VirtualBox

source: vbox/trunk/src/VBox/Devices/Audio/HDAStream.cpp@ 87760

Last change on this file since 87760 was 87758, checked in by vboxsync, 4 years ago

Audio/HDA: Lots more code in the hope to resolve issue ticketoem2ref:36, namely:

  • Decoupled async I/O timing from guest driver-specific DMA timing to further reduce EMT workload.
  • Added data transfer heuristics (based on set-up DMA buffers) to detect Windows 10 guests (enabled by default).
  • Also expose and support 16kHz + 22,5kHz streams (16-bit signed).

Only tested on Win10 20H2 and various Ubuntu guests so far.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 84.5 KB
Line 
1/* $Id: HDAStream.cpp 87758 2021-02-15 12:14:09Z vboxsync $ */
2/** @file
3 * HDAStream.cpp - Stream functions for HD Audio.
4 */
5
6/*
7 * Copyright (C) 2017-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DEV_HDA
23#include <VBox/log.h>
24
25#include <iprt/mem.h>
26#include <iprt/semaphore.h>
27
28#include <VBox/AssertGuest.h>
29#include <VBox/vmm/pdmdev.h>
30#include <VBox/vmm/pdmaudioifs.h>
31
32#include "DrvAudio.h"
33
34#include "DevHDA.h"
35#include "HDAStream.h"
36
37#ifdef IN_RING3 /* whole file */
38
39
40/*********************************************************************************************************************************
41* Internal Functions *
42*********************************************************************************************************************************/
43static void hdaR3StreamSetPositionAbs(PHDASTREAM pStreamShared, PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t uLPIB);
44
45static int hdaR3StreamAsyncIODestroy(PHDASTREAMR3 pStreamR3);
46static int hdaR3StreamAsyncIONotify(PHDASTREAMR3 pStreamR3);
47
48
49
50/**
51 * Creates an HDA stream.
52 *
53 * @returns IPRT status code.
54 * @param pStreamShared The HDA stream to construct - shared bits.
55 * @param pStreamR3 The HDA stream to construct - ring-3 bits.
56 * @param pThis The shared HDA device instance.
57 * @param pThisCC The ring-3 HDA device instance.
58 * @param uSD Stream descriptor number to assign.
59 */
60int hdaR3StreamConstruct(PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, PHDASTATE pThis, PHDASTATER3 pThisCC, uint8_t uSD)
61{
62 int rc;
63
64 pStreamR3->u8SD = uSD;
65 pStreamShared->u8SD = uSD;
66 pStreamR3->pMixSink = NULL;
67 pStreamR3->pHDAStateShared = pThis;
68 pStreamR3->pHDAStateR3 = pThisCC;
69 Assert(pStreamShared->hTimer != NIL_TMTIMERHANDLE); /* hdaR3Construct initalized this one already. */
70
71 pStreamShared->State.fInReset = false;
72 pStreamShared->State.fRunning = false;
73#ifdef HDA_USE_DMA_ACCESS_HANDLER
74 RTListInit(&pStreamR3->State.lstDMAHandlers);
75#endif
76
77# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
78 rc = RTCritSectInit(&pStreamR3->CritSect);
79 AssertRCReturn(rc, rc);
80# endif
81
82 rc = hdaR3StreamPeriodCreate(&pStreamShared->State.Period);
83 AssertRCReturn(rc, rc);
84
85#ifdef DEBUG
86 rc = RTCritSectInit(&pStreamR3->Dbg.CritSect);
87 AssertRCReturn(rc, rc);
88#endif
89
90 const bool fIsInput = hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN;
91
92 if (fIsInput)
93 {
94 pStreamShared->State.Cfg.u.enmSrc = PDMAUDIORECSRC_UNKNOWN;
95 pStreamShared->State.Cfg.enmDir = PDMAUDIODIR_IN;
96 }
97 else
98 {
99 pStreamShared->State.Cfg.u.enmDst = PDMAUDIOPLAYBACKDST_UNKNOWN;
100 pStreamShared->State.Cfg.enmDir = PDMAUDIODIR_OUT;
101 }
102
103 pStreamR3->Dbg.Runtime.fEnabled = pThisCC->Dbg.fEnabled;
104
105 if (pStreamR3->Dbg.Runtime.fEnabled)
106 {
107 char szFile[64];
108 char szPath[RTPATH_MAX];
109
110 /* pFileStream */
111 if (fIsInput)
112 RTStrPrintf(szFile, sizeof(szFile), "hdaStreamWriteSD%RU8", uSD);
113 else
114 RTStrPrintf(szFile, sizeof(szFile), "hdaStreamReadSD%RU8", uSD);
115
116 int rc2 = DrvAudioHlpFileNameGet(szPath, sizeof(szPath), pThisCC->Dbg.pszOutPath, szFile,
117 0 /* uInst */, PDMAUDIOFILETYPE_WAV, PDMAUDIOFILENAME_FLAGS_NONE);
118 AssertRC(rc2);
119
120 rc2 = DrvAudioHlpFileCreate(PDMAUDIOFILETYPE_WAV, szPath, PDMAUDIOFILE_FLAGS_NONE, &pStreamR3->Dbg.Runtime.pFileStream);
121 AssertRC(rc2);
122
123 /* pFileDMARaw */
124 if (fIsInput)
125 RTStrPrintf(szFile, sizeof(szFile), "hdaDMARawWriteSD%RU8", uSD);
126 else
127 RTStrPrintf(szFile, sizeof(szFile), "hdaDMARawReadSD%RU8", uSD);
128
129 rc2 = DrvAudioHlpFileNameGet(szPath, sizeof(szPath), pThisCC->Dbg.pszOutPath, szFile,
130 0 /* uInst */, PDMAUDIOFILETYPE_WAV, PDMAUDIOFILENAME_FLAGS_NONE);
131 AssertRC(rc2);
132
133 rc2 = DrvAudioHlpFileCreate(PDMAUDIOFILETYPE_WAV, szPath, PDMAUDIOFILE_FLAGS_NONE, &pStreamR3->Dbg.Runtime.pFileDMARaw);
134 AssertRC(rc2);
135
136 /* pFileDMAMapped */
137 if (fIsInput)
138 RTStrPrintf(szFile, sizeof(szFile), "hdaDMAWriteMappedSD%RU8", uSD);
139 else
140 RTStrPrintf(szFile, sizeof(szFile), "hdaDMAReadMappedSD%RU8", uSD);
141
142 rc2 = DrvAudioHlpFileNameGet(szPath, sizeof(szPath), pThisCC->Dbg.pszOutPath, szFile,
143 0 /* uInst */, PDMAUDIOFILETYPE_WAV, PDMAUDIOFILENAME_FLAGS_NONE);
144 AssertRC(rc2);
145
146 rc2 = DrvAudioHlpFileCreate(PDMAUDIOFILETYPE_WAV, szPath, PDMAUDIOFILE_FLAGS_NONE, &pStreamR3->Dbg.Runtime.pFileDMAMapped);
147 AssertRC(rc2);
148
149 /* Delete stale debugging files from a former run. */
150 DrvAudioHlpFileDelete(pStreamR3->Dbg.Runtime.pFileStream);
151 DrvAudioHlpFileDelete(pStreamR3->Dbg.Runtime.pFileDMARaw);
152 DrvAudioHlpFileDelete(pStreamR3->Dbg.Runtime.pFileDMAMapped);
153 }
154
155 return rc;
156}
157
158/**
159 * Destroys an HDA stream.
160 *
161 * @param pStreamShared The HDA stream to destroy - shared bits.
162 * @param pStreamR3 The HDA stream to destroy - ring-3 bits.
163 */
164void hdaR3StreamDestroy(PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3)
165{
166 LogFlowFunc(("[SD%RU8] Destroying ...\n", pStreamShared->u8SD));
167
168 hdaR3StreamMapDestroy(&pStreamR3->State.Mapping);
169
170 int rc2;
171
172#ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
173 rc2 = hdaR3StreamAsyncIODestroy(pStreamR3);
174 AssertRC(rc2);
175#endif
176
177# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
178 if (RTCritSectIsInitialized(&pStreamR3->CritSect))
179 {
180 rc2 = RTCritSectDelete(&pStreamR3->CritSect);
181 AssertRC(rc2);
182 }
183# endif
184
185 if (pStreamR3->State.pCircBuf)
186 {
187 RTCircBufDestroy(pStreamR3->State.pCircBuf);
188 pStreamR3->State.pCircBuf = NULL;
189 }
190
191 hdaR3StreamPeriodDestroy(&pStreamShared->State.Period);
192
193#ifdef DEBUG
194 if (RTCritSectIsInitialized(&pStreamR3->Dbg.CritSect))
195 {
196 rc2 = RTCritSectDelete(&pStreamR3->Dbg.CritSect);
197 AssertRC(rc2);
198 }
199#endif
200
201 if (pStreamR3->Dbg.Runtime.fEnabled)
202 {
203 DrvAudioHlpFileDestroy(pStreamR3->Dbg.Runtime.pFileStream);
204 pStreamR3->Dbg.Runtime.pFileStream = NULL;
205
206 DrvAudioHlpFileDestroy(pStreamR3->Dbg.Runtime.pFileDMARaw);
207 pStreamR3->Dbg.Runtime.pFileDMARaw = NULL;
208
209 DrvAudioHlpFileDestroy(pStreamR3->Dbg.Runtime.pFileDMAMapped);
210 pStreamR3->Dbg.Runtime.pFileDMAMapped = NULL;
211 }
212
213 LogFlowFuncLeave();
214}
215
216/**
217 * Sets up ((re-)iniitalizes) an HDA stream.
218 *
219 * @returns IPRT status code. VINF_NO_CHANGE if the stream does not need
220 * be set-up again because the stream's (hardware) parameters did
221 * not change.
222 * @param pDevIns The device instance.
223 * @param pThis The shared HDA device state (for HW register
224 * parameters).
225 * @param pStreamShared HDA stream to set up, shared portion.
226 * @param pStreamR3 HDA stream to set up, ring-3 portion.
227 * @param uSD Stream descriptor number to assign it.
228 */
229int hdaR3StreamSetUp(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, uint8_t uSD)
230{
231 /* This must be valid all times. */
232 AssertReturn(uSD < HDA_MAX_STREAMS, VERR_INVALID_PARAMETER);
233
234 /* These member can only change on data corruption, despite what the code does further down (bird). */
235 AssertReturn(pStreamShared->u8SD == uSD, VERR_WRONG_ORDER);
236 AssertReturn(pStreamR3->u8SD == uSD, VERR_WRONG_ORDER);
237
238 const uint64_t u64BDLBase = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, uSD),
239 HDA_STREAM_REG(pThis, BDPU, uSD));
240 const uint16_t u16LVI = HDA_STREAM_REG(pThis, LVI, uSD);
241 const uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, uSD);
242 const uint8_t u8FIFOS = HDA_STREAM_REG(pThis, FIFOS, uSD) + 1;
243 uint8_t u8FIFOW = hdaSDFIFOWToBytes(HDA_STREAM_REG(pThis, FIFOW, uSD));
244 const uint16_t u16FMT = HDA_STREAM_REG(pThis, FMT, uSD);
245
246 /* Is the bare minimum set of registers configured for the stream?
247 * If not, bail out early, as there's nothing to do here for us (yet). */
248 if ( !u64BDLBase
249 || !u16LVI
250 || !u32CBL
251 || !u8FIFOS
252 || !u8FIFOW
253 || !u16FMT)
254 {
255 LogFunc(("[SD%RU8] Registers not set up yet, skipping (re-)initialization\n", uSD));
256 return VINF_SUCCESS;
257 }
258
259 PDMAUDIOPCMPROPS Props;
260 int rc = hdaR3SDFMTToPCMProps(u16FMT, &Props);
261 if (RT_FAILURE(rc))
262 {
263 LogRel(("HDA: Warning: Format 0x%x for stream #%RU8 not supported\n", HDA_STREAM_REG(pThis, FMT, uSD), uSD));
264 return rc;
265 }
266
267 /* Reset (any former) stream map. */
268 hdaR3StreamMapReset(&pStreamR3->State.Mapping);
269
270 /*
271 * Initialize the stream mapping in any case, regardless if
272 * we support surround audio or not. This is needed to handle
273 * the supported channels within a single audio stream, e.g. mono/stereo.
274 *
275 * In other words, the stream mapping *always* knows the real
276 * number of channels in a single audio stream.
277 */
278 rc = hdaR3StreamMapInit(&pStreamR3->State.Mapping, &Props);
279 AssertRCReturn(rc, rc);
280
281 ASSERT_GUEST_LOGREL_MSG_RETURN( pStreamR3->State.Mapping.cbFrameSize > 0
282 && u32CBL % pStreamR3->State.Mapping.cbFrameSize == 0,
283 ("CBL for stream #%RU8 does not align to frame size (u32CBL=%u cbFrameSize=%u)\n",
284 uSD, u32CBL, pStreamR3->State.Mapping.cbFrameSize),
285 VERR_INVALID_PARAMETER);
286
287#ifndef VBOX_WITH_AUDIO_HDA_51_SURROUND
288 if (Props.cChannels > 2)
289 {
290 /*
291 * When not running with surround support enabled, override the audio channel count
292 * with stereo (2) channels so that we at least can properly work with those.
293 *
294 * Note: This also involves dealing with surround setups the guest might has set up for us.
295 */
296 LogRel2(("HDA: More than stereo (2) channels are not supported (%RU8 requested), "
297 "falling back to stereo channels for stream #%RU8\n", Props.cChannels, uSD));
298 Props.cChannels = 2;
299 Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(Props.cbSample, Props.cChannels);
300 }
301#endif
302
303 /* Make sure the guest behaves regarding the stream's FIFO. */
304 ASSERT_GUEST_LOGREL_MSG_STMT(u8FIFOW <= u8FIFOS,
305 ("Guest tried setting a bigger FIFOW (%RU8) than FIFOS (%RU8), limiting\n", u8FIFOW, u8FIFOS),
306 u8FIFOW = u8FIFOS /* ASSUMES that u8FIFOS has been validated. */);
307
308 pStreamShared->u8SD = uSD;
309
310 /* Update all register copies so that we later know that something has changed. */
311 pStreamShared->u64BDLBase = u64BDLBase;
312 pStreamShared->u16LVI = u16LVI;
313 pStreamShared->u32CBL = u32CBL;
314 pStreamShared->u8FIFOS = u8FIFOS;
315 pStreamShared->u8FIFOW = u8FIFOW;
316 pStreamShared->u16FMT = u16FMT;
317
318 PPDMAUDIOSTREAMCFG pCfg = &pStreamShared->State.Cfg;
319 pCfg->Props = Props;
320
321 /* Set the stream's direction. */
322 pCfg->enmDir = hdaGetDirFromSD(uSD);
323
324 /* The the stream's name, based on the direction. */
325 switch (pCfg->enmDir)
326 {
327 case PDMAUDIODIR_IN:
328# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
329# error "Implement me!"
330# else
331 pCfg->u.enmSrc = PDMAUDIORECSRC_LINE;
332 pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED;
333 RTStrCopy(pCfg->szName, sizeof(pCfg->szName), "Line In");
334# endif
335 break;
336
337 case PDMAUDIODIR_OUT:
338 /* Destination(s) will be set in hdaAddStreamOut(),
339 * based on the channels / stream layout. */
340 break;
341
342 default:
343 AssertFailedReturn(VERR_NOT_SUPPORTED);
344 break;
345 }
346
347 /* Assign the global device rate to the stream. */
348 pStreamShared->State.uTimerIoHz = pThis->uTimerHz;
349
350 /* Set scheduling hint (if available). */
351 if (pStreamShared->State.uTimerIoHz)
352 pCfg->Device.cMsSchedulingHint = RT_MS_1SEC / pStreamShared->State.uTimerIoHz;
353
354 LogRel2(("HDA: Stream #%RU8 DMA @ 0x%x (%RU32 bytes = %RU64ms total)\n",
355 uSD, pStreamShared->u64BDLBase, pStreamShared->u32CBL,
356 DrvAudioHlpBytesToMilli(pStreamShared->u32CBL, &pStreamShared->State.Cfg.Props)));
357
358 /* Make sure that the chosen Hz rate dividable by the stream's rate. */
359 if (pStreamShared->State.Cfg.Props.uHz % pStreamShared->State.uTimerIoHz != 0)
360 LogRel(("HDA: Stream #%RU8 timer Hz rate (%RU32) does not fit to stream #%RU8 timing (%RU32)\n",
361 uSD, pStreamShared->State.uTimerIoHz, uSD, pStreamShared->State.Cfg.Props.uHz));
362
363 /* Figure out how many transfer fragments we're going to use for this stream. */
364 uint8_t cTransferFragments = pStreamShared->u16LVI + 1;
365 if (cTransferFragments <= 1)
366 LogRel(("HDA: Warning: Stream #%RU8 transfer fragments (%RU8) invalid -- buggy guest audio driver!\n",
367 uSD, pStreamShared->u16LVI));
368
369 /*
370 * Handle the stream's position adjustment.
371 */
372 uint32_t cfPosAdjust = 0;
373
374 LogFunc(("[SD%RU8] fPosAdjustEnabled=%RTbool, cPosAdjustFrames=%RU16\n",
375 uSD, pThis->fPosAdjustEnabled, pThis->cPosAdjustFrames));
376
377 if (pThis->fPosAdjustEnabled) /* Is the position adjustment enabled at all? */
378 {
379 HDABDLE BDLE;
380 RT_ZERO(BDLE);
381
382 int rc2 = hdaR3BDLEFetch(pDevIns, &BDLE, pStreamShared->u64BDLBase, 0 /* Entry */);
383 AssertRC(rc2);
384
385 /* Note: Do *not* check if this BDLE aligns to the stream's frame size.
386 * It can happen that this isn't the case on some guests, e.g.
387 * on Windows with a 5.1 speaker setup.
388 *
389 * The only thing which counts is that the stream's CBL value
390 * properly aligns to the stream's frame size.
391 */
392
393 /* If no custom set position adjustment is set, apply some
394 * simple heuristics to detect the appropriate position adjustment. */
395 if ( !pThis->cPosAdjustFrames
396 /* Position adjustmenet buffer *must* have the IOC bit set! */
397 && hdaR3BDLENeedsInterrupt(&BDLE))
398 {
399 /** @todo Implement / use a (dynamic) table once this gets more complicated. */
400#ifdef VBOX_WITH_INTEL_HDA
401 /* Intel ICH / PCH: 1 frame. */
402 if (BDLE.Desc.u32BufSize == (uint32_t)(1 * pStreamR3->State.Mapping.cbFrameSize))
403 {
404 cfPosAdjust = 1;
405 }
406 /* Intel Baytrail / Braswell: 32 frames. */
407 else if (BDLE.Desc.u32BufSize == (uint32_t)(32 * pStreamR3->State.Mapping.cbFrameSize))
408 {
409 cfPosAdjust = 32;
410 }
411#endif
412 }
413 else /* Go with the set default. */
414 cfPosAdjust = pThis->cPosAdjustFrames;
415
416 if (cfPosAdjust)
417 {
418 /* Also adjust the number of fragments, as the position adjustment buffer
419 * does not count as an own fragment as such.
420 *
421 * This e.g. can happen on (newer) Ubuntu guests which use
422 * 4 (IOC) + 4408 (IOC) + 4408 (IOC) + 4408 (IOC) + 4404 (= 17632) bytes,
423 * where the first buffer (4) is used as position adjustment.
424 *
425 * Only skip a fragment if the whole buffer fragment is used for
426 * position adjustment.
427 */
428 if ((cfPosAdjust * pStreamR3->State.Mapping.cbFrameSize) == BDLE.Desc.u32BufSize)
429 cTransferFragments--;
430
431 /* Initialize position adjustment counter. */
432 pStreamShared->State.cfPosAdjustDefault = cfPosAdjust;
433 pStreamShared->State.cfPosAdjustLeft = pStreamShared->State.cfPosAdjustDefault;
434
435 LogRel2(("HDA: Position adjustment for stream #%RU8 active (%RU32 frames)\n",
436 uSD, pStreamShared->State.cfPosAdjustDefault));
437 }
438 }
439
440 Log3Func(("[SD%RU8] cfPosAdjust=%RU32, cFragments=%RU8\n", uSD, cfPosAdjust, cTransferFragments));
441
442 /*
443 * Set up data transfer stuff.
444 */
445
446 /* Prevent division by zero. */
447 ASSERT_GUEST_LOGREL_MSG_STMT(pStreamShared->State.uTimerIoHz,
448 ("Timer Hz rate for stream #%RU8 is invalid\n", uSD),
449 pStreamShared->State.uTimerIoHz = HDA_TIMER_HZ_DEFAULT);
450 /*
451 * Determine the transfer Hz the guest OS expects data transfer at.
452 *
453 * Guests also expect a very extact DMA timing for reading / writing audio data, so we run on a constant
454 * (virtual) rate which we expose to the guest.
455 *
456 * Data rate examples:
457 * * Windows 10 @ 44,1kHz / 16-bit stereo
458 * * Default mode: 448 audio frames -> ~10.15ms) = 1792 byte every ~10ms.
459 * * Fast mode: 128 audio frames -> ~ 2.90ms) = 512 byte every ~3ms.
460 */
461
462 /* The transfer Hz depend on the heuristics above, that is,
463 how often the guest expects to see a new data transfer. */
464 unsigned uTransferHz;
465
466 if (pThis->fTransferHeuristicsEnabled) /* Are data transfer heuristics enabled? */
467 {
468
469 /* Use the whole CBL as a starting point.
470 * This basically ASSUMES that we have one consequtive buffer with only one interrupt at the end. */
471 uint32_t cbTransferHeuristicsMin = pStreamShared->u32CBL;
472
473 /* Don't take frames (as bytes) into account which are part of the position adjustment. */
474 uint32_t cbTransferHeuristicsPosAdjust = pStreamShared->State.cfPosAdjustDefault * pStreamR3->State.Mapping.cbFrameSize;
475
476 HDABDLEDESC bd;
477 uint32_t cbTransferHeuristicsCur = 0;
478 for (uint8_t i = 0; i < cTransferFragments; i++)
479 {
480 PDMDevHlpPhysRead(pDevIns, u64BDLBase + i * sizeof(HDABDLEDESC), &bd, sizeof(bd));
481
482 /* Position adjustment (still) needed / active? */
483 if (cbTransferHeuristicsPosAdjust)
484 {
485 const uint32_t cbTransferHeuristicsPosAdjustMin = RT_MIN(cbTransferHeuristicsPosAdjust, bd.u32BufSize);
486
487 bd.u32BufSize -= cbTransferHeuristicsPosAdjustMin;
488 cbTransferHeuristicsPosAdjust -= cbTransferHeuristicsPosAdjustMin;
489 }
490
491 /* Anything left to process for the current BDLE after doing the position adjustment? */
492 if (bd.u32BufSize == 0)
493 continue;
494
495 /* Is an interrupt expected for the current BDLE? */
496 if (bd.fFlags & HDA_BDLE_F_IOC)
497 {
498 cbTransferHeuristicsCur += bd.u32BufSize;
499 cbTransferHeuristicsMin = RT_MIN(cbTransferHeuristicsCur, cbTransferHeuristicsMin);
500 cbTransferHeuristicsCur = 0;
501 }
502 else /* No interrupt expected -> add it to the former BDLE size. */
503 cbTransferHeuristicsCur += bd.u32BufSize;
504 }
505
506 /* !!! HACK ALERT BEGIN !!! */
507
508 /* Windows 10's audio driver expects a transfer all ~10.1ms (~1764 bytes), although
509 * it sets up 1792 bytes per BDLE.
510 *
511 * I currently don't have any clue why it does this that way, so try to simply detect this
512 * and alter the value so that we get a somewhat proper audio output. */
513 if (cbTransferHeuristicsMin == 1792)
514 {
515 LogRel2(("HDA: Guest seems to be Windows 10 -- setting a fixed transfer minimum size\n"));
516 cbTransferHeuristicsMin = 1764;
517 }
518
519 /* !!! HACK ALERT END !!! */
520
521 uint32_t msTransferHeuristicsMin = DrvAudioHlpBytesToMilli(cbTransferHeuristicsMin, &pCfg->Props);
522
523 /* Prevent division by zero. */
524 ASSERT_GUEST_LOGREL_MSG_STMT(msTransferHeuristicsMin,
525 ("Transfer heuristics for stream #%RU8 buggy\n", uSD),
526 msTransferHeuristicsMin = 10 /* ms, equals 100 Hz */);
527
528 uTransferHz = RT_MS_1SEC / msTransferHeuristicsMin;
529
530 LogRel2(("HDA: Stream #%RU8 needs a data transfer at least every %RU64ms (%RU32 bytes) -- transfers run at %u Hz\n",
531 uSD, msTransferHeuristicsMin, cbTransferHeuristicsMin, uTransferHz));
532 }
533 else
534 {
535 /* Use I/O timing rate instead. */
536 uTransferHz = pStreamShared->State.uTimerIoHz;
537 }
538
539 if (uTransferHz > 400) /* Anything above 400 Hz looks fishy -- tell the user. */
540 LogRel(("HDA: Calculated transfer Hz rate for stream #%RU8 looks incorrect (%u), please re-run with audio debug mode and report a bug\n",
541 uSD, uTransferHz));
542
543 pStreamShared->State.cbTransferSize =
544 (pStreamShared->State.Cfg.Props.uHz * pStreamR3->State.Mapping.cbFrameSize) / uTransferHz;
545 ASSERT_GUEST_LOGREL_MSG_STMT(pStreamShared->State.cbTransferSize,
546 ("Transfer size for stream #%RU8 is invalid\n", uSD), rc = VERR_INVALID_PARAMETER);
547 if (RT_SUCCESS(rc))
548 {
549 /*
550 * Calculate the bytes we need to transfer to / from the stream's DMA per iteration.
551 * This is bound to the device's Hz rate and thus to the (virtual) timing the device expects.
552 *
553 * As we don't do chunked transfers the moment, the chunk size equals the overall transfer size.
554 */
555 pStreamShared->State.cbTransferChunk = pStreamShared->State.cbTransferSize;
556 ASSERT_GUEST_LOGREL_MSG_STMT(pStreamShared->State.cbTransferChunk,
557 ("Transfer chunk for stream #%RU8 is invalid\n", uSD),
558 rc = VERR_INVALID_PARAMETER);
559 if (RT_SUCCESS(rc))
560 {
561 /* Make sure that the transfer chunk does not exceed the overall transfer size. */
562 AssertStmt(pStreamShared->State.cbTransferChunk <= pStreamShared->State.cbTransferSize,
563 pStreamShared->State.cbTransferChunk = pStreamShared->State.cbTransferSize);
564
565 const uint64_t uTimerFreq = PDMDevHlpTimerGetFreq(pDevIns, pStreamShared->hTimer);
566
567 const double cTicksPerHz = uTimerFreq / pStreamShared->State.uTimerIoHz;
568 double cTicksPerByte = cTicksPerHz / (double)pStreamShared->State.cbTransferChunk;
569
570 if (pStreamShared->State.uTimerIoHz < uTransferHz)
571 cTicksPerByte /= uTransferHz / pStreamShared->State.uTimerIoHz;
572 else
573 cTicksPerByte *= pStreamShared->State.uTimerIoHz / uTransferHz;
574
575 Assert(cTicksPerByte);
576
577#define HDA_ROUND_NEAREST(a_X) ((a_X) >= 0 ? (uint32_t)((a_X) + 0.5) : (uint32_t)((a_X) - 0.5)) /** @todo r=andy Do we have rounding in IPRT? */
578
579 /* Calculate the timer ticks per byte for this stream. */
580 pStreamShared->State.cTicksPerByte = HDA_ROUND_NEAREST(cTicksPerByte);
581 Assert(pStreamShared->State.cTicksPerByte);
582
583 const double cTransferTicks = pStreamShared->State.cbTransferChunk * cTicksPerByte;
584
585 /* Calculate timer ticks per transfer. */
586 pStreamShared->State.cTransferTicks = HDA_ROUND_NEAREST(cTransferTicks);
587 Assert(pStreamShared->State.cTransferTicks);
588
589#undef HDA_ROUND_NEAREST
590
591 LogRel2(("HDA: Stream #%RU8 is using %uHz I/O timer (%RU64 virtual ticks / Hz), stream Hz=%RU32, "
592 "cTicksPerByte=%RU64, cTransferTicks=%RU64 -> cbTransferChunk=%RU32 (%RU64ms), cbTransferSize=%RU32 (%RU64ms)\n",
593 uSD, pStreamShared->State.uTimerIoHz, (uint64_t)cTicksPerHz, pStreamShared->State.Cfg.Props.uHz,
594 pStreamShared->State.cTicksPerByte, pStreamShared->State.cTransferTicks,
595 pStreamShared->State.cbTransferChunk, DrvAudioHlpBytesToMilli(pStreamShared->State.cbTransferChunk, &pCfg->Props),
596 pStreamShared->State.cbTransferSize, DrvAudioHlpBytesToMilli(pStreamShared->State.cbTransferSize, &pCfg->Props)));
597
598 /* Make sure to also update the stream's DMA counter (based on its current LPIB value). */
599 hdaR3StreamSetPositionAbs(pStreamShared, pDevIns, pThis, HDA_STREAM_REG(pThis, LPIB, uSD));
600
601#ifdef LOG_ENABLED
602 hdaR3BDLEDumpAll(pDevIns, pThis, pStreamShared->u64BDLBase, pStreamShared->u16LVI + 1);
603#endif
604 }
605 }
606
607 /*
608 * Set up internal ring buffer.
609 */
610 if (RT_SUCCESS(rc))
611 {
612 /* (Re-)Allocate the stream's internal DMA buffer,
613 * based on the timing *and* PCM properties we just got above. */
614 if (pStreamR3->State.pCircBuf)
615 {
616 RTCircBufDestroy(pStreamR3->State.pCircBuf);
617 pStreamR3->State.pCircBuf = NULL;
618 }
619
620 /*
621 * The default size of our internal ring buffer depends on the transfer timing
622 * we have to reach in order to make the guest driver happy *and* on the I/O timing.
623 *
624 * We always use triple the minimum timing of both timings for safety (triple buffering),
625 * otherwise we risk running into buffer overflows.
626 */
627 const unsigned uTransferHzMin = RT_MIN(uTransferHz, pStreamShared->State.uTimerIoHz);
628
629 uint32_t cbCircBuf;
630 const uint32_t cbCircBufDefault = DrvAudioHlpMilliToBytes((RT_MS_1SEC / uTransferHzMin) * 3, &pCfg->Props);
631
632 LogRel2(("HDA: Stream #%RU8 default ring buffer size is %RU64ms (%RU32 bytes)\n",
633 uSD, DrvAudioHlpBytesToMilli(cbCircBufDefault, &pCfg->Props), cbCircBufDefault));
634
635 uint32_t cbCircBufGlobal = DrvAudioHlpMilliToBytes( hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN
636 ? pThis->cbCircBufInMs : pThis->cbCircBufOutMs, &pCfg->Props);
637 if (cbCircBufGlobal) /* Anything set via CFGM? */
638 {
639
640 ASSERT_GUEST_LOGREL_MSG_STMT(DrvAudioHlpBytesIsAligned(cbCircBufGlobal, &pCfg->Props),
641 ("Ring buffer size for stream #%RU8 is misaligned (%zu), setting to default\n", uSD, cbCircBufGlobal),
642 cbCircBufGlobal = cbCircBufDefault);
643
644 LogRel2(("HDA: Stream #%RU8 is using a custom ring buffer size of %RU64ms (%RU32 bytes)\n",
645 uSD, DrvAudioHlpBytesToMilli(cbCircBufGlobal, &pCfg->Props), cbCircBufGlobal));
646
647 cbCircBuf = cbCircBufGlobal;
648 }
649 else
650 cbCircBuf = cbCircBufDefault;
651
652 ASSERT_GUEST_LOGREL_MSG_STMT(cbCircBuf,
653 ("Ring buffer size for stream #%RU8 is invalid\n", uSD),
654 rc = VERR_INVALID_PARAMETER);
655 if (RT_SUCCESS(rc))
656 rc = RTCircBufCreate(&pStreamR3->State.pCircBuf, cbCircBuf);
657 }
658
659 if (RT_FAILURE(rc))
660 LogRel(("HDA: Initializing stream #%RU8 failed with %Rrc\n", uSD, rc));
661
662 return rc;
663}
664
665/**
666 * Resets an HDA stream.
667 *
668 * @param pThis The shared HDA device state.
669 * @param pThisCC The ring-3 HDA device state.
670 * @param pStreamShared HDA stream to reset (shared).
671 * @param pStreamR3 HDA stream to reset (ring-3).
672 * @param uSD Stream descriptor (SD) number to use for this stream.
673 */
674void hdaR3StreamReset(PHDASTATE pThis, PHDASTATER3 pThisCC, PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, uint8_t uSD)
675{
676 AssertPtr(pThis);
677 AssertPtr(pStreamShared);
678 AssertPtr(pStreamR3);
679 Assert(uSD < HDA_MAX_STREAMS);
680 AssertMsg(!pStreamShared->State.fRunning, ("[SD%RU8] Cannot reset stream while in running state\n", uSD));
681
682 LogFunc(("[SD%RU8] Reset\n", uSD));
683
684 /*
685 * Set reset state.
686 */
687 Assert(ASMAtomicReadBool(&pStreamShared->State.fInReset) == false); /* No nested calls. */
688 ASMAtomicXchgBool(&pStreamShared->State.fInReset, true);
689
690 /*
691 * Second, initialize the registers.
692 */
693 HDA_STREAM_REG(pThis, STS, uSD) = HDA_SDSTS_FIFORDY;
694 /* According to the ICH6 datasheet, 0x40000 is the default value for stream descriptor register 23:20
695 * bits are reserved for stream number 18.2.33, resets SDnCTL except SRST bit. */
696 HDA_STREAM_REG(pThis, CTL, uSD) = 0x40000 | (HDA_STREAM_REG(pThis, CTL, uSD) & HDA_SDCTL_SRST);
697 /* ICH6 defines default values (120 bytes for input and 192 bytes for output descriptors) of FIFO size. 18.2.39. */
698 HDA_STREAM_REG(pThis, FIFOS, uSD) = hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN ? HDA_SDIFIFO_120B : HDA_SDOFIFO_192B;
699 /* See 18.2.38: Always defaults to 0x4 (32 bytes). */
700 HDA_STREAM_REG(pThis, FIFOW, uSD) = HDA_SDFIFOW_32B;
701 HDA_STREAM_REG(pThis, LPIB, uSD) = 0;
702 HDA_STREAM_REG(pThis, CBL, uSD) = 0;
703 HDA_STREAM_REG(pThis, LVI, uSD) = 0;
704 HDA_STREAM_REG(pThis, FMT, uSD) = 0;
705 HDA_STREAM_REG(pThis, BDPU, uSD) = 0;
706 HDA_STREAM_REG(pThis, BDPL, uSD) = 0;
707
708#ifdef HDA_USE_DMA_ACCESS_HANDLER
709 hdaR3StreamUnregisterDMAHandlers(pThis, pStream);
710#endif
711
712 /* Assign the default mixer sink to the stream. */
713 pStreamR3->pMixSink = hdaR3GetDefaultSink(pThisCC, uSD);
714
715 /* Reset position adjustment counter. */
716 pStreamShared->State.cfPosAdjustLeft = pStreamShared->State.cfPosAdjustDefault;
717
718 /* Reset transfer stuff. */
719 pStreamShared->State.cTransferPendingInterrupts = 0;
720 pStreamShared->State.tsTransferLast = 0;
721 pStreamShared->State.tsTransferNext = 0;
722
723 /* Initialize timestamps. */
724 pStreamShared->State.tsLastTransferNs = 0;
725 pStreamShared->State.tsLastReadNs = 0;
726
727 RT_ZERO(pStreamShared->State.BDLE);
728 pStreamShared->State.uCurBDLE = 0;
729
730 if (pStreamR3->State.pCircBuf)
731 RTCircBufReset(pStreamR3->State.pCircBuf);
732
733 /* Reset the stream's period. */
734 hdaR3StreamPeriodReset(&pStreamShared->State.Period);
735
736#ifdef DEBUG
737 pStreamR3->Dbg.cReadsTotal = 0;
738 pStreamR3->Dbg.cbReadTotal = 0;
739 pStreamR3->Dbg.tsLastReadNs = 0;
740 pStreamR3->Dbg.cWritesTotal = 0;
741 pStreamR3->Dbg.cbWrittenTotal = 0;
742 pStreamR3->Dbg.cWritesHz = 0;
743 pStreamR3->Dbg.cbWrittenHz = 0;
744 pStreamR3->Dbg.tsWriteSlotBegin = 0;
745#endif
746
747 /* Report that we're done resetting this stream. */
748 HDA_STREAM_REG(pThis, CTL, uSD) = 0;
749
750 LogFunc(("[SD%RU8] Reset\n", uSD));
751
752 /* Exit reset mode. */
753 ASMAtomicXchgBool(&pStreamShared->State.fInReset, false);
754}
755
756/**
757 * Enables or disables an HDA audio stream.
758 *
759 * @returns IPRT status code.
760 * @param pStreamShared HDA stream to enable or disable - shared bits.
761 * @param pStreamR3 HDA stream to enable or disable - ring-3 bits.
762 * @param fEnable Whether to enable or disble the stream.
763 */
764int hdaR3StreamEnable(PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, bool fEnable)
765{
766 AssertPtr(pStreamR3);
767 AssertPtr(pStreamShared);
768
769 LogFunc(("[SD%RU8] fEnable=%RTbool, pMixSink=%p\n", pStreamShared->u8SD, fEnable, pStreamR3->pMixSink));
770
771 int rc = VINF_SUCCESS;
772
773 AUDMIXSINKCMD enmCmd = fEnable
774 ? AUDMIXSINKCMD_ENABLE : AUDMIXSINKCMD_DISABLE;
775
776 /* First, enable or disable the stream and the stream's sink, if any. */
777 if ( pStreamR3->pMixSink
778 && pStreamR3->pMixSink->pMixSink)
779 rc = AudioMixerSinkCtl(pStreamR3->pMixSink->pMixSink, enmCmd);
780
781 if ( RT_SUCCESS(rc)
782 && fEnable
783 && pStreamR3->Dbg.Runtime.fEnabled)
784 {
785 Assert(DrvAudioHlpPCMPropsAreValid(&pStreamShared->State.Cfg.Props));
786
787 if (fEnable)
788 {
789 if (!DrvAudioHlpFileIsOpen(pStreamR3->Dbg.Runtime.pFileStream))
790 {
791 int rc2 = DrvAudioHlpFileOpen(pStreamR3->Dbg.Runtime.pFileStream, PDMAUDIOFILE_DEFAULT_OPEN_FLAGS,
792 &pStreamShared->State.Cfg.Props);
793 AssertRC(rc2);
794 }
795
796 if (!DrvAudioHlpFileIsOpen(pStreamR3->Dbg.Runtime.pFileDMARaw))
797 {
798 int rc2 = DrvAudioHlpFileOpen(pStreamR3->Dbg.Runtime.pFileDMARaw, PDMAUDIOFILE_DEFAULT_OPEN_FLAGS,
799 &pStreamShared->State.Cfg.Props);
800 AssertRC(rc2);
801 }
802
803 if (!DrvAudioHlpFileIsOpen(pStreamR3->Dbg.Runtime.pFileDMAMapped))
804 {
805 int rc2 = DrvAudioHlpFileOpen(pStreamR3->Dbg.Runtime.pFileDMAMapped, PDMAUDIOFILE_DEFAULT_OPEN_FLAGS,
806 &pStreamShared->State.Cfg.Props);
807 AssertRC(rc2);
808 }
809 }
810 }
811
812 if (RT_SUCCESS(rc))
813 {
814 pStreamShared->State.fRunning = fEnable;
815 }
816
817 LogFunc(("[SD%RU8] rc=%Rrc\n", pStreamShared->u8SD, rc));
818 return rc;
819}
820
821#if 0 /* Not used atm. */
822static uint32_t hdaR3StreamGetPosition(PHDASTATE pThis, PHDASTREAM pStreamShared)
823{
824 return HDA_STREAM_REG(pThis, LPIB, pStreamShared->u8SD);
825}
826#endif
827
828/**
829 * Updates an HDA stream's current read or write buffer position (depending on the stream type) by
830 * setting its associated LPIB register and DMA position buffer (if enabled) to an absolute value.
831 *
832 * @param pStreamShared HDA stream to update read / write position for (shared).
833 * @param pDevIns The device instance.
834 * @param pThis The shared HDA device state.
835 * @param uLPIB Absolute position (in bytes) to set current read / write position to.
836 */
837static void hdaR3StreamSetPositionAbs(PHDASTREAM pStreamShared, PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t uLPIB)
838{
839 AssertPtrReturnVoid(pStreamShared);
840 AssertReturnVoid (uLPIB <= pStreamShared->u32CBL); /* Make sure that we don't go out-of-bounds. */
841
842 Log3Func(("[SD%RU8] LPIB=%RU32 (DMA Position Buffer Enabled: %RTbool)\n", pStreamShared->u8SD, uLPIB, pThis->fDMAPosition));
843
844 /* Update LPIB in any case. */
845 HDA_STREAM_REG(pThis, LPIB, pStreamShared->u8SD) = uLPIB;
846
847 /* Do we need to tell the current DMA position? */
848 if (pThis->fDMAPosition)
849 {
850 int rc2 = PDMDevHlpPCIPhysWrite(pDevIns,
851 pThis->u64DPBase + (pStreamShared->u8SD * 2 * sizeof(uint32_t)),
852 (void *)&uLPIB, sizeof(uint32_t));
853 AssertRC(rc2);
854 }
855}
856
857/**
858 * Updates an HDA stream's current read or write buffer position (depending on the stream type) by
859 * adding a value to its associated LPIB register and DMA position buffer (if enabled).
860 *
861 * @note Handles automatic CBL wrap-around.
862 *
863 * @param pStreamShared HDA stream to update read / write position for (shared).
864 * @param pDevIns The device instance.
865 * @param pThis The shared HDA device state.
866 * @param uToAdd Position (in bytes) to add to the current read / write position.
867 */
868void hdaR3StreamSetPositionAdd(PHDASTREAM pStreamShared, PPDMDEVINS pDevIns, PHDASTATE pThis, uint32_t uToAdd)
869{
870 if (!uToAdd) /* No need to update anything if 0. */
871 return;
872
873 hdaR3StreamSetPositionAbs(pStreamShared, pDevIns, pThis,
874 (HDA_STREAM_REG(pThis, LPIB, pStreamShared->u8SD) + uToAdd) % pStreamShared->u32CBL);
875}
876
877/**
878 * Retrieves the available size of (buffered) audio data (in bytes) of a given HDA stream.
879 *
880 * @returns Available data (in bytes).
881 * @param pStreamR3 HDA stream to retrieve size for (ring-3).
882 */
883static uint32_t hdaR3StreamGetUsed(PHDASTREAMR3 pStreamR3)
884{
885 AssertPtrReturn(pStreamR3, 0);
886
887 if (pStreamR3->State.pCircBuf)
888 return (uint32_t)RTCircBufUsed(pStreamR3->State.pCircBuf);
889 return 0;
890}
891
892/**
893 * Retrieves the free size of audio data (in bytes) of a given HDA stream.
894 *
895 * @returns Free data (in bytes).
896 * @param pStreamR3 HDA stream to retrieve size for (ring-3).
897 */
898static uint32_t hdaR3StreamGetFree(PHDASTREAMR3 pStreamR3)
899{
900 AssertPtrReturn(pStreamR3, 0);
901
902 if (pStreamR3->State.pCircBuf)
903 return (uint32_t)RTCircBufFree(pStreamR3->State.pCircBuf);
904 return 0;
905}
906
907/**
908 * Returns whether a next transfer for a given stream is scheduled or not.
909 *
910 * This takes pending stream interrupts into account as well as the next scheduled
911 * transfer timestamp.
912 *
913 * @returns True if a next transfer is scheduled, false if not.
914 * @param pStreamShared HDA stream to retrieve schedule status for (shared).
915 * @param tsNow The current time.
916 */
917bool hdaR3StreamTransferIsScheduled(PHDASTREAM pStreamShared, uint64_t tsNow)
918{
919 if (pStreamShared)
920 {
921 if (pStreamShared->State.fRunning)
922 {
923 if (pStreamShared->State.cTransferPendingInterrupts)
924 {
925 Log3Func(("[SD%RU8] Scheduled (%RU8 IRQs pending)\n", pStreamShared->u8SD, pStreamShared->State.cTransferPendingInterrupts));
926 return true;
927 }
928
929 if (pStreamShared->State.tsTransferNext > tsNow)
930 {
931 Log3Func(("[SD%RU8] Scheduled in %RU64\n", pStreamShared->u8SD, pStreamShared->State.tsTransferNext - tsNow));
932 return true;
933 }
934 }
935 }
936 return false;
937}
938
939/**
940 * Returns the (virtual) clock timestamp of the next transfer, if any.
941 * Will return 0 if no new transfer is scheduled.
942 *
943 * @returns The (virtual) clock timestamp of the next transfer.
944 * @param pStreamShared HDA stream to retrieve timestamp for (shared).
945 */
946uint64_t hdaR3StreamTransferGetNext(PHDASTREAM pStreamShared)
947{
948 return pStreamShared->State.tsTransferNext;
949}
950
951/**
952 * Writes audio data from a mixer sink into an HDA stream's DMA buffer.
953 *
954 * @returns IPRT status code.
955 * @param pStreamR3 HDA stream to write to (ring-3).
956 * @param pvBuf Data buffer to write.
957 * If NULL, silence will be written.
958 * @param cbBuf Number of bytes of data buffer to write.
959 * @param pcbWritten Number of bytes written. Optional.
960 */
961static int hdaR3StreamWrite(PHDASTREAMR3 pStreamR3, const void *pvBuf, uint32_t cbBuf, uint32_t *pcbWritten)
962{
963 Assert(cbBuf);
964
965 PRTCIRCBUF pCircBuf = pStreamR3->State.pCircBuf;
966 AssertPtr(pCircBuf);
967
968 uint32_t cbWrittenTotal = 0;
969 uint32_t cbLeft = RT_MIN(cbBuf, (uint32_t)RTCircBufFree(pCircBuf));
970
971 while (cbLeft)
972 {
973 void *pvDst;
974 size_t cbDst;
975 RTCircBufAcquireWriteBlock(pCircBuf, cbLeft, &pvDst, &cbDst);
976
977 if (cbDst)
978 {
979 if (pvBuf)
980 memcpy(pvDst, (uint8_t *)pvBuf + cbWrittenTotal, cbDst);
981 else /* Send silence. */
982 {
983 /** @todo Use a sample spec for "silence" based on the PCM parameters.
984 * For now we ASSUME that silence equals NULLing the data. */
985 RT_BZERO(pvDst, cbDst);
986 }
987
988 if (RT_LIKELY(!pStreamR3->Dbg.Runtime.fEnabled))
989 { /* likely */ }
990 else
991 DrvAudioHlpFileWrite(pStreamR3->Dbg.Runtime.pFileStream, pvDst, cbDst, 0 /* fFlags */);
992 }
993
994 RTCircBufReleaseWriteBlock(pCircBuf, cbDst);
995
996 Assert(cbLeft >= (uint32_t)cbDst);
997 cbLeft -= (uint32_t)cbDst;
998 cbWrittenTotal += (uint32_t)cbDst;
999 }
1000
1001 Log3Func(("cbWrittenTotal=%RU32\n", cbWrittenTotal));
1002
1003 if (pcbWritten)
1004 *pcbWritten = cbWrittenTotal;
1005
1006 return VINF_SUCCESS;
1007}
1008
1009
1010/**
1011 * Reads audio data from an HDA stream's DMA buffer and writes into a specified mixer sink.
1012 *
1013 * @returns IPRT status code.
1014 * @param pStreamR3 HDA stream to read audio data from (ring-3).
1015 * @param cbToRead Number of bytes to read.
1016 * @param pcbRead Number of bytes read. Optional.
1017 */
1018static int hdaR3StreamRead(PHDASTREAMR3 pStreamR3, uint32_t cbToRead, uint32_t *pcbRead)
1019{
1020 Assert(cbToRead);
1021
1022 PHDAMIXERSINK pSink = pStreamR3->pMixSink;
1023 AssertMsgReturnStmt(pSink, ("[SD%RU8] Can't read from a stream with no sink attached\n", pStreamR3->u8SD),
1024 if (pcbRead) *pcbRead = 0,
1025 VINF_SUCCESS);
1026
1027 PRTCIRCBUF pCircBuf = pStreamR3->State.pCircBuf;
1028 AssertPtr(pCircBuf);
1029
1030 int rc = VINF_SUCCESS;
1031
1032 uint32_t cbReadTotal = 0;
1033 uint32_t cbLeft = RT_MIN(cbToRead, (uint32_t)RTCircBufUsed(pCircBuf));
1034
1035 while (cbLeft)
1036 {
1037 void *pvSrc;
1038 size_t cbSrc;
1039
1040 uint32_t cbWritten = 0;
1041
1042 RTCircBufAcquireReadBlock(pCircBuf, cbLeft, &pvSrc, &cbSrc);
1043
1044 if (cbSrc)
1045 {
1046 if (pStreamR3->Dbg.Runtime.fEnabled)
1047 DrvAudioHlpFileWrite(pStreamR3->Dbg.Runtime.pFileStream, pvSrc, cbSrc, 0 /* fFlags */);
1048
1049 rc = AudioMixerSinkWrite(pSink->pMixSink, AUDMIXOP_COPY, pvSrc, (uint32_t)cbSrc, &cbWritten);
1050 AssertRC(rc);
1051
1052 Assert(cbSrc >= cbWritten);
1053 Log2Func(("[SD%RU8] %RU32/%zu bytes read\n", pStreamR3->u8SD, cbWritten, cbSrc));
1054 }
1055
1056 RTCircBufReleaseReadBlock(pCircBuf, cbWritten);
1057
1058 if ( !cbWritten /* Nothing written? */
1059 || RT_FAILURE(rc))
1060 break;
1061
1062 Assert(cbLeft >= cbWritten);
1063 cbLeft -= cbWritten;
1064
1065 cbReadTotal += cbWritten;
1066 }
1067
1068 if (pcbRead)
1069 *pcbRead = cbReadTotal;
1070
1071 return rc;
1072}
1073
1074/**
1075 * Transfers data of an HDA stream according to its usage (input / output).
1076 *
1077 * For an SDO (output) stream this means reading DMA data from the device to
1078 * the HDA stream's internal FIFO buffer.
1079 *
1080 * For an SDI (input) stream this is reading audio data from the HDA stream's
1081 * internal FIFO buffer and writing it as DMA data to the device.
1082 *
1083 * @returns IPRT status code.
1084 * @param pDevIns The device instance.
1085 * @param pThis The shared HDA device state.
1086 * @param pThisCC The ring-3 HDA device state.
1087 * @param pStreamShared HDA stream to update (shared).
1088 * @param pStreamR3 HDA stream to update (ring-3).
1089 * @param cbToProcessMax How much data (in bytes) to process as maximum.
1090 * @param fInTimer Set if we're in the timer callout.
1091 */
1092static int hdaR3StreamTransfer(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTATER3 pThisCC, PHDASTREAM pStreamShared,
1093 PHDASTREAMR3 pStreamR3, uint32_t cbToProcessMax, bool fInTimer)
1094{
1095 LogFlowFuncEnter();
1096
1097 uint8_t const uSD = pStreamShared->u8SD;
1098 hdaR3StreamLock(pStreamR3);
1099
1100 PHDASTREAMPERIOD pPeriod = &pStreamShared->State.Period;
1101 hdaR3StreamPeriodLock(pPeriod);
1102
1103 bool fProceed = true;
1104
1105 /* Stream not running (anymore)? */
1106 if (!pStreamShared->State.fRunning)
1107 {
1108 Log3Func(("[SD%RU8] Not running, skipping transfer\n", uSD));
1109 fProceed = false;
1110 }
1111
1112 else if (HDA_STREAM_REG(pThis, STS, uSD) & HDA_SDSTS_BCIS)
1113 {
1114 Log3Func(("[SD%RU8] BCIS bit set, skipping transfer\n", uSD));
1115#ifdef HDA_STRICT
1116 /* Timing emulation bug or guest is misbehaving -- let me know. */
1117 AssertMsgFailed(("BCIS bit for stream #%RU8 still set when it shouldn't\n", uSD));
1118#endif
1119 fProceed = false;
1120 }
1121
1122 if (!fProceed)
1123 {
1124 hdaR3StreamPeriodUnlock(pPeriod);
1125 hdaR3StreamUnlock(pStreamR3);
1126 return VINF_SUCCESS;
1127 }
1128
1129 /* Update real-time timestamp. */
1130 const uint64_t tsNowNs = RTTimeNanoTS();
1131#ifdef LOG_ENABLED
1132 const uint64_t tsDeltaMs = (tsNowNs - pStreamShared->State.tsLastTransferNs) / RT_NS_1MS;
1133 Log3Func(("[SD%RU8] tsDeltaNs=%RU64ms\n", uSD, tsDeltaMs));
1134#endif
1135 pStreamShared->State.tsLastTransferNs = tsNowNs;
1136
1137 const uint64_t tsNow = PDMDevHlpTimerGet(pDevIns, pStreamShared->hTimer);
1138
1139 if (!pStreamShared->State.tsTransferLast)
1140 pStreamShared->State.tsTransferLast = tsNow;
1141
1142 pStreamShared->State.tsTransferLast = tsNow;
1143
1144 /* Register sanity checks. */
1145 Assert(uSD < HDA_MAX_STREAMS);
1146 Assert(pStreamShared->u64BDLBase);
1147 Assert(pStreamShared->u32CBL);
1148 Assert(pStreamShared->u8FIFOS);
1149
1150 /* State sanity checks. */
1151 Assert(ASMAtomicReadBool(&pStreamShared->State.fInReset) == false);
1152 Assert(ASMAtomicReadBool(&pStreamShared->State.fRunning));
1153
1154 /* Transfer sanity checks. */
1155 Assert(pStreamShared->State.cbTransferSize);
1156 Assert(pStreamShared->State.cbTransferChunk <= pStreamShared->State.cbTransferSize);
1157
1158 int rc = VINF_SUCCESS;
1159
1160 /* Fetch first / next BDL entry. */
1161 PHDABDLE pBDLE = &pStreamShared->State.BDLE;
1162 if (hdaR3BDLEIsComplete(pBDLE))
1163 {
1164 rc = hdaR3BDLEFetch(pDevIns, pBDLE, pStreamShared->u64BDLBase, pStreamShared->State.uCurBDLE);
1165 AssertRC(rc);
1166 }
1167
1168 uint32_t cbToProcess = RT_MIN(pStreamShared->State.cbTransferSize, pStreamShared->State.cbTransferChunk);
1169
1170 Assert(cbToProcess); /* Nothing to process when there should be data. Accounting bug? */
1171
1172 /* More data to process than maximum allowed? */
1173#ifdef HDA_STRICT
1174 AssertStmt(cbToProcess <= cbToProcessMax, cbToProcess = cbToProcessMax);
1175#else
1176 if (cbToProcess > cbToProcessMax)
1177 cbToProcess = cbToProcessMax;
1178#endif
1179
1180 uint32_t cbProcessed = 0;
1181 uint32_t cbLeft = cbToProcess;
1182
1183 /* Whether an interrupt has been sent (asserted) for this transfer period already or not.
1184 *
1185 * Note: Windows 10 relies on this, e.g. sending more than one interrupt per transfer period
1186 * confuses the Windows' audio driver and will screw up the audio data. So only send
1187 * one interrupt per transfer period.
1188 */
1189 bool fInterruptSent = false;
1190
1191 while (cbLeft)
1192 {
1193 /* Limit the chunk to the stream's FIFO size and what's left to process. */
1194 uint32_t cbChunk = RT_MIN(cbLeft, pStreamShared->u8FIFOS);
1195
1196 /* Limit the chunk to the remaining data of the current BDLE. */
1197 cbChunk = RT_MIN(cbChunk, pBDLE->Desc.u32BufSize - pBDLE->State.u32BufOff);
1198
1199 /* If there are position adjustment frames left to be processed,
1200 * make sure that we process them first as a whole. */
1201 if (pStreamShared->State.cfPosAdjustLeft)
1202 cbChunk = RT_MIN(cbChunk, uint32_t(pStreamShared->State.cfPosAdjustLeft * pStreamR3->State.Mapping.cbFrameSize));
1203
1204 if (!cbChunk)
1205 break;
1206
1207 uint32_t cbDMA = 0;
1208 PRTCIRCBUF pCircBuf = pStreamR3->State.pCircBuf;
1209 uint8_t *pabFIFO = pStreamShared->abFIFO;
1210
1211 if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN) /* Input (SDI). */
1212 {
1213 STAM_PROFILE_START(&pThis->StatIn, a);
1214
1215 uint32_t cbDMAWritten = 0;
1216 uint32_t cbDMAToWrite = cbChunk;
1217
1218 /** @todo Do we need interleaving streams support here as well?
1219 * Never saw anything else besides mono/stereo mics (yet). */
1220 while (cbDMAToWrite)
1221 {
1222 void *pvBuf; size_t cbBuf;
1223 RTCircBufAcquireReadBlock(pCircBuf, cbDMAToWrite, &pvBuf, &cbBuf);
1224
1225 if ( !cbBuf
1226 && !RTCircBufUsed(pCircBuf))
1227 break;
1228
1229 memcpy(pabFIFO + cbDMAWritten, pvBuf, cbBuf);
1230
1231 RTCircBufReleaseReadBlock(pCircBuf, cbBuf);
1232
1233 Assert(cbDMAToWrite >= cbBuf);
1234 cbDMAToWrite -= (uint32_t)cbBuf;
1235 cbDMAWritten += (uint32_t)cbBuf;
1236 Assert(cbDMAWritten <= cbChunk);
1237 }
1238
1239 if (cbDMAToWrite)
1240 {
1241 LogRel2(("HDA: FIFO underflow for stream #%RU8 (%RU32 bytes outstanding)\n", uSD, cbDMAToWrite));
1242
1243 Assert(cbChunk == cbDMAWritten + cbDMAToWrite);
1244 memset((uint8_t *)pabFIFO + cbDMAWritten, 0, cbDMAToWrite);
1245 cbDMAWritten = cbChunk;
1246 }
1247
1248 rc = hdaR3DMAWrite(pDevIns, pThis, pStreamShared, pStreamR3, pabFIFO, cbDMAWritten, &cbDMA /* pcbWritten */);
1249 if (RT_FAILURE(rc))
1250 LogRel(("HDA: Writing to stream #%RU8 DMA failed with %Rrc\n", uSD, rc));
1251
1252 STAM_PROFILE_STOP(&pThis->StatIn, a);
1253 }
1254 else if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_OUT) /* Output (SDO). */
1255 {
1256 STAM_PROFILE_START(&pThis->StatOut, a);
1257
1258 rc = hdaR3DMARead(pDevIns, pThis, pStreamShared, pStreamR3, pabFIFO, cbChunk, &cbDMA /* pcbRead */);
1259 if (RT_SUCCESS(rc))
1260 {
1261 const uint32_t cbFree = (uint32_t)RTCircBufFree(pCircBuf);
1262
1263 /*
1264 * Most guests don't use different stream frame sizes than
1265 * the default one, so save a bit of CPU time and don't go into
1266 * the frame extraction code below.
1267 *
1268 * Only macOS guests need the frame extraction branch below at the moment AFAIK.
1269 */
1270 if (pStreamR3->State.Mapping.cbFrameSize == HDA_FRAME_SIZE_DEFAULT)
1271 {
1272 uint32_t cbDMARead = 0;
1273 uint32_t cbDMALeft = RT_MIN(cbDMA, cbFree);
1274
1275 while (cbDMALeft)
1276 {
1277 void *pvBuf; size_t cbBuf;
1278 RTCircBufAcquireWriteBlock(pCircBuf, cbDMALeft, &pvBuf, &cbBuf);
1279
1280 if (cbBuf)
1281 {
1282 memcpy(pvBuf, pabFIFO + cbDMARead, cbBuf);
1283 cbDMARead += (uint32_t)cbBuf;
1284 cbDMALeft -= (uint32_t)cbBuf;
1285 }
1286
1287 RTCircBufReleaseWriteBlock(pCircBuf, cbBuf);
1288 }
1289 }
1290 else
1291 {
1292 /*
1293 * The following code extracts the required audio stream (channel) data
1294 * of non-interleaved *and* interleaved audio streams.
1295 *
1296 * We by default only support 2 channels with 16-bit samples (HDA_FRAME_SIZE),
1297 * but an HDA audio stream can have interleaved audio data of multiple audio
1298 * channels in such a single stream ("AA,AA,AA vs. AA,BB,AA,BB").
1299 *
1300 * So take this into account by just handling the first channel in such a stream ("A")
1301 * and just discard the other channel's data.
1302 *
1303 * I know, the following code is horribly slow, but seems to work for now.
1304 */
1305 /** @todo Optimize channel data extraction! Use some SSE(3) / intrinsics? */
1306 for (unsigned m = 0; m < pStreamR3->State.Mapping.cMappings; m++)
1307 {
1308 const uint32_t cbFrame = pStreamR3->State.Mapping.cbFrameSize;
1309
1310 Assert(cbFree >= cbDMA);
1311
1312 PPDMAUDIOSTREAMMAP pMap = &pStreamR3->State.Mapping.paMappings[m];
1313 AssertPtr(pMap);
1314
1315 Log3Func(("Mapping #%u: Start (cbDMA=%RU32, cbFrame=%RU32, offNext=%RU32)\n",
1316 m, cbDMA, cbFrame, pMap->offNext));
1317
1318
1319 /* Skip the current DMA chunk if the chunk is smaller than what the current stream mapping needs to read
1320 * the next associated frame (pointed to at pMap->cbOff).
1321 *
1322 * This can happen if the guest did not come up with enough data within a certain time period, especially
1323 * when using multi-channel speaker (> 2 channels [stereo]) setups. */
1324 if (pMap->offNext > cbChunk)
1325 {
1326 Log2Func(("Mapping #%u: Skipped (cbChunk=%RU32, cbMapOff=%RU32)\n", m, cbChunk, pMap->offNext));
1327 continue;
1328 }
1329
1330 uint8_t *pbSrcBuf = pabFIFO;
1331 size_t cbSrcOff = pMap->offNext;
1332
1333 for (unsigned i = 0; i < cbDMA / cbFrame; i++)
1334 {
1335 void *pvDstBuf; size_t cbDstBuf;
1336 RTCircBufAcquireWriteBlock(pCircBuf, pMap->cbStep, &pvDstBuf, &cbDstBuf);
1337
1338 Assert(cbDstBuf >= pMap->cbStep);
1339
1340 if (cbDstBuf)
1341 {
1342 Log3Func(("Mapping #%u: Frame #%02u: cbStep=%u, offFirst=%u, offNext=%u, cbDstBuf=%u, cbSrcOff=%u\n",
1343 m, i, pMap->cbStep, pMap->offFirst, pMap->offNext, cbDstBuf, cbSrcOff));
1344
1345 memcpy(pvDstBuf, pbSrcBuf + cbSrcOff, cbDstBuf);
1346
1347#if 0 /* Too slow, even for release builds, so disabled it. */
1348 if (pStreamR3->Dbg.Runtime.fEnabled)
1349 DrvAudioHlpFileWrite(pStreamR3->Dbg.Runtime.pFileDMAMapped, pvDstBuf, cbDstBuf,
1350 0 /* fFlags */);
1351#endif
1352 Assert(cbSrcOff <= cbDMA);
1353 if (cbSrcOff + cbFrame + pMap->offFirst<= cbDMA)
1354 cbSrcOff += cbFrame + pMap->offFirst;
1355
1356 Log3Func(("Mapping #%u: Frame #%02u: -> cbSrcOff=%zu\n", m, i, cbSrcOff));
1357 }
1358
1359 RTCircBufReleaseWriteBlock(pCircBuf, cbDstBuf);
1360 }
1361
1362 Log3Func(("Mapping #%u: End cbSize=%u, cbDMA=%RU32, cbSrcOff=%zu\n",
1363 m, pMap->cbStep, cbDMA, cbSrcOff));
1364
1365 Assert(cbSrcOff <= cbDMA);
1366
1367 const uint32_t cbSrcLeft = cbDMA - (uint32_t)cbSrcOff;
1368 if (cbSrcLeft)
1369 {
1370 Log3Func(("Mapping #%u: cbSrcLeft=%RU32\n", m, cbSrcLeft));
1371
1372 if (cbSrcLeft >= pMap->cbStep)
1373 {
1374 void *pvDstBuf; size_t cbDstBuf;
1375 RTCircBufAcquireWriteBlock(pCircBuf, pMap->cbStep, &pvDstBuf, &cbDstBuf);
1376
1377 Assert(cbDstBuf >= pMap->cbStep);
1378
1379 if (cbDstBuf)
1380 {
1381 memcpy(pvDstBuf, pbSrcBuf + cbSrcOff, cbDstBuf);
1382 }
1383
1384 RTCircBufReleaseWriteBlock(pCircBuf, cbDstBuf);
1385 }
1386
1387 Assert(pMap->cbFrame >= cbSrcLeft);
1388 pMap->offNext = pMap->cbFrame - cbSrcLeft;
1389 }
1390 else
1391 pMap->offNext = 0;
1392
1393 Log3Func(("Mapping #%u finish (cbSrcOff=%zu, offNext=%zu)\n", m, cbSrcOff, pMap->offNext));
1394 }
1395 }
1396 }
1397 else
1398 LogRel(("HDA: Reading from stream #%RU8 DMA failed with %Rrc\n", uSD, rc));
1399
1400 STAM_PROFILE_STOP(&pThis->StatOut, a);
1401 }
1402
1403 else /** @todo Handle duplex streams? */
1404 AssertFailed();
1405
1406 if (cbDMA)
1407 {
1408 /* We always increment the position of DMA buffer counter because we're always reading
1409 * into an intermediate DMA buffer. */
1410 pBDLE->State.u32BufOff += (uint32_t)cbDMA;
1411 Assert(pBDLE->State.u32BufOff <= pBDLE->Desc.u32BufSize);
1412
1413 /* Are we done doing the position adjustment?
1414 * Only then do the transfer accounting .*/
1415 if (pStreamShared->State.cfPosAdjustLeft == 0)
1416 {
1417 Assert(cbLeft >= cbDMA);
1418 cbLeft -= cbDMA;
1419
1420 cbProcessed += cbDMA;
1421 }
1422
1423 Log3Func(("[SD%RU8] cbDMA=%RU32 -> %R[bdle]\n", uSD, cbDMA, pBDLE));
1424 }
1425
1426 if (hdaR3BDLEIsComplete(pBDLE))
1427 {
1428 Log3Func(("[SD%RU8] Completed %R[bdle]\n", uSD, pBDLE));
1429
1430 /* Make sure to also update the wall clock when a BDLE is complete.
1431 * Needed for Windows 10 guests. */
1432 hdaR3WalClkSet(pThis, pThisCC,
1433 hdaWalClkGetCurrent(pThis)
1434 + hdaR3StreamPeriodFramesToWalClk(pPeriod,
1435 pBDLE->Desc.u32BufSize
1436 / pStreamR3->State.Mapping.cbFrameSize),
1437 false /* fForce */);
1438
1439 /*
1440 * Update the stream's current position.
1441 * Do this as accurate and close to the actual data transfer as possible.
1442 * All guetsts rely on this, depending on the mechanism they use (LPIB register or DMA counters).
1443 *
1444 * Note for Windows 10: The OS' driver is *very* picky about *when* the (DMA) positions get updated!
1445 * Not doing this at the right time will result in ugly sound crackles!
1446 */
1447 hdaR3StreamSetPositionAdd(pStreamShared, pDevIns, pThis, pBDLE->Desc.u32BufSize);
1448
1449 /* Does the current BDLE require an interrupt to be sent? */
1450 if ( hdaR3BDLENeedsInterrupt(pBDLE)
1451 /* Are we done doing the position adjustment?
1452 * It can happen that a BDLE which is handled while doing the
1453 * position adjustment requires an interrupt on completion (IOC) being set.
1454 *
1455 * In such a case we need to skip such an interrupt and just move on. */
1456 && pStreamShared->State.cfPosAdjustLeft == 0)
1457 {
1458 /* If the IOCE ("Interrupt On Completion Enable") bit of the SDCTL register is set
1459 * we need to generate an interrupt.
1460 */
1461 if (HDA_STREAM_REG(pThis, CTL, uSD) & HDA_SDCTL_IOCE)
1462 {
1463 /* Assert the interrupt before actually fetching the next BDLE below. */
1464 if (!fInterruptSent)
1465 {
1466 pStreamShared->State.cTransferPendingInterrupts++;
1467
1468 AssertMsg(pStreamShared->State.cTransferPendingInterrupts <= 32,
1469 ("Too many pending interrupts (%RU8) for stream #%RU8\n",
1470 pStreamShared->State.cTransferPendingInterrupts, uSD));
1471
1472 Log3Func(("[SD%RU8] Scheduling interrupt (now %RU8 total)\n", uSD, pStreamShared->State.cTransferPendingInterrupts));
1473
1474 /*
1475 * Set the stream's BCIS bit.
1476 *
1477 * Note: This only must be done if the whole period is complete, and not if only
1478 * one specific BDL entry is complete (if it has the IOC bit set).
1479 *
1480 * This will otherwise confuses the guest when it 1) deasserts the interrupt,
1481 * 2) reads SDSTS (with BCIS set) and then 3) too early reads a (wrong) WALCLK value.
1482 *
1483 * snd_hda_intel on Linux will tell.
1484 */
1485 HDA_STREAM_REG(pThis, STS, uSD) |= HDA_SDSTS_BCIS;
1486
1487 /* Trigger an interrupt first and let hdaRegWriteSDSTS() deal with
1488 * ending / beginning a period. */
1489 HDA_PROCESS_INTERRUPT(pDevIns, pThis);
1490
1491 fInterruptSent = true;
1492 }
1493 }
1494 }
1495
1496 if (pStreamShared->State.uCurBDLE == pStreamShared->u16LVI)
1497 {
1498 pStreamShared->State.uCurBDLE = 0;
1499 }
1500 else
1501 pStreamShared->State.uCurBDLE++;
1502
1503 /* Fetch the next BDLE entry. */
1504 hdaR3BDLEFetch(pDevIns, pBDLE, pStreamShared->u64BDLBase, pStreamShared->State.uCurBDLE);
1505 }
1506
1507 /* Do the position adjustment accounting. */
1508 pStreamShared->State.cfPosAdjustLeft -=
1509 RT_MIN(pStreamShared->State.cfPosAdjustLeft, cbDMA / pStreamR3->State.Mapping.cbFrameSize);
1510
1511 if (RT_FAILURE(rc))
1512 break;
1513 }
1514
1515 /* Sanity. */
1516 Assert(cbProcessed == cbToProcess);
1517 Assert(cbLeft == 0);
1518
1519 /* Only do the data accounting if we don't have to do any position
1520 * adjustment anymore. */
1521 if (pStreamShared->State.cfPosAdjustLeft == 0)
1522 {
1523 hdaR3StreamPeriodInc(pPeriod, RT_MIN(cbProcessed / pStreamR3->State.Mapping.cbFrameSize,
1524 hdaR3StreamPeriodGetRemainingFrames(pPeriod)));
1525 }
1526
1527 const bool fTransferComplete = cbLeft == 0;
1528 uint64_t tsTransferNext = 0;
1529
1530 if (fTransferComplete)
1531 {
1532 /*
1533 * Try updating the wall clock.
1534 *
1535 * Note 1) Only certain guests (like Linux' snd_hda_intel) rely on the WALCLK register
1536 * in order to determine the correct timing of the sound device. Other guests
1537 * like Windows 7 + 10 (or even more exotic ones like Haiku) will completely
1538 * ignore this.
1539 *
1540 * Note 2) When updating the WALCLK register too often / early (or even in a non-monotonic
1541 * fashion) this *will* upset guest device drivers and will completely fuck up the
1542 * sound output. Running VLC on the guest will tell!
1543 */
1544 const bool fWalClkSet = hdaR3WalClkSet(pThis, pThisCC,
1545 hdaWalClkGetCurrent(pThis)
1546 + hdaR3StreamPeriodFramesToWalClk(pPeriod,
1547 cbProcessed
1548 / pStreamR3->State.Mapping.cbFrameSize),
1549 false /* fForce */);
1550 RT_NOREF(fWalClkSet);
1551 }
1552
1553 /* Does the period have any interrupts outstanding? */
1554 if (!pStreamShared->State.cTransferPendingInterrupts)
1555 {
1556 /* No, set relative timer ticks for the next transfer to happen.
1557 * This must happen at a constant rate. */
1558 tsTransferNext = tsNow + pStreamShared->State.cTransferTicks;
1559 }
1560
1561 /* If we need to do another transfer, (re-)arm the device timer. */
1562 if (tsTransferNext) /* Can be 0 if no next transfer is needed. */
1563 {
1564 Log3Func(("[SD%RU8] Scheduling timer @ %RU64\n", uSD, tsTransferNext));
1565
1566 /* Make sure to assign next transfer timestamp before setting the timer. */
1567 pStreamShared->State.tsTransferNext = tsTransferNext;
1568
1569 Assert(!fInTimer || tsNow == PDMDevHlpTimerGet(pDevIns, pStreamShared->hTimer));
1570 hdaR3TimerSet(pDevIns, pStreamShared, tsTransferNext,
1571 true /* fForce - skip tsTransferNext check */, fInTimer ? tsNow : 0);
1572 }
1573
1574 pStreamShared->State.tsTransferLast = tsNow;
1575
1576 Log3Func(("[SD%RU8] %R[bdle] -- %RU32/%RU32\n",
1577 uSD, pBDLE, cbProcessed, pStreamShared->State.cbTransferSize));
1578 Log3Func(("[SD%RU8] fTransferComplete=%RTbool, cTransferPendingInterrupts=%RU8\n",
1579 uSD, fTransferComplete, pStreamShared->State.cTransferPendingInterrupts));
1580 Log3Func(("[SD%RU8] tsNow=%RU64, tsTransferNext=%RU64 (in %RU64 ticks)\n",
1581 uSD, tsNow, tsTransferNext, tsTransferNext ? tsTransferNext - tsNow : 0));
1582
1583 LogFlowFuncLeave();
1584
1585 hdaR3StreamPeriodUnlock(pPeriod);
1586 hdaR3StreamUnlock(pStreamR3);
1587
1588 return VINF_SUCCESS;
1589}
1590
1591/**
1592 * Updates a HDA stream by doing its required data transfers.
1593 *
1594 * The host sink(s) set the overall pace.
1595 *
1596 * This routine is called by both, the synchronous and the asynchronous
1597 * (VBOX_WITH_AUDIO_HDA_ASYNC_IO), implementations.
1598 *
1599 * When running synchronously, the device DMA transfers *and* the mixer sink
1600 * processing is within the device timer.
1601 *
1602 * When running asynchronously, only the device DMA transfers are done in the
1603 * device timer, whereas the mixer sink processing then is done in the stream's
1604 * own async I/O thread. This thread also will call this function
1605 * (with fInTimer set to @c false).
1606 *
1607 * @param pDevIns The device instance.
1608 * @param pThis The shared HDA device state.
1609 * @param pThisCC The ring-3 HDA device state.
1610 * @param pStreamShared HDA stream to update (shared bits).
1611 * @param pStreamR3 HDA stream to update (ring-3 bits).
1612 * @param fInTimer Whether to this function was called from the timer
1613 * context or an asynchronous I/O stream thread (if supported).
1614 */
1615void hdaR3StreamUpdate(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTATER3 pThisCC,
1616 PHDASTREAM pStreamShared, PHDASTREAMR3 pStreamR3, bool fInTimer)
1617{
1618 if (!pStreamShared)
1619 return;
1620
1621 PAUDMIXSINK pSink = NULL;
1622 if (pStreamR3->pMixSink)
1623 pSink = pStreamR3->pMixSink->pMixSink;
1624
1625 if (!AudioMixerSinkIsActive(pSink)) /* No sink available? Bail out. */
1626 return;
1627
1628 const uint64_t tsNowNs = RTTimeNanoTS();
1629
1630 int rc2;
1631
1632 if (hdaGetDirFromSD(pStreamShared->u8SD) == PDMAUDIODIR_OUT) /* Output (SDO). */
1633 {
1634 bool fDoRead = false; /* Whether to read from the HDA stream or not. */
1635
1636# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1637 if (fInTimer)
1638# endif
1639 {
1640 uint32_t cbStreamFree = hdaR3StreamGetFree(pStreamR3);
1641 if (!cbStreamFree)
1642 {
1643 LogRel2(("HDA: Warning: Hit stream #%RU8 overflow, dropping audio data\n", pStreamShared->u8SD));
1644# ifdef HDA_STRICT
1645 AssertMsgFailed(("Hit stream #%RU8 overflow -- timing bug?\n", pStreamShared->u8SD));
1646# endif
1647 /* When hitting an overflow, drop all remaining data to make space for current data.
1648 * This is needed in order to keep the device emulation running at a constant rate,
1649 * at the cost of losing valid (but too much) data. */
1650 RTCircBufReset(pStreamR3->State.pCircBuf);
1651 cbStreamFree = hdaR3StreamGetFree(pStreamR3);
1652 }
1653
1654 /* Do the DMA transfer. */
1655 rc2 = hdaR3StreamTransfer(pDevIns, pThis, pThisCC, pStreamShared, pStreamR3, cbStreamFree, fInTimer);
1656 AssertRC(rc2);
1657
1658 /* Never read yet? Set initial timestamp. */
1659 if (pStreamShared->State.tsLastReadNs == 0)
1660 pStreamShared->State.tsLastReadNs = tsNowNs;
1661
1662 /* Only read from the HDA stream at the given scheduling rate. */
1663 Assert(tsNowNs >= pStreamShared->State.tsLastReadNs);
1664 const uint64_t tsDeltaMs = (tsNowNs - pStreamShared->State.tsLastReadNs) / RT_NS_1MS;
1665 if (tsDeltaMs >= pStreamShared->State.Cfg.Device.cMsSchedulingHint)
1666 fDoRead = true;
1667
1668 Log3Func(("tsDeltaMs=%RU64, fDoRead=%RTbool\n", tsDeltaMs, fDoRead));
1669 }
1670
1671 if (fDoRead)
1672 {
1673# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1674 /* Notify the async I/O worker thread that there's work to do. */
1675 rc2 = hdaR3StreamAsyncIONotify(pStreamR3);
1676 AssertRC(rc2);
1677# endif
1678 /* Update last read timestamp so that we know when to run next. */
1679 pStreamShared->State.tsLastReadNs = tsNowNs;
1680 }
1681
1682# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1683 if (!fInTimer) /* In async I/O thread */
1684# else
1685 if (fDoRead)
1686# endif
1687 {
1688 const uint32_t cbSinkWritable = AudioMixerSinkGetWritable(pSink);
1689 const uint32_t cbStreamReadable = hdaR3StreamGetUsed(pStreamR3);
1690 uint32_t cbToReadFromStream = RT_MIN(cbStreamReadable, cbSinkWritable);
1691 /* Make sure that we always align the number of bytes when reading to the stream's PCM properties. */
1692 cbToReadFromStream = DrvAudioHlpBytesAlign(cbToReadFromStream, &pStreamShared->State.Cfg.Props);
1693
1694#ifdef LOG_ENABLED
1695 Assert(tsNowNs >= pStreamShared->State.tsLastReadNs);
1696 const uint64_t deltaLastReadMs = (tsNowNs - pStreamShared->State.tsLastReadNs) / RT_NS_1MS;
1697 Log3Func(("[SD%RU8] deltaLastReadMs=%RU64\n",
1698 pStreamShared->u8SD, deltaLastReadMs));
1699#endif
1700 Log3Func(("[SD%RU8] cbSinkWritable=%RU32, cbStreamReadable=%RU32 -> cbToReadFromStream=%RU32\n",
1701 pStreamShared->u8SD, cbSinkWritable, cbStreamReadable, cbToReadFromStream));
1702
1703 if (cbToReadFromStream)
1704 {
1705 /* Read (guest output) data and write it to the stream's sink. */
1706 rc2 = hdaR3StreamRead(pStreamR3, cbToReadFromStream, NULL /* pcbRead */);
1707 AssertRC(rc2);
1708 }
1709
1710 /* When running synchronously, update the associated sink here.
1711 * Otherwise this will be done in the async I/O thread. */
1712 rc2 = AudioMixerSinkUpdate(pSink);
1713 AssertRC(rc2);
1714 }
1715 }
1716 else /* Input (SDI). */
1717 {
1718# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1719 if (!fInTimer)
1720# endif
1721 {
1722 rc2 = AudioMixerSinkUpdate(pSink);
1723 AssertRC(rc2);
1724
1725 /* Is the sink ready to be read (host input data) from? If so, by how much? */
1726 uint32_t cbSinkReadable = AudioMixerSinkGetReadable(pSink);
1727
1728 /* How much (guest input) data is available for writing at the moment for the HDA stream? */
1729 const uint32_t cbStreamFree = hdaR3StreamGetFree(pStreamR3);
1730
1731 Log3Func(("[SD%RU8] cbSinkReadable=%RU32, cbStreamFree=%RU32\n", pStreamShared->u8SD, cbSinkReadable, cbStreamFree));
1732
1733 /* Do not read more than the HDA stream can hold at the moment.
1734 * The host sets the overall pace. */
1735 if (cbSinkReadable > cbStreamFree)
1736 cbSinkReadable = cbStreamFree;
1737
1738 if (cbSinkReadable)
1739 {
1740 uint8_t *pabFIFO = pStreamShared->abFIFO;
1741
1742 while (cbSinkReadable)
1743 {
1744 uint32_t cbRead;
1745 rc2 = AudioMixerSinkRead(pSink, AUDMIXOP_COPY,
1746 pabFIFO, RT_MIN(cbSinkReadable, (uint32_t)sizeof(pStreamShared->abFIFO)), &cbRead);
1747 AssertRCBreak(rc2);
1748
1749 if (!cbRead)
1750 {
1751 AssertMsgFailed(("Nothing read from sink, even if %RU32 bytes were (still) announced\n", cbSinkReadable));
1752 break;
1753 }
1754
1755 /* Write (guest input) data to the stream which was read from stream's sink before. */
1756 uint32_t cbWritten;
1757 rc2 = hdaR3StreamWrite(pStreamR3, pabFIFO, cbRead, &cbWritten);
1758 AssertRCBreak(rc2);
1759 AssertBreak(cbWritten > 0); /* Should never happen, as we know how much we can write. */
1760
1761 Assert(cbSinkReadable >= cbRead);
1762 cbSinkReadable -= cbRead;
1763 }
1764 }
1765 }
1766# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1767 else /* fInTimer */
1768# endif
1769 {
1770# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1771 if (tsNowNs - pStreamShared->State.tsLastReadNs >= pStreamShared->State.Cfg.Device.cMsSchedulingHint * RT_NS_1MS)
1772 {
1773 rc2 = hdaR3StreamAsyncIONotify(pStreamR3);
1774 AssertRC(rc2);
1775
1776 pStreamShared->State.tsLastReadNs = tsNowNs;
1777 }
1778# endif
1779 const uint32_t cbStreamUsed = hdaR3StreamGetUsed(pStreamR3);
1780 if (cbStreamUsed)
1781 {
1782 rc2 = hdaR3StreamTransfer(pDevIns, pThis, pThisCC, pStreamShared, pStreamR3, cbStreamUsed, fInTimer);
1783 AssertRC(rc2);
1784 }
1785 }
1786 }
1787}
1788
1789/**
1790 * Locks an HDA stream for serialized access.
1791 *
1792 * @returns IPRT status code.
1793 * @param pStreamR3 HDA stream to lock (ring-3 bits).
1794 */
1795void hdaR3StreamLock(PHDASTREAMR3 pStreamR3)
1796{
1797 AssertPtrReturnVoid(pStreamR3);
1798# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1799 int rc2 = RTCritSectEnter(&pStreamR3->CritSect);
1800 AssertRC(rc2);
1801# else
1802 Assert(PDMDevHlpCritSectIsOwner(pStream->pHDAState->pDevInsR3, pStream->pHDAState->CritSect));
1803# endif
1804}
1805
1806/**
1807 * Unlocks a formerly locked HDA stream.
1808 *
1809 * @returns IPRT status code.
1810 * @param pStreamR3 HDA stream to unlock (ring-3 bits).
1811 */
1812void hdaR3StreamUnlock(PHDASTREAMR3 pStreamR3)
1813{
1814 AssertPtrReturnVoid(pStreamR3);
1815# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
1816 int rc2 = RTCritSectLeave(&pStreamR3->CritSect);
1817 AssertRC(rc2);
1818# endif
1819}
1820
1821#if 0 /* unused - no prototype even */
1822/**
1823 * Updates an HDA stream's current read or write buffer position (depending on the stream type) by
1824 * updating its associated LPIB register and DMA position buffer (if enabled).
1825 *
1826 * @returns Set LPIB value.
1827 * @param pDevIns The device instance.
1828 * @param pStream HDA stream to update read / write position for.
1829 * @param u32LPIB New LPIB (position) value to set.
1830 */
1831uint32_t hdaR3StreamUpdateLPIB(PPDMDEVINS pDevIns, PHDASTATE pThis, PHDASTREAM pStreamShared, uint32_t u32LPIB)
1832{
1833 AssertMsg(u32LPIB <= pStreamShared->u32CBL,
1834 ("[SD%RU8] New LPIB (%RU32) exceeds CBL (%RU32)\n", pStreamShared->u8SD, u32LPIB, pStreamShared->u32CBL));
1835
1836 u32LPIB = RT_MIN(u32LPIB, pStreamShared->u32CBL);
1837
1838 LogFlowFunc(("[SD%RU8] LPIB=%RU32 (DMA Position Buffer Enabled: %RTbool)\n",
1839 pStreamShared->u8SD, u32LPIB, pThis->fDMAPosition));
1840
1841 /* Update LPIB in any case. */
1842 HDA_STREAM_REG(pThis, LPIB, pStreamShared->u8SD) = u32LPIB;
1843
1844 /* Do we need to tell the current DMA position? */
1845 if (pThis->fDMAPosition)
1846 {
1847 int rc2 = PDMDevHlpPCIPhysWrite(pDevIns,
1848 pThis->u64DPBase + (pStreamShared->u8SD * 2 * sizeof(uint32_t)),
1849 (void *)&u32LPIB, sizeof(uint32_t));
1850 AssertRC(rc2);
1851 }
1852
1853 return u32LPIB;
1854}
1855#endif
1856
1857# ifdef HDA_USE_DMA_ACCESS_HANDLER
1858/**
1859 * Registers access handlers for a stream's BDLE DMA accesses.
1860 *
1861 * @returns true if registration was successful, false if not.
1862 * @param pStream HDA stream to register BDLE access handlers for.
1863 */
1864bool hdaR3StreamRegisterDMAHandlers(PHDASTREAM pStream)
1865{
1866 /* At least LVI and the BDL base must be set. */
1867 if ( !pStreamShared->u16LVI
1868 || !pStreamShared->u64BDLBase)
1869 {
1870 return false;
1871 }
1872
1873 hdaR3StreamUnregisterDMAHandlers(pStream);
1874
1875 LogFunc(("Registering ...\n"));
1876
1877 int rc = VINF_SUCCESS;
1878
1879 /*
1880 * Create BDLE ranges.
1881 */
1882
1883 struct BDLERANGE
1884 {
1885 RTGCPHYS uAddr;
1886 uint32_t uSize;
1887 } arrRanges[16]; /** @todo Use a define. */
1888
1889 size_t cRanges = 0;
1890
1891 for (uint16_t i = 0; i < pStreamShared->u16LVI + 1; i++)
1892 {
1893 HDABDLE BDLE;
1894 rc = hdaR3BDLEFetch(pDevIns, &BDLE, pStreamShared->u64BDLBase, i /* Index */);
1895 if (RT_FAILURE(rc))
1896 break;
1897
1898 bool fAddRange = true;
1899 BDLERANGE *pRange;
1900
1901 if (cRanges)
1902 {
1903 pRange = &arrRanges[cRanges - 1];
1904
1905 /* Is the current range a direct neighbor of the current BLDE? */
1906 if ((pRange->uAddr + pRange->uSize) == BDLE.Desc.u64BufAddr)
1907 {
1908 /* Expand the current range by the current BDLE's size. */
1909 pRange->uSize += BDLE.Desc.u32BufSize;
1910
1911 /* Adding a new range in this case is not needed anymore. */
1912 fAddRange = false;
1913
1914 LogFunc(("Expanding range %zu by %RU32 (%RU32 total now)\n", cRanges - 1, BDLE.Desc.u32BufSize, pRange->uSize));
1915 }
1916 }
1917
1918 /* Do we need to add a new range? */
1919 if ( fAddRange
1920 && cRanges < RT_ELEMENTS(arrRanges))
1921 {
1922 pRange = &arrRanges[cRanges];
1923
1924 pRange->uAddr = BDLE.Desc.u64BufAddr;
1925 pRange->uSize = BDLE.Desc.u32BufSize;
1926
1927 LogFunc(("Adding range %zu - 0x%x (%RU32)\n", cRanges, pRange->uAddr, pRange->uSize));
1928
1929 cRanges++;
1930 }
1931 }
1932
1933 LogFunc(("%zu ranges total\n", cRanges));
1934
1935 /*
1936 * Register all ranges as DMA access handlers.
1937 */
1938
1939 for (size_t i = 0; i < cRanges; i++)
1940 {
1941 BDLERANGE *pRange = &arrRanges[i];
1942
1943 PHDADMAACCESSHANDLER pHandler = (PHDADMAACCESSHANDLER)RTMemAllocZ(sizeof(HDADMAACCESSHANDLER));
1944 if (!pHandler)
1945 {
1946 rc = VERR_NO_MEMORY;
1947 break;
1948 }
1949
1950 RTListAppend(&pStream->State.lstDMAHandlers, &pHandler->Node);
1951
1952 pHandler->pStream = pStream; /* Save a back reference to the owner. */
1953
1954 char szDesc[32];
1955 RTStrPrintf(szDesc, sizeof(szDesc), "HDA[SD%RU8 - RANGE%02zu]", pStream->u8SD, i);
1956
1957 int rc2 = PGMR3HandlerPhysicalTypeRegister(PDMDevHlpGetVM(pStream->pHDAState->pDevInsR3), PGMPHYSHANDLERKIND_WRITE,
1958 hdaDMAAccessHandler,
1959 NULL, NULL, NULL,
1960 NULL, NULL, NULL,
1961 szDesc, &pHandler->hAccessHandlerType);
1962 AssertRCBreak(rc2);
1963
1964 pHandler->BDLEAddr = pRange->uAddr;
1965 pHandler->BDLESize = pRange->uSize;
1966
1967 /* Get first and last pages of the BDLE range. */
1968 RTGCPHYS pgFirst = pRange->uAddr & ~PAGE_OFFSET_MASK;
1969 RTGCPHYS pgLast = RT_ALIGN(pgFirst + pRange->uSize, PAGE_SIZE);
1970
1971 /* Calculate the region size (in pages). */
1972 RTGCPHYS regionSize = RT_ALIGN(pgLast - pgFirst, PAGE_SIZE);
1973
1974 pHandler->GCPhysFirst = pgFirst;
1975 pHandler->GCPhysLast = pHandler->GCPhysFirst + (regionSize - 1);
1976
1977 LogFunc(("\tRegistering region '%s': 0x%x - 0x%x (region size: %zu)\n",
1978 szDesc, pHandler->GCPhysFirst, pHandler->GCPhysLast, regionSize));
1979 LogFunc(("\tBDLE @ 0x%x - 0x%x (%RU32)\n",
1980 pHandler->BDLEAddr, pHandler->BDLEAddr + pHandler->BDLESize, pHandler->BDLESize));
1981
1982 rc2 = PGMHandlerPhysicalRegister(PDMDevHlpGetVM(pStream->pHDAState->pDevInsR3),
1983 pHandler->GCPhysFirst, pHandler->GCPhysLast,
1984 pHandler->hAccessHandlerType, pHandler, NIL_RTR0PTR, NIL_RTRCPTR,
1985 szDesc);
1986 AssertRCBreak(rc2);
1987
1988 pHandler->fRegistered = true;
1989 }
1990
1991 LogFunc(("Registration ended with rc=%Rrc\n", rc));
1992
1993 return RT_SUCCESS(rc);
1994}
1995
1996/**
1997 * Unregisters access handlers of a stream's BDLEs.
1998 *
1999 * @param pStream HDA stream to unregister BDLE access handlers for.
2000 */
2001void hdaR3StreamUnregisterDMAHandlers(PHDASTREAM pStream)
2002{
2003 LogFunc(("\n"));
2004
2005 PHDADMAACCESSHANDLER pHandler, pHandlerNext;
2006 RTListForEachSafe(&pStream->State.lstDMAHandlers, pHandler, pHandlerNext, HDADMAACCESSHANDLER, Node)
2007 {
2008 if (!pHandler->fRegistered) /* Handler not registered? Skip. */
2009 continue;
2010
2011 LogFunc(("Unregistering 0x%x - 0x%x (%zu)\n",
2012 pHandler->GCPhysFirst, pHandler->GCPhysLast, pHandler->GCPhysLast - pHandler->GCPhysFirst));
2013
2014 int rc2 = PGMHandlerPhysicalDeregister(PDMDevHlpGetVM(pStream->pHDAState->pDevInsR3),
2015 pHandler->GCPhysFirst);
2016 AssertRC(rc2);
2017
2018 RTListNodeRemove(&pHandler->Node);
2019
2020 RTMemFree(pHandler);
2021 pHandler = NULL;
2022 }
2023
2024 Assert(RTListIsEmpty(&pStream->State.lstDMAHandlers));
2025}
2026# endif /* HDA_USE_DMA_ACCESS_HANDLER */
2027
2028# ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO
2029/**
2030 * @callback_method_impl{FNRTTHREAD,
2031 * Asynchronous I/O thread for a HDA stream.
2032 *
2033 * This will do the heavy lifting work for us as soon as it's getting notified
2034 * by another thread.}
2035 */
2036static DECLCALLBACK(int) hdaR3StreamAsyncIOThread(RTTHREAD hThreadSelf, void *pvUser)
2037{
2038 PHDASTREAMR3 const pStreamR3 = (PHDASTREAMR3)pvUser;
2039 PHDASTREAMSTATEAIO const pAIO = &pStreamR3->State.AIO;
2040 PHDASTATE const pThis = pStreamR3->pHDAStateShared;
2041 PHDASTATER3 const pThisCC = pStreamR3->pHDAStateR3;
2042 PPDMDEVINS const pDevIns = pThisCC->pDevIns;
2043 PHDASTREAM const pStreamShared = &pThis->aStreams[pStreamR3 - &pThisCC->aStreams[0]];
2044 Assert(pStreamR3 - &pThisCC->aStreams[0] == pStreamR3->u8SD);
2045 Assert(pStreamShared->u8SD == pStreamR3->u8SD);
2046
2047 /* Signal parent thread that we've started */
2048 ASMAtomicXchgBool(&pAIO->fStarted, true);
2049 RTThreadUserSignal(hThreadSelf);
2050
2051 LogFunc(("[SD%RU8] Started\n", pStreamShared->u8SD));
2052
2053 for (;;)
2054 {
2055 int rc2 = RTSemEventWait(pAIO->hEvent, RT_INDEFINITE_WAIT);
2056 if (RT_FAILURE(rc2))
2057 break;
2058
2059 if (ASMAtomicReadBool(&pAIO->fShutdown))
2060 break;
2061
2062 rc2 = RTCritSectEnter(&pAIO->CritSect);
2063 AssertRC(rc2);
2064 if (RT_SUCCESS(rc2))
2065 {
2066 if (!pAIO->fEnabled)
2067 {
2068 RTCritSectLeave(&pAIO->CritSect);
2069 continue;
2070 }
2071
2072 hdaR3StreamUpdate(pDevIns, pThis, pThisCC, pStreamShared, pStreamR3, false /* fInTimer */);
2073
2074 int rc3 = RTCritSectLeave(&pAIO->CritSect);
2075 AssertRC(rc3);
2076 }
2077 }
2078
2079 LogFunc(("[SD%RU8] Ended\n", pStreamShared->u8SD));
2080 ASMAtomicXchgBool(&pAIO->fStarted, false);
2081
2082 return VINF_SUCCESS;
2083}
2084
2085/**
2086 * Creates the async I/O thread for a specific HDA audio stream.
2087 *
2088 * @returns IPRT status code.
2089 * @param pStreamR3 HDA audio stream to create the async I/O thread for.
2090 */
2091int hdaR3StreamAsyncIOCreate(PHDASTREAMR3 pStreamR3)
2092{
2093 PHDASTREAMSTATEAIO pAIO = &pStreamR3->State.AIO;
2094
2095 int rc;
2096
2097 if (!ASMAtomicReadBool(&pAIO->fStarted))
2098 {
2099 pAIO->fShutdown = false;
2100 pAIO->fEnabled = true; /* Enabled by default. */
2101
2102 rc = RTSemEventCreate(&pAIO->hEvent);
2103 if (RT_SUCCESS(rc))
2104 {
2105 rc = RTCritSectInit(&pAIO->CritSect);
2106 if (RT_SUCCESS(rc))
2107 {
2108 rc = RTThreadCreateF(&pAIO->hThread, hdaR3StreamAsyncIOThread, pStreamR3, 0 /*cbStack*/,
2109 RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "hdaAIO%RU8", pStreamR3->u8SD);
2110 if (RT_SUCCESS(rc))
2111 rc = RTThreadUserWait(pAIO->hThread, 10 * 1000 /* 10s timeout */);
2112 }
2113 }
2114 }
2115 else
2116 rc = VINF_SUCCESS;
2117
2118 LogFunc(("[SD%RU8] Returning %Rrc\n", pStreamR3->u8SD, rc));
2119 return rc;
2120}
2121
2122/**
2123 * Destroys the async I/O thread of a specific HDA audio stream.
2124 *
2125 * @returns IPRT status code.
2126 * @param pStreamR3 HDA audio stream to destroy the async I/O thread for.
2127 */
2128static int hdaR3StreamAsyncIODestroy(PHDASTREAMR3 pStreamR3)
2129{
2130 PHDASTREAMSTATEAIO pAIO = &pStreamR3->State.AIO;
2131
2132 if (!ASMAtomicReadBool(&pAIO->fStarted))
2133 return VINF_SUCCESS;
2134
2135 ASMAtomicWriteBool(&pAIO->fShutdown, true);
2136
2137 int rc = hdaR3StreamAsyncIONotify(pStreamR3);
2138 AssertRC(rc);
2139
2140 int rcThread;
2141 rc = RTThreadWait(pAIO->hThread, 30 * 1000 /* 30s timeout */, &rcThread);
2142 LogFunc(("Async I/O thread ended with %Rrc (%Rrc)\n", rc, rcThread));
2143
2144 if (RT_SUCCESS(rc))
2145 {
2146 pAIO->hThread = NIL_RTTHREAD;
2147
2148 rc = RTCritSectDelete(&pAIO->CritSect);
2149 AssertRC(rc);
2150
2151 rc = RTSemEventDestroy(pAIO->hEvent);
2152 AssertRC(rc);
2153 pAIO->hEvent = NIL_RTSEMEVENT;
2154
2155 pAIO->fStarted = false;
2156 pAIO->fShutdown = false;
2157 pAIO->fEnabled = false;
2158 }
2159
2160 LogFunc(("[SD%RU8] Returning %Rrc\n", pStreamR3->u8SD, rc));
2161 return rc;
2162}
2163
2164/**
2165 * Lets the stream's async I/O thread know that there is some data to process.
2166 *
2167 * @returns IPRT status code.
2168 * @param pStreamR3 HDA stream to notify async I/O thread for.
2169 */
2170static int hdaR3StreamAsyncIONotify(PHDASTREAMR3 pStreamR3)
2171{
2172 return RTSemEventSignal(pStreamR3->State.AIO.hEvent);
2173}
2174
2175/**
2176 * Locks the async I/O thread of a specific HDA audio stream.
2177 *
2178 * @param pStreamR3 HDA stream to lock async I/O thread for.
2179 */
2180void hdaR3StreamAsyncIOLock(PHDASTREAMR3 pStreamR3)
2181{
2182 PHDASTREAMSTATEAIO pAIO = &pStreamR3->State.AIO;
2183
2184 if (!ASMAtomicReadBool(&pAIO->fStarted))
2185 return;
2186
2187 int rc2 = RTCritSectEnter(&pAIO->CritSect);
2188 AssertRC(rc2);
2189}
2190
2191/**
2192 * Unlocks the async I/O thread of a specific HDA audio stream.
2193 *
2194 * @param pStreamR3 HDA stream to unlock async I/O thread for.
2195 */
2196void hdaR3StreamAsyncIOUnlock(PHDASTREAMR3 pStreamR3)
2197{
2198 PHDASTREAMSTATEAIO pAIO = &pStreamR3->State.AIO;
2199
2200 if (!ASMAtomicReadBool(&pAIO->fStarted))
2201 return;
2202
2203 int rc2 = RTCritSectLeave(&pAIO->CritSect);
2204 AssertRC(rc2);
2205}
2206
2207/**
2208 * Enables (resumes) or disables (pauses) the async I/O thread.
2209 *
2210 * @param pStreamR3 HDA stream to enable/disable async I/O thread for.
2211 * @param fEnable Whether to enable or disable the I/O thread.
2212 *
2213 * @remarks Does not do locking.
2214 */
2215void hdaR3StreamAsyncIOEnable(PHDASTREAMR3 pStreamR3, bool fEnable)
2216{
2217 PHDASTREAMSTATEAIO pAIO = &pStreamR3->State.AIO;
2218 ASMAtomicXchgBool(&pAIO->fEnabled, fEnable);
2219}
2220# endif /* VBOX_WITH_AUDIO_HDA_ASYNC_IO */
2221
2222#endif /* IN_RING3 */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette