/* $Id: MakeAlternativeSource.cpp 76553 2019-01-01 01:45:53Z vboxsync $ */ /** @file * MakeAlternative - Generate an Alternative BIOS Source that requires less tools. */ /* * Copyright (C) 2012-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * A BIOS segment. */ typedef struct BIOSSEG { char szName[32]; char szClass[32]; char szGroup[32]; RTFAR16 Address; uint32_t uFlatAddr; uint32_t cb; /** RVA into g_hSymMod. */ uint32_t uRva; } BIOSSEG; /** Pointer to a BIOS segment. */ typedef BIOSSEG *PBIOSSEG; /** * A BIOS object file. */ typedef struct BIOSOBJFILE { RTLISTNODE Node; char *pszSource; char *pszObject; } BIOSOBJFILE; /** A BIOS object file. */ typedef BIOSOBJFILE *PBIOSOBJFILE; /** * Pointer to a BIOS map parser handle. */ typedef struct BIOSMAP { /** The stream pointer. */ PRTSTREAM hStrm; /** The file name. */ const char *pszMapFile; /** Set when EOF has been reached. */ bool fEof; /** The current line number (0 based).*/ uint32_t iLine; /** The length of the current line. */ uint32_t cch; /** The offset of the first non-white character on the line. */ uint32_t offNW; /** The line buffer. */ char szLine[16384]; } BIOSMAP; /** Pointer to a BIOS map parser handle. */ typedef BIOSMAP *PBIOSMAP; /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** The verbosity level.*/ static unsigned g_cVerbose = 2 /*0*/; /** Pointer to the BIOS image. */ static uint8_t const *g_pbImg; /** The size of the BIOS image. */ static size_t g_cbImg; /** Debug module for the map file. */ static RTDBGMOD g_hMapMod = NIL_RTDBGMOD; /** The number of BIOS segments found in the map file. */ static uint32_t g_cSegs = 0; /** Array of BIOS segments from the map file. */ static BIOSSEG g_aSegs[32]; /** List of BIOSOBJFILE. */ static RTLISTANCHOR g_ObjList; /** Debug module with symbols. */ static RTDBGMOD g_hSymMod = NIL_RTDBGMOD; /** The output stream. */ static PRTSTREAM g_hStrmOutput = NULL; /** The type of BIOS we're working on. */ static enum BIOSTYPE { kBiosType_System = 0, kBiosType_Vga } g_enmBiosType = kBiosType_System; /** The flat ROM base address. */ static uint32_t g_uBiosFlatBase = 0xf0000; static bool outputPrintfV(const char *pszFormat, va_list va) { int rc = RTStrmPrintfV(g_hStrmOutput, pszFormat, va); if (RT_FAILURE(rc)) { RTMsgError("Output error: %Rrc\n", rc); return false; } return true; } static bool outputPrintf(const char *pszFormat, ...) { va_list va; va_start(va, pszFormat); bool fRc = outputPrintfV(pszFormat, va); va_end(va); return fRc; } /** * Opens the output file for writing. * * @returns RTEXITCODE_SUCCESS or RTEXITCODE_FAILURE+msg. * @param pszOutput Path to the output file. */ static RTEXITCODE OpenOutputFile(const char *pszOutput) { if (!pszOutput) g_hStrmOutput = g_pStdOut; else { int rc = RTStrmOpen(pszOutput, "w", &g_hStrmOutput); if (RT_FAILURE(rc)) return RTMsgErrorExit(RTEXITCODE_FAILURE, "Failed to open output file '%s': %Rrc", pszOutput, rc); } return RTEXITCODE_SUCCESS; } /** * Displays a disassembly error and returns @c false. * * @returns @c false. * @param pszFormat The error format string. * @param ... Format argument. */ static bool disError(const char *pszFormat, ...) { va_list va; va_start(va, pszFormat); RTMsgErrorV(pszFormat, va); va_end(va); return false; } /** * Output the disassembly file header. * * @returns @c true on success, */ static bool disFileHeader(void) { bool fRc; fRc = outputPrintf("; $Id: MakeAlternativeSource.cpp 76553 2019-01-01 01:45:53Z vboxsync $ \n" ";; @file\n" "; Auto Generated source file. Do not edit.\n" ";\n" ); if (!fRc) return fRc; /* * List the header of each source file, up to and including the * copyright notice. */ bool fNeedLgplDisclaimer = false; PBIOSOBJFILE pObjFile; RTListForEach(&g_ObjList, pObjFile, BIOSOBJFILE, Node) { PRTSTREAM hStrm; int rc = RTStrmOpen(pObjFile->pszSource, "r", &hStrm); if (RT_SUCCESS(rc)) { fRc = outputPrintf("\n" ";\n" "; Source file: %Rbn\n" ";\n" , pObjFile->pszSource); uint32_t iLine = 0; bool fSeenCopyright = false; char szLine[4096]; while ((rc = RTStrmGetLine(hStrm, szLine, sizeof(szLine))) == VINF_SUCCESS) { iLine++; /* Check if we're done. */ char *psz = RTStrStrip(szLine); if ( fSeenCopyright && ( (psz[0] == '*' && psz[1] == '/') || psz[0] == '\0') ) break; /* Strip comment suffix. */ size_t cch = strlen(psz); if (cch >= 2 && psz[cch - 1] == '/' && psz[cch - 2] == '*') { psz[cch - 2] = '\0'; RTStrStripR(psz); } /* Skip line prefix. */ if (psz[0] == '/' && psz[1] == '*') psz += 2; else if (psz[0] == '*') psz += 1; else while (*psz == ';') psz++; if (RT_C_IS_SPACE(*psz)) psz++; /* Skip the doxygen file tag line. */ if (!strcmp(psz, "* @file") || !strcmp(psz, "@file")) continue; /* Detect copyright section. */ if ( !fSeenCopyright && ( strstr(psz, "Copyright") || strstr(psz, "copyright")) ) fSeenCopyright = true; /* Detect LGPL. */ if (strstr(psz, "LGPL")) fNeedLgplDisclaimer = true; fRc = outputPrintf("; %s\n", psz) && fRc; } RTStrmClose(hStrm); if (rc != VINF_SUCCESS) return disError("Error reading '%s': rc=%Rrc iLine=%u", pObjFile->pszSource, rc, iLine); } } /* * Add Oracle LGPL disclaimer. */ if (fNeedLgplDisclaimer) outputPrintf("\n" ";\n" "; Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice\n" "; other than GPL or LGPL is available it will apply instead, Oracle elects to use only\n" "; the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where\n" "; a choice of LGPL license versions is made available with the language indicating\n" "; that LGPLv2 or any later version may be used, or where a choice of which version\n" "; of the LGPL is applied is otherwise unspecified.\n" ";\n" "\n"); /* * Set the org. */ fRc = outputPrintf("\n" "\n" "\n" ) && fRc; return fRc; } /** * Checks if a byte sequence could be a string litteral. * * @returns @c true if it is, @c false if it isn't. * @param uFlatAddr The address of the byte sequence. * @param cb The length of the sequence. */ static bool disIsString(uint32_t uFlatAddr, uint32_t cb) { if (cb < 6) return false; uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase]; while (cb > 0) { if ( !RT_C_IS_PRINT(*pb) && *pb != '\r' && *pb != '\n' && *pb != '\t') { if (*pb == '\0') { do { pb++; cb--; } while (cb > 0 && *pb == '\0'); return cb == 0; } return false; } pb++; cb--; } return true; } #if 0 /* unused */ /** * Checks if a dword could be a far 16:16 BIOS address. * * @returns @c true if it is, @c false if it isn't. * @param uFlatAddr The address of the dword. */ static bool disIsFarBiosAddr(uint32_t uFlatAddr) { uint16_t const *pu16 = (uint16_t const *)&g_pbImg[uFlatAddr - g_uBiosFlatBase]; if (pu16[1] < 0xf000) return false; if (pu16[1] > 0xfff0) return false; uint32_t uFlatAddr2 = (uint32_t)(pu16[1] << 4) | pu16[0]; if (uFlatAddr2 >= g_uBiosFlatBase + g_cbImg) return false; return true; } #endif static bool disByteData(uint32_t uFlatAddr, uint32_t cb) { uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase]; size_t cbOnLine = 0; while (cb-- > 0) { bool fRc; if (cbOnLine >= 16) { fRc = outputPrintf("\n" " db 0%02xh", *pb); cbOnLine = 1; } else if (!cbOnLine) { fRc = outputPrintf(" db 0%02xh", *pb); cbOnLine = 1; } else { fRc = outputPrintf(", 0%02xh", *pb); cbOnLine++; } if (!fRc) return false; pb++; } return outputPrintf("\n"); } static bool disWordData(uint32_t uFlatAddr, uint32_t cb) { if (cb & 1) return disError("disWordData expects word aligned size: cb=%#x uFlatAddr=%#x", uFlatAddr, cb); uint16_t const *pu16 = (uint16_t const *)&g_pbImg[uFlatAddr - g_uBiosFlatBase]; size_t cbOnLine = 0; while (cb > 0) { bool fRc; if (cbOnLine >= 16) { fRc = outputPrintf("\n" " dw 0%04xh", *pu16); cbOnLine = 2; } else if (!cbOnLine) { fRc = outputPrintf(" dw 0%04xh", *pu16); cbOnLine = 2; } else { fRc = outputPrintf(", 0%04xh", *pu16); cbOnLine += 2; } if (!fRc) return false; pu16++; cb -= 2; } return outputPrintf("\n"); } static bool disDWordData(uint32_t uFlatAddr, uint32_t cb) { if (cb & 3) return disError("disWordData expects dword aligned size: cb=%#x uFlatAddr=%#x", uFlatAddr, cb); uint32_t const *pu32 = (uint32_t const *)&g_pbImg[uFlatAddr - g_uBiosFlatBase]; size_t cbOnLine = 0; while (cb > 0) { bool fRc; if (cbOnLine >= 16) { fRc = outputPrintf("\n" " dd 0%08xh", *pu32); cbOnLine = 4; } else if (!cbOnLine) { fRc = outputPrintf(" dd 0%08xh", *pu32); cbOnLine = 4; } else { fRc = outputPrintf(", 0%08xh", *pu32); cbOnLine += 4; } if (!fRc) return false; pu32++; cb -= 4; } return outputPrintf("\n"); } static bool disStringData(uint32_t uFlatAddr, uint32_t cb) { uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase]; uint32_t cchOnLine = 0; while (cb > 0) { /* Line endings and beginnings. */ if (cchOnLine >= 72) { if (!outputPrintf("\n")) return false; cchOnLine = 0; } if ( !cchOnLine && !outputPrintf(" db ")) return false; /* See how many printable character we've got. */ uint32_t cchPrintable = 0; while ( cchPrintable < cb && RT_C_IS_PRINT(pb[cchPrintable]) && pb[cchPrintable] != '\'') cchPrintable++; bool fRc = true; if (cchPrintable) { if (cchPrintable + cchOnLine > 72) cchPrintable = 72 - cchOnLine; if (cchOnLine) { fRc = outputPrintf(", '%.*s'", cchPrintable, pb); cchOnLine += 4 + cchPrintable; } else { fRc = outputPrintf("'%.*s'", cchPrintable, pb); cchOnLine += 2 + cchPrintable; } pb += cchPrintable; cb -= cchPrintable; } else { if (cchOnLine) { fRc = outputPrintf(", 0%02xh", *pb); cchOnLine += 6; } else { fRc = outputPrintf("0%02xh", *pb); cchOnLine += 4; } pb++; cb--; } if (!fRc) return false; } return outputPrintf("\n"); } /** * For dumping a portion of a string table. * * @returns @c true on success, @c false on failure. * @param uFlatAddr The start address. * @param cb The size of the string table. */ static bool disStringsData(uint32_t uFlatAddr, uint32_t cb) { uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase]; uint32_t cchOnLine = 0; uint8_t bPrev = 255; while (cb > 0) { /* Line endings and beginnings. */ if ( cchOnLine >= 72 || (bPrev == '\0' && *pb != '\0')) { if (!outputPrintf("\n")) return false; cchOnLine = 0; } if ( !cchOnLine && !outputPrintf(" db ")) return false; /* See how many printable character we've got. */ uint32_t cchPrintable = 0; while ( cchPrintable < cb && RT_C_IS_PRINT(pb[cchPrintable]) && pb[cchPrintable] != '\'') cchPrintable++; bool fRc = true; if (cchPrintable) { if (cchPrintable + cchOnLine > 72) cchPrintable = 72 - cchOnLine; if (cchOnLine) { fRc = outputPrintf(", '%.*s'", cchPrintable, pb); cchOnLine += 4 + cchPrintable; } else { fRc = outputPrintf("'%.*s'", cchPrintable, pb); cchOnLine += 2 + cchPrintable; } pb += cchPrintable; cb -= cchPrintable; } else { if (cchOnLine) { fRc = outputPrintf(", 0%02xh", *pb); cchOnLine += 6; } else { fRc = outputPrintf("0%02xh", *pb); cchOnLine += 4; } pb++; cb--; } if (!fRc) return false; bPrev = pb[-1]; } return outputPrintf("\n"); } /** * Minds the gap between two segments. * * Gaps should generally be zero filled. * * @returns @c true on success, @c false on failure. * @param uFlatAddr The address of the gap. * @param cbPadding The size of the gap. */ static bool disCopySegmentGap(uint32_t uFlatAddr, uint32_t cbPadding) { if (g_cVerbose > 0) outputPrintf("\n" " ; Padding %#x bytes at %#x\n", cbPadding, uFlatAddr); uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase]; if (ASMMemIsZero(pb, cbPadding)) return outputPrintf(" times %u db 0\n", cbPadding); return disByteData(uFlatAddr, cbPadding); } /** * Worker for disGetNextSymbol that only does the looking up, no RTDBSYMBOL::cb * calc. * * @param uFlatAddr The address to start searching at. * @param cbMax The size of the search range. * @param poff Where to return the offset between the symbol * and @a uFlatAddr. * @param pSym Where to return the symbol data. */ static void disGetNextSymbolWorker(uint32_t uFlatAddr, uint32_t cbMax, uint32_t *poff, PRTDBGSYMBOL pSym) { RTINTPTR offMap = RTINTPTR_MAX; RTDBGSYMBOL MapSym; int rcMap = RTDbgModSymbolByAddr(g_hMapMod, RTDBGSEGIDX_RVA, uFlatAddr, RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL, &offMap, &MapSym); RTINTPTR off = RTINTPTR_MAX; int rc = RTDbgModSymbolByAddr(g_hSymMod, RTDBGSEGIDX_RVA, uFlatAddr - g_uBiosFlatBase, RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL, &off, pSym); if ( RT_SUCCESS(rc) && RT_ABS(off) <= RT_ABS(offMap)) pSym->Value += g_uBiosFlatBase; else { *pSym = MapSym; off = offMap; rc = rcMap; } if (RT_SUCCESS(rc)) { /* negative offset, indicates beyond. */ if (off <= 0) { *poff = (uint32_t)-off; /* Mangle symbols the assembler might confuse with instructions. */ size_t cchName = strlen(pSym->szName); if ( cchName <= 4 && ( strcmp("wait", pSym->szName) == 0 || strcmp("hlt", pSym->szName) == 0)) { memmove(&pSym->szName[1], &pSym->szName[0], cchName); pSym->szName[0] = '_'; pSym->szName[cchName + 1] = '_'; pSym->szName[cchName + 2] = '\0'; } return; } outputPrintf(" ; !! RTDbgModSymbolByAddr(,,%#x,,) -> off=%RTptr cb=%RTptr uValue=%RTptr '%s'\n", uFlatAddr, off, pSym->cb, pSym->Value, pSym->szName); } else if (rc != VERR_SYMBOL_NOT_FOUND) outputPrintf(" ; !! RTDbgModSymbolByAddr(,,%#x,,) -> %Rrc\n", uFlatAddr, rc); RTStrPrintf(pSym->szName, sizeof(pSym->szName), "_dummy_addr_%#x", uFlatAddr + cbMax); pSym->Value = uFlatAddr + cbMax; pSym->cb = 0; pSym->offSeg = uFlatAddr + cbMax; pSym->iSeg = RTDBGSEGIDX_RVA; pSym->iOrdinal = 0; pSym->fFlags = 0; *poff = cbMax; } /** * Gets the symbol at or after the given address. * * If there are no symbols in the specified range, @a pSym and @a poff will be * set up to indicate a symbol at the first byte after the range. * * @param uFlatAddr The address to start searching at. * @param cbMax The size of the search range. * @param poff Where to return the offset between the symbol * and @a uFlatAddr. * @param pSym Where to return the symbol data. */ static void disGetNextSymbol(uint32_t uFlatAddr, uint32_t cbMax, uint32_t *poff, PRTDBGSYMBOL pSym) { disGetNextSymbolWorker(uFlatAddr, cbMax, poff, pSym); if ( *poff < cbMax && pSym->cb == 0) { if (*poff + 1 < cbMax) { uint32_t off2; RTDBGSYMBOL Sym2; disGetNextSymbolWorker(uFlatAddr + *poff + 1, cbMax - *poff - 1, &off2, &Sym2); pSym->cb = off2 + 1; } else pSym->cb = 1; } if (pSym->cb > cbMax - *poff) pSym->cb = cbMax - *poff; if (g_cVerbose > 1) outputPrintf(" ; disGetNextSymbol %#x LB %#x -> off=%#x cb=%RTptr uValue=%RTptr '%s'\n", uFlatAddr, cbMax, *poff, pSym->cb, pSym->Value, pSym->szName); } /** * For dealing with the const segment (string constants). * * @returns @c true on success, @c false on failure. * @param iSeg The segment. */ static bool disConstSegment(uint32_t iSeg) { uint32_t uFlatAddr = g_aSegs[iSeg].uFlatAddr; uint32_t cb = g_aSegs[iSeg].cb; while (cb > 0) { uint32_t off; RTDBGSYMBOL Sym; disGetNextSymbol(uFlatAddr, cb, &off, &Sym); if (off > 0) { if (!disStringsData(uFlatAddr, off)) return false; cb -= off; uFlatAddr += off; off = 0; if (!cb) break; } bool fRc; if (off == 0) { size_t cchName = strlen(Sym.szName); fRc = outputPrintf("%s: %*s; %#x LB %#x\n", Sym.szName, cchName < 41 - 2 ? cchName - 41 - 2 : 0, "", uFlatAddr, Sym.cb); if (!fRc) return false; fRc = disStringsData(uFlatAddr, Sym.cb); uFlatAddr += Sym.cb; cb -= Sym.cb; } else { fRc = disStringsData(uFlatAddr, Sym.cb); uFlatAddr += cb; cb = 0; } if (!fRc) return false; } return true; } static bool disDataSegment(uint32_t iSeg) { uint32_t uFlatAddr = g_aSegs[iSeg].uFlatAddr; uint32_t cb = g_aSegs[iSeg].cb; while (cb > 0) { uint32_t off; RTDBGSYMBOL Sym; disGetNextSymbol(uFlatAddr, cb, &off, &Sym); if (off > 0) { if (!disByteData(uFlatAddr, off)) return false; cb -= off; uFlatAddr += off; off = 0; if (!cb) break; } bool fRc; if (off == 0) { size_t cchName = strlen(Sym.szName); fRc = outputPrintf("%s: %*s; %#x LB %#x\n", Sym.szName, cchName < 41 - 2 ? cchName - 41 - 2 : 0, "", uFlatAddr, Sym.cb); if (!fRc) return false; if (Sym.cb == 2) fRc = disWordData(uFlatAddr, 2); //else if (Sym.cb == 4 && disIsFarBiosAddr(uFlatAddr)) // fRc = disDWordData(uFlatAddr, 4); else if (Sym.cb == 4) fRc = disDWordData(uFlatAddr, 4); else if (disIsString(uFlatAddr, Sym.cb)) fRc = disStringData(uFlatAddr, Sym.cb); else fRc = disByteData(uFlatAddr, Sym.cb); uFlatAddr += Sym.cb; cb -= Sym.cb; } else { fRc = disByteData(uFlatAddr, cb); uFlatAddr += cb; cb = 0; } if (!fRc) return false; } return true; } static bool disIsCodeAndAdjustSize(uint32_t uFlatAddr, PRTDBGSYMBOL pSym, PBIOSSEG pSeg) { RT_NOREF_PV(uFlatAddr); switch (g_enmBiosType) { /* * This is for the PC BIOS. */ case kBiosType_System: if (!strcmp(pSeg->szName, "BIOSSEG")) { if ( !strcmp(pSym->szName, "rom_fdpt") || !strcmp(pSym->szName, "pmbios_gdt") || !strcmp(pSym->szName, "pmbios_gdt_desc") || !strcmp(pSym->szName, "_pmode_IDT") || !strcmp(pSym->szName, "_rmode_IDT") || !strncmp(pSym->szName, RT_STR_TUPLE("font")) || !strcmp(pSym->szName, "bios_string") || !strcmp(pSym->szName, "vector_table") || !strcmp(pSym->szName, "pci_routing_table_structure") || !strcmp(pSym->szName, "_pci_routing_table") ) return false; } if (!strcmp(pSym->szName, "cpu_reset")) pSym->cb = RT_MIN(pSym->cb, 5); else if (!strcmp(pSym->szName, "pci_init_end")) pSym->cb = RT_MIN(pSym->cb, 3); break; /* * This is for the VGA BIOS. */ case kBiosType_Vga: break; } return true; } static bool disIs16BitCode(const char *pszSymbol) { RT_NOREF_PV(pszSymbol); return true; } static bool disIsMemoryParameter(PCDISOPPARAM pParam, uint16_t fParam) { return fParam != OP_PARM_NONE && DISUSE_IS_EFFECTIVE_ADDR(pParam->fUse); } static bool disAccessesMemory(PCDISCPUSTATE pCpuState) { PCDISOPCODE pCurInstr = pCpuState->pCurInstr; return disIsMemoryParameter(&pCpuState->Param1, pCurInstr->fParam1) || disIsMemoryParameter(&pCpuState->Param2, pCurInstr->fParam2) || disIsMemoryParameter(&pCpuState->Param3, pCurInstr->fParam3) || disIsMemoryParameter(&pCpuState->Param4, pCurInstr->fParam4); } /** * Deals with instructions that YASM will assemble differently than WASM/WCC. */ static size_t disHandleYasmDifferences(PDISCPUSTATE pCpuState, uint32_t uFlatAddr, uint32_t cbInstr, char *pszBuf, size_t cbBuf, size_t cchUsed) { bool fDifferent = DISFormatYasmIsOddEncoding(pCpuState); uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase]; /* * Disassembler bugs. */ /** @todo Group 1a and 11 seems to be disassembled incorrectly when * modrm.reg != 0. Those encodings should be invalid AFAICT. */ if ( ( pCpuState->bOpCode == 0x8f /* group 1a */ || pCpuState->bOpCode == 0xc7 /* group 11 */ || pCpuState->bOpCode == 0xc6 /* group 11 - not verified */ ) && pCpuState->ModRM.Bits.Reg != 0) fDifferent = true; /* * Check these out and consider adding them to DISFormatYasmIsOddEncoding. */ else if ( pb[0] == 0xf3 && pb[1] == 0x66 && pb[2] == 0x6d) fDifferent = true; /* rep insd - prefix switched. */ else if ( pb[0] == 0xc6 && pb[1] == 0xc5 && pb[2] == 0xba) fDifferent = true; /* mov ch, 0bah - yasm uses a short sequence: 0xb5 0xba. */ /* * 32-bit retf. */ else if ( pb[0] == 0x66 && pb[1] == 0xcb) fDifferent = true; /* * Handle different stuff. */ if (fDifferent) { disByteData(uFlatAddr, cbInstr); /* lazy bird. */ if (cchUsed + 2 < cbBuf) { memmove(pszBuf + 2, pszBuf, cchUsed + 1); /* include terminating \0 */ cchUsed += 2; } pszBuf[0] = ';'; pszBuf[1] = ' '; } return cchUsed; } /** * @callback_method_impl{FNDISREADBYTES} * * @remarks @a uSrcAddr is the flat address. */ static DECLCALLBACK(int) disReadOpcodeBytes(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead) { RT_NOREF_PV(cbMinRead); RTUINTPTR offBios = pDis->uInstrAddr + offInstr - g_uBiosFlatBase; size_t cbToRead = cbMaxRead; if (offBios + cbToRead > g_cbImg) { if (offBios >= g_cbImg) cbToRead = 0; else cbToRead = g_cbImg - offBios; } memcpy(&pDis->abInstr[offInstr], &g_pbImg[offBios], cbToRead); pDis->cbCachedInstr = (uint8_t)(offInstr + cbToRead); return VINF_SUCCESS; } /** * Disassembles code. * * @returns @c true on success, @c false on failure. * @param uFlatAddr The address where the code starts. * @param cb The amount of code to disassemble. * @param fIs16Bit Is is 16-bit (@c true) or 32-bit (@c false). */ static bool disCode(uint32_t uFlatAddr, uint32_t cb, bool fIs16Bit) { uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase]; while (cb > 0) { /* Trailing zero padding detection. */ if ( *pb == '\0' && ASMMemIsZero(pb, RT_MIN(cb, 8))) { void *pv = ASMMemFirstNonZero(pb, cb); uint32_t cbZeros = pv ? (uint32_t)((uint8_t const *)pv - pb) : cb; if (!outputPrintf(" times %#x db 0\n", cbZeros)) return false; cb -= cbZeros; pb += cbZeros; uFlatAddr += cbZeros; if ( cb == 2 && pb[0] == 'X' && pb[1] == 'M') return disStringData(uFlatAddr, cb); } /* Work arounds for switch tables and such (disas assertions). */ else if ( 0 || ( pb[0] == 0x50 /* int13_cdemu switch */ && pb[1] == 0x4e && pb[2] == 0x49 && pb[3] == 0x48 && pb[4] == 0x47 ) || ( pb[0] == 0x8b /* _int13_harddisk_ext switch */ && pb[1] == 0x46 && pb[2] == 0x16 && pb[3] == 0x30 && pb[4] == 0xe8 && pb[5] == 0x80 ) || ( pb[0] == 0xd8 && pb[1] == 0x5f && pb[2] == 0x0b && pb[3] == 0x60 && pb[4] == 0x0b && pb[5] == 0x60 ) || ( pb[0] == 0x67 /* _pci16_function switch */ && pb[1] == 0x92 && pb[2] == 0x81 && pb[3] == 0x92 && pb[4] == 0x94 && pb[5] == 0x92 ) || ( pb[0] == 0xa3 /* _int1a_function switch */ && pb[1] == 0x67 && pb[2] == 0xca && pb[3] == 0x67 && pb[4] == 0xef && pb[5] == 0x67 ) || ( pb[0] == 0x0b /* _ahci_init byte table */ && pb[1] == 0x05 && pb[2] == 0x04 && pb[3] == 0x03 && pb[4] == 0x02 && pb[5] == 0x01 ) || ( pb[0] == 0x00 /* bytes after apm_out_str_ */ && pb[1] == 0x00 && pb[2] == 0x00 && pb[3] == 0x00 && pb[4] == 0x00 && pb[5] == 0x00 && pb[6] == 0xe0 && pb[7] == 0xa0 && pb[8] == 0xe2 && pb[9] == 0xa0 ) || ( pb[0] == 0xf0 /* switch for apm_worker */ && pb[1] == 0xa0 && pb[2] == 0xf2 && pb[3] == 0xa0 && pb[4] == 0xf6 && pb[5] == 0xa0 ) || ( pb[0] == 0xd4 && pb[1] == 0xc6 && pb[2] == 0xc5 && pb[3] == 0xba && pb[4] == 0xb8 && pb[5] == 0xb6 ) || ( pb[0] == 0xec /* _int15_function switch */ && pb[1] == 0xe9 && pb[2] == 0xd8 && pb[3] == 0xc1 && pb[4] == 0xc0 && pb[5] == 0xbf ) || ( pb[0] == 0x21 /* _int15_function32 switch */ && pb[1] == 0x66 && pb[2] == 0x43 && pb[3] == 0x66 && pb[4] == 0x66 && pb[5] == 0x66 ) || ( pb[0] == 0xf0 /* int15_function_mouse switch */ && pb[1] == 0x75 && pb[2] == 0x66 && pb[3] == 0x76 && pb[4] == 0xe9 && pb[5] == 0x76 ) || ( pb[0] == 0x60 && pb[1] == 0xa0 && pb[2] == 0x62 && pb[3] == 0xa0 && pb[4] == 0x66 && pb[5] == 0xa0 ) || 0 ) return disByteData(uFlatAddr, cb); else { unsigned cbInstr; DISCPUSTATE CpuState; CpuState.ModRM.Bits.Mod = 3; int rc = DISInstrWithReader(uFlatAddr, fIs16Bit ? DISCPUMODE_16BIT : DISCPUMODE_32BIT, disReadOpcodeBytes, NULL, &CpuState, &cbInstr); if ( RT_SUCCESS(rc) && cbInstr <= cb && CpuState.pCurInstr && CpuState.pCurInstr->uOpcode != OP_INVALID && CpuState.pCurInstr->uOpcode != OP_ILLUD2 && ( !(CpuState.fPrefix & DISPREFIX_ADDRSIZE) || disAccessesMemory(&CpuState))) { char szTmp[4096]; size_t cch = DISFormatYasmEx(&CpuState, szTmp, sizeof(szTmp), DIS_FMT_FLAGS_STRICT | DIS_FMT_FLAGS_BYTES_RIGHT | DIS_FMT_FLAGS_BYTES_COMMENT | DIS_FMT_FLAGS_BYTES_SPACED, NULL, NULL); cch = disHandleYasmDifferences(&CpuState, uFlatAddr, cbInstr, szTmp, sizeof(szTmp), cch); Assert(cch < sizeof(szTmp)); if (g_cVerbose > 1) { while (cch < 72) szTmp[cch++] = ' '; RTDBGLINE LineInfo = {0}; RTINTPTR offLine = -1; int rcLine = RTDbgModLineByAddr(g_hSymMod, RTDBGSEGIDX_RVA, uFlatAddr - g_uBiosFlatBase, &offLine, &LineInfo); if (RT_SUCCESS(rcLine) && offLine == 0 && cch < sizeof(szTmp) - 16) RTStrPrintf(&szTmp[cch], sizeof(szTmp) - cch, "; %#x %Rbn:%u", uFlatAddr, LineInfo.szFilename, LineInfo.uLineNo); else RTStrPrintf(&szTmp[cch], sizeof(szTmp) - cch, "; %#x", uFlatAddr); } if (!outputPrintf(" %s\n", szTmp)) return false; cb -= cbInstr; pb += cbInstr; uFlatAddr += cbInstr; } else { if (!disByteData(uFlatAddr, 1)) return false; cb--; pb++; uFlatAddr++; } } } return true; } static bool disCodeSegment(uint32_t iSeg) { uint32_t uFlatAddr = g_aSegs[iSeg].uFlatAddr; uint32_t cb = g_aSegs[iSeg].cb; while (cb > 0) { uint32_t off; RTDBGSYMBOL Sym; disGetNextSymbol(uFlatAddr, cb, &off, &Sym); if (off > 0) { if (!disByteData(uFlatAddr, off)) return false; cb -= off; uFlatAddr += off; off = 0; if (!cb) break; } bool fRc; if (off == 0) { size_t cchName = strlen(Sym.szName); fRc = outputPrintf("%s: %*s; %#x LB %#x\n", Sym.szName, cchName < 41 - 2 ? cchName - 41 - 2 : 0, "", uFlatAddr, Sym.cb); if (!fRc) return false; if (disIsCodeAndAdjustSize(uFlatAddr, &Sym, &g_aSegs[iSeg])) fRc = disCode(uFlatAddr, Sym.cb, disIs16BitCode(Sym.szName)); else fRc = disByteData(uFlatAddr, Sym.cb); uFlatAddr += Sym.cb; cb -= Sym.cb; } else { fRc = disByteData(uFlatAddr, cb); uFlatAddr += cb; cb = 0; } if (!fRc) return false; } return true; } static RTEXITCODE DisassembleBiosImage(void) { if (!disFileHeader()) return RTEXITCODE_FAILURE; /* * Work the image segment by segment. */ bool fRc = true; uint32_t uFlatAddr = g_uBiosFlatBase; for (uint32_t iSeg = 0; iSeg < g_cSegs && fRc; iSeg++) { /* Is there a gap between the segments? */ if (uFlatAddr < g_aSegs[iSeg].uFlatAddr) { fRc = disCopySegmentGap(uFlatAddr, g_aSegs[iSeg].uFlatAddr - uFlatAddr); if (!fRc) break; uFlatAddr = g_aSegs[iSeg].uFlatAddr; } else if (uFlatAddr > g_aSegs[iSeg].uFlatAddr) return RTMsgErrorExit(RTEXITCODE_FAILURE, "Overlapping segments: %u and %u; uFlatAddr=%#x\n", iSeg - 1, iSeg, uFlatAddr); /* Disassemble the segment. */ fRc = outputPrintf("\n" "section %s progbits vstart=%#x align=1 ; size=%#x class=%s group=%s\n", g_aSegs[iSeg].szName, g_aSegs[iSeg].uFlatAddr - g_uBiosFlatBase, g_aSegs[iSeg].cb, g_aSegs[iSeg].szClass, g_aSegs[iSeg].szGroup); if (!fRc) return RTEXITCODE_FAILURE; if (!strcmp(g_aSegs[iSeg].szName, "CONST")) fRc = disConstSegment(iSeg); else if (!strcmp(g_aSegs[iSeg].szClass, "DATA")) fRc = disDataSegment(iSeg); else fRc = disCodeSegment(iSeg); /* Advance. */ uFlatAddr += g_aSegs[iSeg].cb; } /* Final gap. */ if (uFlatAddr < g_uBiosFlatBase + g_cbImg) fRc = disCopySegmentGap(uFlatAddr, (uint32_t)(g_uBiosFlatBase + g_cbImg - uFlatAddr)); else if (uFlatAddr > g_uBiosFlatBase + g_cbImg) return RTMsgErrorExit(RTEXITCODE_FAILURE, "Last segment spills beyond 1MB; uFlatAddr=%#x\n", uFlatAddr); if (!fRc) return RTEXITCODE_FAILURE; return RTEXITCODE_SUCCESS; } /** * Parses the symbol file for the BIOS. * * This is in ELF/DWARF format. * * @returns RTEXITCODE_SUCCESS or RTEXITCODE_FAILURE+msg. * @param pszBiosSym Path to the sym file. */ static RTEXITCODE ParseSymFile(const char *pszBiosSym) { int rc = RTDbgModCreateFromImage(&g_hSymMod, pszBiosSym, "VBoxBios", RTLDRARCH_WHATEVER, NIL_RTDBGCFG); if (RT_FAILURE(rc)) return RTMsgErrorExit(RTEXITCODE_FAILURE, "Error opening '%s': %Rrc", pszBiosSym, rc); if (g_cVerbose > 0) { /* Show segments */ RTDBGSEGIDX cSegs = RTDbgModSegmentCount(g_hSymMod); for (RTDBGSEGIDX iSeg = 0; iSeg < cSegs; iSeg++) { RTDBGSEGMENT SegInfo; rc = RTDbgModSegmentByIndex(g_hSymMod, iSeg, &SegInfo); if (RT_SUCCESS(rc)) RTMsgInfo("Seg#%u: %05RX64 LB %04RX64 rva %04RX64 %s\n", iSeg, SegInfo.Address, SegInfo.cb, SegInfo.uRva, SegInfo.szName); else RTMsgInfo("Seg#%u: RTDbgModSegmentByIndex -> %Rrc\n", iSeg, rc); } } return RTEXITCODE_SUCCESS; } /** * Display an error with the mapfile name and current line, return false. * * @returns @c false. * @param pMap The map file handle. * @param pszFormat The format string. * @param ... Format arguments. */ static bool mapError(PBIOSMAP pMap, const char *pszFormat, ...) { va_list va; va_start(va, pszFormat); RTMsgError("%s:%d: %N", pMap->pszMapFile, pMap->iLine, pszFormat, &va); va_end(va); return false; } /** * Reads a line from the file. * * @returns @c true on success, @c false + msg on failure, @c false on eof. * @param pMap The map file handle. */ static bool mapReadLine(PBIOSMAP pMap) { int rc = RTStrmGetLine(pMap->hStrm, pMap->szLine, sizeof(pMap->szLine)); if (RT_FAILURE(rc)) { if (rc == VERR_EOF) { pMap->fEof = true; pMap->cch = 0; pMap->offNW = 0; pMap->szLine[0] = '\0'; } else RTMsgError("%s:%d: Read error %Rrc", pMap->pszMapFile, pMap->iLine + 1, rc); return false; } pMap->iLine++; pMap->cch = (uint32_t)strlen(pMap->szLine); /* Check out leading white space. */ if (!RT_C_IS_SPACE(pMap->szLine[0])) pMap->offNW = 0; else { uint32_t off = 1; while (RT_C_IS_SPACE(pMap->szLine[off])) off++; pMap->offNW = off; } return true; } /** * Checks if it is an empty line. * @returns @c true if empty, @c false if not. * @param pMap The map file handle. */ static bool mapIsEmptyLine(PBIOSMAP pMap) { Assert(pMap->offNW <= pMap->cch); return pMap->offNW == pMap->cch; } /** * Reads ahead in the map file until a non-empty line or EOF is encountered. * * @returns @c true on success, @c false + msg on failure, @c false on eof. * @param pMap The map file handle. */ static bool mapSkipEmptyLines(PBIOSMAP pMap) { for (;;) { if (!mapReadLine(pMap)) return false; if (pMap->offNW < pMap->cch) return true; } } /** * Reads ahead in the map file until an empty line or EOF is encountered. * * @returns @c true on success, @c false + msg on failure, @c false on eof. * @param pMap The map file handle. */ static bool mapSkipNonEmptyLines(PBIOSMAP pMap) { for (;;) { if (!mapReadLine(pMap)) return false; if (pMap->offNW == pMap->cch) return true; } } /** * Strips the current line. * * The string length may change. * * @returns Pointer to the first non-space character. * @param pMap The map file handle. * @param pcch Where to return the length of the unstripped * part. Optional. */ static char *mapStripCurrentLine(PBIOSMAP pMap, size_t *pcch) { char *psz = &pMap->szLine[pMap->offNW]; char *pszEnd = &pMap->szLine[pMap->cch]; while ( (uintptr_t)pszEnd > (uintptr_t)psz && RT_C_IS_SPACE(pszEnd[-1])) { *--pszEnd = '\0'; pMap->cch--; } if (pcch) *pcch = pszEnd - psz; return psz; } /** * Reads a line from the file and right strips it. * * @returns Pointer to szLine on success, @c NULL + msg on failure, @c NULL on * EOF. * @param pMap The map file handle. * @param pcch Where to return the length of the unstripped * part. Optional. */ static char *mapReadLineStripRight(PBIOSMAP pMap, size_t *pcch) { if (!mapReadLine(pMap)) return NULL; mapStripCurrentLine(pMap, NULL); if (pcch) *pcch = pMap->cch; return pMap->szLine; } /** * mapReadLine() + mapStripCurrentLine(). * * @returns Pointer to the first non-space character in the new line. NULL on * read error (bitched already) or end of file. * @param pMap The map file handle. * @param pcch Where to return the length of the unstripped * part. Optional. */ static char *mapReadLineStrip(PBIOSMAP pMap, size_t *pcch) { if (!mapReadLine(pMap)) return NULL; return mapStripCurrentLine(pMap, pcch); } /** * Parses a word, copying it into the supplied buffer, and skipping any spaces * following it. * * @returns @c true on success, @c false on failure. * @param ppszCursor Pointer to the cursor variable. * @param pszBuf The output buffer. * @param cbBuf The size of the output buffer. */ static bool mapParseWord(char **ppszCursor, char *pszBuf, size_t cbBuf) { /* Check that we start on a non-blank. */ char *pszStart = *ppszCursor; if (!*pszStart || RT_C_IS_SPACE(*pszStart)) return false; /* Find the end of the word. */ char *psz = pszStart + 1; while (*psz && !RT_C_IS_SPACE(*psz)) psz++; /* Copy it. */ size_t cchWord = (uintptr_t)psz - (uintptr_t)pszStart; if (cchWord >= cbBuf) return false; memcpy(pszBuf, pszStart, cchWord); pszBuf[cchWord] = '\0'; /* Skip blanks following it. */ while (RT_C_IS_SPACE(*psz)) psz++; *ppszCursor = psz; return true; } /** * Parses an 16:16 address. * * @returns @c true on success, @c false on failure. * @param ppszCursor Pointer to the cursor variable. * @param pAddr Where to return the address. */ static bool mapParseAddress(char **ppszCursor, PRTFAR16 pAddr) { char szWord[32]; if (!mapParseWord(ppszCursor, szWord, sizeof(szWord))) return false; size_t cchWord = strlen(szWord); /* An address is at least 16:16 format. It may be 16:32. It may also be flagged. */ size_t cchAddr = 4 + 1 + 4; if (cchWord < cchAddr) return false; if ( !RT_C_IS_XDIGIT(szWord[0]) || !RT_C_IS_XDIGIT(szWord[1]) || !RT_C_IS_XDIGIT(szWord[2]) || !RT_C_IS_XDIGIT(szWord[3]) || szWord[4] != ':' || !RT_C_IS_XDIGIT(szWord[5]) || !RT_C_IS_XDIGIT(szWord[6]) || !RT_C_IS_XDIGIT(szWord[7]) || !RT_C_IS_XDIGIT(szWord[8]) ) return false; if ( cchWord > cchAddr && RT_C_IS_XDIGIT(szWord[9]) && RT_C_IS_XDIGIT(szWord[10]) && RT_C_IS_XDIGIT(szWord[11]) && RT_C_IS_XDIGIT(szWord[12])) cchAddr += 4; /* Drop flag if present. */ if (cchWord > cchAddr) { if (RT_C_IS_XDIGIT(szWord[cchAddr])) return false; szWord[cchAddr] = '\0'; cchWord = cchAddr; } /* Convert it. */ szWord[4] = '\0'; int rc1 = RTStrToUInt16Full(szWord, 16, &pAddr->sel); if (rc1 != VINF_SUCCESS) return false; int rc2 = RTStrToUInt16Full(szWord + 5, 16, &pAddr->off); if (rc2 != VINF_SUCCESS) return false; return true; } /** * Parses a size. * * @returns @c true on success, @c false on failure. * @param ppszCursor Pointer to the cursor variable. * @param pcb Where to return the size. */ static bool mapParseSize(char **ppszCursor, uint32_t *pcb) { char szWord[32]; if (!mapParseWord(ppszCursor, szWord, sizeof(szWord))) return false; size_t cchWord = strlen(szWord); if (cchWord != 8) return false; int rc = RTStrToUInt32Full(szWord, 16, pcb); if (rc != VINF_SUCCESS) return false; return true; } /** * Parses a section box and the following column header. * * @returns @c true on success, @c false + msg on failure, @c false on eof. * @param pMap Map file handle. * @param pszSectionNm The expected section name. * @param cColumns The number of columns. * @param ... The column names. */ static bool mapSkipThruColumnHeadings(PBIOSMAP pMap, const char *pszSectionNm, uint32_t cColumns, ...) { if ( mapIsEmptyLine(pMap) && !mapSkipEmptyLines(pMap)) return false; /* +------------+ */ size_t cch; char *psz = mapStripCurrentLine(pMap, &cch); if (!psz) return false; if ( psz[0] != '+' || psz[1] != '-' || psz[2] != '-' || psz[3] != '-' || psz[cch - 4] != '-' || psz[cch - 3] != '-' || psz[cch - 2] != '-' || psz[cch - 1] != '+' ) { RTMsgError("%s:%d: Expected section box: +-----...", pMap->pszMapFile, pMap->iLine); return false; } /* | pszSectionNm | */ psz = mapReadLineStrip(pMap, &cch); if (!psz) return false; size_t cchSectionNm = strlen(pszSectionNm); if ( psz[0] != '|' || psz[1] != ' ' || psz[2] != ' ' || psz[3] != ' ' || psz[cch - 4] != ' ' || psz[cch - 3] != ' ' || psz[cch - 2] != ' ' || psz[cch - 1] != '|' || cch != 1 + 3 + cchSectionNm + 3 + 1 || strncmp(&psz[4], pszSectionNm, cchSectionNm) ) { RTMsgError("%s:%d: Expected section box: | %s |", pMap->pszMapFile, pMap->iLine, pszSectionNm); return false; } /* +------------+ */ psz = mapReadLineStrip(pMap, &cch); if (!psz) return false; if ( psz[0] != '+' || psz[1] != '-' || psz[2] != '-' || psz[3] != '-' || psz[cch - 4] != '-' || psz[cch - 3] != '-' || psz[cch - 2] != '-' || psz[cch - 1] != '+' ) { RTMsgError("%s:%d: Expected section box: +-----...", pMap->pszMapFile, pMap->iLine); return false; } /* There may be a few lines describing the table notation now, surrounded by blank lines. */ do { psz = mapReadLineStripRight(pMap, &cch); if (!psz) return false; } while ( *psz == '\0' || ( !RT_C_IS_SPACE(psz[0]) && RT_C_IS_SPACE(psz[1]) && psz[2] == '=' && RT_C_IS_SPACE(psz[3])) ); /* Should have the column heading now. */ va_list va; va_start(va, cColumns); for (uint32_t i = 0; i < cColumns; i++) { const char *pszColumn = va_arg(va, const char *); size_t cchColumn = strlen(pszColumn); if ( strncmp(psz, pszColumn, cchColumn) || ( psz[cchColumn] != '\0' && !RT_C_IS_SPACE(psz[cchColumn]))) { va_end(va); RTMsgError("%s:%d: Expected column '%s' found '%s'", pMap->pszMapFile, pMap->iLine, pszColumn, psz); return false; } psz += cchColumn; while (RT_C_IS_SPACE(*psz)) psz++; } va_end(va); /* The next line is the underlining. */ psz = mapReadLineStripRight(pMap, &cch); if (!psz) return false; if (*psz != '=' || psz[cch - 1] != '=') { RTMsgError("%s:%d: Expected column header underlining", pMap->pszMapFile, pMap->iLine); return false; } /* Skip one blank line. */ psz = mapReadLineStripRight(pMap, &cch); if (!psz) return false; if (*psz) { RTMsgError("%s:%d: Expected blank line beneath the column headers", pMap->pszMapFile, pMap->iLine); return false; } return true; } /** * Parses a segment list. * * @returns @c true on success, @c false + msg on failure, @c false on eof. * @param pMap The map file handle. */ static bool mapParseSegments(PBIOSMAP pMap) { for (;;) { if (!mapReadLineStripRight(pMap, NULL)) return false; /* The end? The line should be empty. Expectes segment name to not start with a space. */ if (!pMap->szLine[0] || RT_C_IS_SPACE(pMap->szLine[0])) { if (!pMap->szLine[0]) return true; RTMsgError("%s:%u: Malformed segment line", pMap->pszMapFile, pMap->iLine); return false; } /* Parse the segment line. */ uint32_t iSeg = g_cSegs; if (iSeg >= RT_ELEMENTS(g_aSegs)) { RTMsgError("%s:%u: Too many segments", pMap->pszMapFile, pMap->iLine); return false; } char *psz = pMap->szLine; if (!mapParseWord(&psz, g_aSegs[iSeg].szName, sizeof(g_aSegs[iSeg].szName))) RTMsgError("%s:%u: Segment name parser error", pMap->pszMapFile, pMap->iLine); else if (!mapParseWord(&psz, g_aSegs[iSeg].szClass, sizeof(g_aSegs[iSeg].szClass))) RTMsgError("%s:%u: Segment class parser error", pMap->pszMapFile, pMap->iLine); else if (!mapParseWord(&psz, g_aSegs[iSeg].szGroup, sizeof(g_aSegs[iSeg].szGroup))) RTMsgError("%s:%u: Segment group parser error", pMap->pszMapFile, pMap->iLine); else if (!mapParseAddress(&psz, &g_aSegs[iSeg].Address)) RTMsgError("%s:%u: Segment address parser error", pMap->pszMapFile, pMap->iLine); else if (!mapParseSize(&psz, &g_aSegs[iSeg].cb)) RTMsgError("%s:%u: Segment size parser error", pMap->pszMapFile, pMap->iLine); else { g_aSegs[iSeg].uFlatAddr = ((uint32_t)g_aSegs[iSeg].Address.sel << 4) + g_aSegs[iSeg].Address.off; g_cSegs++; if (g_cVerbose > 2) RTStrmPrintf(g_pStdErr, "read segment at %08x / %04x:%04x LB %04x %s / %s / %s\n", g_aSegs[iSeg].uFlatAddr, g_aSegs[iSeg].Address.sel, g_aSegs[iSeg].Address.off, g_aSegs[iSeg].cb, g_aSegs[iSeg].szName, g_aSegs[iSeg].szClass, g_aSegs[iSeg].szGroup); while (RT_C_IS_SPACE(*psz)) psz++; if (!*psz) continue; RTMsgError("%s:%u: Junk at end of line", pMap->pszMapFile, pMap->iLine); } return false; } } /** * Sorts the segment array by flat address and adds them to the debug module. * * @returns @c true on success, @c false + msg on failure, @c false on eof. */ static bool mapSortAndAddSegments(void) { for (uint32_t i = 0; i < g_cSegs; i++) { for (uint32_t j = i + 1; j < g_cSegs; j++) if (g_aSegs[j].uFlatAddr < g_aSegs[i].uFlatAddr) { BIOSSEG Tmp = g_aSegs[i]; g_aSegs[i] = g_aSegs[j]; g_aSegs[j] = Tmp; } g_aSegs[i].uRva = g_aSegs[i].uFlatAddr - g_aSegs[0].uFlatAddr; if (g_cVerbose > 0) RTStrmPrintf(g_pStdErr, "segment at %08x / %04x / %04x:%04x LB %04x %s / %s / %s\n", g_aSegs[i].uFlatAddr, g_aSegs[i].uRva, g_aSegs[i].Address.sel, g_aSegs[i].Address.off, g_aSegs[i].cb, g_aSegs[i].szName, g_aSegs[i].szClass, g_aSegs[i].szGroup); RTDBGSEGIDX idx = i; int rc = RTDbgModSegmentAdd(g_hMapMod, g_aSegs[i].uFlatAddr, g_aSegs[i].cb, g_aSegs[i].szName, 0 /*fFlags*/, &idx); if (RT_FAILURE(rc)) { RTMsgError("RTDbgModSegmentAdd failed on %s: %Rrc", g_aSegs[i].szName); return false; } } return true; } /** * Parses a segment list. * * @returns @c true on success, @c false + msg on failure, @c false on eof. * @param pMap The map file handle. */ static bool mapParseSymbols(PBIOSMAP pMap) { for (;;) { if (!mapReadLineStripRight(pMap, NULL)) return false; /* The end? The line should be empty. Expectes segment name to not start with a space. */ if (!pMap->szLine[0] || RT_C_IS_SPACE(pMap->szLine[0])) { if (!pMap->szLine[0]) return true; return mapError(pMap, "Malformed symbol line"); } if (!strncmp(pMap->szLine, RT_STR_TUPLE("Module: "))) { /* Parse the module line. */ size_t offObj = sizeof("Module: ") - 1; while (RT_C_IS_SPACE(pMap->szLine[offObj])) offObj++; size_t offSrc = offObj; char ch; while ((ch = pMap->szLine[offSrc]) != '(' && ch != '\0') offSrc++; size_t cchObj = offSrc - offObj; offSrc++; size_t cchSrc = offSrc; while ((ch = pMap->szLine[cchSrc]) != ')' && ch != '\0') cchSrc++; cchSrc -= offSrc; if (ch != ')') return mapError(pMap, "Symbol/Module line parse error"); PBIOSOBJFILE pObjFile = (PBIOSOBJFILE)RTMemAllocZ(sizeof(*pObjFile) + cchSrc + cchObj + 2); if (!pObjFile) return mapError(pMap, "Out of memory"); char *psz = (char *)(pObjFile + 1); pObjFile->pszObject = psz; memcpy(psz, &pMap->szLine[offObj], cchObj); psz += cchObj; *psz++ = '\0'; pObjFile->pszSource = psz; memcpy(psz, &pMap->szLine[offSrc], cchSrc); psz[cchSrc] = '\0'; RTListAppend(&g_ObjList, &pObjFile->Node); } else { /* Parse the segment line. */ RTFAR16 Addr; char *psz = pMap->szLine; if (!mapParseAddress(&psz, &Addr)) return mapError(pMap, "Symbol address parser error"); char szName[4096]; if (!mapParseWord(&psz, szName, sizeof(szName))) return mapError(pMap, "Symbol name parser error"); uint32_t uFlatAddr = ((uint32_t)Addr.sel << 4) + Addr.off; if (uFlatAddr != 0) { int rc = RTDbgModSymbolAdd(g_hMapMod, szName, RTDBGSEGIDX_RVA, uFlatAddr, 0 /*cb*/, 0 /*fFlags*/, NULL); if (RT_FAILURE(rc) && rc != VERR_DBG_ADDRESS_CONFLICT) { /* HACK ALERT! For dealing with lables at segment size. */ /** @todo fix end labels. */ rc = RTDbgModSymbolAdd(g_hMapMod, szName, RTDBGSEGIDX_RVA, uFlatAddr - 1, 0 /*cb*/, 0 /*fFlags*/, NULL); if (RT_FAILURE(rc) && rc != VERR_DBG_ADDRESS_CONFLICT) return mapError(pMap, "RTDbgModSymbolAdd failed: %Rrc", rc); } if (g_cVerbose > 2) RTStrmPrintf(g_pStdErr, "read symbol - %08x %s\n", uFlatAddr, szName); while (RT_C_IS_SPACE(*psz)) psz++; if (*psz) return mapError(pMap, "Junk at end of line"); } } } } /** * Parses the given map file. * * @returns RTEXITCODE_SUCCESS and lots of globals, or RTEXITCODE_FAILURE and a * error message. * @param pMap The map file handle. */ static RTEXITCODE mapParseFile(PBIOSMAP pMap) { int rc = RTDbgModCreate(&g_hMapMod, "VBoxBios", 0 /*cbSeg*/, 0 /*fFlags*/); if (RT_FAILURE(rc)) return RTMsgErrorExit(RTEXITCODE_FAILURE, "RTDbgModCreate failed: %Rrc", rc); /* * Read the header. */ if (!mapReadLine(pMap)) return RTEXITCODE_FAILURE; if (strncmp(pMap->szLine, RT_STR_TUPLE("Open Watcom Linker Version"))) return RTMsgErrorExit(RTEXITCODE_FAILURE, "Unexpected map-file header: '%s'", pMap->szLine); if ( !mapSkipNonEmptyLines(pMap) || !mapSkipEmptyLines(pMap)) return RTEXITCODE_FAILURE; /* * Skip groups. */ if (!mapSkipThruColumnHeadings(pMap, "Groups", 3, "Group", "Address", "Size", NULL)) return RTEXITCODE_FAILURE; if (!mapSkipNonEmptyLines(pMap)) return RTEXITCODE_FAILURE; /* * Parse segments. */ if (!mapSkipThruColumnHeadings(pMap, "Segments", 5, "Segment", "Class", "Group", "Address", "Size")) return RTEXITCODE_FAILURE; if (!mapParseSegments(pMap)) return RTEXITCODE_FAILURE; if (!mapSortAndAddSegments()) return RTEXITCODE_FAILURE; /* * Parse symbols. */ if (!mapSkipThruColumnHeadings(pMap, "Memory Map", 2, "Address", "Symbol")) return RTEXITCODE_FAILURE; if (!mapParseSymbols(pMap)) return RTEXITCODE_FAILURE; /* Ignore the rest of the file. */ return RTEXITCODE_SUCCESS; } /** * Parses the linker map file for the BIOS. * * This is generated by the Watcom linker. * * @returns RTEXITCODE_SUCCESS or RTEXITCODE_FAILURE+msg. * @param pszBiosMap Path to the map file. */ static RTEXITCODE ParseMapFile(const char *pszBiosMap) { BIOSMAP Map; Map.pszMapFile = pszBiosMap; Map.hStrm = NULL; Map.iLine = 0; Map.fEof = false; Map.cch = 0; Map.offNW = 0; int rc = RTStrmOpen(pszBiosMap, "r", &Map.hStrm); if (RT_FAILURE(rc)) return RTMsgErrorExit(RTEXITCODE_FAILURE, "Error opening '%s': %Rrc", pszBiosMap, rc); RTEXITCODE rcExit = mapParseFile(&Map); RTStrmClose(Map.hStrm); return rcExit; } /** * Reads the BIOS image into memory (g_pbImg and g_cbImg). * * @returns RTEXITCODE_SUCCESS or RTEXITCODE_FAILURE+msg. * @param pszBiosImg Path to the image file. */ static RTEXITCODE ReadBiosImage(const char *pszBiosImg) { void *pvImg; size_t cbImg; int rc = RTFileReadAll(pszBiosImg, &pvImg, &cbImg); if (RT_FAILURE(rc)) return RTMsgErrorExit(RTEXITCODE_FAILURE, "Error reading '%s': %Rrc", pszBiosImg, rc); size_t cbImgExpect; switch (g_enmBiosType) { case kBiosType_System: cbImgExpect = _64K; break; case kBiosType_Vga: cbImgExpect = _32K; break; default: cbImgExpect = 0; break; } if (cbImg != cbImgExpect) { RTFileReadAllFree(pvImg, cbImg); return RTMsgErrorExit(RTEXITCODE_FAILURE, "The BIOS image %u bytes intead of %u bytes", cbImg, cbImgExpect); } g_pbImg = (uint8_t *)pvImg; g_cbImg = cbImg; return RTEXITCODE_SUCCESS; } int main(int argc, char **argv) { int rc = RTR3InitExe(argc, &argv, 0); if (RT_FAILURE(rc)) return RTMsgInitFailure(rc); RTListInit(&g_ObjList); /* * Option config. */ static RTGETOPTDEF const s_aOpts[] = { { "--bios-image", 'i', RTGETOPT_REQ_STRING }, { "--bios-map", 'm', RTGETOPT_REQ_STRING }, { "--bios-sym", 's', RTGETOPT_REQ_STRING }, { "--bios-type", 't', RTGETOPT_REQ_STRING }, { "--output", 'o', RTGETOPT_REQ_STRING }, { "--verbose", 'v', RTGETOPT_REQ_NOTHING }, { "--quiet", 'q', RTGETOPT_REQ_NOTHING }, }; const char *pszBiosMap = NULL; const char *pszBiosSym = NULL; const char *pszBiosImg = NULL; const char *pszOutput = NULL; RTGETOPTUNION ValueUnion; RTGETOPTSTATE GetOptState; rc = RTGetOptInit(&GetOptState, argc, argv, &s_aOpts[0], RT_ELEMENTS(s_aOpts), 1, RTGETOPTINIT_FLAGS_OPTS_FIRST); AssertReleaseRCReturn(rc, RTEXITCODE_FAILURE); /* * Process the options. */ while ((rc = RTGetOpt(&GetOptState, &ValueUnion)) != 0) { switch (rc) { case 'i': if (pszBiosImg) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--bios-image is given more than once"); pszBiosImg = ValueUnion.psz; break; case 'm': if (pszBiosMap) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--bios-map is given more than once"); pszBiosMap = ValueUnion.psz; break; case 's': if (pszBiosSym) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--bios-sym is given more than once"); pszBiosSym = ValueUnion.psz; break; case 'o': if (pszOutput) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--output is given more than once"); pszOutput = ValueUnion.psz; break; case 't': if (!strcmp(ValueUnion.psz, "system")) { g_enmBiosType = kBiosType_System; g_uBiosFlatBase = 0xf0000; } else if (!strcmp(ValueUnion.psz, "vga")) { g_enmBiosType = kBiosType_Vga; g_uBiosFlatBase = 0xc0000; } else return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Unknown bios type '%s'", ValueUnion.psz); break; case 'v': g_cVerbose++; break; case 'q': g_cVerbose = 0; break; case 'H': RTPrintf("usage: %Rbn --bios-image --bios-map [--output ]\n", argv[0]); return RTEXITCODE_SUCCESS; case 'V': { /* The following is assuming that svn does it's job here. */ char szRev[] = "$Revision: 76553 $"; char *psz = szRev; while (*psz && !RT_C_IS_DIGIT(*psz)) psz++; size_t i = strlen(psz); while (i > 0 && !RT_C_IS_DIGIT(psz[i - 1])) psz[--i] = '\0'; RTPrintf("r%s\n", psz); return RTEXITCODE_SUCCESS; } default: return RTGetOptPrintError(rc, &ValueUnion); } } /* * Got it all? */ if (!pszBiosImg) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--bios-image is required"); if (!pszBiosMap) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--bios-map is required"); if (!pszBiosSym) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--bios-sym is required"); /* * Do the job. */ RTEXITCODE rcExit; rcExit = ReadBiosImage(pszBiosImg); if (rcExit == RTEXITCODE_SUCCESS) rcExit = ParseMapFile(pszBiosMap); if (rcExit == RTEXITCODE_SUCCESS) rcExit = ParseSymFile(pszBiosSym); if (rcExit == RTEXITCODE_SUCCESS) rcExit = OpenOutputFile(pszOutput); if (rcExit == RTEXITCODE_SUCCESS) rcExit = DisassembleBiosImage(); return rcExit; }