1827
1828 int rc2 = RTCritSectEnter(&pAIO->CritSect);
1829 AssertRC(rc2);
1830}
1831
1832/**
1833 * Unlocks the async I/O thread of a specific HDA audio stream.
1834 *
1835 * @param pStream HDA stream to unlock async I/O thread for.
1836 */
1837void hdaR3StreamAsyncIOUnlock(PHDASTREAM pStream)
1838{
1839 PHDASTREAMSTATEAIO pAIO = &pStream->State.AIO;
1840
1841 if (!ASMAtomicReadBool(&pAIO->fStarted))
1842 return;
1843
1844 int rc2 = RTCritSectLeave(&pAIO->CritSect);
1845 AssertRC(rc2);
1846}
1847
1848/**
1849 * Enables (resumes) or disables (pauses) the async I/O thread.
1850 *
1851 * @param pStream HDA stream to enable/disable async I/O thread for.
1852 * @param fEnable Whether to enable or disable the I/O thread.
1853 *
1854 * @remarks Does not do locking.
1855 */
1856void hdaR3StreamAsyncIOEnable(PHDASTREAM pStream, bool fEnable)
1857{
1858 PHDASTREAMSTATEAIO pAIO = &pStream->State.AIO;
1859 ASMAtomicXchgBool(&pAIO->fEnabled, fEnable);
1860}
1861# endif /* VBOX_WITH_AUDIO_HDA_ASYNC_IO */
1862
1863#endif /* IN_RING3 */
1864
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette