/* $Id: HDAStream.cpp 74037 2018-09-03 09:51:51Z vboxsync $ */ /** @file * HDAStream.cpp - Stream functions for HD Audio. */ /* * Copyright (C) 2017-2018 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_HDA #include #include #include #include #include #include "DrvAudio.h" #include "DevHDA.h" #include "HDAStream.h" #ifdef IN_RING3 /** * Creates an HDA stream. * * @returns IPRT status code. * @param pStream HDA stream to create. * @param pThis HDA state to assign the HDA stream to. * @param u8SD Stream descriptor number to assign. */ int hdaR3StreamCreate(PHDASTREAM pStream, PHDASTATE pThis, uint8_t u8SD) { RT_NOREF(pThis); AssertPtrReturn(pStream, VERR_INVALID_POINTER); pStream->u8SD = u8SD; pStream->pMixSink = NULL; pStream->pHDAState = pThis; pStream->pTimer = pThis->pTimer[u8SD]; AssertPtr(pStream->pTimer); pStream->State.fInReset = false; pStream->State.fRunning = false; #ifdef HDA_USE_DMA_ACCESS_HANDLER RTListInit(&pStream->State.lstDMAHandlers); #endif int rc = RTCritSectInit(&pStream->CritSect); AssertRCReturn(rc, rc); rc = hdaR3StreamPeriodCreate(&pStream->State.Period); AssertRCReturn(rc, rc); pStream->State.tsLastUpdateNs = 0; #ifdef DEBUG rc = RTCritSectInit(&pStream->Dbg.CritSect); AssertRCReturn(rc, rc); #endif pStream->Dbg.Runtime.fEnabled = pThis->Dbg.fEnabled; if (pStream->Dbg.Runtime.fEnabled) { char szFile[64]; if (hdaGetDirFromSD(pStream->u8SD) == PDMAUDIODIR_IN) RTStrPrintf(szFile, sizeof(szFile), "hdaStreamWriteSD%RU8", pStream->u8SD); else RTStrPrintf(szFile, sizeof(szFile), "hdaStreamReadSD%RU8", pStream->u8SD); char szPath[RTPATH_MAX + 1]; int rc2 = DrvAudioHlpFileNameGet(szPath, sizeof(szPath), pThis->Dbg.szOutPath, szFile, 0 /* uInst */, PDMAUDIOFILETYPE_WAV, PDMAUDIOFILENAME_FLAG_NONE); AssertRC(rc2); rc2 = DrvAudioHlpFileCreate(PDMAUDIOFILETYPE_WAV, szPath, PDMAUDIOFILE_FLAG_NONE, &pStream->Dbg.Runtime.pFileStream); AssertRC(rc2); if (hdaGetDirFromSD(pStream->u8SD) == PDMAUDIODIR_IN) RTStrPrintf(szFile, sizeof(szFile), "hdaDMAWriteSD%RU8", pStream->u8SD); else RTStrPrintf(szFile, sizeof(szFile), "hdaDMAReadSD%RU8", pStream->u8SD); rc2 = DrvAudioHlpFileNameGet(szPath, sizeof(szPath), pThis->Dbg.szOutPath, szFile, 0 /* uInst */, PDMAUDIOFILETYPE_WAV, PDMAUDIOFILENAME_FLAG_NONE); AssertRC(rc2); rc2 = DrvAudioHlpFileCreate(PDMAUDIOFILETYPE_WAV, szPath, PDMAUDIOFILE_FLAG_NONE, &pStream->Dbg.Runtime.pFileDMA); AssertRC(rc2); /* Delete stale debugging files from a former run. */ DrvAudioHlpFileDelete(pStream->Dbg.Runtime.pFileStream); DrvAudioHlpFileDelete(pStream->Dbg.Runtime.pFileDMA); } return rc; } /** * Destroys an HDA stream. * * @param pStream HDA stream to destroy. */ void hdaR3StreamDestroy(PHDASTREAM pStream) { AssertPtrReturnVoid(pStream); LogFlowFunc(("[SD%RU8]: Destroying ...\n", pStream->u8SD)); hdaR3StreamMapDestroy(&pStream->State.Mapping); int rc2; #ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO rc2 = hdaR3StreamAsyncIODestroy(pStream); AssertRC(rc2); #endif if (RTCritSectIsInitialized(&pStream->CritSect)) { rc2 = RTCritSectDelete(&pStream->CritSect); AssertRC(rc2); } if (pStream->State.pCircBuf) { RTCircBufDestroy(pStream->State.pCircBuf); pStream->State.pCircBuf = NULL; } hdaR3StreamPeriodDestroy(&pStream->State.Period); #ifdef DEBUG if (RTCritSectIsInitialized(&pStream->Dbg.CritSect)) { rc2 = RTCritSectDelete(&pStream->Dbg.CritSect); AssertRC(rc2); } #endif if (pStream->Dbg.Runtime.fEnabled) { DrvAudioHlpFileDestroy(pStream->Dbg.Runtime.pFileStream); pStream->Dbg.Runtime.pFileStream = NULL; DrvAudioHlpFileDestroy(pStream->Dbg.Runtime.pFileDMA); pStream->Dbg.Runtime.pFileDMA = NULL; } LogFlowFuncLeave(); } /** * Initializes an HDA stream. * * @returns IPRT status code. * @param pStream HDA stream to initialize. * @param uSD SD (stream descriptor) number to assign the HDA stream to. */ int hdaR3StreamInit(PHDASTREAM pStream, uint8_t uSD) { AssertPtrReturn(pStream, VERR_INVALID_POINTER); PHDASTATE pThis = pStream->pHDAState; AssertPtr(pThis); pStream->u8SD = uSD; pStream->u64BDLBase = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, pStream->u8SD), HDA_STREAM_REG(pThis, BDPU, pStream->u8SD)); pStream->u16LVI = HDA_STREAM_REG(pThis, LVI, pStream->u8SD); pStream->u32CBL = HDA_STREAM_REG(pThis, CBL, pStream->u8SD); pStream->u16FIFOS = HDA_STREAM_REG(pThis, FIFOS, pStream->u8SD) + 1; PPDMAUDIOSTREAMCFG pCfg = &pStream->State.Cfg; int rc = hdaR3SDFMTToPCMProps(HDA_STREAM_REG(pThis, FMT, uSD), &pCfg->Props); if (RT_FAILURE(rc)) { LogRel(("HDA: Warning: Format 0x%x for stream #%RU8 not supported\n", HDA_STREAM_REG(pThis, FMT, uSD), uSD)); return rc; } /* Set scheduling hint (if available). */ if (pThis->u16TimerHz) pCfg->Device.uSchedulingHintMs = 1000 /* ms */ / pThis->u16TimerHz; /* (Re-)Allocate the stream's internal DMA buffer, based on the PCM properties we just got above. */ if (pStream->State.pCircBuf) { RTCircBufDestroy(pStream->State.pCircBuf); pStream->State.pCircBuf = NULL; } /* By default we allocate an internal buffer of 100ms. */ rc = RTCircBufCreate(&pStream->State.pCircBuf, DrvAudioHlpMilliToBytes(100 /* ms */, &pCfg->Props)); /** @todo Make this configurable. */ AssertRCReturn(rc, rc); /* Set the stream's direction. */ pCfg->enmDir = hdaGetDirFromSD(pStream->u8SD); /* The the stream's name, based on the direction. */ switch (pCfg->enmDir) { case PDMAUDIODIR_IN: # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN # error "Implement me!" # else pCfg->DestSource.Source = PDMAUDIORECSOURCE_LINE; pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED; RTStrCopy(pCfg->szName, sizeof(pCfg->szName), "Line In"); # endif break; case PDMAUDIODIR_OUT: /* Destination(s) will be set in hdaAddStreamOut(), * based on the channels / stream layout. */ break; default: rc = VERR_NOT_SUPPORTED; break; } if ( !pStream->u32CBL || !pStream->u16LVI || !pStream->u64BDLBase || !pStream->u16FIFOS) { return VINF_SUCCESS; } /* Set the stream's frame size. */ pStream->State.cbFrameSize = pCfg->Props.cChannels * pCfg->Props.cBytes; LogFunc(("[SD%RU8] cChannels=%RU8, cBytes=%RU8 -> cbFrameSize=%RU32\n", pStream->u8SD, pCfg->Props.cChannels, pCfg->Props.cBytes, pStream->State.cbFrameSize)); Assert(pStream->State.cbFrameSize); /* Frame size must not be 0. */ /* * Initialize the stream mapping in any case, regardless if * we support surround audio or not. This is needed to handle * the supported channels within a single audio stream, e.g. mono/stereo. * * In other words, the stream mapping *always* knows the real * number of channels in a single audio stream. */ rc = hdaR3StreamMapInit(&pStream->State.Mapping, &pCfg->Props); AssertRCReturn(rc, rc); LogFunc(("[SD%RU8] DMA @ 0x%x (%RU32 bytes), LVI=%RU16, FIFOS=%RU16, Hz=%RU32, rc=%Rrc\n", pStream->u8SD, pStream->u64BDLBase, pStream->u32CBL, pStream->u16LVI, pStream->u16FIFOS, pStream->State.Cfg.Props.uHz, rc)); /* Make sure that mandatory parameters are set up correctly. */ AssertStmt(pStream->u32CBL % pStream->State.cbFrameSize == 0, rc = VERR_INVALID_PARAMETER); AssertStmt(pStream->u16LVI >= 1, rc = VERR_INVALID_PARAMETER); if (RT_SUCCESS(rc)) { /* Make sure that the chosen Hz rate dividable by the stream's rate. */ if (pStream->State.Cfg.Props.uHz % pThis->u16TimerHz != 0) LogRel(("HDA: Device timer (%RU32) does not fit to stream #RU8 timing (%RU32)\n", pThis->u16TimerHz, pStream->State.Cfg.Props.uHz)); /* Figure out how many transfer fragments we're going to use for this stream. */ /** @todo Use a more dynamic fragment size? */ Assert(pStream->u16LVI <= UINT8_MAX - 1); uint8_t cFragments = pStream->u16LVI + 1; if (cFragments <= 1) cFragments = 2; /* At least two fragments (BDLEs) must be present. */ /* * Handle the stream's position adjustment. */ uint32_t cfPosAdjust = 0; LogFunc(("[SD%RU8] fPosAdjustEnabled=%RTbool, cPosAdjustFrames=%RU16\n", pStream->u8SD, pThis->fPosAdjustEnabled, pThis->cPosAdjustFrames)); if (pThis->fPosAdjustEnabled) /* Is the position adjustment enabled at all? */ { HDABDLE BDLE; RT_ZERO(BDLE); int rc2 = hdaR3BDLEFetch(pThis, &BDLE, pStream->u64BDLBase, 0 /* Entry */); AssertRC(rc2); /* Note: Do *not* check if this BDLE aligns to the stream's frame size. * It can happen that this isn't the case on some guests, e.g. * on Windows with a 5.1 speaker setup. * * The only thing which counts is that the stream's CBL value * properly aligns to the stream's frame size. */ /* If no custom set position adjustment is set, apply some * simple heuristics to detect the appropriate position adjustment. */ if ( !pThis->cPosAdjustFrames /* Position adjustmenet buffer *must* have the IOC bit set! */ && hdaR3BDLENeedsInterrupt(&BDLE)) { /** @todo Implement / use a (dynamic) table once this gets more complicated. */ #ifdef VBOX_WITH_INTEL_HDA /* Intel ICH / PCH: 1 frame. */ if (BDLE.Desc.u32BufSize == 1 * pStream->State.cbFrameSize) { cfPosAdjust = 1; } /* Intel Baytrail / Braswell: 32 frames. */ else if (BDLE.Desc.u32BufSize == 32 * pStream->State.cbFrameSize) { cfPosAdjust = 32; } #endif } else /* Go with the set default. */ cfPosAdjust = pThis->cPosAdjustFrames; if (cfPosAdjust) { /* Also adjust the number of fragments, as the position adjustment buffer * does not count as an own fragment as such. * * This e.g. can happen on (newer) Ubuntu guests which use * 4 (IOC) + 4408 (IOC) + 4408 (IOC) + 4408 (IOC) + 4404 (= 17632) bytes, * where the first buffer (4) is used as position adjustment. * * Only skip a fragment if the whole buffer fragment is used for * position adjustment. */ if ( (cfPosAdjust * pStream->State.cbFrameSize) == BDLE.Desc.u32BufSize && cFragments) { cFragments--; } /* Initialize position adjustment counter. */ pStream->State.cPosAdjustFramesLeft = cfPosAdjust; LogRel2(("HDA: Position adjustment for stream #%RU8 active (%RU32 frames)\n", pStream->u8SD, cfPosAdjust)); } } LogFunc(("[SD%RU8] cfPosAdjust=%RU32, cFragments=%RU8\n", pStream->u8SD, cfPosAdjust, cFragments)); /* * Set up data transfer transfer stuff. */ /* Calculate the fragment size the guest OS expects interrupt delivery at. */ pStream->State.cbTransferSize = pStream->u32CBL / cFragments; Assert(pStream->State.cbTransferSize); Assert(pStream->State.cbTransferSize % pStream->State.cbFrameSize == 0); /* Calculate the bytes we need to transfer to / from the stream's DMA per iteration. * This is bound to the device's Hz rate and thus to the (virtual) timing the device expects. */ pStream->State.cbTransferChunk = (pStream->State.Cfg.Props.uHz / pThis->u16TimerHz) * pStream->State.cbFrameSize; Assert(pStream->State.cbTransferChunk); Assert(pStream->State.cbTransferChunk % pStream->State.cbFrameSize == 0); /* Make sure that the transfer chunk does not exceed the overall transfer size. */ if (pStream->State.cbTransferChunk > pStream->State.cbTransferSize) pStream->State.cbTransferChunk = pStream->State.cbTransferSize; pStream->State.cbTransferProcessed = 0; pStream->State.cTransferPendingInterrupts = 0; pStream->State.cbDMALeft = 0; pStream->State.tsLastUpdateNs = 0; const uint64_t cTicksPerHz = TMTimerGetFreq(pStream->pTimer) / pThis->u16TimerHz; /* Calculate the timer ticks per byte for this stream. */ pStream->State.cTicksPerByte = cTicksPerHz / pStream->State.cbTransferChunk; Assert(pStream->State.cTicksPerByte); /* Calculate timer ticks per transfer. */ pStream->State.cTransferTicks = pStream->State.cbTransferChunk * pStream->State.cTicksPerByte; Assert(pStream->State.cTransferTicks); /* Initialize the transfer timestamps. */ pStream->State.tsTransferLast = 0; pStream->State.tsTransferNext = 0; LogFunc(("[SD%RU8] Timer %uHz (%RU64 ticks per Hz), cTicksPerByte=%RU64, cbTransferChunk=%RU32, cTransferTicks=%RU64, " \ "cbTransferSize=%RU32\n", pStream->u8SD, pThis->u16TimerHz, cTicksPerHz, pStream->State.cTicksPerByte, pStream->State.cbTransferChunk, pStream->State.cTransferTicks, pStream->State.cbTransferSize)); /* Make sure to also update the stream's DMA counter (based on its current LPIB value). */ hdaR3StreamSetPosition(pStream, HDA_STREAM_REG(pThis, LPIB, pStream->u8SD)); #ifdef LOG_ENABLED hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1); #endif } if (RT_FAILURE(rc)) LogRel(("HDA: Initializing stream #%RU8 failed with %Rrc\n", pStream->u8SD, rc)); return rc; } /** * Resets an HDA stream. * * @param pThis HDA state. * @param pStream HDA stream to reset. * @param uSD Stream descriptor (SD) number to use for this stream. */ void hdaR3StreamReset(PHDASTATE pThis, PHDASTREAM pStream, uint8_t uSD) { AssertPtrReturnVoid(pThis); AssertPtrReturnVoid(pStream); AssertReturnVoid(uSD < HDA_MAX_STREAMS); # ifdef VBOX_STRICT AssertReleaseMsg(!pStream->State.fRunning, ("[SD%RU8] Cannot reset stream while in running state\n", uSD)); # endif LogFunc(("[SD%RU8]: Reset\n", uSD)); /* * Set reset state. */ Assert(ASMAtomicReadBool(&pStream->State.fInReset) == false); /* No nested calls. */ ASMAtomicXchgBool(&pStream->State.fInReset, true); /* * Second, initialize the registers. */ HDA_STREAM_REG(pThis, STS, uSD) = HDA_SDSTS_FIFORDY; /* According to the ICH6 datasheet, 0x40000 is the default value for stream descriptor register 23:20 * bits are reserved for stream number 18.2.33, resets SDnCTL except SRST bit. */ HDA_STREAM_REG(pThis, CTL, uSD) = 0x40000 | (HDA_STREAM_REG(pThis, CTL, uSD) & HDA_SDCTL_SRST); /* ICH6 defines default values (120 bytes for input and 192 bytes for output descriptors) of FIFO size. 18.2.39. */ HDA_STREAM_REG(pThis, FIFOS, uSD) = hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN ? HDA_SDIFIFO_120B : HDA_SDOFIFO_192B; /* See 18.2.38: Always defaults to 0x4 (32 bytes). */ HDA_STREAM_REG(pThis, FIFOW, uSD) = HDA_SDFIFOW_32B; HDA_STREAM_REG(pThis, LPIB, uSD) = 0; HDA_STREAM_REG(pThis, CBL, uSD) = 0; HDA_STREAM_REG(pThis, LVI, uSD) = 0; HDA_STREAM_REG(pThis, FMT, uSD) = 0; HDA_STREAM_REG(pThis, BDPU, uSD) = 0; HDA_STREAM_REG(pThis, BDPL, uSD) = 0; #ifdef HDA_USE_DMA_ACCESS_HANDLER hdaR3StreamUnregisterDMAHandlers(pThis, pStream); #endif /* Assign the default mixer sink to the stream. */ pStream->pMixSink = hdaR3GetDefaultSink(pThis, uSD); pStream->State.tsTransferLast = 0; pStream->State.tsTransferNext = 0; RT_ZERO(pStream->State.BDLE); pStream->State.uCurBDLE = 0; if (pStream->State.pCircBuf) RTCircBufReset(pStream->State.pCircBuf); /* Reset stream map. */ hdaR3StreamMapReset(&pStream->State.Mapping); /* (Re-)initialize the stream with current values. */ int rc2 = hdaR3StreamInit(pStream, uSD); AssertRC(rc2); /* Reset the stream's period. */ hdaR3StreamPeriodReset(&pStream->State.Period); #ifdef DEBUG pStream->Dbg.cReadsTotal = 0; pStream->Dbg.cbReadTotal = 0; pStream->Dbg.tsLastReadNs = 0; pStream->Dbg.cWritesTotal = 0; pStream->Dbg.cbWrittenTotal = 0; pStream->Dbg.cWritesHz = 0; pStream->Dbg.cbWrittenHz = 0; pStream->Dbg.tsWriteSlotBegin = 0; #endif /* Report that we're done resetting this stream. */ HDA_STREAM_REG(pThis, CTL, uSD) = 0; LogFunc(("[SD%RU8] Reset\n", uSD)); /* Exit reset mode. */ ASMAtomicXchgBool(&pStream->State.fInReset, false); } /** * Enables or disables an HDA audio stream. * * @returns IPRT status code. * @param pStream HDA stream to enable or disable. * @param fEnable Whether to enable or disble the stream. */ int hdaR3StreamEnable(PHDASTREAM pStream, bool fEnable) { AssertPtrReturn(pStream, VERR_INVALID_POINTER); LogFunc(("[SD%RU8]: fEnable=%RTbool, pMixSink=%p\n", pStream->u8SD, fEnable, pStream->pMixSink)); int rc = VINF_SUCCESS; AUDMIXSINKCMD enmCmd = fEnable ? AUDMIXSINKCMD_ENABLE : AUDMIXSINKCMD_DISABLE; /* First, enable or disable the stream and the stream's sink, if any. */ if ( pStream->pMixSink && pStream->pMixSink->pMixSink) rc = AudioMixerSinkCtl(pStream->pMixSink->pMixSink, enmCmd); if ( RT_SUCCESS(rc) && fEnable && pStream->Dbg.Runtime.fEnabled) { Assert(DrvAudioHlpPCMPropsAreValid(&pStream->State.Cfg.Props)); if (fEnable) { if (!DrvAudioHlpFileIsOpen(pStream->Dbg.Runtime.pFileStream)) { int rc2 = DrvAudioHlpFileOpen(pStream->Dbg.Runtime.pFileStream, PDMAUDIOFILE_DEFAULT_OPEN_FLAGS, &pStream->State.Cfg.Props); AssertRC(rc2); } if (!DrvAudioHlpFileIsOpen(pStream->Dbg.Runtime.pFileDMA)) { int rc2 = DrvAudioHlpFileOpen(pStream->Dbg.Runtime.pFileDMA, PDMAUDIOFILE_DEFAULT_OPEN_FLAGS, &pStream->State.Cfg.Props); AssertRC(rc2); } } } if (RT_SUCCESS(rc)) { pStream->State.fRunning = fEnable; } LogFunc(("[SD%RU8] rc=%Rrc\n", pStream->u8SD, rc)); return rc; } uint32_t hdaR3StreamGetPosition(PHDASTATE pThis, PHDASTREAM pStream) { return HDA_STREAM_REG(pThis, LPIB, pStream->u8SD); } /** * Updates an HDA stream's current read or write buffer position (depending on the stream type) by * updating its associated LPIB register and DMA position buffer (if enabled). * * @param pStream HDA stream to update read / write position for. * @param u32LPIB Absolute position (in bytes) to set current read / write position to. */ void hdaR3StreamSetPosition(PHDASTREAM pStream, uint32_t u32LPIB) { AssertPtrReturnVoid(pStream); Log3Func(("[SD%RU8] LPIB=%RU32 (DMA Position Buffer Enabled: %RTbool)\n", pStream->u8SD, u32LPIB, pStream->pHDAState->fDMAPosition)); /* Update LPIB in any case. */ HDA_STREAM_REG(pStream->pHDAState, LPIB, pStream->u8SD) = u32LPIB; /* Do we need to tell the current DMA position? */ if (pStream->pHDAState->fDMAPosition) { int rc2 = PDMDevHlpPCIPhysWrite(pStream->pHDAState->CTX_SUFF(pDevIns), pStream->pHDAState->u64DPBase + (pStream->u8SD * 2 * sizeof(uint32_t)), (void *)&u32LPIB, sizeof(uint32_t)); AssertRC(rc2); } } /** * Retrieves the available size of (buffered) audio data (in bytes) of a given HDA stream. * * @returns Available data (in bytes). * @param pStream HDA stream to retrieve size for. */ uint32_t hdaR3StreamGetUsed(PHDASTREAM pStream) { AssertPtrReturn(pStream, 0); if (!pStream->State.pCircBuf) return 0; return (uint32_t)RTCircBufUsed(pStream->State.pCircBuf); } /** * Retrieves the free size of audio data (in bytes) of a given HDA stream. * * @returns Free data (in bytes). * @param pStream HDA stream to retrieve size for. */ uint32_t hdaR3StreamGetFree(PHDASTREAM pStream) { AssertPtrReturn(pStream, 0); if (!pStream->State.pCircBuf) return 0; return (uint32_t)RTCircBufFree(pStream->State.pCircBuf); } /** * Returns whether a next transfer for a given stream is scheduled or not. * This takes pending stream interrupts into account as well as the next scheduled * transfer timestamp. * * @returns True if a next transfer is scheduled, false if not. * @param pStream HDA stream to retrieve schedule status for. */ bool hdaR3StreamTransferIsScheduled(PHDASTREAM pStream) { if (pStream) { AssertPtrReturn(pStream->pHDAState, false); if (pStream->State.fRunning) { if (pStream->State.cTransferPendingInterrupts) { Log3Func(("[SD%RU8] Scheduled (%RU8 IRQs pending)\n", pStream->u8SD, pStream->State.cTransferPendingInterrupts)); return true; } const uint64_t tsNow = TMTimerGet(pStream->pTimer); if (pStream->State.tsTransferNext > tsNow) { Log3Func(("[SD%RU8] Scheduled in %RU64\n", pStream->u8SD, pStream->State.tsTransferNext - tsNow)); return true; } } } return false; } /** * Returns the (virtual) clock timestamp of the next transfer, if any. * Will return 0 if no new transfer is scheduled. * * @returns The (virtual) clock timestamp of the next transfer. * @param pStream HDA stream to retrieve timestamp for. */ uint64_t hdaR3StreamTransferGetNext(PHDASTREAM pStream) { return pStream->State.tsTransferNext; } /** * Writes audio data from a mixer sink into an HDA stream's DMA buffer. * * @returns IPRT status code. * @param pStream HDA stream to write to. * @param pvBuf Data buffer to write. * If NULL, silence will be written. * @param cbBuf Number of bytes of data buffer to write. * @param pcbWritten Number of bytes written. Optional. */ int hdaR3StreamWrite(PHDASTREAM pStream, const void *pvBuf, uint32_t cbBuf, uint32_t *pcbWritten) { AssertPtrReturn(pStream, VERR_INVALID_POINTER); /* pvBuf is optional. */ AssertReturn(cbBuf, VERR_INVALID_PARAMETER); /* pcbWritten is optional. */ PRTCIRCBUF pCircBuf = pStream->State.pCircBuf; AssertPtr(pCircBuf); int rc = VINF_SUCCESS; uint32_t cbWrittenTotal = 0; uint32_t cbLeft = RT_MIN(cbBuf, (uint32_t)RTCircBufFree(pCircBuf)); while (cbLeft) { void *pvDst; size_t cbDst; RTCircBufAcquireWriteBlock(pCircBuf, cbLeft, &pvDst, &cbDst); if (cbDst) { if (pvBuf) { memcpy(pvDst, (uint8_t *)pvBuf + cbWrittenTotal, cbDst); } else /* Send silence. */ { /** @todo Use a sample spec for "silence" based on the PCM parameters. * For now we ASSUME that silence equals NULLing the data. */ RT_BZERO(pvDst, cbDst); } if (pStream->Dbg.Runtime.fEnabled) DrvAudioHlpFileWrite(pStream->Dbg.Runtime.pFileStream, pvDst, cbDst, 0 /* fFlags */); } RTCircBufReleaseWriteBlock(pCircBuf, cbDst); if (RT_FAILURE(rc)) break; Assert(cbLeft >= (uint32_t)cbDst); cbLeft -= (uint32_t)cbDst; cbWrittenTotal += (uint32_t)cbDst; } Log3Func(("cbWrittenTotal=%RU32\n", cbWrittenTotal)); if (pcbWritten) *pcbWritten = cbWrittenTotal; return rc; } /** * Reads audio data from an HDA stream's DMA buffer and writes into a specified mixer sink. * * @returns IPRT status code. * @param pStream HDA stream to read audio data from. * @param cbToRead Number of bytes to read. * @param pcbRead Number of bytes read. Optional. */ int hdaR3StreamRead(PHDASTREAM pStream, uint32_t cbToRead, uint32_t *pcbRead) { AssertPtrReturn(pStream, VERR_INVALID_POINTER); AssertReturn(cbToRead, VERR_INVALID_PARAMETER); /* pcbWritten is optional. */ PHDAMIXERSINK pSink = pStream->pMixSink; if (!pSink) { AssertMsgFailed(("[SD%RU8]: Can't read from a stream with no sink attached\n", pStream->u8SD)); if (pcbRead) *pcbRead = 0; return VINF_SUCCESS; } PRTCIRCBUF pCircBuf = pStream->State.pCircBuf; AssertPtr(pCircBuf); int rc = VINF_SUCCESS; uint32_t cbReadTotal = 0; uint32_t cbLeft = RT_MIN(cbToRead, (uint32_t)RTCircBufUsed(pCircBuf)); while (cbLeft) { void *pvSrc; size_t cbSrc; uint32_t cbWritten = 0; RTCircBufAcquireReadBlock(pCircBuf, cbLeft, &pvSrc, &cbSrc); if (cbSrc) { if (pStream->Dbg.Runtime.fEnabled) DrvAudioHlpFileWrite(pStream->Dbg.Runtime.pFileStream, pvSrc, cbSrc, 0 /* fFlags */); rc = AudioMixerSinkWrite(pSink->pMixSink, AUDMIXOP_COPY, pvSrc, (uint32_t)cbSrc, &cbWritten); AssertRC(rc); Assert(cbSrc >= cbWritten); Log2Func(("[SD%RU8]: %RU32/%zu bytes read\n", pStream->u8SD, cbWritten, cbSrc)); } RTCircBufReleaseReadBlock(pCircBuf, cbWritten); if (RT_FAILURE(rc)) break; Assert(cbLeft >= cbWritten); cbLeft -= cbWritten; cbReadTotal += cbWritten; } if (pcbRead) *pcbRead = cbReadTotal; return rc; } /** * Transfers data of an HDA stream according to its usage (input / output). * * For an SDO (output) stream this means reading DMA data from the device to * the HDA stream's internal FIFO buffer. * * For an SDI (input) stream this is reading audio data from the HDA stream's * internal FIFO buffer and writing it as DMA data to the device. * * @returns IPRT status code. * @param pStream HDA stream to update. * @param cbToProcessMax How much data (in bytes) to process as maximum. */ int hdaR3StreamTransfer(PHDASTREAM pStream, uint32_t cbToProcessMax) { AssertPtrReturn(pStream, VERR_INVALID_POINTER); hdaR3StreamLock(pStream); PHDASTATE pThis = pStream->pHDAState; AssertPtr(pThis); PHDASTREAMPERIOD pPeriod = &pStream->State.Period; if (!hdaR3StreamPeriodLock(pPeriod)) return VERR_ACCESS_DENIED; bool fProceed = true; /* Stream not running? */ if (!pStream->State.fRunning) { Log3Func(("[SD%RU8] Not running\n", pStream->u8SD)); fProceed = false; } else if (HDA_STREAM_REG(pThis, STS, pStream->u8SD) & HDA_SDSTS_BCIS) { Log3Func(("[SD%RU8] BCIS bit set\n", pStream->u8SD)); fProceed = false; } if (!fProceed) { hdaR3StreamPeriodUnlock(pPeriod); hdaR3StreamUnlock(pStream); return VINF_SUCCESS; } const uint64_t tsNow = TMTimerGet(pStream->pTimer); if (!pStream->State.tsTransferLast) pStream->State.tsTransferLast = tsNow; #ifdef DEBUG const int64_t iTimerDelta = tsNow - pStream->State.tsTransferLast; Log3Func(("[SD%RU8] Time now=%RU64, last=%RU64 -> %RI64 ticks delta\n", pStream->u8SD, tsNow, pStream->State.tsTransferLast, iTimerDelta)); #endif pStream->State.tsTransferLast = tsNow; /* Sanity checks. */ Assert(pStream->u8SD < HDA_MAX_STREAMS); Assert(pStream->u64BDLBase); Assert(pStream->u32CBL); Assert(pStream->u16FIFOS); /* State sanity checks. */ Assert(ASMAtomicReadBool(&pStream->State.fInReset) == false); int rc = VINF_SUCCESS; /* Fetch first / next BDL entry. */ PHDABDLE pBDLE = &pStream->State.BDLE; if (hdaR3BDLEIsComplete(pBDLE)) { rc = hdaR3BDLEFetch(pThis, pBDLE, pStream->u64BDLBase, pStream->State.uCurBDLE); AssertRC(rc); } uint32_t cbToProcess = RT_MIN(pStream->State.cbTransferSize - pStream->State.cbTransferProcessed, pStream->State.cbTransferChunk); Log3Func(("[SD%RU8] cbToProcess=%RU32, cbToProcessMax=%RU32\n", pStream->u8SD, cbToProcess, cbToProcessMax)); if (cbToProcess > cbToProcessMax) { LogFunc(("[SD%RU8] Limiting transfer (cbToProcess=%RU32, cbToProcessMax=%RU32)\n", pStream->u8SD, cbToProcess, cbToProcessMax)); /* Never process more than a stream currently can handle. */ cbToProcess = cbToProcessMax; } uint32_t cbProcessed = 0; uint32_t cbLeft = cbToProcess; uint8_t abChunk[HDA_FIFO_MAX + 1]; while (cbLeft) { /* Limit the chunk to the stream's FIFO size and what's left to process. */ uint32_t cbChunk = RT_MIN(cbLeft, pStream->u16FIFOS); /* Limit the chunk to the remaining data of the current BDLE. */ cbChunk = RT_MIN(cbChunk, pBDLE->Desc.u32BufSize - pBDLE->State.u32BufOff); /* If there are position adjustment frames left to be processed, * make sure that we process them first as a whole. */ if (pStream->State.cPosAdjustFramesLeft) cbChunk = RT_MIN(cbChunk, uint32_t(pStream->State.cPosAdjustFramesLeft * pStream->State.cbFrameSize)); Log3Func(("[SD%RU8] cbChunk=%RU32, cPosAdjustFramesLeft=%RU16\n", pStream->u8SD, cbChunk, pStream->State.cPosAdjustFramesLeft)); if (!cbChunk) break; uint32_t cbDMA = 0; PRTCIRCBUF pCircBuf = pStream->State.pCircBuf; if (hdaGetDirFromSD(pStream->u8SD) == PDMAUDIODIR_IN) /* Input (SDI). */ { STAM_PROFILE_START(&pThis->StatIn, a); uint32_t cbDMAWritten = 0; uint32_t cbDMAToWrite = cbChunk; /** @todo Do we need interleaving streams support here as well? * Never saw anything else besides mono/stereo mics (yet). */ while (cbDMAToWrite) { void *pvBuf; size_t cbBuf; RTCircBufAcquireReadBlock(pCircBuf, cbDMAToWrite, &pvBuf, &cbBuf); if ( !cbBuf && !RTCircBufUsed(pCircBuf)) break; memcpy(abChunk + cbDMAWritten, pvBuf, cbBuf); RTCircBufReleaseReadBlock(pCircBuf, cbBuf); Assert(cbDMAToWrite >= cbBuf); cbDMAToWrite -= (uint32_t)cbBuf; cbDMAWritten += (uint32_t)cbBuf; Assert(cbDMAWritten <= cbChunk); } if (cbDMAToWrite) { LogRel2(("HDA: FIFO underflow for stream #%RU8 (%RU32 bytes outstanding)\n", pStream->u8SD, cbDMAToWrite)); Assert(cbChunk == cbDMAWritten + cbDMAToWrite); memset((uint8_t *)abChunk + cbDMAWritten, 0, cbDMAToWrite); cbDMAWritten = cbChunk; } rc = hdaR3DMAWrite(pThis, pStream, abChunk, cbDMAWritten, &cbDMA /* pcbWritten */); if (RT_FAILURE(rc)) LogRel(("HDA: Writing to stream #%RU8 DMA failed with %Rrc\n", pStream->u8SD, rc)); STAM_PROFILE_STOP(&pThis->StatIn, a); } else if (hdaGetDirFromSD(pStream->u8SD) == PDMAUDIODIR_OUT) /* Output (SDO). */ { STAM_PROFILE_START(&pThis->StatOut, a); rc = hdaR3DMARead(pThis, pStream, abChunk, cbChunk, &cbDMA /* pcbRead */); if (RT_SUCCESS(rc)) { const uint32_t cbDMAFree = (uint32_t)RTCircBufFree(pCircBuf); Assert(cbDMAFree >= cbDMA); /* This must always hold. */ #ifndef VBOX_WITH_HDA_AUDIO_INTERLEAVING_STREAMS_SUPPORT /* * Most guests don't use different stream frame sizes than * the default one, so save a bit of CPU time and don't go into * the frame extraction code below. * * Only macOS guests need the frame extraction branch below at the moment AFAIK. */ if (pStream->State.cbFrameSize == HDA_FRAME_SIZE) { uint32_t cbDMARead = 0; uint32_t cbDMALeft = RT_MIN(cbDMA, cbDMAFree); while (cbDMALeft) { void *pvBuf; size_t cbBuf; RTCircBufAcquireWriteBlock(pCircBuf, cbDMALeft, &pvBuf, &cbBuf); if (cbBuf) { memcpy(pvBuf, abChunk + cbDMARead, cbBuf); cbDMARead += (uint32_t)cbBuf; cbDMALeft -= (uint32_t)cbBuf; } RTCircBufReleaseWriteBlock(pCircBuf, cbBuf); } } else { /* * The following code extracts the required audio stream (channel) data * of non-interleaved *and* interleaved audio streams. * * We by default only support 2 channels with 16-bit samples (HDA_FRAME_SIZE), * but an HDA audio stream can have interleaved audio data of multiple audio * channels in such a single stream ("AA,AA,AA vs. AA,BB,AA,BB"). * * So take this into account by just handling the first channel in such a stream ("A") * and just discard the other channel's data. * */ /** @todo Optimize this stuff -- copying only one frame a time is expensive. */ uint32_t cbDMARead = pStream->State.cbDMALeft ? pStream->State.cbFrameSize - pStream->State.cbDMALeft : 0; uint32_t cbDMALeft = RT_MIN(cbDMA, cbDMAFree); while (cbDMALeft >= pStream->State.cbFrameSize) { void *pvBuf; size_t cbBuf; RTCircBufAcquireWriteBlock(pCircBuf, HDA_FRAME_SIZE, &pvBuf, &cbBuf); AssertBreak(cbDMARead <= sizeof(abChunk)); if (cbBuf) memcpy(pvBuf, abChunk + cbDMARead, cbBuf); RTCircBufReleaseWriteBlock(pCircBuf, cbBuf); Assert(cbDMALeft >= pStream->State.cbFrameSize); cbDMALeft -= pStream->State.cbFrameSize; cbDMARead += pStream->State.cbFrameSize; } pStream->State.cbDMALeft = cbDMALeft; Assert(pStream->State.cbDMALeft < pStream->State.cbFrameSize); } #else /** @todo This needs making use of HDAStreamMap + HDAStreamChannel. */ # error "Implement reading interleaving streams support here." #endif } else LogRel(("HDA: Reading from stream #%RU8 DMA failed with %Rrc\n", pStream->u8SD, rc)); STAM_PROFILE_STOP(&pThis->StatOut, a); } else /** @todo Handle duplex streams? */ AssertFailed(); if (cbDMA) { /* We always increment the position of DMA buffer counter because we're always reading * into an intermediate DMA buffer. */ pBDLE->State.u32BufOff += (uint32_t)cbDMA; Assert(pBDLE->State.u32BufOff <= pBDLE->Desc.u32BufSize); /* Are we done doing the position adjustment? * Only then do the transfer accounting .*/ if (pStream->State.cPosAdjustFramesLeft == 0) { Assert(cbLeft >= cbDMA); cbLeft -= cbDMA; cbProcessed += cbDMA; } /* * Update the stream's current position. * Do this as accurate and close to the actual data transfer as possible. * All guetsts rely on this, depending on the mechanism they use (LPIB register or DMA counters). */ uint32_t cbStreamPos = hdaR3StreamGetPosition(pThis, pStream); if (cbStreamPos == pStream->u32CBL) cbStreamPos = 0; hdaR3StreamSetPosition(pStream, cbStreamPos + cbDMA); } if (hdaR3BDLEIsComplete(pBDLE)) { Log3Func(("[SD%RU8] Complete: %R[bdle]\n", pStream->u8SD, pBDLE)); /* Does the current BDLE require an interrupt to be sent? */ if ( hdaR3BDLENeedsInterrupt(pBDLE) /* Are we done doing the position adjustment? * It can happen that a BDLE which is handled while doing the * position adjustment requires an interrupt on completion (IOC) being set. * * In such a case we need to skip such an interrupt and just move on. */ && pStream->State.cPosAdjustFramesLeft == 0) { /* If the IOCE ("Interrupt On Completion Enable") bit of the SDCTL register is set * we need to generate an interrupt. */ if (HDA_STREAM_REG(pThis, CTL, pStream->u8SD) & HDA_SDCTL_IOCE) { pStream->State.cTransferPendingInterrupts++; AssertMsg(pStream->State.cTransferPendingInterrupts <= 32, ("Too many pending interrupts (%RU8) for stream #%RU8\n", pStream->State.cTransferPendingInterrupts, pStream->u8SD)); } } if (pStream->State.uCurBDLE == pStream->u16LVI) { pStream->State.uCurBDLE = 0; } else pStream->State.uCurBDLE++; /* Fetch the next BDLE entry. */ hdaR3BDLEFetch(pThis, pBDLE, pStream->u64BDLBase, pStream->State.uCurBDLE); } /* Do the position adjustment accounting. */ pStream->State.cPosAdjustFramesLeft -= RT_MIN(pStream->State.cPosAdjustFramesLeft, cbDMA / pStream->State.cbFrameSize); if (RT_FAILURE(rc)) break; } Log3Func(("[SD%RU8] cbToProcess=%RU32, cbProcessed=%RU32, cbLeft=%RU32, %R[bdle], rc=%Rrc\n", pStream->u8SD, cbToProcess, cbProcessed, cbLeft, pBDLE, rc)); /* Sanity. */ Assert(cbProcessed == cbToProcess); Assert(cbLeft == 0); /* Only do the data accounting if we don't have to do any position * adjustment anymore. */ if (pStream->State.cPosAdjustFramesLeft == 0) { hdaR3StreamPeriodInc(pPeriod, RT_MIN(cbProcessed / pStream->State.cbFrameSize, hdaR3StreamPeriodGetRemainingFrames(pPeriod))); pStream->State.cbTransferProcessed += cbProcessed; } /* Make sure that we never report more stuff processed than initially announced. */ if (pStream->State.cbTransferProcessed > pStream->State.cbTransferSize) pStream->State.cbTransferProcessed = pStream->State.cbTransferSize; uint32_t cbTransferLeft = pStream->State.cbTransferSize - pStream->State.cbTransferProcessed; bool fTransferComplete = !cbTransferLeft; uint64_t tsTransferNext = 0; if (fTransferComplete) { /* * Try updating the wall clock. * * Note 1) Only certain guests (like Linux' snd_hda_intel) rely on the WALCLK register * in order to determine the correct timing of the sound device. Other guests * like Windows 7 + 10 (or even more exotic ones like Haiku) will completely * ignore this. * * Note 2) When updating the WALCLK register too often / early (or even in a non-monotonic * fashion) this *will* upset guest device drivers and will completely fuck up the * sound output. Running VLC on the guest will tell! */ const bool fWalClkSet = hdaR3WalClkSet(pThis, hdaWalClkGetCurrent(pThis) + hdaR3StreamPeriodFramesToWalClk(pPeriod, pStream->State.cbTransferProcessed / pStream->State.cbFrameSize), false /* fForce */); RT_NOREF(fWalClkSet); } /* Does the period have any interrupts outstanding? */ if (pStream->State.cTransferPendingInterrupts) { Log3Func(("[SD%RU8] Scheduling interrupt\n", pStream->u8SD)); /* * Set the stream's BCIS bit. * * Note: This only must be done if the whole period is complete, and not if only * one specific BDL entry is complete (if it has the IOC bit set). * * This will otherwise confuses the guest when it 1) deasserts the interrupt, * 2) reads SDSTS (with BCIS set) and then 3) too early reads a (wrong) WALCLK value. * * snd_hda_intel on Linux will tell. */ HDA_STREAM_REG(pThis, STS, pStream->u8SD) |= HDA_SDSTS_BCIS; /* Trigger an interrupt first and let hdaRegWriteSDSTS() deal with * ending / beginning a period. */ #ifndef LOG_ENABLED hdaProcessInterrupt(pThis); #else hdaProcessInterrupt(pThis, __FUNCTION__); #endif } else /* Transfer still in-flight -- schedule the next timing slot. */ { uint32_t cbTransferNext = cbTransferLeft; /* No data left to transfer anymore or do we have more data left * than we can transfer per timing slot? Clamp. */ if ( !cbTransferNext || cbTransferNext > pStream->State.cbTransferChunk) { cbTransferNext = pStream->State.cbTransferChunk; } tsTransferNext = tsNow + (cbTransferNext * pStream->State.cTicksPerByte); /* * If the current transfer is complete, reset our counter. * * This can happen for examlpe if the guest OS (like macOS) sets up * big BDLEs without IOC bits set (but for the last one) and the * transfer is complete before we reach such a BDL entry. */ if (fTransferComplete) pStream->State.cbTransferProcessed = 0; } /* If we need to do another transfer, (re-)arm the device timer. */ if (tsTransferNext) /* Can be 0 if no next transfer is needed. */ { Log3Func(("[SD%RU8] Scheduling timer\n", pStream->u8SD)); TMTimerUnlock(pStream->pTimer); LogFunc(("Timer set SD%RU8\n", pStream->u8SD)); hdaR3TimerSet(pStream->pHDAState, pStream, tsTransferNext, false /* fForce */); TMTimerLock(pStream->pTimer, VINF_SUCCESS); pStream->State.tsTransferNext = tsTransferNext; } pStream->State.tsTransferLast = tsNow; Log3Func(("[SD%RU8] cbTransferLeft=%RU32 -- %RU32/%RU32\n", pStream->u8SD, cbTransferLeft, pStream->State.cbTransferProcessed, pStream->State.cbTransferSize)); Log3Func(("[SD%RU8] fTransferComplete=%RTbool, cTransferPendingInterrupts=%RU8\n", pStream->u8SD, fTransferComplete, pStream->State.cTransferPendingInterrupts)); Log3Func(("[SD%RU8] tsNow=%RU64, tsTransferNext=%RU64 (in %RU64 ticks)\n", pStream->u8SD, tsNow, tsTransferNext, tsTransferNext - tsNow)); hdaR3StreamPeriodUnlock(pPeriod); hdaR3StreamUnlock(pStream); return VINF_SUCCESS; } /** * Updates a HDA stream by doing its required data transfers. * The host sink(s) set the overall pace. * * This routine is called by both, the synchronous and the asynchronous, implementations. * * This routine is called by both, the synchronous and the asynchronous * (VBOX_WITH_AUDIO_HDA_ASYNC_IO), implementations. * * When running synchronously, the device DMA transfers *and* the mixer sink * processing is within the device timer. * * When running asynchronously, only the device DMA transfers are done in the * device timer, whereas the mixer sink processing then is done in the stream's * own async I/O thread. This thread also will call this function * (with fInTimer set to @c false). * * @param pStream HDA stream to update. * @param fInTimer Whether to this function was called from the timer * context or an asynchronous I/O stream thread (if supported). */ void hdaR3StreamUpdate(PHDASTREAM pStream, bool fInTimer) { if (!pStream) return; PAUDMIXSINK pSink = NULL; if ( pStream->pMixSink && pStream->pMixSink->pMixSink) { pSink = pStream->pMixSink->pMixSink; } if (!AudioMixerSinkIsActive(pSink)) /* No sink available? Bail out. */ return; int rc2; if (hdaGetDirFromSD(pStream->u8SD) == PDMAUDIODIR_OUT) /* Output (SDO). */ { bool fDoRead = false; /* Whether to read from the HDA stream or not. */ # ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO if (fInTimer) # endif { const uint32_t cbStreamFree = hdaR3StreamGetFree(pStream); if (cbStreamFree) { /* Do the DMA transfer. */ rc2 = hdaR3StreamTransfer(pStream, cbStreamFree); AssertRC(rc2); } /* Only read from the HDA stream at the given scheduling rate. */ const uint64_t tsNowNs = RTTimeNanoTS(); if (tsNowNs - pStream->State.tsLastUpdateNs >= pStream->State.Cfg.Device.uSchedulingHintMs * RT_NS_1MS) { fDoRead = true; pStream->State.tsLastUpdateNs = tsNowNs; } } Log3Func(("[SD%RU8] fInTimer=%RTbool, fDoRead=%RTbool\n", pStream->u8SD, fInTimer, fDoRead)); # ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO if (fDoRead) { rc2 = hdaR3StreamAsyncIONotify(pStream); AssertRC(rc2); } # endif # ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO if (!fInTimer) /* In async I/O thread */ { # else if (fDoRead) { # endif const uint32_t cbSinkWritable = AudioMixerSinkGetWritable(pSink); const uint32_t cbStreamReadable = hdaR3StreamGetUsed(pStream); const uint32_t cbToReadFromStream = RT_MIN(cbStreamReadable, cbSinkWritable); Log3Func(("[SD%RU8] cbSinkWritable=%RU32, cbStreamReadable=%RU32\n", pStream->u8SD, cbSinkWritable, cbStreamReadable)); if (cbToReadFromStream) { /* Read (guest output) data and write it to the stream's sink. */ rc2 = hdaR3StreamRead(pStream, cbToReadFromStream, NULL); AssertRC(rc2); } /* When running synchronously, update the associated sink here. * Otherwise this will be done in the async I/O thread. */ rc2 = AudioMixerSinkUpdate(pSink); AssertRC(rc2); } } else /* Input (SDI). */ { # ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO if (!fInTimer) { # endif rc2 = AudioMixerSinkUpdate(pSink); AssertRC(rc2); /* Is the sink ready to be read (host input data) from? If so, by how much? */ uint32_t cbSinkReadable = AudioMixerSinkGetReadable(pSink); /* How much (guest input) data is available for writing at the moment for the HDA stream? */ const uint32_t cbStreamFree = hdaR3StreamGetFree(pStream); Log3Func(("[SD%RU8] cbSinkReadable=%RU32, cbStreamFree=%RU32\n", pStream->u8SD, cbSinkReadable, cbStreamFree)); /* Do not read more than the HDA stream can hold at the moment. * The host sets the overall pace. */ if (cbSinkReadable > cbStreamFree) cbSinkReadable = cbStreamFree; if (cbSinkReadable) { uint8_t abFIFO[HDA_FIFO_MAX + 1]; while (cbSinkReadable) { uint32_t cbRead; rc2 = AudioMixerSinkRead(pSink, AUDMIXOP_COPY, abFIFO, RT_MIN(cbSinkReadable, (uint32_t)sizeof(abFIFO)), &cbRead); AssertRCBreak(rc2); if (!cbRead) { AssertMsgFailed(("Nothing read from sink, even if %RU32 bytes were (still) announced\n", cbSinkReadable)); break; } /* Write (guest input) data to the stream which was read from stream's sink before. */ uint32_t cbWritten; rc2 = hdaR3StreamWrite(pStream, abFIFO, cbRead, &cbWritten); AssertRCBreak(rc2); if (!cbWritten) { AssertFailed(); /* Should never happen, as we know how much we can write. */ break; } Assert(cbSinkReadable >= cbRead); cbSinkReadable -= cbRead; } } # ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO } else /* fInTimer */ { # endif # ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO const uint64_t tsNowNs = RTTimeNanoTS(); if (tsNowNs - pStream->State.tsLastUpdateNs >= pStream->State.Cfg.Device.uSchedulingHintMs * RT_NS_1MS) { rc2 = hdaR3StreamAsyncIONotify(pStream); AssertRC(rc2); pStream->State.tsLastUpdateNs = tsNowNs; } # endif const uint32_t cbStreamUsed = hdaR3StreamGetUsed(pStream); if (cbStreamUsed) { rc2 = hdaR3StreamTransfer(pStream, cbStreamUsed); AssertRC(rc2); } # ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO } # endif } } /** * Locks an HDA stream for serialized access. * * @returns IPRT status code. * @param pStream HDA stream to lock. */ void hdaR3StreamLock(PHDASTREAM pStream) { AssertPtrReturnVoid(pStream); int rc2 = RTCritSectEnter(&pStream->CritSect); AssertRC(rc2); } /** * Unlocks a formerly locked HDA stream. * * @returns IPRT status code. * @param pStream HDA stream to unlock. */ void hdaR3StreamUnlock(PHDASTREAM pStream) { AssertPtrReturnVoid(pStream); int rc2 = RTCritSectLeave(&pStream->CritSect); AssertRC(rc2); } /** * Updates an HDA stream's current read or write buffer position (depending on the stream type) by * updating its associated LPIB register and DMA position buffer (if enabled). * * @returns Set LPIB value. * @param pStream HDA stream to update read / write position for. * @param u32LPIB New LPIB (position) value to set. */ uint32_t hdaR3StreamUpdateLPIB(PHDASTREAM pStream, uint32_t u32LPIB) { AssertPtrReturn(pStream, 0); AssertMsg(u32LPIB <= pStream->u32CBL, ("[SD%RU8] New LPIB (%RU32) exceeds CBL (%RU32)\n", pStream->u8SD, u32LPIB, pStream->u32CBL)); const PHDASTATE pThis = pStream->pHDAState; u32LPIB = RT_MIN(u32LPIB, pStream->u32CBL); LogFlowFunc(("[SD%RU8]: LPIB=%RU32 (DMA Position Buffer Enabled: %RTbool)\n", pStream->u8SD, u32LPIB, pThis->fDMAPosition)); /* Update LPIB in any case. */ HDA_STREAM_REG(pThis, LPIB, pStream->u8SD) = u32LPIB; /* Do we need to tell the current DMA position? */ if (pThis->fDMAPosition) { int rc2 = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pThis->u64DPBase + (pStream->u8SD * 2 * sizeof(uint32_t)), (void *)&u32LPIB, sizeof(uint32_t)); AssertRC(rc2); } return u32LPIB; } # ifdef HDA_USE_DMA_ACCESS_HANDLER /** * Registers access handlers for a stream's BDLE DMA accesses. * * @returns true if registration was successful, false if not. * @param pStream HDA stream to register BDLE access handlers for. */ bool hdaR3StreamRegisterDMAHandlers(PHDASTREAM pStream) { /* At least LVI and the BDL base must be set. */ if ( !pStream->u16LVI || !pStream->u64BDLBase) { return false; } hdaR3StreamUnregisterDMAHandlers(pStream); LogFunc(("Registering ...\n")); int rc = VINF_SUCCESS; /* * Create BDLE ranges. */ struct BDLERANGE { RTGCPHYS uAddr; uint32_t uSize; } arrRanges[16]; /** @todo Use a define. */ size_t cRanges = 0; for (uint16_t i = 0; i < pStream->u16LVI + 1; i++) { HDABDLE BDLE; rc = hdaR3BDLEFetch(pThis, &BDLE, pStream->u64BDLBase, i /* Index */); if (RT_FAILURE(rc)) break; bool fAddRange = true; BDLERANGE *pRange; if (cRanges) { pRange = &arrRanges[cRanges - 1]; /* Is the current range a direct neighbor of the current BLDE? */ if ((pRange->uAddr + pRange->uSize) == BDLE.Desc.u64BufAdr) { /* Expand the current range by the current BDLE's size. */ pRange->uSize += BDLE.Desc.u32BufSize; /* Adding a new range in this case is not needed anymore. */ fAddRange = false; LogFunc(("Expanding range %zu by %RU32 (%RU32 total now)\n", cRanges - 1, BDLE.Desc.u32BufSize, pRange->uSize)); } } /* Do we need to add a new range? */ if ( fAddRange && cRanges < RT_ELEMENTS(arrRanges)) { pRange = &arrRanges[cRanges]; pRange->uAddr = BDLE.Desc.u64BufAdr; pRange->uSize = BDLE.Desc.u32BufSize; LogFunc(("Adding range %zu - 0x%x (%RU32)\n", cRanges, pRange->uAddr, pRange->uSize)); cRanges++; } } LogFunc(("%zu ranges total\n", cRanges)); /* * Register all ranges as DMA access handlers. */ for (size_t i = 0; i < cRanges; i++) { BDLERANGE *pRange = &arrRanges[i]; PHDADMAACCESSHANDLER pHandler = (PHDADMAACCESSHANDLER)RTMemAllocZ(sizeof(HDADMAACCESSHANDLER)); if (!pHandler) { rc = VERR_NO_MEMORY; break; } RTListAppend(&pStream->State.lstDMAHandlers, &pHandler->Node); pHandler->pStream = pStream; /* Save a back reference to the owner. */ char szDesc[32]; RTStrPrintf(szDesc, sizeof(szDesc), "HDA[SD%RU8 - RANGE%02zu]", pStream->u8SD, i); int rc2 = PGMR3HandlerPhysicalTypeRegister(PDMDevHlpGetVM(pStream->pHDAState->pDevInsR3), PGMPHYSHANDLERKIND_WRITE, hdaDMAAccessHandler, NULL, NULL, NULL, NULL, NULL, NULL, szDesc, &pHandler->hAccessHandlerType); AssertRCBreak(rc2); pHandler->BDLEAddr = pRange->uAddr; pHandler->BDLESize = pRange->uSize; /* Get first and last pages of the BDLE range. */ RTGCPHYS pgFirst = pRange->uAddr & ~PAGE_OFFSET_MASK; RTGCPHYS pgLast = RT_ALIGN(pgFirst + pRange->uSize, PAGE_SIZE); /* Calculate the region size (in pages). */ RTGCPHYS regionSize = RT_ALIGN(pgLast - pgFirst, PAGE_SIZE); pHandler->GCPhysFirst = pgFirst; pHandler->GCPhysLast = pHandler->GCPhysFirst + (regionSize - 1); LogFunc(("\tRegistering region '%s': 0x%x - 0x%x (region size: %zu)\n", szDesc, pHandler->GCPhysFirst, pHandler->GCPhysLast, regionSize)); LogFunc(("\tBDLE @ 0x%x - 0x%x (%RU32)\n", pHandler->BDLEAddr, pHandler->BDLEAddr + pHandler->BDLESize, pHandler->BDLESize)); rc2 = PGMHandlerPhysicalRegister(PDMDevHlpGetVM(pStream->pHDAState->pDevInsR3), pHandler->GCPhysFirst, pHandler->GCPhysLast, pHandler->hAccessHandlerType, pHandler, NIL_RTR0PTR, NIL_RTRCPTR, szDesc); AssertRCBreak(rc2); pHandler->fRegistered = true; } LogFunc(("Registration ended with rc=%Rrc\n", rc)); return RT_SUCCESS(rc); } /** * Unregisters access handlers of a stream's BDLEs. * * @param pStream HDA stream to unregister BDLE access handlers for. */ void hdaR3StreamUnregisterDMAHandlers(PHDASTREAM pStream) { LogFunc(("\n")); PHDADMAACCESSHANDLER pHandler, pHandlerNext; RTListForEachSafe(&pStream->State.lstDMAHandlers, pHandler, pHandlerNext, HDADMAACCESSHANDLER, Node) { if (!pHandler->fRegistered) /* Handler not registered? Skip. */ continue; LogFunc(("Unregistering 0x%x - 0x%x (%zu)\n", pHandler->GCPhysFirst, pHandler->GCPhysLast, pHandler->GCPhysLast - pHandler->GCPhysFirst)); int rc2 = PGMHandlerPhysicalDeregister(PDMDevHlpGetVM(pStream->pHDAState->pDevInsR3), pHandler->GCPhysFirst); AssertRC(rc2); RTListNodeRemove(&pHandler->Node); RTMemFree(pHandler); pHandler = NULL; } Assert(RTListIsEmpty(&pStream->State.lstDMAHandlers)); } # endif /* HDA_USE_DMA_ACCESS_HANDLER */ # ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO /** * Asynchronous I/O thread for a HDA stream. * This will do the heavy lifting work for us as soon as it's getting notified by another thread. * * @returns IPRT status code. * @param hThreadSelf Thread handle. * @param pvUser User argument. Must be of type PHDASTREAMTHREADCTX. */ DECLCALLBACK(int) hdaR3StreamAsyncIOThread(RTTHREAD hThreadSelf, void *pvUser) { PHDASTREAMTHREADCTX pCtx = (PHDASTREAMTHREADCTX)pvUser; AssertPtr(pCtx); PHDASTREAM pStream = pCtx->pStream; AssertPtr(pStream); PHDASTREAMSTATEAIO pAIO = &pCtx->pStream->State.AIO; ASMAtomicXchgBool(&pAIO->fStarted, true); RTThreadUserSignal(hThreadSelf); LogFunc(("[SD%RU8]: Started\n", pStream->u8SD)); for (;;) { int rc2 = RTSemEventWait(pAIO->Event, RT_INDEFINITE_WAIT); if (RT_FAILURE(rc2)) break; if (ASMAtomicReadBool(&pAIO->fShutdown)) break; rc2 = RTCritSectEnter(&pAIO->CritSect); if (RT_SUCCESS(rc2)) { if (!pAIO->fEnabled) { RTCritSectLeave(&pAIO->CritSect); continue; } hdaR3StreamUpdate(pStream, false /* fInTimer */); int rc3 = RTCritSectLeave(&pAIO->CritSect); AssertRC(rc3); } AssertRC(rc2); } LogFunc(("[SD%RU8]: Ended\n", pStream->u8SD)); ASMAtomicXchgBool(&pAIO->fStarted, false); return VINF_SUCCESS; } /** * Creates the async I/O thread for a specific HDA audio stream. * * @returns IPRT status code. * @param pStream HDA audio stream to create the async I/O thread for. */ int hdaR3StreamAsyncIOCreate(PHDASTREAM pStream) { PHDASTREAMSTATEAIO pAIO = &pStream->State.AIO; int rc; if (!ASMAtomicReadBool(&pAIO->fStarted)) { pAIO->fShutdown = false; pAIO->fEnabled = true; /* Enabled by default. */ rc = RTSemEventCreate(&pAIO->Event); if (RT_SUCCESS(rc)) { rc = RTCritSectInit(&pAIO->CritSect); if (RT_SUCCESS(rc)) { HDASTREAMTHREADCTX Ctx = { pStream->pHDAState, pStream }; char szThreadName[64]; RTStrPrintf2(szThreadName, sizeof(szThreadName), "hdaAIO%RU8", pStream->u8SD); rc = RTThreadCreate(&pAIO->Thread, hdaR3StreamAsyncIOThread, &Ctx, 0, RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, szThreadName); if (RT_SUCCESS(rc)) rc = RTThreadUserWait(pAIO->Thread, 10 * 1000 /* 10s timeout */); } } } else rc = VINF_SUCCESS; LogFunc(("[SD%RU8]: Returning %Rrc\n", pStream->u8SD, rc)); return rc; } /** * Destroys the async I/O thread of a specific HDA audio stream. * * @returns IPRT status code. * @param pStream HDA audio stream to destroy the async I/O thread for. */ int hdaR3StreamAsyncIODestroy(PHDASTREAM pStream) { PHDASTREAMSTATEAIO pAIO = &pStream->State.AIO; if (!ASMAtomicReadBool(&pAIO->fStarted)) return VINF_SUCCESS; ASMAtomicWriteBool(&pAIO->fShutdown, true); int rc = hdaR3StreamAsyncIONotify(pStream); AssertRC(rc); int rcThread; rc = RTThreadWait(pAIO->Thread, 30 * 1000 /* 30s timeout */, &rcThread); LogFunc(("Async I/O thread ended with %Rrc (%Rrc)\n", rc, rcThread)); if (RT_SUCCESS(rc)) { rc = RTCritSectDelete(&pAIO->CritSect); AssertRC(rc); rc = RTSemEventDestroy(pAIO->Event); AssertRC(rc); pAIO->fStarted = false; pAIO->fShutdown = false; pAIO->fEnabled = false; } LogFunc(("[SD%RU8]: Returning %Rrc\n", pStream->u8SD, rc)); return rc; } /** * Lets the stream's async I/O thread know that there is some data to process. * * @returns IPRT status code. * @param pStream HDA stream to notify async I/O thread for. */ int hdaR3StreamAsyncIONotify(PHDASTREAM pStream) { return RTSemEventSignal(pStream->State.AIO.Event); } /** * Locks the async I/O thread of a specific HDA audio stream. * * @param pStream HDA stream to lock async I/O thread for. */ void hdaR3StreamAsyncIOLock(PHDASTREAM pStream) { PHDASTREAMSTATEAIO pAIO = &pStream->State.AIO; if (!ASMAtomicReadBool(&pAIO->fStarted)) return; int rc2 = RTCritSectEnter(&pAIO->CritSect); AssertRC(rc2); } /** * Unlocks the async I/O thread of a specific HDA audio stream. * * @param pStream HDA stream to unlock async I/O thread for. */ void hdaR3StreamAsyncIOUnlock(PHDASTREAM pStream) { PHDASTREAMSTATEAIO pAIO = &pStream->State.AIO; if (!ASMAtomicReadBool(&pAIO->fStarted)) return; int rc2 = RTCritSectLeave(&pAIO->CritSect); AssertRC(rc2); } /** * Enables (resumes) or disables (pauses) the async I/O thread. * * @param pStream HDA stream to enable/disable async I/O thread for. * @param fEnable Whether to enable or disable the I/O thread. * * @remarks Does not do locking. */ void hdaR3StreamAsyncIOEnable(PHDASTREAM pStream, bool fEnable) { PHDASTREAMSTATEAIO pAIO = &pStream->State.AIO; ASMAtomicXchgBool(&pAIO->fEnabled, fEnable); } # endif /* VBOX_WITH_AUDIO_HDA_ASYNC_IO */ #endif /* IN_RING3 */