VirtualBox

source: vbox/trunk/src/VBox/Devices/Bus/DevIommuIntel.cpp@ 89476

Last change on this file since 89476 was 89476, checked in by vboxsync, 3 years ago

Intel IOMMU: bugref:9967 Address translation, WIP.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 183.7 KB
Line 
1/* $Id: DevIommuIntel.cpp 89476 2021-06-03 08:58:51Z vboxsync $ */
2/** @file
3 * IOMMU - Input/Output Memory Management Unit - Intel implementation.
4 */
5
6/*
7 * Copyright (C) 2021 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DEV_IOMMU
23#include "VBoxDD.h"
24#include "DevIommuIntel.h"
25
26#include <iprt/mem.h>
27#include <iprt/string.h>
28
29
30/*********************************************************************************************************************************
31* Defined Constants And Macros *
32*********************************************************************************************************************************/
33/** Gets the low uint32_t of a uint64_t or something equivalent.
34 *
35 * This is suitable for casting constants outside code (since RT_LO_U32 can't be
36 * used as it asserts for correctness when compiling on certain compilers). */
37#define DMAR_LO_U32(a) (uint32_t)(UINT32_MAX & (a))
38
39/** Gets the high uint32_t of a uint64_t or something equivalent.
40 *
41 * This is suitable for casting constants outside code (since RT_HI_U32 can't be
42 * used as it asserts for correctness when compiling on certain compilers). */
43#define DMAR_HI_U32(a) (uint32_t)((a) >> 32)
44
45/** Asserts MMIO access' offset and size are valid or returns appropriate error
46 * code suitable for returning from MMIO access handlers. */
47#define DMAR_ASSERT_MMIO_ACCESS_RET(a_off, a_cb) \
48 do { \
49 AssertReturn((a_cb) == 4 || (a_cb) == 8, VINF_IOM_MMIO_UNUSED_FF); \
50 AssertReturn(!((a_off) & ((a_cb) - 1)), VINF_IOM_MMIO_UNUSED_FF); \
51 } while (0)
52
53/** Checks if the MMIO offset is valid. */
54#define DMAR_IS_MMIO_OFF_VALID(a_off) ( (a_off) < DMAR_MMIO_GROUP_0_OFF_END \
55 || (a_off) - DMAR_MMIO_GROUP_1_OFF_FIRST < DMAR_MMIO_GROUP_1_SIZE)
56
57/** Acquires the DMAR lock but returns with the given busy error code on failure. */
58#define DMAR_LOCK_RET(a_pDevIns, a_pThisCC, a_rcBusy) \
59 do { \
60 if ((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), (a_rcBusy)) == VINF_SUCCESS) \
61 { /* likely */ } \
62 else \
63 return (a_rcBusy); \
64 } while (0)
65
66/** Acquires the DMAR lock (not expected to fail). */
67#ifdef IN_RING3
68# define DMAR_LOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VERR_IGNORED)
69#else
70# define DMAR_LOCK(a_pDevIns, a_pThisCC) \
71 do { \
72 int const rcLock = (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VINF_SUCCESS); \
73 AssertRC(rcLock); \
74 } while (0)
75#endif
76
77/** Release the DMAR lock. */
78#define DMAR_UNLOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnUnlock(a_pDevIns)
79
80/** Asserts that the calling thread owns the DMAR lock. */
81#define DMAR_ASSERT_LOCK_IS_OWNER(a_pDevIns, a_pThisCC) \
82 do { \
83 Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns)); \
84 RT_NOREF1(a_pThisCC); \
85 } while (0)
86
87/** Asserts that the calling thread does not own the DMAR lock. */
88#define DMAR_ASSERT_LOCK_IS_NOT_OWNER(a_pDevIns, a_pThisCC) \
89 do { \
90 Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns) == false); \
91 RT_NOREF1(a_pThisCC); \
92 } while (0)
93
94/** The number of fault recording registers our implementation supports.
95 * Normal guest operation shouldn't trigger faults anyway, so we only support the
96 * minimum number of registers (which is 1).
97 *
98 * See Intel VT-d spec. 10.4.2 "Capability Register" (CAP_REG.NFR). */
99#define DMAR_FRCD_REG_COUNT UINT32_C(1)
100
101/** Offset of first register in group 0. */
102#define DMAR_MMIO_GROUP_0_OFF_FIRST VTD_MMIO_OFF_VER_REG
103/** Offset of last register in group 0 (inclusive). */
104#define DMAR_MMIO_GROUP_0_OFF_LAST VTD_MMIO_OFF_MTRR_PHYSMASK9_REG
105/** Last valid offset in group 0 (exclusive). */
106#define DMAR_MMIO_GROUP_0_OFF_END (DMAR_MMIO_GROUP_0_OFF_LAST + 8 /* sizeof MTRR_PHYSMASK9_REG */)
107/** Size of the group 0 (in bytes). */
108#define DMAR_MMIO_GROUP_0_SIZE (DMAR_MMIO_GROUP_0_OFF_END - DMAR_MMIO_GROUP_0_OFF_FIRST)
109/**< Implementation-specific MMIO offset of IVA_REG. */
110#define DMAR_MMIO_OFF_IVA_REG 0xe50
111/**< Implementation-specific MMIO offset of IOTLB_REG. */
112#define DMAR_MMIO_OFF_IOTLB_REG 0xe58
113/**< Implementation-specific MMIO offset of FRCD_LO_REG. */
114#define DMAR_MMIO_OFF_FRCD_LO_REG 0xe70
115/**< Implementation-specific MMIO offset of FRCD_HI_REG. */
116#define DMAR_MMIO_OFF_FRCD_HI_REG 0xe78
117AssertCompile(!(DMAR_MMIO_OFF_FRCD_LO_REG & 0xf));
118
119/** Offset of first register in group 1. */
120#define DMAR_MMIO_GROUP_1_OFF_FIRST VTD_MMIO_OFF_VCCAP_REG
121/** Offset of last register in group 1 (inclusive). */
122#define DMAR_MMIO_GROUP_1_OFF_LAST (DMAR_MMIO_OFF_FRCD_LO_REG + 8) * DMAR_FRCD_REG_COUNT
123/** Last valid offset in group 1 (exclusive). */
124#define DMAR_MMIO_GROUP_1_OFF_END (DMAR_MMIO_GROUP_1_OFF_LAST + 8 /* sizeof FRCD_HI_REG */)
125/** Size of the group 1 (in bytes). */
126#define DMAR_MMIO_GROUP_1_SIZE (DMAR_MMIO_GROUP_1_OFF_END - DMAR_MMIO_GROUP_1_OFF_FIRST)
127
128/** DMAR implementation's major version number (exposed to software).
129 * We report 6 as the major version since we support queued-invalidations as
130 * software may make assumptions based on that.
131 *
132 * See Intel VT-d spec. 10.4.7 "Context Command Register" (CCMD_REG.CAIG). */
133#define DMAR_VER_MAJOR 6
134/** DMAR implementation's minor version number (exposed to software). */
135#define DMAR_VER_MINOR 0
136
137/** Number of domain supported (0=16, 1=64, 2=256, 3=1K, 4=4K, 5=16K, 6=64K,
138 * 7=Reserved). */
139#define DMAR_ND 6
140
141/** @name DMAR_PERM_XXX: DMA request permissions.
142 * The order of R, W, X bits is important as it corresponds to those bits in
143 * page-table entries.
144 *
145 * @{ */
146/** DMA request permission: Read. */
147#define DMAR_PERM_READ RT_BIT(0)
148/** DMA request permission: Write. */
149#define DMAR_PERM_WRITE RT_BIT(1)
150/** DMA request permission: Execute (ER). */
151#define DMAR_PERM_EXE RT_BIT(2)
152/** DMA request permission: Supervisor privilege (PR). */
153#define DMAR_PERM_PRIV RT_BIT(3)
154/** DMA request permissions: All. */
155#define DMAR_PERM_ALL (DMAR_PERM_READ | DMAR_PERM_WRITE | DMAR_PERM_EXE | DMAR_PERM_PRIV)
156/** @} */
157
158/** Release log prefix string. */
159#define DMAR_LOG_PFX "Intel-IOMMU"
160/** The current saved state version. */
161#define DMAR_SAVED_STATE_VERSION 1
162
163
164/*********************************************************************************************************************************
165* Structures and Typedefs *
166*********************************************************************************************************************************/
167/**
168 * DMAR error diagnostics.
169 * Sorted alphabetically so it's easier to add and locate items, no other reason.
170 *
171 * @note Members of this enum are used as array indices, so no gaps in enum
172 * values are not allowed. Update g_apszDmarDiagDesc when you modify
173 * fields in this enum.
174 */
175typedef enum
176{
177 /* No error, this must be zero! */
178 kDmarDiag_None = 0,
179
180 /* Address Translation Faults. */
181 kDmarDiag_Atf_Lct_1,
182 kDmarDiag_Atf_Lct_2,
183 kDmarDiag_Atf_Lct_3,
184 kDmarDiag_Atf_Lct_4_1,
185 kDmarDiag_Atf_Lct_4_2,
186 kDmarDiag_Atf_Lct_4_3,
187 kDmarDiag_Atf_Lct_5,
188 kDmarDiag_Atf_Lgn_1_1,
189 kDmarDiag_Atf_Lgn_1_2,
190 kDmarDiag_Atf_Lgn_1_3,
191 kDmarDiag_Atf_Lgn_4,
192 kDmarDiag_Atf_Lrt_1,
193 kDmarDiag_Atf_Lrt_2,
194 kDmarDiag_Atf_Lrt_3,
195 kDmarDiag_Atf_Lsl_1,
196 kDmarDiag_Atf_Lsl_2,
197 kDmarDiag_Atf_Lsl_2_LargePage,
198 kDmarDiag_Atf_Rta_1_1,
199 kDmarDiag_Atf_Rta_1_2,
200 kDmarDiag_Atf_Rta_1_3,
201 kDmarDiag_Atf_Sgn_5,
202 kDmarDiag_Atf_Sgn_8,
203 kDmarDiag_Atf_Ssl_1,
204 kDmarDiag_Atf_Ssl_2,
205 kDmarDiag_Atf_Ssl_3,
206 kDmarDiag_Atf_Ssl_3_LargePage,
207
208 /* CCMD_REG faults. */
209 kDmarDiag_CcmdReg_NotSupported,
210 kDmarDiag_CcmdReg_Qi_Enabled,
211 kDmarDiag_CcmdReg_Ttm_Invalid,
212
213 /* IQA_REG faults. */
214 kDmarDiag_IqaReg_Dsc_Fetch_Error,
215 kDmarDiag_IqaReg_Dw_128_Invalid,
216 kDmarDiag_IqaReg_Dw_256_Invalid,
217
218 /* Invalidation Queue Error Info. */
219 kDmarDiag_Iqei_Dsc_Type_Invalid,
220 kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd,
221 kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd,
222 kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid,
223 kDmarDiag_Iqei_Ttm_Rsvd,
224
225 /* IQT_REG faults. */
226 kDmarDiag_IqtReg_Qt_Invalid,
227 kDmarDiag_IqtReg_Qt_NotAligned,
228
229 /* Compatibility Format Interrupt Faults. */
230 kDmarDiag_Ir_Cfi_Blocked,
231
232 /* Remappable Format Interrupt Faults. */
233 kDmarDiag_Ir_Rfi_Intr_Index_Invalid,
234 kDmarDiag_Ir_Rfi_Irte_Mode_Invalid,
235 kDmarDiag_Ir_Rfi_Irte_Not_Present,
236 kDmarDiag_Ir_Rfi_Irte_Read_Failed,
237 kDmarDiag_Ir_Rfi_Irte_Rsvd,
238 kDmarDiag_Ir_Rfi_Irte_Svt_Bus,
239 kDmarDiag_Ir_Rfi_Irte_Svt_Masked,
240 kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd,
241 kDmarDiag_Ir_Rfi_Rsvd,
242
243 /* Member for determining array index limit. */
244 kDmarDiag_End,
245
246 /* Usual 32-bit type size hack. */
247 kDmarDiag_32Bit_Hack = 0x7fffffff
248} DMARDIAG;
249AssertCompileSize(DMARDIAG, 4);
250
251/** DMAR diagnostic enum description expansion.
252 * The below construct ensures typos in the input to this macro are caught
253 * during compile time. */
254#define DMARDIAG_DESC(a_Name) RT_CONCAT(kDmarDiag_, a_Name) < kDmarDiag_End ? RT_STR(a_Name) : "Ignored"
255
256/** DMAR diagnostics description for members in DMARDIAG. */
257static const char *const g_apszDmarDiagDesc[] =
258{
259 DMARDIAG_DESC(None ),
260 DMARDIAG_DESC(Atf_Lct_1 ),
261 DMARDIAG_DESC(Atf_Lct_2 ),
262 DMARDIAG_DESC(Atf_Lct_3 ),
263 DMARDIAG_DESC(Atf_Lct_4_1 ),
264 DMARDIAG_DESC(Atf_Lct_4_2 ),
265 DMARDIAG_DESC(Atf_Lct_4_3 ),
266 DMARDIAG_DESC(Atf_Lct_5 ),
267 DMARDIAG_DESC(Atf_Lgn_1_1 ),
268 DMARDIAG_DESC(Atf_Lgn_1_2 ),
269 DMARDIAG_DESC(Atf_Lgn_1_3 ),
270 DMARDIAG_DESC(Atf_Lgn_4 ),
271 DMARDIAG_DESC(Atf_Lrt_1 ),
272 DMARDIAG_DESC(Atf_Lrt_2 ),
273 DMARDIAG_DESC(Atf_Lrt_3 ),
274 DMARDIAG_DESC(Atf_Lsl_1 ),
275 DMARDIAG_DESC(Atf_Lsl_2 ),
276 DMARDIAG_DESC(Atf_Lsl_2_LargePage ),
277 DMARDIAG_DESC(Atf_Rta_1_1 ),
278 DMARDIAG_DESC(Atf_Rta_1_2 ),
279 DMARDIAG_DESC(Atf_Rta_1_3 ),
280 DMARDIAG_DESC(Atf_Sgn_5 ),
281 DMARDIAG_DESC(Atf_Sgn_8 ),
282 DMARDIAG_DESC(Atf_Ssl_1 ),
283 DMARDIAG_DESC(Atf_Ssl_2 ),
284 DMARDIAG_DESC(Atf_Ssl_3 ),
285 DMARDIAG_DESC(Atf_Ssl_3_LargePage ),
286 DMARDIAG_DESC(CcmdReg_NotSupported ),
287 DMARDIAG_DESC(CcmdReg_Qi_Enabled ),
288 DMARDIAG_DESC(CcmdReg_Ttm_Invalid ),
289 DMARDIAG_DESC(IqaReg_Dsc_Fetch_Error ),
290 DMARDIAG_DESC(IqaReg_Dw_128_Invalid ),
291 DMARDIAG_DESC(IqaReg_Dw_256_Invalid ),
292 DMARDIAG_DESC(Iqei_Dsc_Type_Invalid ),
293 DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_0_1_Rsvd),
294 DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_2_3_Rsvd),
295 DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_Invalid ),
296 DMARDIAG_DESC(Iqei_Ttm_Rsvd ),
297 DMARDIAG_DESC(IqtReg_Qt_Invalid ),
298 DMARDIAG_DESC(IqtReg_Qt_NotAligned ),
299 DMARDIAG_DESC(Ir_Cfi_Blocked ),
300 DMARDIAG_DESC(Ir_Rfi_Intr_Index_Invalid ),
301 DMARDIAG_DESC(Ir_Rfi_Irte_Mode_Invalid ),
302 DMARDIAG_DESC(Ir_Rfi_Irte_Not_Present ),
303 DMARDIAG_DESC(Ir_Rfi_Irte_Read_Failed ),
304 DMARDIAG_DESC(Ir_Rfi_Irte_Rsvd ),
305 DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Bus ),
306 DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Masked ),
307 DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Rsvd ),
308 DMARDIAG_DESC(Ir_Rfi_Rsvd ),
309 /* kDmarDiag_End */
310};
311AssertCompile(RT_ELEMENTS(g_apszDmarDiagDesc) == kDmarDiag_End);
312#undef DMARDIAG_DESC
313
314/**
315 * The shared DMAR device state.
316 */
317typedef struct DMAR
318{
319 /** IOMMU device index. */
320 uint32_t idxIommu;
321 /** DMAR magic. */
322 uint32_t u32Magic;
323
324 /** Registers (group 0). */
325 uint8_t abRegs0[DMAR_MMIO_GROUP_0_SIZE];
326 /** Registers (group 1). */
327 uint8_t abRegs1[DMAR_MMIO_GROUP_1_SIZE];
328
329 /** @name Lazily activated registers.
330 * These are the active values for lazily activated registers. Software is free to
331 * modify the actual register values while remapping/translation is enabled but they
332 * take effect only when explicitly signaled by software, hence we need to hold the
333 * active values separately.
334 * @{ */
335 /** Currently active IRTA_REG. */
336 uint64_t uIrtaReg;
337 /** Currently active RTADDR_REG. */
338 uint64_t uRtaddrReg;
339 /** @} */
340
341 /** @name Register copies for a tiny bit faster and more convenient access.
342 * @{ */
343 /** Copy of VER_REG. */
344 uint8_t uVerReg;
345 /** Alignment. */
346 uint8_t abPadding[7];
347 /** Copy of CAP_REG. */
348 uint64_t fCapReg;
349 /** Copy of ECAP_REG. */
350 uint64_t fExtCapReg;
351 /** @} */
352
353 /** Host-address width (HAW) base address mask. */
354 uint64_t fHawBaseMask;
355 /** Maximum guest-address width (MGAW) invalid address mask. */
356 uint64_t fInvMgawMask;
357 /** Maximum supported paging level (3, 4 or 5). */
358 uint8_t cMaxPagingLevel;
359 /** DMA request valid permissions mask. */
360 uint8_t fPermValidMask;
361
362 /** The event semaphore the invalidation-queue thread waits on. */
363 SUPSEMEVENT hEvtInvQueue;
364 /** Padding. */
365 uint32_t uPadding0;
366 /** Error diagnostic. */
367 DMARDIAG enmDiag;
368 /** The MMIO handle. */
369 IOMMMIOHANDLE hMmio;
370
371#ifdef VBOX_WITH_STATISTICS
372 STAMCOUNTER StatMmioReadR3; /**< Number of MMIO reads in R3. */
373 STAMCOUNTER StatMmioReadRZ; /**< Number of MMIO reads in RZ. */
374 STAMCOUNTER StatMmioWriteR3; /**< Number of MMIO writes in R3. */
375 STAMCOUNTER StatMmioWriteRZ; /**< Number of MMIO writes in RZ. */
376
377 STAMCOUNTER StatMsiRemapCfiR3; /**< Number of compatibility-format interrupts remap requests in R3. */
378 STAMCOUNTER StatMsiRemapCfiRZ; /**< Number of compatibility-format interrupts remap requests in RZ. */
379 STAMCOUNTER StatMsiRemapRfiR3; /**< Number of remappable-format interrupts remap requests in R3. */
380 STAMCOUNTER StatMsiRemapRfiRZ; /**< Number of remappable-format interrupts remap requests in RZ. */
381
382 STAMCOUNTER StatMemReadR3; /**< Number of memory read translation requests in R3. */
383 STAMCOUNTER StatMemReadRZ; /**< Number of memory read translation requests in RZ. */
384 STAMCOUNTER StatMemWriteR3; /**< Number of memory write translation requests in R3. */
385 STAMCOUNTER StatMemWriteRZ; /**< Number of memory write translation requests in RZ. */
386
387 STAMCOUNTER StatMemBulkReadR3; /**< Number of memory read bulk translation requests in R3. */
388 STAMCOUNTER StatMemBulkReadRZ; /**< Number of memory read bulk translation requests in RZ. */
389 STAMCOUNTER StatMemBulkWriteR3; /**< Number of memory write bulk translation requests in R3. */
390 STAMCOUNTER StatMemBulkWriteRZ; /**< Number of memory write bulk translation requests in RZ. */
391
392 STAMCOUNTER StatCcInvDsc; /**< Number of Context-cache descriptors processed. */
393 STAMCOUNTER StatIotlbInvDsc; /**< Number of IOTLB descriptors processed. */
394 STAMCOUNTER StatDevtlbInvDsc; /**< Number of Device-TLB descriptors processed. */
395 STAMCOUNTER StatIecInvDsc; /**< Number of Interrupt-Entry cache descriptors processed. */
396 STAMCOUNTER StatInvWaitDsc; /**< Number of Invalidation wait descriptors processed. */
397 STAMCOUNTER StatPasidIotlbInvDsc; /**< Number of PASID-based IOTLB descriptors processed. */
398 STAMCOUNTER StatPasidCacheInvDsc; /**< Number of PASID-cache descriptors processed. */
399 STAMCOUNTER StatPasidDevtlbInvDsc; /**< Number of PASID-based device-TLB descriptors processed. */
400#endif
401} DMAR;
402/** Pointer to the DMAR device state. */
403typedef DMAR *PDMAR;
404/** Pointer to the const DMAR device state. */
405typedef DMAR const *PCDMAR;
406AssertCompileMemberAlignment(DMAR, abRegs0, 8);
407AssertCompileMemberAlignment(DMAR, abRegs1, 8);
408
409/**
410 * The ring-3 DMAR device state.
411 */
412typedef struct DMARR3
413{
414 /** Device instance. */
415 PPDMDEVINSR3 pDevInsR3;
416 /** The IOMMU helper. */
417 R3PTRTYPE(PCPDMIOMMUHLPR3) pIommuHlpR3;
418 /** The invalidation-queue thread. */
419 R3PTRTYPE(PPDMTHREAD) pInvQueueThread;
420} DMARR3;
421/** Pointer to the ring-3 DMAR device state. */
422typedef DMARR3 *PDMARR3;
423/** Pointer to the const ring-3 DMAR device state. */
424typedef DMARR3 const *PCDMARR3;
425
426/**
427 * The ring-0 DMAR device state.
428 */
429typedef struct DMARR0
430{
431 /** Device instance. */
432 PPDMDEVINSR0 pDevInsR0;
433 /** The IOMMU helper. */
434 R0PTRTYPE(PCPDMIOMMUHLPR0) pIommuHlpR0;
435} DMARR0;
436/** Pointer to the ring-0 IOMMU device state. */
437typedef DMARR0 *PDMARR0;
438/** Pointer to the const ring-0 IOMMU device state. */
439typedef DMARR0 const *PCDMARR0;
440
441/**
442 * The raw-mode DMAR device state.
443 */
444typedef struct DMARRC
445{
446 /** Device instance. */
447 PPDMDEVINSRC pDevInsRC;
448 /** The IOMMU helper. */
449 RCPTRTYPE(PCPDMIOMMUHLPRC) pIommuHlpRC;
450} DMARRC;
451/** Pointer to the raw-mode DMAR device state. */
452typedef DMARRC *PDMARRC;
453/** Pointer to the const raw-mode DMAR device state. */
454typedef DMARRC const *PCIDMARRC;
455
456/** The DMAR device state for the current context. */
457typedef CTX_SUFF(DMAR) DMARCC;
458/** Pointer to the DMAR device state for the current context. */
459typedef CTX_SUFF(PDMAR) PDMARCC;
460/** Pointer to the const DMAR device state for the current context. */
461typedef CTX_SUFF(PDMAR) const PCDMARCC;
462
463/**
464 * DMAR originated events that generate interrupts.
465 */
466typedef enum DMAREVENTTYPE
467{
468 /** Invalidation completion event. */
469 DMAREVENTTYPE_INV_COMPLETE = 0,
470 /** Fault event. */
471 DMAREVENTTYPE_FAULT
472} DMAREVENTTYPE;
473
474/**
475 * I/O Page.
476 */
477typedef struct DMARIOPAGE
478{
479 /** The base DMA address of a page. */
480 RTGCPHYS GCPhysBase;
481 /** The page shift. */
482 uint8_t cShift;
483 /** The permissions of this page (DMAR_PERM_XXX). */
484 uint8_t fPerm;
485} DMARIOPAGE;
486/** Pointer to an I/O page. */
487typedef DMARIOPAGE *PDMARIOPAGE;
488/** Pointer to a const I/O address range. */
489typedef DMARIOPAGE const *PCDMARIOPAGE;
490
491/**
492 * I/O Address Range.
493 */
494typedef struct DMARIOADDRRANGE
495{
496 /** The starting DMA address of this range. */
497 uint64_t uAddr;
498 /** The size of the range (in bytes). */
499 size_t cb;
500 /** The permissions of this range (DMAR_PERM_XXX). */
501 uint8_t fPerm;
502} DMARIOADDRRANGE;
503/** Pointer to an I/O address range. */
504typedef DMARIOADDRRANGE *PDMARIOADDRRANGE;
505/** Pointer to a const I/O address range. */
506typedef DMARIOADDRRANGE const *PCDMARIOADDRRANGE;
507
508/**
509 * DMA Memory Request (Input).
510 */
511typedef struct DMARMEMREQIN
512{
513 /** The address range being accessed. */
514 DMARIOADDRRANGE AddrRange;
515 /** The source device ID (bus, device, function). */
516 uint16_t idDevice;
517 /** The PASID if present (can be NIL_PCIPASID). */
518 PCIPASID Pasid;
519 /* The address translation type. */
520 PCIADDRTYPE enmAddrType;
521 /** The request type. */
522 VTDREQTYPE enmReqType;
523} DMARMEMREQIN;
524/** Pointer to a DMA memory request input. */
525typedef DMARMEMREQIN *PDMARMEMREQIN;
526/** Pointer to a const DMA memory input. */
527typedef DMARMEMREQIN const *PCDMARMEMREQIN;
528
529/**
530 * DMA Memory Request (Output).
531 */
532typedef struct DMARMEMREQOUT
533{
534 /** The address range of the translated region. */
535 DMARIOADDRRANGE AddrRange;
536 /** The domain ID of the translated region. */
537 uint16_t idDomain;
538} DMARMEMREQOUT;
539/** Pointer to a DMA memory request output. */
540typedef DMARMEMREQOUT *PDMARMEMREQOUT;
541/** Pointer to a const DMA memory request output. */
542typedef DMARMEMREQOUT const *PCDMARMEMREQOUT;
543
544/**
545 * DMA Memory Request (Auxiliary Info).
546 * These get updated and used as part of the translation process.
547 */
548typedef struct DMARMEMREQAUX
549{
550 /** The table translation mode (VTD_TTM_XXX). */
551 uint8_t fTtm;
552 /** The fault processing disabled (FPD) bit. */
553 uint8_t fFpd;
554 /** The paging level of the translation. */
555 uint8_t cPagingLevel;
556 uint8_t afPadding[5];
557 /** The first-level page-table pointer (base). */
558 uint64_t uFlptPtr;
559 /** The second-level page-table pointer (base). */
560 uint64_t uSlptPtr;
561} DMARMEMREQAUX;
562/** Pointer to a DMA memory request output. */
563typedef DMARMEMREQAUX *PDMARMEMREQAUX;
564/** Pointer to a const DMA memory request output. */
565typedef DMARMEMREQAUX const *PCDMARMEMREQAUX;
566
567/**
568 * DMA Memory Request Remapping Information.
569 */
570typedef struct DMARMEMREQREMAP
571{
572 /** The DMA memory request input. */
573 DMARMEMREQIN In;
574 /** DMA memory request auxiliary information. */
575 DMARMEMREQAUX Aux;
576 /** The DMA memory request output. */
577 DMARMEMREQOUT Out;
578} DMARMEMREQREMAP;
579/** Pointer to a DMA remap info. */
580typedef DMARMEMREQREMAP *PDMARMEMREQREMAP;
581/** Pointer to a const DMA remap info. */
582typedef DMARMEMREQREMAP const *PCDMARMEMREQREMAP;
583
584typedef DECLCALLBACKTYPE(int, FNDMAADDRTRANSLATE,(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux,
585 PDMARIOPAGE pIoPageOut));
586typedef FNDMAADDRTRANSLATE *PFNDMAADDRTRANSLATE;
587
588
589/*********************************************************************************************************************************
590* Global Variables *
591*********************************************************************************************************************************/
592/**
593 * Read-write masks for DMAR registers (group 0).
594 */
595static uint32_t const g_au32RwMasks0[] =
596{
597 /* Offset Register Low High */
598 /* 0x000 VER_REG */ VTD_VER_REG_RW_MASK,
599 /* 0x004 Reserved */ 0,
600 /* 0x008 CAP_REG */ DMAR_LO_U32(VTD_CAP_REG_RW_MASK), DMAR_HI_U32(VTD_CAP_REG_RW_MASK),
601 /* 0x010 ECAP_REG */ DMAR_LO_U32(VTD_ECAP_REG_RW_MASK), DMAR_HI_U32(VTD_ECAP_REG_RW_MASK),
602 /* 0x018 GCMD_REG */ VTD_GCMD_REG_RW_MASK,
603 /* 0x01c GSTS_REG */ VTD_GSTS_REG_RW_MASK,
604 /* 0x020 RTADDR_REG */ DMAR_LO_U32(VTD_RTADDR_REG_RW_MASK), DMAR_HI_U32(VTD_RTADDR_REG_RW_MASK),
605 /* 0x028 CCMD_REG */ DMAR_LO_U32(VTD_CCMD_REG_RW_MASK), DMAR_HI_U32(VTD_CCMD_REG_RW_MASK),
606 /* 0x030 Reserved */ 0,
607 /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW_MASK,
608 /* 0x038 FECTL_REG */ VTD_FECTL_REG_RW_MASK,
609 /* 0x03c FEDATA_REG */ VTD_FEDATA_REG_RW_MASK,
610 /* 0x040 FEADDR_REG */ VTD_FEADDR_REG_RW_MASK,
611 /* 0x044 FEUADDR_REG */ VTD_FEUADDR_REG_RW_MASK,
612 /* 0x048 Reserved */ 0, 0,
613 /* 0x050 Reserved */ 0, 0,
614 /* 0x058 AFLOG_REG */ DMAR_LO_U32(VTD_AFLOG_REG_RW_MASK), DMAR_HI_U32(VTD_AFLOG_REG_RW_MASK),
615 /* 0x060 Reserved */ 0,
616 /* 0x064 PMEN_REG */ 0, /* RO as we don't support PLMR and PHMR. */
617 /* 0x068 PLMBASE_REG */ 0, /* RO as we don't support PLMR. */
618 /* 0x06c PLMLIMIT_REG */ 0, /* RO as we don't support PLMR. */
619 /* 0x070 PHMBASE_REG */ 0, 0, /* RO as we don't support PHMR. */
620 /* 0x078 PHMLIMIT_REG */ 0, 0, /* RO as we don't support PHMR. */
621 /* 0x080 IQH_REG */ DMAR_LO_U32(VTD_IQH_REG_RW_MASK), DMAR_HI_U32(VTD_IQH_REG_RW_MASK),
622 /* 0x088 IQT_REG */ DMAR_LO_U32(VTD_IQT_REG_RW_MASK), DMAR_HI_U32(VTD_IQT_REG_RW_MASK),
623 /* 0x090 IQA_REG */ DMAR_LO_U32(VTD_IQA_REG_RW_MASK), DMAR_HI_U32(VTD_IQA_REG_RW_MASK),
624 /* 0x098 Reserved */ 0,
625 /* 0x09c ICS_REG */ VTD_ICS_REG_RW_MASK,
626 /* 0x0a0 IECTL_REG */ VTD_IECTL_REG_RW_MASK,
627 /* 0x0a4 IEDATA_REG */ VTD_IEDATA_REG_RW_MASK,
628 /* 0x0a8 IEADDR_REG */ VTD_IEADDR_REG_RW_MASK,
629 /* 0x0ac IEUADDR_REG */ VTD_IEUADDR_REG_RW_MASK,
630 /* 0x0b0 IQERCD_REG */ DMAR_LO_U32(VTD_IQERCD_REG_RW_MASK), DMAR_HI_U32(VTD_IQERCD_REG_RW_MASK),
631 /* 0x0b8 IRTA_REG */ DMAR_LO_U32(VTD_IRTA_REG_RW_MASK), DMAR_HI_U32(VTD_IRTA_REG_RW_MASK),
632 /* 0x0c0 PQH_REG */ DMAR_LO_U32(VTD_PQH_REG_RW_MASK), DMAR_HI_U32(VTD_PQH_REG_RW_MASK),
633 /* 0x0c8 PQT_REG */ DMAR_LO_U32(VTD_PQT_REG_RW_MASK), DMAR_HI_U32(VTD_PQT_REG_RW_MASK),
634 /* 0x0d0 PQA_REG */ DMAR_LO_U32(VTD_PQA_REG_RW_MASK), DMAR_HI_U32(VTD_PQA_REG_RW_MASK),
635 /* 0x0d8 Reserved */ 0,
636 /* 0x0dc PRS_REG */ VTD_PRS_REG_RW_MASK,
637 /* 0x0e0 PECTL_REG */ VTD_PECTL_REG_RW_MASK,
638 /* 0x0e4 PEDATA_REG */ VTD_PEDATA_REG_RW_MASK,
639 /* 0x0e8 PEADDR_REG */ VTD_PEADDR_REG_RW_MASK,
640 /* 0x0ec PEUADDR_REG */ VTD_PEUADDR_REG_RW_MASK,
641 /* 0x0f0 Reserved */ 0, 0,
642 /* 0x0f8 Reserved */ 0, 0,
643 /* 0x100 MTRRCAP_REG */ DMAR_LO_U32(VTD_MTRRCAP_REG_RW_MASK), DMAR_HI_U32(VTD_MTRRCAP_REG_RW_MASK),
644 /* 0x108 MTRRDEF_REG */ 0, 0, /* RO as we don't support MTS. */
645 /* 0x110 Reserved */ 0, 0,
646 /* 0x118 Reserved */ 0, 0,
647 /* 0x120 MTRR_FIX64_00000_REG */ 0, 0, /* RO as we don't support MTS. */
648 /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
649 /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
650 /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
651 /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
652 /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
653 /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
654 /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
655 /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
656 /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
657 /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
658 /* 0x178 Reserved */ 0, 0,
659 /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0, /* RO as we don't support MTS. */
660 /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
661 /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
662 /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
663 /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
664 /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
665 /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
666 /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
667 /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
668 /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
669 /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
670 /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
671 /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
672 /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
673 /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
674 /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
675 /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
676 /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
677 /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
678 /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
679};
680AssertCompile(sizeof(g_au32RwMasks0) == DMAR_MMIO_GROUP_0_SIZE);
681
682/**
683 * Read-only Status, Write-1-to-clear masks for DMAR registers (group 0).
684 */
685static uint32_t const g_au32Rw1cMasks0[] =
686{
687 /* Offset Register Low High */
688 /* 0x000 VER_REG */ 0,
689 /* 0x004 Reserved */ 0,
690 /* 0x008 CAP_REG */ 0, 0,
691 /* 0x010 ECAP_REG */ 0, 0,
692 /* 0x018 GCMD_REG */ 0,
693 /* 0x01c GSTS_REG */ 0,
694 /* 0x020 RTADDR_REG */ 0, 0,
695 /* 0x028 CCMD_REG */ 0, 0,
696 /* 0x030 Reserved */ 0,
697 /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW1C_MASK,
698 /* 0x038 FECTL_REG */ 0,
699 /* 0x03c FEDATA_REG */ 0,
700 /* 0x040 FEADDR_REG */ 0,
701 /* 0x044 FEUADDR_REG */ 0,
702 /* 0x048 Reserved */ 0, 0,
703 /* 0x050 Reserved */ 0, 0,
704 /* 0x058 AFLOG_REG */ 0, 0,
705 /* 0x060 Reserved */ 0,
706 /* 0x064 PMEN_REG */ 0,
707 /* 0x068 PLMBASE_REG */ 0,
708 /* 0x06c PLMLIMIT_REG */ 0,
709 /* 0x070 PHMBASE_REG */ 0, 0,
710 /* 0x078 PHMLIMIT_REG */ 0, 0,
711 /* 0x080 IQH_REG */ 0, 0,
712 /* 0x088 IQT_REG */ 0, 0,
713 /* 0x090 IQA_REG */ 0, 0,
714 /* 0x098 Reserved */ 0,
715 /* 0x09c ICS_REG */ VTD_ICS_REG_RW1C_MASK,
716 /* 0x0a0 IECTL_REG */ 0,
717 /* 0x0a4 IEDATA_REG */ 0,
718 /* 0x0a8 IEADDR_REG */ 0,
719 /* 0x0ac IEUADDR_REG */ 0,
720 /* 0x0b0 IQERCD_REG */ 0, 0,
721 /* 0x0b8 IRTA_REG */ 0, 0,
722 /* 0x0c0 PQH_REG */ 0, 0,
723 /* 0x0c8 PQT_REG */ 0, 0,
724 /* 0x0d0 PQA_REG */ 0, 0,
725 /* 0x0d8 Reserved */ 0,
726 /* 0x0dc PRS_REG */ 0,
727 /* 0x0e0 PECTL_REG */ 0,
728 /* 0x0e4 PEDATA_REG */ 0,
729 /* 0x0e8 PEADDR_REG */ 0,
730 /* 0x0ec PEUADDR_REG */ 0,
731 /* 0x0f0 Reserved */ 0, 0,
732 /* 0x0f8 Reserved */ 0, 0,
733 /* 0x100 MTRRCAP_REG */ 0, 0,
734 /* 0x108 MTRRDEF_REG */ 0, 0,
735 /* 0x110 Reserved */ 0, 0,
736 /* 0x118 Reserved */ 0, 0,
737 /* 0x120 MTRR_FIX64_00000_REG */ 0, 0,
738 /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
739 /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
740 /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
741 /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
742 /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
743 /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
744 /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
745 /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
746 /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
747 /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
748 /* 0x178 Reserved */ 0, 0,
749 /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0,
750 /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
751 /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
752 /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
753 /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
754 /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
755 /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
756 /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
757 /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
758 /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
759 /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
760 /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
761 /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
762 /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
763 /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
764 /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
765 /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
766 /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
767 /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
768 /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
769};
770AssertCompile(sizeof(g_au32Rw1cMasks0) == DMAR_MMIO_GROUP_0_SIZE);
771
772/**
773 * Read-write masks for DMAR registers (group 1).
774 */
775static uint32_t const g_au32RwMasks1[] =
776{
777 /* Offset Register Low High */
778 /* 0xe00 VCCAP_REG */ DMAR_LO_U32(VTD_VCCAP_REG_RW_MASK), DMAR_HI_U32(VTD_VCCAP_REG_RW_MASK),
779 /* 0xe08 VCMD_EO_REG */ DMAR_LO_U32(VTD_VCMD_EO_REG_RW_MASK), DMAR_HI_U32(VTD_VCMD_EO_REG_RW_MASK),
780 /* 0xe10 VCMD_REG */ 0, 0, /* RO: VCS not supported. */
781 /* 0xe18 VCMDRSVD_REG */ 0, 0,
782 /* 0xe20 VCRSP_REG */ 0, 0, /* RO: VCS not supported. */
783 /* 0xe28 VCRSPRSVD_REG */ 0, 0,
784 /* 0xe30 Reserved */ 0, 0,
785 /* 0xe38 Reserved */ 0, 0,
786 /* 0xe40 Reserved */ 0, 0,
787 /* 0xe48 Reserved */ 0, 0,
788 /* 0xe50 IVA_REG */ DMAR_LO_U32(VTD_IVA_REG_RW_MASK), DMAR_HI_U32(VTD_IVA_REG_RW_MASK),
789 /* 0xe58 IOTLB_REG */ DMAR_LO_U32(VTD_IOTLB_REG_RW_MASK), DMAR_HI_U32(VTD_IOTLB_REG_RW_MASK),
790 /* 0xe60 Reserved */ 0, 0,
791 /* 0xe68 Reserved */ 0, 0,
792 /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW_MASK),
793 /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW_MASK),
794};
795AssertCompile(sizeof(g_au32RwMasks1) == DMAR_MMIO_GROUP_1_SIZE);
796AssertCompile((DMAR_MMIO_OFF_FRCD_LO_REG - DMAR_MMIO_GROUP_1_OFF_FIRST) + DMAR_FRCD_REG_COUNT * 2 * sizeof(uint64_t) );
797
798/**
799 * Read-only Status, Write-1-to-clear masks for DMAR registers (group 1).
800 */
801static uint32_t const g_au32Rw1cMasks1[] =
802{
803 /* Offset Register Low High */
804 /* 0xe00 VCCAP_REG */ 0, 0,
805 /* 0xe08 VCMD_EO_REG */ 0, 0,
806 /* 0xe10 VCMD_REG */ 0, 0,
807 /* 0xe18 VCMDRSVD_REG */ 0, 0,
808 /* 0xe20 VCRSP_REG */ 0, 0,
809 /* 0xe28 VCRSPRSVD_REG */ 0, 0,
810 /* 0xe30 Reserved */ 0, 0,
811 /* 0xe38 Reserved */ 0, 0,
812 /* 0xe40 Reserved */ 0, 0,
813 /* 0xe48 Reserved */ 0, 0,
814 /* 0xe50 IVA_REG */ 0, 0,
815 /* 0xe58 IOTLB_REG */ 0, 0,
816 /* 0xe60 Reserved */ 0, 0,
817 /* 0xe68 Reserved */ 0, 0,
818 /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW1C_MASK),
819 /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW1C_MASK),
820};
821AssertCompile(sizeof(g_au32Rw1cMasks1) == DMAR_MMIO_GROUP_1_SIZE);
822
823/** Array of RW masks for each register group. */
824static uint8_t const *g_apbRwMasks[] = { (uint8_t *)&g_au32RwMasks0[0], (uint8_t *)&g_au32RwMasks1[0] };
825
826/** Array of RW1C masks for each register group. */
827static uint8_t const *g_apbRw1cMasks[] = { (uint8_t *)&g_au32Rw1cMasks0[0], (uint8_t *)&g_au32Rw1cMasks1[0] };
828
829/* Masks arrays must be identical in size (even bounds checking code assumes this). */
830AssertCompile(sizeof(g_apbRw1cMasks) == sizeof(g_apbRwMasks));
831
832/** Array of valid domain-ID bits. */
833static uint16_t const g_auNdMask[] = { 0xf, 0x3f, 0xff, 0x3ff, 0xfff, 0x3fff, 0xffff, 0 };
834AssertCompile(RT_ELEMENTS(g_auNdMask) >= DMAR_ND);
835
836
837#ifndef VBOX_DEVICE_STRUCT_TESTCASE
838/** @todo Add IOMMU struct size/alignment verification, see
839 * Devices/testcase/Makefile.kmk and
840 * Devices/testcase/tstDeviceStructSize[RC].cpp */
841
842/**
843 * Returns the supported adjusted guest-address width (SAGAW) given the maximum
844 * guest address width (MGAW).
845 *
846 * @returns The CAP_REG.SAGAW value.
847 * @param uMgaw The CAP_REG.MGAW value.
848 */
849static uint8_t vtdCapRegGetSagaw(uint8_t uMgaw)
850{
851 /*
852 * It doesn't make sense to me that a CPU (or IOMMU hardware) will ever support
853 * 5-level paging but not 4 or 3-level paging. So smaller page-table levels
854 * are always OR'ed in below.
855 *
856 * The bit values below (57, 48, 39 bits) represents the levels of page-table walks
857 * for 4KB base page size (5-level, 4-level and 3-level paging respectively).
858 *
859 * See Intel VT-d spec. 10.4.2 "Capability Register".
860 */
861 ++uMgaw;
862 uint8_t const fSagaw = uMgaw >= 57 ? RT_BIT(3) | RT_BIT(2) | RT_BIT(1)
863 : uMgaw >= 48 ? RT_BIT(2) | RT_BIT(1)
864 : uMgaw >= 39 ? RT_BIT(1)
865 : 0;
866 return fSagaw;
867}
868
869
870/**
871 * Returns the maximum supported paging level given the supported adjusted
872 * guest-address width (SAGAW) field.
873 *
874 * @returns The highest paging level supported, 0 if invalid.
875 * @param fSagaw The CAP_REG.SAGAW value.
876 */
877static uint8_t vtdCapRegGetMaxPagingLevel(uint8_t fSagaw)
878{
879 uint8_t const cMaxPagingLevel = fSagaw & RT_BIT(3) ? 5
880 : fSagaw & RT_BIT(2) ? 4
881 : fSagaw & RT_BIT(1) ? 3
882 : 0;
883 return cMaxPagingLevel;
884}
885
886
887/**
888 * Returns whether the interrupt remapping (IR) fault is qualified or not.
889 *
890 * @returns @c true if qualified, @c false otherwise.
891 * @param enmIrFault The interrupt remapping fault condition.
892 */
893static bool vtdIrFaultIsQualified(VTDIRFAULT enmIrFault)
894{
895 switch (enmIrFault)
896 {
897 case VTDIRFAULT_IRTE_NOT_PRESENT:
898 case VTDIRFAULT_IRTE_PRESENT_RSVD:
899 case VTDIRFAULT_IRTE_PRESENT_INVALID:
900 case VTDIRFAULT_PID_READ_FAILED:
901 case VTDIRFAULT_PID_RSVD:
902 return true;
903 default:
904 return false;
905 }
906}
907
908
909/**
910 * Returns table translation mode's descriptive name.
911 *
912 * @returns The descriptive name.
913 * @param uTtm The RTADDR_REG.TTM value.
914 */
915static const char* vtdRtaddrRegGetTtmDesc(uint8_t uTtm)
916{
917 Assert(!(uTtm & 3));
918 static const char* s_apszTtmNames[] =
919 {
920 "Legacy Mode",
921 "Scalable Mode",
922 "Reserved",
923 "Abort-DMA Mode"
924 };
925 return s_apszTtmNames[uTtm & (RT_ELEMENTS(s_apszTtmNames) - 1)];
926}
927
928
929/**
930 * Gets the index of the group the register belongs to given its MMIO offset.
931 *
932 * @returns The group index.
933 * @param offReg The MMIO offset of the register.
934 * @param cbReg The size of the access being made (for bounds checking on
935 * debug builds).
936 */
937DECLINLINE(uint8_t) dmarRegGetGroupIndex(uint16_t offReg, uint8_t cbReg)
938{
939 uint16_t const offLast = offReg + cbReg - 1;
940 AssertCompile(DMAR_MMIO_GROUP_0_OFF_FIRST == 0);
941 AssertMsg(DMAR_IS_MMIO_OFF_VALID(offLast), ("off=%#x cb=%u\n", offReg, cbReg));
942 return !(offLast < DMAR_MMIO_GROUP_0_OFF_END);
943}
944
945
946/**
947 * Gets the group the register belongs to given its MMIO offset.
948 *
949 * @returns Pointer to the first element of the register group.
950 * @param pThis The shared DMAR device state.
951 * @param offReg The MMIO offset of the register.
952 * @param cbReg The size of the access being made (for bounds checking on
953 * debug builds).
954 * @param pIdxGroup Where to store the index of the register group the register
955 * belongs to.
956 */
957DECLINLINE(uint8_t *) dmarRegGetGroup(PDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
958{
959 *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
960 uint8_t *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
961 return apbRegs[*pIdxGroup];
962}
963
964
965/**
966 * Const/read-only version of dmarRegGetGroup.
967 *
968 * @copydoc dmarRegGetGroup
969 */
970DECLINLINE(uint8_t const*) dmarRegGetGroupRo(PCDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
971{
972 *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
973 uint8_t const *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
974 return apbRegs[*pIdxGroup];
975}
976
977
978/**
979 * Writes a 32-bit register with the exactly the supplied value.
980 *
981 * @param pThis The shared DMAR device state.
982 * @param offReg The MMIO offset of the register.
983 * @param uReg The 32-bit value to write.
984 */
985static void dmarRegWriteRaw32(PDMAR pThis, uint16_t offReg, uint32_t uReg)
986{
987 uint8_t idxGroup;
988 uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint32_t), &idxGroup);
989 NOREF(idxGroup);
990 *(uint32_t *)(pabRegs + offReg) = uReg;
991}
992
993
994/**
995 * Writes a 64-bit register with the exactly the supplied value.
996 *
997 * @param pThis The shared DMAR device state.
998 * @param offReg The MMIO offset of the register.
999 * @param uReg The 64-bit value to write.
1000 */
1001static void dmarRegWriteRaw64(PDMAR pThis, uint16_t offReg, uint64_t uReg)
1002{
1003 uint8_t idxGroup;
1004 uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint64_t), &idxGroup);
1005 NOREF(idxGroup);
1006 *(uint64_t *)(pabRegs + offReg) = uReg;
1007}
1008
1009
1010/**
1011 * Reads a 32-bit register with exactly the value it contains.
1012 *
1013 * @returns The raw register value.
1014 * @param pThis The shared DMAR device state.
1015 * @param offReg The MMIO offset of the register.
1016 */
1017static uint32_t dmarRegReadRaw32(PCDMAR pThis, uint16_t offReg)
1018{
1019 uint8_t idxGroup;
1020 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
1021 NOREF(idxGroup);
1022 return *(uint32_t *)(pabRegs + offReg);
1023}
1024
1025
1026/**
1027 * Reads a 64-bit register with exactly the value it contains.
1028 *
1029 * @returns The raw register value.
1030 * @param pThis The shared DMAR device state.
1031 * @param offReg The MMIO offset of the register.
1032 */
1033static uint64_t dmarRegReadRaw64(PCDMAR pThis, uint16_t offReg)
1034{
1035 uint8_t idxGroup;
1036 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
1037 NOREF(idxGroup);
1038 return *(uint64_t *)(pabRegs + offReg);
1039}
1040
1041
1042/**
1043 * Reads a 32-bit register with exactly the value it contains along with their
1044 * corresponding masks
1045 *
1046 * @param pThis The shared DMAR device state.
1047 * @param offReg The MMIO offset of the register.
1048 * @param puReg Where to store the raw 32-bit register value.
1049 * @param pfRwMask Where to store the RW mask corresponding to this register.
1050 * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
1051 */
1052static void dmarRegReadRaw32Ex(PCDMAR pThis, uint16_t offReg, uint32_t *puReg, uint32_t *pfRwMask, uint32_t *pfRw1cMask)
1053{
1054 uint8_t idxGroup;
1055 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
1056 Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
1057 uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
1058 uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
1059 *puReg = *(uint32_t *)(pabRegs + offReg);
1060 *pfRwMask = *(uint32_t *)(pabRwMasks + offReg);
1061 *pfRw1cMask = *(uint32_t *)(pabRw1cMasks + offReg);
1062}
1063
1064
1065/**
1066 * Reads a 64-bit register with exactly the value it contains along with their
1067 * corresponding masks.
1068 *
1069 * @param pThis The shared DMAR device state.
1070 * @param offReg The MMIO offset of the register.
1071 * @param puReg Where to store the raw 64-bit register value.
1072 * @param pfRwMask Where to store the RW mask corresponding to this register.
1073 * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
1074 */
1075static void dmarRegReadRaw64Ex(PCDMAR pThis, uint16_t offReg, uint64_t *puReg, uint64_t *pfRwMask, uint64_t *pfRw1cMask)
1076{
1077 uint8_t idxGroup;
1078 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
1079 Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
1080 uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
1081 uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
1082 *puReg = *(uint64_t *)(pabRegs + offReg);
1083 *pfRwMask = *(uint64_t *)(pabRwMasks + offReg);
1084 *pfRw1cMask = *(uint64_t *)(pabRw1cMasks + offReg);
1085}
1086
1087
1088/**
1089 * Writes a 32-bit register as it would be when written by software.
1090 * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
1091 *
1092 * @returns The value that's actually written to the register.
1093 * @param pThis The shared DMAR device state.
1094 * @param offReg The MMIO offset of the register.
1095 * @param uReg The 32-bit value to write.
1096 * @param puPrev Where to store the register value prior to writing.
1097 */
1098static uint32_t dmarRegWrite32(PDMAR pThis, uint16_t offReg, uint32_t uReg, uint32_t *puPrev)
1099{
1100 /* Read current value from the 32-bit register. */
1101 uint32_t uCurReg;
1102 uint32_t fRwMask;
1103 uint32_t fRw1cMask;
1104 dmarRegReadRaw32Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
1105 *puPrev = uCurReg;
1106
1107 uint32_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
1108 uint32_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
1109 uint32_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
1110 uint32_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
1111
1112 /* Write new value to the 32-bit register. */
1113 dmarRegWriteRaw32(pThis, offReg, uNewReg);
1114 return uNewReg;
1115}
1116
1117
1118/**
1119 * Writes a 64-bit register as it would be when written by software.
1120 * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
1121 *
1122 * @returns The value that's actually written to the register.
1123 * @param pThis The shared DMAR device state.
1124 * @param offReg The MMIO offset of the register.
1125 * @param uReg The 64-bit value to write.
1126 * @param puPrev Where to store the register value prior to writing.
1127 */
1128static uint64_t dmarRegWrite64(PDMAR pThis, uint16_t offReg, uint64_t uReg, uint64_t *puPrev)
1129{
1130 /* Read current value from the 64-bit register. */
1131 uint64_t uCurReg;
1132 uint64_t fRwMask;
1133 uint64_t fRw1cMask;
1134 dmarRegReadRaw64Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
1135 *puPrev = uCurReg;
1136
1137 uint64_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
1138 uint64_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
1139 uint64_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
1140 uint64_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
1141
1142 /* Write new value to the 64-bit register. */
1143 dmarRegWriteRaw64(pThis, offReg, uNewReg);
1144 return uNewReg;
1145}
1146
1147
1148/**
1149 * Reads a 32-bit register as it would be when read by software.
1150 *
1151 * @returns The register value.
1152 * @param pThis The shared DMAR device state.
1153 * @param offReg The MMIO offset of the register.
1154 */
1155static uint32_t dmarRegRead32(PCDMAR pThis, uint16_t offReg)
1156{
1157 return dmarRegReadRaw32(pThis, offReg);
1158}
1159
1160
1161/**
1162 * Reads a 64-bit register as it would be when read by software.
1163 *
1164 * @returns The register value.
1165 * @param pThis The shared DMAR device state.
1166 * @param offReg The MMIO offset of the register.
1167 */
1168static uint64_t dmarRegRead64(PCDMAR pThis, uint16_t offReg)
1169{
1170 return dmarRegReadRaw64(pThis, offReg);
1171}
1172
1173
1174/**
1175 * Modifies a 32-bit register.
1176 *
1177 * @param pThis The shared DMAR device state.
1178 * @param offReg The MMIO offset of the register.
1179 * @param fAndMask The AND mask (applied first).
1180 * @param fOrMask The OR mask.
1181 * @remarks This does NOT apply RO or RW1C masks while modifying the
1182 * register.
1183 */
1184static void dmarRegChangeRaw32(PDMAR pThis, uint16_t offReg, uint32_t fAndMask, uint32_t fOrMask)
1185{
1186 uint32_t uReg = dmarRegReadRaw32(pThis, offReg);
1187 uReg = (uReg & fAndMask) | fOrMask;
1188 dmarRegWriteRaw32(pThis, offReg, uReg);
1189}
1190
1191
1192/**
1193 * Modifies a 64-bit register.
1194 *
1195 * @param pThis The shared DMAR device state.
1196 * @param offReg The MMIO offset of the register.
1197 * @param fAndMask The AND mask (applied first).
1198 * @param fOrMask The OR mask.
1199 * @remarks This does NOT apply RO or RW1C masks while modifying the
1200 * register.
1201 */
1202static void dmarRegChangeRaw64(PDMAR pThis, uint16_t offReg, uint64_t fAndMask, uint64_t fOrMask)
1203{
1204 uint64_t uReg = dmarRegReadRaw64(pThis, offReg);
1205 uReg = (uReg & fAndMask) | fOrMask;
1206 dmarRegWriteRaw64(pThis, offReg, uReg);
1207}
1208
1209
1210/**
1211 * Checks if the invalidation-queue is empty.
1212 *
1213 * Extended version which optionally returns the current queue head and tail
1214 * offsets.
1215 *
1216 * @returns @c true if empty, @c false otherwise.
1217 * @param pThis The shared DMAR device state.
1218 * @param poffQh Where to store the queue head offset. Optional, can be NULL.
1219 * @param poffQt Where to store the queue tail offset. Optional, can be NULL.
1220 */
1221static bool dmarInvQueueIsEmptyEx(PCDMAR pThis, uint32_t *poffQh, uint32_t *poffQt)
1222{
1223 /* Read only the low-32 bits of the queue head and queue tail as high bits are all RsvdZ.*/
1224 uint32_t const uIqtReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQT_REG);
1225 uint32_t const uIqhReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQH_REG);
1226
1227 /* Don't bother masking QT, QH since other bits are RsvdZ. */
1228 Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
1229 Assert(!(uIqhReg & ~VTD_BF_IQH_REG_QH_MASK));
1230 if (poffQh)
1231 *poffQh = uIqhReg;
1232 if (poffQt)
1233 *poffQt = uIqtReg;
1234 return uIqtReg == uIqhReg;
1235}
1236
1237
1238/**
1239 * Checks if the invalidation-queue is empty.
1240 *
1241 * @returns @c true if empty, @c false otherwise.
1242 * @param pThis The shared DMAR device state.
1243 */
1244static bool dmarInvQueueIsEmpty(PCDMAR pThis)
1245{
1246 return dmarInvQueueIsEmptyEx(pThis, NULL /* poffQh */, NULL /* poffQt */);
1247}
1248
1249
1250/**
1251 * Checks if the invalidation-queue is capable of processing requests.
1252 *
1253 * @returns @c true if the invalidation-queue can process requests, @c false
1254 * otherwise.
1255 * @param pThis The shared DMAR device state.
1256 */
1257static bool dmarInvQueueCanProcessRequests(PCDMAR pThis)
1258{
1259 /* Check if queued-invalidation is enabled. */
1260 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1261 if (uGstsReg & VTD_BF_GSTS_REG_QIES_MASK)
1262 {
1263 /* Check if there are no invalidation-queue or timeout errors. */
1264 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1265 if (!(uFstsReg & (VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_ITE_MASK)))
1266 return true;
1267 }
1268 return false;
1269}
1270
1271
1272/**
1273 * Wakes up the invalidation-queue thread if there are requests to be processed.
1274 *
1275 * @param pDevIns The IOMMU device instance.
1276 */
1277static void dmarInvQueueThreadWakeUpIfNeeded(PPDMDEVINS pDevIns)
1278{
1279 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1280 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1281 Log4Func(("\n"));
1282
1283 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1284
1285 if ( dmarInvQueueCanProcessRequests(pThis)
1286 && !dmarInvQueueIsEmpty(pThis))
1287 {
1288 Log4Func(("Signaling the invalidation-queue thread\n"));
1289 PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
1290 }
1291}
1292
1293
1294/**
1295 * Raises an event on behalf of the DMAR.
1296 *
1297 * These are events that are generated by the DMAR itself (like faults and
1298 * invalidation completion notifications).
1299 *
1300 * @param pDevIns The IOMMU device instance.
1301 * @param enmEventType The DMAR event type.
1302 *
1303 * @remarks The DMAR lock must be held while calling this function.
1304 */
1305static void dmarEventRaiseInterrupt(PPDMDEVINS pDevIns, DMAREVENTTYPE enmEventType)
1306{
1307 uint16_t offCtlReg;
1308 uint32_t fIntrMaskedMask;
1309 uint32_t fIntrPendingMask;
1310 uint16_t offMsiAddrLoReg;
1311 uint16_t offMsiAddrHiReg;
1312 uint16_t offMsiDataReg;
1313 switch (enmEventType)
1314 {
1315 case DMAREVENTTYPE_INV_COMPLETE:
1316 {
1317 offCtlReg = VTD_MMIO_OFF_IECTL_REG;
1318 fIntrMaskedMask = VTD_BF_IECTL_REG_IM_MASK;
1319 fIntrPendingMask = VTD_BF_IECTL_REG_IP_MASK;
1320 offMsiAddrLoReg = VTD_MMIO_OFF_IEADDR_REG;
1321 offMsiAddrHiReg = VTD_MMIO_OFF_IEUADDR_REG;
1322 offMsiDataReg = VTD_MMIO_OFF_IEDATA_REG;
1323 break;
1324 }
1325
1326 case DMAREVENTTYPE_FAULT:
1327 {
1328 offCtlReg = VTD_MMIO_OFF_FECTL_REG;
1329 fIntrMaskedMask = VTD_BF_FECTL_REG_IM_MASK;
1330 fIntrPendingMask = VTD_BF_FECTL_REG_IP_MASK;
1331 offMsiAddrLoReg = VTD_MMIO_OFF_FEADDR_REG;
1332 offMsiAddrHiReg = VTD_MMIO_OFF_FEUADDR_REG;
1333 offMsiDataReg = VTD_MMIO_OFF_FEDATA_REG;
1334 break;
1335 }
1336
1337 default:
1338 {
1339 /* Shouldn't ever happen. */
1340 AssertMsgFailedReturnVoid(("DMAR event type %#x unknown!\n", enmEventType));
1341 }
1342 }
1343
1344 /* Check if software has masked the interrupt. */
1345 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1346 uint32_t uCtlReg = dmarRegReadRaw32(pThis, offCtlReg);
1347 if (!(uCtlReg & fIntrMaskedMask))
1348 {
1349 /*
1350 * Interrupt is unmasked, raise it.
1351 * Interrupts generated by the DMAR have trigger mode and level as 0.
1352 * See Intel spec. 5.1.6 "Remapping Hardware Event Interrupt Programming".
1353 */
1354 MSIMSG Msi;
1355 Msi.Addr.au32[0] = dmarRegReadRaw32(pThis, offMsiAddrLoReg);
1356 Msi.Addr.au32[1] = (pThis->fExtCapReg & VTD_BF_ECAP_REG_EIM_MASK) ? dmarRegReadRaw32(pThis, offMsiAddrHiReg) : 0;
1357 Msi.Data.u32 = dmarRegReadRaw32(pThis, offMsiDataReg);
1358 Assert(Msi.Data.n.u1Level == 0);
1359 Assert(Msi.Data.n.u1TriggerMode == 0);
1360
1361 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1362 pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi(pDevIns, &Msi, 0 /* uTagSrc */);
1363
1364 /* Clear interrupt pending bit. */
1365 uCtlReg &= ~fIntrPendingMask;
1366 dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg);
1367 }
1368 else
1369 {
1370 /* Interrupt is masked, set the interrupt pending bit. */
1371 uCtlReg |= fIntrPendingMask;
1372 dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg);
1373 }
1374}
1375
1376
1377/**
1378 * Raises an interrupt in response to a fault event.
1379 *
1380 * @param pDevIns The IOMMU device instance.
1381 *
1382 * @remarks This assumes the caller has already set the required status bits in the
1383 * FSTS_REG (namely one or more of PPF, PFO, IQE, ICE or ITE bits).
1384 */
1385static void dmarFaultEventRaiseInterrupt(PPDMDEVINS pDevIns)
1386{
1387 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1388 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1389 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1390
1391#ifdef RT_STRICT
1392 {
1393 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1394 uint32_t const fFaultMask = VTD_BF_FSTS_REG_PPF_MASK | VTD_BF_FSTS_REG_PFO_MASK
1395 /* | VTD_BF_FSTS_REG_APF_MASK | VTD_BF_FSTS_REG_AFO_MASK */ /* AFL not supported */
1396 /* | VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK */ /* Device-TLBs not supported */
1397 | VTD_BF_FSTS_REG_IQE_MASK;
1398 Assert(uFstsReg & fFaultMask);
1399 }
1400#endif
1401 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT);
1402}
1403
1404
1405#ifdef IN_RING3
1406/**
1407 * Raises an interrupt in response to an invalidation (complete) event.
1408 *
1409 * @param pDevIns The IOMMU device instance.
1410 */
1411static void dmarR3InvEventRaiseInterrupt(PPDMDEVINS pDevIns)
1412{
1413 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1414 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1415 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1416
1417 uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
1418 if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK))
1419 {
1420 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_ICS_REG, UINT32_MAX, VTD_BF_ICS_REG_IWC_MASK);
1421 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE);
1422 }
1423}
1424#endif /* IN_RING3 */
1425
1426
1427/**
1428 * Checks if a primary fault can be recorded.
1429 *
1430 * @returns @c true if the fault can be recorded, @c false otherwise.
1431 * @param pDevIns The IOMMU device instance.
1432 * @param pThis The shared DMAR device state.
1433 *
1434 * @remarks Warning: This function has side-effects wrt the DMAR register state. Do
1435 * NOT call it unless there is a fault condition!
1436 */
1437static bool dmarPrimaryFaultCanRecord(PPDMDEVINS pDevIns, PDMAR pThis)
1438{
1439 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1440 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1441
1442 uint32_t uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1443 if (uFstsReg & VTD_BF_FSTS_REG_PFO_MASK)
1444 return false;
1445
1446 /*
1447 * If we add more FRCD registers, we'll have to loop through them here.
1448 * Since we support only one FRCD_REG, we don't support "compression of multiple faults",
1449 * nor do we need to increment FRI.
1450 *
1451 * See Intel VT-d spec. 7.2.1 "Primary Fault Logging".
1452 */
1453 AssertCompile(DMAR_FRCD_REG_COUNT == 1);
1454 uint64_t const uFrcdRegHi = dmarRegReadRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG);
1455 if (uFrcdRegHi & VTD_BF_1_FRCD_REG_F_MASK)
1456 {
1457 uFstsReg |= VTD_BF_FSTS_REG_PFO_MASK;
1458 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, uFstsReg);
1459 return false;
1460 }
1461
1462 return true;
1463}
1464
1465
1466/**
1467 * Records a primary fault.
1468 *
1469 * @param pDevIns The IOMMU device instance.
1470 * @param enmDiag The diagnostic reason.
1471 * @param uFrcdHi The FRCD_HI_REG value for this fault.
1472 * @param uFrcdLo The FRCD_LO_REG value for this fault.
1473 */
1474static void dmarPrimaryFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, uint64_t uFrcdHi, uint64_t uFrcdLo)
1475{
1476 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1477 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1478
1479 DMAR_LOCK(pDevIns, pThisCC);
1480
1481 /* Update the diagnostic reason. */
1482 pThis->enmDiag = enmDiag;
1483
1484 /* We don't support advance fault logging. */
1485 Assert(!(dmarRegRead32(pThis, VTD_MMIO_OFF_GSTS_REG) & VTD_BF_GSTS_REG_AFLS_MASK));
1486
1487 if (dmarPrimaryFaultCanRecord(pDevIns, pThis))
1488 {
1489 /* Update the fault recording registers with the fault information. */
1490 dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG, uFrcdHi);
1491 dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_LO_REG, uFrcdLo);
1492
1493 /* Set the Pending Primary Fault (PPF) field in the status register. */
1494 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, VTD_BF_FSTS_REG_PPF_MASK);
1495
1496 /* Raise interrupt if necessary. */
1497 dmarFaultEventRaiseInterrupt(pDevIns);
1498 }
1499
1500 DMAR_UNLOCK(pDevIns, pThisCC);
1501}
1502
1503
1504/**
1505 * Records an interrupt request fault.
1506 *
1507 * @param pDevIns The IOMMU device instance.
1508 * @param enmDiag The diagnostic reason.
1509 * @param enmIrFault The interrupt fault reason.
1510 * @param idDevice The device ID (bus, device, function).
1511 * @param idxIntr The interrupt index.
1512 */
1513static void dmarIrFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDIRFAULT enmIrFault, uint16_t idDevice, uint16_t idxIntr)
1514{
1515 uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice)
1516 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmIrFault)
1517 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1);
1518 uint64_t const uFrcdLo = (uint64_t)idxIntr << 48;
1519 dmarPrimaryFaultRecord(pDevIns, enmDiag, uFrcdHi, uFrcdLo);
1520}
1521
1522
1523/**
1524 * Records a qualified interrupt request fault.
1525 *
1526 * Qualified faults are those that can be suppressed by software using the FPD bit
1527 * in the IRTE.
1528 *
1529 * @param pDevIns The IOMMU device instance.
1530 * @param enmDiag The diagnostic reason.
1531 * @param enmIrFault The interrupt fault reason.
1532 * @param idDevice The device ID (bus, device, function).
1533 * @param idxIntr The interrupt index.
1534 * @param pIrte The IRTE that caused this fault.
1535 */
1536static void dmarIrFaultRecordQualified(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDIRFAULT enmIrFault, uint16_t idDevice,
1537 uint16_t idxIntr, PCVTD_IRTE_T pIrte)
1538{
1539 Assert(vtdIrFaultIsQualified(enmIrFault));
1540 Assert(pIrte);
1541 if (!(pIrte->au64[0] & VTD_BF_0_IRTE_FPD_MASK))
1542 return dmarIrFaultRecord(pDevIns, enmDiag, enmIrFault, idDevice, idxIntr);
1543}
1544
1545
1546/**
1547 * Records an address translation fault (extended version).
1548 *
1549 * @param pDevIns The IOMMU device instance.
1550 * @param enmDiag The diagnostic reason.
1551 * @param enmAtFault The address translation fault reason.
1552 * @param pMemReqIn The DMA memory request input.
1553 * @param pMemReqAux The DMA memory request auxiliary info.
1554 */
1555static void dmarAtFaultRecordEx(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDATFAULT enmAtFault, PCDMARMEMREQIN pMemReqIn,
1556 PCDMARMEMREQAUX pMemReqAux)
1557{
1558 /*
1559 * Qualified faults are those that can be suppressed by software using the FPD bit
1560 * in the contex entry, scalable-mode context entry etc.
1561 */
1562 if (!pMemReqAux->fFpd)
1563 {
1564 uint16_t const idDevice = pMemReqIn->idDevice;
1565 uint8_t const fType1 = pMemReqIn->enmReqType & RT_BIT(1);
1566 uint8_t const fType2 = pMemReqIn->enmReqType & RT_BIT(0);
1567 uint8_t const fExec = pMemReqIn->AddrRange.fPerm & DMAR_PERM_EXE;
1568 uint8_t const fPriv = pMemReqIn->AddrRange.fPerm & DMAR_PERM_PRIV;
1569 bool const fHasPasid = PCIPASID_IS_VALID(pMemReqIn->Pasid);
1570 uint32_t const uPasid = PCIPASID_VAL(pMemReqIn->Pasid);
1571 PCIADDRTYPE const enmAt = pMemReqIn->enmAddrType;
1572
1573 uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice)
1574 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T2, fType2)
1575 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PP, fHasPasid)
1576 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_EXE, fExec)
1577 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PRIV, fPriv)
1578 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmAtFault)
1579 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PV, uPasid)
1580 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_AT, enmAt)
1581 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T1, fType1)
1582 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1);
1583 uint64_t const uFrcdLo = pMemReqIn->AddrRange.uAddr & X86_PAGE_BASE_MASK;
1584 dmarPrimaryFaultRecord(pDevIns, enmDiag, uFrcdHi, uFrcdLo);
1585 }
1586}
1587
1588
1589/**
1590 * Records an address translation fault.
1591 *
1592 * @param pDevIns The IOMMU device instance.
1593 * @param enmDiag The diagnostic reason.
1594 * @param enmAtFault The address translation fault reason.
1595 * @param pMemReqRemap The DMA memory request remapping info.
1596 */
1597static void dmarAtFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDATFAULT enmAtFault, PCDMARMEMREQREMAP pMemReqRemap)
1598{
1599 dmarAtFaultRecordEx(pDevIns, enmDiag, enmAtFault, &pMemReqRemap->In, &pMemReqRemap->Aux);
1600}
1601
1602
1603/**
1604 * Records an IQE fault.
1605 *
1606 * @param pDevIns The IOMMU device instance.
1607 * @param enmIqei The IQE information.
1608 * @param enmDiag The diagnostic reason.
1609 */
1610static void dmarIqeFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDIQEI enmIqei)
1611{
1612 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1613 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1614
1615 DMAR_LOCK(pDevIns, pThisCC);
1616
1617 /* Update the diagnostic reason. */
1618 pThis->enmDiag = enmDiag;
1619
1620 /* Set the error bit. */
1621 uint32_t const fIqe = RT_BF_MAKE(VTD_BF_FSTS_REG_IQE, 1);
1622 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, fIqe);
1623
1624 /* Set the error information. */
1625 uint64_t const fIqei = RT_BF_MAKE(VTD_BF_IQERCD_REG_IQEI, enmIqei);
1626 dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG, UINT64_MAX, fIqei);
1627
1628 dmarFaultEventRaiseInterrupt(pDevIns);
1629
1630 DMAR_UNLOCK(pDevIns, pThisCC);
1631}
1632
1633
1634/**
1635 * Handles writes to GCMD_REG.
1636 *
1637 * @returns Strict VBox status code.
1638 * @param pDevIns The IOMMU device instance.
1639 * @param uGcmdReg The value written to GCMD_REG.
1640 */
1641static VBOXSTRICTRC dmarGcmdRegWrite(PPDMDEVINS pDevIns, uint32_t uGcmdReg)
1642{
1643 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1644 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1645 uint32_t const fChanged = uGstsReg ^ uGcmdReg;
1646 uint64_t const fExtCapReg = pThis->fExtCapReg;
1647
1648 /* Queued-invalidation. */
1649 if ( (fExtCapReg & VTD_BF_ECAP_REG_QI_MASK)
1650 && (fChanged & VTD_BF_GCMD_REG_QIE_MASK))
1651 {
1652 if (uGcmdReg & VTD_BF_GCMD_REG_QIE_MASK)
1653 {
1654 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_QIES_MASK);
1655 dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
1656 }
1657 else
1658 {
1659 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_QIES_MASK, 0 /* fOrMask */);
1660 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IQH_REG, 0);
1661 }
1662 }
1663
1664 if (fExtCapReg & VTD_BF_ECAP_REG_IR_MASK)
1665 {
1666 /* Set Interrupt Remapping Table Pointer (SIRTP). */
1667 if (uGcmdReg & VTD_BF_GCMD_REG_SIRTP_MASK)
1668 {
1669 /** @todo Perform global invalidation of all interrupt-entry cache when ESIRTPS is
1670 * supported. */
1671 pThis->uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
1672 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRTPS_MASK);
1673 }
1674
1675 /* Interrupt remapping. */
1676 if (fChanged & VTD_BF_GCMD_REG_IRE_MASK)
1677 {
1678 if (uGcmdReg & VTD_BF_GCMD_REG_IRE_MASK)
1679 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRES_MASK);
1680 else
1681 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_IRES_MASK, 0 /* fOrMask */);
1682 }
1683
1684 /* Compatibility format interrupts. */
1685 if (fChanged & VTD_BF_GCMD_REG_CFI_MASK)
1686 {
1687 if (uGcmdReg & VTD_BF_GCMD_REG_CFI_MASK)
1688 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_CFIS_MASK);
1689 else
1690 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_CFIS_MASK, 0 /* fOrMask */);
1691 }
1692 }
1693
1694 /* Set Root Table Pointer (SRTP). */
1695 if (uGcmdReg & VTD_BF_GCMD_REG_SRTP_MASK)
1696 {
1697 /** @todo Perform global invalidation of all remapping translation caches when
1698 * ESRTPS is supported. */
1699 pThis->uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
1700 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_RTPS_MASK);
1701 }
1702
1703 /* Translation (DMA remapping). */
1704 if (fChanged & VTD_BF_GCMD_REG_TE_MASK)
1705 {
1706 if (uGcmdReg & VTD_BF_GCMD_REG_TE_MASK)
1707 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_TES_MASK);
1708 else
1709 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_TES_MASK, 0 /* fOrMask */);
1710 }
1711
1712 return VINF_SUCCESS;
1713}
1714
1715
1716/**
1717 * Handles writes to CCMD_REG.
1718 *
1719 * @returns Strict VBox status code.
1720 * @param pDevIns The IOMMU device instance.
1721 * @param offReg The MMIO register offset.
1722 * @param cbReg The size of the MMIO access (in bytes).
1723 * @param uCcmdReg The value written to CCMD_REG.
1724 */
1725static VBOXSTRICTRC dmarCcmdRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uCcmdReg)
1726{
1727 /* At present, we only care about responding to high 32-bits writes, low 32-bits are data. */
1728 if (offReg + cbReg > VTD_MMIO_OFF_CCMD_REG + 4)
1729 {
1730 /* Check if we need to invalidate the context-context. */
1731 bool const fIcc = RT_BF_GET(uCcmdReg, VTD_BF_CCMD_REG_ICC);
1732 if (fIcc)
1733 {
1734 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1735 uint8_t const uMajorVersion = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX);
1736 if (uMajorVersion < 6)
1737 {
1738 /* Register-based invalidation can only be used when queued-invalidations are not enabled. */
1739 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1740 if (!(uGstsReg & VTD_BF_GSTS_REG_QIES_MASK))
1741 {
1742 /* Verify table translation mode is legacy. */
1743 uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
1744 if (fTtm == VTD_TTM_LEGACY_MODE)
1745 {
1746 /** @todo Invalidate. */
1747 return VINF_SUCCESS;
1748 }
1749 pThis->enmDiag = kDmarDiag_CcmdReg_Ttm_Invalid;
1750 }
1751 else
1752 pThis->enmDiag = kDmarDiag_CcmdReg_Qi_Enabled;
1753 }
1754 else
1755 pThis->enmDiag = kDmarDiag_CcmdReg_NotSupported;
1756 dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_CCMD_REG_CAIG_MASK, 0 /* fOrMask */);
1757 }
1758 }
1759 return VINF_SUCCESS;
1760}
1761
1762
1763/**
1764 * Handles writes to FECTL_REG.
1765 *
1766 * @returns Strict VBox status code.
1767 * @param pDevIns The IOMMU device instance.
1768 * @param uFectlReg The value written to FECTL_REG.
1769 */
1770static VBOXSTRICTRC dmarFectlRegWrite(PPDMDEVINS pDevIns, uint32_t uFectlReg)
1771{
1772 /*
1773 * If software unmasks the interrupt when the interrupt is pending, we must raise
1774 * the interrupt now (which will consequently clear the interrupt pending (IP) bit).
1775 */
1776 if ( (uFectlReg & VTD_BF_FECTL_REG_IP_MASK)
1777 && ~(uFectlReg & VTD_BF_FECTL_REG_IM_MASK))
1778 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT);
1779 return VINF_SUCCESS;
1780}
1781
1782
1783/**
1784 * Handles writes to FSTS_REG.
1785 *
1786 * @returns Strict VBox status code.
1787 * @param pDevIns The IOMMU device instance.
1788 * @param uFstsReg The value written to FSTS_REG.
1789 * @param uPrev The value in FSTS_REG prior to writing it.
1790 */
1791static VBOXSTRICTRC dmarFstsRegWrite(PPDMDEVINS pDevIns, uint32_t uFstsReg, uint32_t uPrev)
1792{
1793 /*
1794 * If software clears other status bits in FSTS_REG (pertaining to primary fault logging),
1795 * the interrupt pending (IP) bit must be cleared.
1796 *
1797 * See Intel VT-d spec. 10.4.10 "Fault Event Control Register".
1798 */
1799 uint32_t const fChanged = uPrev ^ uFstsReg;
1800 if (fChanged & ( VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK
1801 | VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_PFO_MASK))
1802 {
1803 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1804 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */);
1805 }
1806 return VINF_SUCCESS;
1807}
1808
1809
1810/**
1811 * Handles writes to IQT_REG.
1812 *
1813 * @returns Strict VBox status code.
1814 * @param pDevIns The IOMMU device instance.
1815 * @param offReg The MMIO register offset.
1816 * @param uIqtReg The value written to IQT_REG.
1817 */
1818static VBOXSTRICTRC dmarIqtRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqtReg)
1819{
1820 /* We only care about the low 32-bits, high 32-bits are reserved. */
1821 Assert(offReg == VTD_MMIO_OFF_IQT_REG);
1822 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1823
1824 /* Paranoia. */
1825 Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
1826
1827 uint32_t const offQt = uIqtReg;
1828 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
1829 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
1830
1831 /* If the descriptor width is 256-bits, the queue tail offset must be aligned accordingly. */
1832 if ( fDw != VTD_IQA_REG_DW_256_BIT
1833 || !(offQt & RT_BIT(4)))
1834 dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
1835 else
1836 {
1837 /* Hardware treats bit 4 as RsvdZ in this situation, so clear it. */
1838 dmarRegChangeRaw32(pThis, offReg, ~RT_BIT(4), 0 /* fOrMask */);
1839 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_NotAligned, VTDIQEI_QUEUE_TAIL_MISALIGNED);
1840 }
1841 return VINF_SUCCESS;
1842}
1843
1844
1845/**
1846 * Handles writes to IQA_REG.
1847 *
1848 * @returns Strict VBox status code.
1849 * @param pDevIns The IOMMU device instance.
1850 * @param offReg The MMIO register offset.
1851 * @param uIqaReg The value written to IQA_REG.
1852 */
1853static VBOXSTRICTRC dmarIqaRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqaReg)
1854{
1855 /* At present, we only care about the low 32-bits, high 32-bits are data. */
1856 Assert(offReg == VTD_MMIO_OFF_IQA_REG); NOREF(offReg);
1857
1858 /** @todo What happens if IQA_REG is written when dmarInvQueueCanProcessRequests
1859 * returns true? The Intel VT-d spec. doesn't state anywhere that it
1860 * cannot happen or that it's ignored when it does happen. */
1861
1862 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1863 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
1864 if (fDw == VTD_IQA_REG_DW_256_BIT)
1865 {
1866 bool const fSupports256BitDw = (pThis->fExtCapReg & (VTD_BF_ECAP_REG_SMTS_MASK | VTD_BF_ECAP_REG_ADMS_MASK));
1867 if (fSupports256BitDw)
1868 { /* likely */ }
1869 else
1870 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dw_256_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH);
1871 }
1872 /* else: 128-bit descriptor width is validated lazily, see explanation in dmarR3InvQueueProcessRequests. */
1873
1874 return VINF_SUCCESS;
1875}
1876
1877
1878/**
1879 * Handles writes to ICS_REG.
1880 *
1881 * @returns Strict VBox status code.
1882 * @param pDevIns The IOMMU device instance.
1883 * @param uIcsReg The value written to ICS_REG.
1884 */
1885static VBOXSTRICTRC dmarIcsRegWrite(PPDMDEVINS pDevIns, uint32_t uIcsReg)
1886{
1887 /*
1888 * If the IP field is set when software services the interrupt condition,
1889 * (by clearing the IWC field), the IP field must be cleared.
1890 */
1891 if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK))
1892 {
1893 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1894 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, ~VTD_BF_IECTL_REG_IP_MASK, 0 /* fOrMask */);
1895 }
1896 return VINF_SUCCESS;
1897}
1898
1899
1900/**
1901 * Handles writes to IECTL_REG.
1902 *
1903 * @returns Strict VBox status code.
1904 * @param pDevIns The IOMMU device instance.
1905 * @param uIectlReg The value written to IECTL_REG.
1906 */
1907static VBOXSTRICTRC dmarIectlRegWrite(PPDMDEVINS pDevIns, uint32_t uIectlReg)
1908{
1909 /*
1910 * If software unmasks the interrupt when the interrupt is pending, we must raise
1911 * the interrupt now (which will consequently clear the interrupt pending (IP) bit).
1912 */
1913 if ( (uIectlReg & VTD_BF_IECTL_REG_IP_MASK)
1914 && ~(uIectlReg & VTD_BF_IECTL_REG_IM_MASK))
1915 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE);
1916 return VINF_SUCCESS;
1917}
1918
1919
1920/**
1921 * Handles writes to FRCD_REG (High 64-bits).
1922 *
1923 * @returns Strict VBox status code.
1924 * @param pDevIns The IOMMU device instance.
1925 * @param offReg The MMIO register offset.
1926 * @param cbReg The size of the MMIO access (in bytes).
1927 * @param uFrcdHiReg The value written to FRCD_REG.
1928 * @param uPrev The value in FRCD_REG prior to writing it.
1929 */
1930static VBOXSTRICTRC dmarFrcdHiRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uFrcdHiReg, uint64_t uPrev)
1931{
1932 /* We only care about responding to high 32-bits, low 32-bits are read-only. */
1933 if (offReg + cbReg > DMAR_MMIO_OFF_FRCD_HI_REG + 4)
1934 {
1935 /*
1936 * If software cleared the RW1C F (fault) bit in all FRCD_REGs, hardware clears the
1937 * Primary Pending Fault (PPF) and the interrupt pending (IP) bits. Our implementation
1938 * has only 1 FRCD register.
1939 *
1940 * See Intel VT-d spec. 10.4.10 "Fault Event Control Register".
1941 */
1942 AssertCompile(DMAR_FRCD_REG_COUNT == 1);
1943 uint64_t const fChanged = uPrev ^ uFrcdHiReg;
1944 if (fChanged & VTD_BF_1_FRCD_REG_F_MASK)
1945 {
1946 Assert(!(uFrcdHiReg & VTD_BF_1_FRCD_REG_F_MASK)); /* Software should only ever be able to clear this bit. */
1947 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1948 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, ~VTD_BF_FSTS_REG_PPF_MASK, 0 /* fOrMask */);
1949 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */);
1950 }
1951 }
1952 return VINF_SUCCESS;
1953}
1954
1955
1956/**
1957 * Performs a PCI target abort for a DMA remapping (DR) operation.
1958 *
1959 * @param pDevIns The IOMMU device instance.
1960 */
1961static void dmarDrTargetAbort(PPDMDEVINS pDevIns)
1962{
1963 /** @todo r=ramshankar: I don't know for sure if a PCI target abort is caused or not
1964 * as the Intel VT-d spec. is vague. Wording seems to suggest it does, but
1965 * who knows. */
1966 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
1967 uint16_t const u16Status = PDMPciDevGetStatus(pPciDev) | VBOX_PCI_STATUS_SIG_TARGET_ABORT;
1968 PDMPciDevSetStatus(pPciDev, u16Status);
1969}
1970
1971
1972/**
1973 * Checks whether the address width (AW) is supported by our hardware
1974 * implementation for legacy mode address translation.
1975 *
1976 * @returns @c true if it's supported, @c false otherwise.
1977 * @param pThis The shared DMAR device state.
1978 * @param pCtxEntry The context entry.
1979 * @param pcPagingLevel Where to store the paging level. Optional, can be NULL.
1980 */
1981static bool dmarDrLegacyModeIsAwValid(PCDMAR pThis, PCVTD_CONTEXT_ENTRY_T pCtxEntry, uint8_t *pcPagingLevel)
1982{
1983 uint8_t const fTt = RT_BF_GET(pCtxEntry->au64[0], VTD_BF_0_CONTEXT_ENTRY_TT);
1984 uint8_t const fAw = RT_BF_GET(pCtxEntry->au64[1], VTD_BF_1_CONTEXT_ENTRY_AW);
1985 uint8_t const fAwMask = RT_BIT(fAw);
1986 uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW);
1987 Assert(!(fSagaw & ~(RT_BIT(1) | RT_BIT(2) | RT_BIT(3))));
1988
1989 uint8_t const cPagingLevel = fAw + 2;
1990 if (pcPagingLevel)
1991 *pcPagingLevel = cPagingLevel;
1992
1993 /* With pass-through, the address width must be the largest AGAW supported by hardware. */
1994 if (fTt == VTD_TT_UNTRANSLATED_PT)
1995 {
1996 Assert(pThis->cMaxPagingLevel >= 3 && pThis->cMaxPagingLevel <= 5); /* Paranoia. */
1997 return cPagingLevel == pThis->cMaxPagingLevel;
1998 }
1999
2000 /* The address width must be any of the ones supported by hardware. */
2001 if (fAw < 4)
2002 return (fSagaw & fAwMask) != 0;
2003
2004 return false;
2005}
2006
2007
2008/**
2009 * Reads a root entry from guest memory.
2010 *
2011 * @returns VBox status code.
2012 * @param pDevIns The IOMMU device instance.
2013 * @param uRtaddrReg The current RTADDR_REG value.
2014 * @param idxRootEntry The index of the root entry to read.
2015 * @param pRootEntry Where to store the read root entry.
2016 */
2017static int dmarDrReadRootEntry(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, uint8_t idxRootEntry, PVTD_ROOT_ENTRY_T pRootEntry)
2018{
2019 size_t const cbRootEntry = sizeof(*pRootEntry);
2020 RTGCPHYS const GCPhysRootEntry = (uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK) + (idxRootEntry * cbRootEntry);
2021 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysRootEntry, pRootEntry, cbRootEntry);
2022}
2023
2024
2025/**
2026 * Reads a context entry from guest memory.
2027 *
2028 * @returns VBox status code.
2029 * @param pDevIns The IOMMU device instance.
2030 * @param GCPhysCtxTable The physical address of the context table.
2031 * @param idxCtxEntry The index of the context entry to read.
2032 * @param pCtxEntry Where to store the read context entry.
2033 */
2034static int dmarDrReadCtxEntry(PPDMDEVINS pDevIns, RTGCPHYS GCPhysCtxTable, uint8_t idxCtxEntry, PVTD_CONTEXT_ENTRY_T pCtxEntry)
2035{
2036 /* We don't verify bits 63:HAW of GCPhysCtxTable is 0 since reading from such an address should fail anyway. */
2037 size_t const cbCtxEntry = sizeof(*pCtxEntry);
2038 RTGCPHYS const GCPhysCtxEntry = GCPhysCtxTable + (idxCtxEntry * cbCtxEntry);
2039 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysCtxEntry, pCtxEntry, cbCtxEntry);
2040}
2041
2042
2043/**
2044 * Reads a second-level paging entry from guest memory.
2045 *
2046 * @returns VBox status code.
2047 * @param pDevIns The IOMMU device instance.
2048 * @param GCPhysSlptPtr The physical address of the SLPTPTR.
2049 * @param pSlpEntry Where to store the read SLPTPTR.
2050 */
2051static int dmarDrReadSlpPtr(PPDMDEVINS pDevIns, RTGCPHYS GCPhysSlptPtr, PVTD_SLP_ENTRY_T pSlpEntry)
2052{
2053 /* We don't verify bits 63:HAW of GCPhysSlptPtr is 0 since reading from such an address should fail anyway. */
2054 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysSlptPtr, pSlpEntry, sizeof(*pSlpEntry));
2055}
2056
2057
2058/**
2059 * Validates and updates the output I/O page of a translation.
2060 *
2061 * @returns VBox status code.
2062 * @param pDevIns The IOMMU device instance.
2063 * @param GCPhysBase The output address of the translation.
2064 * @param cShift The page shift of the translated address.
2065 * @param fPerm The permissions granted for the translated region.
2066 * @param pMemReqIn The DMA memory request input.
2067 * @param pMemReqAux The DMA memory request auxiliary info.
2068 * @param pIoPageOut Where to store the output of the translation.
2069 */
2070static int dmarDrUpdateIoPageOut(PPDMDEVINS pDevIns, RTGCPHYS GCPhysBase, uint8_t cShift, uint8_t fPerm,
2071 PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux, PDMARIOPAGE pIoPageOut)
2072{
2073 Assert(!(GCPhysBase & X86_PAGE_4K_OFFSET_MASK));
2074
2075 /* Ensure the output address is not in the interrupt address range. */
2076 if (GCPhysBase - VBOX_MSI_ADDR_BASE >= VBOX_MSI_ADDR_SIZE)
2077 {
2078 pIoPageOut->GCPhysBase = GCPhysBase;
2079 pIoPageOut->cShift = cShift;
2080 pIoPageOut->fPerm = fPerm;
2081 return VINF_SUCCESS;
2082 }
2083
2084 if (pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE)
2085 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Lgn_4, VTDATFAULT_LGN_4, pMemReqIn, pMemReqAux);
2086 else
2087 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Sgn_8, VTDATFAULT_SGN_8, pMemReqIn, pMemReqAux);
2088 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2089}
2090
2091
2092/**
2093 * Performs second level translation.
2094 *
2095 * @returns VBox status code.
2096 * @param pDevIns The IOMMU device instance.
2097 * @param pMemReqIn The DMA memory request input.
2098 * @param pMemReqAux The DMA memory request auxiliary info.
2099 * @param pIoPageOut Where to store the output of the translation.
2100 */
2101static DECLCALLBACK(int) dmarDrSecondLevelTranslate(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux,
2102 PDMARIOPAGE pIoPageOut)
2103{
2104 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
2105
2106 /* Sanity. */
2107 Assert(pIoPageOut);
2108 Assert(pMemReqIn->AddrRange.fPerm & (DMAR_PERM_READ | DMAR_PERM_WRITE));
2109 Assert( pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE
2110 || pMemReqAux->fTtm == VTD_TTM_SCALABLE_MODE);
2111
2112 /* Mask of valid paging entry bits. */
2113 static uint64_t const s_auPtEntityRsvd[] = { VTD_SL_PTE_VALID_MASK,
2114 VTD_SL_PDE_VALID_MASK,
2115 VTD_SL_PDPE_VALID_MASK,
2116 VTD_SL_PML4E_VALID_MASK,
2117 VTD_SL_PML5E_VALID_MASK };
2118
2119 /* Paranoia. */
2120 Assert(pMemReqAux->cPagingLevel >= 3 && pMemReqAux->cPagingLevel <= 5);
2121 AssertCompile(RT_ELEMENTS(s_auPtEntityRsvd) == 5);
2122
2123 /* Second-level translations restricts input address to an implementation-specific MGAW. */
2124 uint64_t const uDmaAddr = pMemReqIn->AddrRange.uAddr;
2125 if (!(uDmaAddr & pThis->fInvMgawMask))
2126 { /* likely */ }
2127 else
2128 {
2129 if (pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE)
2130 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Lgn_1_1, VTDATFAULT_LGN_1_1, pMemReqIn, pMemReqAux);
2131 else
2132 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Sgn_5, VTDATFAULT_SGN_5, pMemReqIn, pMemReqAux);
2133 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2134 }
2135
2136 /*
2137 * Traverse the I/O page table starting with the SLPTPTR (second-level page table pointer).
2138 * Unlike AMD IOMMU paging, here there is no feature for "skipping" levels.
2139 */
2140 uint64_t uPtEntity = pMemReqAux->uSlptPtr;
2141 for (int8_t iLevel = pMemReqAux->cPagingLevel - 1; iLevel >= 0; iLevel--)
2142 {
2143 /*
2144 * Read the paging entry for the current level.
2145 */
2146 uint8_t const cLevelShift = X86_PAGE_4K_SHIFT + (iLevel * 9);
2147 {
2148 uint16_t const idxPte = (uDmaAddr >> cLevelShift) & UINT64_C(0x1ff);
2149 uint64_t const offPte = idxPte << 3;
2150 RTGCPHYS const GCPhysPtEntity = uPtEntity | offPte;
2151 int const rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysPtEntity, &uPtEntity, sizeof(uPtEntity));
2152 if (RT_SUCCESS(rc))
2153 { /* likely */ }
2154 else
2155 {
2156 if (pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE)
2157 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Lsl_1, VTDATFAULT_LSL_1, pMemReqIn, pMemReqAux);
2158 else
2159 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Ssl_1, VTDATFAULT_SSL_1, pMemReqIn, pMemReqAux);
2160 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2161 }
2162 }
2163
2164 /*
2165 * Check I/O permissions.
2166 * This must be done prior to check reserved bits for properly reporting errors SSL.2 and SSL.3.
2167 *
2168 * See Intel spec. 7.1.3 "Fault conditions and Remapping hardware behavior for various request".
2169 */
2170 uint8_t const fReqPerm = pMemReqIn->AddrRange.fPerm & pThis->fPermValidMask;
2171 uint8_t const fPtPerm = uPtEntity & pThis->fPermValidMask;
2172 Assert(!(fReqPerm & DMAR_PERM_EXE)); /* No Execute-requests support yet. */
2173 Assert(pThis->fExtCapReg & VTD_BF_ECAP_REG_SLADS_MASK); /* No Second-level access/dirty support. */
2174 if ((fPtPerm & fReqPerm) == fReqPerm)
2175 { /* likely */ }
2176 else
2177 {
2178 if (pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE)
2179 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Lsl_2, VTDATFAULT_LSL_2, pMemReqIn, pMemReqAux);
2180 else
2181 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Ssl_2, VTDATFAULT_SSL_2, pMemReqIn, pMemReqAux);
2182 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2183 }
2184
2185 /*
2186 * Validate reserved bits of the current paging entry.
2187 */
2188 if (!(uPtEntity & ~s_auPtEntityRsvd[iLevel]))
2189 { /* likely */ }
2190 else
2191 {
2192 if (pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE)
2193 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Lsl_2, VTDATFAULT_LSL_2, pMemReqIn, pMemReqAux);
2194 else
2195 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Ssl_3, VTDATFAULT_SSL_3, pMemReqIn, pMemReqAux);
2196 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2197 }
2198
2199 /*
2200 * Check if this is a 1GB page or a 2MB page.
2201 */
2202 AssertCompile(VTD_BF_SL_PDE_PS_MASK == VTD_BF_SL_PDPE_PS_MASK);
2203 uint8_t const fLargePage = RT_BF_GET(uPtEntity, VTD_BF_SL_PDE_PS);
2204 if (fLargePage && iLevel > 0)
2205 {
2206 Assert(iLevel == 1 || iLevel == 2);
2207 uint8_t const fSllpsMask = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SLLPS);
2208 if (fSllpsMask & RT_BIT(iLevel - 1))
2209 {
2210 /*
2211 * We don't support MTS (asserted below), hence IPAT and EMT fields of the paging entity are ignored.
2212 * All other reserved bits are identical to the regular page-size paging entity which we've already
2213 * checked above.
2214 */
2215 Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_MTS_MASK));
2216
2217 RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift);
2218 return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut);
2219 }
2220
2221 if (pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE)
2222 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Lsl_2_LargePage, VTDATFAULT_LSL_2, pMemReqIn, pMemReqAux);
2223 else
2224 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Ssl_3_LargePage, VTDATFAULT_SSL_3, pMemReqIn, pMemReqAux);
2225 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2226 }
2227
2228 /*
2229 * If this is the final PTE, compute the translation address and we're done.
2230 */
2231 if (iLevel == 0)
2232 {
2233 RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift);
2234 return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut);
2235 }
2236 }
2237
2238 /* Shouldn't ever reach here. */
2239 return VERR_IOMMU_IPE_0;
2240}
2241
2242
2243/**
2244 * Checks whether two consecutive I/O page results of a DMA memory request form a
2245 * physically contiguous region.
2246 *
2247 * @returns @c true if the I/O pages are contiguous, @c false otherwise.
2248 * @param pIoPagePrev The previous I/O page.
2249 * @param pIoPage The current I/O page.
2250 */
2251static bool dmarIsIoPageAccessContig(PCDMARIOPAGE pIoPagePrev, PCDMARIOPAGE pIoPage)
2252{
2253 /* Paranoia: Permissions for pages of a DMA memory request must be identical. */
2254 Assert(pIoPagePrev->fPerm == pIoPage->fPerm);
2255
2256 size_t const cbPrev = RT_BIT_64(pIoPagePrev->cShift);
2257 RTGCPHYS const GCPhysPrev = pIoPagePrev->GCPhysBase;
2258 RTGCPHYS const GCPhys = pIoPage->GCPhysBase;
2259 uint64_t const offMaskPrev = X86_GET_PAGE_OFFSET_MASK(pIoPagePrev->cShift);
2260 uint64_t const offMask = X86_GET_PAGE_OFFSET_MASK(pIoPage->cShift);
2261
2262 /* Paranoia: Ensure offset bits are 0. */
2263 Assert(!(GCPhysPrev & offMaskPrev));
2264 Assert(!(GCPhys & offMask));
2265
2266 if ((GCPhysPrev & ~offMaskPrev) + cbPrev == (GCPhys & ~offMask))
2267 return true;
2268 return false;
2269}
2270
2271
2272/**
2273 * Looks up the range of addresses for a DMA memory request remapping.
2274 *
2275 * @returns VBox status code.
2276 * @param pDevIns The IOMMU device instance.
2277 * @param pfnTranslate The DMA address translation function.
2278 * @param pMemReqRemap The DMA memory request remapping info.
2279 */
2280static int dmarDrMemRangeLookup(PPDMDEVINS pDevIns, PFNDMAADDRTRANSLATE pfnTranslate, PDMARMEMREQREMAP pMemReqRemap)
2281{
2282 RTGCPHYS GCPhysAddr = NIL_RTGCPHYS;
2283 DMARMEMREQIN MemReqIn = pMemReqRemap->In;
2284 uint64_t const uAddrIn = pMemReqRemap->In.AddrRange.uAddr;
2285 size_t const cbAddrIn = pMemReqRemap->In.AddrRange.cb;
2286 uint64_t uAddrInBase = pMemReqRemap->In.AddrRange.uAddr & X86_PAGE_4K_BASE_MASK;
2287 uint64_t offAddrIn = pMemReqRemap->In.AddrRange.uAddr & X86_PAGE_4K_OFFSET_MASK;
2288 size_t cbRemaining = cbAddrIn;
2289
2290 int rc;
2291 DMARIOPAGE IoPagePrev;
2292 RT_ZERO(IoPagePrev);
2293 for (;;)
2294 {
2295 /* Update the input memory request with the next address in our range that needs translation. */
2296 MemReqIn.AddrRange.uAddr = uAddrInBase;
2297 MemReqIn.AddrRange.cb = cbRemaining; /* Not currently accessed by pfnTranslate, but keep things consistent. */
2298
2299 DMARIOPAGE IoPage;
2300 rc = pfnTranslate(pDevIns, &MemReqIn, &pMemReqRemap->Aux, &IoPage);
2301 if (RT_SUCCESS(rc))
2302 {
2303 Assert(IoPage.cShift >= X86_PAGE_4K_SHIFT);
2304
2305 /* Store the translated address before continuing to access more pages. */
2306 if (cbRemaining == cbAddrIn)
2307 {
2308 uint64_t const fIoPageMask = X86_GET_PAGE_OFFSET_MASK(IoPage.cShift);
2309 uint64_t const offAddrOut = uAddrIn & fIoPageMask;
2310 Assert(!(IoPage.GCPhysBase & fIoPageMask));
2311 GCPhysAddr = IoPage.GCPhysBase | offAddrOut;
2312 }
2313 /* Check if addresses translated so far result in a physically contiguous region. */
2314 else if (!dmarIsIoPageAccessContig(&IoPagePrev, &IoPage))
2315 {
2316 rc = VERR_OUT_OF_RANGE;
2317 break;
2318 }
2319
2320 /* Store the I/O page lookup from the first/previous access. */
2321 IoPagePrev = IoPage;
2322
2323 /* Check if we need to access more pages. */
2324 size_t const cbPage = RT_BIT_64(IoPage.cShift);
2325 if (cbRemaining > cbPage - offAddrIn)
2326 {
2327 cbRemaining -= (cbPage - offAddrIn); /* Calculate how much more we need to access. */
2328 uAddrInBase += cbPage; /* Update address of the next access. */
2329 offAddrIn = 0; /* After first page, all pages are accessed from offset 0. */
2330 }
2331 else
2332 {
2333 /* Caller (PDM) doesn't expect more data accessed than what was requested. */
2334 cbRemaining = 0;
2335 break;
2336 }
2337 }
2338 else
2339 break;
2340 }
2341
2342 pMemReqRemap->Out.AddrRange.uAddr = GCPhysAddr;
2343 pMemReqRemap->Out.AddrRange.cb = cbAddrIn - cbRemaining;
2344 pMemReqRemap->Out.AddrRange.fPerm = IoPagePrev.fPerm;
2345 return rc;
2346}
2347
2348
2349/**
2350 * Handles legacy mode DMA address remapping.
2351 *
2352 * @returns VBox status code.
2353 * @param pDevIns The IOMMU device instance.
2354 * @param uRtaddrReg The current RTADDR_REG value.
2355 * @param pMemReqRemap The DMA memory request remapping info.
2356 */
2357static int dmarDrLegacyModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
2358{
2359 Assert(pMemReqRemap->Aux.fTtm == VTD_TTM_LEGACY_MODE); /* Paranoia. */
2360
2361 /* Read the root-entry from guest memory. */
2362 uint8_t const idxRootEntry = RT_HI_U8(pMemReqRemap->In.idDevice);
2363 VTD_ROOT_ENTRY_T RootEntry;
2364 int rc = dmarDrReadRootEntry(pDevIns, uRtaddrReg, idxRootEntry, &RootEntry);
2365 if (RT_SUCCESS(rc))
2366 {
2367 /* Check if the root entry is present (must be done before validating reserved bits). */
2368 uint64_t const uRootEntryQword0 = RootEntry.au64[0];
2369 uint64_t const uRootEntryQword1 = RootEntry.au64[1];
2370 bool const fRootEntryPresent = RT_BF_GET(uRootEntryQword0, VTD_BF_0_ROOT_ENTRY_P);
2371 if (fRootEntryPresent)
2372 {
2373 /* Validate reserved bits in the root entry. */
2374 if ( !(uRootEntryQword0 & ~VTD_ROOT_ENTRY_0_VALID_MASK)
2375 && !(uRootEntryQword1 & ~VTD_ROOT_ENTRY_1_VALID_MASK))
2376 {
2377 /* Read the context-entry from guest memory. */
2378 RTGCPHYS const GCPhysCtxTable = RT_BF_GET(uRootEntryQword0, VTD_BF_0_ROOT_ENTRY_CTP);
2379 uint8_t const idxCtxEntry = RT_LO_U8(pMemReqRemap->In.idDevice);
2380 VTD_CONTEXT_ENTRY_T CtxEntry;
2381 rc = dmarDrReadCtxEntry(pDevIns, GCPhysCtxTable, idxCtxEntry, &CtxEntry);
2382 if (RT_SUCCESS(rc))
2383 {
2384 uint64_t const uCtxEntryQword0 = CtxEntry.au64[0];
2385 uint64_t const uCtxEntryQword1 = CtxEntry.au64[1];
2386
2387 /* Note the FPD bit which software can use to supress translation faults from here on in. */
2388 pMemReqRemap->Aux.fFpd = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_FPD);
2389
2390 /* Check if the context-entry is present (must be done before validating reserved bits). */
2391 bool const fCtxEntryPresent = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_P);
2392 if (fCtxEntryPresent)
2393 {
2394 /* Validate reserved bits in the context-entry. */
2395 if ( !(uCtxEntryQword0 & ~VTD_CONTEXT_ENTRY_0_VALID_MASK)
2396 && !(uCtxEntryQword1 & ~VTD_CONTEXT_ENTRY_1_VALID_MASK))
2397 {
2398 /* Get the domain ID for this mapping. */
2399 pMemReqRemap->Out.idDomain = RT_BF_GET(uCtxEntryQword1, VTD_BF_1_CONTEXT_ENTRY_DID);
2400
2401 /* Validate the translation type (TT). */
2402 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
2403 uint8_t const fTt = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_TT);
2404 switch (fTt)
2405 {
2406 case VTD_TT_UNTRANSLATED_SLP:
2407 {
2408 /*
2409 * Untranslated requests are translated using second-level paging structures referenced
2410 * through SLPTPTR. Translated requests and Translation Requests are blocked.
2411 */
2412 if (pMemReqRemap->In.enmAddrType == PCIADDRTYPE_UNTRANSLATED)
2413 {
2414 /* Validate the address width and get the paging level. */
2415 uint8_t cPagingLevel;
2416 if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, &cPagingLevel))
2417 {
2418 /* Read the SLPTPTR from guest memory. */
2419 VTD_SLP_ENTRY_T SlptPtr;
2420 RTGCPHYS const GCPhysSlptPtr = uCtxEntryQword0 & VTD_BF_0_CONTEXT_ENTRY_SLPTPTR_MASK;
2421 rc = dmarDrReadSlpPtr(pDevIns, GCPhysSlptPtr, &SlptPtr);
2422 if (RT_SUCCESS(rc))
2423 {
2424 /* Finally... perform second-level translation. */
2425 pMemReqRemap->Aux.uSlptPtr = SlptPtr;
2426 pMemReqRemap->Aux.cPagingLevel = cPagingLevel;
2427 return dmarDrMemRangeLookup(pDevIns, dmarDrSecondLevelTranslate, pMemReqRemap);
2428 }
2429 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_4_3, VTDATFAULT_LCT_4_3, pMemReqRemap);
2430 }
2431 else
2432 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_4_1, VTDATFAULT_LCT_4_1, pMemReqRemap);
2433 }
2434 else
2435 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_5, VTDATFAULT_LCT_5, pMemReqRemap);
2436 break;
2437 }
2438
2439 case VTD_TT_UNTRANSLATED_PT:
2440 {
2441 /*
2442 * Untranslated requests are processed as pass-through (PT) if PT is supported.
2443 * Translated and translation requests are blocked. If PT isn't supported this TT value
2444 * is reserved which I assume raises a fault (hence fallthru below).
2445 */
2446 if (pThis->fExtCapReg & VTD_BF_ECAP_REG_PT_MASK)
2447 {
2448 if (pMemReqRemap->In.enmAddrType == PCIADDRTYPE_UNTRANSLATED)
2449 {
2450 if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, NULL /* pcPagingLevel */))
2451 {
2452 PDMARMEMREQOUT pOut = &pMemReqRemap->Out;
2453 PCDMARMEMREQIN pIn = &pMemReqRemap->In;
2454 pOut->AddrRange.uAddr = pIn->AddrRange.uAddr & X86_PAGE_4K_BASE_MASK;
2455 pOut->AddrRange.cb = pIn->AddrRange.cb;
2456 pOut->AddrRange.fPerm = DMAR_PERM_ALL;
2457 return VINF_SUCCESS;
2458 }
2459 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lgn_1_3, VTDATFAULT_LGN_1_3, pMemReqRemap);
2460 }
2461 else
2462 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_5, VTDATFAULT_LCT_5, pMemReqRemap);
2463 break;
2464 }
2465 RT_FALL_THRU();
2466 }
2467
2468 case VTD_TT_UNTRANSLATED_DEV_TLB:
2469 {
2470 /*
2471 * Untranslated, translated and translation requests are supported but requires
2472 * device-TLB support. We don't support device-TLBs, so it's treated as reserved.
2473 */
2474 Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_DT_MASK));
2475 RT_FALL_THRU();
2476 }
2477
2478 default:
2479 {
2480 /* Any other TT value is reserved. */
2481 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_4_2, VTDATFAULT_LCT_4_2, pMemReqRemap);
2482 break;
2483 }
2484 }
2485 }
2486 else
2487 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_3, VTDATFAULT_LCT_3, pMemReqRemap);
2488 }
2489 else
2490 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_2, VTDATFAULT_LCT_2, pMemReqRemap);
2491 }
2492 else
2493 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_1, VTDATFAULT_LCT_1, pMemReqRemap);
2494 }
2495 else
2496 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lrt_3, VTDATFAULT_LRT_3, pMemReqRemap);
2497 }
2498 else
2499 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lrt_2, VTDATFAULT_LRT_2, pMemReqRemap);
2500 }
2501 else
2502 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lrt_1, VTDATFAULT_LRT_1, pMemReqRemap);
2503 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2504}
2505
2506
2507/**
2508 * Handles remapping of DMA address requests in scalable mode.
2509 *
2510 * @returns VBox status code.
2511 * @param pDevIns The IOMMU device instance.
2512 * @param uRtaddrReg The current RTADDR_REG value.
2513 * @param pMemReqRemap The DMA memory request remapping info.
2514 */
2515static int dmarDrScalableModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
2516{
2517 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2518 if (pThis->fExtCapReg & VTD_BF_ECAP_REG_SMTS_MASK)
2519 {
2520 RT_NOREF1(uRtaddrReg);
2521 return VERR_NOT_IMPLEMENTED;
2522 }
2523
2524 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Rta_1_3, VTDATFAULT_RTA_1_3, pMemReqRemap);
2525 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2526}
2527
2528
2529/**
2530 * Memory access bulk (one or more 4K pages) request from a device.
2531 *
2532 * @returns VBox status code.
2533 * @param pDevIns The IOMMU device instance.
2534 * @param idDevice The device ID (bus, device, function).
2535 * @param cIovas The number of addresses being accessed.
2536 * @param pauIovas The I/O virtual addresses for each page being accessed.
2537 * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
2538 * @param paGCPhysSpa Where to store the translated physical addresses.
2539 *
2540 * @thread Any.
2541 */
2542static DECLCALLBACK(int) iommuIntelMemBulkAccess(PPDMDEVINS pDevIns, uint16_t idDevice, size_t cIovas, uint64_t const *pauIovas,
2543 uint32_t fFlags, PRTGCPHYS paGCPhysSpa)
2544{
2545 RT_NOREF6(pDevIns, idDevice, cIovas, pauIovas, fFlags, paGCPhysSpa);
2546 return VERR_NOT_IMPLEMENTED;
2547}
2548
2549
2550/**
2551 * Memory access transaction from a device.
2552 *
2553 * @returns VBox status code.
2554 * @param pDevIns The IOMMU device instance.
2555 * @param idDevice The device ID (bus, device, function).
2556 * @param uIova The I/O virtual address being accessed.
2557 * @param cbIova The size of the access.
2558 * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
2559 * @param pGCPhysSpa Where to store the translated system physical address.
2560 * @param pcbContiguous Where to store the number of contiguous bytes translated
2561 * and permission-checked.
2562 *
2563 * @thread Any.
2564 */
2565static DECLCALLBACK(int) iommuIntelMemAccess(PPDMDEVINS pDevIns, uint16_t idDevice, uint64_t uIova, size_t cbIova,
2566 uint32_t fFlags, PRTGCPHYS pGCPhysSpa, size_t *pcbContiguous)
2567{
2568 /* Validate. */
2569 AssertPtr(pDevIns);
2570 AssertPtr(pGCPhysSpa);
2571 AssertPtr(pcbContiguous);
2572 Assert(cbIova > 0); /** @todo Are we going to support ZLR (zero-length reads to write-only pages)? */
2573 Assert(!(fFlags & ~PDMIOMMU_MEM_F_VALID_MASK));
2574
2575 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2576 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
2577
2578 DMAR_LOCK(pDevIns, pThisCC);
2579 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
2580 uint64_t const uRtaddrReg = pThis->uRtaddrReg;
2581 DMAR_UNLOCK(pDevIns, pThisCC);
2582
2583 if (uGstsReg & VTD_BF_GSTS_REG_TES_MASK)
2584 {
2585 VTDREQTYPE enmReqType;
2586 uint8_t fReqPerm;
2587 if (fFlags & PDMIOMMU_MEM_F_READ)
2588 {
2589 enmReqType = VTDREQTYPE_READ;
2590 fReqPerm = DMAR_PERM_READ;
2591 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemRead));
2592 }
2593 else
2594 {
2595 enmReqType = VTDREQTYPE_WRITE;
2596 fReqPerm = DMAR_PERM_WRITE;
2597 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemWrite));
2598 }
2599
2600 uint8_t const fTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
2601 DMARMEMREQREMAP MemReqRemap;
2602 RT_ZERO(MemReqRemap);
2603 MemReqRemap.In.AddrRange.uAddr = uIova;
2604 MemReqRemap.In.AddrRange.cb = cbIova;
2605 MemReqRemap.In.AddrRange.fPerm = fReqPerm;
2606 MemReqRemap.In.idDevice = idDevice;
2607 MemReqRemap.In.Pasid = NIL_PCIPASID;
2608 MemReqRemap.In.enmAddrType = PCIADDRTYPE_UNTRANSLATED;
2609 MemReqRemap.In.enmReqType = enmReqType;
2610 MemReqRemap.Aux.fTtm = fTtm;
2611 MemReqRemap.Out.AddrRange.uAddr = NIL_RTGCPHYS;
2612
2613 int rc;
2614 switch (fTtm)
2615 {
2616 case VTD_TTM_LEGACY_MODE:
2617 {
2618 rc = dmarDrLegacyModeRemapAddr(pDevIns, uRtaddrReg, &MemReqRemap);
2619 break;
2620 }
2621
2622 case VTD_TTM_SCALABLE_MODE:
2623 {
2624 rc = dmarDrScalableModeRemapAddr(pDevIns, uRtaddrReg, &MemReqRemap);
2625 break;
2626 }
2627
2628 case VTD_TTM_ABORT_DMA_MODE:
2629 {
2630 rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2631 if (pThis->fExtCapReg & VTD_BF_ECAP_REG_ADMS_MASK)
2632 dmarDrTargetAbort(pDevIns);
2633 else
2634 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Rta_1_1, VTDATFAULT_RTA_1_1, &MemReqRemap);
2635 break;
2636 }
2637
2638 default:
2639 {
2640 rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2641 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Rta_1_2, VTDATFAULT_RTA_1_2, &MemReqRemap);
2642 break;
2643 }
2644 }
2645
2646 *pcbContiguous = MemReqRemap.Out.AddrRange.cb;
2647 *pGCPhysSpa = MemReqRemap.Out.AddrRange.uAddr;
2648 return rc;
2649 }
2650
2651 *pGCPhysSpa = uIova;
2652 *pcbContiguous = cbIova;
2653 return VINF_SUCCESS;
2654}
2655
2656
2657/**
2658 * Reads an IRTE from guest memory.
2659 *
2660 * @returns VBox status code.
2661 * @param pDevIns The IOMMU device instance.
2662 * @param uIrtaReg The IRTA_REG.
2663 * @param idxIntr The interrupt index.
2664 * @param pIrte Where to store the read IRTE.
2665 */
2666static int dmarIrReadIrte(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idxIntr, PVTD_IRTE_T pIrte)
2667{
2668 Assert(idxIntr < VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg));
2669
2670 size_t const cbIrte = sizeof(*pIrte);
2671 RTGCPHYS const GCPhysIrte = (uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK) + (idxIntr * cbIrte);
2672 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysIrte, pIrte, cbIrte);
2673}
2674
2675
2676/**
2677 * Remaps the source MSI to the destination MSI given the IRTE.
2678 *
2679 * @param fExtIntrMode Whether extended interrupt mode is enabled (i.e
2680 * IRTA_REG.EIME).
2681 * @param pIrte The IRTE used for the remapping.
2682 * @param pMsiIn The source MSI (currently unused).
2683 * @param pMsiOut Where to store the remapped MSI.
2684 */
2685static void dmarIrRemapFromIrte(bool fExtIntrMode, PCVTD_IRTE_T pIrte, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
2686{
2687 NOREF(pMsiIn);
2688 uint64_t const uIrteQword0 = pIrte->au64[0];
2689
2690 /*
2691 * Let's start with a clean slate and preserve unspecified bits if the need arises.
2692 * For instance, address bits 1:0 is supposed to be "ignored" by remapping hardware,
2693 * but it's not clear if hardware zeroes out these bits in the remapped MSI or if
2694 * it copies it from the source MSI.
2695 */
2696 RT_ZERO(*pMsiOut);
2697 pMsiOut->Addr.n.u1DestMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DM);
2698 pMsiOut->Addr.n.u1RedirHint = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_RH);
2699 pMsiOut->Addr.n.u12Addr = VBOX_MSI_ADDR_BASE >> VBOX_MSI_ADDR_SHIFT;
2700 if (fExtIntrMode)
2701 {
2702 /*
2703 * Apparently the DMAR stuffs the high 24-bits of the destination ID into the
2704 * high 24-bits of the upper 32-bits of the message address, see @bugref{9967#c22}.
2705 */
2706 uint32_t const idDest = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST);
2707 pMsiOut->Addr.n.u8DestId = idDest;
2708 pMsiOut->Addr.n.u32Rsvd0 = idDest & UINT32_C(0xffffff00);
2709 }
2710 else
2711 pMsiOut->Addr.n.u8DestId = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST_XAPIC);
2712
2713 pMsiOut->Data.n.u8Vector = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_V);
2714 pMsiOut->Data.n.u3DeliveryMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DLM);
2715 pMsiOut->Data.n.u1Level = 1;
2716 pMsiOut->Data.n.u1TriggerMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_TM);
2717}
2718
2719
2720/**
2721 * Handles remapping of interrupts in remappable interrupt format.
2722 *
2723 * @returns VBox status code.
2724 * @param pDevIns The IOMMU device instance.
2725 * @param uIrtaReg The IRTA_REG.
2726 * @param idDevice The device ID (bus, device, function).
2727 * @param pMsiIn The source MSI.
2728 * @param pMsiOut Where to store the remapped MSI.
2729 */
2730static int dmarIrRemapIntr(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
2731{
2732 Assert(pMsiIn->Addr.dmar_remap.fIntrFormat == VTD_INTR_FORMAT_REMAPPABLE);
2733
2734 /* Validate reserved bits in the interrupt request. */
2735 AssertCompile(VTD_REMAPPABLE_MSI_ADDR_VALID_MASK == UINT32_MAX);
2736 if (!(pMsiIn->Data.u32 & ~VTD_REMAPPABLE_MSI_DATA_VALID_MASK))
2737 {
2738 /* Compute the index into the interrupt remap table. */
2739 uint16_t const uHandleHi = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_HI);
2740 uint16_t const uHandleLo = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_LO);
2741 uint16_t const uHandle = uHandleLo | (uHandleHi << 15);
2742 bool const fSubHandleValid = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_SHV);
2743 uint16_t const idxIntr = fSubHandleValid
2744 ? uHandle + RT_BF_GET(pMsiIn->Data.u32, VTD_BF_REMAPPABLE_MSI_DATA_SUBHANDLE)
2745 : uHandle;
2746
2747 /* Validate the index. */
2748 uint32_t const cEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg);
2749 if (idxIntr < cEntries)
2750 {
2751 /** @todo Implement and read IRTE from interrupt-entry cache here. */
2752
2753 /* Read the interrupt remap table entry (IRTE) at the index. */
2754 VTD_IRTE_T Irte;
2755 int rc = dmarIrReadIrte(pDevIns, uIrtaReg, idxIntr, &Irte);
2756 if (RT_SUCCESS(rc))
2757 {
2758 /* Check if the IRTE is present (this must be done -before- checking reserved bits). */
2759 uint64_t const uIrteQword0 = Irte.au64[0];
2760 uint64_t const uIrteQword1 = Irte.au64[1];
2761 bool const fPresent = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_P);
2762 if (fPresent)
2763 {
2764 /* Validate reserved bits in the IRTE. */
2765 bool const fExtIntrMode = RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME);
2766 uint64_t const fQw0ValidMask = fExtIntrMode ? VTD_IRTE_0_X2APIC_VALID_MASK : VTD_IRTE_0_XAPIC_VALID_MASK;
2767 if ( !(uIrteQword0 & ~fQw0ValidMask)
2768 && !(uIrteQword1 & ~VTD_IRTE_1_VALID_MASK))
2769 {
2770 /* Validate requester id (the device ID) as configured in the IRTE. */
2771 bool fSrcValid;
2772 DMARDIAG enmIrDiag;
2773 uint8_t const fSvt = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SVT);
2774 switch (fSvt)
2775 {
2776 case VTD_IRTE_SVT_NONE:
2777 {
2778 fSrcValid = true;
2779 enmIrDiag = kDmarDiag_None;
2780 break;
2781 }
2782
2783 case VTD_IRTE_SVT_VALIDATE_MASK:
2784 {
2785 static uint16_t const s_afValidMasks[] = { 0xffff, 0xfffb, 0xfff9, 0xfff8 };
2786 uint8_t const idxMask = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SQ) & 3;
2787 uint16_t const fValidMask = s_afValidMasks[idxMask];
2788 uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID);
2789 fSrcValid = (idDevice & fValidMask) == (idSource & fValidMask);
2790 enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Masked;
2791 break;
2792 }
2793
2794 case VTD_IRTE_SVT_VALIDATE_BUS_RANGE:
2795 {
2796 uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID);
2797 uint8_t const uBusFirst = RT_HI_U8(idSource);
2798 uint8_t const uBusLast = RT_LO_U8(idSource);
2799 uint8_t const idDeviceBus = idDevice >> VBOX_PCI_BUS_SHIFT;
2800 fSrcValid = (idDeviceBus >= uBusFirst && idDeviceBus <= uBusLast);
2801 enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Bus;
2802 break;
2803 }
2804
2805 default:
2806 {
2807 fSrcValid = false;
2808 enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Bus;
2809 break;
2810 }
2811 }
2812
2813 if (fSrcValid)
2814 {
2815 uint8_t const fPostedMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_IM);
2816 if (!fPostedMode)
2817 {
2818 dmarIrRemapFromIrte(fExtIntrMode, &Irte, pMsiIn, pMsiOut);
2819 return VINF_SUCCESS;
2820 }
2821 dmarIrFaultRecordQualified(pDevIns, kDmarDiag_Ir_Rfi_Irte_Mode_Invalid,
2822 VTDIRFAULT_IRTE_PRESENT_RSVD, idDevice, idxIntr, &Irte);
2823 }
2824 else
2825 dmarIrFaultRecordQualified(pDevIns, enmIrDiag, VTDIRFAULT_IRTE_PRESENT_RSVD, idDevice, idxIntr,
2826 &Irte);
2827 }
2828 else
2829 dmarIrFaultRecordQualified(pDevIns, kDmarDiag_Ir_Rfi_Irte_Rsvd, VTDIRFAULT_IRTE_PRESENT_RSVD,
2830 idDevice, idxIntr, &Irte);
2831 }
2832 else
2833 dmarIrFaultRecordQualified(pDevIns, kDmarDiag_Ir_Rfi_Irte_Not_Present, VTDIRFAULT_IRTE_NOT_PRESENT,
2834 idDevice, idxIntr, &Irte);
2835 }
2836 else
2837 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Read_Failed, VTDIRFAULT_IRTE_READ_FAILED, idDevice, idxIntr);
2838 }
2839 else
2840 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Intr_Index_Invalid, VTDIRFAULT_INTR_INDEX_INVALID, idDevice, idxIntr);
2841 }
2842 else
2843 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Rsvd, VTDIRFAULT_REMAPPABLE_INTR_RSVD, idDevice, 0 /* idxIntr */);
2844 return VERR_IOMMU_INTR_REMAP_DENIED;
2845}
2846
2847
2848/**
2849 * Interrupt remap request from a device.
2850 *
2851 * @returns VBox status code.
2852 * @param pDevIns The IOMMU device instance.
2853 * @param idDevice The device ID (bus, device, function).
2854 * @param pMsiIn The source MSI.
2855 * @param pMsiOut Where to store the remapped MSI.
2856 */
2857static DECLCALLBACK(int) iommuIntelMsiRemap(PPDMDEVINS pDevIns, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
2858{
2859 /* Validate. */
2860 Assert(pDevIns);
2861 Assert(pMsiIn);
2862 Assert(pMsiOut);
2863 RT_NOREF1(idDevice);
2864
2865 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2866 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
2867
2868 /* Lock and read all registers required for interrupt remapping up-front. */
2869 DMAR_LOCK(pDevIns, pThisCC);
2870 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
2871 uint64_t const uIrtaReg = pThis->uIrtaReg;
2872 DMAR_UNLOCK(pDevIns, pThisCC);
2873
2874 /* Check if interrupt remapping is enabled. */
2875 if (uGstsReg & VTD_BF_GSTS_REG_IRES_MASK)
2876 {
2877 bool const fIsRemappable = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_INTR_FMT);
2878 if (!fIsRemappable)
2879 {
2880 /* Handle compatibility format interrupts. */
2881 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapCfi));
2882
2883 /* If EIME is enabled or CFIs are disabled, block the interrupt. */
2884 if ( (uIrtaReg & VTD_BF_IRTA_REG_EIME_MASK)
2885 || !(uGstsReg & VTD_BF_GSTS_REG_CFIS_MASK))
2886 {
2887 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Cfi_Blocked, VTDIRFAULT_CFI_BLOCKED, idDevice, 0 /* idxIntr */);
2888 return VERR_IOMMU_INTR_REMAP_DENIED;
2889 }
2890
2891 /* Interrupt isn't subject to remapping, pass-through the interrupt. */
2892 *pMsiOut = *pMsiIn;
2893 return VINF_SUCCESS;
2894 }
2895
2896 /* Handle remappable format interrupts. */
2897 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapRfi));
2898 return dmarIrRemapIntr(pDevIns, uIrtaReg, idDevice, pMsiIn, pMsiOut);
2899 }
2900
2901 /* Interrupt-remapping isn't enabled, all interrupts are pass-through. */
2902 *pMsiOut = *pMsiIn;
2903 return VINF_SUCCESS;
2904}
2905
2906
2907/**
2908 * @callback_method_impl{FNIOMMMIONEWWRITE}
2909 */
2910static DECLCALLBACK(VBOXSTRICTRC) dmarMmioWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb)
2911{
2912 RT_NOREF1(pvUser);
2913 DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
2914
2915 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2916 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioWrite));
2917
2918 uint16_t const offReg = off;
2919 uint16_t const offLast = offReg + cb - 1;
2920 if (DMAR_IS_MMIO_OFF_VALID(offLast))
2921 {
2922 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
2923 DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_WRITE);
2924
2925 uint64_t uPrev = 0;
2926 uint64_t const uRegWritten = cb == 8 ? dmarRegWrite64(pThis, offReg, *(uint64_t *)pv, &uPrev)
2927 : dmarRegWrite32(pThis, offReg, *(uint32_t *)pv, (uint32_t *)&uPrev);
2928 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2929 switch (off)
2930 {
2931 case VTD_MMIO_OFF_GCMD_REG: /* 32-bit */
2932 {
2933 rcStrict = dmarGcmdRegWrite(pDevIns, uRegWritten);
2934 break;
2935 }
2936
2937 case VTD_MMIO_OFF_CCMD_REG: /* 64-bit */
2938 case VTD_MMIO_OFF_CCMD_REG + 4:
2939 {
2940 rcStrict = dmarCcmdRegWrite(pDevIns, offReg, cb, uRegWritten);
2941 break;
2942 }
2943
2944 case VTD_MMIO_OFF_FSTS_REG: /* 32-bit */
2945 {
2946 rcStrict = dmarFstsRegWrite(pDevIns, uRegWritten, uPrev);
2947 break;
2948 }
2949
2950 case VTD_MMIO_OFF_FECTL_REG: /* 32-bit */
2951 {
2952 rcStrict = dmarFectlRegWrite(pDevIns, uRegWritten);
2953 break;
2954 }
2955
2956 case VTD_MMIO_OFF_IQT_REG: /* 64-bit */
2957 /* VTD_MMIO_OFF_IQT_REG + 4: */ /* High 32-bits reserved. */
2958 {
2959 rcStrict = dmarIqtRegWrite(pDevIns, offReg, uRegWritten);
2960 break;
2961 }
2962
2963 case VTD_MMIO_OFF_IQA_REG: /* 64-bit */
2964 /* VTD_MMIO_OFF_IQA_REG + 4: */ /* High 32-bits data. */
2965 {
2966 rcStrict = dmarIqaRegWrite(pDevIns, offReg, uRegWritten);
2967 break;
2968 }
2969
2970 case VTD_MMIO_OFF_ICS_REG: /* 32-bit */
2971 {
2972 rcStrict = dmarIcsRegWrite(pDevIns, uRegWritten);
2973 break;
2974 }
2975
2976 case VTD_MMIO_OFF_IECTL_REG: /* 32-bit */
2977 {
2978 rcStrict = dmarIectlRegWrite(pDevIns, uRegWritten);
2979 break;
2980 }
2981
2982 case DMAR_MMIO_OFF_FRCD_HI_REG: /* 64-bit */
2983 case DMAR_MMIO_OFF_FRCD_HI_REG + 4:
2984 {
2985 rcStrict = dmarFrcdHiRegWrite(pDevIns, offReg, cb, uRegWritten, uPrev);
2986 break;
2987 }
2988 }
2989
2990 DMAR_UNLOCK(pDevIns, pThisCC);
2991 LogFlowFunc(("offReg=%#x uRegWritten=%#RX64 rc=%Rrc\n", offReg, uRegWritten, VBOXSTRICTRC_VAL(rcStrict)));
2992 return rcStrict;
2993 }
2994
2995 return VINF_IOM_MMIO_UNUSED_FF;
2996}
2997
2998
2999/**
3000 * @callback_method_impl{FNIOMMMIONEWREAD}
3001 */
3002static DECLCALLBACK(VBOXSTRICTRC) dmarMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb)
3003{
3004 RT_NOREF1(pvUser);
3005 DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
3006
3007 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3008 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioRead));
3009
3010 uint16_t const offReg = off;
3011 uint16_t const offLast = offReg + cb - 1;
3012 if (DMAR_IS_MMIO_OFF_VALID(offLast))
3013 {
3014 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
3015 DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_READ);
3016
3017 if (cb == 8)
3018 {
3019 *(uint64_t *)pv = dmarRegRead64(pThis, offReg);
3020 LogFlowFunc(("offReg=%#x pv=%#RX64\n", offReg, *(uint64_t *)pv));
3021 }
3022 else
3023 {
3024 *(uint32_t *)pv = dmarRegRead32(pThis, offReg);
3025 LogFlowFunc(("offReg=%#x pv=%#RX32\n", offReg, *(uint32_t *)pv));
3026 }
3027
3028 DMAR_UNLOCK(pDevIns, pThisCC);
3029 return VINF_SUCCESS;
3030 }
3031
3032 return VINF_IOM_MMIO_UNUSED_FF;
3033}
3034
3035
3036#ifdef IN_RING3
3037/**
3038 * Process requests in the invalidation queue.
3039 *
3040 * @param pDevIns The IOMMU device instance.
3041 * @param pvRequests The requests to process.
3042 * @param cbRequests The size of all requests (in bytes).
3043 * @param fDw The descriptor width (VTD_IQA_REG_DW_128_BIT or
3044 * VTD_IQA_REG_DW_256_BIT).
3045 * @param fTtm The table translation mode. Must not be VTD_TTM_RSVD.
3046 */
3047static void dmarR3InvQueueProcessRequests(PPDMDEVINS pDevIns, void const *pvRequests, uint32_t cbRequests, uint8_t fDw,
3048 uint8_t fTtm)
3049{
3050#define DMAR_IQE_FAULT_RECORD_RET(a_enmDiag, a_enmIqei) \
3051 do \
3052 { \
3053 dmarIqeFaultRecord(pDevIns, (a_enmDiag), (a_enmIqei)); \
3054 return; \
3055 } while (0)
3056
3057 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3058 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3059
3060 DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3);
3061 Assert(fTtm != VTD_TTM_RSVD); /* Should've beeen handled by caller. */
3062
3063 /*
3064 * The below check is redundant since we check both TTM and DW for each
3065 * descriptor type we process. However, the error reported by hardware
3066 * may differ hence this is kept commented out but not removed from the code
3067 * if we need to change this in the future.
3068 *
3069 * In our implementation, we would report the descriptor type as invalid,
3070 * while on real hardware it may report descriptor width as invalid.
3071 * The Intel VT-d spec. is not clear which error takes preceedence.
3072 */
3073#if 0
3074 /*
3075 * Verify that 128-bit descriptors are not used when operating in scalable mode.
3076 * We don't check this while software writes IQA_REG but defer it until now because
3077 * RTADDR_REG can be updated lazily (via GCMD_REG.SRTP). The 256-bit descriptor check
3078 * -IS- performed when software writes IQA_REG since it only requires checking against
3079 * immutable hardware features.
3080 */
3081 if ( fTtm != VTD_TTM_SCALABLE_MODE
3082 || fDw != VTD_IQA_REG_DW_128_BIT)
3083 { /* likely */ }
3084 else
3085 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_IqaReg_Dw_128_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH);
3086#endif
3087
3088 /*
3089 * Process requests in FIFO order.
3090 */
3091 uint8_t const cbDsc = fDw == VTD_IQA_REG_DW_256_BIT ? 32 : 16;
3092 for (uint32_t offDsc = 0; offDsc < cbRequests; offDsc += cbDsc)
3093 {
3094 uint64_t const *puDscQwords = (uint64_t const *)((uintptr_t)pvRequests + offDsc);
3095 uint64_t const uQword0 = puDscQwords[0];
3096 uint64_t const uQword1 = puDscQwords[1];
3097 uint8_t const fDscType = VTD_GENERIC_INV_DSC_GET_TYPE(uQword0);
3098 switch (fDscType)
3099 {
3100 case VTD_INV_WAIT_DSC_TYPE:
3101 {
3102 /* Validate descriptor type. */
3103 if ( fTtm == VTD_TTM_LEGACY_MODE
3104 || fDw == VTD_IQA_REG_DW_256_BIT)
3105 { /* likely */ }
3106 else
3107 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE);
3108
3109 /* Validate reserved bits. */
3110 uint64_t const fValidMask0 = !(pThis->fExtCapReg & VTD_BF_ECAP_REG_PDS_MASK)
3111 ? VTD_INV_WAIT_DSC_0_VALID_MASK & ~VTD_BF_0_INV_WAIT_DSC_PD_MASK
3112 : VTD_INV_WAIT_DSC_0_VALID_MASK;
3113 if ( !(uQword0 & ~fValidMask0)
3114 && !(uQword1 & ~VTD_INV_WAIT_DSC_1_VALID_MASK))
3115 { /* likely */ }
3116 else
3117 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION);
3118
3119 if (fDw == VTD_IQA_REG_DW_256_BIT)
3120 {
3121 if ( !puDscQwords[2]
3122 && !puDscQwords[3])
3123 { /* likely */ }
3124 else
3125 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION);
3126 }
3127
3128 /* Perform status write (this must be done prior to generating the completion interrupt). */
3129 bool const fSw = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_SW);
3130 if (fSw)
3131 {
3132 uint32_t const uStatus = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_STDATA);
3133 RTGCPHYS const GCPhysStatus = uQword1 & VTD_BF_1_INV_WAIT_DSC_STADDR_MASK;
3134 int const rc = PDMDevHlpPhysWrite(pDevIns, GCPhysStatus, (void const*)&uStatus, sizeof(uStatus));
3135 AssertRC(rc);
3136 }
3137
3138 /* Generate invalidation event interrupt. */
3139 bool const fIf = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_IF);
3140 if (fIf)
3141 {
3142 DMAR_LOCK(pDevIns, pThisR3);
3143 dmarR3InvEventRaiseInterrupt(pDevIns);
3144 DMAR_UNLOCK(pDevIns, pThisR3);
3145 }
3146
3147 STAM_COUNTER_INC(&pThis->StatInvWaitDsc);
3148 break;
3149 }
3150
3151 case VTD_CC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatCcInvDsc); break;
3152 case VTD_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIotlbInvDsc); break;
3153 case VTD_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatDevtlbInvDsc); break;
3154 case VTD_IEC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIecInvDsc); break;
3155 case VTD_P_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidIotlbInvDsc); break;
3156 case VTD_PC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidCacheInvDsc); break;
3157 case VTD_P_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidDevtlbInvDsc); break;
3158 default:
3159 {
3160 /* Stop processing further requests. */
3161 LogFunc(("Invalid descriptor type: %#x\n", fDscType));
3162 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Dsc_Type_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE);
3163 }
3164 }
3165 }
3166#undef DMAR_IQE_FAULT_RECORD_RET
3167}
3168
3169
3170/**
3171 * The invalidation-queue thread.
3172 *
3173 * @returns VBox status code.
3174 * @param pDevIns The IOMMU device instance.
3175 * @param pThread The command thread.
3176 */
3177static DECLCALLBACK(int) dmarR3InvQueueThread(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
3178{
3179 NOREF(pThread);
3180 LogFlowFunc(("\n"));
3181
3182 if (pThread->enmState == PDMTHREADSTATE_INITIALIZING)
3183 return VINF_SUCCESS;
3184
3185 /*
3186 * Pre-allocate the maximum size of the invalidation queue allowed by the spec.
3187 * This prevents trashing the heap as well as deal with out-of-memory situations
3188 * up-front while starting the VM. It also simplifies the code from having to
3189 * dynamically grow/shrink the allocation based on how software sizes the queue.
3190 * Guests normally don't alter the queue size all the time, but that's not an
3191 * assumption we can make.
3192 */
3193 uint8_t const cMaxPages = 1 << VTD_BF_IQA_REG_QS_MASK;
3194 size_t const cbMaxQs = cMaxPages << X86_PAGE_SHIFT;
3195 void *pvRequests = RTMemAllocZ(cbMaxQs);
3196 AssertPtrReturn(pvRequests, VERR_NO_MEMORY);
3197
3198 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3199 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3200
3201 while (pThread->enmState == PDMTHREADSTATE_RUNNING)
3202 {
3203 /*
3204 * Sleep until we are woken up.
3205 */
3206 {
3207 int const rc = PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEvtInvQueue, RT_INDEFINITE_WAIT);
3208 AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), rc);
3209 if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING))
3210 break;
3211 }
3212
3213 DMAR_LOCK(pDevIns, pThisR3);
3214 if (dmarInvQueueCanProcessRequests(pThis))
3215 {
3216 uint32_t offQueueHead;
3217 uint32_t offQueueTail;
3218 bool const fIsEmpty = dmarInvQueueIsEmptyEx(pThis, &offQueueHead, &offQueueTail);
3219 if (!fIsEmpty)
3220 {
3221 /*
3222 * Get the current queue size, descriptor width, queue base address and the
3223 * table translation mode while the lock is still held.
3224 */
3225 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
3226 uint8_t const cQueuePages = 1 << (uIqaReg & VTD_BF_IQA_REG_QS_MASK);
3227 uint32_t const cbQueue = cQueuePages << X86_PAGE_SHIFT;
3228 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
3229 uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
3230 RTGCPHYS const GCPhysRequests = (uIqaReg & VTD_BF_IQA_REG_IQA_MASK) + offQueueHead;
3231
3232 /* Paranoia. */
3233 Assert(cbQueue <= cbMaxQs);
3234 Assert(!(offQueueTail & ~VTD_BF_IQT_REG_QT_MASK));
3235 Assert(!(offQueueHead & ~VTD_BF_IQH_REG_QH_MASK));
3236 Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueTail & RT_BIT(4)));
3237 Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueHead & RT_BIT(4)));
3238 Assert(offQueueHead < cbQueue);
3239
3240 /*
3241 * A table translation mode of "reserved" isn't valid for any descriptor type.
3242 * However, RTADDR_REG can be modified in parallel to invalidation-queue processing,
3243 * but if ESRTPS is support, we will perform a global invalidation when software
3244 * changes RTADDR_REG, or it's the responsibility of software to do it explicitly.
3245 * So caching TTM while reading all descriptors should not be a problem.
3246 *
3247 * Also, validate the queue tail offset as it's mutable by software.
3248 */
3249 if ( fTtm != VTD_TTM_RSVD
3250 && offQueueTail < cbQueue)
3251 {
3252 /* Don't hold the lock while reading (a potentially large amount of) requests */
3253 DMAR_UNLOCK(pDevIns, pThisR3);
3254
3255 int rc;
3256 uint32_t cbRequests;
3257 if (offQueueTail > offQueueHead)
3258 {
3259 /* The requests have not wrapped around, read them in one go. */
3260 cbRequests = offQueueTail - offQueueHead;
3261 rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbRequests);
3262 }
3263 else
3264 {
3265 /* The requests have wrapped around, read forward and wrapped-around. */
3266 uint32_t const cbForward = cbQueue - offQueueHead;
3267 rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbForward);
3268
3269 uint32_t const cbWrapped = offQueueTail;
3270 if ( RT_SUCCESS(rc)
3271 && cbWrapped > 0)
3272 {
3273 rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests + cbForward,
3274 (void *)((uintptr_t)pvRequests + cbForward), cbWrapped);
3275 }
3276 cbRequests = cbForward + cbWrapped;
3277 }
3278
3279 /* Re-acquire the lock since we need to update device state. */
3280 DMAR_LOCK(pDevIns, pThisR3);
3281
3282 if (RT_SUCCESS(rc))
3283 {
3284 /* Indicate to software we've fetched all requests. */
3285 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_IQH_REG, offQueueTail);
3286
3287 /* Don't hold the lock while processing requests. */
3288 DMAR_UNLOCK(pDevIns, pThisR3);
3289
3290 /* Process all requests. */
3291 Assert(cbRequests <= cbQueue);
3292 dmarR3InvQueueProcessRequests(pDevIns, pvRequests, cbRequests, fDw, fTtm);
3293
3294 /*
3295 * We've processed all requests and the lock shouldn't be held at this point.
3296 * Using 'continue' here allows us to skip re-acquiring the lock just to release
3297 * it again before going back to the thread loop. It's a bit ugly but it certainly
3298 * helps with performance.
3299 */
3300 DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3);
3301 continue;
3302 }
3303 else
3304 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dsc_Fetch_Error, VTDIQEI_FETCH_DESCRIPTOR_ERR);
3305 }
3306 else
3307 {
3308 if (fTtm == VTD_TTM_RSVD)
3309 dmarIqeFaultRecord(pDevIns, kDmarDiag_Iqei_Ttm_Rsvd, VTDIQEI_INVALID_TTM);
3310 else
3311 {
3312 Assert(offQueueTail >= cbQueue);
3313 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Invalid, VTDIQEI_INVALID_TAIL_PTR);
3314 }
3315 }
3316 }
3317 }
3318 DMAR_UNLOCK(pDevIns, pThisR3);
3319 }
3320
3321 RTMemFree(pvRequests);
3322 pvRequests = NULL;
3323
3324 LogFlowFunc(("Invalidation-queue thread terminating\n"));
3325 return VINF_SUCCESS;
3326}
3327
3328
3329/**
3330 * Wakes up the invalidation-queue thread so it can respond to a state
3331 * change.
3332 *
3333 * @returns VBox status code.
3334 * @param pDevIns The IOMMU device instance.
3335 * @param pThread The invalidation-queue thread.
3336 *
3337 * @thread EMT.
3338 */
3339static DECLCALLBACK(int) dmarR3InvQueueThreadWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
3340{
3341 RT_NOREF(pThread);
3342 LogFlowFunc(("\n"));
3343 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3344 return PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
3345}
3346
3347
3348/**
3349 * @callback_method_impl{FNDBGFHANDLERDEV}
3350 */
3351static DECLCALLBACK(void) dmarR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
3352{
3353 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3354 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3355 bool const fVerbose = RTStrCmp(pszArgs, "verbose") == 0;
3356
3357 /*
3358 * We lock the device to get a consistent register state as it is
3359 * ASSUMED pHlp->pfnPrintf is expensive, so we copy the registers (the
3360 * ones we care about here) into temporaries and release the lock ASAP.
3361 *
3362 * Order of register being read and outputted is in accordance with the
3363 * spec. for no particular reason.
3364 * See Intel VT-d spec. 10.4 "Register Descriptions".
3365 */
3366 DMAR_LOCK(pDevIns, pThisR3);
3367
3368 DMARDIAG const enmDiag = pThis->enmDiag;
3369 uint32_t const uVerReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_VER_REG);
3370 uint64_t const uCapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CAP_REG);
3371 uint64_t const uEcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_ECAP_REG);
3372 uint32_t const uGcmdReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GCMD_REG);
3373 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
3374 uint64_t const uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
3375 uint64_t const uCcmdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CCMD_REG);
3376 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
3377 uint32_t const uFectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FECTL_REG);
3378 uint32_t const uFedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEDATA_REG);
3379 uint32_t const uFeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEADDR_REG);
3380 uint32_t const uFeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEUADDR_REG);
3381 uint64_t const uAflogReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_AFLOG_REG);
3382 uint32_t const uPmenReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PMEN_REG);
3383 uint32_t const uPlmbaseReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMBASE_REG);
3384 uint32_t const uPlmlimitReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMLIMIT_REG);
3385 uint64_t const uPhmbaseReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMBASE_REG);
3386 uint64_t const uPhmlimitReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMLIMIT_REG);
3387 uint64_t const uIqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQH_REG);
3388 uint64_t const uIqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQT_REG);
3389 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
3390 uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
3391 uint32_t const uIectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IECTL_REG);
3392 uint32_t const uIedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEDATA_REG);
3393 uint32_t const uIeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEADDR_REG);
3394 uint32_t const uIeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEUADDR_REG);
3395 uint64_t const uIqercdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG);
3396 uint64_t const uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
3397 uint64_t const uPqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQH_REG);
3398 uint64_t const uPqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQT_REG);
3399 uint64_t const uPqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQA_REG);
3400 uint32_t const uPrsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PRS_REG);
3401 uint32_t const uPectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PECTL_REG);
3402 uint32_t const uPedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEDATA_REG);
3403 uint32_t const uPeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEADDR_REG);
3404 uint32_t const uPeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEUADDR_REG);
3405 uint64_t const uMtrrcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRCAP_REG);
3406 uint64_t const uMtrrdefReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRDEF_REG);
3407
3408 DMAR_UNLOCK(pDevIns, pThisR3);
3409
3410 const char *const pszDiag = enmDiag < RT_ELEMENTS(g_apszDmarDiagDesc) ? g_apszDmarDiagDesc[enmDiag] : "(Unknown)";
3411 pHlp->pfnPrintf(pHlp, "Intel-IOMMU:\n");
3412 pHlp->pfnPrintf(pHlp, " Diag = %s\n", pszDiag);
3413
3414 /*
3415 * Non-verbose output.
3416 */
3417 if (!fVerbose)
3418 {
3419 pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
3420 pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
3421 pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
3422 pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
3423 pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
3424 pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
3425 pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
3426 pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
3427 pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
3428 pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
3429 pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
3430 pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
3431 pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
3432 pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
3433 pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
3434 pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
3435 pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
3436 pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
3437 pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
3438 pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
3439 pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
3440 pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
3441 pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
3442 pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
3443 pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
3444 pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
3445 pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
3446 pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
3447 pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
3448 pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
3449 pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
3450 pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
3451 pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
3452 pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
3453 pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
3454 pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
3455 pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
3456 pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
3457 pHlp->pfnPrintf(pHlp, "\n");
3458 return;
3459 }
3460
3461 /*
3462 * Verbose output.
3463 */
3464 pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
3465 {
3466 pHlp->pfnPrintf(pHlp, " MAJ = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MAX));
3467 pHlp->pfnPrintf(pHlp, " MIN = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MIN));
3468 }
3469 pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
3470 {
3471 uint8_t const uMgaw = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MGAW);
3472 uint8_t const uNfr = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_NFR);
3473 pHlp->pfnPrintf(pHlp, " ND = %u\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ND));
3474 pHlp->pfnPrintf(pHlp, " AFL = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_AFL));
3475 pHlp->pfnPrintf(pHlp, " RWBF = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_RWBF));
3476 pHlp->pfnPrintf(pHlp, " PLMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PLMR));
3477 pHlp->pfnPrintf(pHlp, " PHMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PHMR));
3478 pHlp->pfnPrintf(pHlp, " CM = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_CM));
3479 pHlp->pfnPrintf(pHlp, " SAGAW = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SAGAW));
3480 pHlp->pfnPrintf(pHlp, " MGAW = %#x (%u bits)\n", uMgaw, uMgaw + 1);
3481 pHlp->pfnPrintf(pHlp, " ZLR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ZLR));
3482 pHlp->pfnPrintf(pHlp, " FRO = %#x bytes\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FRO));
3483 pHlp->pfnPrintf(pHlp, " SLLPS = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SLLPS));
3484 pHlp->pfnPrintf(pHlp, " PSI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PSI));
3485 pHlp->pfnPrintf(pHlp, " NFR = %u (%u FRCD register%s)\n", uNfr, uNfr + 1, uNfr > 0 ? "s" : "");
3486 pHlp->pfnPrintf(pHlp, " MAMV = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MAMV));
3487 pHlp->pfnPrintf(pHlp, " DWD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DWD));
3488 pHlp->pfnPrintf(pHlp, " DRD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DRD));
3489 pHlp->pfnPrintf(pHlp, " FL1GP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL1GP));
3490 pHlp->pfnPrintf(pHlp, " PI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PI));
3491 pHlp->pfnPrintf(pHlp, " FL5LP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL5LP));
3492 pHlp->pfnPrintf(pHlp, " ESIRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESIRTPS));
3493 pHlp->pfnPrintf(pHlp, " ESRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESRTPS));
3494 }
3495 pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
3496 {
3497 uint8_t const uPss = RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PSS);
3498 pHlp->pfnPrintf(pHlp, " C = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_C));
3499 pHlp->pfnPrintf(pHlp, " QI = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_QI));
3500 pHlp->pfnPrintf(pHlp, " DT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DT));
3501 pHlp->pfnPrintf(pHlp, " IR = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IR));
3502 pHlp->pfnPrintf(pHlp, " EIM = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EIM));
3503 pHlp->pfnPrintf(pHlp, " PT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PT));
3504 pHlp->pfnPrintf(pHlp, " SC = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SC));
3505 pHlp->pfnPrintf(pHlp, " IRO = %#x bytes\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IRO));
3506 pHlp->pfnPrintf(pHlp, " MHMV = %#x\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MHMV));
3507 pHlp->pfnPrintf(pHlp, " MTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MTS));
3508 pHlp->pfnPrintf(pHlp, " NEST = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NEST));
3509 pHlp->pfnPrintf(pHlp, " PRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PRS));
3510 pHlp->pfnPrintf(pHlp, " ERS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ERS));
3511 pHlp->pfnPrintf(pHlp, " SRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SRS));
3512 pHlp->pfnPrintf(pHlp, " NWFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NWFS));
3513 pHlp->pfnPrintf(pHlp, " EAFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EAFS));
3514 pHlp->pfnPrintf(pHlp, " PSS = %u (%u bits)\n", uPss, uPss > 0 ? uPss + 1 : 0);
3515 pHlp->pfnPrintf(pHlp, " PASID = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PASID));
3516 pHlp->pfnPrintf(pHlp, " DIT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DIT));
3517 pHlp->pfnPrintf(pHlp, " PDS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PDS));
3518 pHlp->pfnPrintf(pHlp, " SMTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMTS));
3519 pHlp->pfnPrintf(pHlp, " VCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_VCS));
3520 pHlp->pfnPrintf(pHlp, " SLADS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLADS));
3521 pHlp->pfnPrintf(pHlp, " SLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLTS));
3522 pHlp->pfnPrintf(pHlp, " FLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_FLTS));
3523 pHlp->pfnPrintf(pHlp, " SMPWCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMPWCS));
3524 pHlp->pfnPrintf(pHlp, " RPS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPS));
3525 pHlp->pfnPrintf(pHlp, " ADMS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ADMS));
3526 pHlp->pfnPrintf(pHlp, " RPRIVS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPRIVS));
3527 }
3528 pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
3529 {
3530 uint8_t const fCfi = RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_CFI);
3531 pHlp->pfnPrintf(pHlp, " CFI = %u (%s)\n", fCfi, fCfi ? "Passthrough" : "Blocked");
3532 pHlp->pfnPrintf(pHlp, " SIRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SIRTP));
3533 pHlp->pfnPrintf(pHlp, " IRE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_IRE));
3534 pHlp->pfnPrintf(pHlp, " QIE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_QIE));
3535 pHlp->pfnPrintf(pHlp, " WBF = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_WBF));
3536 pHlp->pfnPrintf(pHlp, " EAFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
3537 pHlp->pfnPrintf(pHlp, " SFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
3538 pHlp->pfnPrintf(pHlp, " SRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SRTP));
3539 pHlp->pfnPrintf(pHlp, " TE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_TE));
3540 }
3541 pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
3542 {
3543 uint8_t const fCfis = RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_CFIS);
3544 pHlp->pfnPrintf(pHlp, " CFIS = %u (%s)\n", fCfis, fCfis ? "Passthrough" : "Blocked");
3545 pHlp->pfnPrintf(pHlp, " IRTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRTPS));
3546 pHlp->pfnPrintf(pHlp, " IRES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRES));
3547 pHlp->pfnPrintf(pHlp, " QIES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_QIES));
3548 pHlp->pfnPrintf(pHlp, " WBFS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_WBFS));
3549 pHlp->pfnPrintf(pHlp, " AFLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_AFLS));
3550 pHlp->pfnPrintf(pHlp, " FLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_FLS));
3551 pHlp->pfnPrintf(pHlp, " RTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_RTPS));
3552 pHlp->pfnPrintf(pHlp, " TES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_TES));
3553 }
3554 pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
3555 {
3556 uint8_t const uTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
3557 pHlp->pfnPrintf(pHlp, " RTA = %#RX64\n", uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK);
3558 pHlp->pfnPrintf(pHlp, " TTM = %u (%s)\n", uTtm, vtdRtaddrRegGetTtmDesc(uTtm));
3559 }
3560 pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
3561 pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
3562 {
3563 pHlp->pfnPrintf(pHlp, " PFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PFO));
3564 pHlp->pfnPrintf(pHlp, " PPF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PPF));
3565 pHlp->pfnPrintf(pHlp, " AFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_AFO));
3566 pHlp->pfnPrintf(pHlp, " APF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_APF));
3567 pHlp->pfnPrintf(pHlp, " IQE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_IQE));
3568 pHlp->pfnPrintf(pHlp, " ICS = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ICE));
3569 pHlp->pfnPrintf(pHlp, " ITE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ITE));
3570 pHlp->pfnPrintf(pHlp, " FRI = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_FRI));
3571 }
3572 pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
3573 {
3574 pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IM));
3575 pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IP));
3576 }
3577 pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
3578 pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
3579 pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
3580 pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
3581 pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
3582 pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
3583 pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
3584 pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
3585 pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
3586 pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
3587 pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
3588 pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
3589 {
3590 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
3591 uint8_t const fQs = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_QS);
3592 uint8_t const cQueuePages = 1 << fQs;
3593 pHlp->pfnPrintf(pHlp, " DW = %u (%s)\n", fDw, fDw == VTD_IQA_REG_DW_128_BIT ? "128-bit" : "256-bit");
3594 pHlp->pfnPrintf(pHlp, " QS = %u (%u page%s)\n", fQs, cQueuePages, cQueuePages > 1 ? "s" : "");
3595 }
3596 pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
3597 {
3598 pHlp->pfnPrintf(pHlp, " IWC = %u\n", RT_BF_GET(uIcsReg, VTD_BF_ICS_REG_IWC));
3599 }
3600 pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
3601 {
3602 pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IM));
3603 pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IP));
3604 }
3605 pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
3606 pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
3607 pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
3608 pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
3609 {
3610 pHlp->pfnPrintf(pHlp, " ICESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ICESID));
3611 pHlp->pfnPrintf(pHlp, " ITESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ITESID));
3612 pHlp->pfnPrintf(pHlp, " IQEI = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_IQEI));
3613 }
3614 pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
3615 {
3616 uint32_t const cIrtEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg);
3617 uint32_t const cbIrt = sizeof(VTD_IRTE_T) * cIrtEntries;
3618 pHlp->pfnPrintf(pHlp, " IRTA = %#RX64\n", uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK);
3619 pHlp->pfnPrintf(pHlp, " EIME = %RTbool\n", RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME));
3620 pHlp->pfnPrintf(pHlp, " S = %u entries (%u bytes)\n", cIrtEntries, cbIrt);
3621 }
3622 pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
3623 pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
3624 pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
3625 pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
3626 pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
3627 pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
3628 pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
3629 pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
3630 pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
3631 pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
3632 pHlp->pfnPrintf(pHlp, "\n");
3633}
3634
3635
3636/**
3637 * Initializes all registers in the DMAR unit.
3638 *
3639 * @param pDevIns The IOMMU device instance.
3640 */
3641static void dmarR3RegsInit(PPDMDEVINS pDevIns)
3642{
3643 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3644
3645 /*
3646 * Wipe all registers (required on reset).
3647 */
3648 RT_ZERO(pThis->abRegs0);
3649 RT_ZERO(pThis->abRegs1);
3650
3651 /*
3652 * Initialize registers not mutable by software prior to initializing other registers.
3653 */
3654 /* VER_REG */
3655 {
3656 pThis->uVerReg = RT_BF_MAKE(VTD_BF_VER_REG_MIN, DMAR_VER_MINOR)
3657 | RT_BF_MAKE(VTD_BF_VER_REG_MAX, DMAR_VER_MAJOR);
3658 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_VER_REG, pThis->uVerReg);
3659 }
3660
3661 uint8_t const fFlts = 1; /* First-level translation support. */
3662 uint8_t const fSlts = 1; /* Second-level translation support. */
3663 uint8_t const fPt = 1; /* Pass-Through support. */
3664 uint8_t const fSmts = fFlts & fSlts & fPt; /* Scalable mode translation support.*/
3665 uint8_t const fNest = 0; /* Nested translation support. */
3666
3667 /* CAP_REG */
3668 {
3669 uint8_t cGstPhysAddrBits;
3670 uint8_t cGstLinearAddrBits;
3671 PDMDevHlpCpuGetGuestAddrWidths(pDevIns, &cGstPhysAddrBits, &cGstLinearAddrBits);
3672
3673 uint8_t const fFl1gp = 1; /* First-level 1GB pages support. */
3674 uint8_t const fFl5lp = 1; /* First-level 5-level paging support (PML5E). */
3675 uint8_t const fSl2mp = 1; /* Second-level 2MB pages support. */
3676 uint8_t const fSl2gp = fSl2mp & 1; /* Second-level 1GB pages support. */
3677 uint8_t const fSllps = fSl2mp | (fSl2gp << 1); /* Second-level large page support. */
3678 uint8_t const fMamv = (fSl2gp ? X86_PAGE_1G_SHIFT /* Maximum address mask value (for 2nd-level invalidations). */
3679 : X86_PAGE_2M_SHIFT)
3680 - X86_PAGE_4K_SHIFT;
3681 uint8_t const fNd = DMAR_ND; /* Number of domains supported. */
3682 uint8_t const fPsi = 1; /* Page selective invalidation. */
3683 uint8_t const uMgaw = cGstPhysAddrBits - 1; /* Maximum guest address width. */
3684 uint8_t const fSagaw = vtdCapRegGetSagaw(uMgaw); /* Supported adjust guest address width. */
3685 uint16_t const offFro = DMAR_MMIO_OFF_FRCD_LO_REG >> 4; /* MMIO offset of FRCD registers. */
3686 uint8_t const fEsrtps = 1; /* Enhanced SRTPS (auto invalidate cache on SRTP). */
3687 uint8_t const fEsirtps = 1; /* Enhanced SIRTPS (auto invalidate cache on SIRTP). */
3688 AssertCompile(DMAR_ND <= 6);
3689
3690 pThis->fCapReg = RT_BF_MAKE(VTD_BF_CAP_REG_ND, fNd)
3691 | RT_BF_MAKE(VTD_BF_CAP_REG_AFL, 0) /* Advanced fault logging not supported. */
3692 | RT_BF_MAKE(VTD_BF_CAP_REG_RWBF, 0) /* Software need not flush write-buffers. */
3693 | RT_BF_MAKE(VTD_BF_CAP_REG_PLMR, 0) /* Protected Low-Memory Region not supported. */
3694 | RT_BF_MAKE(VTD_BF_CAP_REG_PHMR, 0) /* Protected High-Memory Region not supported. */
3695 | RT_BF_MAKE(VTD_BF_CAP_REG_CM, 1) /* Software should invalidate on mapping structure changes. */
3696 | RT_BF_MAKE(VTD_BF_CAP_REG_SAGAW, fSlts & fSagaw)
3697 | RT_BF_MAKE(VTD_BF_CAP_REG_MGAW, uMgaw)
3698 | RT_BF_MAKE(VTD_BF_CAP_REG_ZLR, 1) /** @todo Figure out if/how to support zero-length reads. */
3699 | RT_BF_MAKE(VTD_BF_CAP_REG_FRO, offFro)
3700 | RT_BF_MAKE(VTD_BF_CAP_REG_SLLPS, fSlts & fSllps)
3701 | RT_BF_MAKE(VTD_BF_CAP_REG_PSI, fPsi)
3702 | RT_BF_MAKE(VTD_BF_CAP_REG_NFR, DMAR_FRCD_REG_COUNT - 1)
3703 | RT_BF_MAKE(VTD_BF_CAP_REG_MAMV, fPsi & fMamv)
3704 | RT_BF_MAKE(VTD_BF_CAP_REG_DWD, 1)
3705 | RT_BF_MAKE(VTD_BF_CAP_REG_DRD, 1)
3706 | RT_BF_MAKE(VTD_BF_CAP_REG_FL1GP, fFlts & fFl1gp)
3707 | RT_BF_MAKE(VTD_BF_CAP_REG_PI, 0) /* Posted Interrupts not supported. */
3708 | RT_BF_MAKE(VTD_BF_CAP_REG_FL5LP, fFlts & fFl5lp)
3709 | RT_BF_MAKE(VTD_BF_CAP_REG_ESIRTPS, fEsirtps)
3710 | RT_BF_MAKE(VTD_BF_CAP_REG_ESRTPS, fEsrtps);
3711 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_CAP_REG, pThis->fCapReg);
3712
3713 pThis->fHawBaseMask = ~(UINT64_MAX << cGstPhysAddrBits) & X86_PAGE_4K_BASE_MASK;
3714 pThis->fInvMgawMask = UINT64_MAX << cGstPhysAddrBits;
3715 pThis->cMaxPagingLevel = vtdCapRegGetMaxPagingLevel(fSagaw);
3716 }
3717
3718 /* ECAP_REG */
3719 {
3720 uint8_t const fQi = 1; /* Queued-invalidations. */
3721 uint8_t const fIr = !!(DMAR_ACPI_DMAR_FLAGS & ACPI_DMAR_F_INTR_REMAP); /* Interrupt remapping support. */
3722 uint8_t const fMhmv = 0xf; /* Maximum handle mask value. */
3723 uint16_t const offIro = DMAR_MMIO_OFF_IVA_REG >> 4; /* MMIO offset of IOTLB registers. */
3724 uint8_t const fEim = 1; /* Extended interrupt mode.*/
3725 uint8_t const fAdms = 1; /* Abort DMA mode support. */
3726 uint8_t const fErs = 0; /* Execute Request (not supported). */
3727
3728 pThis->fExtCapReg = RT_BF_MAKE(VTD_BF_ECAP_REG_C, 0) /* Accesses don't snoop CPU cache. */
3729 | RT_BF_MAKE(VTD_BF_ECAP_REG_QI, fQi)
3730 | RT_BF_MAKE(VTD_BF_ECAP_REG_DT, 0) /* Device-TLBs not supported. */
3731 | RT_BF_MAKE(VTD_BF_ECAP_REG_IR, fQi & fIr)
3732 | RT_BF_MAKE(VTD_BF_ECAP_REG_EIM, fIr & fEim)
3733 | RT_BF_MAKE(VTD_BF_ECAP_REG_PT, fPt)
3734 | RT_BF_MAKE(VTD_BF_ECAP_REG_SC, 0) /* Snoop control not supported. */
3735 | RT_BF_MAKE(VTD_BF_ECAP_REG_IRO, offIro)
3736 | RT_BF_MAKE(VTD_BF_ECAP_REG_MHMV, fIr & fMhmv)
3737 | RT_BF_MAKE(VTD_BF_ECAP_REG_MTS, 0) /* Memory type not supported. */
3738 | RT_BF_MAKE(VTD_BF_ECAP_REG_NEST, fNest)
3739 | RT_BF_MAKE(VTD_BF_ECAP_REG_PRS, 0) /* 0 as DT not supported. */
3740 | RT_BF_MAKE(VTD_BF_ECAP_REG_ERS, fErs)
3741 | RT_BF_MAKE(VTD_BF_ECAP_REG_SRS, 0) /* Supervisor request not supported. */
3742 | RT_BF_MAKE(VTD_BF_ECAP_REG_NWFS, 0) /* 0 as DT not supported. */
3743 | RT_BF_MAKE(VTD_BF_ECAP_REG_EAFS, 0) /** @todo figure out if EAFS is required? */
3744 | RT_BF_MAKE(VTD_BF_ECAP_REG_PSS, 0) /* 0 as PASID not supported. */
3745 | RT_BF_MAKE(VTD_BF_ECAP_REG_PASID, 0) /* PASID support. */
3746 | RT_BF_MAKE(VTD_BF_ECAP_REG_DIT, 0) /* 0 as DT not supported. */
3747 | RT_BF_MAKE(VTD_BF_ECAP_REG_PDS, 0) /* 0 as DT not supported. */
3748 | RT_BF_MAKE(VTD_BF_ECAP_REG_SMTS, fSmts)
3749 | RT_BF_MAKE(VTD_BF_ECAP_REG_VCS, 0) /* 0 as PASID not supported (commands seem PASID specific). */
3750 | RT_BF_MAKE(VTD_BF_ECAP_REG_SLADS, 0) /* Second-level accessed/dirty not supported. */
3751 | RT_BF_MAKE(VTD_BF_ECAP_REG_SLTS, fSlts)
3752 | RT_BF_MAKE(VTD_BF_ECAP_REG_FLTS, fFlts)
3753 | RT_BF_MAKE(VTD_BF_ECAP_REG_SMPWCS, 0) /* 0 as PASID not supported. */
3754 | RT_BF_MAKE(VTD_BF_ECAP_REG_RPS, 0) /* We don't support RID_PASID field in SM context entry. */
3755 | RT_BF_MAKE(VTD_BF_ECAP_REG_ADMS, fAdms)
3756 | RT_BF_MAKE(VTD_BF_ECAP_REG_RPRIVS, 0); /* 0 as SRS not supported. */
3757 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_ECAP_REG, pThis->fExtCapReg);
3758
3759 pThis->fPermValidMask = DMAR_PERM_READ | DMAR_PERM_WRITE;
3760 if (fErs)
3761 pThis->fPermValidMask = DMAR_PERM_EXE;
3762 }
3763
3764 /*
3765 * Initialize registers mutable by software.
3766 */
3767 /* FECTL_REG */
3768 {
3769 uint32_t const uCtl = RT_BF_MAKE(VTD_BF_FECTL_REG_IM, 1);
3770 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, uCtl);
3771 }
3772
3773 /* ICETL_REG */
3774 {
3775 uint32_t const uCtl = RT_BF_MAKE(VTD_BF_IECTL_REG_IM, 1);
3776 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, uCtl);
3777 }
3778
3779#ifdef VBOX_STRICT
3780 Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_PRS)); /* PECTL_REG - Reserved if don't support PRS. */
3781 Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_MTS)); /* MTRRCAP_REG - Reserved if we don't support MTS. */
3782#endif
3783}
3784
3785
3786/**
3787 * @interface_method_impl{PDMDEVREG,pfnReset}
3788 */
3789static DECLCALLBACK(void) iommuIntelR3Reset(PPDMDEVINS pDevIns)
3790{
3791 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3792 LogFlowFunc(("\n"));
3793
3794 DMAR_LOCK(pDevIns, pThisR3);
3795 dmarR3RegsInit(pDevIns);
3796 DMAR_UNLOCK(pDevIns, pThisR3);
3797}
3798
3799
3800/**
3801 * @interface_method_impl{PDMDEVREG,pfnDestruct}
3802 */
3803static DECLCALLBACK(int) iommuIntelR3Destruct(PPDMDEVINS pDevIns)
3804{
3805 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3806 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3807 LogFlowFunc(("\n"));
3808
3809 DMAR_LOCK(pDevIns, pThisR3);
3810
3811 if (pThis->hEvtInvQueue != NIL_SUPSEMEVENT)
3812 {
3813 PDMDevHlpSUPSemEventClose(pDevIns, pThis->hEvtInvQueue);
3814 pThis->hEvtInvQueue = NIL_SUPSEMEVENT;
3815 }
3816
3817 DMAR_UNLOCK(pDevIns, pThisR3);
3818 return VINF_SUCCESS;
3819}
3820
3821
3822/**
3823 * @interface_method_impl{PDMDEVREG,pfnConstruct}
3824 */
3825static DECLCALLBACK(int) iommuIntelR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
3826{
3827 RT_NOREF(pCfg);
3828
3829 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3830 PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3);
3831 pThisR3->pDevInsR3 = pDevIns;
3832
3833 LogFlowFunc(("iInstance=%d\n", iInstance));
3834 NOREF(iInstance);
3835
3836 /*
3837 * Register the IOMMU with PDM.
3838 */
3839 PDMIOMMUREGR3 IommuReg;
3840 RT_ZERO(IommuReg);
3841 IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
3842 IommuReg.pfnMemAccess = iommuIntelMemAccess;
3843 IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
3844 IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
3845 IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
3846 int rc = PDMDevHlpIommuRegister(pDevIns, &IommuReg, &pThisR3->CTX_SUFF(pIommuHlp), &pThis->idxIommu);
3847 if (RT_FAILURE(rc))
3848 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to register ourselves as an IOMMU device"));
3849 if (pThisR3->CTX_SUFF(pIommuHlp)->u32Version != PDM_IOMMUHLPR3_VERSION)
3850 return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
3851 N_("IOMMU helper version mismatch; got %#x expected %#x"),
3852 pThisR3->CTX_SUFF(pIommuHlp)->u32Version, PDM_IOMMUHLPR3_VERSION);
3853 if (pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd != PDM_IOMMUHLPR3_VERSION)
3854 return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
3855 N_("IOMMU helper end-version mismatch; got %#x expected %#x"),
3856 pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd, PDM_IOMMUHLPR3_VERSION);
3857 AssertPtr(pThisR3->pIommuHlpR3->pfnLock);
3858 AssertPtr(pThisR3->pIommuHlpR3->pfnUnlock);
3859 AssertPtr(pThisR3->pIommuHlpR3->pfnLockIsOwner);
3860 AssertPtr(pThisR3->pIommuHlpR3->pfnSendMsi);
3861
3862 /*
3863 * Use PDM's critical section (via helpers) for the IOMMU device.
3864 */
3865 rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
3866 AssertRCReturn(rc, rc);
3867
3868 /*
3869 * Initialize PCI configuration registers.
3870 */
3871 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
3872 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
3873
3874 /* Header. */
3875 PDMPciDevSetVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
3876 PDMPciDevSetDeviceId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
3877 PDMPciDevSetRevisionId(pPciDev, DMAR_PCI_REVISION_ID); /* VirtualBox specific device implementation revision */
3878 PDMPciDevSetClassBase(pPciDev, VBOX_PCI_CLASS_SYSTEM); /* System Base Peripheral */
3879 PDMPciDevSetClassSub(pPciDev, VBOX_PCI_SUB_SYSTEM_OTHER); /* Other */
3880 PDMPciDevSetHeaderType(pPciDev, 0); /* Single function, type 0 */
3881 PDMPciDevSetSubSystemId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
3882 PDMPciDevSetSubSystemVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
3883
3884 /** @todo Chipset spec says PCI Express Capability Id. Relevant for us? */
3885 PDMPciDevSetStatus(pPciDev, 0);
3886 PDMPciDevSetCapabilityList(pPciDev, 0);
3887
3888 /** @todo VTBAR at 0x180? */
3889
3890 /*
3891 * Register the PCI function with PDM.
3892 */
3893 rc = PDMDevHlpPCIRegister(pDevIns, pPciDev);
3894 AssertLogRelRCReturn(rc, rc);
3895
3896 /** @todo Register MSI but what's the MSI capability offset? */
3897#if 0
3898 /*
3899 * Register MSI support for the PCI device.
3900 * This must be done -after- registering it as a PCI device!
3901 */
3902#endif
3903
3904 /*
3905 * Register MMIO region.
3906 */
3907 AssertCompile(!(DMAR_MMIO_BASE_PHYSADDR & X86_PAGE_4K_OFFSET_MASK));
3908 rc = PDMDevHlpMmioCreateAndMap(pDevIns, DMAR_MMIO_BASE_PHYSADDR, DMAR_MMIO_SIZE, dmarMmioWrite, dmarMmioRead,
3909 IOMMMIO_FLAGS_READ_DWORD_QWORD | IOMMMIO_FLAGS_WRITE_DWORD_QWORD_ZEROED, "Intel-IOMMU",
3910 &pThis->hMmio);
3911 AssertLogRelRCReturn(rc, rc);
3912
3913 /*
3914 * Register debugger info items.
3915 */
3916 rc = PDMDevHlpDBGFInfoRegister(pDevIns, "iommu", "Display IOMMU state.", dmarR3DbgInfo);
3917 AssertLogRelRCReturn(rc, rc);
3918
3919#ifdef VBOX_WITH_STATISTICS
3920 /*
3921 * Statistics.
3922 */
3923 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadR3, STAMTYPE_COUNTER, "R3/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in R3");
3924 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadRZ, STAMTYPE_COUNTER, "RZ/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in RZ.");
3925
3926 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteR3, STAMTYPE_COUNTER, "R3/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in R3.");
3927 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteRZ, STAMTYPE_COUNTER, "RZ/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in RZ.");
3928
3929 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiR3, STAMTYPE_COUNTER, "R3/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in R3.");
3930 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in RZ.");
3931 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiR3, STAMTYPE_COUNTER, "R3/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in R3.");
3932 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in RZ.");
3933
3934 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadR3, STAMTYPE_COUNTER, "R3/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in R3.");
3935 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadRZ, STAMTYPE_COUNTER, "RZ/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in RZ.");
3936
3937 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteR3, STAMTYPE_COUNTER, "R3/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in R3.");
3938 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteRZ, STAMTYPE_COUNTER, "RZ/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in RZ.");
3939
3940 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadR3, STAMTYPE_COUNTER, "R3/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in R3.");
3941 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadRZ, STAMTYPE_COUNTER, "RZ/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in RZ.");
3942
3943 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteR3, STAMTYPE_COUNTER, "R3/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in R3.");
3944 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteRZ, STAMTYPE_COUNTER, "RZ/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in RZ.");
3945
3946 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCcInvDsc, STAMTYPE_COUNTER, "R3/QI/CcInv", STAMUNIT_OCCURENCES, "Number of cc_inv_dsc processed.");
3947 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/IotlbInv", STAMUNIT_OCCURENCES, "Number of iotlb_inv_dsc processed.");
3948 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/DevtlbInv", STAMUNIT_OCCURENCES, "Number of dev_tlb_inv_dsc processed.");
3949 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIecInvDsc, STAMTYPE_COUNTER, "R3/QI/IecInv", STAMUNIT_OCCURENCES, "Number of iec_inv processed.");
3950 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatInvWaitDsc, STAMTYPE_COUNTER, "R3/QI/InvWait", STAMUNIT_OCCURENCES, "Number of inv_wait_dsc processed.");
3951 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidIotlbInv", STAMUNIT_OCCURENCES, "Number of p_iotlb_inv_dsc processed.");
3952 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidCacheInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidCacheInv", STAMUNIT_OCCURENCES, "Number of pc_inv_dsc pprocessed.");
3953 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidDevtlbInv", STAMUNIT_OCCURENCES, "Number of p_dev_tlb_inv_dsc processed.");
3954#endif
3955
3956 /*
3957 * Initialize registers.
3958 */
3959 dmarR3RegsInit(pDevIns);
3960
3961 /*
3962 * Create invalidation-queue thread and semaphore.
3963 */
3964 char szInvQueueThread[32];
3965 RT_ZERO(szInvQueueThread);
3966 RTStrPrintf(szInvQueueThread, sizeof(szInvQueueThread), "IOMMU-QI-%u", iInstance);
3967 rc = PDMDevHlpThreadCreate(pDevIns, &pThisR3->pInvQueueThread, pThis, dmarR3InvQueueThread, dmarR3InvQueueThreadWakeUp,
3968 0 /* cbStack */, RTTHREADTYPE_IO, szInvQueueThread);
3969 AssertLogRelRCReturn(rc, rc);
3970
3971 rc = PDMDevHlpSUPSemEventCreate(pDevIns, &pThis->hEvtInvQueue);
3972 AssertLogRelRCReturn(rc, rc);
3973
3974 /*
3975 * Log some of the features exposed to software.
3976 */
3977 uint32_t const uVerReg = pThis->uVerReg;
3978 uint8_t const cMgawBits = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_MGAW) + 1;
3979 uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW);
3980 uint16_t const offFrcd = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_FRO);
3981 uint16_t const offIva = RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_IRO);
3982 LogRel(("%s: VER=%u.%u CAP=%#RX64 ECAP=%#RX64 (MGAW=%u bits, SAGAW=%#x HAW_Base=%#RX64 MGAW_Inv=%#RX64 FRO=%#x IRO=%#x) mapped at %#RGp\n",
3983 DMAR_LOG_PFX, RT_BF_GET(uVerReg, VTD_BF_VER_REG_MAX), RT_BF_GET(uVerReg, VTD_BF_VER_REG_MIN),
3984 pThis->fCapReg, pThis->fExtCapReg, cMgawBits, fSagaw, pThis->fHawBaseMask, pThis->fInvMgawMask, offFrcd, offIva,
3985 DMAR_MMIO_BASE_PHYSADDR));
3986
3987 return VINF_SUCCESS;
3988}
3989
3990#else
3991
3992/**
3993 * @callback_method_impl{PDMDEVREGR0,pfnConstruct}
3994 */
3995static DECLCALLBACK(int) iommuIntelRZConstruct(PPDMDEVINS pDevIns)
3996{
3997 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
3998 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3999 PDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDMARCC);
4000 pThisCC->CTX_SUFF(pDevIns) = pDevIns;
4001
4002 /* We will use PDM's critical section (via helpers) for the IOMMU device. */
4003 int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
4004 AssertRCReturn(rc, rc);
4005
4006 /* Set up the MMIO RZ handlers. */
4007 rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmio, dmarMmioWrite, dmarMmioRead, NULL /* pvUser */);
4008 AssertRCReturn(rc, rc);
4009
4010 /* Set up the IOMMU RZ callbacks. */
4011 PDMIOMMUREGCC IommuReg;
4012 RT_ZERO(IommuReg);
4013 IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
4014 IommuReg.idxIommu = pThis->idxIommu;
4015 IommuReg.pfnMemAccess = iommuIntelMemAccess;
4016 IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
4017 IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
4018 IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
4019
4020 rc = PDMDevHlpIommuSetUpContext(pDevIns, &IommuReg, &pThisCC->CTX_SUFF(pIommuHlp));
4021 AssertRCReturn(rc, rc);
4022 AssertPtrReturn(pThisCC->CTX_SUFF(pIommuHlp), VERR_IOMMU_IPE_1);
4023 AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32Version == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
4024 AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32TheEnd == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
4025 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLock);
4026 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnUnlock);
4027 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLockIsOwner);
4028 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi);
4029
4030 return VINF_SUCCESS;
4031}
4032
4033#endif
4034
4035
4036/**
4037 * The device registration structure.
4038 */
4039PDMDEVREG const g_DeviceIommuIntel =
4040{
4041 /* .u32Version = */ PDM_DEVREG_VERSION,
4042 /* .uReserved0 = */ 0,
4043 /* .szName = */ "iommu-intel",
4044 /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE,
4045 /* .fClass = */ PDM_DEVREG_CLASS_PCI_BUILTIN,
4046 /* .cMaxInstances = */ 1,
4047 /* .uSharedVersion = */ 42,
4048 /* .cbInstanceShared = */ sizeof(DMAR),
4049 /* .cbInstanceCC = */ sizeof(DMARCC),
4050 /* .cbInstanceRC = */ sizeof(DMARRC),
4051 /* .cMaxPciDevices = */ 1,
4052 /* .cMaxMsixVectors = */ 0,
4053 /* .pszDescription = */ "IOMMU (Intel)",
4054#if defined(IN_RING3)
4055 /* .pszRCMod = */ "VBoxDDRC.rc",
4056 /* .pszR0Mod = */ "VBoxDDR0.r0",
4057 /* .pfnConstruct = */ iommuIntelR3Construct,
4058 /* .pfnDestruct = */ iommuIntelR3Destruct,
4059 /* .pfnRelocate = */ NULL,
4060 /* .pfnMemSetup = */ NULL,
4061 /* .pfnPowerOn = */ NULL,
4062 /* .pfnReset = */ iommuIntelR3Reset,
4063 /* .pfnSuspend = */ NULL,
4064 /* .pfnResume = */ NULL,
4065 /* .pfnAttach = */ NULL,
4066 /* .pfnDetach = */ NULL,
4067 /* .pfnQueryInterface = */ NULL,
4068 /* .pfnInitComplete = */ NULL,
4069 /* .pfnPowerOff = */ NULL,
4070 /* .pfnSoftReset = */ NULL,
4071 /* .pfnReserved0 = */ NULL,
4072 /* .pfnReserved1 = */ NULL,
4073 /* .pfnReserved2 = */ NULL,
4074 /* .pfnReserved3 = */ NULL,
4075 /* .pfnReserved4 = */ NULL,
4076 /* .pfnReserved5 = */ NULL,
4077 /* .pfnReserved6 = */ NULL,
4078 /* .pfnReserved7 = */ NULL,
4079#elif defined(IN_RING0)
4080 /* .pfnEarlyConstruct = */ NULL,
4081 /* .pfnConstruct = */ iommuIntelRZConstruct,
4082 /* .pfnDestruct = */ NULL,
4083 /* .pfnFinalDestruct = */ NULL,
4084 /* .pfnRequest = */ NULL,
4085 /* .pfnReserved0 = */ NULL,
4086 /* .pfnReserved1 = */ NULL,
4087 /* .pfnReserved2 = */ NULL,
4088 /* .pfnReserved3 = */ NULL,
4089 /* .pfnReserved4 = */ NULL,
4090 /* .pfnReserved5 = */ NULL,
4091 /* .pfnReserved6 = */ NULL,
4092 /* .pfnReserved7 = */ NULL,
4093#elif defined(IN_RC)
4094 /* .pfnConstruct = */ iommuIntelRZConstruct,
4095 /* .pfnReserved0 = */ NULL,
4096 /* .pfnReserved1 = */ NULL,
4097 /* .pfnReserved2 = */ NULL,
4098 /* .pfnReserved3 = */ NULL,
4099 /* .pfnReserved4 = */ NULL,
4100 /* .pfnReserved5 = */ NULL,
4101 /* .pfnReserved6 = */ NULL,
4102 /* .pfnReserved7 = */ NULL,
4103#else
4104# error "Not in IN_RING3, IN_RING0 or IN_RC!"
4105#endif
4106 /* .u32VersionEnd = */ PDM_DEVREG_VERSION
4107};
4108
4109#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
4110
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette