VirtualBox

source: vbox/trunk/src/VBox/Devices/Bus/DevIommuAmd.cpp@ 86132

Last change on this file since 86132 was 86132, checked in by vboxsync, 4 years ago

AMD IOMMU: bugref:9654 Nit.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 192.8 KB
Line 
1/* $Id: DevIommuAmd.cpp 86132 2020-09-16 07:52:40Z vboxsync $ */
2/** @file
3 * IOMMU - Input/Output Memory Management Unit - AMD implementation.
4 */
5
6/*
7 * Copyright (C) 2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DEV_IOMMU
23#include <VBox/msi.h>
24#include <VBox/iommu-amd.h>
25#include <VBox/vmm/pdmdev.h>
26#include <VBox/AssertGuest.h>
27
28#include <iprt/x86.h>
29#include <iprt/alloc.h>
30#include <iprt/string.h>
31
32#include "VBoxDD.h"
33#include "DevIommuAmd.h"
34
35
36/*********************************************************************************************************************************
37* Defined Constants And Macros *
38*********************************************************************************************************************************/
39/** Release log prefix string. */
40#define IOMMU_LOG_PFX "IOMMU-AMD"
41/** The current saved state version. */
42#define IOMMU_SAVED_STATE_VERSION 1
43/** The IOTLB entry magic. */
44#define IOMMU_IOTLBE_MAGIC 0x10acce55
45
46
47/*********************************************************************************************************************************
48* Structures and Typedefs *
49*********************************************************************************************************************************/
50/**
51 * Acquires the IOMMU PDM lock.
52 * This will make a long jump to ring-3 to acquire the lock if necessary.
53 */
54#define IOMMU_LOCK(a_pDevIns) \
55 do { \
56 int rcLock = PDMDevHlpCritSectEnter((a_pDevIns), (a_pDevIns)->CTX_SUFF(pCritSectRo), VINF_SUCCESS); \
57 if (RT_LIKELY(rcLock == VINF_SUCCESS)) \
58 { /* likely */ } \
59 else \
60 return rcLock; \
61 } while (0)
62
63/**
64 * Acquires the IOMMU PDM lock (asserts on failure rather than returning an error).
65 * This will make a long jump to ring-3 to acquire the lock if necessary.
66 */
67#define IOMMU_LOCK_NORET(a_pDevIns) \
68 do { \
69 int rcLock = PDMDevHlpCritSectEnter((a_pDevIns), (a_pDevIns)->CTX_SUFF(pCritSectRo), VINF_SUCCESS); \
70 AssertRC(rcLock); \
71 } while (0)
72
73/**
74 * Releases the IOMMU PDM lock.
75 */
76#define IOMMU_UNLOCK(a_pDevIns) \
77 do { \
78 PDMDevHlpCritSectLeave((a_pDevIns), (a_pDevIns)->CTX_SUFF(pCritSectRo)); \
79 } while (0)
80
81/**
82 * Asserts that the critsect is owned by this thread.
83 */
84#define IOMMU_ASSERT_LOCKED(a_pDevIns) \
85 do { \
86 Assert(PDMDevHlpCritSectIsOwner(pDevIns, pDevIns->CTX_SUFF(pCritSectRo))); \
87 } while (0)
88
89/**
90 * Asserts that the critsect is not owned by this thread.
91 */
92#define IOMMU_ASSERT_NOT_LOCKED(a_pDevIns) \
93 do { \
94 Assert(!PDMDevHlpCritSectIsOwner(pDevIns, pDevIns->CTX_SUFF(pCritSectRo))); \
95 } while (0)
96
97/**
98 * IOMMU operations (transaction) types.
99 */
100typedef enum IOMMUOP
101{
102 /** Address translation request. */
103 IOMMUOP_TRANSLATE_REQ = 0,
104 /** Memory read request. */
105 IOMMUOP_MEM_READ,
106 /** Memory write request. */
107 IOMMUOP_MEM_WRITE,
108 /** Interrupt request. */
109 IOMMUOP_INTR_REQ,
110 /** Command. */
111 IOMMUOP_CMD
112} IOMMUOP;
113AssertCompileSize(IOMMUOP, 4);
114
115/**
116 * I/O page walk result.
117 */
118typedef struct
119{
120 /** The translated system physical address. */
121 RTGCPHYS GCPhysSpa;
122 /** The number of offset bits in the system physical address. */
123 uint8_t cShift;
124 /** The I/O permissions allowed by the translation (IOMMU_IO_PERM_XXX). */
125 uint8_t fIoPerm;
126 /** Padding. */
127 uint8_t abPadding[2];
128} IOWALKRESULT;
129/** Pointer to an I/O walk result struct. */
130typedef IOWALKRESULT *PIOWALKRESULT;
131/** Pointer to a const I/O walk result struct. */
132typedef IOWALKRESULT *PCIOWALKRESULT;
133
134/**
135 * IOMMU I/O TLB Entry.
136 * Keep this as small and aligned as possible.
137 */
138typedef struct
139{
140 /** The translated system physical address (SPA) of the page. */
141 RTGCPHYS GCPhysSpa;
142 /** The index of the 4K page within a large page. */
143 uint32_t idxSubPage;
144 /** The I/O access permissions (IOMMU_IO_PERM_XXX). */
145 uint8_t fIoPerm;
146 /** The number of offset bits in the translation indicating page size. */
147 uint8_t cShift;
148 /** Alignment padding. */
149 uint8_t afPadding[2];
150} IOTLBE_T;
151AssertCompileSize(IOTLBE_T, 16);
152/** Pointer to an IOMMU I/O TLB entry struct. */
153typedef IOTLBE_T *PIOTLBE_T;
154/** Pointer to a const IOMMU I/O TLB entry struct. */
155typedef IOTLBE_T const *PCIOTLBE_T;
156
157/**
158 * The shared IOMMU device state.
159 */
160typedef struct IOMMU
161{
162 /** IOMMU device index (0 is at the top of the PCI tree hierarchy). */
163 uint32_t idxIommu;
164 /** Alignment padding. */
165 uint32_t uPadding0;
166
167 /** Whether the command thread is sleeping. */
168 bool volatile fCmdThreadSleeping;
169 /** Alignment padding. */
170 uint8_t afPadding0[3];
171 /** Whether the command thread has been signaled for wake up. */
172 bool volatile fCmdThreadSignaled;
173 /** Alignment padding. */
174 uint8_t afPadding1[3];
175
176 /** The event semaphore the command thread waits on. */
177 SUPSEMEVENT hEvtCmdThread;
178 /** The MMIO handle. */
179 IOMMMIOHANDLE hMmio;
180
181 /** @name PCI: Base capability block registers.
182 * @{ */
183 IOMMU_BAR_T IommuBar; /**< IOMMU base address register. */
184 /** @} */
185
186 /** @name MMIO: Control and status registers.
187 * @{ */
188 DEV_TAB_BAR_T aDevTabBaseAddrs[8]; /**< Device table base address registers. */
189 CMD_BUF_BAR_T CmdBufBaseAddr; /**< Command buffer base address register. */
190 EVT_LOG_BAR_T EvtLogBaseAddr; /**< Event log base address register. */
191 IOMMU_CTRL_T Ctrl; /**< IOMMU control register. */
192 IOMMU_EXCL_RANGE_BAR_T ExclRangeBaseAddr; /**< IOMMU exclusion range base register. */
193 IOMMU_EXCL_RANGE_LIMIT_T ExclRangeLimit; /**< IOMMU exclusion range limit. */
194 IOMMU_EXT_FEAT_T ExtFeat; /**< IOMMU extended feature register. */
195 /** @} */
196
197 /** @name MMIO: PPR Log registers.
198 * @{ */
199 PPR_LOG_BAR_T PprLogBaseAddr; /**< PPR Log base address register. */
200 IOMMU_HW_EVT_HI_T HwEvtHi; /**< IOMMU hardware event register (Hi). */
201 IOMMU_HW_EVT_LO_T HwEvtLo; /**< IOMMU hardware event register (Lo). */
202 IOMMU_HW_EVT_STATUS_T HwEvtStatus; /**< IOMMU hardware event status. */
203 /** @} */
204
205 /** @todo IOMMU: SMI filter. */
206
207 /** @name MMIO: Guest Virtual-APIC Log registers.
208 * @{ */
209 GALOG_BAR_T GALogBaseAddr; /**< Guest Virtual-APIC Log base address register. */
210 GALOG_TAIL_ADDR_T GALogTailAddr; /**< Guest Virtual-APIC Log Tail address register. */
211 /** @} */
212
213 /** @name MMIO: Alternate PPR and Event Log registers.
214 * @{ */
215 PPR_LOG_B_BAR_T PprLogBBaseAddr; /**< PPR Log B base address register. */
216 EVT_LOG_B_BAR_T EvtLogBBaseAddr; /**< Event Log B base address register. */
217 /** @} */
218
219 /** @name MMIO: Device-specific feature registers.
220 * @{ */
221 DEV_SPECIFIC_FEAT_T DevSpecificFeat; /**< Device-specific feature extension register (DSFX). */
222 DEV_SPECIFIC_CTRL_T DevSpecificCtrl; /**< Device-specific control extension register (DSCX). */
223 DEV_SPECIFIC_STATUS_T DevSpecificStatus; /**< Device-specific status extension register (DSSX). */
224 /** @} */
225
226 /** @name MMIO: MSI Capability Block registers.
227 * @{ */
228 MSI_MISC_INFO_T MiscInfo; /**< MSI Misc. info registers / MSI Vector registers. */
229 /** @} */
230
231 /** @name MMIO: Performance Optimization Control registers.
232 * @{ */
233 IOMMU_PERF_OPT_CTRL_T PerfOptCtrl; /**< IOMMU Performance optimization control register. */
234 /** @} */
235
236 /** @name MMIO: x2APIC Control registers.
237 * @{ */
238 IOMMU_XT_GEN_INTR_CTRL_T XtGenIntrCtrl; /**< IOMMU X2APIC General interrupt control register. */
239 IOMMU_XT_PPR_INTR_CTRL_T XtPprIntrCtrl; /**< IOMMU X2APIC PPR interrupt control register. */
240 IOMMU_XT_GALOG_INTR_CTRL_T XtGALogIntrCtrl; /**< IOMMU X2APIC Guest Log interrupt control register. */
241 /** @} */
242
243 /** @name MMIO: MARC registers.
244 * @{ */
245 MARC_APER_T aMarcApers[4]; /**< MARC Aperture Registers. */
246 /** @} */
247
248 /** @name MMIO: Reserved register.
249 * @{ */
250 IOMMU_RSVD_REG_T RsvdReg; /**< IOMMU Reserved Register. */
251 /** @} */
252
253 /** @name MMIO: Command and Event Log pointer registers.
254 * @{ */
255 CMD_BUF_HEAD_PTR_T CmdBufHeadPtr; /**< Command buffer head pointer register. */
256 CMD_BUF_TAIL_PTR_T CmdBufTailPtr; /**< Command buffer tail pointer register. */
257 EVT_LOG_HEAD_PTR_T EvtLogHeadPtr; /**< Event log head pointer register. */
258 EVT_LOG_TAIL_PTR_T EvtLogTailPtr; /**< Event log tail pointer register. */
259 /** @} */
260
261 /** @name MMIO: Command and Event Status register.
262 * @{ */
263 IOMMU_STATUS_T Status; /**< IOMMU status register. */
264 /** @} */
265
266 /** @name MMIO: PPR Log Head and Tail pointer registers.
267 * @{ */
268 PPR_LOG_HEAD_PTR_T PprLogHeadPtr; /**< IOMMU PPR log head pointer register. */
269 PPR_LOG_TAIL_PTR_T PprLogTailPtr; /**< IOMMU PPR log tail pointer register. */
270 /** @} */
271
272 /** @name MMIO: Guest Virtual-APIC Log Head and Tail pointer registers.
273 * @{ */
274 GALOG_HEAD_PTR_T GALogHeadPtr; /**< Guest Virtual-APIC log head pointer register. */
275 GALOG_TAIL_PTR_T GALogTailPtr; /**< Guest Virtual-APIC log tail pointer register. */
276 /** @} */
277
278 /** @name MMIO: PPR Log B Head and Tail pointer registers.
279 * @{ */
280 PPR_LOG_B_HEAD_PTR_T PprLogBHeadPtr; /**< PPR log B head pointer register. */
281 PPR_LOG_B_TAIL_PTR_T PprLogBTailPtr; /**< PPR log B tail pointer register. */
282 /** @} */
283
284 /** @name MMIO: Event Log B Head and Tail pointer registers.
285 * @{ */
286 EVT_LOG_B_HEAD_PTR_T EvtLogBHeadPtr; /**< Event log B head pointer register. */
287 EVT_LOG_B_TAIL_PTR_T EvtLogBTailPtr; /**< Event log B tail pointer register. */
288 /** @} */
289
290 /** @name MMIO: PPR Log Overflow protection registers.
291 * @{ */
292 PPR_LOG_AUTO_RESP_T PprLogAutoResp; /**< PPR Log Auto Response register. */
293 PPR_LOG_OVERFLOW_EARLY_T PprLogOverflowEarly; /**< PPR Log Overflow Early Indicator register. */
294 PPR_LOG_B_OVERFLOW_EARLY_T PprLogBOverflowEarly; /**< PPR Log B Overflow Early Indicator register. */
295 /** @} */
296
297 /** @todo IOMMU: IOMMU Event counter registers. */
298
299#ifdef VBOX_WITH_STATISTICS
300 /** @name IOMMU: Stat counters.
301 * @{ */
302 STAMCOUNTER StatMmioReadR3; /**< Number of MMIO reads in R3. */
303 STAMCOUNTER StatMmioReadRZ; /**< Number of MMIO reads in RZ. */
304
305 STAMCOUNTER StatMmioWriteR3; /**< Number of MMIO writes in R3. */
306 STAMCOUNTER StatMmioWriteRZ; /**< Number of MMIO writes in RZ. */
307
308 STAMCOUNTER StatMsiRemapR3; /**< Number of MSI remap requests in R3. */
309 STAMCOUNTER StatMsiRemapRZ; /**< Number of MSI remap requests in RZ. */
310
311 STAMCOUNTER StatCmd; /**< Number of commands processed. */
312 STAMCOUNTER StatCmdCompWait; /**< Number of Completion Wait commands processed. */
313 STAMCOUNTER StatCmdInvDte; /**< Number of Invalidate DTE commands processed. */
314 STAMCOUNTER StatCmdInvIommuPages; /**< Number of Invalidate IOMMU pages commands processed. */
315 STAMCOUNTER StatCmdInvIotlbPages; /**< Number of Invalidate IOTLB pages commands processed. */
316 STAMCOUNTER StatCmdInvIntrTable; /**< Number of Invalidate Interrupt Table commands processed. */
317 STAMCOUNTER StatCmdPrefIommuPages; /**< Number of Prefetch IOMMU Pages commands processed. */
318 STAMCOUNTER StatCmdCompletePprReq; /**< Number of Complete PPR Requests commands processed. */
319 STAMCOUNTER StatCmdInvIommuAll; /**< Number of Invalidate IOMMU All commands processed. */
320 /** @} */
321#endif
322} IOMMU;
323/** Pointer to the IOMMU device state. */
324typedef struct IOMMU *PIOMMU;
325/** Pointer to the const IOMMU device state. */
326typedef const struct IOMMU *PCIOMMU;
327AssertCompileMemberAlignment(IOMMU, fCmdThreadSleeping, 4);
328AssertCompileMemberAlignment(IOMMU, fCmdThreadSignaled, 4);
329AssertCompileMemberAlignment(IOMMU, hEvtCmdThread, 8);
330AssertCompileMemberAlignment(IOMMU, hMmio, 8);
331AssertCompileMemberAlignment(IOMMU, IommuBar, 8);
332
333/**
334 * The ring-3 IOMMU device state.
335 */
336typedef struct IOMMUR3
337{
338 /** Device instance. */
339 PPDMDEVINSR3 pDevInsR3;
340 /** The IOMMU helpers. */
341 PCPDMIOMMUHLPR3 pIommuHlpR3;
342 /** The command thread handle. */
343 R3PTRTYPE(PPDMTHREAD) pCmdThread;
344} IOMMUR3;
345/** Pointer to the ring-3 IOMMU device state. */
346typedef IOMMUR3 *PIOMMUR3;
347
348/**
349 * The ring-0 IOMMU device state.
350 */
351typedef struct IOMMUR0
352{
353 /** Device instance. */
354 PPDMDEVINSR0 pDevInsR0;
355 /** The IOMMU helpers. */
356 PCPDMIOMMUHLPR0 pIommuHlpR0;
357} IOMMUR0;
358/** Pointer to the ring-0 IOMMU device state. */
359typedef IOMMUR0 *PIOMMUR0;
360
361/**
362 * The raw-mode IOMMU device state.
363 */
364typedef struct IOMMURC
365{
366 /** Device instance. */
367 PPDMDEVINSR0 pDevInsRC;
368 /** The IOMMU helpers. */
369 PCPDMIOMMUHLPRC pIommuHlpRC;
370} IOMMURC;
371/** Pointer to the raw-mode IOMMU device state. */
372typedef IOMMURC *PIOMMURC;
373
374/** The IOMMU device state for the current context. */
375typedef CTX_SUFF(IOMMU) IOMMUCC;
376/** Pointer to the IOMMU device state for the current context. */
377typedef CTX_SUFF(PIOMMU) PIOMMUCC;
378
379/**
380 * IOMMU register access routines.
381 */
382typedef struct
383{
384 const char *pszName;
385 VBOXSTRICTRC (*pfnRead )(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t *pu64Value);
386 VBOXSTRICTRC (*pfnWrite)(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value);
387 bool f64BitReg;
388} IOMMUREGACC;
389
390
391/*********************************************************************************************************************************
392* Global Variables *
393*********************************************************************************************************************************/
394/**
395 * An array of the number of device table segments supported.
396 * Indexed by u2DevTabSegSup.
397 */
398static uint8_t const g_acDevTabSegs[] = { 0, 2, 4, 8 };
399
400/**
401 * An array of the masks to select the device table segment index from a device ID.
402 */
403static uint16_t const g_auDevTabSegMasks[] = { 0x0, 0x8000, 0xc000, 0xe000 };
404
405/**
406 * An array of the shift values to select the device table segment index from a
407 * device ID.
408 */
409static uint8_t const g_auDevTabSegShifts[] = { 0, 15, 14, 13 };
410
411/**
412 * The maximum size (inclusive) of each device table segment (0 to 7).
413 * Indexed by the device table segment index.
414 */
415static uint16_t const g_auDevTabSegMaxSizes[] = { 0x1ff, 0xff, 0x7f, 0x7f, 0x3f, 0x3f, 0x3f, 0x3f };
416
417
418#ifndef VBOX_DEVICE_STRUCT_TESTCASE
419/**
420 * Gets the maximum number of buffer entries for the given buffer length.
421 *
422 * @returns Number of buffer entries.
423 * @param uEncodedLen The length (power-of-2 encoded).
424 */
425DECLINLINE(uint32_t) iommuAmdGetBufMaxEntries(uint8_t uEncodedLen)
426{
427 Assert(uEncodedLen > 7);
428 return 2 << (uEncodedLen - 1);
429}
430
431
432/**
433 * Gets the total length of the buffer given a base register's encoded length.
434 *
435 * @returns The length of the buffer in bytes.
436 * @param uEncodedLen The length (power-of-2 encoded).
437 */
438DECLINLINE(uint32_t) iommuAmdGetTotalBufLength(uint8_t uEncodedLen)
439{
440 Assert(uEncodedLen > 7);
441 return (2 << (uEncodedLen - 1)) << 4;
442}
443
444
445/**
446 * Gets the number of (unconsumed) entries in the event log.
447 *
448 * @returns The number of entries in the event log.
449 * @param pThis The IOMMU device state.
450 */
451static uint32_t iommuAmdGetEvtLogEntryCount(PIOMMU pThis)
452{
453 uint32_t const idxTail = pThis->EvtLogTailPtr.n.off >> IOMMU_EVT_GENERIC_SHIFT;
454 uint32_t const idxHead = pThis->EvtLogHeadPtr.n.off >> IOMMU_EVT_GENERIC_SHIFT;
455 if (idxTail >= idxHead)
456 return idxTail - idxHead;
457
458 uint32_t const cMaxEvts = iommuAmdGetBufMaxEntries(pThis->EvtLogBaseAddr.n.u4Len);
459 return cMaxEvts - idxHead + idxTail;
460}
461
462
463/**
464 * Gets the number of (unconsumed) commands in the command buffer.
465 *
466 * @returns The number of commands in the command buffer.
467 * @param pThis The IOMMU device state.
468 */
469static uint32_t iommuAmdGetCmdBufEntryCount(PIOMMU pThis)
470{
471 uint32_t const idxTail = pThis->CmdBufTailPtr.n.off >> IOMMU_CMD_GENERIC_SHIFT;
472 uint32_t const idxHead = pThis->CmdBufHeadPtr.n.off >> IOMMU_CMD_GENERIC_SHIFT;
473 if (idxTail >= idxHead)
474 return idxTail - idxHead;
475
476 uint32_t const cMaxCmds = iommuAmdGetBufMaxEntries(pThis->CmdBufBaseAddr.n.u4Len);
477 return cMaxCmds - idxHead + idxTail;
478}
479
480
481DECL_FORCE_INLINE(IOMMU_STATUS_T) iommuAmdGetStatus(PCIOMMU pThis)
482{
483 IOMMU_STATUS_T Status;
484 Status.u64 = ASMAtomicReadU64((volatile uint64_t *)&pThis->Status.u64);
485 return Status;
486}
487
488
489DECL_FORCE_INLINE(IOMMU_CTRL_T) iommuAmdGetCtrl(PCIOMMU pThis)
490{
491 IOMMU_CTRL_T Ctrl;
492 Ctrl.u64 = ASMAtomicReadU64((volatile uint64_t *)&pThis->Ctrl.u64);
493 return Ctrl;
494}
495
496
497/**
498 * Returns whether MSI is enabled for the IOMMU.
499 *
500 * @returns Whether MSI is enabled.
501 * @param pDevIns The IOMMU device instance.
502 *
503 * @note There should be a PCIDevXxx function for this.
504 */
505static bool iommuAmdIsMsiEnabled(PPDMDEVINS pDevIns)
506{
507 MSI_CAP_HDR_T MsiCapHdr;
508 MsiCapHdr.u32 = PDMPciDevGetDWord(pDevIns->apPciDevs[0], IOMMU_PCI_OFF_MSI_CAP_HDR);
509 return MsiCapHdr.n.u1MsiEnable;
510}
511
512
513/**
514 * Signals a PCI target abort.
515 *
516 * @param pDevIns The IOMMU device instance.
517 */
518static void iommuAmdSetPciTargetAbort(PPDMDEVINS pDevIns)
519{
520 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
521 uint16_t const u16Status = PDMPciDevGetStatus(pPciDev) | VBOX_PCI_STATUS_SIG_TARGET_ABORT;
522 PDMPciDevSetStatus(pPciDev, u16Status);
523}
524
525
526/**
527 * Wakes up the command thread if there are commands to be processed or if
528 * processing is requested to be stopped by software.
529 *
530 * @param pDevIns The IOMMU device instance.
531 */
532static void iommuAmdCmdThreadWakeUpIfNeeded(PPDMDEVINS pDevIns)
533{
534 IOMMU_ASSERT_LOCKED(pDevIns);
535 Log5Func(("\n"));
536
537 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
538 IOMMU_STATUS_T const Status = iommuAmdGetStatus(pThis);
539 if (Status.n.u1CmdBufRunning)
540 {
541 Log5Func(("Signaling command thread\n"));
542 PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtCmdThread);
543 }
544}
545
546
547/**
548 * Writes to a read-only register.
549 */
550static VBOXSTRICTRC iommuAmdIgnore_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
551{
552 RT_NOREF(pDevIns, pThis, iReg, u64Value);
553 LogFunc(("Write to read-only register (%#x) with value %#RX64 ignored\n", iReg, u64Value));
554 return VINF_SUCCESS;
555}
556
557
558/**
559 * Writes the Device Table Base Address Register.
560 */
561static VBOXSTRICTRC iommuAmdDevTabBar_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
562{
563 RT_NOREF(pDevIns, iReg);
564
565 /* Mask out all unrecognized bits. */
566 u64Value &= IOMMU_DEV_TAB_BAR_VALID_MASK;
567
568 /* Update the register. */
569 pThis->aDevTabBaseAddrs[0].u64 = u64Value;
570 return VINF_SUCCESS;
571}
572
573
574/**
575 * Writes the Command Buffer Base Address Register.
576 */
577static VBOXSTRICTRC iommuAmdCmdBufBar_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
578{
579 RT_NOREF(pDevIns, iReg);
580
581 /*
582 * While this is not explicitly specified like the event log base address register,
583 * the AMD spec. does specify "CmdBufRun must be 0b to modify the command buffer registers properly".
584 * Inconsistent specs :/
585 */
586 IOMMU_STATUS_T const Status = iommuAmdGetStatus(pThis);
587 if (Status.n.u1CmdBufRunning)
588 {
589 LogFunc(("Setting CmdBufBar (%#RX64) when command buffer is running -> Ignored\n", u64Value));
590 return VINF_SUCCESS;
591 }
592
593 /* Mask out all unrecognized bits. */
594 CMD_BUF_BAR_T CmdBufBaseAddr;
595 CmdBufBaseAddr.u64 = u64Value & IOMMU_CMD_BUF_BAR_VALID_MASK;
596
597 /* Validate the length. */
598 if (CmdBufBaseAddr.n.u4Len >= 8)
599 {
600 /* Update the register. */
601 pThis->CmdBufBaseAddr.u64 = CmdBufBaseAddr.u64;
602
603 /*
604 * Writing the command buffer base address, clears the command buffer head and tail pointers.
605 * See AMD spec. 2.4 "Commands".
606 */
607 pThis->CmdBufHeadPtr.u64 = 0;
608 pThis->CmdBufTailPtr.u64 = 0;
609 }
610 else
611 LogFunc(("Command buffer length (%#x) invalid -> Ignored\n", CmdBufBaseAddr.n.u4Len));
612
613 return VINF_SUCCESS;
614}
615
616
617/**
618 * Writes the Event Log Base Address Register.
619 */
620static VBOXSTRICTRC iommuAmdEvtLogBar_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
621{
622 RT_NOREF(pDevIns, iReg);
623
624 /*
625 * IOMMU behavior is undefined when software writes this register when event logging is running.
626 * In our emulation, we ignore the write entirely.
627 * See AMD IOMMU spec. "Event Log Base Address Register".
628 */
629 IOMMU_STATUS_T const Status = iommuAmdGetStatus(pThis);
630 if (Status.n.u1EvtLogRunning)
631 {
632 LogFunc(("Setting EvtLogBar (%#RX64) when event logging is running -> Ignored\n", u64Value));
633 return VINF_SUCCESS;
634 }
635
636 /* Mask out all unrecognized bits. */
637 u64Value &= IOMMU_EVT_LOG_BAR_VALID_MASK;
638 EVT_LOG_BAR_T EvtLogBaseAddr;
639 EvtLogBaseAddr.u64 = u64Value;
640
641 /* Validate the length. */
642 if (EvtLogBaseAddr.n.u4Len >= 8)
643 {
644 /* Update the register. */
645 pThis->EvtLogBaseAddr.u64 = EvtLogBaseAddr.u64;
646
647 /*
648 * Writing the event log base address, clears the event log head and tail pointers.
649 * See AMD spec. 2.5 "Event Logging".
650 */
651 pThis->EvtLogHeadPtr.u64 = 0;
652 pThis->EvtLogTailPtr.u64 = 0;
653 }
654 else
655 LogFunc(("Event log length (%#x) invalid -> Ignored\n", EvtLogBaseAddr.n.u4Len));
656
657 return VINF_SUCCESS;
658}
659
660
661/**
662 * Writes the Control Register.
663 */
664static VBOXSTRICTRC iommuAmdCtrl_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
665{
666 RT_NOREF(pDevIns, iReg);
667
668 /* Mask out all unrecognized bits. */
669 u64Value &= IOMMU_CTRL_VALID_MASK;
670
671 IOMMU_CTRL_T const OldCtrl = iommuAmdGetCtrl(pThis);
672 IOMMU_CTRL_T NewCtrl;
673 NewCtrl.u64 = u64Value;
674
675 /* Update the register. */
676 ASMAtomicWriteU64(&pThis->Ctrl.u64, NewCtrl.u64);
677
678 bool const fNewIommuEn = NewCtrl.n.u1IommuEn;
679 bool const fOldIommuEn = OldCtrl.n.u1IommuEn;
680
681 /* Enable or disable event logging when the bit transitions. */
682 bool const fOldEvtLogEn = OldCtrl.n.u1EvtLogEn;
683 bool const fNewEvtLogEn = NewCtrl.n.u1EvtLogEn;
684 if ( fOldEvtLogEn != fNewEvtLogEn
685 || fOldIommuEn != fNewIommuEn)
686 {
687 if ( fNewIommuEn
688 && fNewEvtLogEn)
689 {
690 ASMAtomicAndU64(&pThis->Status.u64, ~IOMMU_STATUS_EVT_LOG_OVERFLOW);
691 ASMAtomicOrU64(&pThis->Status.u64, IOMMU_STATUS_EVT_LOG_RUNNING);
692 }
693 else
694 ASMAtomicAndU64(&pThis->Status.u64, ~IOMMU_STATUS_EVT_LOG_RUNNING);
695 }
696
697 /* Enable or disable command buffer processing when the bit transitions. */
698 bool const fOldCmdBufEn = OldCtrl.n.u1CmdBufEn;
699 bool const fNewCmdBufEn = NewCtrl.n.u1CmdBufEn;
700 if ( fOldCmdBufEn != fNewCmdBufEn
701 || fOldIommuEn != fNewIommuEn)
702 {
703 if ( fNewCmdBufEn
704 && fNewIommuEn)
705 {
706 ASMAtomicOrU64(&pThis->Status.u64, IOMMU_STATUS_CMD_BUF_RUNNING);
707 LogFunc(("Command buffer enabled\n"));
708
709 /* Wake up the command thread to start processing commands. */
710 iommuAmdCmdThreadWakeUpIfNeeded(pDevIns);
711 }
712 else
713 {
714 ASMAtomicAndU64(&pThis->Status.u64, ~IOMMU_STATUS_CMD_BUF_RUNNING);
715 LogFunc(("Command buffer disabled\n"));
716 }
717 }
718
719 return VINF_SUCCESS;
720}
721
722
723/**
724 * Writes to the Excluse Range Base Address Register.
725 */
726static VBOXSTRICTRC iommuAmdExclRangeBar_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
727{
728 RT_NOREF(pDevIns, iReg);
729 pThis->ExclRangeBaseAddr.u64 = u64Value & IOMMU_EXCL_RANGE_BAR_VALID_MASK;
730 return VINF_SUCCESS;
731}
732
733
734/**
735 * Writes to the Excluse Range Limit Register.
736 */
737static VBOXSTRICTRC iommuAmdExclRangeLimit_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
738{
739 RT_NOREF(pDevIns, iReg);
740 u64Value &= IOMMU_EXCL_RANGE_LIMIT_VALID_MASK;
741 u64Value |= UINT64_C(0xfff);
742 pThis->ExclRangeLimit.u64 = u64Value;
743 return VINF_SUCCESS;
744}
745
746
747/**
748 * Writes the Hardware Event Register (Hi).
749 */
750static VBOXSTRICTRC iommuAmdHwEvtHi_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
751{
752 /** @todo IOMMU: Why the heck is this marked read/write by the AMD IOMMU spec? */
753 RT_NOREF(pDevIns, iReg);
754 LogFlowFunc(("Writing %#RX64 to hardware event (Hi) register!\n", u64Value));
755 pThis->HwEvtHi.u64 = u64Value;
756 return VINF_SUCCESS;
757}
758
759
760/**
761 * Writes the Hardware Event Register (Lo).
762 */
763static VBOXSTRICTRC iommuAmdHwEvtLo_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
764{
765 /** @todo IOMMU: Why the heck is this marked read/write by the AMD IOMMU spec? */
766 RT_NOREF(pDevIns, iReg);
767 LogFlowFunc(("Writing %#RX64 to hardware event (Lo) register!\n", u64Value));
768 pThis->HwEvtLo = u64Value;
769 return VINF_SUCCESS;
770}
771
772
773/**
774 * Writes the Hardware Event Status Register.
775 */
776static VBOXSTRICTRC iommuAmdHwEvtStatus_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
777{
778 RT_NOREF(pDevIns, iReg);
779
780 /* Mask out all unrecognized bits. */
781 u64Value &= IOMMU_HW_EVT_STATUS_VALID_MASK;
782
783 /*
784 * The two bits (HEO and HEV) are RW1C (Read/Write 1-to-Clear; writing 0 has no effect).
785 * If the current status bits or the bits being written are both 0, we've nothing to do.
786 * The Overflow bit (bit 1) is only valid when the Valid bit (bit 0) is 1.
787 */
788 uint64_t HwStatus = pThis->HwEvtStatus.u64;
789 if (!(HwStatus & RT_BIT(0)))
790 return VINF_SUCCESS;
791 if (u64Value & HwStatus & RT_BIT_64(0))
792 HwStatus &= ~RT_BIT_64(0);
793 if (u64Value & HwStatus & RT_BIT_64(1))
794 HwStatus &= ~RT_BIT_64(1);
795
796 /* Update the register. */
797 pThis->HwEvtStatus.u64 = HwStatus;
798 return VINF_SUCCESS;
799}
800
801
802/**
803 * Writes the Device Table Segment Base Address Register.
804 */
805static VBOXSTRICTRC iommuAmdDevTabSegBar_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
806{
807 RT_NOREF(pDevIns);
808
809 /* Figure out which segment is being written. */
810 uint8_t const offSegment = (iReg - IOMMU_MMIO_OFF_DEV_TAB_SEG_FIRST) >> 3;
811 uint8_t const idxSegment = offSegment + 1;
812 Assert(idxSegment < RT_ELEMENTS(pThis->aDevTabBaseAddrs));
813
814 /* Mask out all unrecognized bits. */
815 u64Value &= IOMMU_DEV_TAB_SEG_BAR_VALID_MASK;
816 DEV_TAB_BAR_T DevTabSegBar;
817 DevTabSegBar.u64 = u64Value;
818
819 /* Validate the size. */
820 uint16_t const uSegSize = DevTabSegBar.n.u9Size;
821 uint16_t const uMaxSegSize = g_auDevTabSegMaxSizes[idxSegment];
822 if (uSegSize <= uMaxSegSize)
823 {
824 /* Update the register. */
825 pThis->aDevTabBaseAddrs[idxSegment].u64 = u64Value;
826 }
827 else
828 LogFunc(("Device table segment (%u) size invalid (%#RX32) -> Ignored\n", idxSegment, uSegSize));
829
830 return VINF_SUCCESS;
831}
832
833
834/**
835 * Writes the MSI Capability Header Register.
836 */
837static VBOXSTRICTRC iommuAmdMsiCapHdr_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
838{
839 RT_NOREF(pThis, iReg);
840 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
841 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
842 MSI_CAP_HDR_T MsiCapHdr;
843 MsiCapHdr.u32 = PDMPciDevGetDWord(pPciDev, IOMMU_PCI_OFF_MSI_CAP_HDR);
844 MsiCapHdr.n.u1MsiEnable = RT_BOOL(u64Value & IOMMU_MSI_CAP_HDR_MSI_EN_MASK);
845 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_MSI_CAP_HDR, MsiCapHdr.u32);
846 return VINF_SUCCESS;
847}
848
849
850/**
851 * Writes the MSI Address (Lo) Register (32-bit).
852 */
853static VBOXSTRICTRC iommuAmdMsiAddrLo_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
854{
855 RT_NOREF(pThis, iReg);
856 Assert(!RT_HI_U32(u64Value));
857 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
858 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
859 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_MSI_ADDR_LO, u64Value & VBOX_MSI_ADDR_VALID_MASK);
860 return VINF_SUCCESS;
861}
862
863
864/**
865 * Writes the MSI Address (Hi) Register (32-bit).
866 */
867static VBOXSTRICTRC iommuAmdMsiAddrHi_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
868{
869 RT_NOREF(pThis, iReg);
870 Assert(!RT_HI_U32(u64Value));
871 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
872 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
873 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_MSI_ADDR_HI, u64Value);
874 return VINF_SUCCESS;
875}
876
877
878/**
879 * Writes the MSI Data Register (32-bit).
880 */
881static VBOXSTRICTRC iommuAmdMsiData_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
882{
883 RT_NOREF(pThis, iReg);
884 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
885 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
886 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_MSI_DATA, u64Value & VBOX_MSI_DATA_VALID_MASK);
887 return VINF_SUCCESS;
888}
889
890
891/**
892 * Writes the Command Buffer Head Pointer Register (32-bit).
893 */
894static VBOXSTRICTRC iommuAmdCmdBufHeadPtr_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
895{
896 RT_NOREF(pDevIns, iReg);
897
898 /*
899 * IOMMU behavior is undefined when software writes this register when the command buffer is running.
900 * In our emulation, we ignore the write entirely.
901 * See AMD IOMMU spec. 3.3.13 "Command and Event Log Pointer Registers".
902 */
903 IOMMU_STATUS_T const Status = iommuAmdGetStatus(pThis);
904 if (Status.n.u1CmdBufRunning)
905 {
906 LogFunc(("Setting CmdBufHeadPtr (%#RX64) when command buffer is running -> Ignored\n", u64Value));
907 return VINF_SUCCESS;
908 }
909
910 /*
911 * IOMMU behavior is undefined when software writes a value outside the buffer length.
912 * In our emulation, we ignore the write entirely.
913 */
914 uint32_t const offBuf = u64Value & IOMMU_CMD_BUF_HEAD_PTR_VALID_MASK;
915 uint32_t const cbBuf = iommuAmdGetTotalBufLength(pThis->CmdBufBaseAddr.n.u4Len);
916 Assert(cbBuf <= _512K);
917 if (offBuf >= cbBuf)
918 {
919 LogFunc(("Setting CmdBufHeadPtr (%#RX32) to a value that exceeds buffer length (%#RX23) -> Ignored\n", offBuf, cbBuf));
920 return VINF_SUCCESS;
921 }
922
923 /* Update the register. */
924 pThis->CmdBufHeadPtr.au32[0] = offBuf;
925
926 iommuAmdCmdThreadWakeUpIfNeeded(pDevIns);
927
928 LogFlowFunc(("Set CmdBufHeadPtr to %#RX32\n", offBuf));
929 return VINF_SUCCESS;
930}
931
932
933/**
934 * Writes the Command Buffer Tail Pointer Register (32-bit).
935 */
936static VBOXSTRICTRC iommuAmdCmdBufTailPtr_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
937{
938 RT_NOREF(pDevIns, iReg);
939
940 /*
941 * IOMMU behavior is undefined when software writes a value outside the buffer length.
942 * In our emulation, we ignore the write entirely.
943 * See AMD IOMMU spec. 3.3.13 "Command and Event Log Pointer Registers".
944 */
945 uint32_t const offBuf = u64Value & IOMMU_CMD_BUF_TAIL_PTR_VALID_MASK;
946 uint32_t const cbBuf = iommuAmdGetTotalBufLength(pThis->CmdBufBaseAddr.n.u4Len);
947 Assert(cbBuf <= _512K);
948 if (offBuf >= cbBuf)
949 {
950 LogFunc(("Setting CmdBufTailPtr (%#RX32) to a value that exceeds buffer length (%#RX32) -> Ignored\n", offBuf, cbBuf));
951 return VINF_SUCCESS;
952 }
953
954 /*
955 * IOMMU behavior is undefined if software advances the tail pointer equal to or beyond the
956 * head pointer after adding one or more commands to the buffer.
957 *
958 * However, we cannot enforce this strictly because it's legal for software to shrink the
959 * command queue (by reducing the offset) as well as wrap around the pointer (when head isn't
960 * at 0). Software might even make the queue empty by making head and tail equal which is
961 * allowed. I don't think we can or should try too hard to prevent software shooting itself
962 * in the foot here. As long as we make sure the offset value is within the circular buffer
963 * bounds (which we do by masking bits above) it should be sufficient.
964 */
965 pThis->CmdBufTailPtr.au32[0] = offBuf;
966
967 iommuAmdCmdThreadWakeUpIfNeeded(pDevIns);
968
969 LogFlowFunc(("Set CmdBufTailPtr to %#RX32\n", offBuf));
970 return VINF_SUCCESS;
971}
972
973
974/**
975 * Writes the Event Log Head Pointer Register (32-bit).
976 */
977static VBOXSTRICTRC iommuAmdEvtLogHeadPtr_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
978{
979 RT_NOREF(pDevIns, iReg);
980
981 /*
982 * IOMMU behavior is undefined when software writes a value outside the buffer length.
983 * In our emulation, we ignore the write entirely.
984 * See AMD IOMMU spec. 3.3.13 "Command and Event Log Pointer Registers".
985 */
986 uint32_t const offBuf = u64Value & IOMMU_EVT_LOG_HEAD_PTR_VALID_MASK;
987 uint32_t const cbBuf = iommuAmdGetTotalBufLength(pThis->EvtLogBaseAddr.n.u4Len);
988 Assert(cbBuf <= _512K);
989 if (offBuf >= cbBuf)
990 {
991 LogFunc(("Setting EvtLogHeadPtr (%#RX32) to a value that exceeds buffer length (%#RX32) -> Ignored\n", offBuf, cbBuf));
992 return VINF_SUCCESS;
993 }
994
995 /* Update the register. */
996 pThis->EvtLogHeadPtr.au32[0] = offBuf;
997
998 LogFlowFunc(("Set EvtLogHeadPtr to %#RX32\n", offBuf));
999 return VINF_SUCCESS;
1000}
1001
1002
1003/**
1004 * Writes the Event Log Tail Pointer Register (32-bit).
1005 */
1006static VBOXSTRICTRC iommuAmdEvtLogTailPtr_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
1007{
1008 RT_NOREF(pDevIns, iReg);
1009 NOREF(pThis);
1010
1011 /*
1012 * IOMMU behavior is undefined when software writes this register when the event log is running.
1013 * In our emulation, we ignore the write entirely.
1014 * See AMD IOMMU spec. 3.3.13 "Command and Event Log Pointer Registers".
1015 */
1016 IOMMU_STATUS_T const Status = iommuAmdGetStatus(pThis);
1017 if (Status.n.u1EvtLogRunning)
1018 {
1019 LogFunc(("Setting EvtLogTailPtr (%#RX64) when event log is running -> Ignored\n", u64Value));
1020 return VINF_SUCCESS;
1021 }
1022
1023 /*
1024 * IOMMU behavior is undefined when software writes a value outside the buffer length.
1025 * In our emulation, we ignore the write entirely.
1026 */
1027 uint32_t const offBuf = u64Value & IOMMU_EVT_LOG_TAIL_PTR_VALID_MASK;
1028 uint32_t const cbBuf = iommuAmdGetTotalBufLength(pThis->EvtLogBaseAddr.n.u4Len);
1029 Assert(cbBuf <= _512K);
1030 if (offBuf >= cbBuf)
1031 {
1032 LogFunc(("Setting EvtLogTailPtr (%#RX32) to a value that exceeds buffer length (%#RX32) -> Ignored\n", offBuf, cbBuf));
1033 return VINF_SUCCESS;
1034 }
1035
1036 /* Update the register. */
1037 pThis->EvtLogTailPtr.au32[0] = offBuf;
1038
1039 LogFlowFunc(("Set EvtLogTailPtr to %#RX32\n", offBuf));
1040 return VINF_SUCCESS;
1041}
1042
1043
1044/**
1045 * Writes the Status Register (64-bit).
1046 */
1047static VBOXSTRICTRC iommuAmdStatus_w(PPDMDEVINS pDevIns, PIOMMU pThis, uint32_t iReg, uint64_t u64Value)
1048{
1049 RT_NOREF(pDevIns, iReg);
1050
1051 /* Mask out all unrecognized bits. */
1052 u64Value &= IOMMU_STATUS_VALID_MASK;
1053
1054 /*
1055 * Compute RW1C (read-only, write-1-to-clear) bits and preserve the rest (which are read-only).
1056 * Writing 0 to an RW1C bit has no effect. Writing 1 to an RW1C bit, clears the bit if it's already 1.
1057 */
1058 IOMMU_STATUS_T const OldStatus = iommuAmdGetStatus(pThis);
1059 uint64_t const fOldRw1cBits = (OldStatus.u64 & IOMMU_STATUS_RW1C_MASK);
1060 uint64_t const fOldRoBits = (OldStatus.u64 & ~IOMMU_STATUS_RW1C_MASK);
1061 uint64_t const fNewRw1cBits = (u64Value & IOMMU_STATUS_RW1C_MASK);
1062
1063 uint64_t const uNewStatus = (fOldRw1cBits & ~fNewRw1cBits) | fOldRoBits;
1064
1065 /* Update the register. */
1066 ASMAtomicWriteU64(&pThis->Status.u64, uNewStatus);
1067 return VINF_SUCCESS;
1068}
1069
1070
1071#if 0
1072/**
1073 * Table 0: Registers-access table.
1074 */
1075static const IOMMUREGACC g_aTable0Regs[] =
1076{
1077
1078};
1079
1080/**
1081 * Table 1: Registers-access table.
1082 */
1083static const IOMMUREGACC g_aTable1Regs[] =
1084{
1085};
1086#endif
1087
1088
1089/**
1090 * Writes an IOMMU register (32-bit and 64-bit).
1091 *
1092 * @returns Strict VBox status code.
1093 * @param pDevIns The IOMMU device instance.
1094 * @param off MMIO byte offset to the register.
1095 * @param cb The size of the write access.
1096 * @param uValue The value being written.
1097 *
1098 * @thread EMT.
1099 */
1100static VBOXSTRICTRC iommuAmdWriteRegister(PPDMDEVINS pDevIns, uint32_t off, uint8_t cb, uint64_t uValue)
1101{
1102 Assert(off < IOMMU_MMIO_REGION_SIZE);
1103 Assert(cb == 4 || cb == 8);
1104 Assert(!(off & (cb - 1)));
1105
1106 LogFlowFunc(("off=%#x cb=%u uValue=%#RX64\n", off, cb, uValue));
1107
1108 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
1109 switch (off)
1110 {
1111 case IOMMU_MMIO_OFF_DEV_TAB_BAR: return iommuAmdDevTabBar_w(pDevIns, pThis, off, uValue);
1112 case IOMMU_MMIO_OFF_CMD_BUF_BAR: return iommuAmdCmdBufBar_w(pDevIns, pThis, off, uValue);
1113 case IOMMU_MMIO_OFF_EVT_LOG_BAR: return iommuAmdEvtLogBar_w(pDevIns, pThis, off, uValue);
1114 case IOMMU_MMIO_OFF_CTRL: return iommuAmdCtrl_w(pDevIns, pThis, off, uValue);
1115 case IOMMU_MMIO_OFF_EXCL_BAR: return iommuAmdExclRangeBar_w(pDevIns, pThis, off, uValue);
1116 case IOMMU_MMIO_OFF_EXCL_RANGE_LIMIT: return iommuAmdExclRangeLimit_w(pDevIns, pThis, off, uValue);
1117 case IOMMU_MMIO_OFF_EXT_FEAT: return iommuAmdIgnore_w(pDevIns, pThis, off, uValue);
1118
1119 case IOMMU_MMIO_OFF_PPR_LOG_BAR: return iommuAmdIgnore_w(pDevIns, pThis, off, uValue);
1120 case IOMMU_MMIO_OFF_HW_EVT_HI: return iommuAmdHwEvtHi_w(pDevIns, pThis, off, uValue);
1121 case IOMMU_MMIO_OFF_HW_EVT_LO: return iommuAmdHwEvtLo_w(pDevIns, pThis, off, uValue);
1122 case IOMMU_MMIO_OFF_HW_EVT_STATUS: return iommuAmdHwEvtStatus_w(pDevIns, pThis, off, uValue);
1123
1124 case IOMMU_MMIO_OFF_GALOG_BAR:
1125 case IOMMU_MMIO_OFF_GALOG_TAIL_ADDR: return iommuAmdIgnore_w(pDevIns, pThis, off, uValue);
1126
1127 case IOMMU_MMIO_OFF_PPR_LOG_B_BAR:
1128 case IOMMU_MMIO_OFF_PPR_EVT_B_BAR: return iommuAmdIgnore_w(pDevIns, pThis, off, uValue);
1129
1130 case IOMMU_MMIO_OFF_DEV_TAB_SEG_1:
1131 case IOMMU_MMIO_OFF_DEV_TAB_SEG_2:
1132 case IOMMU_MMIO_OFF_DEV_TAB_SEG_3:
1133 case IOMMU_MMIO_OFF_DEV_TAB_SEG_4:
1134 case IOMMU_MMIO_OFF_DEV_TAB_SEG_5:
1135 case IOMMU_MMIO_OFF_DEV_TAB_SEG_6:
1136 case IOMMU_MMIO_OFF_DEV_TAB_SEG_7: return iommuAmdDevTabSegBar_w(pDevIns, pThis, off, uValue);
1137
1138 case IOMMU_MMIO_OFF_DEV_SPECIFIC_FEAT:
1139 case IOMMU_MMIO_OFF_DEV_SPECIFIC_CTRL:
1140 case IOMMU_MMIO_OFF_DEV_SPECIFIC_STATUS: return iommuAmdIgnore_w(pDevIns, pThis, off, uValue);
1141
1142 case IOMMU_MMIO_OFF_MSI_VECTOR_0:
1143 case IOMMU_MMIO_OFF_MSI_VECTOR_1: return iommuAmdIgnore_w(pDevIns, pThis, off, uValue);
1144 case IOMMU_MMIO_OFF_MSI_CAP_HDR:
1145 {
1146 VBOXSTRICTRC rcStrict = iommuAmdMsiCapHdr_w(pDevIns, pThis, off, (uint32_t)uValue);
1147 if (cb == 4 || RT_FAILURE(rcStrict))
1148 return rcStrict;
1149 uValue >>= 32;
1150 RT_FALL_THRU();
1151 }
1152 case IOMMU_MMIO_OFF_MSI_ADDR_LO: return iommuAmdMsiAddrLo_w(pDevIns, pThis, off, uValue);
1153 case IOMMU_MMIO_OFF_MSI_ADDR_HI:
1154 {
1155 VBOXSTRICTRC rcStrict = iommuAmdMsiAddrHi_w(pDevIns, pThis, off, (uint32_t)uValue);
1156 if (cb == 4 || RT_FAILURE(rcStrict))
1157 return rcStrict;
1158 uValue >>= 32;
1159 RT_FALL_THRU();
1160 }
1161 case IOMMU_MMIO_OFF_MSI_DATA: return iommuAmdMsiData_w(pDevIns, pThis, off, uValue);
1162 case IOMMU_MMIO_OFF_MSI_MAPPING_CAP_HDR: return iommuAmdIgnore_w(pDevIns, pThis, off, uValue);
1163
1164 case IOMMU_MMIO_OFF_PERF_OPT_CTRL: return iommuAmdIgnore_w(pDevIns, pThis, off, uValue);
1165
1166 case IOMMU_MMIO_OFF_XT_GEN_INTR_CTRL:
1167 case IOMMU_MMIO_OFF_XT_PPR_INTR_CTRL:
1168 case IOMMU_MMIO_OFF_XT_GALOG_INT_CTRL: return iommuAmdIgnore_w(pDevIns, pThis, off, uValue);
1169
1170 case IOMMU_MMIO_OFF_MARC_APER_BAR_0:
1171 case IOMMU_MMIO_OFF_MARC_APER_RELOC_0:
1172 case IOMMU_MMIO_OFF_MARC_APER_LEN_0:
1173 case IOMMU_MMIO_OFF_MARC_APER_BAR_1:
1174 case IOMMU_MMIO_OFF_MARC_APER_RELOC_1:
1175 case IOMMU_MMIO_OFF_MARC_APER_LEN_1:
1176 case IOMMU_MMIO_OFF_MARC_APER_BAR_2:
1177 case IOMMU_MMIO_OFF_MARC_APER_RELOC_2:
1178 case IOMMU_MMIO_OFF_MARC_APER_LEN_2:
1179 case IOMMU_MMIO_OFF_MARC_APER_BAR_3:
1180 case IOMMU_MMIO_OFF_MARC_APER_RELOC_3:
1181 case IOMMU_MMIO_OFF_MARC_APER_LEN_3: return iommuAmdIgnore_w(pDevIns, pThis, off, uValue);
1182
1183 case IOMMU_MMIO_OFF_RSVD_REG: return iommuAmdIgnore_w(pDevIns, pThis, off, uValue);
1184
1185 case IOMMU_MMIO_CMD_BUF_HEAD_PTR: return iommuAmdCmdBufHeadPtr_w(pDevIns, pThis, off, uValue);
1186 case IOMMU_MMIO_CMD_BUF_TAIL_PTR: return iommuAmdCmdBufTailPtr_w(pDevIns, pThis, off, uValue);
1187 case IOMMU_MMIO_EVT_LOG_HEAD_PTR: return iommuAmdEvtLogHeadPtr_w(pDevIns, pThis, off, uValue);
1188 case IOMMU_MMIO_EVT_LOG_TAIL_PTR: return iommuAmdEvtLogTailPtr_w(pDevIns, pThis, off, uValue);
1189
1190 case IOMMU_MMIO_OFF_STATUS: return iommuAmdStatus_w(pDevIns, pThis, off, uValue);
1191
1192 case IOMMU_MMIO_OFF_PPR_LOG_HEAD_PTR:
1193 case IOMMU_MMIO_OFF_PPR_LOG_TAIL_PTR:
1194
1195 case IOMMU_MMIO_OFF_GALOG_HEAD_PTR:
1196 case IOMMU_MMIO_OFF_GALOG_TAIL_PTR:
1197
1198 case IOMMU_MMIO_OFF_PPR_LOG_B_HEAD_PTR:
1199 case IOMMU_MMIO_OFF_PPR_LOG_B_TAIL_PTR:
1200
1201 case IOMMU_MMIO_OFF_EVT_LOG_B_HEAD_PTR:
1202 case IOMMU_MMIO_OFF_EVT_LOG_B_TAIL_PTR: return iommuAmdIgnore_w(pDevIns, pThis, off, uValue);
1203
1204 case IOMMU_MMIO_OFF_PPR_LOG_AUTO_RESP:
1205 case IOMMU_MMIO_OFF_PPR_LOG_OVERFLOW_EARLY:
1206 case IOMMU_MMIO_OFF_PPR_LOG_B_OVERFLOW_EARLY:
1207
1208 /* Not implemented. */
1209 case IOMMU_MMIO_OFF_SMI_FLT_FIRST:
1210 case IOMMU_MMIO_OFF_SMI_FLT_LAST:
1211 {
1212 LogFunc(("Writing unsupported register: SMI filter %u -> Ignored\n", (off - IOMMU_MMIO_OFF_SMI_FLT_FIRST) >> 3));
1213 return VINF_SUCCESS;
1214 }
1215
1216 /* Unknown. */
1217 default:
1218 {
1219 LogFunc(("Writing unknown register %u (%#x) with %#RX64 -> Ignored\n", off, off, uValue));
1220 return VINF_SUCCESS;
1221 }
1222 }
1223}
1224
1225
1226/**
1227 * Reads an IOMMU register (64-bit) given its MMIO offset.
1228 *
1229 * All reads are 64-bit but reads to 32-bit registers that are aligned on an 8-byte
1230 * boundary include the lower half of the subsequent register.
1231 *
1232 * This is because most registers are 64-bit and aligned on 8-byte boundaries but
1233 * some are really 32-bit registers aligned on an 8-byte boundary. We cannot assume
1234 * software will only perform 32-bit reads on those 32-bit registers that are
1235 * aligned on 8-byte boundaries.
1236 *
1237 * @returns Strict VBox status code.
1238 * @param pDevIns The IOMMU device instance.
1239 * @param off The MMIO offset of the register in bytes.
1240 * @param puResult Where to store the value being read.
1241 *
1242 * @thread EMT.
1243 */
1244static VBOXSTRICTRC iommuAmdReadRegister(PPDMDEVINS pDevIns, uint32_t off, uint64_t *puResult)
1245{
1246 Assert(off < IOMMU_MMIO_REGION_SIZE);
1247 Assert(!(off & 7) || !(off & 3));
1248
1249 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
1250 PCPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
1251 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
1252
1253 LogFlowFunc(("off=%#x\n", off));
1254
1255 /** @todo IOMMU: fine-grained locking? */
1256 uint64_t uReg;
1257 switch (off)
1258 {
1259 case IOMMU_MMIO_OFF_DEV_TAB_BAR: uReg = pThis->aDevTabBaseAddrs[0].u64; break;
1260 case IOMMU_MMIO_OFF_CMD_BUF_BAR: uReg = pThis->CmdBufBaseAddr.u64; break;
1261 case IOMMU_MMIO_OFF_EVT_LOG_BAR: uReg = pThis->EvtLogBaseAddr.u64; break;
1262 case IOMMU_MMIO_OFF_CTRL: uReg = pThis->Ctrl.u64; break;
1263 case IOMMU_MMIO_OFF_EXCL_BAR: uReg = pThis->ExclRangeBaseAddr.u64; break;
1264 case IOMMU_MMIO_OFF_EXCL_RANGE_LIMIT: uReg = pThis->ExclRangeLimit.u64; break;
1265 case IOMMU_MMIO_OFF_EXT_FEAT: uReg = pThis->ExtFeat.u64; break;
1266
1267 case IOMMU_MMIO_OFF_PPR_LOG_BAR: uReg = pThis->PprLogBaseAddr.u64; break;
1268 case IOMMU_MMIO_OFF_HW_EVT_HI: uReg = pThis->HwEvtHi.u64; break;
1269 case IOMMU_MMIO_OFF_HW_EVT_LO: uReg = pThis->HwEvtLo; break;
1270 case IOMMU_MMIO_OFF_HW_EVT_STATUS: uReg = pThis->HwEvtStatus.u64; break;
1271
1272 case IOMMU_MMIO_OFF_GALOG_BAR: uReg = pThis->GALogBaseAddr.u64; break;
1273 case IOMMU_MMIO_OFF_GALOG_TAIL_ADDR: uReg = pThis->GALogTailAddr.u64; break;
1274
1275 case IOMMU_MMIO_OFF_PPR_LOG_B_BAR: uReg = pThis->PprLogBBaseAddr.u64; break;
1276 case IOMMU_MMIO_OFF_PPR_EVT_B_BAR: uReg = pThis->EvtLogBBaseAddr.u64; break;
1277
1278 case IOMMU_MMIO_OFF_DEV_TAB_SEG_1:
1279 case IOMMU_MMIO_OFF_DEV_TAB_SEG_2:
1280 case IOMMU_MMIO_OFF_DEV_TAB_SEG_3:
1281 case IOMMU_MMIO_OFF_DEV_TAB_SEG_4:
1282 case IOMMU_MMIO_OFF_DEV_TAB_SEG_5:
1283 case IOMMU_MMIO_OFF_DEV_TAB_SEG_6:
1284 case IOMMU_MMIO_OFF_DEV_TAB_SEG_7:
1285 {
1286 uint8_t const offDevTabSeg = (off - IOMMU_MMIO_OFF_DEV_TAB_SEG_FIRST) >> 3;
1287 uint8_t const idxDevTabSeg = offDevTabSeg + 1;
1288 Assert(idxDevTabSeg < RT_ELEMENTS(pThis->aDevTabBaseAddrs));
1289 uReg = pThis->aDevTabBaseAddrs[idxDevTabSeg].u64;
1290 break;
1291 }
1292
1293 case IOMMU_MMIO_OFF_DEV_SPECIFIC_FEAT: uReg = pThis->DevSpecificFeat.u64; break;
1294 case IOMMU_MMIO_OFF_DEV_SPECIFIC_CTRL: uReg = pThis->DevSpecificCtrl.u64; break;
1295 case IOMMU_MMIO_OFF_DEV_SPECIFIC_STATUS: uReg = pThis->DevSpecificStatus.u64; break;
1296
1297 case IOMMU_MMIO_OFF_MSI_VECTOR_0: uReg = pThis->MiscInfo.u64; break;
1298 case IOMMU_MMIO_OFF_MSI_VECTOR_1: uReg = pThis->MiscInfo.au32[1]; break;
1299 case IOMMU_MMIO_OFF_MSI_CAP_HDR:
1300 {
1301 uint32_t const uMsiCapHdr = PDMPciDevGetDWord(pPciDev, IOMMU_PCI_OFF_MSI_CAP_HDR);
1302 uint32_t const uMsiAddrLo = PDMPciDevGetDWord(pPciDev, IOMMU_PCI_OFF_MSI_ADDR_LO);
1303 uReg = RT_MAKE_U64(uMsiCapHdr, uMsiAddrLo);
1304 break;
1305 }
1306 case IOMMU_MMIO_OFF_MSI_ADDR_LO:
1307 {
1308 uReg = PDMPciDevGetDWord(pPciDev, IOMMU_PCI_OFF_MSI_ADDR_LO);
1309 break;
1310 }
1311 case IOMMU_MMIO_OFF_MSI_ADDR_HI:
1312 {
1313 uint32_t const uMsiAddrHi = PDMPciDevGetDWord(pPciDev, IOMMU_PCI_OFF_MSI_ADDR_HI);
1314 uint32_t const uMsiData = PDMPciDevGetDWord(pPciDev, IOMMU_PCI_OFF_MSI_DATA);
1315 uReg = RT_MAKE_U64(uMsiAddrHi, uMsiData);
1316 break;
1317 }
1318 case IOMMU_MMIO_OFF_MSI_DATA:
1319 {
1320 uReg = PDMPciDevGetDWord(pPciDev, IOMMU_PCI_OFF_MSI_DATA);
1321 break;
1322 }
1323 case IOMMU_MMIO_OFF_MSI_MAPPING_CAP_HDR:
1324 {
1325 /*
1326 * The PCI spec. lists MSI Mapping Capability 08H as related to HyperTransport capability.
1327 * The AMD IOMMU spec. fails to mention it explicitly and lists values for this register as
1328 * though HyperTransport is supported. We don't support HyperTransport, we thus just return
1329 * 0 for this register.
1330 */
1331 uReg = RT_MAKE_U64(0, pThis->PerfOptCtrl.u32);
1332 break;
1333 }
1334
1335 case IOMMU_MMIO_OFF_PERF_OPT_CTRL: uReg = pThis->PerfOptCtrl.u32; break;
1336
1337 case IOMMU_MMIO_OFF_XT_GEN_INTR_CTRL: uReg = pThis->XtGenIntrCtrl.u64; break;
1338 case IOMMU_MMIO_OFF_XT_PPR_INTR_CTRL: uReg = pThis->XtPprIntrCtrl.u64; break;
1339 case IOMMU_MMIO_OFF_XT_GALOG_INT_CTRL: uReg = pThis->XtGALogIntrCtrl.u64; break;
1340
1341 case IOMMU_MMIO_OFF_MARC_APER_BAR_0: uReg = pThis->aMarcApers[0].Base.u64; break;
1342 case IOMMU_MMIO_OFF_MARC_APER_RELOC_0: uReg = pThis->aMarcApers[0].Reloc.u64; break;
1343 case IOMMU_MMIO_OFF_MARC_APER_LEN_0: uReg = pThis->aMarcApers[0].Length.u64; break;
1344 case IOMMU_MMIO_OFF_MARC_APER_BAR_1: uReg = pThis->aMarcApers[1].Base.u64; break;
1345 case IOMMU_MMIO_OFF_MARC_APER_RELOC_1: uReg = pThis->aMarcApers[1].Reloc.u64; break;
1346 case IOMMU_MMIO_OFF_MARC_APER_LEN_1: uReg = pThis->aMarcApers[1].Length.u64; break;
1347 case IOMMU_MMIO_OFF_MARC_APER_BAR_2: uReg = pThis->aMarcApers[2].Base.u64; break;
1348 case IOMMU_MMIO_OFF_MARC_APER_RELOC_2: uReg = pThis->aMarcApers[2].Reloc.u64; break;
1349 case IOMMU_MMIO_OFF_MARC_APER_LEN_2: uReg = pThis->aMarcApers[2].Length.u64; break;
1350 case IOMMU_MMIO_OFF_MARC_APER_BAR_3: uReg = pThis->aMarcApers[3].Base.u64; break;
1351 case IOMMU_MMIO_OFF_MARC_APER_RELOC_3: uReg = pThis->aMarcApers[3].Reloc.u64; break;
1352 case IOMMU_MMIO_OFF_MARC_APER_LEN_3: uReg = pThis->aMarcApers[3].Length.u64; break;
1353
1354 case IOMMU_MMIO_OFF_RSVD_REG: uReg = pThis->RsvdReg; break;
1355
1356 case IOMMU_MMIO_CMD_BUF_HEAD_PTR: uReg = pThis->CmdBufHeadPtr.u64; break;
1357 case IOMMU_MMIO_CMD_BUF_TAIL_PTR: uReg = pThis->CmdBufTailPtr.u64; break;
1358 case IOMMU_MMIO_EVT_LOG_HEAD_PTR: uReg = pThis->EvtLogHeadPtr.u64; break;
1359 case IOMMU_MMIO_EVT_LOG_TAIL_PTR: uReg = pThis->EvtLogTailPtr.u64; break;
1360
1361 case IOMMU_MMIO_OFF_STATUS: uReg = pThis->Status.u64; break;
1362
1363 case IOMMU_MMIO_OFF_PPR_LOG_HEAD_PTR: uReg = pThis->PprLogHeadPtr.u64; break;
1364 case IOMMU_MMIO_OFF_PPR_LOG_TAIL_PTR: uReg = pThis->PprLogTailPtr.u64; break;
1365
1366 case IOMMU_MMIO_OFF_GALOG_HEAD_PTR: uReg = pThis->GALogHeadPtr.u64; break;
1367 case IOMMU_MMIO_OFF_GALOG_TAIL_PTR: uReg = pThis->GALogTailPtr.u64; break;
1368
1369 case IOMMU_MMIO_OFF_PPR_LOG_B_HEAD_PTR: uReg = pThis->PprLogBHeadPtr.u64; break;
1370 case IOMMU_MMIO_OFF_PPR_LOG_B_TAIL_PTR: uReg = pThis->PprLogBTailPtr.u64; break;
1371
1372 case IOMMU_MMIO_OFF_EVT_LOG_B_HEAD_PTR: uReg = pThis->EvtLogBHeadPtr.u64; break;
1373 case IOMMU_MMIO_OFF_EVT_LOG_B_TAIL_PTR: uReg = pThis->EvtLogBTailPtr.u64; break;
1374
1375 case IOMMU_MMIO_OFF_PPR_LOG_AUTO_RESP: uReg = pThis->PprLogAutoResp.u64; break;
1376 case IOMMU_MMIO_OFF_PPR_LOG_OVERFLOW_EARLY: uReg = pThis->PprLogOverflowEarly.u64; break;
1377 case IOMMU_MMIO_OFF_PPR_LOG_B_OVERFLOW_EARLY: uReg = pThis->PprLogBOverflowEarly.u64; break;
1378
1379 /* Not implemented. */
1380 case IOMMU_MMIO_OFF_SMI_FLT_FIRST:
1381 case IOMMU_MMIO_OFF_SMI_FLT_LAST:
1382 {
1383 LogFunc(("Reading unsupported register: SMI filter %u\n", (off - IOMMU_MMIO_OFF_SMI_FLT_FIRST) >> 3));
1384 uReg = 0;
1385 break;
1386 }
1387
1388 /* Unknown. */
1389 default:
1390 {
1391 LogFunc(("Reading unknown register %u (%#x) -> 0\n", off, off));
1392 uReg = 0;
1393 return VINF_IOM_MMIO_UNUSED_00;
1394 }
1395 }
1396
1397 *puResult = uReg;
1398 return VINF_SUCCESS;
1399}
1400
1401
1402/**
1403 * Raises the MSI interrupt for the IOMMU device.
1404 *
1405 * @param pDevIns The IOMMU device instance.
1406 *
1407 * @thread Any.
1408 * @remarks The IOMMU lock may or may not be held.
1409 */
1410static void iommuAmdRaiseMsiInterrupt(PPDMDEVINS pDevIns)
1411{
1412 if (iommuAmdIsMsiEnabled(pDevIns))
1413 PDMDevHlpPCISetIrq(pDevIns, 0, PDM_IRQ_LEVEL_HIGH);
1414}
1415
1416
1417/**
1418 * Clears the MSI interrupt for the IOMMU device.
1419 *
1420 * @param pDevIns The IOMMU device instance.
1421 *
1422 * @thread Any.
1423 * @remarks The IOMMU lock may or may not be held.
1424 */
1425static void iommuAmdClearMsiInterrupt(PPDMDEVINS pDevIns)
1426{
1427 if (iommuAmdIsMsiEnabled(pDevIns))
1428 PDMDevHlpPCISetIrq(pDevIns, 0, PDM_IRQ_LEVEL_LOW);
1429}
1430
1431
1432/**
1433 * Writes an entry to the event log in memory.
1434 *
1435 * @returns VBox status code.
1436 * @param pDevIns The IOMMU device instance.
1437 * @param pEvent The event to log.
1438 *
1439 * @thread Any.
1440 */
1441static int iommuAmdWriteEvtLogEntry(PPDMDEVINS pDevIns, PCEVT_GENERIC_T pEvent)
1442{
1443 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
1444
1445 IOMMU_ASSERT_LOCKED(pDevIns);
1446
1447 /* Check if event logging is active and the log has not overflowed. */
1448 IOMMU_STATUS_T const Status = iommuAmdGetStatus(pThis);
1449 if ( Status.n.u1EvtLogRunning
1450 && !Status.n.u1EvtOverflow)
1451 {
1452 uint32_t const cbEvt = sizeof(*pEvent);
1453
1454 /* Get the offset we need to write the event to in memory (circular buffer offset). */
1455 uint32_t const offEvt = pThis->EvtLogTailPtr.n.off;
1456 Assert(!(offEvt & ~IOMMU_EVT_LOG_TAIL_PTR_VALID_MASK));
1457
1458 /* Ensure we have space in the event log. */
1459 uint32_t const cMaxEvts = iommuAmdGetBufMaxEntries(pThis->EvtLogBaseAddr.n.u4Len);
1460 uint32_t const cEvts = iommuAmdGetEvtLogEntryCount(pThis);
1461 if (cEvts + 1 < cMaxEvts)
1462 {
1463 /* Write the event log entry to memory. */
1464 RTGCPHYS const GCPhysEvtLog = pThis->EvtLogBaseAddr.n.u40Base << X86_PAGE_4K_SHIFT;
1465 RTGCPHYS const GCPhysEvtLogEntry = GCPhysEvtLog + offEvt;
1466 int rc = PDMDevHlpPCIPhysWrite(pDevIns, GCPhysEvtLogEntry, pEvent, cbEvt);
1467 if (RT_FAILURE(rc))
1468 LogFunc(("Failed to write event log entry at %#RGp. rc=%Rrc\n", GCPhysEvtLogEntry, rc));
1469
1470 /* Increment the event log tail pointer. */
1471 uint32_t const cbEvtLog = iommuAmdGetTotalBufLength(pThis->EvtLogBaseAddr.n.u4Len);
1472 pThis->EvtLogTailPtr.n.off = (offEvt + cbEvt) % cbEvtLog;
1473
1474 /* Indicate that an event log entry was written. */
1475 ASMAtomicOrU64(&pThis->Status.u64, IOMMU_STATUS_EVT_LOG_INTR);
1476
1477 /* Check and signal an interrupt if software wants to receive one when an event log entry is written. */
1478 IOMMU_CTRL_T const Ctrl = iommuAmdGetCtrl(pThis);
1479 if (Ctrl.n.u1EvtIntrEn)
1480 iommuAmdRaiseMsiInterrupt(pDevIns);
1481 }
1482 else
1483 {
1484 /* Indicate that the event log has overflowed. */
1485 ASMAtomicOrU64(&pThis->Status.u64, IOMMU_STATUS_EVT_LOG_OVERFLOW);
1486
1487 /* Check and signal an interrupt if software wants to receive one when the event log has overflowed. */
1488 IOMMU_CTRL_T const Ctrl = iommuAmdGetCtrl(pThis);
1489 if (Ctrl.n.u1EvtIntrEn)
1490 iommuAmdRaiseMsiInterrupt(pDevIns);
1491 }
1492 }
1493
1494 return VINF_SUCCESS;
1495}
1496
1497
1498/**
1499 * Sets an event in the hardware error registers.
1500 *
1501 * @param pDevIns The IOMMU device instance.
1502 * @param pEvent The event.
1503 *
1504 * @thread Any.
1505 */
1506static void iommuAmdSetHwError(PPDMDEVINS pDevIns, PCEVT_GENERIC_T pEvent)
1507{
1508 IOMMU_ASSERT_LOCKED(pDevIns);
1509
1510 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
1511 if (pThis->ExtFeat.n.u1HwErrorSup)
1512 {
1513 if (pThis->HwEvtStatus.n.u1Valid)
1514 pThis->HwEvtStatus.n.u1Overflow = 1;
1515 pThis->HwEvtStatus.n.u1Valid = 1;
1516 pThis->HwEvtHi.u64 = RT_MAKE_U64(pEvent->au32[0], pEvent->au32[1]);
1517 pThis->HwEvtLo = RT_MAKE_U64(pEvent->au32[2], pEvent->au32[3]);
1518 Assert( pThis->HwEvtHi.n.u4EvtCode == IOMMU_EVT_DEV_TAB_HW_ERROR
1519 || pThis->HwEvtHi.n.u4EvtCode == IOMMU_EVT_PAGE_TAB_HW_ERROR
1520 || pThis->HwEvtHi.n.u4EvtCode == IOMMU_EVT_COMMAND_HW_ERROR);
1521 }
1522}
1523
1524
1525/**
1526 * Initializes a PAGE_TAB_HARDWARE_ERROR event.
1527 *
1528 * @param uDevId The device ID.
1529 * @param uDomainId The domain ID.
1530 * @param GCPhysPtEntity The system physical address of the page table
1531 * entity.
1532 * @param enmOp The IOMMU operation being performed.
1533 * @param pEvtPageTabHwErr Where to store the initialized event.
1534 */
1535static void iommuAmdInitPageTabHwErrorEvent(uint16_t uDevId, uint16_t uDomainId, RTGCPHYS GCPhysPtEntity, IOMMUOP enmOp,
1536 PEVT_PAGE_TAB_HW_ERR_T pEvtPageTabHwErr)
1537{
1538 memset(pEvtPageTabHwErr, 0, sizeof(*pEvtPageTabHwErr));
1539 pEvtPageTabHwErr->n.u16DevId = uDevId;
1540 pEvtPageTabHwErr->n.u16DomainOrPasidLo = uDomainId;
1541 pEvtPageTabHwErr->n.u1GuestOrNested = 0;
1542 pEvtPageTabHwErr->n.u1Interrupt = RT_BOOL(enmOp == IOMMUOP_INTR_REQ);
1543 pEvtPageTabHwErr->n.u1ReadWrite = RT_BOOL(enmOp == IOMMUOP_MEM_WRITE);
1544 pEvtPageTabHwErr->n.u1Translation = RT_BOOL(enmOp == IOMMUOP_TRANSLATE_REQ);
1545 pEvtPageTabHwErr->n.u2Type = enmOp == IOMMUOP_CMD ? HWEVTTYPE_DATA_ERROR : HWEVTTYPE_TARGET_ABORT;
1546 pEvtPageTabHwErr->n.u4EvtCode = IOMMU_EVT_PAGE_TAB_HW_ERROR;
1547 pEvtPageTabHwErr->n.u64Addr = GCPhysPtEntity;
1548}
1549
1550
1551/**
1552 * Raises a PAGE_TAB_HARDWARE_ERROR event.
1553 *
1554 * @param pDevIns The IOMMU device instance.
1555 * @param enmOp The IOMMU operation being performed.
1556 * @param pEvtPageTabHwErr The page table hardware error event.
1557 *
1558 * @thread Any.
1559 */
1560static void iommuAmdRaisePageTabHwErrorEvent(PPDMDEVINS pDevIns, IOMMUOP enmOp, PEVT_PAGE_TAB_HW_ERR_T pEvtPageTabHwErr)
1561{
1562 AssertCompile(sizeof(EVT_GENERIC_T) == sizeof(EVT_PAGE_TAB_HW_ERR_T));
1563 PCEVT_GENERIC_T pEvent = (PCEVT_GENERIC_T)pEvtPageTabHwErr;
1564
1565 IOMMU_LOCK_NORET(pDevIns);
1566
1567 iommuAmdSetHwError(pDevIns, (PCEVT_GENERIC_T)pEvent);
1568 iommuAmdWriteEvtLogEntry(pDevIns, (PCEVT_GENERIC_T)pEvent);
1569 if (enmOp != IOMMUOP_CMD)
1570 iommuAmdSetPciTargetAbort(pDevIns);
1571
1572 IOMMU_UNLOCK(pDevIns);
1573
1574 LogFunc(("Raised PAGE_TAB_HARDWARE_ERROR. uDevId=%#x uDomainId=%#x GCPhysPtEntity=%#RGp enmOp=%u u2Type=%u\n",
1575 pEvtPageTabHwErr->n.u16DevId, pEvtPageTabHwErr->n.u16DomainOrPasidLo, pEvtPageTabHwErr->n.u64Addr, enmOp,
1576 pEvtPageTabHwErr->n.u2Type));
1577}
1578
1579
1580/**
1581 * Initializes a COMMAND_HARDWARE_ERROR event.
1582 *
1583 * @param GCPhysAddr The system physical address the IOMMU attempted to access.
1584 * @param pEvtCmdHwErr Where to store the initialized event.
1585 */
1586static void iommuAmdInitCmdHwErrorEvent(RTGCPHYS GCPhysAddr, PEVT_CMD_HW_ERR_T pEvtCmdHwErr)
1587{
1588 memset(pEvtCmdHwErr, 0, sizeof(*pEvtCmdHwErr));
1589 pEvtCmdHwErr->n.u2Type = HWEVTTYPE_DATA_ERROR;
1590 pEvtCmdHwErr->n.u4EvtCode = IOMMU_EVT_COMMAND_HW_ERROR;
1591 pEvtCmdHwErr->n.u64Addr = GCPhysAddr;
1592}
1593
1594
1595/**
1596 * Raises a COMMAND_HARDWARE_ERROR event.
1597 *
1598 * @param pDevIns The IOMMU device instance.
1599 * @param pEvtCmdHwErr The command hardware error event.
1600 *
1601 * @thread Any.
1602 */
1603static void iommuAmdRaiseCmdHwErrorEvent(PPDMDEVINS pDevIns, PCEVT_CMD_HW_ERR_T pEvtCmdHwErr)
1604{
1605 AssertCompile(sizeof(EVT_GENERIC_T) == sizeof(EVT_CMD_HW_ERR_T));
1606 PCEVT_GENERIC_T pEvent = (PCEVT_GENERIC_T)pEvtCmdHwErr;
1607 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
1608
1609 IOMMU_LOCK_NORET(pDevIns);
1610
1611 iommuAmdSetHwError(pDevIns, (PCEVT_GENERIC_T)pEvent);
1612 iommuAmdWriteEvtLogEntry(pDevIns, (PCEVT_GENERIC_T)pEvent);
1613 ASMAtomicAndU64(&pThis->Status.u64, ~IOMMU_STATUS_CMD_BUF_RUNNING);
1614
1615 IOMMU_UNLOCK(pDevIns);
1616
1617 LogFunc(("Raised COMMAND_HARDWARE_ERROR. GCPhysCmd=%#RGp u2Type=%u\n", pEvtCmdHwErr->n.u64Addr, pEvtCmdHwErr->n.u2Type));
1618}
1619
1620
1621/**
1622 * Initializes a DEV_TAB_HARDWARE_ERROR event.
1623 *
1624 * @param uDevId The device ID.
1625 * @param GCPhysDte The system physical address of the failed device table
1626 * access.
1627 * @param enmOp The IOMMU operation being performed.
1628 * @param pEvtDevTabHwErr Where to store the initialized event.
1629 */
1630static void iommuAmdInitDevTabHwErrorEvent(uint16_t uDevId, RTGCPHYS GCPhysDte, IOMMUOP enmOp,
1631 PEVT_DEV_TAB_HW_ERROR_T pEvtDevTabHwErr)
1632{
1633 memset(pEvtDevTabHwErr, 0, sizeof(*pEvtDevTabHwErr));
1634 pEvtDevTabHwErr->n.u16DevId = uDevId;
1635 pEvtDevTabHwErr->n.u1Intr = RT_BOOL(enmOp == IOMMUOP_INTR_REQ);
1636 /** @todo IOMMU: Any other transaction type that can set read/write bit? */
1637 pEvtDevTabHwErr->n.u1ReadWrite = RT_BOOL(enmOp == IOMMUOP_MEM_WRITE);
1638 pEvtDevTabHwErr->n.u1Translation = RT_BOOL(enmOp == IOMMUOP_TRANSLATE_REQ);
1639 pEvtDevTabHwErr->n.u2Type = enmOp == IOMMUOP_CMD ? HWEVTTYPE_DATA_ERROR : HWEVTTYPE_TARGET_ABORT;
1640 pEvtDevTabHwErr->n.u4EvtCode = IOMMU_EVT_DEV_TAB_HW_ERROR;
1641 pEvtDevTabHwErr->n.u64Addr = GCPhysDte;
1642}
1643
1644
1645/**
1646 * Raises a DEV_TAB_HARDWARE_ERROR event.
1647 *
1648 * @param pDevIns The IOMMU device instance.
1649 * @param enmOp The IOMMU operation being performed.
1650 * @param pEvtDevTabHwErr The device table hardware error event.
1651 *
1652 * @thread Any.
1653 */
1654static void iommuAmdRaiseDevTabHwErrorEvent(PPDMDEVINS pDevIns, IOMMUOP enmOp, PEVT_DEV_TAB_HW_ERROR_T pEvtDevTabHwErr)
1655{
1656 AssertCompile(sizeof(EVT_GENERIC_T) == sizeof(EVT_DEV_TAB_HW_ERROR_T));
1657 PCEVT_GENERIC_T pEvent = (PCEVT_GENERIC_T)pEvtDevTabHwErr;
1658
1659 IOMMU_LOCK_NORET(pDevIns);
1660
1661 iommuAmdSetHwError(pDevIns, (PCEVT_GENERIC_T)pEvent);
1662 iommuAmdWriteEvtLogEntry(pDevIns, (PCEVT_GENERIC_T)pEvent);
1663 if (enmOp != IOMMUOP_CMD)
1664 iommuAmdSetPciTargetAbort(pDevIns);
1665
1666 IOMMU_UNLOCK(pDevIns);
1667
1668 LogFunc(("Raised DEV_TAB_HARDWARE_ERROR. uDevId=%#x GCPhysDte=%#RGp enmOp=%u u2Type=%u\n", pEvtDevTabHwErr->n.u16DevId,
1669 pEvtDevTabHwErr->n.u64Addr, enmOp, pEvtDevTabHwErr->n.u2Type));
1670}
1671
1672
1673/**
1674 * Initializes an ILLEGAL_COMMAND_ERROR event.
1675 *
1676 * @param GCPhysCmd The system physical address of the failed command
1677 * access.
1678 * @param pEvtIllegalCmd Where to store the initialized event.
1679 */
1680static void iommuAmdInitIllegalCmdEvent(RTGCPHYS GCPhysCmd, PEVT_ILLEGAL_CMD_ERR_T pEvtIllegalCmd)
1681{
1682 Assert(!(GCPhysCmd & UINT64_C(0xf)));
1683 memset(pEvtIllegalCmd, 0, sizeof(*pEvtIllegalCmd));
1684 pEvtIllegalCmd->n.u4EvtCode = IOMMU_EVT_ILLEGAL_CMD_ERROR;
1685 pEvtIllegalCmd->n.u64Addr = GCPhysCmd;
1686}
1687
1688
1689/**
1690 * Raises an ILLEGAL_COMMAND_ERROR event.
1691 *
1692 * @param pDevIns The IOMMU device instance.
1693 * @param pEvtIllegalCmd The illegal command error event.
1694 */
1695static void iommuAmdRaiseIllegalCmdEvent(PPDMDEVINS pDevIns, PCEVT_ILLEGAL_CMD_ERR_T pEvtIllegalCmd)
1696{
1697 AssertCompile(sizeof(EVT_GENERIC_T) == sizeof(EVT_ILLEGAL_DTE_T));
1698 PCEVT_GENERIC_T pEvent = (PCEVT_GENERIC_T)pEvtIllegalCmd;
1699 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
1700
1701 IOMMU_LOCK_NORET(pDevIns);
1702
1703 iommuAmdWriteEvtLogEntry(pDevIns, pEvent);
1704 ASMAtomicAndU64(&pThis->Status.u64, ~IOMMU_STATUS_CMD_BUF_RUNNING);
1705
1706 IOMMU_UNLOCK(pDevIns);
1707
1708 LogFunc(("Raised ILLEGAL_COMMAND_ERROR. Addr=%#RGp\n", pEvtIllegalCmd->n.u64Addr));
1709}
1710
1711
1712/**
1713 * Initializes an ILLEGAL_DEV_TABLE_ENTRY event.
1714 *
1715 * @param uDevId The device ID.
1716 * @param uIova The I/O virtual address.
1717 * @param fRsvdNotZero Whether reserved bits are not zero. Pass @c false if the
1718 * event was caused by an invalid level encoding in the
1719 * DTE.
1720 * @param enmOp The IOMMU operation being performed.
1721 * @param pEvtIllegalDte Where to store the initialized event.
1722 */
1723static void iommuAmdInitIllegalDteEvent(uint16_t uDevId, uint64_t uIova, bool fRsvdNotZero, IOMMUOP enmOp,
1724 PEVT_ILLEGAL_DTE_T pEvtIllegalDte)
1725{
1726 memset(pEvtIllegalDte, 0, sizeof(*pEvtIllegalDte));
1727 pEvtIllegalDte->n.u16DevId = uDevId;
1728 pEvtIllegalDte->n.u1Interrupt = RT_BOOL(enmOp == IOMMUOP_INTR_REQ);
1729 pEvtIllegalDte->n.u1ReadWrite = RT_BOOL(enmOp == IOMMUOP_MEM_WRITE);
1730 pEvtIllegalDte->n.u1RsvdNotZero = fRsvdNotZero;
1731 pEvtIllegalDte->n.u1Translation = RT_BOOL(enmOp == IOMMUOP_TRANSLATE_REQ);
1732 pEvtIllegalDte->n.u4EvtCode = IOMMU_EVT_ILLEGAL_DEV_TAB_ENTRY;
1733 pEvtIllegalDte->n.u64Addr = uIova & ~UINT64_C(0x3);
1734 /** @todo r=ramshankar: Not sure why the last 2 bits are marked as reserved by the
1735 * IOMMU spec here but not for this field for I/O page fault event. */
1736 Assert(!(uIova & UINT64_C(0x3)));
1737}
1738
1739
1740/**
1741 * Raises an ILLEGAL_DEV_TABLE_ENTRY event.
1742 *
1743 * @param pDevIns The IOMMU instance data.
1744 * @param enmOp The IOMMU operation being performed.
1745 * @param pEvtIllegalDte The illegal device table entry event.
1746 * @param enmEvtType The illegal device table entry event type.
1747 *
1748 * @thread Any.
1749 */
1750static void iommuAmdRaiseIllegalDteEvent(PPDMDEVINS pDevIns, IOMMUOP enmOp, PCEVT_ILLEGAL_DTE_T pEvtIllegalDte,
1751 EVT_ILLEGAL_DTE_TYPE_T enmEvtType)
1752{
1753 AssertCompile(sizeof(EVT_GENERIC_T) == sizeof(EVT_ILLEGAL_DTE_T));
1754 PCEVT_GENERIC_T pEvent = (PCEVT_GENERIC_T)pEvtIllegalDte;
1755
1756 IOMMU_LOCK_NORET(pDevIns);
1757
1758 iommuAmdWriteEvtLogEntry(pDevIns, pEvent);
1759 if (enmOp != IOMMUOP_CMD)
1760 iommuAmdSetPciTargetAbort(pDevIns);
1761
1762 IOMMU_UNLOCK(pDevIns);
1763
1764 LogFunc(("Raised ILLEGAL_DTE_EVENT. uDevId=%#x uIova=%#RX64 enmOp=%u enmEvtType=%u\n", pEvtIllegalDte->n.u16DevId,
1765 pEvtIllegalDte->n.u64Addr, enmOp, enmEvtType));
1766 NOREF(enmEvtType);
1767}
1768
1769
1770/**
1771 * Initializes an IO_PAGE_FAULT event.
1772 *
1773 * @param uDevId The device ID.
1774 * @param uDomainId The domain ID.
1775 * @param uIova The I/O virtual address being accessed.
1776 * @param fPresent Transaction to a page marked as present (including
1777 * DTE.V=1) or interrupt marked as remapped
1778 * (IRTE.RemapEn=1).
1779 * @param fRsvdNotZero Whether reserved bits are not zero. Pass @c false if
1780 * the I/O page fault was caused by invalid level
1781 * encoding.
1782 * @param fPermDenied Permission denied for the address being accessed.
1783 * @param enmOp The IOMMU operation being performed.
1784 * @param pEvtIoPageFault Where to store the initialized event.
1785 */
1786static void iommuAmdInitIoPageFaultEvent(uint16_t uDevId, uint16_t uDomainId, uint64_t uIova, bool fPresent, bool fRsvdNotZero,
1787 bool fPermDenied, IOMMUOP enmOp, PEVT_IO_PAGE_FAULT_T pEvtIoPageFault)
1788{
1789 Assert(!fPermDenied || fPresent);
1790 memset(pEvtIoPageFault, 0, sizeof(*pEvtIoPageFault));
1791 pEvtIoPageFault->n.u16DevId = uDevId;
1792 //pEvtIoPageFault->n.u4PasidHi = 0;
1793 pEvtIoPageFault->n.u16DomainOrPasidLo = uDomainId;
1794 //pEvtIoPageFault->n.u1GuestOrNested = 0;
1795 //pEvtIoPageFault->n.u1NoExecute = 0;
1796 //pEvtIoPageFault->n.u1User = 0;
1797 pEvtIoPageFault->n.u1Interrupt = RT_BOOL(enmOp == IOMMUOP_INTR_REQ);
1798 pEvtIoPageFault->n.u1Present = fPresent;
1799 pEvtIoPageFault->n.u1ReadWrite = RT_BOOL(enmOp == IOMMUOP_MEM_WRITE);
1800 pEvtIoPageFault->n.u1PermDenied = fPermDenied;
1801 pEvtIoPageFault->n.u1RsvdNotZero = fRsvdNotZero;
1802 pEvtIoPageFault->n.u1Translation = RT_BOOL(enmOp == IOMMUOP_TRANSLATE_REQ);
1803 pEvtIoPageFault->n.u4EvtCode = IOMMU_EVT_IO_PAGE_FAULT;
1804 pEvtIoPageFault->n.u64Addr = uIova;
1805}
1806
1807
1808/**
1809 * Raises an IO_PAGE_FAULT event.
1810 *
1811 * @param pDevIns The IOMMU instance data.
1812 * @param pDte The device table entry. Optional, can be NULL
1813 * depending on @a enmOp.
1814 * @param pIrte The interrupt remapping table entry. Optional, can
1815 * be NULL depending on @a enmOp.
1816 * @param enmOp The IOMMU operation being performed.
1817 * @param pEvtIoPageFault The I/O page fault event.
1818 * @param enmEvtType The I/O page fault event type.
1819 *
1820 * @thread Any.
1821 */
1822static void iommuAmdRaiseIoPageFaultEvent(PPDMDEVINS pDevIns, PCDTE_T pDte, PCIRTE_T pIrte, IOMMUOP enmOp,
1823 PCEVT_IO_PAGE_FAULT_T pEvtIoPageFault, EVT_IO_PAGE_FAULT_TYPE_T enmEvtType)
1824{
1825 AssertCompile(sizeof(EVT_GENERIC_T) == sizeof(EVT_IO_PAGE_FAULT_T));
1826 PCEVT_GENERIC_T pEvent = (PCEVT_GENERIC_T)pEvtIoPageFault;
1827
1828 IOMMU_LOCK_NORET(pDevIns);
1829
1830 bool fSuppressEvtLogging = false;
1831 if ( enmOp == IOMMUOP_MEM_READ
1832 || enmOp == IOMMUOP_MEM_WRITE)
1833 {
1834 if ( pDte
1835 && pDte->n.u1Valid)
1836 {
1837 fSuppressEvtLogging = pDte->n.u1SuppressAllPfEvents;
1838 /** @todo IOMMU: Implement DTE.SE bit, i.e. device ID specific I/O page fault
1839 * suppression. Perhaps will be possible when we complete IOTLB/cache
1840 * handling. */
1841 }
1842 }
1843 else if (enmOp == IOMMUOP_INTR_REQ)
1844 {
1845 if ( pDte
1846 && pDte->n.u1IntrMapValid)
1847 fSuppressEvtLogging = !pDte->n.u1IgnoreUnmappedIntrs;
1848
1849 if ( !fSuppressEvtLogging
1850 && pIrte)
1851 fSuppressEvtLogging = pIrte->n.u1SuppressIoPf;
1852 }
1853 /* else: Events are never suppressed for commands. */
1854
1855 switch (enmEvtType)
1856 {
1857 case kIoPageFaultType_PermDenied:
1858 {
1859 /* Cannot be triggered by a command. */
1860 Assert(enmOp != IOMMUOP_CMD);
1861 RT_FALL_THRU();
1862 }
1863 case kIoPageFaultType_DteRsvdPagingMode:
1864 case kIoPageFaultType_PteInvalidPageSize:
1865 case kIoPageFaultType_PteInvalidLvlEncoding:
1866 case kIoPageFaultType_SkippedLevelIovaNotZero:
1867 case kIoPageFaultType_PteRsvdNotZero:
1868 case kIoPageFaultType_PteValidNotSet:
1869 case kIoPageFaultType_DteTranslationDisabled:
1870 case kIoPageFaultType_PasidInvalidRange:
1871 {
1872 /*
1873 * For a translation request, the IOMMU doesn't signal an I/O page fault nor does it
1874 * create an event log entry. See AMD spec. 2.1.3.2 "I/O Page Faults".
1875 */
1876 if (enmOp != IOMMUOP_TRANSLATE_REQ)
1877 {
1878 if (!fSuppressEvtLogging)
1879 iommuAmdWriteEvtLogEntry(pDevIns, pEvent);
1880 if (enmOp != IOMMUOP_CMD)
1881 iommuAmdSetPciTargetAbort(pDevIns);
1882 }
1883 break;
1884 }
1885
1886 case kIoPageFaultType_UserSupervisor:
1887 {
1888 /* Access is blocked and only creates an event log entry. */
1889 if (!fSuppressEvtLogging)
1890 iommuAmdWriteEvtLogEntry(pDevIns, pEvent);
1891 break;
1892 }
1893
1894 case kIoPageFaultType_IrteAddrInvalid:
1895 case kIoPageFaultType_IrteRsvdNotZero:
1896 case kIoPageFaultType_IrteRemapEn:
1897 case kIoPageFaultType_IrteRsvdIntType:
1898 case kIoPageFaultType_IntrReqAborted:
1899 case kIoPageFaultType_IntrWithPasid:
1900 {
1901 /* Only trigerred by interrupt requests. */
1902 Assert(enmOp == IOMMUOP_INTR_REQ);
1903 if (!fSuppressEvtLogging)
1904 iommuAmdWriteEvtLogEntry(pDevIns, pEvent);
1905 iommuAmdSetPciTargetAbort(pDevIns);
1906 break;
1907 }
1908
1909 case kIoPageFaultType_SmiFilterMismatch:
1910 {
1911 /* Not supported and probably will never be, assert. */
1912 AssertMsgFailed(("kIoPageFaultType_SmiFilterMismatch - Upstream SMI requests not supported/implemented."));
1913 break;
1914 }
1915
1916 case kIoPageFaultType_DevId_Invalid:
1917 {
1918 /* Cannot be triggered by a command. */
1919 Assert(enmOp != IOMMUOP_CMD);
1920 Assert(enmOp != IOMMUOP_TRANSLATE_REQ); /** @todo IOMMU: We don't support translation requests yet. */
1921 if (!fSuppressEvtLogging)
1922 iommuAmdWriteEvtLogEntry(pDevIns, pEvent);
1923 if ( enmOp == IOMMUOP_MEM_READ
1924 || enmOp == IOMMUOP_MEM_WRITE)
1925 iommuAmdSetPciTargetAbort(pDevIns);
1926 break;
1927 }
1928 }
1929
1930 IOMMU_UNLOCK(pDevIns);
1931}
1932
1933
1934/**
1935 * Returns whether the I/O virtual address is to be excluded from translation and
1936 * permission checks.
1937 *
1938 * @returns @c true if the DVA is excluded, @c false otherwise.
1939 * @param pThis The IOMMU device state.
1940 * @param pDte The device table entry.
1941 * @param uIova The I/O virtual address.
1942 *
1943 * @remarks Ensure the exclusion range is enabled prior to calling this function.
1944 *
1945 * @thread Any.
1946 */
1947static bool iommuAmdIsDvaInExclRange(PCIOMMU pThis, PCDTE_T pDte, uint64_t uIova)
1948{
1949 /* Ensure the exclusion range is enabled. */
1950 Assert(pThis->ExclRangeBaseAddr.n.u1ExclEnable);
1951
1952 /* Check if the IOVA falls within the exclusion range. */
1953 uint64_t const uIovaExclFirst = pThis->ExclRangeBaseAddr.n.u40ExclRangeBase << X86_PAGE_4K_SHIFT;
1954 uint64_t const uIovaExclLast = pThis->ExclRangeLimit.n.u52ExclLimit;
1955 if (uIovaExclLast - uIova >= uIovaExclFirst)
1956 {
1957 /* Check if device access to addresses in the exclusion range can be forwarded untranslated. */
1958 if ( pThis->ExclRangeBaseAddr.n.u1AllowAll
1959 || pDte->n.u1AllowExclusion)
1960 return true;
1961 }
1962 return false;
1963}
1964
1965
1966/**
1967 * Reads a device table entry from guest memory given the device ID.
1968 *
1969 * @returns VBox status code.
1970 * @param pDevIns The IOMMU device instance.
1971 * @param uDevId The device ID.
1972 * @param enmOp The IOMMU operation being performed.
1973 * @param pDte Where to store the device table entry.
1974 *
1975 * @thread Any.
1976 */
1977static int iommuAmdReadDte(PPDMDEVINS pDevIns, uint16_t uDevId, IOMMUOP enmOp, PDTE_T pDte)
1978{
1979 PCIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
1980 IOMMU_CTRL_T const Ctrl = iommuAmdGetCtrl(pThis);
1981
1982 uint8_t const idxSegsEn = Ctrl.n.u3DevTabSegEn;
1983 Assert(idxSegsEn < RT_ELEMENTS(g_auDevTabSegShifts));
1984 Assert(idxSegsEn < RT_ELEMENTS(g_auDevTabSegMasks));
1985
1986 uint8_t const idxSeg = (uDevId & g_auDevTabSegMasks[idxSegsEn]) >> g_auDevTabSegShifts[idxSegsEn];
1987 Assert(idxSeg < RT_ELEMENTS(pThis->aDevTabBaseAddrs));
1988
1989 RTGCPHYS const GCPhysDevTab = pThis->aDevTabBaseAddrs[idxSeg].n.u40Base << X86_PAGE_4K_SHIFT;
1990 uint16_t const offDte = (uDevId & ~g_auDevTabSegMasks[idxSegsEn]) * sizeof(DTE_T);
1991 RTGCPHYS const GCPhysDte = GCPhysDevTab + offDte;
1992
1993 Assert(!(GCPhysDevTab & X86_PAGE_4K_OFFSET_MASK));
1994 int rc = PDMDevHlpPCIPhysRead(pDevIns, GCPhysDte, pDte, sizeof(*pDte));
1995 if (RT_FAILURE(rc))
1996 {
1997 LogFunc(("Failed to read device table entry at %#RGp. rc=%Rrc -> DevTabHwError\n", GCPhysDte, rc));
1998
1999 EVT_DEV_TAB_HW_ERROR_T EvtDevTabHwErr;
2000 iommuAmdInitDevTabHwErrorEvent(uDevId, GCPhysDte, enmOp, &EvtDevTabHwErr);
2001 iommuAmdRaiseDevTabHwErrorEvent(pDevIns, enmOp, &EvtDevTabHwErr);
2002 return VERR_IOMMU_IPE_1;
2003 }
2004
2005 return rc;
2006}
2007
2008
2009/**
2010 * Walks the I/O page table to translate the I/O virtual address to a system
2011 * physical address.
2012 *
2013 * @returns VBox status code.
2014 * @param pDevIns The IOMMU device instance.
2015 * @param uIova The I/O virtual address to translate. Must be 4K aligned.
2016 * @param uDevId The device ID.
2017 * @param fAccess The access permissions (IOMMU_IO_PERM_XXX). This is the
2018 * permissions for the access being made.
2019 * @param pDte The device table entry.
2020 * @param enmOp The IOMMU operation being performed.
2021 * @param pWalkResult Where to store the results of the I/O page walk. This is
2022 * only updated when VINF_SUCCESS is returned.
2023 *
2024 * @thread Any.
2025 */
2026static int iommuAmdWalkIoPageTable(PPDMDEVINS pDevIns, uint16_t uDevId, uint64_t uIova, uint8_t fAccess, PCDTE_T pDte,
2027 IOMMUOP enmOp, PIOWALKRESULT pWalkResult)
2028{
2029 Assert(pDte->n.u1Valid);
2030 Assert(!(uIova & X86_PAGE_4K_OFFSET_MASK));
2031
2032 /* If the translation is not valid, raise an I/O page fault. */
2033 if (pDte->n.u1TranslationValid)
2034 { /* likely */ }
2035 else
2036 {
2037 /** @todo r=ramshankar: The AMD IOMMU spec. says page walk is terminated but
2038 * doesn't explicitly say whether an I/O page fault is raised. From other
2039 * places in the spec. it seems early page walk terminations (starting with
2040 * the DTE) return the state computed so far and raises an I/O page fault. So
2041 * returning an invalid translation rather than skipping translation. */
2042 LogFunc(("Translation valid bit not set -> IOPF\n"));
2043 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2044 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, uIova, false /* fPresent */, false /* fRsvdNotZero */,
2045 false /* fPermDenied */, enmOp, &EvtIoPageFault);
2046 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, NULL /* pIrte */, enmOp, &EvtIoPageFault,
2047 kIoPageFaultType_DteTranslationDisabled);
2048 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2049 }
2050
2051 /* If the root page table level is 0, translation is skipped and access is controlled by the permission bits. */
2052 uint8_t const uMaxLevel = pDte->n.u3Mode;
2053 if (uMaxLevel != 0)
2054 { /* likely */ }
2055 else
2056 {
2057 uint8_t const fDtePerm = (pDte->au64[0] >> IOMMU_IO_PERM_SHIFT) & IOMMU_IO_PERM_MASK;
2058 if ((fAccess & fDtePerm) != fAccess)
2059 {
2060 LogFunc(("Access denied for IOVA (%#RX64). fAccess=%#x fDtePerm=%#x\n", uIova, fAccess, fDtePerm));
2061 return VERR_IOMMU_ADDR_ACCESS_DENIED;
2062 }
2063 pWalkResult->GCPhysSpa = uIova;
2064 pWalkResult->cShift = 0;
2065 pWalkResult->fIoPerm = fDtePerm;
2066 return VINF_SUCCESS;
2067 }
2068
2069 /* If the root page table level exceeds the allowed host-address translation level, page walk is terminated. */
2070 if (uMaxLevel <= IOMMU_MAX_HOST_PT_LEVEL)
2071 { /* likely */ }
2072 else
2073 {
2074 /** @todo r=ramshankar: I cannot make out from the AMD IOMMU spec. if I should be
2075 * raising an ILLEGAL_DEV_TABLE_ENTRY event or an IO_PAGE_FAULT event here.
2076 * I'm just going with I/O page fault. */
2077 LogFunc(("Invalid root page table level %#x -> IOPF\n", uMaxLevel));
2078 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2079 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, uIova, true /* fPresent */, false /* fRsvdNotZero */,
2080 false /* fPermDenied */, enmOp, &EvtIoPageFault);
2081 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, NULL /* pIrte */, enmOp, &EvtIoPageFault,
2082 kIoPageFaultType_PteInvalidLvlEncoding);
2083 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2084 }
2085
2086 /* Check permissions bits of the root page table. */
2087 uint8_t const fRootPtePerm = (pDte->au64[0] >> IOMMU_IO_PERM_SHIFT) & IOMMU_IO_PERM_MASK;
2088 if ((fAccess & fRootPtePerm) == fAccess)
2089 { /* likely */ }
2090 else
2091 {
2092 LogFunc(("Permission denied (fAccess=%#x fRootPtePerm=%#x) -> IOPF\n", fAccess, fRootPtePerm));
2093 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2094 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, uIova, true /* fPresent */, false /* fRsvdNotZero */,
2095 true /* fPermDenied */, enmOp, &EvtIoPageFault);
2096 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, NULL /* pIrte */, enmOp, &EvtIoPageFault, kIoPageFaultType_PermDenied);
2097 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2098 }
2099
2100 /** @todo r=ramshankar: IOMMU: Consider splitting the rest of this into a separate
2101 * function called iommuAmdWalkIoPageDirectory() and call it for multi-page
2102 * accesses from the 2nd page. We can avoid re-checking the DTE root-page
2103 * table entry every time. Not sure if it's worth optimizing that case now
2104 * or if at all. */
2105
2106 /* The virtual address bits indexing table. */
2107 static uint8_t const s_acIovaLevelShifts[] = { 0, 12, 21, 30, 39, 48, 57, 0 };
2108 static uint64_t const s_auIovaLevelMasks[] = { UINT64_C(0x0000000000000000),
2109 UINT64_C(0x00000000001ff000),
2110 UINT64_C(0x000000003fe00000),
2111 UINT64_C(0x0000007fc0000000),
2112 UINT64_C(0x0000ff8000000000),
2113 UINT64_C(0x01ff000000000000),
2114 UINT64_C(0xfe00000000000000),
2115 UINT64_C(0x0000000000000000) };
2116 AssertCompile(RT_ELEMENTS(s_acIovaLevelShifts) == RT_ELEMENTS(s_auIovaLevelMasks));
2117 AssertCompile(RT_ELEMENTS(s_acIovaLevelShifts) > IOMMU_MAX_HOST_PT_LEVEL);
2118
2119 /* Traverse the I/O page table starting with the page directory in the DTE. */
2120 IOPTENTITY_T PtEntity;
2121 PtEntity.u64 = pDte->au64[0];
2122 for (;;)
2123 {
2124 /* Figure out the system physical address of the page table at the current level. */
2125 uint8_t const uLevel = PtEntity.n.u3NextLevel;
2126
2127 /* Read the page table entity at the current level. */
2128 {
2129 Assert(uLevel > 0 && uLevel < RT_ELEMENTS(s_acIovaLevelShifts));
2130 Assert(uLevel <= IOMMU_MAX_HOST_PT_LEVEL);
2131 uint16_t const idxPte = (uIova >> s_acIovaLevelShifts[uLevel]) & UINT64_C(0x1ff);
2132 uint64_t const offPte = idxPte << 3;
2133 RTGCPHYS const GCPhysPtEntity = (PtEntity.u64 & IOMMU_PTENTITY_ADDR_MASK) + offPte;
2134 int rc = PDMDevHlpPCIPhysRead(pDevIns, GCPhysPtEntity, &PtEntity.u64, sizeof(PtEntity));
2135 if (RT_FAILURE(rc))
2136 {
2137 LogFunc(("Failed to read page table entry at %#RGp. rc=%Rrc -> PageTabHwError\n", GCPhysPtEntity, rc));
2138 EVT_PAGE_TAB_HW_ERR_T EvtPageTabHwErr;
2139 iommuAmdInitPageTabHwErrorEvent(uDevId, pDte->n.u16DomainId, GCPhysPtEntity, enmOp, &EvtPageTabHwErr);
2140 iommuAmdRaisePageTabHwErrorEvent(pDevIns, enmOp, &EvtPageTabHwErr);
2141 return VERR_IOMMU_IPE_2;
2142 }
2143 }
2144
2145 /* Check present bit. */
2146 if (PtEntity.n.u1Present)
2147 { /* likely */ }
2148 else
2149 {
2150 LogFunc(("Page table entry not present -> IOPF\n"));
2151 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2152 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, uIova, false /* fPresent */, false /* fRsvdNotZero */,
2153 false /* fPermDenied */, enmOp, &EvtIoPageFault);
2154 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, NULL /* pIrte */, enmOp, &EvtIoPageFault, kIoPageFaultType_PermDenied);
2155 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2156 }
2157
2158 /* Check permission bits. */
2159 uint8_t const fPtePerm = (PtEntity.u64 >> IOMMU_IO_PERM_SHIFT) & IOMMU_IO_PERM_MASK;
2160 if ((fAccess & fPtePerm) == fAccess)
2161 { /* likely */ }
2162 else
2163 {
2164 LogFunc(("Page table entry permission denied (fAccess=%#x fPtePerm=%#x) -> IOPF\n", fAccess, fPtePerm));
2165 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2166 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, uIova, true /* fPresent */, false /* fRsvdNotZero */,
2167 true /* fPermDenied */, enmOp, &EvtIoPageFault);
2168 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, NULL /* pIrte */, enmOp, &EvtIoPageFault, kIoPageFaultType_PermDenied);
2169 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2170 }
2171
2172 /* If this is a PTE, we're at the final level and we're done. */
2173 uint8_t const uNextLevel = PtEntity.n.u3NextLevel;
2174 if (uNextLevel == 0)
2175 {
2176 /* The page size of the translation is the default (4K). */
2177 pWalkResult->GCPhysSpa = PtEntity.u64 & IOMMU_PTENTITY_ADDR_MASK;
2178 pWalkResult->cShift = X86_PAGE_4K_SHIFT;
2179 pWalkResult->fIoPerm = fPtePerm;
2180 return VINF_SUCCESS;
2181 }
2182 if (uNextLevel == 7)
2183 {
2184 /* The default page size of the translation is overridden. */
2185 RTGCPHYS const GCPhysPte = PtEntity.u64 & IOMMU_PTENTITY_ADDR_MASK;
2186 uint8_t cShift = X86_PAGE_4K_SHIFT;
2187 while (GCPhysPte & RT_BIT_64(cShift++))
2188 ;
2189
2190 /* The page size must be larger than the default size and lower than the default size of the higher level. */
2191 Assert(uLevel < IOMMU_MAX_HOST_PT_LEVEL); /* PTE at level 6 handled outside the loop, uLevel should be <= 5. */
2192 if ( cShift > s_acIovaLevelShifts[uLevel]
2193 && cShift < s_acIovaLevelShifts[uLevel + 1])
2194 {
2195 pWalkResult->GCPhysSpa = GCPhysPte;
2196 pWalkResult->cShift = cShift;
2197 pWalkResult->fIoPerm = fPtePerm;
2198 return VINF_SUCCESS;
2199 }
2200
2201 LogFunc(("Page size invalid cShift=%#x -> IOPF\n", cShift));
2202 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2203 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, uIova, true /* fPresent */, false /* fRsvdNotZero */,
2204 false /* fPermDenied */, enmOp, &EvtIoPageFault);
2205 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, NULL /* pIrte */, enmOp, &EvtIoPageFault,
2206 kIoPageFaultType_PteInvalidPageSize);
2207 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2208 }
2209
2210 /* Validate the next level encoding of the PDE. */
2211#if IOMMU_MAX_HOST_PT_LEVEL < 6
2212 if (uNextLevel <= IOMMU_MAX_HOST_PT_LEVEL)
2213 { /* likely */ }
2214 else
2215 {
2216 LogFunc(("Next level of PDE invalid uNextLevel=%#x -> IOPF\n", uNextLevel));
2217 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2218 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, uIova, true /* fPresent */, false /* fRsvdNotZero */,
2219 false /* fPermDenied */, enmOp, &EvtIoPageFault);
2220 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, NULL /* pIrte */, enmOp, &EvtIoPageFault,
2221 kIoPageFaultType_PteInvalidLvlEncoding);
2222 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2223 }
2224#else
2225 Assert(uNextLevel <= IOMMU_MAX_HOST_PT_LEVEL);
2226#endif
2227
2228 /* Validate level transition. */
2229 if (uNextLevel < uLevel)
2230 { /* likely */ }
2231 else
2232 {
2233 LogFunc(("Next level (%#x) must be less than the current level (%#x) -> IOPF\n", uNextLevel, uLevel));
2234 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2235 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, uIova, true /* fPresent */, false /* fRsvdNotZero */,
2236 false /* fPermDenied */, enmOp, &EvtIoPageFault);
2237 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, NULL /* pIrte */, enmOp, &EvtIoPageFault,
2238 kIoPageFaultType_PteInvalidLvlEncoding);
2239 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2240 }
2241
2242 /* Ensure IOVA bits of skipped levels are zero. */
2243 Assert(uLevel > 0);
2244 uint64_t uIovaSkipMask = 0;
2245 for (unsigned idxLevel = uLevel - 1; idxLevel > uNextLevel; idxLevel--)
2246 uIovaSkipMask |= s_auIovaLevelMasks[idxLevel];
2247 if (!(uIova & uIovaSkipMask))
2248 { /* likely */ }
2249 else
2250 {
2251 LogFunc(("IOVA of skipped levels are not zero %#RX64 (SkipMask=%#RX64) -> IOPF\n", uIova, uIovaSkipMask));
2252 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2253 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, uIova, true /* fPresent */, false /* fRsvdNotZero */,
2254 false /* fPermDenied */, enmOp, &EvtIoPageFault);
2255 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, NULL /* pIrte */, enmOp, &EvtIoPageFault,
2256 kIoPageFaultType_SkippedLevelIovaNotZero);
2257 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2258 }
2259
2260 /* Continue with traversing the page directory at this level. */
2261 }
2262}
2263
2264
2265/**
2266 * Looks up an I/O virtual address from the device table.
2267 *
2268 * @returns VBox status code.
2269 * @param pDevIns The IOMMU instance data.
2270 * @param uDevId The device ID.
2271 * @param uIova The I/O virtual address to lookup.
2272 * @param cbAccess The size of the access.
2273 * @param fAccess The access permissions (IOMMU_IO_PERM_XXX). This is the
2274 * permissions for the access being made.
2275 * @param enmOp The IOMMU operation being performed.
2276 * @param pGCPhysSpa Where to store the translated system physical address. Only
2277 * valid when translation succeeds and VINF_SUCCESS is
2278 * returned!
2279 *
2280 * @thread Any.
2281 */
2282static int iommuAmdLookupDeviceTable(PPDMDEVINS pDevIns, uint16_t uDevId, uint64_t uIova, size_t cbAccess, uint8_t fAccess,
2283 IOMMUOP enmOp, PRTGCPHYS pGCPhysSpa)
2284{
2285 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
2286
2287 /* Read the device table entry from memory. */
2288 DTE_T Dte;
2289 int rc = iommuAmdReadDte(pDevIns, uDevId, enmOp, &Dte);
2290 if (RT_SUCCESS(rc))
2291 {
2292 /* If the DTE is not valid, addresses are forwarded without translation */
2293 if (Dte.n.u1Valid)
2294 { /* likely */ }
2295 else
2296 {
2297 /** @todo IOMMU: Add to IOLTB cache. */
2298 *pGCPhysSpa = uIova;
2299 return VINF_SUCCESS;
2300 }
2301
2302 /* Validate bits 127:0 of the device table entry when DTE.V is 1. */
2303 uint64_t const fRsvd0 = Dte.au64[0] & ~(IOMMU_DTE_QWORD_0_VALID_MASK & ~IOMMU_DTE_QWORD_0_FEAT_MASK);
2304 uint64_t const fRsvd1 = Dte.au64[1] & ~(IOMMU_DTE_QWORD_1_VALID_MASK & ~IOMMU_DTE_QWORD_1_FEAT_MASK);
2305 if (RT_LIKELY( !fRsvd0
2306 && !fRsvd1))
2307 { /* likely */ }
2308 else
2309 {
2310 LogFunc(("Invalid reserved bits in DTE (u64[0]=%#RX64 u64[1]=%#RX64) -> Illegal DTE\n", fRsvd0, fRsvd1));
2311 EVT_ILLEGAL_DTE_T Event;
2312 iommuAmdInitIllegalDteEvent(uDevId, uIova, true /* fRsvdNotZero */, enmOp, &Event);
2313 iommuAmdRaiseIllegalDteEvent(pDevIns, enmOp, &Event, kIllegalDteType_RsvdNotZero);
2314 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2315 }
2316
2317 /* If the IOVA is subject to address exclusion, addresses are forwarded without translation. */
2318 if ( !pThis->ExclRangeBaseAddr.n.u1ExclEnable
2319 || !iommuAmdIsDvaInExclRange(pThis, &Dte, uIova))
2320 { /* likely */ }
2321 else
2322 {
2323 /** @todo IOMMU: Add to IOLTB cache. */
2324 *pGCPhysSpa = uIova;
2325 return VINF_SUCCESS;
2326 }
2327
2328 /** @todo IOMMU: Perhaps do the <= 4K access case first, if the generic loop
2329 * below gets too expensive and when we have iommuAmdWalkIoPageDirectory. */
2330
2331 uint64_t uBaseIova = uIova & X86_PAGE_4K_BASE_MASK;
2332 uint64_t offIova = uIova & X86_PAGE_4K_OFFSET_MASK;
2333 uint64_t cbRemaining = cbAccess;
2334 for (;;)
2335 {
2336 /* Walk the I/O page tables to translate the IOVA and check permission for the access. */
2337 IOWALKRESULT WalkResult;
2338 rc = iommuAmdWalkIoPageTable(pDevIns, uDevId, uBaseIova, fAccess, &Dte, enmOp, &WalkResult);
2339 if (RT_SUCCESS(rc))
2340 {
2341 /** @todo IOMMU: Split large pages into 4K IOTLB entries and add to IOTLB cache. */
2342
2343 /* Store the translated base address before continuing to check permissions for any more pages. */
2344 if (cbRemaining == cbAccess)
2345 {
2346 RTGCPHYS const offSpa = ~(UINT64_C(0xffffffffffffffff) << WalkResult.cShift);
2347 *pGCPhysSpa = WalkResult.GCPhysSpa | offSpa;
2348 }
2349
2350 uint64_t const cbPhysPage = UINT64_C(1) << WalkResult.cShift;
2351 if (cbRemaining > cbPhysPage - offIova)
2352 {
2353 cbRemaining -= (cbPhysPage - offIova);
2354 uBaseIova += cbPhysPage;
2355 offIova = 0;
2356 }
2357 else
2358 break;
2359 }
2360 else
2361 {
2362 LogFunc(("I/O page table walk failed. uIova=%#RX64 uBaseIova=%#RX64 fAccess=%u rc=%Rrc\n", uIova,
2363 uBaseIova, fAccess, rc));
2364 *pGCPhysSpa = NIL_RTGCPHYS;
2365 return rc;
2366 }
2367 }
2368
2369 return rc;
2370 }
2371
2372 LogFunc(("Failed to read device table entry. uDevId=%#x rc=%Rrc\n", uDevId, rc));
2373 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2374}
2375
2376
2377/**
2378 * Memory read request from a device.
2379 *
2380 * @returns VBox status code.
2381 * @param pDevIns The IOMMU device instance.
2382 * @param uDevId The device ID (bus, device, function).
2383 * @param uIova The I/O virtual address being read.
2384 * @param cbRead The number of bytes being read.
2385 * @param pGCPhysSpa Where to store the translated system physical address.
2386 *
2387 * @thread Any.
2388 */
2389static DECLCALLBACK(int) iommuAmdDeviceMemRead(PPDMDEVINS pDevIns, uint16_t uDevId, uint64_t uIova, size_t cbRead,
2390 PRTGCPHYS pGCPhysSpa)
2391{
2392 /* Validate. */
2393 Assert(pDevIns);
2394 Assert(pGCPhysSpa);
2395 Assert(cbRead > 0);
2396
2397 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
2398 LogFlowFunc(("uDevId=%#x uIova=%#RX64 cbRead=%u\n", uDevId, uIova, cbRead));
2399
2400 /* Addresses are forwarded without translation when the IOMMU is disabled. */
2401 IOMMU_CTRL_T const Ctrl = iommuAmdGetCtrl(pThis);
2402 if (Ctrl.n.u1IommuEn)
2403 {
2404 /** @todo IOMMU: IOTLB cache lookup. */
2405
2406 /* Lookup the IOVA from the device table. */
2407 return iommuAmdLookupDeviceTable(pDevIns, uDevId, uIova, cbRead, IOMMU_IO_PERM_READ, IOMMUOP_MEM_READ, pGCPhysSpa);
2408 }
2409
2410 *pGCPhysSpa = uIova;
2411 return VINF_SUCCESS;
2412}
2413
2414
2415/**
2416 * Memory write request from a device.
2417 *
2418 * @returns VBox status code.
2419 * @param pDevIns The IOMMU device instance.
2420 * @param uDevId The device ID (bus, device, function).
2421 * @param uIova The I/O virtual address being written.
2422 * @param cbWrite The number of bytes being written.
2423 * @param pGCPhysSpa Where to store the translated physical address.
2424 *
2425 * @thread Any.
2426 */
2427static DECLCALLBACK(int) iommuAmdDeviceMemWrite(PPDMDEVINS pDevIns, uint16_t uDevId, uint64_t uIova, size_t cbWrite,
2428 PRTGCPHYS pGCPhysSpa)
2429{
2430 /* Validate. */
2431 Assert(pDevIns);
2432 Assert(pGCPhysSpa);
2433 Assert(cbWrite > 0);
2434
2435 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
2436 LogFlowFunc(("uDevId=%#x uIova=%#RX64 cbWrite=%u\n", uDevId, uIova, cbWrite));
2437
2438 /* Addresses are forwarded without translation when the IOMMU is disabled. */
2439 IOMMU_CTRL_T const Ctrl = iommuAmdGetCtrl(pThis);
2440 if (Ctrl.n.u1IommuEn)
2441 {
2442 /** @todo IOMMU: IOTLB cache lookup. */
2443
2444 /* Lookup the IOVA from the device table. */
2445 return iommuAmdLookupDeviceTable(pDevIns, uDevId, uIova, cbWrite, IOMMU_IO_PERM_WRITE, IOMMUOP_MEM_WRITE, pGCPhysSpa);
2446 }
2447
2448 *pGCPhysSpa = uIova;
2449 return VINF_SUCCESS;
2450}
2451
2452
2453/**
2454 * Reads an interrupt remapping table entry from guest memory given its DTE.
2455 *
2456 * @returns VBox status code.
2457 * @param pDevIns The IOMMU device instance.
2458 * @param uDevId The device ID.
2459 * @param pDte The device table entry.
2460 * @param GCPhysIn The source MSI address.
2461 * @param uDataIn The source MSI data.
2462 * @param enmOp The IOMMU operation being performed.
2463 * @param pIrte Where to store the interrupt remapping table entry.
2464 *
2465 * @thread Any.
2466 */
2467static int iommuAmdReadIrte(PPDMDEVINS pDevIns, uint16_t uDevId, PCDTE_T pDte, RTGCPHYS GCPhysIn, uint32_t uDataIn,
2468 IOMMUOP enmOp, PIRTE_T pIrte)
2469{
2470 /* Ensure the IRTE length is valid. */
2471 Assert(pDte->n.u4IntrTableLength < IOMMU_DTE_INTR_TAB_LEN_MAX);
2472
2473 RTGCPHYS const GCPhysIntrTable = pDte->au64[2] & IOMMU_DTE_IRTE_ROOT_PTR_MASK;
2474 uint16_t const cbIntrTable = IOMMU_GET_INTR_TAB_LEN(pDte);
2475 uint16_t const offIrte = (uDataIn & IOMMU_MSI_DATA_IRTE_OFFSET_MASK) * sizeof(IRTE_T);
2476 RTGCPHYS const GCPhysIrte = GCPhysIntrTable + offIrte;
2477
2478 /* Ensure the IRTE falls completely within the interrupt table. */
2479 if (offIrte + sizeof(IRTE_T) <= cbIntrTable)
2480 { /* likely */ }
2481 else
2482 {
2483 LogFunc(("IRTE exceeds table length (GCPhysIntrTable=%#RGp cbIntrTable=%u offIrte=%#x uDataIn=%#x) -> IOPF\n",
2484 GCPhysIntrTable, cbIntrTable, offIrte, uDataIn));
2485
2486 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2487 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, GCPhysIn, false /* fPresent */, false /* fRsvdNotZero */,
2488 false /* fPermDenied */, enmOp, &EvtIoPageFault);
2489 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, NULL /* pIrte */, enmOp, &EvtIoPageFault,
2490 kIoPageFaultType_IrteAddrInvalid);
2491 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2492 }
2493
2494 /* Read the IRTE from memory. */
2495 Assert(!(GCPhysIrte & 3));
2496 int rc = PDMDevHlpPCIPhysRead(pDevIns, GCPhysIrte, pIrte, sizeof(*pIrte));
2497 if (RT_SUCCESS(rc))
2498 return VINF_SUCCESS;
2499
2500 /** @todo The IOMMU spec. does not tell what kind of error is reported in this
2501 * situation. Is it an I/O page fault or a device table hardware error?
2502 * There's no interrupt table hardware error event, but it's unclear what
2503 * we should do here. */
2504 LogFunc(("Failed to read interrupt table entry at %#RGp. rc=%Rrc -> ???\n", GCPhysIrte, rc));
2505 return VERR_IOMMU_IPE_4;
2506}
2507
2508
2509/**
2510 * Remaps the interrupt using the interrupt remapping table.
2511 *
2512 * @returns VBox status code.
2513 * @param pDevIns The IOMMU instance data.
2514 * @param uDevId The device ID.
2515 * @param pDte The device table entry.
2516 * @param enmOp The IOMMU operation being performed.
2517 * @param pMsiIn The source MSI.
2518 * @param pMsiOut Where to store the remapped MSI.
2519 *
2520 * @thread Any.
2521 */
2522static int iommuAmdRemapIntr(PPDMDEVINS pDevIns, uint16_t uDevId, PCDTE_T pDte, IOMMUOP enmOp, PCMSIMSG pMsiIn,
2523 PMSIMSG pMsiOut)
2524{
2525 Assert(pDte->n.u2IntrCtrl == IOMMU_INTR_CTRL_REMAP);
2526
2527 IRTE_T Irte;
2528 int rc = iommuAmdReadIrte(pDevIns, uDevId, pDte, pMsiIn->Addr.u64, pMsiIn->Data.u32, enmOp, &Irte);
2529 if (RT_SUCCESS(rc))
2530 {
2531 if (Irte.n.u1RemapEnable)
2532 {
2533 if (!Irte.n.u1GuestMode)
2534 {
2535 if (Irte.n.u3IntrType <= VBOX_MSI_DELIVERY_MODE_LOWEST_PRIO)
2536 {
2537 /* Preserve all bits from the source MSI address that don't map 1:1 from the IRTE. */
2538 pMsiOut->Addr.u64 = pMsiIn->Addr.u64;
2539 pMsiOut->Addr.n.u1DestMode = Irte.n.u1DestMode;
2540 pMsiOut->Addr.n.u8DestId = Irte.n.u8Dest;
2541
2542 /* Preserve all bits from the source MSI data that don't map 1:1 from the IRTE. */
2543 pMsiOut->Data.u32 = pMsiIn->Data.u32;
2544 pMsiOut->Data.n.u8Vector = Irte.n.u8Vector;
2545 pMsiOut->Data.n.u3DeliveryMode = Irte.n.u3IntrType;
2546
2547 return VINF_SUCCESS;
2548 }
2549
2550 LogFunc(("Interrupt type (%#x) invalid -> IOPF\n", Irte.n.u3IntrType));
2551 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2552 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, pMsiIn->Addr.u64, Irte.n.u1RemapEnable,
2553 true /* fRsvdNotZero */, false /* fPermDenied */, enmOp, &EvtIoPageFault);
2554 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, &Irte, enmOp, &EvtIoPageFault, kIoPageFaultType_IrteRsvdIntType);
2555 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2556 }
2557
2558 LogFunc(("Guest mode not supported -> IOPF\n"));
2559 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2560 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, pMsiIn->Addr.u64, Irte.n.u1RemapEnable,
2561 true /* fRsvdNotZero */, false /* fPermDenied */, enmOp, &EvtIoPageFault);
2562 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, &Irte, enmOp, &EvtIoPageFault, kIoPageFaultType_IrteRsvdNotZero);
2563 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2564 }
2565
2566 LogFunc(("Remapping disabled -> IOPF\n"));
2567 EVT_IO_PAGE_FAULT_T EvtIoPageFault;
2568 iommuAmdInitIoPageFaultEvent(uDevId, pDte->n.u16DomainId, pMsiIn->Addr.u64, Irte.n.u1RemapEnable,
2569 false /* fRsvdNotZero */, false /* fPermDenied */, enmOp, &EvtIoPageFault);
2570 iommuAmdRaiseIoPageFaultEvent(pDevIns, pDte, &Irte, enmOp, &EvtIoPageFault, kIoPageFaultType_IrteRemapEn);
2571 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2572 }
2573
2574 return rc;
2575}
2576
2577
2578/**
2579 * Looks up an MSI interrupt from the interrupt remapping table.
2580 *
2581 * @returns VBox status code.
2582 * @param pDevIns The IOMMU instance data.
2583 * @param uDevId The device ID.
2584 * @param enmOp The IOMMU operation being performed.
2585 * @param pMsiIn The source MSI.
2586 * @param pMsiOut Where to store the remapped MSI.
2587 *
2588 * @thread Any.
2589 */
2590static int iommuAmdLookupIntrTable(PPDMDEVINS pDevIns, uint16_t uDevId, IOMMUOP enmOp, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
2591{
2592 /* Read the device table entry from memory. */
2593 LogFlowFunc(("uDevId=%#x enmOp=%u\n", uDevId, enmOp));
2594
2595 DTE_T Dte;
2596 int rc = iommuAmdReadDte(pDevIns, uDevId, enmOp, &Dte);
2597 if (RT_SUCCESS(rc))
2598 {
2599 /* If the DTE is not valid, all interrupts are forwarded without remapping. */
2600 if (Dte.n.u1IntrMapValid)
2601 {
2602 /* Validate bits 255:128 of the device table entry when DTE.IV is 1. */
2603 uint64_t const fRsvd0 = Dte.au64[2] & ~IOMMU_DTE_QWORD_2_VALID_MASK;
2604 uint64_t const fRsvd1 = Dte.au64[3] & ~IOMMU_DTE_QWORD_3_VALID_MASK;
2605 if (RT_LIKELY( !fRsvd0
2606 && !fRsvd1))
2607 { /* likely */ }
2608 else
2609 {
2610 LogFunc(("Invalid reserved bits in DTE (u64[2]=%#RX64 u64[3]=%#RX64) -> Illegal DTE\n", fRsvd0,
2611 fRsvd1));
2612 EVT_ILLEGAL_DTE_T Event;
2613 iommuAmdInitIllegalDteEvent(uDevId, pMsiIn->Addr.u64, true /* fRsvdNotZero */, enmOp, &Event);
2614 iommuAmdRaiseIllegalDteEvent(pDevIns, enmOp, &Event, kIllegalDteType_RsvdNotZero);
2615 return VERR_IOMMU_INTR_REMAP_FAILED;
2616 }
2617
2618 /*
2619 * LINT0/LINT1 pins cannot be driven by PCI(e) devices. Perhaps for a Southbridge
2620 * that's connected through HyperTransport it might be possible; but for us, it
2621 * doesn't seem we need to specially handle these pins.
2622 */
2623
2624 /*
2625 * Validate the MSI source address.
2626 *
2627 * 64-bit MSIs are supported by the PCI and AMD IOMMU spec. However as far as the
2628 * CPU is concerned, the MSI region is fixed and we must ensure no other device
2629 * claims the region as I/O space.
2630 *
2631 * See PCI spec. 6.1.4. "Message Signaled Interrupt (MSI) Support".
2632 * See AMD IOMMU spec. 2.8 "IOMMU Interrupt Support".
2633 * See Intel spec. 10.11.1 "Message Address Register Format".
2634 */
2635 if ((pMsiIn->Addr.u64 & VBOX_MSI_ADDR_ADDR_MASK) == VBOX_MSI_ADDR_BASE)
2636 {
2637 /*
2638 * The IOMMU remaps fixed and arbitrated interrupts using the IRTE.
2639 * See AMD IOMMU spec. "2.2.5.1 Interrupt Remapping Tables, Guest Virtual APIC Not Enabled".
2640 */
2641 uint8_t const u8DeliveryMode = pMsiIn->Data.n.u3DeliveryMode;
2642 bool fPassThru = false;
2643 switch (u8DeliveryMode)
2644 {
2645 case VBOX_MSI_DELIVERY_MODE_FIXED:
2646 case VBOX_MSI_DELIVERY_MODE_LOWEST_PRIO:
2647 {
2648 uint8_t const uIntrCtrl = Dte.n.u2IntrCtrl;
2649 if (uIntrCtrl == IOMMU_INTR_CTRL_TARGET_ABORT)
2650 {
2651 LogFunc(("IntCtl=0: Target aborting fixed/arbitrated interrupt -> Target abort\n"));
2652 iommuAmdSetPciTargetAbort(pDevIns);
2653 return VERR_IOMMU_INTR_REMAP_DENIED;
2654 }
2655
2656 if (uIntrCtrl == IOMMU_INTR_CTRL_FWD_UNMAPPED)
2657 {
2658 fPassThru = true;
2659 break;
2660 }
2661
2662 if (uIntrCtrl == IOMMU_INTR_CTRL_REMAP)
2663 {
2664 /* Validate the encoded interrupt table length when IntCtl specifies remapping. */
2665 uint8_t const uIntrTabLen = Dte.n.u4IntrTableLength;
2666 if (uIntrTabLen < IOMMU_DTE_INTR_TAB_LEN_MAX)
2667 {
2668 /*
2669 * We don't support guest interrupt remapping yet. When we do, we'll need to
2670 * check Ctrl.u1GstVirtApicEn and use the guest Virtual APIC Table Root Pointer
2671 * in the DTE rather than the Interrupt Root Table Pointer. Since the caller
2672 * already reads the control register, add that as a parameter when we eventually
2673 * support guest interrupt remapping. For now, just assert.
2674 */
2675 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
2676 Assert(!pThis->ExtFeat.n.u1GstVirtApicSup);
2677 NOREF(pThis);
2678
2679 return iommuAmdRemapIntr(pDevIns, uDevId, &Dte, enmOp, pMsiIn, pMsiOut);
2680 }
2681
2682 LogFunc(("Invalid interrupt table length %#x -> Illegal DTE\n", uIntrTabLen));
2683 EVT_ILLEGAL_DTE_T Event;
2684 iommuAmdInitIllegalDteEvent(uDevId, pMsiIn->Addr.u64, false /* fRsvdNotZero */, enmOp, &Event);
2685 iommuAmdRaiseIllegalDteEvent(pDevIns, enmOp, &Event, kIllegalDteType_RsvdIntTabLen);
2686 return VERR_IOMMU_INTR_REMAP_FAILED;
2687 }
2688
2689 /* Paranoia. */
2690 Assert(uIntrCtrl == IOMMU_INTR_CTRL_RSVD);
2691
2692 LogFunc(("IntCtl mode invalid %#x -> Illegal DTE\n", uIntrCtrl));
2693
2694 EVT_ILLEGAL_DTE_T Event;
2695 iommuAmdInitIllegalDteEvent(uDevId, pMsiIn->Addr.u64, true /* fRsvdNotZero */, enmOp, &Event);
2696 iommuAmdRaiseIllegalDteEvent(pDevIns, enmOp, &Event, kIllegalDteType_RsvdIntCtl);
2697 return VERR_IOMMU_INTR_REMAP_FAILED;
2698 }
2699
2700 /* SMIs are passed through unmapped. We don't implement SMI filters. */
2701 case VBOX_MSI_DELIVERY_MODE_SMI: fPassThru = true; break;
2702 case VBOX_MSI_DELIVERY_MODE_NMI: fPassThru = Dte.n.u1NmiPassthru; break;
2703 case VBOX_MSI_DELIVERY_MODE_INIT: fPassThru = Dte.n.u1InitPassthru; break;
2704 case VBOX_MSI_DELIVERY_MODE_EXT_INT: fPassThru = Dte.n.u1ExtIntPassthru; break;
2705 default:
2706 {
2707 LogFunc(("MSI data delivery mode invalid %#x -> Target abort\n", u8DeliveryMode));
2708 iommuAmdSetPciTargetAbort(pDevIns);
2709 return VERR_IOMMU_INTR_REMAP_FAILED;
2710 }
2711 }
2712
2713 if (fPassThru)
2714 {
2715 *pMsiOut = *pMsiIn;
2716 return VINF_SUCCESS;
2717 }
2718
2719 iommuAmdSetPciTargetAbort(pDevIns);
2720 return VERR_IOMMU_INTR_REMAP_DENIED;
2721 }
2722 else
2723 {
2724 LogFunc(("MSI address region invalid %#RX64\n", pMsiIn->Addr.u64));
2725 return VERR_IOMMU_INTR_REMAP_FAILED;
2726 }
2727 }
2728 else
2729 {
2730 /** @todo IOMMU: Add to interrupt remapping cache. */
2731 LogFlowFunc(("DTE interrupt map not valid\n"));
2732 *pMsiOut = *pMsiIn;
2733 return VINF_SUCCESS;
2734 }
2735 }
2736
2737 LogFunc(("Failed to read device table entry. uDevId=%#x rc=%Rrc\n", uDevId, rc));
2738 return VERR_IOMMU_INTR_REMAP_FAILED;
2739}
2740
2741
2742/**
2743 * Interrupt remap request from a device.
2744 *
2745 * @returns VBox status code.
2746 * @param pDevIns The IOMMU device instance.
2747 * @param uDevId The device ID (bus, device, function).
2748 * @param pMsiIn The source MSI.
2749 * @param pMsiOut Where to store the remapped MSI.
2750 */
2751static DECLCALLBACK(int) iommuAmdDeviceMsiRemap(PPDMDEVINS pDevIns, uint16_t uDevId, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
2752{
2753 /* Validate. */
2754 Assert(pDevIns);
2755 Assert(pMsiIn);
2756 Assert(pMsiOut);
2757
2758 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
2759 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemap));
2760
2761 LogFlowFunc(("uDevId=%#x\n", uDevId));
2762
2763 /* Interrupts are forwarded with remapping when the IOMMU is disabled. */
2764 IOMMU_CTRL_T const Ctrl = iommuAmdGetCtrl(pThis);
2765 if (Ctrl.n.u1IommuEn)
2766 {
2767 /** @todo Cache? */
2768
2769 return iommuAmdLookupIntrTable(pDevIns, uDevId, IOMMUOP_INTR_REQ, pMsiIn, pMsiOut);
2770 }
2771
2772 *pMsiOut = *pMsiIn;
2773 return VINF_SUCCESS;
2774}
2775
2776
2777/**
2778 * @callback_method_impl{FNIOMMMIONEWWRITE}
2779 */
2780static DECLCALLBACK(VBOXSTRICTRC) iommuAmdMmioWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb)
2781{
2782 NOREF(pvUser);
2783 Assert(cb == 4 || cb == 8);
2784 Assert(!(off & (cb - 1)));
2785
2786 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
2787 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioWrite)); NOREF(pThis);
2788
2789 uint64_t const uValue = cb == 8 ? *(uint64_t const *)pv : *(uint32_t const *)pv;
2790 return iommuAmdWriteRegister(pDevIns, off, cb, uValue);
2791}
2792
2793
2794/**
2795 * @callback_method_impl{FNIOMMMIONEWREAD}
2796 */
2797static DECLCALLBACK(VBOXSTRICTRC) iommuAmdMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb)
2798{
2799 NOREF(pvUser);
2800 Assert(cb == 4 || cb == 8);
2801 Assert(!(off & (cb - 1)));
2802
2803 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
2804 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioRead)); NOREF(pThis);
2805
2806 uint64_t uResult;
2807 VBOXSTRICTRC rcStrict = iommuAmdReadRegister(pDevIns, off, &uResult);
2808 if (cb == 8)
2809 *(uint64_t *)pv = uResult;
2810 else
2811 *(uint32_t *)pv = (uint32_t)uResult;
2812
2813 return rcStrict;
2814}
2815
2816# ifdef IN_RING3
2817
2818/**
2819 * Processes an IOMMU command.
2820 *
2821 * @returns VBox status code.
2822 * @param pDevIns The IOMMU device instance.
2823 * @param pCmd The command to process.
2824 * @param GCPhysCmd The system physical address of the command.
2825 * @param pEvtError Where to store the error event in case of failures.
2826 *
2827 * @thread Command thread.
2828 */
2829static int iommuAmdR3ProcessCmd(PPDMDEVINS pDevIns, PCCMD_GENERIC_T pCmd, RTGCPHYS GCPhysCmd, PEVT_GENERIC_T pEvtError)
2830{
2831 IOMMU_ASSERT_NOT_LOCKED(pDevIns);
2832
2833 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
2834 STAM_COUNTER_INC(&pThis->StatCmd);
2835
2836 uint8_t const bCmd = pCmd->n.u4Opcode;
2837 switch (bCmd)
2838 {
2839 case IOMMU_CMD_COMPLETION_WAIT:
2840 {
2841 STAM_COUNTER_INC(&pThis->StatCmdCompWait);
2842
2843 PCCMD_COMWAIT_T pCmdComWait = (PCCMD_COMWAIT_T)pCmd;
2844 AssertCompile(sizeof(*pCmdComWait) == sizeof(*pCmd));
2845
2846 /* Validate reserved bits in the command. */
2847 if (!(pCmdComWait->au64[0] & ~IOMMU_CMD_COM_WAIT_QWORD_0_VALID_MASK))
2848 {
2849 /* If Completion Store is requested, write the StoreData to the specified address. */
2850 if (pCmdComWait->n.u1Store)
2851 {
2852 RTGCPHYS const GCPhysStore = RT_MAKE_U64(pCmdComWait->n.u29StoreAddrLo << 3, pCmdComWait->n.u20StoreAddrHi);
2853 uint64_t const u64Data = pCmdComWait->n.u64StoreData;
2854 int rc = PDMDevHlpPCIPhysWrite(pDevIns, GCPhysStore, &u64Data, sizeof(u64Data));
2855 if (RT_FAILURE(rc))
2856 {
2857 LogFunc(("Cmd(%#x): Failed to write StoreData (%#RX64) to %#RGp, rc=%Rrc\n", bCmd, u64Data,
2858 GCPhysStore, rc));
2859 iommuAmdInitCmdHwErrorEvent(GCPhysStore, (PEVT_CMD_HW_ERR_T)pEvtError);
2860 return VERR_IOMMU_CMD_HW_ERROR;
2861 }
2862 }
2863
2864 /* If the command requests an interrupt and completion wait interrupts are enabled, raise it. */
2865 if (pCmdComWait->n.u1Interrupt)
2866 {
2867 IOMMU_LOCK(pDevIns);
2868 ASMAtomicOrU64(&pThis->Status.u64, IOMMU_STATUS_COMPLETION_WAIT_INTR);
2869 IOMMU_CTRL_T const Ctrl = iommuAmdGetCtrl(pThis);
2870 bool const fRaiseInt = Ctrl.n.u1CompWaitIntrEn;
2871 IOMMU_UNLOCK(pDevIns);
2872
2873 if (fRaiseInt)
2874 iommuAmdRaiseMsiInterrupt(pDevIns);
2875 }
2876 return VINF_SUCCESS;
2877 }
2878 iommuAmdInitIllegalCmdEvent(GCPhysCmd, (PEVT_ILLEGAL_CMD_ERR_T)pEvtError);
2879 return VERR_IOMMU_CMD_INVALID_FORMAT;
2880 }
2881
2882 case IOMMU_CMD_INV_DEV_TAB_ENTRY:
2883 {
2884 /** @todo IOMMU: Implement this once we implement IOTLB. Pretend success until
2885 * then. */
2886 STAM_COUNTER_INC(&pThis->StatCmdInvDte);
2887 return VINF_SUCCESS;
2888 }
2889
2890 case IOMMU_CMD_INV_IOMMU_PAGES:
2891 {
2892 /** @todo IOMMU: Implement this once we implement IOTLB. Pretend success until
2893 * then. */
2894 STAM_COUNTER_INC(&pThis->StatCmdInvIommuPages);
2895 return VINF_SUCCESS;
2896 }
2897
2898 case IOMMU_CMD_INV_IOTLB_PAGES:
2899 {
2900 STAM_COUNTER_INC(&pThis->StatCmdInvIotlbPages);
2901
2902 uint32_t const uCapHdr = PDMPciDevGetDWord(pDevIns->apPciDevs[0], IOMMU_PCI_OFF_CAP_HDR);
2903 if (RT_BF_GET(uCapHdr, IOMMU_BF_CAPHDR_IOTLB_SUP))
2904 {
2905 /** @todo IOMMU: Implement remote IOTLB invalidation. */
2906 return VERR_NOT_IMPLEMENTED;
2907 }
2908 iommuAmdInitIllegalCmdEvent(GCPhysCmd, (PEVT_ILLEGAL_CMD_ERR_T)pEvtError);
2909 return VERR_IOMMU_CMD_NOT_SUPPORTED;
2910 }
2911
2912 case IOMMU_CMD_INV_INTR_TABLE:
2913 {
2914 /** @todo IOMMU: Implement this once we implement IOTLB. Pretend success until
2915 * then. */
2916 STAM_COUNTER_INC(&pThis->StatCmdInvIntrTable);
2917 return VINF_SUCCESS;
2918 }
2919
2920 case IOMMU_CMD_PREFETCH_IOMMU_PAGES:
2921 {
2922 STAM_COUNTER_INC(&pThis->StatCmdPrefIommuPages);
2923 if (pThis->ExtFeat.n.u1PrefetchSup)
2924 {
2925 /** @todo IOMMU: Implement prefetch. Pretend success until then. */
2926 return VINF_SUCCESS;
2927 }
2928 iommuAmdInitIllegalCmdEvent(GCPhysCmd, (PEVT_ILLEGAL_CMD_ERR_T)pEvtError);
2929 return VERR_IOMMU_CMD_NOT_SUPPORTED;
2930 }
2931
2932 case IOMMU_CMD_COMPLETE_PPR_REQ:
2933 {
2934 STAM_COUNTER_INC(&pThis->StatCmdCompletePprReq);
2935
2936 /* We don't support PPR requests yet. */
2937 Assert(!pThis->ExtFeat.n.u1PprSup);
2938 iommuAmdInitIllegalCmdEvent(GCPhysCmd, (PEVT_ILLEGAL_CMD_ERR_T)pEvtError);
2939 return VERR_IOMMU_CMD_NOT_SUPPORTED;
2940 }
2941
2942 case IOMMU_CMD_INV_IOMMU_ALL:
2943 {
2944 STAM_COUNTER_INC(&pThis->StatCmdInvIommuAll);
2945
2946 if (pThis->ExtFeat.n.u1InvAllSup)
2947 {
2948 /** @todo IOMMU: Invalidate all. Pretend success until then. */
2949 return VINF_SUCCESS;
2950 }
2951 iommuAmdInitIllegalCmdEvent(GCPhysCmd, (PEVT_ILLEGAL_CMD_ERR_T)pEvtError);
2952 return VERR_IOMMU_CMD_NOT_SUPPORTED;
2953 }
2954 }
2955
2956 STAM_COUNTER_DEC(&pThis->StatCmd);
2957 LogFunc(("Cmd(%#x): Unrecognized\n", bCmd));
2958 iommuAmdInitIllegalCmdEvent(GCPhysCmd, (PEVT_ILLEGAL_CMD_ERR_T)pEvtError);
2959 return VERR_IOMMU_CMD_NOT_SUPPORTED;
2960}
2961
2962
2963/**
2964 * The IOMMU command thread.
2965 *
2966 * @returns VBox status code.
2967 * @param pDevIns The IOMMU device instance.
2968 * @param pThread The command thread.
2969 */
2970static DECLCALLBACK(int) iommuAmdR3CmdThread(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
2971{
2972 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
2973
2974 if (pThread->enmState == PDMTHREADSTATE_INITIALIZING)
2975 return VINF_SUCCESS;
2976
2977 while (pThread->enmState == PDMTHREADSTATE_RUNNING)
2978 {
2979 /*
2980 * Sleep perpetually until we are woken up to process commands.
2981 */
2982 {
2983 ASMAtomicWriteBool(&pThis->fCmdThreadSleeping, true);
2984 bool fSignaled = ASMAtomicXchgBool(&pThis->fCmdThreadSignaled, false);
2985 if (!fSignaled)
2986 {
2987 Assert(ASMAtomicReadBool(&pThis->fCmdThreadSleeping));
2988 int rc = PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEvtCmdThread, RT_INDEFINITE_WAIT);
2989 AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), rc);
2990 if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING))
2991 break;
2992 Log5Func(("Woken up with rc=%Rrc\n", rc));
2993 ASMAtomicWriteBool(&pThis->fCmdThreadSignaled, false);
2994 }
2995 ASMAtomicWriteBool(&pThis->fCmdThreadSleeping, false);
2996 }
2997
2998 /*
2999 * Fetch and process IOMMU commands.
3000 */
3001 /** @todo r=ramshankar: This employs a simplistic method of fetching commands (one
3002 * at a time) and is expensive due to calls to PGM for fetching guest memory.
3003 * We could optimize by fetching a bunch of commands at a time reducing
3004 * number of calls to PGM. In the longer run we could lock the memory and
3005 * mappings and accessing them directly. */
3006 IOMMU_LOCK(pDevIns);
3007
3008 IOMMU_STATUS_T const Status = iommuAmdGetStatus(pThis);
3009 if (Status.n.u1CmdBufRunning)
3010 {
3011 /* Get the offset we need to read the command from memory (circular buffer offset). */
3012 uint32_t const cbCmdBuf = iommuAmdGetTotalBufLength(pThis->CmdBufBaseAddr.n.u4Len);
3013 uint32_t offHead = pThis->CmdBufHeadPtr.n.off;
3014 Assert(!(offHead & ~IOMMU_CMD_BUF_HEAD_PTR_VALID_MASK));
3015 Assert(offHead < cbCmdBuf);
3016 while (offHead != pThis->CmdBufTailPtr.n.off)
3017 {
3018 /* Read the command from memory. */
3019 CMD_GENERIC_T Cmd;
3020 RTGCPHYS const GCPhysCmd = (pThis->CmdBufBaseAddr.n.u40Base << X86_PAGE_4K_SHIFT) + offHead;
3021 int rc = PDMDevHlpPCIPhysRead(pDevIns, GCPhysCmd, &Cmd, sizeof(Cmd));
3022 if (RT_SUCCESS(rc))
3023 {
3024 /* Increment the command buffer head pointer. */
3025 offHead = (offHead + sizeof(CMD_GENERIC_T)) % cbCmdBuf;
3026 pThis->CmdBufHeadPtr.n.off = offHead;
3027
3028 /* Process the fetched command. */
3029 EVT_GENERIC_T EvtError;
3030 IOMMU_UNLOCK(pDevIns);
3031 rc = iommuAmdR3ProcessCmd(pDevIns, &Cmd, GCPhysCmd, &EvtError);
3032 IOMMU_LOCK(pDevIns);
3033 if (RT_FAILURE(rc))
3034 {
3035 if ( rc == VERR_IOMMU_CMD_NOT_SUPPORTED
3036 || rc == VERR_IOMMU_CMD_INVALID_FORMAT)
3037 {
3038 Assert(EvtError.n.u4EvtCode == IOMMU_EVT_ILLEGAL_CMD_ERROR);
3039 iommuAmdRaiseIllegalCmdEvent(pDevIns, (PCEVT_ILLEGAL_CMD_ERR_T)&EvtError);
3040 }
3041 else if (rc == VERR_IOMMU_CMD_HW_ERROR)
3042 {
3043 Assert(EvtError.n.u4EvtCode == IOMMU_EVT_COMMAND_HW_ERROR);
3044 iommuAmdRaiseCmdHwErrorEvent(pDevIns, (PCEVT_CMD_HW_ERR_T)&EvtError);
3045 }
3046 break;
3047 }
3048 }
3049 else
3050 {
3051 EVT_CMD_HW_ERR_T EvtCmdHwErr;
3052 iommuAmdInitCmdHwErrorEvent(GCPhysCmd, &EvtCmdHwErr);
3053 iommuAmdRaiseCmdHwErrorEvent(pDevIns, &EvtCmdHwErr);
3054 break;
3055 }
3056 }
3057 }
3058
3059 IOMMU_UNLOCK(pDevIns);
3060 }
3061
3062 LogFlowFunc(("Command thread terminating\n"));
3063 return VINF_SUCCESS;
3064}
3065
3066
3067/**
3068 * Wakes up the command thread so it can respond to a state change.
3069 *
3070 * @returns VBox status code.
3071 * @param pDevIns The IOMMU device instance.
3072 * @param pThread The command thread.
3073 */
3074static DECLCALLBACK(int) iommuAmdR3CmdThreadWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
3075{
3076 RT_NOREF(pThread);
3077 LogFlowFunc(("\n"));
3078 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
3079 return PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtCmdThread);
3080}
3081
3082
3083/**
3084 * @callback_method_impl{FNPCICONFIGREAD}
3085 */
3086static DECLCALLBACK(VBOXSTRICTRC) iommuAmdR3PciConfigRead(PPDMDEVINS pDevIns, PPDMPCIDEV pPciDev, uint32_t uAddress,
3087 unsigned cb, uint32_t *pu32Value)
3088{
3089 /** @todo IOMMU: PCI config read stat counter. */
3090 VBOXSTRICTRC rcStrict = PDMDevHlpPCIConfigRead(pDevIns, pPciDev, uAddress, cb, pu32Value);
3091 Log3Func(("Reading PCI config register %#x (cb=%u) -> %#x %Rrc\n", uAddress, cb, *pu32Value,
3092 VBOXSTRICTRC_VAL(rcStrict)));
3093 return rcStrict;
3094}
3095
3096
3097/**
3098 * @callback_method_impl{FNPCICONFIGWRITE}
3099 */
3100static DECLCALLBACK(VBOXSTRICTRC) iommuAmdR3PciConfigWrite(PPDMDEVINS pDevIns, PPDMPCIDEV pPciDev, uint32_t uAddress,
3101 unsigned cb, uint32_t u32Value)
3102{
3103 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
3104
3105 /*
3106 * Discard writes to read-only registers that are specific to the IOMMU.
3107 * Other common PCI registers are handled by the generic code, see devpciR3IsConfigByteWritable().
3108 * See PCI spec. 6.1. "Configuration Space Organization".
3109 */
3110 switch (uAddress)
3111 {
3112 case IOMMU_PCI_OFF_CAP_HDR: /* All bits are read-only. */
3113 case IOMMU_PCI_OFF_RANGE_REG: /* We don't have any devices integrated with the IOMMU. */
3114 case IOMMU_PCI_OFF_MISCINFO_REG_0: /* We don't support MSI-X. */
3115 case IOMMU_PCI_OFF_MISCINFO_REG_1: /* We don't support guest-address translation. */
3116 {
3117 LogFunc(("PCI config write (%#RX32) to read-only register %#x -> Ignored\n", u32Value, uAddress));
3118 return VINF_SUCCESS;
3119 }
3120 }
3121
3122 IOMMU_LOCK(pDevIns);
3123
3124 VBOXSTRICTRC rcStrict = VERR_INVALID_FUNCTION;
3125 switch (uAddress)
3126 {
3127 case IOMMU_PCI_OFF_BASE_ADDR_REG_LO:
3128 {
3129 if (pThis->IommuBar.n.u1Enable)
3130 {
3131 rcStrict = VINF_SUCCESS;
3132 LogFunc(("Writing Base Address (Lo) when it's already enabled -> Ignored\n"));
3133 break;
3134 }
3135
3136 pThis->IommuBar.au32[0] = u32Value & IOMMU_BAR_VALID_MASK;
3137 if (pThis->IommuBar.n.u1Enable)
3138 {
3139 Assert(pThis->hMmio != NIL_IOMMMIOHANDLE);
3140 Assert(PDMDevHlpMmioGetMappingAddress(pDevIns, pThis->hMmio) == NIL_RTGCPHYS);
3141 Assert(!pThis->ExtFeat.n.u1PerfCounterSup); /* Base is 16K aligned when performance counters aren't supported. */
3142 RTGCPHYS const GCPhysMmioBase = RT_MAKE_U64(pThis->IommuBar.au32[0] & 0xffffc000, pThis->IommuBar.au32[1]);
3143 rcStrict = PDMDevHlpMmioMap(pDevIns, pThis->hMmio, GCPhysMmioBase);
3144 if (RT_FAILURE(rcStrict))
3145 LogFunc(("Failed to map IOMMU MMIO region at %#RGp. rc=%Rrc\n", GCPhysMmioBase, rcStrict));
3146 }
3147 break;
3148 }
3149
3150 case IOMMU_PCI_OFF_BASE_ADDR_REG_HI:
3151 {
3152 if (!pThis->IommuBar.n.u1Enable)
3153 pThis->IommuBar.au32[1] = u32Value;
3154 else
3155 {
3156 rcStrict = VINF_SUCCESS;
3157 LogFunc(("Writing Base Address (Hi) when it's already enabled -> Ignored\n"));
3158 }
3159 break;
3160 }
3161
3162 case IOMMU_PCI_OFF_MSI_CAP_HDR:
3163 {
3164 u32Value |= RT_BIT(23); /* 64-bit MSI addressess must always be enabled for IOMMU. */
3165 RT_FALL_THRU();
3166 }
3167 default:
3168 {
3169 rcStrict = PDMDevHlpPCIConfigWrite(pDevIns, pPciDev, uAddress, cb, u32Value);
3170 break;
3171 }
3172 }
3173
3174 IOMMU_UNLOCK(pDevIns);
3175
3176 Log3Func(("PCI config write: %#x -> To %#x (%u) %Rrc\n", u32Value, uAddress, cb, VBOXSTRICTRC_VAL(rcStrict)));
3177 return rcStrict;
3178}
3179
3180
3181/**
3182 * @callback_method_impl{FNDBGFHANDLERDEV}
3183 */
3184static DECLCALLBACK(void) iommuAmdR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
3185{
3186 PCIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
3187 PCPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
3188 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
3189
3190 bool fVerbose;
3191 if ( pszArgs
3192 && !strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3193 fVerbose = true;
3194 else
3195 fVerbose = false;
3196
3197 pHlp->pfnPrintf(pHlp, "AMD-IOMMU:\n");
3198 /* Device Table Base Addresses (all segments). */
3199 for (unsigned i = 0; i < RT_ELEMENTS(pThis->aDevTabBaseAddrs); i++)
3200 {
3201 DEV_TAB_BAR_T const DevTabBar = pThis->aDevTabBaseAddrs[i];
3202 pHlp->pfnPrintf(pHlp, " Device Table BAR %u = %#RX64\n", i, DevTabBar.u64);
3203 if (fVerbose)
3204 {
3205 pHlp->pfnPrintf(pHlp, " Size = %#x (%u bytes)\n", DevTabBar.n.u9Size,
3206 IOMMU_GET_DEV_TAB_LEN(&DevTabBar));
3207 pHlp->pfnPrintf(pHlp, " Base address = %#RX64\n", DevTabBar.n.u40Base << X86_PAGE_4K_SHIFT);
3208 }
3209 }
3210 /* Command Buffer Base Address Register. */
3211 {
3212 CMD_BUF_BAR_T const CmdBufBar = pThis->CmdBufBaseAddr;
3213 uint8_t const uEncodedLen = CmdBufBar.n.u4Len;
3214 uint32_t const cEntries = iommuAmdGetBufMaxEntries(uEncodedLen);
3215 uint32_t const cbBuffer = iommuAmdGetTotalBufLength(uEncodedLen);
3216 pHlp->pfnPrintf(pHlp, " Command Buffer BAR = %#RX64\n", CmdBufBar.u64);
3217 if (fVerbose)
3218 {
3219 pHlp->pfnPrintf(pHlp, " Base address = %#RX64\n", CmdBufBar.n.u40Base << X86_PAGE_4K_SHIFT);
3220 pHlp->pfnPrintf(pHlp, " Length = %u (%u entries, %u bytes)\n", uEncodedLen,
3221 cEntries, cbBuffer);
3222 }
3223 }
3224 /* Event Log Base Address Register. */
3225 {
3226 EVT_LOG_BAR_T const EvtLogBar = pThis->EvtLogBaseAddr;
3227 uint8_t const uEncodedLen = EvtLogBar.n.u4Len;
3228 uint32_t const cEntries = iommuAmdGetBufMaxEntries(uEncodedLen);
3229 uint32_t const cbBuffer = iommuAmdGetTotalBufLength(uEncodedLen);
3230 pHlp->pfnPrintf(pHlp, " Event Log BAR = %#RX64\n", EvtLogBar.u64);
3231 if (fVerbose)
3232 {
3233 pHlp->pfnPrintf(pHlp, " Base address = %#RX64\n", EvtLogBar.n.u40Base << X86_PAGE_4K_SHIFT);
3234 pHlp->pfnPrintf(pHlp, " Length = %u (%u entries, %u bytes)\n", uEncodedLen,
3235 cEntries, cbBuffer);
3236 }
3237 }
3238 /* IOMMU Control Register. */
3239 {
3240 IOMMU_CTRL_T const Ctrl = pThis->Ctrl;
3241 pHlp->pfnPrintf(pHlp, " Control = %#RX64\n", Ctrl.u64);
3242 if (fVerbose)
3243 {
3244 pHlp->pfnPrintf(pHlp, " IOMMU enable = %RTbool\n", Ctrl.n.u1IommuEn);
3245 pHlp->pfnPrintf(pHlp, " HT Tunnel translation enable = %RTbool\n", Ctrl.n.u1HtTunEn);
3246 pHlp->pfnPrintf(pHlp, " Event log enable = %RTbool\n", Ctrl.n.u1EvtLogEn);
3247 pHlp->pfnPrintf(pHlp, " Event log interrupt enable = %RTbool\n", Ctrl.n.u1EvtIntrEn);
3248 pHlp->pfnPrintf(pHlp, " Completion wait interrupt enable = %RTbool\n", Ctrl.n.u1EvtIntrEn);
3249 pHlp->pfnPrintf(pHlp, " Invalidation timeout = %u\n", Ctrl.n.u3InvTimeOut);
3250 pHlp->pfnPrintf(pHlp, " Pass posted write = %RTbool\n", Ctrl.n.u1PassPW);
3251 pHlp->pfnPrintf(pHlp, " Respose Pass posted write = %RTbool\n", Ctrl.n.u1ResPassPW);
3252 pHlp->pfnPrintf(pHlp, " Coherent = %RTbool\n", Ctrl.n.u1Coherent);
3253 pHlp->pfnPrintf(pHlp, " Isochronous = %RTbool\n", Ctrl.n.u1Isoc);
3254 pHlp->pfnPrintf(pHlp, " Command buffer enable = %RTbool\n", Ctrl.n.u1CmdBufEn);
3255 pHlp->pfnPrintf(pHlp, " PPR log enable = %RTbool\n", Ctrl.n.u1PprLogEn);
3256 pHlp->pfnPrintf(pHlp, " PPR interrupt enable = %RTbool\n", Ctrl.n.u1PprIntrEn);
3257 pHlp->pfnPrintf(pHlp, " PPR enable = %RTbool\n", Ctrl.n.u1PprEn);
3258 pHlp->pfnPrintf(pHlp, " Guest translation eanble = %RTbool\n", Ctrl.n.u1GstTranslateEn);
3259 pHlp->pfnPrintf(pHlp, " Guest virtual-APIC enable = %RTbool\n", Ctrl.n.u1GstVirtApicEn);
3260 pHlp->pfnPrintf(pHlp, " CRW = %#x\n", Ctrl.n.u4Crw);
3261 pHlp->pfnPrintf(pHlp, " SMI filter enable = %RTbool\n", Ctrl.n.u1SmiFilterEn);
3262 pHlp->pfnPrintf(pHlp, " Self-writeback disable = %RTbool\n", Ctrl.n.u1SelfWriteBackDis);
3263 pHlp->pfnPrintf(pHlp, " SMI filter log enable = %RTbool\n", Ctrl.n.u1SmiFilterLogEn);
3264 pHlp->pfnPrintf(pHlp, " Guest virtual-APIC mode enable = %#x\n", Ctrl.n.u3GstVirtApicModeEn);
3265 pHlp->pfnPrintf(pHlp, " Guest virtual-APIC GA log enable = %RTbool\n", Ctrl.n.u1GstLogEn);
3266 pHlp->pfnPrintf(pHlp, " Guest virtual-APIC interrupt enable = %RTbool\n", Ctrl.n.u1GstIntrEn);
3267 pHlp->pfnPrintf(pHlp, " Dual PPR log enable = %#x\n", Ctrl.n.u2DualPprLogEn);
3268 pHlp->pfnPrintf(pHlp, " Dual event log enable = %#x\n", Ctrl.n.u2DualEvtLogEn);
3269 pHlp->pfnPrintf(pHlp, " Device table segmentation enable = %#x\n", Ctrl.n.u3DevTabSegEn);
3270 pHlp->pfnPrintf(pHlp, " Privilege abort enable = %#x\n", Ctrl.n.u2PrivAbortEn);
3271 pHlp->pfnPrintf(pHlp, " PPR auto response enable = %RTbool\n", Ctrl.n.u1PprAutoRespEn);
3272 pHlp->pfnPrintf(pHlp, " MARC enable = %RTbool\n", Ctrl.n.u1MarcEn);
3273 pHlp->pfnPrintf(pHlp, " Block StopMark enable = %RTbool\n", Ctrl.n.u1BlockStopMarkEn);
3274 pHlp->pfnPrintf(pHlp, " PPR auto response always-on enable = %RTbool\n", Ctrl.n.u1PprAutoRespAlwaysOnEn);
3275 pHlp->pfnPrintf(pHlp, " Domain IDPNE = %RTbool\n", Ctrl.n.u1DomainIDPNE);
3276 pHlp->pfnPrintf(pHlp, " Enhanced PPR handling = %RTbool\n", Ctrl.n.u1EnhancedPpr);
3277 pHlp->pfnPrintf(pHlp, " Host page table access/dirty bit update = %#x\n", Ctrl.n.u2HstAccDirtyBitUpdate);
3278 pHlp->pfnPrintf(pHlp, " Guest page table dirty bit disable = %RTbool\n", Ctrl.n.u1GstDirtyUpdateDis);
3279 pHlp->pfnPrintf(pHlp, " x2APIC enable = %RTbool\n", Ctrl.n.u1X2ApicEn);
3280 pHlp->pfnPrintf(pHlp, " x2APIC interrupt enable = %RTbool\n", Ctrl.n.u1X2ApicIntrGenEn);
3281 pHlp->pfnPrintf(pHlp, " Guest page table access bit update = %RTbool\n", Ctrl.n.u1GstAccessUpdateDis);
3282 }
3283 }
3284 /* Exclusion Base Address Register. */
3285 {
3286 IOMMU_EXCL_RANGE_BAR_T const ExclRangeBar = pThis->ExclRangeBaseAddr;
3287 pHlp->pfnPrintf(pHlp, " Exclusion BAR = %#RX64\n", ExclRangeBar.u64);
3288 if (fVerbose)
3289 {
3290 pHlp->pfnPrintf(pHlp, " Exclusion enable = %RTbool\n", ExclRangeBar.n.u1ExclEnable);
3291 pHlp->pfnPrintf(pHlp, " Allow all devices = %RTbool\n", ExclRangeBar.n.u1AllowAll);
3292 pHlp->pfnPrintf(pHlp, " Base address = %#RX64\n",
3293 ExclRangeBar.n.u40ExclRangeBase << X86_PAGE_4K_SHIFT);
3294 }
3295 }
3296 /* Exclusion Range Limit Register. */
3297 {
3298 IOMMU_EXCL_RANGE_LIMIT_T const ExclRangeLimit = pThis->ExclRangeLimit;
3299 pHlp->pfnPrintf(pHlp, " Exclusion Range Limit = %#RX64\n", ExclRangeLimit.u64);
3300 if (fVerbose)
3301 pHlp->pfnPrintf(pHlp, " Range limit = %#RX64\n", ExclRangeLimit.n.u52ExclLimit);
3302 }
3303 /* Extended Feature Register. */
3304 {
3305 IOMMU_EXT_FEAT_T ExtFeat = pThis->ExtFeat;
3306 pHlp->pfnPrintf(pHlp, " Extended Feature Register = %#RX64\n", ExtFeat.u64);
3307 if (fVerbose)
3308 {
3309 pHlp->pfnPrintf(pHlp, " Prefetch support = %RTbool\n", ExtFeat.n.u1PrefetchSup);
3310 pHlp->pfnPrintf(pHlp, " PPR support = %RTbool\n", ExtFeat.n.u1PprSup);
3311 pHlp->pfnPrintf(pHlp, " x2APIC support = %RTbool\n", ExtFeat.n.u1X2ApicSup);
3312 pHlp->pfnPrintf(pHlp, " NX and privilege level support = %RTbool\n", ExtFeat.n.u1NoExecuteSup);
3313 pHlp->pfnPrintf(pHlp, " Guest translation support = %RTbool\n", ExtFeat.n.u1GstTranslateSup);
3314 pHlp->pfnPrintf(pHlp, " Invalidate-All command support = %RTbool\n", ExtFeat.n.u1InvAllSup);
3315 pHlp->pfnPrintf(pHlp, " Guest virtual-APIC support = %RTbool\n", ExtFeat.n.u1GstVirtApicSup);
3316 pHlp->pfnPrintf(pHlp, " Hardware error register support = %RTbool\n", ExtFeat.n.u1HwErrorSup);
3317 pHlp->pfnPrintf(pHlp, " Performance counters support = %RTbool\n", ExtFeat.n.u1PerfCounterSup);
3318 pHlp->pfnPrintf(pHlp, " Host address translation size = %#x\n", ExtFeat.n.u2HostAddrTranslateSize);
3319 pHlp->pfnPrintf(pHlp, " Guest address translation size = %#x\n", ExtFeat.n.u2GstAddrTranslateSize);
3320 pHlp->pfnPrintf(pHlp, " Guest CR3 root table level support = %#x\n", ExtFeat.n.u2GstCr3RootTblLevel);
3321 pHlp->pfnPrintf(pHlp, " SMI filter register support = %#x\n", ExtFeat.n.u2SmiFilterSup);
3322 pHlp->pfnPrintf(pHlp, " SMI filter register count = %#x\n", ExtFeat.n.u3SmiFilterCount);
3323 pHlp->pfnPrintf(pHlp, " Guest virtual-APIC modes support = %#x\n", ExtFeat.n.u3GstVirtApicModeSup);
3324 pHlp->pfnPrintf(pHlp, " Dual PPR log support = %#x\n", ExtFeat.n.u2DualPprLogSup);
3325 pHlp->pfnPrintf(pHlp, " Dual event log support = %#x\n", ExtFeat.n.u2DualEvtLogSup);
3326 pHlp->pfnPrintf(pHlp, " Maximum PASID = %#x\n", ExtFeat.n.u5MaxPasidSup);
3327 pHlp->pfnPrintf(pHlp, " User/supervisor page protection support = %RTbool\n", ExtFeat.n.u1UserSupervisorSup);
3328 pHlp->pfnPrintf(pHlp, " Device table segments supported = %#x (%u)\n", ExtFeat.n.u2DevTabSegSup,
3329 g_acDevTabSegs[ExtFeat.n.u2DevTabSegSup]);
3330 pHlp->pfnPrintf(pHlp, " PPR log overflow early warning support = %RTbool\n", ExtFeat.n.u1PprLogOverflowWarn);
3331 pHlp->pfnPrintf(pHlp, " PPR auto response support = %RTbool\n", ExtFeat.n.u1PprAutoRespSup);
3332 pHlp->pfnPrintf(pHlp, " MARC support = %#x\n", ExtFeat.n.u2MarcSup);
3333 pHlp->pfnPrintf(pHlp, " Block StopMark message support = %RTbool\n", ExtFeat.n.u1BlockStopMarkSup);
3334 pHlp->pfnPrintf(pHlp, " Performance optimization support = %RTbool\n", ExtFeat.n.u1PerfOptSup);
3335 pHlp->pfnPrintf(pHlp, " MSI capability MMIO access support = %RTbool\n", ExtFeat.n.u1MsiCapMmioSup);
3336 pHlp->pfnPrintf(pHlp, " Guest I/O protection support = %RTbool\n", ExtFeat.n.u1GstIoSup);
3337 pHlp->pfnPrintf(pHlp, " Host access support = %RTbool\n", ExtFeat.n.u1HostAccessSup);
3338 pHlp->pfnPrintf(pHlp, " Enhanced PPR handling support = %RTbool\n", ExtFeat.n.u1EnhancedPprSup);
3339 pHlp->pfnPrintf(pHlp, " Attribute forward supported = %RTbool\n", ExtFeat.n.u1AttrForwardSup);
3340 pHlp->pfnPrintf(pHlp, " Host dirty support = %RTbool\n", ExtFeat.n.u1HostDirtySup);
3341 pHlp->pfnPrintf(pHlp, " Invalidate IOTLB type support = %RTbool\n", ExtFeat.n.u1InvIoTlbTypeSup);
3342 pHlp->pfnPrintf(pHlp, " Guest page table access bit hw disable = %RTbool\n", ExtFeat.n.u1GstUpdateDisSup);
3343 pHlp->pfnPrintf(pHlp, " Force physical dest for remapped intr. = %RTbool\n", ExtFeat.n.u1ForcePhysDstSup);
3344 }
3345 }
3346 /* PPR Log Base Address Register. */
3347 {
3348 PPR_LOG_BAR_T PprLogBar = pThis->PprLogBaseAddr;
3349 uint8_t const uEncodedLen = PprLogBar.n.u4Len;
3350 uint32_t const cEntries = iommuAmdGetBufMaxEntries(uEncodedLen);
3351 uint32_t const cbBuffer = iommuAmdGetTotalBufLength(uEncodedLen);
3352 pHlp->pfnPrintf(pHlp, " PPR Log BAR = %#RX64\n", PprLogBar.u64);
3353 if (fVerbose)
3354 {
3355 pHlp->pfnPrintf(pHlp, " Base address = %#RX64\n", PprLogBar.n.u40Base << X86_PAGE_4K_SHIFT);
3356 pHlp->pfnPrintf(pHlp, " Length = %u (%u entries, %u bytes)\n", uEncodedLen,
3357 cEntries, cbBuffer);
3358 }
3359 }
3360 /* Hardware Event (Hi) Register. */
3361 {
3362 IOMMU_HW_EVT_HI_T HwEvtHi = pThis->HwEvtHi;
3363 pHlp->pfnPrintf(pHlp, " Hardware Event (Hi) = %#RX64\n", HwEvtHi.u64);
3364 if (fVerbose)
3365 {
3366 pHlp->pfnPrintf(pHlp, " First operand = %#RX64\n", HwEvtHi.n.u60FirstOperand);
3367 pHlp->pfnPrintf(pHlp, " Event code = %#RX8\n", HwEvtHi.n.u4EvtCode);
3368 }
3369 }
3370 /* Hardware Event (Lo) Register. */
3371 pHlp->pfnPrintf(pHlp, " Hardware Event (Lo) = %#RX64\n", pThis->HwEvtLo);
3372 /* Hardware Event Status. */
3373 {
3374 IOMMU_HW_EVT_STATUS_T HwEvtStatus = pThis->HwEvtStatus;
3375 pHlp->pfnPrintf(pHlp, " Hardware Event Status = %#RX64\n", HwEvtStatus.u64);
3376 if (fVerbose)
3377 {
3378 pHlp->pfnPrintf(pHlp, " Valid = %RTbool\n", HwEvtStatus.n.u1Valid);
3379 pHlp->pfnPrintf(pHlp, " Overflow = %RTbool\n", HwEvtStatus.n.u1Overflow);
3380 }
3381 }
3382 /* Guest Virtual-APIC Log Base Address Register. */
3383 {
3384 GALOG_BAR_T const GALogBar = pThis->GALogBaseAddr;
3385 uint8_t const uEncodedLen = GALogBar.n.u4Len;
3386 uint32_t const cEntries = iommuAmdGetBufMaxEntries(uEncodedLen);
3387 uint32_t const cbBuffer = iommuAmdGetTotalBufLength(uEncodedLen);
3388 pHlp->pfnPrintf(pHlp, " Guest Log BAR = %#RX64\n", GALogBar.u64);
3389 if (fVerbose)
3390 {
3391 pHlp->pfnPrintf(pHlp, " Base address = %RTbool\n", GALogBar.n.u40Base << X86_PAGE_4K_SHIFT);
3392 pHlp->pfnPrintf(pHlp, " Length = %u (%u entries, %u bytes)\n", uEncodedLen,
3393 cEntries, cbBuffer);
3394 }
3395 }
3396 /* Guest Virtual-APIC Log Tail Address Register. */
3397 {
3398 GALOG_TAIL_ADDR_T GALogTail = pThis->GALogTailAddr;
3399 pHlp->pfnPrintf(pHlp, " Guest Log Tail Address = %#RX64\n", GALogTail.u64);
3400 if (fVerbose)
3401 pHlp->pfnPrintf(pHlp, " Tail address = %#RX64\n", GALogTail.n.u40GALogTailAddr);
3402 }
3403 /* PPR Log B Base Address Register. */
3404 {
3405 PPR_LOG_B_BAR_T PprLogBBar = pThis->PprLogBBaseAddr;
3406 uint8_t const uEncodedLen = PprLogBBar.n.u4Len;
3407 uint32_t const cEntries = iommuAmdGetBufMaxEntries(uEncodedLen);
3408 uint32_t const cbBuffer = iommuAmdGetTotalBufLength(uEncodedLen);
3409 pHlp->pfnPrintf(pHlp, " PPR Log B BAR = %#RX64\n", PprLogBBar.u64);
3410 if (fVerbose)
3411 {
3412 pHlp->pfnPrintf(pHlp, " Base address = %#RX64\n", PprLogBBar.n.u40Base << X86_PAGE_4K_SHIFT);
3413 pHlp->pfnPrintf(pHlp, " Length = %u (%u entries, %u bytes)\n", uEncodedLen,
3414 cEntries, cbBuffer);
3415 }
3416 }
3417 /* Event Log B Base Address Register. */
3418 {
3419 EVT_LOG_B_BAR_T EvtLogBBar = pThis->EvtLogBBaseAddr;
3420 uint8_t const uEncodedLen = EvtLogBBar.n.u4Len;
3421 uint32_t const cEntries = iommuAmdGetBufMaxEntries(uEncodedLen);
3422 uint32_t const cbBuffer = iommuAmdGetTotalBufLength(uEncodedLen);
3423 pHlp->pfnPrintf(pHlp, " Event Log B BAR = %#RX64\n", EvtLogBBar.u64);
3424 if (fVerbose)
3425 {
3426 pHlp->pfnPrintf(pHlp, " Base address = %#RX64\n", EvtLogBBar.n.u40Base << X86_PAGE_4K_SHIFT);
3427 pHlp->pfnPrintf(pHlp, " Length = %u (%u entries, %u bytes)\n", uEncodedLen,
3428 cEntries, cbBuffer);
3429 }
3430 }
3431 /* Device-Specific Feature Extension Register. */
3432 {
3433 DEV_SPECIFIC_FEAT_T const DevSpecificFeat = pThis->DevSpecificFeat;
3434 pHlp->pfnPrintf(pHlp, " Device-specific Feature = %#RX64\n", DevSpecificFeat.u64);
3435 if (fVerbose)
3436 {
3437 pHlp->pfnPrintf(pHlp, " Feature = %#RX32\n", DevSpecificFeat.n.u24DevSpecFeat);
3438 pHlp->pfnPrintf(pHlp, " Minor revision ID = %#x\n", DevSpecificFeat.n.u4RevMinor);
3439 pHlp->pfnPrintf(pHlp, " Major revision ID = %#x\n", DevSpecificFeat.n.u4RevMajor);
3440 }
3441 }
3442 /* Device-Specific Control Extension Register. */
3443 {
3444 DEV_SPECIFIC_CTRL_T const DevSpecificCtrl = pThis->DevSpecificCtrl;
3445 pHlp->pfnPrintf(pHlp, " Device-specific Control = %#RX64\n", DevSpecificCtrl.u64);
3446 if (fVerbose)
3447 {
3448 pHlp->pfnPrintf(pHlp, " Control = %#RX32\n", DevSpecificCtrl.n.u24DevSpecCtrl);
3449 pHlp->pfnPrintf(pHlp, " Minor revision ID = %#x\n", DevSpecificCtrl.n.u4RevMinor);
3450 pHlp->pfnPrintf(pHlp, " Major revision ID = %#x\n", DevSpecificCtrl.n.u4RevMajor);
3451 }
3452 }
3453 /* Device-Specific Status Extension Register. */
3454 {
3455 DEV_SPECIFIC_STATUS_T const DevSpecificStatus = pThis->DevSpecificStatus;
3456 pHlp->pfnPrintf(pHlp, " Device-specific Status = %#RX64\n", DevSpecificStatus.u64);
3457 if (fVerbose)
3458 {
3459 pHlp->pfnPrintf(pHlp, " Status = %#RX32\n", DevSpecificStatus.n.u24DevSpecStatus);
3460 pHlp->pfnPrintf(pHlp, " Minor revision ID = %#x\n", DevSpecificStatus.n.u4RevMinor);
3461 pHlp->pfnPrintf(pHlp, " Major revision ID = %#x\n", DevSpecificStatus.n.u4RevMajor);
3462 }
3463 }
3464 /* Miscellaneous Information Register (Lo and Hi). */
3465 {
3466 MSI_MISC_INFO_T const MiscInfo = pThis->MiscInfo;
3467 pHlp->pfnPrintf(pHlp, " Misc. Info. Register = %#RX64\n", MiscInfo.u64);
3468 if (fVerbose)
3469 {
3470 pHlp->pfnPrintf(pHlp, " Event Log MSI number = %#x\n", MiscInfo.n.u5MsiNumEvtLog);
3471 pHlp->pfnPrintf(pHlp, " Guest Virtual-Address Size = %#x\n", MiscInfo.n.u3GstVirtAddrSize);
3472 pHlp->pfnPrintf(pHlp, " Physical Address Size = %#x\n", MiscInfo.n.u7PhysAddrSize);
3473 pHlp->pfnPrintf(pHlp, " Virtual-Address Size = %#x\n", MiscInfo.n.u7VirtAddrSize);
3474 pHlp->pfnPrintf(pHlp, " HT Transport ATS Range Reserved = %RTbool\n", MiscInfo.n.u1HtAtsResv);
3475 pHlp->pfnPrintf(pHlp, " PPR MSI number = %#x\n", MiscInfo.n.u5MsiNumPpr);
3476 pHlp->pfnPrintf(pHlp, " GA Log MSI number = %#x\n", MiscInfo.n.u5MsiNumGa);
3477 }
3478 }
3479 /* MSI Capability Header. */
3480 {
3481 MSI_CAP_HDR_T MsiCapHdr;
3482 MsiCapHdr.u32 = PDMPciDevGetDWord(pPciDev, IOMMU_PCI_OFF_MSI_CAP_HDR);
3483 pHlp->pfnPrintf(pHlp, " MSI Capability Header = %#RX32\n", MsiCapHdr.u32);
3484 if (fVerbose)
3485 {
3486 pHlp->pfnPrintf(pHlp, " Capability ID = %#x\n", MsiCapHdr.n.u8MsiCapId);
3487 pHlp->pfnPrintf(pHlp, " Capability Ptr (PCI config offset) = %#x\n", MsiCapHdr.n.u8MsiCapPtr);
3488 pHlp->pfnPrintf(pHlp, " Enable = %RTbool\n", MsiCapHdr.n.u1MsiEnable);
3489 pHlp->pfnPrintf(pHlp, " Multi-message capability = %#x\n", MsiCapHdr.n.u3MsiMultiMessCap);
3490 pHlp->pfnPrintf(pHlp, " Multi-message enable = %#x\n", MsiCapHdr.n.u3MsiMultiMessEn);
3491 }
3492 }
3493 /* MSI Address Register (Lo and Hi). */
3494 {
3495 uint32_t const uMsiAddrLo = PDMPciDevGetDWord(pPciDev, IOMMU_PCI_OFF_MSI_ADDR_LO);
3496 uint32_t const uMsiAddrHi = PDMPciDevGetDWord(pPciDev, IOMMU_PCI_OFF_MSI_ADDR_HI);
3497 MSIADDR MsiAddr;
3498 MsiAddr.u64 = RT_MAKE_U64(uMsiAddrLo, uMsiAddrHi);
3499 pHlp->pfnPrintf(pHlp, " MSI Address = %#RX64\n", MsiAddr.u64);
3500 if (fVerbose)
3501 {
3502 pHlp->pfnPrintf(pHlp, " Destination mode = %#x\n", MsiAddr.n.u1DestMode);
3503 pHlp->pfnPrintf(pHlp, " Redirection hint = %#x\n", MsiAddr.n.u1RedirHint);
3504 pHlp->pfnPrintf(pHlp, " Destination Id = %#x\n", MsiAddr.n.u8DestId);
3505 pHlp->pfnPrintf(pHlp, " Address = %#RX32\n", MsiAddr.n.u12Addr);
3506 pHlp->pfnPrintf(pHlp, " Address (Hi) / Rsvd? = %#RX32\n", MsiAddr.n.u32Rsvd0);
3507 }
3508 }
3509 /* MSI Data. */
3510 {
3511 MSIDATA MsiData;
3512 MsiData.u32 = PDMPciDevGetDWord(pPciDev, IOMMU_PCI_OFF_MSI_DATA);
3513 pHlp->pfnPrintf(pHlp, " MSI Data = %#RX32\n", MsiData.u32);
3514 if (fVerbose)
3515 {
3516 pHlp->pfnPrintf(pHlp, " Vector = %#x (%u)\n", MsiData.n.u8Vector,
3517 MsiData.n.u8Vector);
3518 pHlp->pfnPrintf(pHlp, " Delivery mode = %#x\n", MsiData.n.u3DeliveryMode);
3519 pHlp->pfnPrintf(pHlp, " Level = %#x\n", MsiData.n.u1Level);
3520 pHlp->pfnPrintf(pHlp, " Trigger mode = %s\n", MsiData.n.u1TriggerMode ?
3521 "level" : "edge");
3522 }
3523 }
3524 /* MSI Mapping Capability Header (HyperTransport, reporting all 0s currently). */
3525 {
3526 MSI_MAP_CAP_HDR_T MsiMapCapHdr;
3527 MsiMapCapHdr.u32 = 0;
3528 pHlp->pfnPrintf(pHlp, " MSI Mapping Capability Header = %#RX32\n", MsiMapCapHdr.u32);
3529 if (fVerbose)
3530 {
3531 pHlp->pfnPrintf(pHlp, " Capability ID = %#x\n", MsiMapCapHdr.n.u8MsiMapCapId);
3532 pHlp->pfnPrintf(pHlp, " Map enable = %RTbool\n", MsiMapCapHdr.n.u1MsiMapEn);
3533 pHlp->pfnPrintf(pHlp, " Map fixed = %RTbool\n", MsiMapCapHdr.n.u1MsiMapFixed);
3534 pHlp->pfnPrintf(pHlp, " Map capability type = %#x\n", MsiMapCapHdr.n.u5MapCapType);
3535 }
3536 }
3537 /* Performance Optimization Control Register. */
3538 {
3539 IOMMU_PERF_OPT_CTRL_T const PerfOptCtrl = pThis->PerfOptCtrl;
3540 pHlp->pfnPrintf(pHlp, " Performance Optimization Control = %#RX32\n", PerfOptCtrl.u32);
3541 if (fVerbose)
3542 pHlp->pfnPrintf(pHlp, " Enable = %RTbool\n", PerfOptCtrl.n.u1PerfOptEn);
3543 }
3544 /* XT (x2APIC) General Interrupt Control Register. */
3545 {
3546 IOMMU_XT_GEN_INTR_CTRL_T const XtGenIntrCtrl = pThis->XtGenIntrCtrl;
3547 pHlp->pfnPrintf(pHlp, " XT General Interrupt Control = %#RX64\n", XtGenIntrCtrl.u64);
3548 if (fVerbose)
3549 {
3550 pHlp->pfnPrintf(pHlp, " Interrupt destination mode = %s\n",
3551 !XtGenIntrCtrl.n.u1X2ApicIntrDstMode ? "physical" : "logical");
3552 pHlp->pfnPrintf(pHlp, " Interrupt destination = %#RX64\n",
3553 RT_MAKE_U64(XtGenIntrCtrl.n.u24X2ApicIntrDstLo, XtGenIntrCtrl.n.u7X2ApicIntrDstHi));
3554 pHlp->pfnPrintf(pHlp, " Interrupt vector = %#x\n", XtGenIntrCtrl.n.u8X2ApicIntrVector);
3555 pHlp->pfnPrintf(pHlp, " Interrupt delivery mode = %s\n",
3556 !XtGenIntrCtrl.n.u8X2ApicIntrVector ? "fixed" : "arbitrated");
3557 }
3558 }
3559 /* XT (x2APIC) PPR Interrupt Control Register. */
3560 {
3561 IOMMU_XT_PPR_INTR_CTRL_T const XtPprIntrCtrl = pThis->XtPprIntrCtrl;
3562 pHlp->pfnPrintf(pHlp, " XT PPR Interrupt Control = %#RX64\n", XtPprIntrCtrl.u64);
3563 if (fVerbose)
3564 {
3565 pHlp->pfnPrintf(pHlp, " Interrupt destination mode = %s\n",
3566 !XtPprIntrCtrl.n.u1X2ApicIntrDstMode ? "physical" : "logical");
3567 pHlp->pfnPrintf(pHlp, " Interrupt destination = %#RX64\n",
3568 RT_MAKE_U64(XtPprIntrCtrl.n.u24X2ApicIntrDstLo, XtPprIntrCtrl.n.u7X2ApicIntrDstHi));
3569 pHlp->pfnPrintf(pHlp, " Interrupt vector = %#x\n", XtPprIntrCtrl.n.u8X2ApicIntrVector);
3570 pHlp->pfnPrintf(pHlp, " Interrupt delivery mode = %s\n",
3571 !XtPprIntrCtrl.n.u8X2ApicIntrVector ? "fixed" : "arbitrated");
3572 }
3573 }
3574 /* XT (X2APIC) GA Log Interrupt Control Register. */
3575 {
3576 IOMMU_XT_GALOG_INTR_CTRL_T const XtGALogIntrCtrl = pThis->XtGALogIntrCtrl;
3577 pHlp->pfnPrintf(pHlp, " XT PPR Interrupt Control = %#RX64\n", XtGALogIntrCtrl.u64);
3578 if (fVerbose)
3579 {
3580 pHlp->pfnPrintf(pHlp, " Interrupt destination mode = %s\n",
3581 !XtGALogIntrCtrl.n.u1X2ApicIntrDstMode ? "physical" : "logical");
3582 pHlp->pfnPrintf(pHlp, " Interrupt destination = %#RX64\n",
3583 RT_MAKE_U64(XtGALogIntrCtrl.n.u24X2ApicIntrDstLo, XtGALogIntrCtrl.n.u7X2ApicIntrDstHi));
3584 pHlp->pfnPrintf(pHlp, " Interrupt vector = %#x\n", XtGALogIntrCtrl.n.u8X2ApicIntrVector);
3585 pHlp->pfnPrintf(pHlp, " Interrupt delivery mode = %s\n",
3586 !XtGALogIntrCtrl.n.u8X2ApicIntrVector ? "fixed" : "arbitrated");
3587 }
3588 }
3589 /* MARC Registers. */
3590 {
3591 for (unsigned i = 0; i < RT_ELEMENTS(pThis->aMarcApers); i++)
3592 {
3593 pHlp->pfnPrintf(pHlp, " MARC Aperature %u:\n", i);
3594 MARC_APER_BAR_T const MarcAperBar = pThis->aMarcApers[i].Base;
3595 pHlp->pfnPrintf(pHlp, " Base = %#RX64\n", MarcAperBar.n.u40MarcBaseAddr << X86_PAGE_4K_SHIFT);
3596
3597 MARC_APER_RELOC_T const MarcAperReloc = pThis->aMarcApers[i].Reloc;
3598 pHlp->pfnPrintf(pHlp, " Reloc = %#RX64 (addr: %#RX64, read-only: %RTbool, enable: %RTbool)\n",
3599 MarcAperReloc.u64, MarcAperReloc.n.u40MarcRelocAddr << X86_PAGE_4K_SHIFT,
3600 MarcAperReloc.n.u1ReadOnly, MarcAperReloc.n.u1RelocEn);
3601
3602 MARC_APER_LEN_T const MarcAperLen = pThis->aMarcApers[i].Length;
3603 pHlp->pfnPrintf(pHlp, " Length = %u pages\n", MarcAperLen.n.u40MarcLength);
3604 }
3605 }
3606 /* Reserved Register. */
3607 pHlp->pfnPrintf(pHlp, " Reserved Register = %#RX64\n", pThis->RsvdReg);
3608 /* Command Buffer Head Pointer Register. */
3609 {
3610 CMD_BUF_HEAD_PTR_T const CmdBufHeadPtr = pThis->CmdBufHeadPtr;
3611 pHlp->pfnPrintf(pHlp, " Command Buffer Head Pointer = %#RX64 (off: %#x)\n", CmdBufHeadPtr.u64,
3612 CmdBufHeadPtr.n.off);
3613 }
3614 /* Command Buffer Tail Pointer Register. */
3615 {
3616 CMD_BUF_HEAD_PTR_T const CmdBufTailPtr = pThis->CmdBufTailPtr;
3617 pHlp->pfnPrintf(pHlp, " Command Buffer Tail Pointer = %#RX64 (off: %#x)\n", CmdBufTailPtr.u64,
3618 CmdBufTailPtr.n.off);
3619 }
3620 /* Event Log Head Pointer Register. */
3621 {
3622 EVT_LOG_HEAD_PTR_T const EvtLogHeadPtr = pThis->EvtLogHeadPtr;
3623 pHlp->pfnPrintf(pHlp, " Event Log Head Pointer = %#RX64 (off: %#x)\n", EvtLogHeadPtr.u64,
3624 EvtLogHeadPtr.n.off);
3625 }
3626 /* Event Log Tail Pointer Register. */
3627 {
3628 EVT_LOG_TAIL_PTR_T const EvtLogTailPtr = pThis->EvtLogTailPtr;
3629 pHlp->pfnPrintf(pHlp, " Event Log Head Pointer = %#RX64 (off: %#x)\n", EvtLogTailPtr.u64,
3630 EvtLogTailPtr.n.off);
3631 }
3632 /* Status Register. */
3633 {
3634 IOMMU_STATUS_T const Status = pThis->Status;
3635 pHlp->pfnPrintf(pHlp, " Status Register = %#RX64\n", Status.u64);
3636 if (fVerbose)
3637 {
3638 pHlp->pfnPrintf(pHlp, " Event log overflow = %RTbool\n", Status.n.u1EvtOverflow);
3639 pHlp->pfnPrintf(pHlp, " Event log interrupt = %RTbool\n", Status.n.u1EvtLogIntr);
3640 pHlp->pfnPrintf(pHlp, " Completion wait interrupt = %RTbool\n", Status.n.u1CompWaitIntr);
3641 pHlp->pfnPrintf(pHlp, " Event log running = %RTbool\n", Status.n.u1EvtLogRunning);
3642 pHlp->pfnPrintf(pHlp, " Command buffer running = %RTbool\n", Status.n.u1CmdBufRunning);
3643 pHlp->pfnPrintf(pHlp, " PPR overflow = %RTbool\n", Status.n.u1PprOverflow);
3644 pHlp->pfnPrintf(pHlp, " PPR interrupt = %RTbool\n", Status.n.u1PprIntr);
3645 pHlp->pfnPrintf(pHlp, " PPR log running = %RTbool\n", Status.n.u1PprLogRunning);
3646 pHlp->pfnPrintf(pHlp, " Guest log running = %RTbool\n", Status.n.u1GstLogRunning);
3647 pHlp->pfnPrintf(pHlp, " Guest log interrupt = %RTbool\n", Status.n.u1GstLogIntr);
3648 pHlp->pfnPrintf(pHlp, " PPR log B overflow = %RTbool\n", Status.n.u1PprOverflowB);
3649 pHlp->pfnPrintf(pHlp, " PPR log active = %RTbool\n", Status.n.u1PprLogActive);
3650 pHlp->pfnPrintf(pHlp, " Event log B overflow = %RTbool\n", Status.n.u1EvtOverflowB);
3651 pHlp->pfnPrintf(pHlp, " Event log active = %RTbool\n", Status.n.u1EvtLogActive);
3652 pHlp->pfnPrintf(pHlp, " PPR log B overflow early warning = %RTbool\n", Status.n.u1PprOverflowEarlyB);
3653 pHlp->pfnPrintf(pHlp, " PPR log overflow early warning = %RTbool\n", Status.n.u1PprOverflowEarly);
3654 }
3655 }
3656 /* PPR Log Head Pointer. */
3657 {
3658 PPR_LOG_HEAD_PTR_T const PprLogHeadPtr = pThis->PprLogHeadPtr;
3659 pHlp->pfnPrintf(pHlp, " PPR Log Head Pointer = %#RX64 (off: %#x)\n", PprLogHeadPtr.u64,
3660 PprLogHeadPtr.n.off);
3661 }
3662 /* PPR Log Tail Pointer. */
3663 {
3664 PPR_LOG_TAIL_PTR_T const PprLogTailPtr = pThis->PprLogTailPtr;
3665 pHlp->pfnPrintf(pHlp, " PPR Log Tail Pointer = %#RX64 (off: %#x)\n", PprLogTailPtr.u64,
3666 PprLogTailPtr.n.off);
3667 }
3668 /* Guest Virtual-APIC Log Head Pointer. */
3669 {
3670 GALOG_HEAD_PTR_T const GALogHeadPtr = pThis->GALogHeadPtr;
3671 pHlp->pfnPrintf(pHlp, " Guest Virtual-APIC Log Head Pointer = %#RX64 (off: %#x)\n", GALogHeadPtr.u64,
3672 GALogHeadPtr.n.u12GALogPtr);
3673 }
3674 /* Guest Virtual-APIC Log Tail Pointer. */
3675 {
3676 GALOG_HEAD_PTR_T const GALogTailPtr = pThis->GALogTailPtr;
3677 pHlp->pfnPrintf(pHlp, " Guest Virtual-APIC Log Tail Pointer = %#RX64 (off: %#x)\n", GALogTailPtr.u64,
3678 GALogTailPtr.n.u12GALogPtr);
3679 }
3680 /* PPR Log B Head Pointer. */
3681 {
3682 PPR_LOG_B_HEAD_PTR_T const PprLogBHeadPtr = pThis->PprLogBHeadPtr;
3683 pHlp->pfnPrintf(pHlp, " PPR Log B Head Pointer = %#RX64 (off: %#x)\n", PprLogBHeadPtr.u64,
3684 PprLogBHeadPtr.n.off);
3685 }
3686 /* PPR Log B Tail Pointer. */
3687 {
3688 PPR_LOG_B_TAIL_PTR_T const PprLogBTailPtr = pThis->PprLogBTailPtr;
3689 pHlp->pfnPrintf(pHlp, " PPR Log B Tail Pointer = %#RX64 (off: %#x)\n", PprLogBTailPtr.u64,
3690 PprLogBTailPtr.n.off);
3691 }
3692 /* Event Log B Head Pointer. */
3693 {
3694 EVT_LOG_B_HEAD_PTR_T const EvtLogBHeadPtr = pThis->EvtLogBHeadPtr;
3695 pHlp->pfnPrintf(pHlp, " Event Log B Head Pointer = %#RX64 (off: %#x)\n", EvtLogBHeadPtr.u64,
3696 EvtLogBHeadPtr.n.off);
3697 }
3698 /* Event Log B Tail Pointer. */
3699 {
3700 EVT_LOG_B_TAIL_PTR_T const EvtLogBTailPtr = pThis->EvtLogBTailPtr;
3701 pHlp->pfnPrintf(pHlp, " Event Log B Tail Pointer = %#RX64 (off: %#x)\n", EvtLogBTailPtr.u64,
3702 EvtLogBTailPtr.n.off);
3703 }
3704 /* PPR Log Auto Response Register. */
3705 {
3706 PPR_LOG_AUTO_RESP_T const PprLogAutoResp = pThis->PprLogAutoResp;
3707 pHlp->pfnPrintf(pHlp, " PPR Log Auto Response Register = %#RX64\n", PprLogAutoResp.u64);
3708 if (fVerbose)
3709 {
3710 pHlp->pfnPrintf(pHlp, " Code = %#x\n", PprLogAutoResp.n.u4AutoRespCode);
3711 pHlp->pfnPrintf(pHlp, " Mask Gen. = %RTbool\n", PprLogAutoResp.n.u1AutoRespMaskGen);
3712 }
3713 }
3714 /* PPR Log Overflow Early Warning Indicator Register. */
3715 {
3716 PPR_LOG_OVERFLOW_EARLY_T const PprLogOverflowEarly = pThis->PprLogOverflowEarly;
3717 pHlp->pfnPrintf(pHlp, " PPR Log overflow early warning = %#RX64\n", PprLogOverflowEarly.u64);
3718 if (fVerbose)
3719 {
3720 pHlp->pfnPrintf(pHlp, " Threshold = %#x\n", PprLogOverflowEarly.n.u15Threshold);
3721 pHlp->pfnPrintf(pHlp, " Interrupt enable = %RTbool\n", PprLogOverflowEarly.n.u1IntrEn);
3722 pHlp->pfnPrintf(pHlp, " Enable = %RTbool\n", PprLogOverflowEarly.n.u1Enable);
3723 }
3724 }
3725 /* PPR Log Overflow Early Warning Indicator Register. */
3726 {
3727 PPR_LOG_OVERFLOW_EARLY_T const PprLogBOverflowEarly = pThis->PprLogBOverflowEarly;
3728 pHlp->pfnPrintf(pHlp, " PPR Log B overflow early warning = %#RX64\n", PprLogBOverflowEarly.u64);
3729 if (fVerbose)
3730 {
3731 pHlp->pfnPrintf(pHlp, " Threshold = %#x\n", PprLogBOverflowEarly.n.u15Threshold);
3732 pHlp->pfnPrintf(pHlp, " Interrupt enable = %RTbool\n", PprLogBOverflowEarly.n.u1IntrEn);
3733 pHlp->pfnPrintf(pHlp, " Enable = %RTbool\n", PprLogBOverflowEarly.n.u1Enable);
3734 }
3735 }
3736}
3737
3738
3739/**
3740 * Dumps the DTE via the info callback helper.
3741 *
3742 * @param pHlp The info helper.
3743 * @param pDte The device table entry.
3744 * @param pszPrefix The string prefix.
3745 */
3746static void iommuAmdR3DbgInfoDteWorker(PCDBGFINFOHLP pHlp, PCDTE_T pDte, const char *pszPrefix)
3747{
3748 AssertReturnVoid(pHlp);
3749 AssertReturnVoid(pDte);
3750 AssertReturnVoid(pszPrefix);
3751
3752 pHlp->pfnPrintf(pHlp, "%sValid = %RTbool\n", pszPrefix, pDte->n.u1Valid);
3753 pHlp->pfnPrintf(pHlp, "%sTranslation Valid = %RTbool\n", pszPrefix, pDte->n.u1TranslationValid);
3754 pHlp->pfnPrintf(pHlp, "%sHost Access Dirty = %#x\n", pszPrefix, pDte->n.u2Had);
3755 pHlp->pfnPrintf(pHlp, "%sPaging Mode = %u\n", pszPrefix, pDte->n.u3Mode);
3756 pHlp->pfnPrintf(pHlp, "%sPage Table Root Ptr = %#RX64 (addr=%#RGp)\n", pszPrefix, pDte->n.u40PageTableRootPtrLo,
3757 pDte->n.u40PageTableRootPtrLo << 12);
3758 pHlp->pfnPrintf(pHlp, "%sPPR enable = %RTbool\n", pszPrefix, pDte->n.u1Ppr);
3759 pHlp->pfnPrintf(pHlp, "%sGuest PPR Resp w/ PASID = %RTbool\n", pszPrefix, pDte->n.u1GstPprRespPasid);
3760 pHlp->pfnPrintf(pHlp, "%sGuest I/O Prot Valid = %RTbool\n", pszPrefix, pDte->n.u1GstIoValid);
3761 pHlp->pfnPrintf(pHlp, "%sGuest Translation Valid = %RTbool\n", pszPrefix, pDte->n.u1GstTranslateValid);
3762 pHlp->pfnPrintf(pHlp, "%sGuest Levels Translated = %#x\n", pszPrefix, pDte->n.u2GstMode);
3763 pHlp->pfnPrintf(pHlp, "%sGuest Root Page Table Ptr = %#x %#x %#x (addr=%#RGp)\n", pszPrefix,
3764 pDte->n.u3GstCr3TableRootPtrLo, pDte->n.u16GstCr3TableRootPtrMid, pDte->n.u21GstCr3TableRootPtrHi,
3765 (pDte->n.u21GstCr3TableRootPtrHi << 31)
3766 | (pDte->n.u16GstCr3TableRootPtrMid << 15)
3767 | (pDte->n.u3GstCr3TableRootPtrLo << 12));
3768 pHlp->pfnPrintf(pHlp, "%sI/O Read = %s\n", pszPrefix, pDte->n.u1IoRead ? "allowed" : "denied");
3769 pHlp->pfnPrintf(pHlp, "%sI/O Write = %s\n", pszPrefix, pDte->n.u1IoWrite ? "allowed" : "denied");
3770 pHlp->pfnPrintf(pHlp, "%sReserved (MBZ) = %#x\n", pszPrefix, pDte->n.u1Rsvd0);
3771 pHlp->pfnPrintf(pHlp, "%sDomain ID = %u (%#x)\n", pszPrefix, pDte->n.u16DomainId, pDte->n.u16DomainId);
3772 pHlp->pfnPrintf(pHlp, "%sIOTLB Enable = %RTbool\n", pszPrefix, pDte->n.u1IoTlbEnable);
3773 pHlp->pfnPrintf(pHlp, "%sSuppress I/O PFs = %RTbool\n", pszPrefix, pDte->n.u1SuppressPfEvents);
3774 pHlp->pfnPrintf(pHlp, "%sSuppress all I/O PFs = %RTbool\n", pszPrefix, pDte->n.u1SuppressAllPfEvents);
3775 pHlp->pfnPrintf(pHlp, "%sPort I/O Control = %#x\n", pszPrefix, pDte->n.u2IoCtl);
3776 pHlp->pfnPrintf(pHlp, "%sIOTLB Cache Hint = %s\n", pszPrefix, pDte->n.u1Cache ? "no caching" : "cache");
3777 pHlp->pfnPrintf(pHlp, "%sSnoop Disable = %RTbool\n", pszPrefix, pDte->n.u1SnoopDisable);
3778 pHlp->pfnPrintf(pHlp, "%sAllow Exclusion = %RTbool\n", pszPrefix, pDte->n.u1AllowExclusion);
3779 pHlp->pfnPrintf(pHlp, "%sSysMgt Message Enable = %RTbool\n", pszPrefix, pDte->n.u2SysMgt);
3780 pHlp->pfnPrintf(pHlp, "\n");
3781
3782 pHlp->pfnPrintf(pHlp, "%sInterrupt Map Valid = %RTbool\n", pszPrefix, pDte->n.u1IntrMapValid);
3783 uint8_t const uIntrTabLen = pDte->n.u4IntrTableLength;
3784 if (uIntrTabLen < IOMMU_DTE_INTR_TAB_LEN_MAX)
3785 {
3786 uint16_t const cEntries = IOMMU_GET_INTR_TAB_ENTRIES(pDte);
3787 uint16_t const cbIntrTable = IOMMU_GET_INTR_TAB_LEN(pDte);
3788 pHlp->pfnPrintf(pHlp, "%sInterrupt Table Length = %#x (%u entries, %u bytes)\n", pszPrefix, uIntrTabLen, cEntries,
3789 cbIntrTable);
3790 }
3791 else
3792 pHlp->pfnPrintf(pHlp, "%sInterrupt Table Length = %#x (invalid!)\n", pszPrefix, uIntrTabLen);
3793 pHlp->pfnPrintf(pHlp, "%sIgnore Unmapped Interrupts = %RTbool\n", pszPrefix, pDte->n.u1IgnoreUnmappedIntrs);
3794 pHlp->pfnPrintf(pHlp, "%sInterrupt Table Root Ptr = %#RX64 (addr=%#RGp)\n", pszPrefix,
3795 pDte->n.u46IntrTableRootPtr, pDte->au64[2] & IOMMU_DTE_IRTE_ROOT_PTR_MASK);
3796 pHlp->pfnPrintf(pHlp, "%sReserved (MBZ) = %#x\n", pszPrefix, pDte->n.u4Rsvd0);
3797 pHlp->pfnPrintf(pHlp, "%sINIT passthru = %RTbool\n", pszPrefix, pDte->n.u1InitPassthru);
3798 pHlp->pfnPrintf(pHlp, "%sExtInt passthru = %RTbool\n", pszPrefix, pDte->n.u1ExtIntPassthru);
3799 pHlp->pfnPrintf(pHlp, "%sNMI passthru = %RTbool\n", pszPrefix, pDte->n.u1NmiPassthru);
3800 pHlp->pfnPrintf(pHlp, "%sReserved (MBZ) = %#x\n", pszPrefix, pDte->n.u1Rsvd2);
3801 pHlp->pfnPrintf(pHlp, "%sInterrupt Control = %#x\n", pszPrefix, pDte->n.u2IntrCtrl);
3802 pHlp->pfnPrintf(pHlp, "%sLINT0 passthru = %RTbool\n", pszPrefix, pDte->n.u1Lint0Passthru);
3803 pHlp->pfnPrintf(pHlp, "%sLINT1 passthru = %RTbool\n", pszPrefix, pDte->n.u1Lint1Passthru);
3804 pHlp->pfnPrintf(pHlp, "%sReserved (MBZ) = %#x\n", pszPrefix, pDte->n.u32Rsvd0);
3805 pHlp->pfnPrintf(pHlp, "%sReserved (MBZ) = %#x\n", pszPrefix, pDte->n.u22Rsvd0);
3806 pHlp->pfnPrintf(pHlp, "%sAttribute Override Valid = %RTbool\n", pszPrefix, pDte->n.u1AttrOverride);
3807 pHlp->pfnPrintf(pHlp, "%sMode0FC = %#x\n", pszPrefix, pDte->n.u1Mode0FC);
3808 pHlp->pfnPrintf(pHlp, "%sSnoop Attribute = %#x\n", pszPrefix, pDte->n.u8SnoopAttr);
3809}
3810
3811
3812/**
3813 * @callback_method_impl{FNDBGFHANDLERDEV}
3814 */
3815static DECLCALLBACK(void) iommuAmdR3DbgInfoDte(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
3816{
3817 if (pszArgs)
3818 {
3819 uint16_t uDevId = 0;
3820 int rc = RTStrToUInt16Full(pszArgs, 0 /* uBase */, &uDevId);
3821 if (RT_SUCCESS(rc))
3822 {
3823 DTE_T Dte;
3824 rc = iommuAmdReadDte(pDevIns, uDevId, IOMMUOP_TRANSLATE_REQ, &Dte);
3825 if (RT_SUCCESS(rc))
3826 {
3827 iommuAmdR3DbgInfoDteWorker(pHlp, &Dte, " ");
3828 return;
3829 }
3830
3831 pHlp->pfnPrintf(pHlp, "Failed to read DTE for device ID %u (%#x). rc=%Rrc\n", uDevId, uDevId, rc);
3832 }
3833 else
3834 pHlp->pfnPrintf(pHlp, "Failed to parse a valid 16-bit device ID. rc=%Rrc\n", rc);
3835 }
3836 else
3837 pHlp->pfnPrintf(pHlp, "Missing device ID.\n");
3838}
3839
3840
3841#if 0
3842/**
3843 * @callback_method_impl{FNDBGFHANDLERDEV}
3844 */
3845static DECLCALLBACK(void) iommuAmdR3DbgInfoDevTabs(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
3846{
3847 RT_NOREF(pszArgs);
3848
3849 PCIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
3850 PCPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
3851 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
3852
3853 uint8_t cTables = 0;
3854 for (uint8_t i = 0; i < RT_ELEMENTS(pThis->aDevTabBaseAddrs); i++)
3855 {
3856 DEV_TAB_BAR_T DevTabBar = pThis->aDevTabBaseAddrs[i];
3857 RTGCPHYS const GCPhysDevTab = DevTabBar.n.u40Base << X86_PAGE_4K_SHIFT;
3858 if (GCPhysDevTab)
3859 ++cTables;
3860 }
3861
3862 pHlp->pfnPrintf(pHlp, "AMD-IOMMU Device Tables:\n");
3863 pHlp->pfnPrintf(pHlp, " Tables active: %u\n", cTables);
3864 if (!cTables)
3865 return;
3866
3867 for (uint8_t i = 0; i < RT_ELEMENTS(pThis->aDevTabBaseAddrs); i++)
3868 {
3869 DEV_TAB_BAR_T DevTabBar = pThis->aDevTabBaseAddrs[i];
3870 RTGCPHYS const GCPhysDevTab = DevTabBar.n.u40Base << X86_PAGE_4K_SHIFT;
3871 if (GCPhysDevTab)
3872 {
3873 uint32_t const cbDevTab = IOMMU_GET_DEV_TAB_LEN(&DevTabBar);
3874 uint32_t const cDtes = cbDevTab / sizeof(DTE_T);
3875 pHlp->pfnPrintf(pHlp, " Table %u (base=%#RGp size=%u bytes entries=%u):\n", i, GCPhysDevTab, cbDevTab, cDtes);
3876
3877 void *pvDevTab = RTMemAllocZ(cbDevTab);
3878 if (RT_LIKELY(pvDevTab))
3879 {
3880 int rc = PDMDevHlpPCIPhysRead(pDevIns, GCPhysDevTab, pvDevTab, cbDevTab);
3881 if (RT_SUCCESS(rc))
3882 {
3883 for (uint32_t idxDte = 0; idxDte < cDtes; idxDte++)
3884 {
3885 PCDTE_T pDte = (PCDTE_T)((char *)pvDevTab + idxDte * sizeof(DTE_T));
3886 if ( pDte->n.u1Valid
3887 || pDte->n.u1IntrMapValid)
3888 {
3889 pHlp->pfnPrintf(pHlp, " DTE %u:\n", idxDte);
3890 iommuAmdR3DbgInfoDteWorker(pHlp, pDte, " ");
3891 }
3892 }
3893 pHlp->pfnPrintf(pHlp, "\n");
3894 }
3895 else
3896 {
3897 pHlp->pfnPrintf(pHlp, " Failed to read table at %#RGp of size %u bytes. rc=%Rrc!\n", GCPhysDevTab,
3898 cbDevTab, rc);
3899 }
3900
3901 RTMemFree(pvDevTab);
3902 }
3903 else
3904 {
3905 pHlp->pfnPrintf(pHlp, " Allocating %u bytes for reading the device table failed!\n", cbDevTab);
3906 return;
3907 }
3908 }
3909 }
3910}
3911#endif
3912
3913/**
3914 * @callback_method_impl{FNSSMDEVSAVEEXEC}
3915 */
3916static DECLCALLBACK(int) iommuAmdR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
3917{
3918 /** @todo IOMMU: Save state. */
3919 RT_NOREF2(pDevIns, pSSM);
3920 LogFlowFunc(("\n"));
3921 return VERR_NOT_IMPLEMENTED;
3922}
3923
3924
3925/**
3926 * @callback_method_impl{FNSSMDEVLOADEXEC}
3927 */
3928static DECLCALLBACK(int) iommuAmdR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3929{
3930 /** @todo IOMMU: Load state. */
3931 RT_NOREF4(pDevIns, pSSM, uVersion, uPass);
3932 LogFlowFunc(("\n"));
3933 return VERR_NOT_IMPLEMENTED;
3934}
3935
3936
3937/**
3938 * @interface_method_impl{PDMDEVREG,pfnReset}
3939 */
3940static DECLCALLBACK(void) iommuAmdR3Reset(PPDMDEVINS pDevIns)
3941{
3942 /*
3943 * Resets read-write portion of the IOMMU state.
3944 *
3945 * State data not initialized here is expected to be initialized during
3946 * device construction and remain read-only through the lifetime of the VM.
3947 */
3948 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
3949 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
3950 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
3951
3952 LogFlowFunc(("\n"));
3953
3954 memset(&pThis->aDevTabBaseAddrs[0], 0, sizeof(pThis->aDevTabBaseAddrs));
3955
3956 pThis->CmdBufBaseAddr.u64 = 0;
3957 pThis->CmdBufBaseAddr.n.u4Len = 8;
3958
3959 pThis->EvtLogBaseAddr.u64 = 0;
3960 pThis->EvtLogBaseAddr.n.u4Len = 8;
3961
3962 pThis->Ctrl.u64 = 0;
3963 pThis->Ctrl.n.u1Coherent = 1;
3964 Assert(!pThis->ExtFeat.n.u1BlockStopMarkSup);
3965
3966 pThis->ExclRangeBaseAddr.u64 = 0;
3967 pThis->ExclRangeLimit.u64 = 0;
3968
3969 pThis->PprLogBaseAddr.u64 = 0;
3970 pThis->PprLogBaseAddr.n.u4Len = 8;
3971
3972 pThis->HwEvtHi.u64 = 0;
3973 pThis->HwEvtLo = 0;
3974 pThis->HwEvtStatus.u64 = 0;
3975
3976 pThis->GALogBaseAddr.u64 = 0;
3977 pThis->GALogBaseAddr.n.u4Len = 8;
3978 pThis->GALogTailAddr.u64 = 0;
3979
3980 pThis->PprLogBBaseAddr.u64 = 0;
3981 pThis->PprLogBBaseAddr.n.u4Len = 8;
3982
3983 pThis->EvtLogBBaseAddr.u64 = 0;
3984 pThis->EvtLogBBaseAddr.n.u4Len = 8;
3985
3986 pThis->PerfOptCtrl.u32 = 0;
3987
3988 pThis->XtGenIntrCtrl.u64 = 0;
3989 pThis->XtPprIntrCtrl.u64 = 0;
3990 pThis->XtGALogIntrCtrl.u64 = 0;
3991
3992 memset(&pThis->aMarcApers[0], 0, sizeof(pThis->aMarcApers));
3993
3994 pThis->CmdBufHeadPtr.u64 = 0;
3995 pThis->CmdBufTailPtr.u64 = 0;
3996 pThis->EvtLogHeadPtr.u64 = 0;
3997 pThis->EvtLogTailPtr.u64 = 0;
3998
3999 pThis->Status.u64 = 0;
4000
4001 pThis->PprLogHeadPtr.u64 = 0;
4002 pThis->PprLogTailPtr.u64 = 0;
4003
4004 pThis->GALogHeadPtr.u64 = 0;
4005 pThis->GALogTailPtr.u64 = 0;
4006
4007 pThis->PprLogBHeadPtr.u64 = 0;
4008 pThis->PprLogBTailPtr.u64 = 0;
4009
4010 pThis->EvtLogBHeadPtr.u64 = 0;
4011 pThis->EvtLogBTailPtr.u64 = 0;
4012
4013 pThis->PprLogAutoResp.u64 = 0;
4014 pThis->PprLogOverflowEarly.u64 = 0;
4015 pThis->PprLogBOverflowEarly.u64 = 0;
4016
4017 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_BASE_ADDR_REG_LO, 0);
4018 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_BASE_ADDR_REG_HI, 0);
4019
4020 /*
4021 * I ASSUME all MMIO regions mapped by a PDM device are automatically unmapped
4022 * on VM reset. If not, we need to enable the following...
4023 */
4024#if 0
4025 /* Unmap the MMIO region on reset if it has been mapped previously. */
4026 Assert(pThis->hMmio != NIL_IOMMMIOHANDLE);
4027 if (PDMDevHlpMmioGetMappingAddress(pDevIns, pThis->hMmio) != NIL_RTGCPHYS)
4028 PDMDevHlpMmioUnmap(pDevIns, pThis->hMmio);
4029#endif
4030}
4031
4032
4033/**
4034 * @interface_method_impl{PDMDEVREG,pfnDestruct}
4035 */
4036static DECLCALLBACK(int) iommuAmdR3Destruct(PPDMDEVINS pDevIns)
4037{
4038 PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns);
4039 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
4040 LogFlowFunc(("\n"));
4041
4042 /* Close the command thread semaphore. */
4043 if (pThis->hEvtCmdThread != NIL_SUPSEMEVENT)
4044 {
4045 PDMDevHlpSUPSemEventClose(pDevIns, pThis->hEvtCmdThread);
4046 pThis->hEvtCmdThread = NIL_SUPSEMEVENT;
4047 }
4048 return VINF_SUCCESS;
4049}
4050
4051
4052/**
4053 * @interface_method_impl{PDMDEVREG,pfnConstruct}
4054 */
4055static DECLCALLBACK(int) iommuAmdR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
4056{
4057 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
4058 RT_NOREF(pCfg);
4059
4060 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
4061 PIOMMUCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PIOMMUCC);
4062 pThisCC->pDevInsR3 = pDevIns;
4063
4064 LogFlowFunc(("iInstance=%d\n", iInstance));
4065
4066 /*
4067 * Register the IOMMU with PDM.
4068 */
4069 PDMIOMMUREGR3 IommuReg;
4070 RT_ZERO(IommuReg);
4071 IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
4072 IommuReg.pfnMemRead = iommuAmdDeviceMemRead;
4073 IommuReg.pfnMemWrite = iommuAmdDeviceMemWrite;
4074 IommuReg.pfnMsiRemap = iommuAmdDeviceMsiRemap;
4075 IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
4076 int rc = PDMDevHlpIommuRegister(pDevIns, &IommuReg, &pThisCC->CTX_SUFF(pIommuHlp), &pThis->idxIommu);
4077 if (RT_FAILURE(rc))
4078 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to register ourselves as an IOMMU device"));
4079 if (pThisCC->CTX_SUFF(pIommuHlp)->u32Version != PDM_IOMMUHLPR3_VERSION)
4080 return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
4081 N_("IOMMU helper version mismatch; got %#x expected %#x"),
4082 pThisCC->CTX_SUFF(pIommuHlp)->u32Version, PDM_IOMMUHLPR3_VERSION);
4083 if (pThisCC->CTX_SUFF(pIommuHlp)->u32TheEnd != PDM_IOMMUHLPR3_VERSION)
4084 return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
4085 N_("IOMMU helper end-version mismatch; got %#x expected %#x"),
4086 pThisCC->CTX_SUFF(pIommuHlp)->u32TheEnd, PDM_IOMMUHLPR3_VERSION);
4087
4088 /*
4089 * Initialize read-only PCI configuration space.
4090 */
4091 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
4092 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
4093
4094 /* Header. */
4095 PDMPciDevSetVendorId(pPciDev, IOMMU_PCI_VENDOR_ID); /* AMD */
4096 PDMPciDevSetDeviceId(pPciDev, IOMMU_PCI_DEVICE_ID); /* VirtualBox IOMMU device */
4097 PDMPciDevSetCommand(pPciDev, VBOX_PCI_COMMAND_MASTER); /* Enable bus master (as we write to main memory) */
4098 PDMPciDevSetStatus(pPciDev, VBOX_PCI_STATUS_CAP_LIST); /* Capability list supported */
4099 PDMPciDevSetRevisionId(pPciDev, IOMMU_PCI_REVISION_ID); /* VirtualBox specific device implementation revision */
4100 PDMPciDevSetClassBase(pPciDev, VBOX_PCI_CLASS_SYSTEM); /* System Base Peripheral */
4101 PDMPciDevSetClassSub(pPciDev, VBOX_PCI_SUB_SYSTEM_IOMMU); /* IOMMU */
4102 PDMPciDevSetClassProg(pPciDev, 0x0); /* IOMMU Programming interface */
4103 PDMPciDevSetHeaderType(pPciDev, 0x0); /* Single function, type 0 */
4104 PDMPciDevSetSubSystemId(pPciDev, IOMMU_PCI_DEVICE_ID); /* AMD */
4105 PDMPciDevSetSubSystemVendorId(pPciDev, IOMMU_PCI_VENDOR_ID); /* VirtualBox IOMMU device */
4106 PDMPciDevSetCapabilityList(pPciDev, IOMMU_PCI_OFF_CAP_HDR); /* Offset into capability registers */
4107 PDMPciDevSetInterruptPin(pPciDev, 0x1); /* INTA#. */
4108 PDMPciDevSetInterruptLine(pPciDev, 0x0); /* For software compatibility; no effect on hardware */
4109
4110 /* Capability Header. */
4111 /* NOTE! Fields (e.g, EFR) must match what we expose in the ACPI tables. */
4112 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_CAP_HDR,
4113 RT_BF_MAKE(IOMMU_BF_CAPHDR_CAP_ID, 0xf) /* RO - Secure Device capability block */
4114 | RT_BF_MAKE(IOMMU_BF_CAPHDR_CAP_PTR, IOMMU_PCI_OFF_MSI_CAP_HDR) /* RO - Offset to next capability */
4115 | RT_BF_MAKE(IOMMU_BF_CAPHDR_CAP_TYPE, 0x3) /* RO - IOMMU capability block */
4116 | RT_BF_MAKE(IOMMU_BF_CAPHDR_CAP_REV, 0x1) /* RO - IOMMU interface revision */
4117 | RT_BF_MAKE(IOMMU_BF_CAPHDR_IOTLB_SUP, 0x0) /* RO - Remote IOTLB support */
4118 | RT_BF_MAKE(IOMMU_BF_CAPHDR_HT_TUNNEL, 0x0) /* RO - HyperTransport Tunnel support */
4119 | RT_BF_MAKE(IOMMU_BF_CAPHDR_NP_CACHE, 0x0) /* RO - Cache NP page table entries */
4120 | RT_BF_MAKE(IOMMU_BF_CAPHDR_EFR_SUP, 0x1) /* RO - Extended Feature Register support */
4121 | RT_BF_MAKE(IOMMU_BF_CAPHDR_CAP_EXT, 0x1)); /* RO - Misc. Information Register support */
4122
4123 /* Base Address Register. */
4124 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_BASE_ADDR_REG_LO, 0x0); /* RW - Base address (Lo) and enable bit */
4125 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_BASE_ADDR_REG_HI, 0x0); /* RW - Base address (Hi) */
4126
4127 /* IOMMU Range Register. */
4128 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_RANGE_REG, 0x0); /* RW - Range register (implemented as RO by us) */
4129
4130 /* Misc. Information Register. */
4131 /* NOTE! Fields (e.g, GVA size) must match what we expose in the ACPI tables. */
4132 uint32_t const uMiscInfoReg0 = RT_BF_MAKE(IOMMU_BF_MISCINFO_0_MSI_NUM, 0) /* RO - MSI number */
4133 | RT_BF_MAKE(IOMMU_BF_MISCINFO_0_GVA_SIZE, 2) /* RO - Guest Virt. Addr size (2=48 bits) */
4134 | RT_BF_MAKE(IOMMU_BF_MISCINFO_0_PA_SIZE, 48) /* RO - Physical Addr size (48 bits) */
4135 | RT_BF_MAKE(IOMMU_BF_MISCINFO_0_VA_SIZE, 64) /* RO - Virt. Addr size (64 bits) */
4136 | RT_BF_MAKE(IOMMU_BF_MISCINFO_0_HT_ATS_RESV, 0) /* RW - HT ATS reserved */
4137 | RT_BF_MAKE(IOMMU_BF_MISCINFO_0_MSI_NUM_PPR, 0); /* RW - PPR interrupt number */
4138 uint32_t const uMiscInfoReg1 = 0;
4139 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_MISCINFO_REG_0, uMiscInfoReg0);
4140 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_MISCINFO_REG_1, uMiscInfoReg1);
4141
4142 /* MSI Capability Header register. */
4143 PDMMSIREG MsiReg;
4144 RT_ZERO(MsiReg);
4145 MsiReg.cMsiVectors = 1;
4146 MsiReg.iMsiCapOffset = IOMMU_PCI_OFF_MSI_CAP_HDR;
4147 MsiReg.iMsiNextOffset = 0; /* IOMMU_PCI_OFF_MSI_MAP_CAP_HDR */
4148 MsiReg.fMsi64bit = 1; /* 64-bit addressing support is mandatory; See AMD spec. 2.8 "IOMMU Interrupt Support". */
4149
4150 /* MSI Address (Lo, Hi) and MSI data are read-write PCI config registers handled by our generic PCI config space code. */
4151#if 0
4152 /* MSI Address Lo. */
4153 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_MSI_ADDR_LO, 0); /* RW - MSI message address (Lo) */
4154 /* MSI Address Hi. */
4155 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_MSI_ADDR_HI, 0); /* RW - MSI message address (Hi) */
4156 /* MSI Data. */
4157 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_MSI_DATA, 0); /* RW - MSI data */
4158#endif
4159
4160#if 0
4161 /** @todo IOMMU: I don't know if we need to support this, enable later if
4162 * required. */
4163 /* MSI Mapping Capability Header register. */
4164 PDMPciDevSetDWord(pPciDev, IOMMU_PCI_OFF_MSI_MAP_CAP_HDR,
4165 RT_BF_MAKE(IOMMU_BF_MSI_MAP_CAPHDR_CAP_ID, 0x8) /* RO - Capability ID */
4166 | RT_BF_MAKE(IOMMU_BF_MSI_MAP_CAPHDR_CAP_PTR, 0x0) /* RO - Offset to next capability (NULL) */
4167 | RT_BF_MAKE(IOMMU_BF_MSI_MAP_CAPHDR_EN, 0x1) /* RO - MSI mapping capability enable */
4168 | RT_BF_MAKE(IOMMU_BF_MSI_MAP_CAPHDR_FIXED, 0x1) /* RO - MSI mapping range is fixed */
4169 | RT_BF_MAKE(IOMMU_BF_MSI_MAP_CAPHDR_CAP_TYPE, 0x15)); /* RO - MSI mapping capability */
4170 /* When implementing don't forget to copy this to its MMIO shadow register (MsiMapCapHdr) in iommuAmdR3Init. */
4171#endif
4172
4173 /*
4174 * Register the PCI function with PDM.
4175 */
4176 rc = PDMDevHlpPCIRegister(pDevIns, pPciDev);
4177 AssertLogRelRCReturn(rc, rc);
4178
4179 /*
4180 * Register MSI support for the PCI device.
4181 * This must be done -after- register it as a PCI device!
4182 */
4183 rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg);
4184 AssertRCReturn(rc, rc);
4185
4186 /*
4187 * Intercept PCI config. space accesses.
4188 */
4189 rc = PDMDevHlpPCIInterceptConfigAccesses(pDevIns, pPciDev, iommuAmdR3PciConfigRead, iommuAmdR3PciConfigWrite);
4190 AssertLogRelRCReturn(rc, rc);
4191
4192 /*
4193 * Create the MMIO region.
4194 * Mapping of the region is done when software configures it via PCI config space.
4195 */
4196 rc = PDMDevHlpMmioCreate(pDevIns, IOMMU_MMIO_REGION_SIZE, pPciDev, 0 /* iPciRegion */, iommuAmdMmioWrite, iommuAmdMmioRead,
4197 NULL /* pvUser */, IOMMMIO_FLAGS_READ_DWORD_QWORD | IOMMMIO_FLAGS_WRITE_DWORD_QWORD_ZEROED,
4198 "AMD-IOMMU", &pThis->hMmio);
4199 AssertLogRelRCReturn(rc, rc);
4200
4201 /*
4202 * Register saved state.
4203 */
4204 rc = PDMDevHlpSSMRegisterEx(pDevIns, IOMMU_SAVED_STATE_VERSION, sizeof(IOMMU), NULL,
4205 NULL, NULL, NULL,
4206 NULL, iommuAmdR3SaveExec, NULL,
4207 NULL, iommuAmdR3LoadExec, NULL);
4208 AssertLogRelRCReturn(rc, rc);
4209
4210 /*
4211 * Register debugger info items.
4212 */
4213 PDMDevHlpDBGFInfoRegister(pDevIns, "iommu", "Display IOMMU state.", iommuAmdR3DbgInfo);
4214 PDMDevHlpDBGFInfoRegister(pDevIns, "iommudte", "Display the DTE for a device. Arguments: DeviceID.", iommuAmdR3DbgInfoDte);
4215#if 0
4216 PDMDevHlpDBGFInfoRegister(pDevIns, "iommudevtabs", "Display IOMMU device tables.", iommuAmdR3DbgInfoDevTabs);
4217#endif
4218
4219# ifdef VBOX_WITH_STATISTICS
4220 /*
4221 * Statistics.
4222 */
4223 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadR3, STAMTYPE_COUNTER, "R3/MmioReadR3", STAMUNIT_OCCURENCES, "Number of MMIO reads in R3");
4224 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadRZ, STAMTYPE_COUNTER, "RZ/MmioReadRZ", STAMUNIT_OCCURENCES, "Number of MMIO reads in RZ.");
4225
4226 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteR3, STAMTYPE_COUNTER, "R3/MmioWriteR3", STAMUNIT_OCCURENCES, "Number of MMIO writes in R3.");
4227 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteRZ, STAMTYPE_COUNTER, "RZ/MmioWriteRZ", STAMUNIT_OCCURENCES, "Number of MMIO writes in RZ.");
4228
4229 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapR3, STAMTYPE_COUNTER, "R3/MsiRemapR3", STAMUNIT_OCCURENCES, "Number of interrupt remap requests in R3.");
4230 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRZ, STAMTYPE_COUNTER, "RZ/MsiRemapRZ", STAMUNIT_OCCURENCES, "Number of interrupt remap requests in RZ.");
4231
4232 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCmd, STAMTYPE_COUNTER, "R3/Commands", STAMUNIT_OCCURENCES, "Number of commands processed (total).");
4233 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCmdCompWait, STAMTYPE_COUNTER, "R3/Commands/CompWait", STAMUNIT_OCCURENCES, "Number of Completion Wait commands processed.");
4234 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCmdInvDte, STAMTYPE_COUNTER, "R3/Commands/InvDte", STAMUNIT_OCCURENCES, "Number of Invalidate DTE commands processed.");
4235 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCmdInvIommuPages, STAMTYPE_COUNTER, "R3/Commands/InvIommuPages", STAMUNIT_OCCURENCES, "Number of Invalidate IOMMU Pages commands processed.");
4236 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCmdInvIotlbPages, STAMTYPE_COUNTER, "R3/Commands/InvIotlbPages", STAMUNIT_OCCURENCES, "Number of Invalidate IOTLB Pages commands processed.");
4237 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCmdInvIntrTable, STAMTYPE_COUNTER, "R3/Commands/InvIntrTable", STAMUNIT_OCCURENCES, "Number of Invalidate Interrupt Table commands processed.");
4238 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCmdPrefIommuPages, STAMTYPE_COUNTER, "R3/Commands/PrefIommuPages", STAMUNIT_OCCURENCES, "Number of Prefetch IOMMU Pages commands processed.");
4239 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCmdCompletePprReq, STAMTYPE_COUNTER, "R3/Commands/CompletePprReq", STAMUNIT_OCCURENCES, "Number of Complete PPR Requests commands processed.");
4240 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCmdInvIommuAll, STAMTYPE_COUNTER, "R3/Commands/InvIommuAll", STAMUNIT_OCCURENCES, "Number of Invalidate IOMMU All commands processed.");
4241# endif
4242
4243 /*
4244 * Create the command thread and its event semaphore.
4245 */
4246 char szDevIommu[64];
4247 RT_ZERO(szDevIommu);
4248 RTStrPrintf(szDevIommu, sizeof(szDevIommu), "IOMMU-%u", iInstance);
4249 rc = PDMDevHlpThreadCreate(pDevIns, &pThisCC->pCmdThread, pThis, iommuAmdR3CmdThread, iommuAmdR3CmdThreadWakeUp,
4250 0 /* cbStack */, RTTHREADTYPE_IO, szDevIommu);
4251 AssertLogRelRCReturn(rc, rc);
4252
4253 rc = PDMDevHlpSUPSemEventCreate(pDevIns, &pThis->hEvtCmdThread);
4254 AssertLogRelRCReturn(rc, rc);
4255
4256 /*
4257 * Initialize read-only registers.
4258 * NOTE! Fields here must match their corresponding field in the ACPI tables.
4259 */
4260 /** @todo Don't remove the =0 assignment for now. It's just there so it's easier
4261 * for me to see existing features that we might want to implement. Do it
4262 * later. */
4263 pThis->ExtFeat.u64 = 0;
4264 pThis->ExtFeat.n.u1PrefetchSup = 0;
4265 pThis->ExtFeat.n.u1PprSup = 0;
4266 pThis->ExtFeat.n.u1X2ApicSup = 0;
4267 pThis->ExtFeat.n.u1NoExecuteSup = 0;
4268 pThis->ExtFeat.n.u1GstTranslateSup = 0;
4269 pThis->ExtFeat.n.u1InvAllSup = 1;
4270 pThis->ExtFeat.n.u1GstVirtApicSup = 0;
4271 pThis->ExtFeat.n.u1HwErrorSup = 1;
4272 pThis->ExtFeat.n.u1PerfCounterSup = 0;
4273 AssertCompile((IOMMU_MAX_HOST_PT_LEVEL & 0x3) < 3);
4274 pThis->ExtFeat.n.u2HostAddrTranslateSize = (IOMMU_MAX_HOST_PT_LEVEL & 0x3);
4275 pThis->ExtFeat.n.u2GstAddrTranslateSize = 0; /* Requires GstTranslateSup */
4276 pThis->ExtFeat.n.u2GstCr3RootTblLevel = 0; /* Requires GstTranslateSup */
4277 pThis->ExtFeat.n.u2SmiFilterSup = 0;
4278 pThis->ExtFeat.n.u3SmiFilterCount = 0;
4279 pThis->ExtFeat.n.u3GstVirtApicModeSup = 0; /* Requires GstVirtApicSup */
4280 pThis->ExtFeat.n.u2DualPprLogSup = 0;
4281 pThis->ExtFeat.n.u2DualEvtLogSup = 0;
4282 pThis->ExtFeat.n.u5MaxPasidSup = 0; /* Requires GstTranslateSup */
4283 pThis->ExtFeat.n.u1UserSupervisorSup = 0;
4284 AssertCompile(IOMMU_MAX_DEV_TAB_SEGMENTS <= 3);
4285 pThis->ExtFeat.n.u2DevTabSegSup = IOMMU_MAX_DEV_TAB_SEGMENTS;
4286 pThis->ExtFeat.n.u1PprLogOverflowWarn = 0;
4287 pThis->ExtFeat.n.u1PprAutoRespSup = 0;
4288 pThis->ExtFeat.n.u2MarcSup = 0;
4289 pThis->ExtFeat.n.u1BlockStopMarkSup = 0;
4290 pThis->ExtFeat.n.u1PerfOptSup = 0;
4291 pThis->ExtFeat.n.u1MsiCapMmioSup = 1;
4292 pThis->ExtFeat.n.u1GstIoSup = 0;
4293 pThis->ExtFeat.n.u1HostAccessSup = 0;
4294 pThis->ExtFeat.n.u1EnhancedPprSup = 0;
4295 pThis->ExtFeat.n.u1AttrForwardSup = 0;
4296 pThis->ExtFeat.n.u1HostDirtySup = 0;
4297 pThis->ExtFeat.n.u1InvIoTlbTypeSup = 0;
4298 pThis->ExtFeat.n.u1GstUpdateDisSup = 0;
4299 pThis->ExtFeat.n.u1ForcePhysDstSup = 0;
4300
4301 pThis->RsvdReg = 0;
4302
4303 pThis->DevSpecificFeat.u64 = 0;
4304 pThis->DevSpecificFeat.n.u4RevMajor = IOMMU_DEVSPEC_FEAT_MAJOR_VERSION;
4305 pThis->DevSpecificFeat.n.u4RevMinor = IOMMU_DEVSPEC_FEAT_MINOR_VERSION;
4306
4307 pThis->DevSpecificCtrl.u64 = 0;
4308 pThis->DevSpecificCtrl.n.u4RevMajor = IOMMU_DEVSPEC_CTRL_MAJOR_VERSION;
4309 pThis->DevSpecificCtrl.n.u4RevMinor = IOMMU_DEVSPEC_CTRL_MINOR_VERSION;
4310
4311 pThis->DevSpecificStatus.u64 = 0;
4312 pThis->DevSpecificStatus.n.u4RevMajor = IOMMU_DEVSPEC_STATUS_MAJOR_VERSION;
4313 pThis->DevSpecificStatus.n.u4RevMinor = IOMMU_DEVSPEC_STATUS_MINOR_VERSION;
4314
4315 pThis->MiscInfo.u64 = RT_MAKE_U64(uMiscInfoReg0, uMiscInfoReg1);
4316
4317 /*
4318 * Initialize parts of the IOMMU state as it would during reset.
4319 * Must be called -after- initializing PCI config. space registers.
4320 */
4321 iommuAmdR3Reset(pDevIns);
4322
4323 return VINF_SUCCESS;
4324}
4325
4326# else /* !IN_RING3 */
4327
4328/**
4329 * @callback_method_impl{PDMDEVREGR0,pfnConstruct}
4330 */
4331static DECLCALLBACK(int) iommuAmdRZConstruct(PPDMDEVINS pDevIns)
4332{
4333 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
4334 PIOMMU pThis = PDMDEVINS_2_DATA(pDevIns, PIOMMU);
4335 PIOMMUCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PIOMMUCC);
4336
4337 pThisCC->CTX_SUFF(pDevIns) = pDevIns;
4338
4339 /* Set up the MMIO RZ handlers. */
4340 int rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmio, iommuAmdMmioWrite, iommuAmdMmioRead, NULL /* pvUser */);
4341 AssertRCReturn(rc, rc);
4342
4343 /* Set up the IOMMU RZ callbacks. */
4344 PDMIOMMUREGCC IommuReg;
4345 RT_ZERO(IommuReg);
4346 IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
4347 IommuReg.idxIommu = pThis->idxIommu;
4348 IommuReg.pfnMemRead = iommuAmdDeviceMemRead;
4349 IommuReg.pfnMemWrite = iommuAmdDeviceMemWrite;
4350 IommuReg.pfnMsiRemap = iommuAmdDeviceMsiRemap;
4351 IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
4352 rc = PDMDevHlpIommuSetUpContext(pDevIns, &IommuReg, &pThisCC->CTX_SUFF(pIommuHlp));
4353 AssertRCReturn(rc, rc);
4354
4355 return VINF_SUCCESS;
4356}
4357
4358# endif /* !IN_RING3 */
4359
4360/**
4361 * The device registration structure.
4362 */
4363const PDMDEVREG g_DeviceIommuAmd =
4364{
4365 /* .u32Version = */ PDM_DEVREG_VERSION,
4366 /* .uReserved0 = */ 0,
4367 /* .szName = */ "iommu-amd",
4368 /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE,
4369 /* .fClass = */ PDM_DEVREG_CLASS_PCI_BUILTIN,
4370 /* .cMaxInstances = */ ~0U,
4371 /* .uSharedVersion = */ 42,
4372 /* .cbInstanceShared = */ sizeof(IOMMU),
4373 /* .cbInstanceCC = */ sizeof(IOMMUCC),
4374 /* .cbInstanceRC = */ sizeof(IOMMURC),
4375 /* .cMaxPciDevices = */ 1,
4376 /* .cMaxMsixVectors = */ 0,
4377 /* .pszDescription = */ "IOMMU (AMD)",
4378#if defined(IN_RING3)
4379 /* .pszRCMod = */ "VBoxDDRC.rc",
4380 /* .pszR0Mod = */ "VBoxDDR0.r0",
4381 /* .pfnConstruct = */ iommuAmdR3Construct,
4382 /* .pfnDestruct = */ iommuAmdR3Destruct,
4383 /* .pfnRelocate = */ NULL,
4384 /* .pfnMemSetup = */ NULL,
4385 /* .pfnPowerOn = */ NULL,
4386 /* .pfnReset = */ iommuAmdR3Reset,
4387 /* .pfnSuspend = */ NULL,
4388 /* .pfnResume = */ NULL,
4389 /* .pfnAttach = */ NULL,
4390 /* .pfnDetach = */ NULL,
4391 /* .pfnQueryInterface = */ NULL,
4392 /* .pfnInitComplete = */ NULL,
4393 /* .pfnPowerOff = */ NULL,
4394 /* .pfnSoftReset = */ NULL,
4395 /* .pfnReserved0 = */ NULL,
4396 /* .pfnReserved1 = */ NULL,
4397 /* .pfnReserved2 = */ NULL,
4398 /* .pfnReserved3 = */ NULL,
4399 /* .pfnReserved4 = */ NULL,
4400 /* .pfnReserved5 = */ NULL,
4401 /* .pfnReserved6 = */ NULL,
4402 /* .pfnReserved7 = */ NULL,
4403#elif defined(IN_RING0)
4404 /* .pfnEarlyConstruct = */ NULL,
4405 /* .pfnConstruct = */ iommuAmdRZConstruct,
4406 /* .pfnDestruct = */ NULL,
4407 /* .pfnFinalDestruct = */ NULL,
4408 /* .pfnRequest = */ NULL,
4409 /* .pfnReserved0 = */ NULL,
4410 /* .pfnReserved1 = */ NULL,
4411 /* .pfnReserved2 = */ NULL,
4412 /* .pfnReserved3 = */ NULL,
4413 /* .pfnReserved4 = */ NULL,
4414 /* .pfnReserved5 = */ NULL,
4415 /* .pfnReserved6 = */ NULL,
4416 /* .pfnReserved7 = */ NULL,
4417#elif defined(IN_RC)
4418 /* .pfnConstruct = */ iommuAmdRZConstruct,
4419 /* .pfnReserved0 = */ NULL,
4420 /* .pfnReserved1 = */ NULL,
4421 /* .pfnReserved2 = */ NULL,
4422 /* .pfnReserved3 = */ NULL,
4423 /* .pfnReserved4 = */ NULL,
4424 /* .pfnReserved5 = */ NULL,
4425 /* .pfnReserved6 = */ NULL,
4426 /* .pfnReserved7 = */ NULL,
4427#else
4428# error "Not in IN_RING3, IN_RING0 or IN_RC!"
4429#endif
4430 /* .u32VersionEnd = */ PDM_DEVREG_VERSION
4431};
4432
4433#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
4434
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette