VirtualBox

source: vbox/trunk/src/VBox/Devices/Bus/DevIommuIntel.cpp@ 88765

Last change on this file since 88765 was 88765, checked in by vboxsync, 4 years ago

Intel IOMMU: bugref:9967 WIP.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 108.7 KB
Line 
1/* $Id: DevIommuIntel.cpp 88765 2021-04-29 07:10:23Z vboxsync $ */
2/** @file
3 * IOMMU - Input/Output Memory Management Unit - Intel implementation.
4 */
5
6/*
7 * Copyright (C) 2021 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DEV_IOMMU
23#include "VBoxDD.h"
24#include "DevIommuIntel.h"
25
26#include <iprt/mem.h>
27#include <iprt/string.h>
28
29
30/*********************************************************************************************************************************
31* Defined Constants And Macros *
32*********************************************************************************************************************************/
33/** Gets the low uint32_t of a uint64_t or something equivalent.
34 *
35 * This is suitable for casting constants outside code (since RT_LO_U32 can't be
36 * used as it asserts for correctness when compiling on certain compilers). */
37#define DMAR_LO_U32(a) (uint32_t)(UINT32_MAX & (a))
38
39/** Gets the high uint32_t of a uint64_t or something equivalent.
40 *
41 * This is suitable for casting constants outside code (since RT_HI_U32 can't be
42 * used as it asserts for correctness when compiling on certain compilers). */
43#define DMAR_HI_U32(a) (uint32_t)((a) >> 32)
44
45/** Asserts MMIO access' offset and size are valid or returns appropriate error
46 * code suitable for returning from MMIO access handlers. */
47#define DMAR_ASSERT_MMIO_ACCESS_RET(a_off, a_cb) \
48 do { \
49 AssertReturn((a_cb) == 4 || (a_cb) == 8, VINF_IOM_MMIO_UNUSED_FF); \
50 AssertReturn(!((a_off) & ((a_cb) - 1)), VINF_IOM_MMIO_UNUSED_FF); \
51 } while (0)
52
53/** Checks if the MMIO offset is valid. */
54#define DMAR_IS_MMIO_OFF_VALID(a_off) ( (a_off) < DMAR_MMIO_GROUP_0_OFF_END \
55 || (a_off) - DMAR_MMIO_GROUP_1_OFF_FIRST < DMAR_MMIO_GROUP_1_SIZE)
56
57/** Acquires the DMAR lock but returns with the given error code on failure. */
58#define DMAR_LOCK_RET(a_pDevIns, a_pThisCC, a_rcBusy) \
59 do { \
60 if ((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), (a_rcBusy)) == VINF_SUCCESS) \
61 { /* likely */ } \
62 else \
63 return (a_rcBusy); \
64 } while (0)
65
66/** Acquires the DMAR lock and is not expected to fail. */
67#define DMAR_LOCK(a_pDevIns, a_pThisCC) \
68 do { \
69 int const rcLock = (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VERR_IGNORED); \
70 Assert(rcLock == VINF_SUCCESS); \
71 } while (0)
72
73/** Release the DMAR lock. */
74#define DMAR_UNLOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnUnlock(a_pDevIns)
75
76/** Asserts that the calling thread owns the DMAR lock. */
77#define DMAR_ASSERT_LOCK_IS_OWNER(a_pDevIns, a_pThisCC) \
78 do { \
79 Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns)); \
80 RT_NOREF1(a_pThisCC); \
81 } while (0)
82
83/** The number of fault recording registers our implementation supports.
84 * Normal guest operation shouldn't trigger faults anyway, so we only support the
85 * minimum number of registers (which is 1).
86 *
87 * See Intel VT-d spec. 10.4.2 "Capability Register" (CAP_REG.NFR). */
88#define DMAR_FRCD_REG_COUNT UINT32_C(1)
89
90/** Offset of first register in group 0. */
91#define DMAR_MMIO_GROUP_0_OFF_FIRST VTD_MMIO_OFF_VER_REG
92/** Offset of last register in group 0 (inclusive). */
93#define DMAR_MMIO_GROUP_0_OFF_LAST VTD_MMIO_OFF_MTRR_PHYSMASK9_REG
94/** Last valid offset in group 0 (exclusive). */
95#define DMAR_MMIO_GROUP_0_OFF_END (DMAR_MMIO_GROUP_0_OFF_LAST + 8 /* sizeof MTRR_PHYSMASK9_REG */)
96/** Size of the group 0 (in bytes). */
97#define DMAR_MMIO_GROUP_0_SIZE (DMAR_MMIO_GROUP_0_OFF_END - DMAR_MMIO_GROUP_0_OFF_FIRST)
98/**< Implementation-specific MMIO offset of IVA_REG. */
99#define DMAR_MMIO_OFF_IVA_REG 0xe50
100/**< Implementation-specific MMIO offset of IOTLB_REG. */
101#define DMAR_MMIO_OFF_IOTLB_REG 0xe58
102/**< Implementation-specific MMIO offset of FRCD_LO_REG. */
103#define DMAR_MMIO_OFF_FRCD_LO_REG 0xe70
104/**< Implementation-specific MMIO offset of FRCD_HI_REG. */
105#define DMAR_MMIO_OFF_FRCD_HI_REG 0xe78
106AssertCompile(!(DMAR_MMIO_OFF_FRCD_LO_REG & 0xf));
107
108/** Offset of first register in group 1. */
109#define DMAR_MMIO_GROUP_1_OFF_FIRST VTD_MMIO_OFF_VCCAP_REG
110/** Offset of last register in group 1 (inclusive). */
111#define DMAR_MMIO_GROUP_1_OFF_LAST (DMAR_MMIO_OFF_FRCD_LO_REG + 8) * DMAR_FRCD_REG_COUNT
112/** Last valid offset in group 1 (exclusive). */
113#define DMAR_MMIO_GROUP_1_OFF_END (DMAR_MMIO_GROUP_1_OFF_LAST + 8 /* sizeof FRCD_HI_REG */)
114/** Size of the group 1 (in bytes). */
115#define DMAR_MMIO_GROUP_1_SIZE (DMAR_MMIO_GROUP_1_OFF_END - DMAR_MMIO_GROUP_1_OFF_FIRST)
116
117/** DMAR implementation's major version number (exposed to software).
118 * We report 6 as the major version since we support queued-invalidations as
119 * software may make assumptions based on that.
120 *
121 * See Intel VT-d spec. 10.4.7 "Context Command Register" (CCMD_REG.CAIG). */
122#define DMAR_VER_MAJOR 6
123/** DMAR implementation's minor version number (exposed to software). */
124#define DMAR_VER_MINOR 0
125
126/** Release log prefix string. */
127#define DMAR_LOG_PFX "Intel-IOMMU"
128/** The current saved state version. */
129#define DMAR_SAVED_STATE_VERSION 1
130
131
132/*********************************************************************************************************************************
133* Structures and Typedefs *
134*********************************************************************************************************************************/
135/**
136 * DMAR error diagnostics.
137 *
138 * @note Members of this enum are used as array indices, so no gaps in enum
139 * values are not allowed. Update g_apszDmarDiagDesc when you modify
140 * fields in this enum.
141 */
142typedef enum
143{
144 kDmarDiag_None = 0,
145 kDmarDiag_IqtReg_Qt_NotAligned,
146 kDmarDiag_IqtReg_Qt_Invalid,
147 kDmarDiag_IqaReg_Dw_Invalid,
148 kDmarDiag_IqaReg_Dsc_Fetch_Error,
149 kDmarDiag_Iqei_Dsc_Type_Invalid,
150 kDmarDiag_CcmdReg_Ttm_Invalid,
151 kDmarDiag_CcmdReg_Qi_Enabled,
152 kDmarDiag_CcmdReg_NotSupported,
153 /* Member for determining array index limit. */
154 kDmarDiag_End,
155 /* Type size hack. */
156 kDmarDiag_32Bit_Hack = 0x7fffffff
157} DMARDIAG;
158AssertCompileSize(DMARDIAG, 4);
159
160/** DMAR diagnostic enum description expansion.
161 * The below construct ensures typos in the input to this macro are caught
162 * during compile time. */
163#define DMARDIAG_DESC(a_Name) RT_CONCAT(kDmarDiag_, a_Name) < kDmarDiag_End ? RT_STR(a_Name) : "Ignored"
164
165/** DMAR diagnostics description. */
166static const char *const g_apszDmarDiagDesc[] =
167{
168 DMARDIAG_DESC(None ),
169 DMARDIAG_DESC(IqtReg_Qt_NotAligned ),
170 DMARDIAG_DESC(IqtReg_Qt_Invalid ),
171 DMARDIAG_DESC(IqaReg_Dw_Invalid ),
172 DMARDIAG_DESC(IqaReg_Dsc_Fetch_Error),
173 DMARDIAG_DESC(Iqei_Dsc_Type_Invalid ),
174 DMARDIAG_DESC(CcmdReg_Ttm_Invalid ),
175 DMARDIAG_DESC(CcmdReg_Qi_Enabled ),
176 DMARDIAG_DESC(CcmdReg_NotSupported )
177 /* kDmarDiag_End */
178};
179AssertCompile(RT_ELEMENTS(g_apszDmarDiagDesc) == kDmarDiag_End);
180#undef DMARDIAG_DESC
181
182/**
183 * The shared DMAR device state.
184 */
185typedef struct DMAR
186{
187 /** IOMMU device index. */
188 uint32_t idxIommu;
189 /** DMAR magic. */
190 uint32_t u32Magic;
191
192 /** Registers (group 0). */
193 uint8_t abRegs0[DMAR_MMIO_GROUP_0_SIZE];
194 /** Registers (group 1). */
195 uint8_t abRegs1[DMAR_MMIO_GROUP_1_SIZE];
196
197 /** @name Lazily activated registers.
198 * These are the active values for lazily activated registers. Software is free to
199 * modify the actual register values while remapping/translation is enabled but they
200 * take effect only when explicitly signaled by software, hence we need to hold the
201 * active values separately.
202 * @{ */
203 /** Currently active IRTA_REG. */
204 uint64_t uIrtaReg;
205 /** Currently active RTADDR_REG. */
206 uint64_t uRtaReg;
207 /** @} */
208
209 /** @name Register copies for a tiny bit faster and more convenient access.
210 * @{ */
211 /** Copy of VER_REG. */
212 uint8_t uVerReg;
213 /** Alignment. */
214 uint8_t abPadding[7];
215 /** Copy of CAP_REG. */
216 uint64_t fCap;
217 /** Copy of ECAP_REG. */
218 uint64_t fExtCap;
219 /** @} */
220
221 /** The event semaphore the invalidation-queue thread waits on. */
222 SUPSEMEVENT hEvtInvQueue;
223 /** Whether the invalidation-queue thread has been signaled. */
224 bool volatile fInvQueueThreadSignaled;
225 /** Padding. */
226 bool afPadding0[3];
227 /** Error diagnostic. */
228 DMARDIAG enmDiag;
229 /** The MMIO handle. */
230 IOMMMIOHANDLE hMmio;
231
232#ifdef VBOX_WITH_STATISTICS
233 STAMCOUNTER StatMmioReadR3; /**< Number of MMIO reads in R3. */
234 STAMCOUNTER StatMmioReadRZ; /**< Number of MMIO reads in RZ. */
235 STAMCOUNTER StatMmioWriteR3; /**< Number of MMIO writes in R3. */
236 STAMCOUNTER StatMmioWriteRZ; /**< Number of MMIO writes in RZ. */
237
238 STAMCOUNTER StatMsiRemapR3; /**< Number of MSI remap requests in R3. */
239 STAMCOUNTER StatMsiRemapRZ; /**< Number of MSI remap requests in RZ. */
240
241 STAMCOUNTER StatMemReadR3; /**< Number of memory read translation requests in R3. */
242 STAMCOUNTER StatMemReadRZ; /**< Number of memory read translation requests in RZ. */
243 STAMCOUNTER StatMemWriteR3; /**< Number of memory write translation requests in R3. */
244 STAMCOUNTER StatMemWriteRZ; /**< Number of memory write translation requests in RZ. */
245
246 STAMCOUNTER StatMemBulkReadR3; /**< Number of memory read bulk translation requests in R3. */
247 STAMCOUNTER StatMemBulkReadRZ; /**< Number of memory read bulk translation requests in RZ. */
248 STAMCOUNTER StatMemBulkWriteR3; /**< Number of memory write bulk translation requests in R3. */
249 STAMCOUNTER StatMemBulkWriteRZ; /**< Number of memory write bulk translation requests in RZ. */
250#endif
251} DMAR;
252/** Pointer to the DMAR device state. */
253typedef DMAR *PDMAR;
254/** Pointer to the const DMAR device state. */
255typedef DMAR const *PCDMAR;
256AssertCompileMemberAlignment(DMAR, abRegs0, 8);
257AssertCompileMemberAlignment(DMAR, abRegs1, 8);
258
259/**
260 * The ring-3 DMAR device state.
261 */
262typedef struct DMARR3
263{
264 /** Device instance. */
265 PPDMDEVINSR3 pDevInsR3;
266 /** The IOMMU helper. */
267 R3PTRTYPE(PCPDMIOMMUHLPR3) pIommuHlpR3;
268 /** The invalidation-queue thread. */
269 R3PTRTYPE(PPDMTHREAD) pInvQueueThread;
270} DMARR3;
271/** Pointer to the ring-3 DMAR device state. */
272typedef DMARR3 *PDMARR3;
273/** Pointer to the const ring-3 DMAR device state. */
274typedef DMARR3 const *PCDMARR3;
275
276/**
277 * The ring-0 DMAR device state.
278 */
279typedef struct DMARR0
280{
281 /** Device instance. */
282 PPDMDEVINSR0 pDevInsR0;
283 /** The IOMMU helper. */
284 R0PTRTYPE(PCPDMIOMMUHLPR0) pIommuHlpR0;
285} DMARR0;
286/** Pointer to the ring-0 IOMMU device state. */
287typedef DMARR0 *PDMARR0;
288/** Pointer to the const ring-0 IOMMU device state. */
289typedef DMARR0 const *PCDMARR0;
290
291/**
292 * The raw-mode DMAR device state.
293 */
294typedef struct DMARRC
295{
296 /** Device instance. */
297 PPDMDEVINSRC pDevInsRC;
298 /** The IOMMU helper. */
299 RCPTRTYPE(PCPDMIOMMUHLPRC) pIommuHlpRC;
300} DMARRC;
301/** Pointer to the raw-mode DMAR device state. */
302typedef DMARRC *PDMARRC;
303/** Pointer to the const raw-mode DMAR device state. */
304typedef DMARRC const *PCIDMARRC;
305
306/** The DMAR device state for the current context. */
307typedef CTX_SUFF(DMAR) DMARCC;
308/** Pointer to the DMAR device state for the current context. */
309typedef CTX_SUFF(PDMAR) PDMARCC;
310/** Pointer to the const DMAR device state for the current context. */
311typedef CTX_SUFF(PDMAR) const PCDMARCC;
312
313
314/*********************************************************************************************************************************
315* Global Variables *
316*********************************************************************************************************************************/
317/**
318 * Read-write masks for DMAR registers (group 0).
319 */
320static uint32_t const g_au32RwMasks0[] =
321{
322 /* Offset Register Low High */
323 /* 0x000 VER_REG */ VTD_VER_REG_RW_MASK,
324 /* 0x004 Reserved */ 0,
325 /* 0x008 CAP_REG */ DMAR_LO_U32(VTD_CAP_REG_RW_MASK), DMAR_HI_U32(VTD_CAP_REG_RW_MASK),
326 /* 0x010 ECAP_REG */ DMAR_LO_U32(VTD_ECAP_REG_RW_MASK), DMAR_HI_U32(VTD_ECAP_REG_RW_MASK),
327 /* 0x018 GCMD_REG */ VTD_GCMD_REG_RW_MASK,
328 /* 0x01c GSTS_REG */ VTD_GSTS_REG_RW_MASK,
329 /* 0x020 RTADDR_REG */ DMAR_LO_U32(VTD_RTADDR_REG_RW_MASK), DMAR_HI_U32(VTD_RTADDR_REG_RW_MASK),
330 /* 0x028 CCMD_REG */ DMAR_LO_U32(VTD_CCMD_REG_RW_MASK), DMAR_HI_U32(VTD_CCMD_REG_RW_MASK),
331 /* 0x030 Reserved */ 0,
332 /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW_MASK,
333 /* 0x038 FECTL_REG */ VTD_FECTL_REG_RW_MASK,
334 /* 0x03c FEDATA_REG */ VTD_FEDATA_REG_RW_MASK,
335 /* 0x040 FEADDR_REG */ VTD_FEADDR_REG_RW_MASK,
336 /* 0x044 FEUADDR_REG */ VTD_FEUADDR_REG_RW_MASK,
337 /* 0x048 Reserved */ 0, 0,
338 /* 0x050 Reserved */ 0, 0,
339 /* 0x058 AFLOG_REG */ DMAR_LO_U32(VTD_AFLOG_REG_RW_MASK), DMAR_HI_U32(VTD_AFLOG_REG_RW_MASK),
340 /* 0x060 Reserved */ 0,
341 /* 0x064 PMEN_REG */ 0, /* RO as we don't support PLMR and PHMR. */
342 /* 0x068 PLMBASE_REG */ 0, /* RO as we don't support PLMR. */
343 /* 0x06c PLMLIMIT_REG */ 0, /* RO as we don't support PLMR. */
344 /* 0x070 PHMBASE_REG */ 0, 0, /* RO as we don't support PHMR. */
345 /* 0x078 PHMLIMIT_REG */ 0, 0, /* RO as we don't support PHMR. */
346 /* 0x080 IQH_REG */ DMAR_LO_U32(VTD_IQH_REG_RW_MASK), DMAR_HI_U32(VTD_IQH_REG_RW_MASK),
347 /* 0x088 IQT_REG */ DMAR_LO_U32(VTD_IQT_REG_RW_MASK), DMAR_HI_U32(VTD_IQT_REG_RW_MASK),
348 /* 0x090 IQA_REG */ DMAR_LO_U32(VTD_IQA_REG_RW_MASK), DMAR_HI_U32(VTD_IQA_REG_RW_MASK),
349 /* 0x098 Reserved */ 0,
350 /* 0x09c ICS_REG */ VTD_ICS_REG_RW_MASK,
351 /* 0x0a0 IECTL_REG */ VTD_IECTL_REG_RW_MASK,
352 /* 0x0a4 IEDATA_REG */ VTD_IEDATA_REG_RW_MASK,
353 /* 0x0a8 IEADDR_REG */ VTD_IEADDR_REG_RW_MASK,
354 /* 0x0ac IEUADDR_REG */ VTD_IEUADDR_REG_RW_MASK,
355 /* 0x0b0 IQERCD_REG */ DMAR_LO_U32(VTD_IQERCD_REG_RW_MASK), DMAR_HI_U32(VTD_IQERCD_REG_RW_MASK),
356 /* 0x0b8 IRTA_REG */ DMAR_LO_U32(VTD_IRTA_REG_RW_MASK), DMAR_HI_U32(VTD_IRTA_REG_RW_MASK),
357 /* 0x0c0 PQH_REG */ DMAR_LO_U32(VTD_PQH_REG_RW_MASK), DMAR_HI_U32(VTD_PQH_REG_RW_MASK),
358 /* 0x0c8 PQT_REG */ DMAR_LO_U32(VTD_PQT_REG_RW_MASK), DMAR_HI_U32(VTD_PQT_REG_RW_MASK),
359 /* 0x0d0 PQA_REG */ DMAR_LO_U32(VTD_PQA_REG_RW_MASK), DMAR_HI_U32(VTD_PQA_REG_RW_MASK),
360 /* 0x0d8 Reserved */ 0,
361 /* 0x0dc PRS_REG */ VTD_PRS_REG_RW_MASK,
362 /* 0x0e0 PECTL_REG */ VTD_PECTL_REG_RW_MASK,
363 /* 0x0e4 PEDATA_REG */ VTD_PEDATA_REG_RW_MASK,
364 /* 0x0e8 PEADDR_REG */ VTD_PEADDR_REG_RW_MASK,
365 /* 0x0ec PEUADDR_REG */ VTD_PEUADDR_REG_RW_MASK,
366 /* 0x0f0 Reserved */ 0, 0,
367 /* 0x0f8 Reserved */ 0, 0,
368 /* 0x100 MTRRCAP_REG */ DMAR_LO_U32(VTD_MTRRCAP_REG_RW_MASK), DMAR_HI_U32(VTD_MTRRCAP_REG_RW_MASK),
369 /* 0x108 MTRRDEF_REG */ 0, 0, /* RO as we don't support MTS. */
370 /* 0x110 Reserved */ 0, 0,
371 /* 0x118 Reserved */ 0, 0,
372 /* 0x120 MTRR_FIX64_00000_REG */ 0, 0, /* RO as we don't support MTS. */
373 /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
374 /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
375 /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
376 /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
377 /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
378 /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
379 /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
380 /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
381 /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
382 /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
383 /* 0x178 Reserved */ 0, 0,
384 /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0, /* RO as we don't support MTS. */
385 /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
386 /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
387 /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
388 /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
389 /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
390 /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
391 /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
392 /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
393 /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
394 /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
395 /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
396 /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
397 /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
398 /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
399 /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
400 /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
401 /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
402 /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
403 /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
404};
405AssertCompile(sizeof(g_au32RwMasks0) == DMAR_MMIO_GROUP_0_SIZE);
406
407/**
408 * Read-only Status, Write-1-to-clear masks for DMAR registers (group 0).
409 */
410static uint32_t const g_au32Rw1cMasks0[] =
411{
412 /* Offset Register Low High */
413 /* 0x000 VER_REG */ 0,
414 /* 0x004 Reserved */ 0,
415 /* 0x008 CAP_REG */ 0, 0,
416 /* 0x010 ECAP_REG */ 0, 0,
417 /* 0x018 GCMD_REG */ 0,
418 /* 0x01c GSTS_REG */ 0,
419 /* 0x020 RTADDR_REG */ 0, 0,
420 /* 0x028 CCMD_REG */ 0, 0,
421 /* 0x030 Reserved */ 0,
422 /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW1C_MASK,
423 /* 0x038 FECTL_REG */ 0,
424 /* 0x03c FEDATA_REG */ 0,
425 /* 0x040 FEADDR_REG */ 0,
426 /* 0x044 FEUADDR_REG */ 0,
427 /* 0x048 Reserved */ 0, 0,
428 /* 0x050 Reserved */ 0, 0,
429 /* 0x058 AFLOG_REG */ 0, 0,
430 /* 0x060 Reserved */ 0,
431 /* 0x064 PMEN_REG */ 0,
432 /* 0x068 PLMBASE_REG */ 0,
433 /* 0x06c PLMLIMIT_REG */ 0,
434 /* 0x070 PHMBASE_REG */ 0, 0,
435 /* 0x078 PHMLIMIT_REG */ 0, 0,
436 /* 0x080 IQH_REG */ 0, 0,
437 /* 0x088 IQT_REG */ 0, 0,
438 /* 0x090 IQA_REG */ 0, 0,
439 /* 0x098 Reserved */ 0,
440 /* 0x09c ICS_REG */ VTD_ICS_REG_RW1C_MASK,
441 /* 0x0a0 IECTL_REG */ 0,
442 /* 0x0a4 IEDATA_REG */ 0,
443 /* 0x0a8 IEADDR_REG */ 0,
444 /* 0x0ac IEUADDR_REG */ 0,
445 /* 0x0b0 IQERCD_REG */ 0, 0,
446 /* 0x0b8 IRTA_REG */ 0, 0,
447 /* 0x0c0 PQH_REG */ 0, 0,
448 /* 0x0c8 PQT_REG */ 0, 0,
449 /* 0x0d0 PQA_REG */ 0, 0,
450 /* 0x0d8 Reserved */ 0,
451 /* 0x0dc PRS_REG */ 0,
452 /* 0x0e0 PECTL_REG */ 0,
453 /* 0x0e4 PEDATA_REG */ 0,
454 /* 0x0e8 PEADDR_REG */ 0,
455 /* 0x0ec PEUADDR_REG */ 0,
456 /* 0x0f0 Reserved */ 0, 0,
457 /* 0x0f8 Reserved */ 0, 0,
458 /* 0x100 MTRRCAP_REG */ 0, 0,
459 /* 0x108 MTRRDEF_REG */ 0, 0,
460 /* 0x110 Reserved */ 0, 0,
461 /* 0x118 Reserved */ 0, 0,
462 /* 0x120 MTRR_FIX64_00000_REG */ 0, 0,
463 /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
464 /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
465 /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
466 /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
467 /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
468 /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
469 /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
470 /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
471 /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
472 /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
473 /* 0x178 Reserved */ 0, 0,
474 /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0,
475 /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
476 /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
477 /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
478 /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
479 /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
480 /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
481 /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
482 /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
483 /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
484 /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
485 /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
486 /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
487 /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
488 /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
489 /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
490 /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
491 /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
492 /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
493 /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
494};
495AssertCompile(sizeof(g_au32Rw1cMasks0) == DMAR_MMIO_GROUP_0_SIZE);
496
497/**
498 * Read-write masks for DMAR registers (group 1).
499 */
500static uint32_t const g_au32RwMasks1[] =
501{
502 /* Offset Register Low High */
503 /* 0xe00 VCCAP_REG */ DMAR_LO_U32(VTD_VCCAP_REG_RW_MASK), DMAR_HI_U32(VTD_VCCAP_REG_RW_MASK),
504 /* 0xe08 VCMD_EO_REG */ DMAR_LO_U32(VTD_VCMD_EO_REG_RW_MASK), DMAR_HI_U32(VTD_VCMD_EO_REG_RW_MASK),
505 /* 0xe10 VCMD_REG */ 0, 0, /* RO: VCS not supported. */
506 /* 0xe18 VCMDRSVD_REG */ 0, 0,
507 /* 0xe20 VCRSP_REG */ 0, 0, /* RO: VCS not supported. */
508 /* 0xe28 VCRSPRSVD_REG */ 0, 0,
509 /* 0xe30 Reserved */ 0, 0,
510 /* 0xe38 Reserved */ 0, 0,
511 /* 0xe40 Reserved */ 0, 0,
512 /* 0xe48 Reserved */ 0, 0,
513 /* 0xe50 IVA_REG */ DMAR_LO_U32(VTD_IVA_REG_RW_MASK), DMAR_HI_U32(VTD_IVA_REG_RW_MASK),
514 /* 0xe58 IOTLB_REG */ DMAR_LO_U32(VTD_IOTLB_REG_RW_MASK), DMAR_HI_U32(VTD_IOTLB_REG_RW_MASK),
515 /* 0xe60 Reserved */ 0, 0,
516 /* 0xe68 Reserved */ 0, 0,
517 /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW_MASK),
518 /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW_MASK),
519};
520AssertCompile(sizeof(g_au32RwMasks1) == DMAR_MMIO_GROUP_1_SIZE);
521AssertCompile((DMAR_MMIO_OFF_FRCD_LO_REG - DMAR_MMIO_GROUP_1_OFF_FIRST) + DMAR_FRCD_REG_COUNT * 2 * sizeof(uint64_t) );
522
523/**
524 * Read-only Status, Write-1-to-clear masks for DMAR registers (group 1).
525 */
526static uint32_t const g_au32Rw1cMasks1[] =
527{
528 /* Offset Register Low High */
529 /* 0xe00 VCCAP_REG */ 0, 0,
530 /* 0xe08 VCMD_EO_REG */ 0, 0,
531 /* 0xe10 VCMD_REG */ 0, 0,
532 /* 0xe18 VCMDRSVD_REG */ 0, 0,
533 /* 0xe20 VCRSP_REG */ 0, 0,
534 /* 0xe28 VCRSPRSVD_REG */ 0, 0,
535 /* 0xe30 Reserved */ 0, 0,
536 /* 0xe38 Reserved */ 0, 0,
537 /* 0xe40 Reserved */ 0, 0,
538 /* 0xe48 Reserved */ 0, 0,
539 /* 0xe50 IVA_REG */ 0, 0,
540 /* 0xe58 IOTLB_REG */ 0, 0,
541 /* 0xe60 Reserved */ 0, 0,
542 /* 0xe68 Reserved */ 0, 0,
543 /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW1C_MASK),
544 /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW1C_MASK),
545};
546AssertCompile(sizeof(g_au32Rw1cMasks1) == DMAR_MMIO_GROUP_1_SIZE);
547
548/** Array of RW masks for each register group. */
549static uint8_t const *g_apbRwMasks[] = { (uint8_t *)&g_au32RwMasks0[0], (uint8_t *)&g_au32RwMasks1[0] };
550
551/** Array of RW1C masks for each register group. */
552static uint8_t const *g_apbRw1cMasks[] = { (uint8_t *)&g_au32Rw1cMasks0[0], (uint8_t *)&g_au32Rw1cMasks1[0] };
553
554/* Masks arrays must be identical in size (even bounds checking code assumes this). */
555AssertCompile(sizeof(g_apbRw1cMasks) == sizeof(g_apbRwMasks));
556
557
558#ifndef VBOX_DEVICE_STRUCT_TESTCASE
559/** @todo Add IOMMU struct size/alignment verification, see
560 * Devices/testcase/Makefile.kmk and
561 * Devices/testcase/tstDeviceStructSize[RC].cpp */
562
563/**
564 * Returns the number of supported adjusted guest-address width (SAGAW) in bits
565 * given a CAP_REG.SAGAW value.
566 *
567 * @returns Number of SAGAW bits.
568 * @param uSagaw The CAP_REG.SAGAW value.
569 */
570static uint8_t vtdCapRegGetSagawBits(uint8_t uSagaw)
571{
572 if (RT_LIKELY(uSagaw > 0 && uSagaw < 4))
573 return 30 + (uSagaw * 9);
574 return 0;
575}
576
577
578/**
579 * Returns the supported adjusted guest-address width (SAGAW) given the maximum
580 * guest address width (MGAW).
581 *
582 * @returns The CAP_REG.SAGAW value.
583 * @param uMgaw The CAP_REG.MGAW value.
584 */
585static uint8_t vtdCapRegGetSagaw(uint8_t uMgaw)
586{
587 switch (uMgaw + 1)
588 {
589 case 39: return 1;
590 case 48: return 2;
591 case 57: return 3;
592 }
593 return 0;
594}
595
596
597/**
598 * Returns table translation mode's descriptive name.
599 *
600 * @returns The descriptive name.
601 * @param uTtm The RTADDR_REG.TTM value.
602 */
603static const char* vtdRtaddrRegGetTtmDesc(uint8_t uTtm)
604{
605 Assert(!(uTtm & 3));
606 static const char* s_apszTtmNames[] =
607 {
608 "Legacy Mode",
609 "Scalable Mode",
610 "Reserved",
611 "Abort-DMA Mode"
612 };
613 return s_apszTtmNames[uTtm & (RT_ELEMENTS(s_apszTtmNames) - 1)];
614}
615
616
617/**
618 * Gets the index of the group the register belongs to given its MMIO offset.
619 *
620 * @returns The group index.
621 * @param offReg The MMIO offset of the register.
622 * @param cbReg The size of the access being made (for bounds checking on
623 * debug builds).
624 */
625DECLINLINE(uint8_t) dmarRegGetGroupIndex(uint16_t offReg, uint8_t cbReg)
626{
627 uint16_t const offLast = offReg + cbReg - 1;
628 AssertCompile(DMAR_MMIO_GROUP_0_OFF_FIRST == 0);
629 AssertMsg(DMAR_IS_MMIO_OFF_VALID(offLast), ("off=%#x cb=%u\n", offReg, cbReg));
630 return !(offLast < DMAR_MMIO_GROUP_0_OFF_END);
631}
632
633
634/**
635 * Gets the group the register belongs to given its MMIO offset.
636 *
637 * @returns Pointer to the first element of the register group.
638 * @param pThis The shared DMAR device state.
639 * @param offReg The MMIO offset of the register.
640 * @param cbReg The size of the access being made (for bounds checking on
641 * debug builds).
642 * @param pIdxGroup Where to store the index of the register group the register
643 * belongs to.
644 */
645DECLINLINE(uint8_t *) dmarRegGetGroup(PDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
646{
647 *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
648 uint8_t *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
649 return apbRegs[*pIdxGroup];
650}
651
652
653/**
654 * Const/read-only version of dmarRegGetGroup.
655 *
656 * @copydoc dmarRegGetGroup
657 */
658DECLINLINE(uint8_t const*) dmarRegGetGroupRo(PCDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
659{
660 *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
661 uint8_t const *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
662 return apbRegs[*pIdxGroup];
663}
664
665
666/**
667 * Writes a 32-bit register with the exactly the supplied value.
668 *
669 * @param pThis The shared DMAR device state.
670 * @param offReg The MMIO offset of the register.
671 * @param uReg The 32-bit value to write.
672 */
673static void dmarRegWriteRaw32(PDMAR pThis, uint16_t offReg, uint32_t uReg)
674{
675 uint8_t idxGroup;
676 uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint32_t), &idxGroup);
677 NOREF(idxGroup);
678 *(uint32_t *)(pabRegs + offReg) = uReg;
679}
680
681
682/**
683 * Writes a 64-bit register with the exactly the supplied value.
684 *
685 * @param pThis The shared DMAR device state.
686 * @param offReg The MMIO offset of the register.
687 * @param uReg The 64-bit value to write.
688 */
689static void dmarRegWriteRaw64(PDMAR pThis, uint16_t offReg, uint64_t uReg)
690{
691 uint8_t idxGroup;
692 uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint64_t), &idxGroup);
693 NOREF(idxGroup);
694 *(uint64_t *)(pabRegs + offReg) = uReg;
695}
696
697
698/**
699 * Reads a 32-bit register with exactly the value it contains.
700 *
701 * @returns The raw register value.
702 * @param pThis The shared DMAR device state.
703 * @param offReg The MMIO offset of the register.
704 */
705static uint32_t dmarRegReadRaw32(PCDMAR pThis, uint16_t offReg)
706{
707 uint8_t idxGroup;
708 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
709 NOREF(idxGroup);
710 return *(uint32_t *)(pabRegs + offReg);
711}
712
713
714/**
715 * Reads a 64-bit register with exactly the value it contains.
716 *
717 * @returns The raw register value.
718 * @param pThis The shared DMAR device state.
719 * @param offReg The MMIO offset of the register.
720 */
721static uint64_t dmarRegReadRaw64(PCDMAR pThis, uint16_t offReg)
722{
723 uint8_t idxGroup;
724 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
725 NOREF(idxGroup);
726 return *(uint64_t *)(pabRegs + offReg);
727}
728
729
730/**
731 * Reads a 32-bit register with exactly the value it contains along with their
732 * corresponding masks
733 *
734 * @param pThis The shared DMAR device state.
735 * @param offReg The MMIO offset of the register.
736 * @param puReg Where to store the raw 32-bit register value.
737 * @param pfRwMask Where to store the RW mask corresponding to this register.
738 * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
739 */
740static void dmarRegReadRaw32Ex(PCDMAR pThis, uint16_t offReg, uint32_t *puReg, uint32_t *pfRwMask, uint32_t *pfRw1cMask)
741{
742 uint8_t idxGroup;
743 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
744 Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
745 uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
746 uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
747 *puReg = *(uint32_t *)(pabRegs + offReg);
748 *pfRwMask = *(uint32_t *)(pabRwMasks + offReg);
749 *pfRw1cMask = *(uint32_t *)(pabRw1cMasks + offReg);
750}
751
752
753/**
754 * Reads a 64-bit register with exactly the value it contains along with their
755 * corresponding masks.
756 *
757 * @param pThis The shared DMAR device state.
758 * @param offReg The MMIO offset of the register.
759 * @param puReg Where to store the raw 64-bit register value.
760 * @param pfRwMask Where to store the RW mask corresponding to this register.
761 * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
762 */
763static void dmarRegReadRaw64Ex(PCDMAR pThis, uint16_t offReg, uint64_t *puReg, uint64_t *pfRwMask, uint64_t *pfRw1cMask)
764{
765 uint8_t idxGroup;
766 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
767 Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
768 uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
769 uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
770 *puReg = *(uint64_t *)(pabRegs + offReg);
771 *pfRwMask = *(uint64_t *)(pabRwMasks + offReg);
772 *pfRw1cMask = *(uint64_t *)(pabRw1cMasks + offReg);
773}
774
775
776/**
777 * Writes a 32-bit register as it would be when written by software.
778 * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
779 *
780 * @returns The value that's actually written to the register.
781 * @param pThis The shared DMAR device state.
782 * @param offReg The MMIO offset of the register.
783 * @param uReg The 32-bit value to write.
784 */
785static uint32_t dmarRegWrite32(PDMAR pThis, uint16_t offReg, uint32_t uReg)
786{
787 /* Read current value from the 32-bit register. */
788 uint32_t uCurReg;
789 uint32_t fRwMask;
790 uint32_t fRw1cMask;
791 dmarRegReadRaw32Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
792
793 uint32_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
794 uint32_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
795 uint32_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
796 uint32_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
797
798 /* Write new value to the 32-bit register. */
799 dmarRegWriteRaw32(pThis, offReg, uNewReg);
800 return uNewReg;
801}
802
803
804/**
805 * Writes a 64-bit register as it would be when written by software.
806 * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
807 *
808 * @returns The value that's actually written to the register.
809 * @param pThis The shared DMAR device state.
810 * @param offReg The MMIO offset of the register.
811 * @param uReg The 64-bit value to write.
812 */
813static uint64_t dmarRegWrite64(PDMAR pThis, uint16_t offReg, uint64_t uReg)
814{
815 /* Read current value from the 64-bit register. */
816 uint64_t uCurReg;
817 uint64_t fRwMask;
818 uint64_t fRw1cMask;
819 dmarRegReadRaw64Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
820
821 uint64_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
822 uint64_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
823 uint64_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
824 uint64_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
825
826 /* Write new value to the 64-bit register. */
827 dmarRegWriteRaw64(pThis, offReg, uNewReg);
828 return uNewReg;
829}
830
831
832/**
833 * Reads a 32-bit register as it would be when read by software.
834 *
835 * @returns The register value.
836 * @param pThis The shared DMAR device state.
837 * @param offReg The MMIO offset of the register.
838 */
839static uint32_t dmarRegRead32(PCDMAR pThis, uint16_t offReg)
840{
841 return dmarRegReadRaw32(pThis, offReg);
842}
843
844
845/**
846 * Reads a 64-bit register as it would be when read by software.
847 *
848 * @returns The register value.
849 * @param pThis The shared DMAR device state.
850 * @param offReg The MMIO offset of the register.
851 */
852static uint64_t dmarRegRead64(PCDMAR pThis, uint16_t offReg)
853{
854 return dmarRegReadRaw64(pThis, offReg);
855}
856
857
858/**
859 * Modifies a 32-bit register.
860 *
861 * @param pThis The shared DMAR device state.
862 * @param offReg The MMIO offset of the register.
863 * @param fAndMask The AND mask (applied first).
864 * @param fOrMask The OR mask.
865 * @remarks This does NOT apply RO or RW1C masks while modifying the
866 * register.
867 */
868static void dmarRegChangeRaw32(PDMAR pThis, uint16_t offReg, uint32_t fAndMask, uint32_t fOrMask)
869{
870 uint32_t uReg = dmarRegReadRaw32(pThis, offReg);
871 uReg = (uReg & fAndMask) | fOrMask;
872 dmarRegWriteRaw32(pThis, offReg, uReg);
873}
874
875
876/**
877 * Modifies a 64-bit register.
878 *
879 * @param pThis The shared DMAR device state.
880 * @param offReg The MMIO offset of the register.
881 * @param fAndMask The AND mask (applied first).
882 * @param fOrMask The OR mask.
883 * @remarks This does NOT apply RO or RW1C masks while modifying the
884 * register.
885 */
886static void dmarRegChangeRaw64(PDMAR pThis, uint16_t offReg, uint64_t fAndMask, uint64_t fOrMask)
887{
888 uint64_t uReg = dmarRegReadRaw64(pThis, offReg);
889 uReg = (uReg & fAndMask) | fOrMask;
890 dmarRegWriteRaw64(pThis, offReg, uReg);
891}
892
893
894/**
895 * Gets the table translation mode from the RTADDR_REG.
896 *
897 * @returns The table translation mode.
898 * @param pThis The shared DMAR device state.
899 */
900static uint8_t dmarRtAddrRegGetTtm(PCDMAR pThis)
901{
902 uint64_t const uRtAddrReg = dmarRegRead64(pThis, VTD_MMIO_OFF_RTADDR_REG);
903 return RT_BF_GET(uRtAddrReg, VTD_BF_RTADDR_REG_TTM);
904}
905
906
907/**
908 * Checks if the invalidation-queue is empty.
909 *
910 * Extended version which optionally returns the current queue head and tail
911 * offsets.
912 *
913 * @returns @c true if empty, @c false otherwise.
914 * @param pThis The shared DMAR device state.
915 * @param poffQh Where to store the queue head offset. Optional, can be NULL.
916 * @param poffQt Where to store the queue tail offset. Optional, can be NULL.
917 */
918static bool dmarInvQueueIsEmptyEx(PCDMAR pThis, uint32_t *poffQh, uint32_t *poffQt)
919{
920 /* Read only the low-32 bits of the queue head and queue tail as high bits are all RsvdZ.*/
921 uint32_t const uIqtReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQT_REG);
922 uint32_t const uIqhReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQH_REG);
923
924 /* Don't bother masking QT, QH since other bits are RsvdZ. */
925 Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
926 Assert(!(uIqhReg & ~VTD_BF_IQH_REG_QH_MASK));
927 if (poffQh)
928 *poffQh = uIqhReg;
929 if (poffQt)
930 *poffQt = uIqtReg;
931 return uIqtReg == uIqhReg;
932}
933
934
935/**
936 * Checks if the invalidation-queue is empty.
937 *
938 * @returns @c true if empty, @c false otherwise.
939 * @param pThis The shared DMAR device state.
940 */
941static bool dmarInvQueueIsEmpty(PCDMAR pThis)
942{
943 return dmarInvQueueIsEmptyEx(pThis, NULL /* poffQh */, NULL /* poffQt */);
944}
945
946
947/**
948 * Checks if the invalidation-queue is capable of processing requests.
949 *
950 * @returns @c true if the invalidation-queue can process requests, @c false
951 * otherwise.
952 * @param pThis The shared DMAR device state.
953 */
954static bool dmarInvQueueCanProcessRequests(PCDMAR pThis)
955{
956 /* Check if queued-invalidation is enabled. */
957 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
958 if (uGstsReg & VTD_BF_GSTS_REG_QIES_MASK)
959 {
960 /* Check if there are no invalidation-queue or timeout errors. */
961 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
962 if (!(uFstsReg & (VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_ITE_MASK)))
963 return true;
964 }
965 return false;
966}
967
968
969/**
970 * Wakes up the invalidation-queue thread if there are requests to be processed.
971 *
972 * @param pDevIns The IOMMU device instance.
973 */
974static void dmarInvQueueThreadWakeUpIfNeeded(PPDMDEVINS pDevIns)
975{
976 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
977 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
978 Log4Func(("\n"));
979
980 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
981
982 if ( dmarInvQueueCanProcessRequests(pThis)
983 && !dmarInvQueueIsEmpty(pThis)
984 && !ASMAtomicXchgBool(&pThis->fInvQueueThreadSignaled, true))
985 {
986 Log4Func(("Signaling the invalidation-queue thread\n"));
987 PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
988 }
989}
990
991
992/**
993 * Raises an interrupt in response to an event.
994 *
995 * @param pDevIns The IOMMU device instance.
996 */
997static void dmarFaultRaiseInterrupt(PPDMDEVINS pDevIns)
998{
999 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1000 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1001#ifdef RT_STRICT
1002 {
1003 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1004 uint32_t const fFaultMask = VTD_BF_FSTS_REG_PPF_MASK | VTD_BF_FSTS_REG_PFO_MASK
1005 /* | VTD_BF_FSTS_REG_APF_MASK | VTD_BF_FSTS_REG_AFO_MASK */ /* AFL not supported */
1006 /* | VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK */ /* Device-TLBs not supported */
1007 | VTD_BF_FSTS_REG_IQE_MASK;
1008 Assert(uFstsReg & fFaultMask);
1009 }
1010#endif
1011
1012 uint32_t uFectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FECTL_REG);
1013 if (!(uFectlReg & VTD_BF_FECTL_REG_IM_MASK))
1014 {
1015 /* Software has unmasked the interrupt, raise it. */
1016 MSIMSG Msi;
1017 Msi.Addr.u64 = RT_MAKE_U64(dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEADDR_REG),
1018 dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEUADDR_REG));
1019 Msi.Data.u32 = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEDATA_REG);
1020
1021 /** @todo Assert Msi.Addr is in the MSR_IA32_APICBASE_ADDR range and ensure on
1022 * FEADD_REG write it can't be anything else. */
1023
1024 pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi(pDevIns, &Msi, 0 /* uTagSrc */);
1025
1026 /* Clear interrupt pending bit. */
1027 uFectlReg &= ~VTD_BF_FECTL_REG_IP_MASK;
1028 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, uFectlReg);
1029 }
1030 else
1031 {
1032 /* Interrupt is masked, set the interrupt pending bit. */
1033 uFectlReg |= VTD_BF_FECTL_REG_IP_MASK;
1034 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, uFectlReg);
1035 }
1036}
1037
1038
1039#if 0
1040/**
1041 * Checks if a primary fault can be recorded.
1042 *
1043 * @returns @c true if the fault can be recorded, @c false otherwise.
1044 * @param pDevIns The IOMMU device instance.
1045 * @param pThis The shared DMAR device state.
1046 */
1047static bool dmarPrimaryFaultCanRecord(PPDMDEVINS pDevIns, PDMAR pThis)
1048{
1049 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1050 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1051
1052 uint32_t uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1053 if (uFstsReg & VTD_BF_FSTS_REG_PFO_MASK)
1054 return false;
1055
1056 /*
1057 * If we add more FRCD registers, we'll have to loop through them here.
1058 * Since we support only one FRCD_REG, we don't support "compression of multiple faults",
1059 * nor do we need to increment FRI.
1060 *
1061 * See Intel VT-d spec. 7.2.1 "Primary Fault Logging".
1062 */
1063 AssertCompile(DMAR_FRCD_REG_COUNT == 1);
1064 uint64_t const uFrcdRegHi = dmarRegReadRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG);
1065 if (uFrcdRegHi & VTD_BF_1_FRCD_REG_F_MASK)
1066 {
1067 uFstsReg |= VTD_BF_FSTS_REG_PFO_MASK;
1068 dmarRegWrite32(pThis, VTD_MMIO_OFF_FSTS_REG, uFstsReg);
1069 return false;
1070 }
1071
1072 uFstsReg |= VTD_BF_FSTS_REG_PPF_MASK;
1073 dmarRegWrite32(pThis, VTD_MMIO_OFF_FSTS_REG, uFstsReg);
1074 return true;
1075}
1076#endif
1077
1078
1079/**
1080 * Records an IQE fault.
1081 *
1082 * @param pDevIns The IOMMU device instance.
1083 * @param enmIqei The IQE information.
1084 * @param enmDiag The diagnostic reason.
1085 */
1086static void dmarIqeFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTD_IQEI_T enmIqei)
1087{
1088 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1089 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1090 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1091
1092 /* Update the diagnostic reason. */
1093 pThis->enmDiag = enmDiag;
1094
1095 /* Set the error bit. */
1096 uint32_t const fIqe = RT_BF_MAKE(VTD_BF_FSTS_REG_IQE, 1);
1097 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, fIqe);
1098
1099 /* Set the error information. */
1100 uint64_t const fIqei = RT_BF_MAKE(VTD_BF_IQERCD_REG_IQEI, enmIqei);
1101 dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG, UINT64_MAX, fIqei);
1102
1103 dmarFaultRaiseInterrupt(pDevIns);
1104}
1105
1106
1107/**
1108 * Handles writes to GCMD_REG.
1109 *
1110 * @returns Strict VBox status code.
1111 * @param pDevIns The IOMMU device instance.
1112 * @param uGcmdReg The value written to GCMD_REG.
1113 */
1114static VBOXSTRICTRC dmarGcmdRegWrite(PPDMDEVINS pDevIns, uint32_t uGcmdReg)
1115{
1116 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1117 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1118 uint32_t const fChanged = uGstsReg ^ uGcmdReg;
1119 uint64_t const fExtCap = pThis->fExtCap;
1120
1121 /*
1122 * Queued-invalidation.
1123 */
1124 if ( (fExtCap & VTD_BF_ECAP_REG_QI_MASK)
1125 && (fChanged & VTD_BF_GCMD_REG_QIE_MASK))
1126 {
1127 if (uGcmdReg & VTD_BF_GCMD_REG_QIE_MASK)
1128 {
1129 /* Enable the invalidation-queue. */
1130 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX /* fAndMask */, VTD_BF_GSTS_REG_QIES_MASK /* fOrMask */);
1131 dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
1132 }
1133 else
1134 {
1135 /* Disable the invalidation-queue. */
1136 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_QIES_MASK /* fAndMask */, 0 /* fOrMask */);
1137 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IQH_REG, 0);
1138 }
1139 }
1140
1141 /*
1142 * Set interrupt remapping table pointer.
1143 */
1144 if ( (fExtCap & VTD_BF_ECAP_REG_IR_MASK)
1145 && (uGcmdReg & VTD_BF_GCMD_REG_SIRTP_MASK))
1146 {
1147 pThis->uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
1148 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX /* fAndMask */, VTD_BF_GSTS_REG_IRTPS_MASK /* fOrMask */);
1149 }
1150
1151 /** @todo Rest of the bits. */
1152
1153 return VINF_SUCCESS;
1154}
1155
1156
1157/**
1158 * Handles writes to CCMD_REG.
1159 *
1160 * @returns Strict VBox status code.
1161 * @param pDevIns The IOMMU device instance.
1162 * @param offReg The MMIO register offset.
1163 * @param cbReg The size of the MMIO access (in bytes).
1164 * @param uCcmdReg The value written to CCMD_REG.
1165 */
1166static VBOXSTRICTRC dmarCcmdRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uCcmdReg)
1167{
1168 /* At present, we only care about responding to high 32-bits writes, low 32-bits are data. */
1169 if (offReg + cbReg > VTD_MMIO_OFF_CCMD_REG + 4)
1170 {
1171 /* Check if we need to invalidate the context-context. */
1172 bool const fIcc = RT_BF_GET(uCcmdReg, VTD_BF_CCMD_REG_ICC);
1173 if (fIcc)
1174 {
1175 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1176 uint8_t const uMajorVersion = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX);
1177 if (uMajorVersion < 6)
1178 {
1179 /* Register-based invalidation can only be used when queued-invalidations are not enabled. */
1180 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1181 if (!(uGstsReg & VTD_BF_GSTS_REG_QIES_MASK))
1182 {
1183 /* Verify table translation mode is legacy. */
1184 uint8_t const fTtm = dmarRtAddrRegGetTtm(pThis);
1185 if (fTtm == VTD_TTM_LEGACY_MODE)
1186 {
1187 /** @todo Invalidate. */
1188 return VINF_SUCCESS;
1189 }
1190 pThis->enmDiag = kDmarDiag_CcmdReg_Ttm_Invalid;
1191 }
1192 else
1193 pThis->enmDiag = kDmarDiag_CcmdReg_Qi_Enabled;
1194 }
1195 else
1196 pThis->enmDiag = kDmarDiag_CcmdReg_NotSupported;
1197 dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_CCMD_REG_CAIG_MASK /* fAndMask */, 0 /* fOrMask */);
1198 }
1199 }
1200 return VINF_SUCCESS;
1201}
1202
1203
1204/**
1205 * Handles writes to IQT_REG.
1206 *
1207 * @returns Strict VBox status code.
1208 * @param pDevIns The IOMMU device instance.
1209 * @param offReg The MMIO register offset.
1210 * @param uIqtReg The value written to IQT_REG.
1211 */
1212static VBOXSTRICTRC dmarIqtRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqtReg)
1213{
1214 /* We only care about the low 32-bits, high 32-bits are reserved. */
1215 Assert(offReg == VTD_MMIO_OFF_IQT_REG);
1216 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1217
1218 /* Paranoia. */
1219 Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
1220
1221 uint32_t const offQt = uIqtReg;
1222 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
1223 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
1224
1225 /* If the descriptor width is 256-bits, the queue tail offset must be aligned accordingly. */
1226 if ( fDw != VTD_IQA_REG_DW_256_BIT
1227 || !(offQt & RT_BIT(4)))
1228 dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
1229 else
1230 {
1231 /* Hardware treats bit 4 as RsvdZ in this situation, so clear it. */
1232 dmarRegChangeRaw32(pThis, offReg, ~RT_BIT(4) /* fAndMask*/ , 0 /* fOrMask */);
1233 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_NotAligned, kIqei_QueueTailNotAligned);
1234 }
1235 return VINF_SUCCESS;
1236}
1237
1238
1239/**
1240 * Handles writes to IQA_REG.
1241 *
1242 * @returns Strict VBox status code.
1243 * @param pDevIns The IOMMU device instance.
1244 * @param offReg The MMIO register offset.
1245 * @param uIqaReg The value written to IQA_REG.
1246 */
1247static VBOXSTRICTRC dmarIqaRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqaReg)
1248{
1249 /* At present, we only care about the low 32-bits, high 32-bits are data. */
1250 Assert(offReg == VTD_MMIO_OFF_IQA_REG);
1251
1252 /** @todo What happens if IQA_REG is written when dmarInvQueueCanProcessRequests
1253 * returns true? The Intel VT-d spec. doesn't state anywhere that it
1254 * cannot happen or that it's ignored when it does happen. */
1255
1256 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1257 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
1258 if (fDw == VTD_IQA_REG_DW_256_BIT)
1259 {
1260 bool const fSupports256BitDw = (pThis->fExtCap & (VTD_BF_ECAP_REG_SMTS_MASK | VTD_BF_ECAP_REG_ADMS_MASK));
1261 if (fSupports256BitDw)
1262 { /* likely */ }
1263 else
1264 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dw_Invalid, kIqei_InvalidDescriptorWidth);
1265 }
1266 return VINF_SUCCESS;
1267}
1268
1269
1270/**
1271 * Memory access bulk (one or more 4K pages) request from a device.
1272 *
1273 * @returns VBox status code.
1274 * @param pDevIns The IOMMU device instance.
1275 * @param idDevice The device ID (bus, device, function).
1276 * @param cIovas The number of addresses being accessed.
1277 * @param pauIovas The I/O virtual addresses for each page being accessed.
1278 * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
1279 * @param paGCPhysSpa Where to store the translated physical addresses.
1280 *
1281 * @thread Any.
1282 */
1283static DECLCALLBACK(int) iommuIntelMemBulkAccess(PPDMDEVINS pDevIns, uint16_t idDevice, size_t cIovas, uint64_t const *pauIovas,
1284 uint32_t fFlags, PRTGCPHYS paGCPhysSpa)
1285{
1286 RT_NOREF6(pDevIns, idDevice, cIovas, pauIovas, fFlags, paGCPhysSpa);
1287 return VERR_NOT_IMPLEMENTED;
1288}
1289
1290
1291/**
1292 * Memory access transaction from a device.
1293 *
1294 * @returns VBox status code.
1295 * @param pDevIns The IOMMU device instance.
1296 * @param idDevice The device ID (bus, device, function).
1297 * @param uIova The I/O virtual address being accessed.
1298 * @param cbIova The size of the access.
1299 * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
1300 * @param pGCPhysSpa Where to store the translated system physical address.
1301 * @param pcbContiguous Where to store the number of contiguous bytes translated
1302 * and permission-checked.
1303 *
1304 * @thread Any.
1305 */
1306static DECLCALLBACK(int) iommuIntelMemAccess(PPDMDEVINS pDevIns, uint16_t idDevice, uint64_t uIova, size_t cbIova,
1307 uint32_t fFlags, PRTGCPHYS pGCPhysSpa, size_t *pcbContiguous)
1308{
1309 RT_NOREF7(pDevIns, idDevice, uIova, cbIova, fFlags, pGCPhysSpa, pcbContiguous);
1310 return VERR_NOT_IMPLEMENTED;
1311}
1312
1313
1314/**
1315 * Interrupt remap request from a device.
1316 *
1317 * @returns VBox status code.
1318 * @param pDevIns The IOMMU device instance.
1319 * @param idDevice The device ID (bus, device, function).
1320 * @param pMsiIn The source MSI.
1321 * @param pMsiOut Where to store the remapped MSI.
1322 */
1323static DECLCALLBACK(int) iommuIntelMsiRemap(PPDMDEVINS pDevIns, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
1324{
1325 RT_NOREF3(idDevice, pMsiIn, pMsiOut);
1326 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1327 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemap)); NOREF(pThis);
1328
1329 return VERR_NOT_IMPLEMENTED;
1330}
1331
1332
1333/**
1334 * @callback_method_impl{FNIOMMMIONEWWRITE}
1335 */
1336static DECLCALLBACK(VBOXSTRICTRC) dmarMmioWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb)
1337{
1338 RT_NOREF1(pvUser);
1339 DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
1340
1341 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1342 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioWrite));
1343
1344 uint16_t const offReg = off;
1345 uint16_t const offLast = offReg + cb - 1;
1346 if (DMAR_IS_MMIO_OFF_VALID(offLast))
1347 {
1348 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1349 DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_WRITE);
1350
1351 uint64_t const uRegWritten = cb == 8 ? dmarRegWrite64(pThis, offReg, *(uint64_t *)pv)
1352 : dmarRegWrite32(pThis, offReg, *(uint32_t *)pv);
1353 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1354 switch (off)
1355 {
1356 case VTD_MMIO_OFF_GCMD_REG: /* 32-bit */
1357 {
1358 rcStrict = dmarGcmdRegWrite(pDevIns, uRegWritten);
1359 break;
1360 }
1361
1362 case VTD_MMIO_OFF_CCMD_REG: /* 64-bit */
1363 case VTD_MMIO_OFF_CCMD_REG + 4:
1364 {
1365 rcStrict = dmarCcmdRegWrite(pDevIns, offReg, cb, uRegWritten);
1366 break;
1367 }
1368
1369 case VTD_MMIO_OFF_IQT_REG: /* 64-bit */
1370 /* VTD_MMIO_OFF_IQT_REG + 4: */ /* High 32-bits reserved. */
1371 {
1372 rcStrict = dmarIqtRegWrite(pDevIns, offReg, uRegWritten);
1373 break;
1374 }
1375
1376 case VTD_MMIO_OFF_IQA_REG: /* 64-bit */
1377 /* VTD_MMIO_OFF_IQA_REG + 4: */ /* High 32-bits data. */
1378 {
1379 rcStrict = dmarIqaRegWrite(pDevIns, offReg, uRegWritten);
1380 break;
1381 }
1382 }
1383
1384 DMAR_UNLOCK(pDevIns, pThisCC);
1385 LogFlowFunc(("offReg=%#x uRegWritten=%#RX64 rc=%Rrc\n", offReg, uRegWritten, VBOXSTRICTRC_VAL(rcStrict)));
1386 return rcStrict;
1387 }
1388
1389 return VINF_IOM_MMIO_UNUSED_FF;
1390}
1391
1392
1393/**
1394 * @callback_method_impl{FNIOMMMIONEWREAD}
1395 */
1396static DECLCALLBACK(VBOXSTRICTRC) dmarMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb)
1397{
1398 RT_NOREF1(pvUser);
1399 DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
1400
1401 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1402 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioRead));
1403
1404 uint16_t const offReg = off;
1405 uint16_t const offLast = offReg + cb - 1;
1406 if (DMAR_IS_MMIO_OFF_VALID(offLast))
1407 {
1408 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1409 DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_READ);
1410
1411 if (cb == 8)
1412 {
1413 *(uint64_t *)pv = dmarRegRead64(pThis, offReg);
1414 LogFlowFunc(("offReg=%#x pv=%#RX64\n", offReg, *(uint64_t *)pv));
1415 }
1416 else
1417 {
1418 *(uint32_t *)pv = dmarRegRead32(pThis, offReg);
1419 LogFlowFunc(("offReg=%#x pv=%#RX32\n", offReg, *(uint32_t *)pv));
1420 }
1421
1422 DMAR_UNLOCK(pDevIns, pThisCC);
1423 return VINF_SUCCESS;
1424 }
1425
1426 return VINF_IOM_MMIO_UNUSED_FF;
1427}
1428
1429
1430#ifdef IN_RING3
1431/**
1432 * Process requests in the invalidation queue.
1433 *
1434 * @param pDevIns The IOMMU device instance.
1435 * @param pvRequests The requests data.
1436 * @param cbRequests The size of all requests (in bytes).
1437 * @param fDw The descriptor width (VTD_IQA_REG_DW_128_BIT or
1438 * VTD_IQA_REG_DW_256_BIT).
1439 */
1440static void dmarR3InvQueueProcessRequests(PPDMDEVINS pDevIns, void const *pvRequests, uint32_t cbRequests, uint8_t fDw)
1441{
1442 uint8_t const cbDsc = fDw == VTD_IQA_REG_DW_256_BIT ? 32 : 16;
1443 for (uint32_t offDsc = 0; offDsc < cbRequests; offDsc += cbDsc)
1444 {
1445 uint64_t const *puDscQwords = (uint64_t const *)((uintptr_t)pvRequests + offDsc);
1446 uint8_t const fDscType = VTD_GENERIC_INV_DSC_GET_TYPE(puDscQwords[0]);
1447 switch (fDscType)
1448 {
1449 case VTD_CC_INV_DSC_TYPE: LogRelMax(32, ("%s: CC\n", DMAR_LOG_PFX)); break;
1450 case VTD_IOTLB_INV_DSC_TYPE: LogRelMax(32, ("%s: IOTLB\n", DMAR_LOG_PFX)); break;
1451 case VTD_DEV_TLB_INV_DSC_TYPE: LogRelMax(32, ("%s: DEV_TLB\n", DMAR_LOG_PFX)); break;
1452 case VTD_IEC_INV_DSC_TYPE: LogRelMax(32, ("%s: IEC_INV\n", DMAR_LOG_PFX)); break;
1453 case VTD_INV_WAIT_DSC_TYPE: LogRelMax(32, ("%s: INV_WAIT\n", DMAR_LOG_PFX)); break;
1454 case VTD_P_IOTLB_INV_DSC_TYPE: LogRelMax(32, ("%s: P_IOTLB\n", DMAR_LOG_PFX)); break;
1455 case VTD_PC_INV_DSC_TYPE: LogRelMax(32, ("%s: PC_INV\n", DMAR_LOG_PFX)); break;
1456 case VTD_P_DEV_TLB_INV_DSC_TYPE: LogRelMax(32, ("%s: P_DEVL_TLB\n", DMAR_LOG_PFX)); break;
1457 {
1458 break;
1459 }
1460
1461 default:
1462 {
1463 LogFunc(("Invalid descriptor type: %#x\n", fDscType));
1464 dmarIqeFaultRecord(pDevIns, kDmarDiag_Iqei_Dsc_Type_Invalid, kIqei_InvalidDescriptorType);
1465 return;
1466 }
1467 }
1468 }
1469}
1470
1471
1472
1473/**
1474 * The invalidation-queue thread.
1475 *
1476 * @returns VBox status code.
1477 * @param pDevIns The IOMMU device instance.
1478 * @param pThread The command thread.
1479 */
1480static DECLCALLBACK(int) dmarR3InvQueueThread(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
1481{
1482 NOREF(pThread);
1483 LogFlowFunc(("\n"));
1484
1485 if (pThread->enmState == PDMTHREADSTATE_INITIALIZING)
1486 return VINF_SUCCESS;
1487
1488 /*
1489 * Pre-allocate the maximum size of the invalidation queue allowed by the spec.
1490 * This prevents trashing the heap as well as deal with out-of-memory situations
1491 * up-front while starting the VM. It also simplifies the code from having to
1492 * dynamically grow/shrink the allocation based on how software sizes the queue.
1493 * Guests normally don't alter the queue size all the time, but that's not an
1494 * assumption we can make.
1495 */
1496 uint8_t const cMaxPages = 1 << VTD_BF_IQA_REG_QS_MASK;
1497 size_t const cbMaxQs = cMaxPages << X86_PAGE_SHIFT;
1498 void *pvRequests = RTMemAllocZ(cbMaxQs);
1499 AssertPtrReturn(pvRequests, VERR_NO_MEMORY);
1500
1501 while (pThread->enmState == PDMTHREADSTATE_RUNNING)
1502 {
1503 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1504 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
1505
1506 /*
1507 * Sleep until we are woken up.
1508 */
1509 bool const fSignaled = ASMAtomicXchgBool(&pThis->fInvQueueThreadSignaled, false);
1510 if (!fSignaled)
1511 {
1512 int rc = PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEvtInvQueue, RT_INDEFINITE_WAIT);
1513 AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), rc);
1514 if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING))
1515 break;
1516 ASMAtomicWriteBool(&pThis->fInvQueueThreadSignaled, false);
1517 }
1518
1519 DMAR_LOCK(pDevIns, pThisR3);
1520 if (dmarInvQueueCanProcessRequests(pThis))
1521 {
1522 uint32_t offQueueHead;
1523 uint32_t offQueueTail;
1524 bool const fIsEmpty = dmarInvQueueIsEmptyEx(pThis, &offQueueHead, &offQueueTail);
1525 if (!fIsEmpty)
1526 {
1527 /** @todo Handle RTADDR_REG MMIO write first, for handling kIqei_InvalidTtm. I
1528 * don't think it needs to be checked/handled here? */
1529
1530 /*
1531 * Get the current queue size.
1532 */
1533 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
1534 uint8_t const cQueuePages = 1 << (uIqaReg & VTD_BF_IQA_REG_QS_MASK);
1535 uint32_t const cbQueue = cQueuePages << X86_PAGE_SHIFT;
1536 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
1537
1538 /* Paranoia. */
1539 Assert(cbQueue <= cbMaxQs);
1540 Assert(!(offQueueTail & ~VTD_IQT_REG_RW_MASK));
1541 Assert(!(offQueueHead & ~VTD_IQH_REG_RW_MASK));
1542 Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueTail & RT_BIT(4)));
1543 Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueHead & RT_BIT(4)));
1544 Assert(offQueueHead < cbQueue);
1545
1546 /*
1547 * Read the requests in the queue from guest memory into our buffer.
1548 */
1549 if (offQueueTail < cbQueue)
1550 {
1551 RTGCPHYS const GCPhysRequests = (uIqaReg & VTD_BF_IQA_REG_IQA_MASK) + offQueueHead;
1552
1553 /* Don't hold the lock while reading (potentially large amount of) requests. */
1554 DMAR_UNLOCK(pDevIns, pThisR3);
1555
1556 int rc;
1557 uint32_t cbRequests;
1558 if (offQueueTail > offQueueHead)
1559 {
1560 /* The requests have not wrapped around, read them in one go. */
1561 cbRequests = offQueueTail - offQueueHead;
1562 rc = PDMDevHlpPhysRead(pDevIns, GCPhysRequests, pvRequests, cbRequests);
1563 }
1564 else
1565 {
1566 /* The requests have wrapped around, read forward and wrapped-around. */
1567 uint32_t const cbForward = cbQueue - offQueueHead;
1568 rc = PDMDevHlpPhysRead(pDevIns, GCPhysRequests, pvRequests, cbForward);
1569
1570 uint32_t const cbWrapped = offQueueTail;
1571 if ( RT_SUCCESS(rc)
1572 && cbWrapped > 0)
1573 {
1574 rc = PDMDevHlpPhysRead(pDevIns, GCPhysRequests + cbForward,
1575 (void *)((uintptr_t)pvRequests + cbForward), cbWrapped);
1576 }
1577 cbRequests = cbForward + cbWrapped;
1578 }
1579
1580 /* Re-acquire the lock since we need to update device state. */
1581 DMAR_LOCK(pDevIns, pThisR3);
1582
1583 if (RT_SUCCESS(rc))
1584 {
1585 /* Indicate to software we've fetched all requests. */
1586 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_IQH_REG, offQueueTail);
1587
1588 /* Process all requests (in FIFO order). */
1589 Assert(cbRequests <= cbQueue);
1590 dmarR3InvQueueProcessRequests(pDevIns, pvRequests, cbRequests, fDw);
1591 }
1592 else
1593 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dsc_Fetch_Error, kIqei_FetchDescriptorError);
1594 }
1595 else
1596 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Invalid, kIqei_InvalidTailPointer);
1597 }
1598 }
1599 DMAR_UNLOCK(pDevIns, pThisR3);
1600 }
1601
1602 RTMemFree(pvRequests);
1603 pvRequests = NULL;
1604
1605 LogFlowFunc(("Invalidation-queue thread terminating\n"));
1606 return VINF_SUCCESS;
1607}
1608
1609
1610/**
1611 * Wakes up the invalidation-queue thread so it can respond to a state
1612 * change.
1613 *
1614 * @returns VBox status code.
1615 * @param pDevIns The IOMMU device instance.
1616 * @param pThread The invalidation-queue thread.
1617 *
1618 * @thread EMT.
1619 */
1620static DECLCALLBACK(int) dmarR3InvQueueThreadWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
1621{
1622 RT_NOREF(pThread);
1623 LogFlowFunc(("\n"));
1624 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1625 return PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
1626}
1627
1628
1629/**
1630 * @callback_method_impl{FNDBGFHANDLERDEV}
1631 */
1632static DECLCALLBACK(void) dmarR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
1633{
1634 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1635 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
1636 PCPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
1637 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
1638
1639 bool const fVerbose = RTStrCmp(pszArgs, "verbose") == 0;
1640
1641 /*
1642 * We lock the device to get a consistent register state, but it is
1643 * ASSUMED pHlp->pfnPrintf is expensive, so we copy the registers into
1644 * temporaries and release the lock ASAP.
1645 *
1646 * Order of register being read and outputted is in accordance with the
1647 * spec. for no particular reason.
1648 * See Intel VT-d spec. 10.4 "Register Descriptions".
1649 */
1650 DMAR_LOCK(pDevIns, pThisR3);
1651
1652 DMARDIAG const enmDiag = pThis->enmDiag;
1653 uint32_t const uVerReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_VER_REG);
1654 uint64_t const uCapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CAP_REG);
1655 uint64_t const uEcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_ECAP_REG);
1656 uint32_t const uGcmdReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GCMD_REG);
1657 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1658 uint64_t const uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
1659 uint64_t const uCcmdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CCMD_REG);
1660 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1661 uint32_t const uFectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FECTL_REG);
1662 uint32_t const uFedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEDATA_REG);
1663 uint32_t const uFeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEADDR_REG);
1664 uint32_t const uFeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEUADDR_REG);
1665 uint64_t const uAflogReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_AFLOG_REG);
1666 uint32_t const uPmenReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PMEN_REG);
1667 uint32_t const uPlmbaseReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMBASE_REG);
1668 uint32_t const uPlmlimitReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMLIMIT_REG);
1669 uint64_t const uPhmbaseReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMBASE_REG);
1670 uint64_t const uPhmlimitReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMLIMIT_REG);
1671 uint64_t const uIqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQH_REG);
1672 uint64_t const uIqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQT_REG);
1673 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
1674 uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
1675 uint32_t const uIectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IECTL_REG);
1676 uint32_t const uIedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEDATA_REG);
1677 uint32_t const uIeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEADDR_REG);
1678 uint32_t const uIeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEUADDR_REG);
1679 uint64_t const uIqercdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG);
1680 uint64_t const uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
1681 uint64_t const uPqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQH_REG);
1682 uint64_t const uPqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQT_REG);
1683 uint64_t const uPqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQA_REG);
1684 uint32_t const uPrsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PRS_REG);
1685 uint32_t const uPectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PECTL_REG);
1686 uint32_t const uPedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEDATA_REG);
1687 uint32_t const uPeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEADDR_REG);
1688 uint32_t const uPeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEUADDR_REG);
1689 uint64_t const uMtrrcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRCAP_REG);
1690 uint64_t const uMtrrdefReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRDEF_REG);
1691 /** @todo Do other registers as required, we don't implement them for now. */
1692
1693 DMAR_UNLOCK(pDevIns, pThisR3);
1694
1695 const char *const pszDiag = enmDiag < RT_ELEMENTS(g_apszDmarDiagDesc) ? g_apszDmarDiagDesc[enmDiag] : "(Unknown)";
1696 pHlp->pfnPrintf(pHlp, "Intel-IOMMU:\n");
1697 pHlp->pfnPrintf(pHlp, " Diag = %s\n", pszDiag);
1698 if (!fVerbose)
1699 {
1700 pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
1701 pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
1702 pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
1703 pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
1704 pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
1705 pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
1706 pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
1707 pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
1708 pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
1709 pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
1710 pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
1711 pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
1712 pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
1713 pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
1714 pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
1715 pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
1716 pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
1717 pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
1718 pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
1719 pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
1720 pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
1721 pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
1722 pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
1723 pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
1724 pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
1725 pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
1726 pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
1727 pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
1728 pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
1729 pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
1730 pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
1731 pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
1732 pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
1733 pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
1734 pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
1735 pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
1736 pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
1737 pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
1738 pHlp->pfnPrintf(pHlp, "\n");
1739 }
1740 else
1741 {
1742 pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
1743 {
1744 pHlp->pfnPrintf(pHlp, " MAJ = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MAX));
1745 pHlp->pfnPrintf(pHlp, " MIN = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MIN));
1746 }
1747 pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
1748 {
1749 uint8_t const uSagaw = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SAGAW);
1750 uint8_t const uMgaw = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MGAW);
1751 uint8_t const uNfr = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_NFR);
1752 pHlp->pfnPrintf(pHlp, " ND = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ND));
1753 pHlp->pfnPrintf(pHlp, " AFL = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_AFL));
1754 pHlp->pfnPrintf(pHlp, " RWBF = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_RWBF));
1755 pHlp->pfnPrintf(pHlp, " PLMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PLMR));
1756 pHlp->pfnPrintf(pHlp, " PHMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PHMR));
1757 pHlp->pfnPrintf(pHlp, " CM = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_CM));
1758 pHlp->pfnPrintf(pHlp, " SAGAW = %#x (%u bits)\n", uSagaw, vtdCapRegGetSagawBits(uSagaw));
1759 pHlp->pfnPrintf(pHlp, " MGAW = %#x (%u bits)\n", uMgaw, uMgaw + 1);
1760 pHlp->pfnPrintf(pHlp, " ZLR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ZLR));
1761 pHlp->pfnPrintf(pHlp, " FRO = %#x bytes\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FRO));
1762 pHlp->pfnPrintf(pHlp, " SLLPS = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SLLPS));
1763 pHlp->pfnPrintf(pHlp, " PSI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PSI));
1764 pHlp->pfnPrintf(pHlp, " NFR = %#x (%u FRCD register%s)\n", uNfr, uNfr + 1, uNfr > 0 ? "s" : "");
1765 pHlp->pfnPrintf(pHlp, " MAMV = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MAMV));
1766 pHlp->pfnPrintf(pHlp, " DWD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DWD));
1767 pHlp->pfnPrintf(pHlp, " DRD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DRD));
1768 pHlp->pfnPrintf(pHlp, " FL1GP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL1GP));
1769 pHlp->pfnPrintf(pHlp, " PI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PI));
1770 pHlp->pfnPrintf(pHlp, " FL5LP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL5LP));
1771 pHlp->pfnPrintf(pHlp, " ESIRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESIRTPS));
1772 pHlp->pfnPrintf(pHlp, " ESRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESRTPS));
1773 }
1774 pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
1775 {
1776 uint8_t const uPss = RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PSS);
1777 pHlp->pfnPrintf(pHlp, " C = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_C));
1778 pHlp->pfnPrintf(pHlp, " QI = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_QI));
1779 pHlp->pfnPrintf(pHlp, " DT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DT));
1780 pHlp->pfnPrintf(pHlp, " IR = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IR));
1781 pHlp->pfnPrintf(pHlp, " EIM = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EIM));
1782 pHlp->pfnPrintf(pHlp, " PT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PT));
1783 pHlp->pfnPrintf(pHlp, " SC = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SC));
1784 pHlp->pfnPrintf(pHlp, " IRO = %#x bytes\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IRO));
1785 pHlp->pfnPrintf(pHlp, " MHMV = %#x\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MHMV));
1786 pHlp->pfnPrintf(pHlp, " MTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MTS));
1787 pHlp->pfnPrintf(pHlp, " NEST = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NEST));
1788 pHlp->pfnPrintf(pHlp, " PRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PRS));
1789 pHlp->pfnPrintf(pHlp, " ERS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ERS));
1790 pHlp->pfnPrintf(pHlp, " SRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SRS));
1791 pHlp->pfnPrintf(pHlp, " NWFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NWFS));
1792 pHlp->pfnPrintf(pHlp, " EAFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EAFS));
1793 pHlp->pfnPrintf(pHlp, " PSS = %#x (%u bits)\n", uPss, uPss > 0 ? uPss + 1 : 0);
1794 pHlp->pfnPrintf(pHlp, " PASID = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PASID));
1795 pHlp->pfnPrintf(pHlp, " DIT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DIT));
1796 pHlp->pfnPrintf(pHlp, " PDS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PDS));
1797 pHlp->pfnPrintf(pHlp, " SMTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMTS));
1798 pHlp->pfnPrintf(pHlp, " VCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_VCS));
1799 pHlp->pfnPrintf(pHlp, " SLADS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLADS));
1800 pHlp->pfnPrintf(pHlp, " SLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLTS));
1801 pHlp->pfnPrintf(pHlp, " FLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_FLTS));
1802 pHlp->pfnPrintf(pHlp, " SMPWCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMPWCS));
1803 pHlp->pfnPrintf(pHlp, " RPS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPS));
1804 pHlp->pfnPrintf(pHlp, " ADMS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ADMS));
1805 pHlp->pfnPrintf(pHlp, " RPRIVS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPRIVS));
1806 }
1807 pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
1808 {
1809 uint8_t const fCfi = RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_CFI);
1810 pHlp->pfnPrintf(pHlp, " CFI = %u (%s)\n", fCfi, fCfi ? "Bypass interrupt remapping"
1811 : "Block compatible format interrupts");
1812 pHlp->pfnPrintf(pHlp, " SIRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SIRTP));
1813 pHlp->pfnPrintf(pHlp, " IRE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_IRE));
1814 pHlp->pfnPrintf(pHlp, " QIE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_QIE));
1815 pHlp->pfnPrintf(pHlp, " WBF = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_WBF));
1816 pHlp->pfnPrintf(pHlp, " EAFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
1817 pHlp->pfnPrintf(pHlp, " SFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
1818 pHlp->pfnPrintf(pHlp, " SRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SRTP));
1819 pHlp->pfnPrintf(pHlp, " TE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_TE));
1820 }
1821 pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
1822 {
1823 uint8_t const fCfis = RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_CFIS);
1824 pHlp->pfnPrintf(pHlp, " CFIS = %u (%s)\n", fCfis, fCfis ? "Bypass interrupt remapping"
1825 : "Block compatible format interrupts");
1826 pHlp->pfnPrintf(pHlp, " IRTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRTPS));
1827 pHlp->pfnPrintf(pHlp, " IRES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRES));
1828 pHlp->pfnPrintf(pHlp, " QIES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_QIES));
1829 pHlp->pfnPrintf(pHlp, " WBFS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_WBFS));
1830 pHlp->pfnPrintf(pHlp, " AFLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_AFLS));
1831 pHlp->pfnPrintf(pHlp, " FLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_FLS));
1832 pHlp->pfnPrintf(pHlp, " RTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_RTPS));
1833 pHlp->pfnPrintf(pHlp, " TES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_TES));
1834 }
1835 pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
1836 {
1837 uint8_t const uTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
1838 pHlp->pfnPrintf(pHlp, " TTM = %u (%s)\n", uTtm, vtdRtaddrRegGetTtmDesc(uTtm));
1839 pHlp->pfnPrintf(pHlp, " RTA = %#RX64\n", RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_RTA));
1840 }
1841 pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
1842 pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
1843 {
1844 pHlp->pfnPrintf(pHlp, " PFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PFO));
1845 pHlp->pfnPrintf(pHlp, " PPF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PPF));
1846 pHlp->pfnPrintf(pHlp, " AFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_AFO));
1847 pHlp->pfnPrintf(pHlp, " APF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_APF));
1848 pHlp->pfnPrintf(pHlp, " IQE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_IQE));
1849 pHlp->pfnPrintf(pHlp, " ICS = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ICE));
1850 pHlp->pfnPrintf(pHlp, " ITE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ITE));
1851 pHlp->pfnPrintf(pHlp, " FRI = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_FRI));
1852 }
1853
1854 /** @todo Verbose others as needed during debugging/rainy day. */
1855 pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
1856 pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
1857 pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
1858 pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
1859 pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
1860 pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
1861 pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
1862 pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
1863 pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
1864 pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
1865 pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
1866 pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
1867 pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
1868 pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
1869 pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
1870 pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
1871 pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
1872 pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
1873 pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
1874 pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
1875 pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
1876 pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
1877 pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
1878 pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
1879 pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
1880 pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
1881 pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
1882 pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
1883 pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
1884 pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
1885 pHlp->pfnPrintf(pHlp, "\n");
1886 }
1887}
1888
1889
1890/**
1891 * Initializes all registers in the DMAR unit.
1892 *
1893 * @param pDevIns The IOMMU device instance.
1894 */
1895static void dmarR3RegsInit(PPDMDEVINS pDevIns)
1896{
1897 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1898
1899 /*
1900 * Wipe all registers (required on reset).
1901 */
1902 RT_ZERO(pThis->abRegs0);
1903 RT_ZERO(pThis->abRegs1);
1904
1905 /*
1906 * Initialize registers not mutable by software prior to initializing other registers.
1907 */
1908 /* VER_REG */
1909 {
1910 pThis->uVerReg = RT_BF_MAKE(VTD_BF_VER_REG_MIN, DMAR_VER_MINOR)
1911 | RT_BF_MAKE(VTD_BF_VER_REG_MAX, DMAR_VER_MAJOR);
1912 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_VER_REG, pThis->uVerReg);
1913 }
1914
1915 uint8_t const fFlts = 1; /* First-Level translation support. */
1916 uint8_t const fSlts = 1; /* Second-Level translation support. */
1917 uint8_t const fPt = 1; /* Pass-Through support. */
1918 uint8_t const fSmts = fFlts & fSlts & fPt; /* Scalable mode translation support.*/
1919 uint8_t const fNest = 0; /* Nested translation support. */
1920
1921 /* CAP_REG */
1922 {
1923 uint8_t cGstPhysAddrBits;
1924 uint8_t cGstLinearAddrBits;
1925 PDMDevHlpCpuGetGuestAddrWidths(pDevIns, &cGstPhysAddrBits, &cGstLinearAddrBits);
1926
1927 uint8_t const fFl1gp = 1; /* First-Level 1GB pages support. */
1928 uint8_t const fFl5lp = 1; /* First-level 5-level paging support (PML5E). */
1929 uint8_t const fSl2mp = fSlts & 1; /* Second-Level 2MB pages support. */
1930 uint8_t const fSl2gp = fSlts & 1; /* Second-Level 1GB pages support. */
1931 uint8_t const fSllps = fSl2mp /* Second-Level large page Support. */
1932 | ((fSl2mp & fFl1gp) & RT_BIT(1));
1933 uint8_t const fMamv = (fSl2gp ? /* Maximum address mask value (for second-level invalidations). */
1934 X86_PAGE_1G_SHIFT : X86_PAGE_2M_SHIFT) - X86_PAGE_4K_SHIFT;
1935 uint8_t const fNd = 2; /* Number of domains (0=16, 1=64, 2=256, 3=1K, 4=4K, 5=16K, 6=64K,
1936 7=Reserved). */
1937 uint8_t const fPsi = 1; /* Page selective invalidation. */
1938 uint8_t const uMgaw = cGstPhysAddrBits - 1; /* Maximum guest address width. */
1939 uint8_t const uSagaw = vtdCapRegGetSagaw(uMgaw); /* Supported adjust guest address width. */
1940 uint16_t const offFro = DMAR_MMIO_OFF_FRCD_LO_REG >> 4; /* MMIO offset of FRCD registers. */
1941
1942 pThis->fCap = RT_BF_MAKE(VTD_BF_CAP_REG_ND, fNd)
1943 | RT_BF_MAKE(VTD_BF_CAP_REG_AFL, 0) /* Advanced fault logging not supported. */
1944 | RT_BF_MAKE(VTD_BF_CAP_REG_RWBF, 0) /* Software need not flush write-buffers. */
1945 | RT_BF_MAKE(VTD_BF_CAP_REG_PLMR, 0) /* Protected Low-Memory Region not supported. */
1946 | RT_BF_MAKE(VTD_BF_CAP_REG_PHMR, 0) /* Protected High-Memory Region not supported. */
1947 | RT_BF_MAKE(VTD_BF_CAP_REG_CM, 1) /** @todo Figure out if required when we impl. caching. */
1948 | RT_BF_MAKE(VTD_BF_CAP_REG_SAGAW, fSlts & uSagaw)
1949 | RT_BF_MAKE(VTD_BF_CAP_REG_MGAW, uMgaw)
1950 | RT_BF_MAKE(VTD_BF_CAP_REG_ZLR, 1) /** @todo Figure out if/how to support zero-length reads. */
1951 | RT_BF_MAKE(VTD_BF_CAP_REG_FRO, offFro)
1952 | RT_BF_MAKE(VTD_BF_CAP_REG_SLLPS, fSlts & fSllps)
1953 | RT_BF_MAKE(VTD_BF_CAP_REG_PSI, fPsi)
1954 | RT_BF_MAKE(VTD_BF_CAP_REG_NFR, DMAR_FRCD_REG_COUNT - 1)
1955 | RT_BF_MAKE(VTD_BF_CAP_REG_MAMV, fPsi & fMamv)
1956 | RT_BF_MAKE(VTD_BF_CAP_REG_DWD, 1)
1957 | RT_BF_MAKE(VTD_BF_CAP_REG_DRD, 1)
1958 | RT_BF_MAKE(VTD_BF_CAP_REG_FL1GP, fFlts & fFl1gp)
1959 | RT_BF_MAKE(VTD_BF_CAP_REG_PI, 0) /* Posted Interrupts not supported. */
1960 | RT_BF_MAKE(VTD_BF_CAP_REG_FL5LP, fFlts & fFl5lp)
1961 | RT_BF_MAKE(VTD_BF_CAP_REG_ESIRTPS, 0) /* If we invalidate interrupt cache on SIRTP flow. */
1962 | RT_BF_MAKE(VTD_BF_CAP_REG_ESRTPS, 0); /* If we invalidate translation cache on SRTP flow. */
1963 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_CAP_REG, pThis->fCap);
1964 }
1965
1966 /* ECAP_REG */
1967 {
1968 uint8_t const fQi = 1; /* Queued-invalidations. */
1969 uint8_t const fIr = !!(DMAR_ACPI_DMAR_FLAGS & ACPI_DMAR_F_INTR_REMAP); /* Interrupt remapping support. */
1970 uint8_t const fMhmv = 0xf; /* Maximum handle mask value. */
1971 uint16_t const offIro = DMAR_MMIO_OFF_IVA_REG >> 4; /* MMIO offset of IOTLB registers. */
1972 uint8_t const fSrs = 1; /* Supervisor request support. */
1973 uint8_t const fEim = 1; /* Extended interrupt mode.*/
1974 uint8_t const fAdms = 1; /* Abort DMA mode support. */
1975
1976 pThis->fExtCap = RT_BF_MAKE(VTD_BF_ECAP_REG_C, 0) /* Accesses don't snoop CPU cache. */
1977 | RT_BF_MAKE(VTD_BF_ECAP_REG_QI, fQi)
1978 | RT_BF_MAKE(VTD_BF_ECAP_REG_DT, 0) /* Device-TLBs not supported. */
1979 | RT_BF_MAKE(VTD_BF_ECAP_REG_IR, fQi & fIr)
1980 | RT_BF_MAKE(VTD_BF_ECAP_REG_EIM, fIr & fEim)
1981 | RT_BF_MAKE(VTD_BF_ECAP_REG_PT, fPt)
1982 | RT_BF_MAKE(VTD_BF_ECAP_REG_SC, 0) /* Snoop control not supported. */
1983 | RT_BF_MAKE(VTD_BF_ECAP_REG_IRO, offIro)
1984 | RT_BF_MAKE(VTD_BF_ECAP_REG_MHMV, fIr & fMhmv)
1985 | RT_BF_MAKE(VTD_BF_ECAP_REG_MTS, 0) /* Memory type not supported. */
1986 | RT_BF_MAKE(VTD_BF_ECAP_REG_NEST, fNest)
1987 | RT_BF_MAKE(VTD_BF_ECAP_REG_PRS, 0) /* 0 as DT not supported. */
1988 | RT_BF_MAKE(VTD_BF_ECAP_REG_ERS, 0) /* Execute request not supported. */
1989 | RT_BF_MAKE(VTD_BF_ECAP_REG_SRS, fSmts & fSrs)
1990 | RT_BF_MAKE(VTD_BF_ECAP_REG_NWFS, 0) /* 0 as DT not supported. */
1991 | RT_BF_MAKE(VTD_BF_ECAP_REG_EAFS, 0) /** @todo figure out if EAFS is required? */
1992 | RT_BF_MAKE(VTD_BF_ECAP_REG_PSS, 0) /* 0 as PASID not supported. */
1993 | RT_BF_MAKE(VTD_BF_ECAP_REG_PASID, 0) /* PASID support. */
1994 | RT_BF_MAKE(VTD_BF_ECAP_REG_DIT, 0) /* 0 as DT not supported. */
1995 | RT_BF_MAKE(VTD_BF_ECAP_REG_PDS, 0) /* 0 as DT not supported. */
1996 | RT_BF_MAKE(VTD_BF_ECAP_REG_SMTS, fSmts)
1997 | RT_BF_MAKE(VTD_BF_ECAP_REG_VCS, 0) /* 0 as PASID not supported (commands seem PASID specific). */
1998 | RT_BF_MAKE(VTD_BF_ECAP_REG_SLADS, 0) /* Second-level accessed/dirty not supported. */
1999 | RT_BF_MAKE(VTD_BF_ECAP_REG_SLTS, fSlts)
2000 | RT_BF_MAKE(VTD_BF_ECAP_REG_FLTS, fFlts)
2001 | RT_BF_MAKE(VTD_BF_ECAP_REG_SMPWCS, 0) /* 0 as PASID not supported. */
2002 | RT_BF_MAKE(VTD_BF_ECAP_REG_RPS, 0) /* We don't support RID_PASID field in SM context entry. */
2003 | RT_BF_MAKE(VTD_BF_ECAP_REG_ADMS, fAdms)
2004 | RT_BF_MAKE(VTD_BF_ECAP_REG_RPRIVS, 0); /** @todo figure out if we should/can support this? */
2005 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_ECAP_REG, pThis->fExtCap);
2006 }
2007
2008 /*
2009 * Initialize registers mutable by software.
2010 */
2011 /* FECTL_REG */
2012 {
2013 uint32_t const uCtl = RT_BF_MAKE(VTD_BF_FECTL_REG_IM, 1);
2014 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, uCtl);
2015 }
2016
2017 /* ICETL_REG */
2018 {
2019 uint32_t const uCtl = RT_BF_MAKE(VTD_BF_IECTL_REG_IM, 1);
2020 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, uCtl);
2021 }
2022
2023#ifdef VBOX_STRICT
2024 Assert(!RT_BF_GET(pThis->fExtCap, VTD_BF_ECAP_REG_PRS)); /* PECTL_REG - Reserved if don't support PRS. */
2025 Assert(!RT_BF_GET(pThis->fExtCap, VTD_BF_ECAP_REG_MTS)); /* MTRRCAP_REG - Reserved if we don't support MTS. */
2026#endif
2027}
2028
2029
2030/**
2031 * @interface_method_impl{PDMDEVREG,pfnReset}
2032 */
2033static DECLCALLBACK(void) iommuIntelR3Reset(PPDMDEVINS pDevIns)
2034{
2035 RT_NOREF1(pDevIns);
2036 LogFlowFunc(("\n"));
2037
2038 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
2039 DMAR_LOCK(pDevIns, pThisR3);
2040
2041 dmarR3RegsInit(pDevIns);
2042
2043 DMAR_UNLOCK(pDevIns, pThisR3);
2044}
2045
2046
2047/**
2048 * @interface_method_impl{PDMDEVREG,pfnDestruct}
2049 */
2050static DECLCALLBACK(int) iommuIntelR3Destruct(PPDMDEVINS pDevIns)
2051{
2052 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2053 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
2054 LogFlowFunc(("\n"));
2055
2056 DMAR_LOCK(pDevIns, pThisR3);
2057
2058 if (pThis->hEvtInvQueue != NIL_SUPSEMEVENT)
2059 {
2060 PDMDevHlpSUPSemEventClose(pDevIns, pThis->hEvtInvQueue);
2061 pThis->hEvtInvQueue = NIL_SUPSEMEVENT;
2062 }
2063
2064 DMAR_UNLOCK(pDevIns, pThisR3);
2065 return VINF_SUCCESS;
2066}
2067
2068
2069/**
2070 * @interface_method_impl{PDMDEVREG,pfnConstruct}
2071 */
2072static DECLCALLBACK(int) iommuIntelR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
2073{
2074 RT_NOREF(pCfg);
2075
2076 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2077 PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3);
2078 pThisR3->pDevInsR3 = pDevIns;
2079
2080 LogFlowFunc(("iInstance=%d\n", iInstance));
2081 NOREF(iInstance);
2082
2083 /*
2084 * Register the IOMMU with PDM.
2085 */
2086 PDMIOMMUREGR3 IommuReg;
2087 RT_ZERO(IommuReg);
2088 IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
2089 IommuReg.pfnMemAccess = iommuIntelMemAccess;
2090 IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
2091 IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
2092 IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
2093 int rc = PDMDevHlpIommuRegister(pDevIns, &IommuReg, &pThisR3->CTX_SUFF(pIommuHlp), &pThis->idxIommu);
2094 if (RT_FAILURE(rc))
2095 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to register ourselves as an IOMMU device"));
2096 if (pThisR3->CTX_SUFF(pIommuHlp)->u32Version != PDM_IOMMUHLPR3_VERSION)
2097 return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
2098 N_("IOMMU helper version mismatch; got %#x expected %#x"),
2099 pThisR3->CTX_SUFF(pIommuHlp)->u32Version, PDM_IOMMUHLPR3_VERSION);
2100 if (pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd != PDM_IOMMUHLPR3_VERSION)
2101 return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
2102 N_("IOMMU helper end-version mismatch; got %#x expected %#x"),
2103 pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd, PDM_IOMMUHLPR3_VERSION);
2104 /*
2105 * Use PDM's critical section (via helpers) for the IOMMU device.
2106 */
2107 rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
2108 AssertRCReturn(rc, rc);
2109
2110 /*
2111 * Initialize PCI configuration registers.
2112 */
2113 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
2114 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
2115
2116 /* Header. */
2117 PDMPciDevSetVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
2118 PDMPciDevSetDeviceId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
2119 PDMPciDevSetRevisionId(pPciDev, DMAR_PCI_REVISION_ID); /* VirtualBox specific device implementation revision */
2120 PDMPciDevSetClassBase(pPciDev, VBOX_PCI_CLASS_SYSTEM); /* System Base Peripheral */
2121 PDMPciDevSetClassSub(pPciDev, VBOX_PCI_SUB_SYSTEM_OTHER); /* Other */
2122 PDMPciDevSetHeaderType(pPciDev, 0); /* Single function, type 0 */
2123 PDMPciDevSetSubSystemId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
2124 PDMPciDevSetSubSystemVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
2125
2126 /** @todo Chipset spec says PCI Express Capability Id. Relevant for us? */
2127 PDMPciDevSetStatus(pPciDev, 0);
2128 PDMPciDevSetCapabilityList(pPciDev, 0);
2129
2130 /** @todo VTBAR at 0x180? */
2131
2132 /*
2133 * Register the PCI function with PDM.
2134 */
2135 rc = PDMDevHlpPCIRegister(pDevIns, pPciDev);
2136 AssertLogRelRCReturn(rc, rc);
2137
2138 /** @todo Register MSI but what's the MSI capability offset? */
2139#if 0
2140 /*
2141 * Register MSI support for the PCI device.
2142 * This must be done -after- registering it as a PCI device!
2143 */
2144#endif
2145
2146 /*
2147 * Register MMIO region.
2148 */
2149 AssertCompile(!(DMAR_MMIO_BASE_PHYSADDR & X86_PAGE_4K_OFFSET_MASK));
2150 rc = PDMDevHlpMmioCreateAndMap(pDevIns, DMAR_MMIO_BASE_PHYSADDR, DMAR_MMIO_SIZE, dmarMmioWrite, dmarMmioRead,
2151 IOMMMIO_FLAGS_READ_DWORD_QWORD | IOMMMIO_FLAGS_WRITE_DWORD_QWORD_ZEROED, "Intel-IOMMU",
2152 &pThis->hMmio);
2153 AssertLogRelRCReturn(rc, rc);
2154
2155 /*
2156 * Register debugger info items.
2157 */
2158 rc = PDMDevHlpDBGFInfoRegister(pDevIns, "iommu", "Display IOMMU state.", dmarR3DbgInfo);
2159 AssertLogRelRCReturn(rc, rc);
2160
2161#ifdef VBOX_WITH_STATISTICS
2162 /*
2163 * Statistics.
2164 */
2165 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadR3, STAMTYPE_COUNTER, "R3/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in R3");
2166 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadRZ, STAMTYPE_COUNTER, "RZ/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in RZ.");
2167
2168 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteR3, STAMTYPE_COUNTER, "R3/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in R3.");
2169 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteRZ, STAMTYPE_COUNTER, "RZ/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in RZ.");
2170
2171 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapR3, STAMTYPE_COUNTER, "R3/MsiRemap", STAMUNIT_OCCURENCES, "Number of interrupt remap requests in R3.");
2172 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRZ, STAMTYPE_COUNTER, "RZ/MsiRemap", STAMUNIT_OCCURENCES, "Number of interrupt remap requests in RZ.");
2173
2174 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadR3, STAMTYPE_COUNTER, "R3/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in R3.");
2175 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadRZ, STAMTYPE_COUNTER, "RZ/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in RZ.");
2176
2177 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteR3, STAMTYPE_COUNTER, "R3/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in R3.");
2178 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteRZ, STAMTYPE_COUNTER, "RZ/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in RZ.");
2179
2180 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadR3, STAMTYPE_COUNTER, "R3/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in R3.");
2181 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadRZ, STAMTYPE_COUNTER, "RZ/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in RZ.");
2182
2183 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteR3, STAMTYPE_COUNTER, "R3/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in R3.");
2184 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteRZ, STAMTYPE_COUNTER, "RZ/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in RZ.");
2185#endif
2186
2187 /*
2188 * Initialize registers.
2189 */
2190 dmarR3RegsInit(pDevIns);
2191
2192 /*
2193 * Create invalidation-queue thread and semaphore.
2194 */
2195 char szInvQueueThread[32];
2196 RT_ZERO(szInvQueueThread);
2197 RTStrPrintf(szInvQueueThread, sizeof(szInvQueueThread), "IOMMU-QI-%u", iInstance);
2198 rc = PDMDevHlpThreadCreate(pDevIns, &pThisR3->pInvQueueThread, pThis, dmarR3InvQueueThread, dmarR3InvQueueThreadWakeUp,
2199 0 /* cbStack */, RTTHREADTYPE_IO, szInvQueueThread);
2200 AssertLogRelRCReturn(rc, rc);
2201
2202 rc = PDMDevHlpSUPSemEventCreate(pDevIns, &pThis->hEvtInvQueue);
2203 AssertLogRelRCReturn(rc, rc);
2204
2205 /*
2206 * Log some of the features exposed to software.
2207 */
2208 uint32_t const uVerReg = pThis->uVerReg;
2209 uint8_t const cMaxGstAddrBits = RT_BF_GET(pThis->fCap, VTD_BF_CAP_REG_MGAW) + 1;
2210 uint8_t const cSupGstAddrBits = vtdCapRegGetSagawBits(RT_BF_GET(pThis->fCap, VTD_BF_CAP_REG_SAGAW));
2211 uint16_t const offFrcd = RT_BF_GET(pThis->fCap, VTD_BF_CAP_REG_FRO);
2212 uint16_t const offIva = RT_BF_GET(pThis->fExtCap, VTD_BF_ECAP_REG_IRO);
2213 LogRel(("%s: VER=%u.%u CAP=%#RX64 ECAP=%#RX64 (MGAW=%u bits, SAGAW=%u bits, FRO=%#x, IRO=%#x) mapped at %#RGp\n",
2214 DMAR_LOG_PFX, RT_BF_GET(uVerReg, VTD_BF_VER_REG_MAX), RT_BF_GET(uVerReg, VTD_BF_VER_REG_MIN),
2215 pThis->fCap, pThis->fExtCap, cMaxGstAddrBits, cSupGstAddrBits, offFrcd, offIva, DMAR_MMIO_BASE_PHYSADDR));
2216
2217 return VINF_SUCCESS;
2218}
2219
2220#else
2221
2222/**
2223 * @callback_method_impl{PDMDEVREGR0,pfnConstruct}
2224 */
2225static DECLCALLBACK(int) iommuIntelRZConstruct(PPDMDEVINS pDevIns)
2226{
2227 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
2228 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2229 PDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDMARCC);
2230 pThisCC->CTX_SUFF(pDevIns) = pDevIns;
2231
2232 /* We will use PDM's critical section (via helpers) for the IOMMU device. */
2233 int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
2234 AssertRCReturn(rc, rc);
2235
2236 /* Set up the MMIO RZ handlers. */
2237 rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmio, dmarMmioWrite, dmarMmioRead, NULL /* pvUser */);
2238 AssertRCReturn(rc, rc);
2239
2240 /* Set up the IOMMU RZ callbacks. */
2241 PDMIOMMUREGCC IommuReg;
2242 RT_ZERO(IommuReg);
2243 IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
2244 IommuReg.idxIommu = pThis->idxIommu;
2245 IommuReg.pfnMemAccess = iommuIntelMemAccess;
2246 IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
2247 IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
2248 IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
2249
2250 rc = PDMDevHlpIommuSetUpContext(pDevIns, &IommuReg, &pThisCC->CTX_SUFF(pIommuHlp));
2251 AssertRCReturn(rc, rc);
2252 AssertPtrReturn(pThisCC->CTX_SUFF(pIommuHlp), VERR_IOMMU_IPE_1);
2253 AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32Version == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
2254 AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32TheEnd == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
2255 AssertPtrReturn(pThisCC->CTX_SUFF(pIommuHlp)->pfnLock, VERR_INVALID_POINTER);
2256 AssertPtrReturn(pThisCC->CTX_SUFF(pIommuHlp)->pfnUnlock, VERR_INVALID_POINTER);
2257 AssertPtrReturn(pThisCC->CTX_SUFF(pIommuHlp)->pfnLockIsOwner, VERR_INVALID_POINTER);
2258 AssertPtrReturn(pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi, VERR_INVALID_POINTER);
2259
2260 return VINF_SUCCESS;
2261}
2262
2263#endif
2264
2265
2266/**
2267 * The device registration structure.
2268 */
2269PDMDEVREG const g_DeviceIommuIntel =
2270{
2271 /* .u32Version = */ PDM_DEVREG_VERSION,
2272 /* .uReserved0 = */ 0,
2273 /* .szName = */ "iommu-intel",
2274 /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE,
2275 /* .fClass = */ PDM_DEVREG_CLASS_PCI_BUILTIN,
2276 /* .cMaxInstances = */ 1,
2277 /* .uSharedVersion = */ 42,
2278 /* .cbInstanceShared = */ sizeof(DMAR),
2279 /* .cbInstanceCC = */ sizeof(DMARCC),
2280 /* .cbInstanceRC = */ sizeof(DMARRC),
2281 /* .cMaxPciDevices = */ 1,
2282 /* .cMaxMsixVectors = */ 0,
2283 /* .pszDescription = */ "IOMMU (Intel)",
2284#if defined(IN_RING3)
2285 /* .pszRCMod = */ "VBoxDDRC.rc",
2286 /* .pszR0Mod = */ "VBoxDDR0.r0",
2287 /* .pfnConstruct = */ iommuIntelR3Construct,
2288 /* .pfnDestruct = */ iommuIntelR3Destruct,
2289 /* .pfnRelocate = */ NULL,
2290 /* .pfnMemSetup = */ NULL,
2291 /* .pfnPowerOn = */ NULL,
2292 /* .pfnReset = */ iommuIntelR3Reset,
2293 /* .pfnSuspend = */ NULL,
2294 /* .pfnResume = */ NULL,
2295 /* .pfnAttach = */ NULL,
2296 /* .pfnDetach = */ NULL,
2297 /* .pfnQueryInterface = */ NULL,
2298 /* .pfnInitComplete = */ NULL,
2299 /* .pfnPowerOff = */ NULL,
2300 /* .pfnSoftReset = */ NULL,
2301 /* .pfnReserved0 = */ NULL,
2302 /* .pfnReserved1 = */ NULL,
2303 /* .pfnReserved2 = */ NULL,
2304 /* .pfnReserved3 = */ NULL,
2305 /* .pfnReserved4 = */ NULL,
2306 /* .pfnReserved5 = */ NULL,
2307 /* .pfnReserved6 = */ NULL,
2308 /* .pfnReserved7 = */ NULL,
2309#elif defined(IN_RING0)
2310 /* .pfnEarlyConstruct = */ NULL,
2311 /* .pfnConstruct = */ iommuIntelRZConstruct,
2312 /* .pfnDestruct = */ NULL,
2313 /* .pfnFinalDestruct = */ NULL,
2314 /* .pfnRequest = */ NULL,
2315 /* .pfnReserved0 = */ NULL,
2316 /* .pfnReserved1 = */ NULL,
2317 /* .pfnReserved2 = */ NULL,
2318 /* .pfnReserved3 = */ NULL,
2319 /* .pfnReserved4 = */ NULL,
2320 /* .pfnReserved5 = */ NULL,
2321 /* .pfnReserved6 = */ NULL,
2322 /* .pfnReserved7 = */ NULL,
2323#elif defined(IN_RC)
2324 /* .pfnConstruct = */ iommuIntelRZConstruct,
2325 /* .pfnReserved0 = */ NULL,
2326 /* .pfnReserved1 = */ NULL,
2327 /* .pfnReserved2 = */ NULL,
2328 /* .pfnReserved3 = */ NULL,
2329 /* .pfnReserved4 = */ NULL,
2330 /* .pfnReserved5 = */ NULL,
2331 /* .pfnReserved6 = */ NULL,
2332 /* .pfnReserved7 = */ NULL,
2333#else
2334# error "Not in IN_RING3, IN_RING0 or IN_RC!"
2335#endif
2336 /* .u32VersionEnd = */ PDM_DEVREG_VERSION
2337};
2338
2339#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
2340
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette