VirtualBox

source: vbox/trunk/src/VBox/Devices/Bus/DevIommuIntel.cpp@ 89729

Last change on this file since 89729 was 89729, checked in by vboxsync, 3 years ago

Intel IOMMU: bugref:9967 Build fix for gcc.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 198.1 KB
Line 
1/* $Id: DevIommuIntel.cpp 89729 2021-06-16 05:57:51Z vboxsync $ */
2/** @file
3 * IOMMU - Input/Output Memory Management Unit - Intel implementation.
4 */
5
6/*
7 * Copyright (C) 2021 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DEV_IOMMU
23#include "VBoxDD.h"
24#include "DevIommuIntel.h"
25
26#include <VBox/iommu-intel.h>
27#include <iprt/mem.h>
28#include <iprt/string.h>
29
30
31/*********************************************************************************************************************************
32* Defined Constants And Macros *
33*********************************************************************************************************************************/
34/** Gets the low uint32_t of a uint64_t or something equivalent.
35 *
36 * This is suitable for casting constants outside code (since RT_LO_U32 can't be
37 * used as it asserts for correctness when compiling on certain compilers). */
38#define DMAR_LO_U32(a) (uint32_t)(UINT32_MAX & (a))
39
40/** Gets the high uint32_t of a uint64_t or something equivalent.
41 *
42 * This is suitable for casting constants outside code (since RT_HI_U32 can't be
43 * used as it asserts for correctness when compiling on certain compilers). */
44#define DMAR_HI_U32(a) (uint32_t)((a) >> 32)
45
46/** Asserts MMIO access' offset and size are valid or returns appropriate error
47 * code suitable for returning from MMIO access handlers. */
48#define DMAR_ASSERT_MMIO_ACCESS_RET(a_off, a_cb) \
49 do { \
50 AssertReturn((a_cb) == 4 || (a_cb) == 8, VINF_IOM_MMIO_UNUSED_FF); \
51 AssertReturn(!((a_off) & ((a_cb) - 1)), VINF_IOM_MMIO_UNUSED_FF); \
52 } while (0)
53
54/** Checks if the MMIO offset is valid. */
55#define DMAR_IS_MMIO_OFF_VALID(a_off) ( (a_off) < DMAR_MMIO_GROUP_0_OFF_END \
56 || (a_off) - DMAR_MMIO_GROUP_1_OFF_FIRST < (unsigned)DMAR_MMIO_GROUP_1_SIZE)
57
58/** Acquires the DMAR lock but returns with the given busy error code on failure. */
59#define DMAR_LOCK_RET(a_pDevIns, a_pThisCC, a_rcBusy) \
60 do { \
61 if ((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), (a_rcBusy)) == VINF_SUCCESS) \
62 { /* likely */ } \
63 else \
64 return (a_rcBusy); \
65 } while (0)
66
67/** Acquires the DMAR lock (not expected to fail). */
68#ifdef IN_RING3
69# define DMAR_LOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VERR_IGNORED)
70#else
71# define DMAR_LOCK(a_pDevIns, a_pThisCC) \
72 do { \
73 int const rcLock = (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VINF_SUCCESS); \
74 AssertRC(rcLock); \
75 } while (0)
76#endif
77
78/** Release the DMAR lock. */
79#define DMAR_UNLOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnUnlock(a_pDevIns)
80
81/** Asserts that the calling thread owns the DMAR lock. */
82#define DMAR_ASSERT_LOCK_IS_OWNER(a_pDevIns, a_pThisCC) \
83 do { \
84 Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns)); \
85 RT_NOREF1(a_pThisCC); \
86 } while (0)
87
88/** Asserts that the calling thread does not own the DMAR lock. */
89#define DMAR_ASSERT_LOCK_IS_NOT_OWNER(a_pDevIns, a_pThisCC) \
90 do { \
91 Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns) == false); \
92 RT_NOREF1(a_pThisCC); \
93 } while (0)
94
95/** The number of fault recording registers our implementation supports.
96 * Normal guest operation shouldn't trigger faults anyway, so we only support the
97 * minimum number of registers (which is 1).
98 *
99 * See Intel VT-d spec. 10.4.2 "Capability Register" (CAP_REG.NFR). */
100#define DMAR_FRCD_REG_COUNT UINT32_C(1)
101
102/** Number of register groups (used in saved states). */
103#define DMAR_MMIO_GROUP_COUNT 2
104/** Offset of first register in group 0. */
105#define DMAR_MMIO_GROUP_0_OFF_FIRST VTD_MMIO_OFF_VER_REG
106/** Offset of last register in group 0 (inclusive). */
107#define DMAR_MMIO_GROUP_0_OFF_LAST VTD_MMIO_OFF_MTRR_PHYSMASK9_REG
108/** Last valid offset in group 0 (exclusive). */
109#define DMAR_MMIO_GROUP_0_OFF_END (DMAR_MMIO_GROUP_0_OFF_LAST + 8 /* sizeof MTRR_PHYSMASK9_REG */)
110/** Size of the group 0 (in bytes). */
111#define DMAR_MMIO_GROUP_0_SIZE (DMAR_MMIO_GROUP_0_OFF_END - DMAR_MMIO_GROUP_0_OFF_FIRST)
112/** Number of implementation-defined MMIO register offsets - IVA_REG and
113 * FRCD_LO_REG (used in saved state). IOTLB_REG and FRCD_HI_REG are derived from
114 * IVA_REG and FRCD_LO_REG respectively */
115#define DMAR_MMIO_OFF_IMPL_COUNT 2
116/** Implementation-specific MMIO offset of IVA_REG (used in saved state). */
117#define DMAR_MMIO_OFF_IVA_REG 0xe50
118/** Implementation-specific MMIO offset of IOTLB_REG. */
119#define DMAR_MMIO_OFF_IOTLB_REG 0xe58
120/** Implementation-specific MMIO offset of FRCD_LO_REG (used in saved state). */
121#define DMAR_MMIO_OFF_FRCD_LO_REG 0xe70
122/** Implementation-specific MMIO offset of FRCD_HI_REG. */
123#define DMAR_MMIO_OFF_FRCD_HI_REG 0xe78
124AssertCompile(!(DMAR_MMIO_OFF_FRCD_LO_REG & 0xf));
125AssertCompile(DMAR_MMIO_OFF_IOTLB_REG == DMAR_MMIO_OFF_IVA_REG + 8);
126AssertCompile(DMAR_MMIO_OFF_FRCD_HI_REG == DMAR_MMIO_OFF_FRCD_LO_REG + 8);
127
128/** Offset of first register in group 1. */
129#define DMAR_MMIO_GROUP_1_OFF_FIRST VTD_MMIO_OFF_VCCAP_REG
130/** Offset of last register in group 1 (inclusive). */
131#define DMAR_MMIO_GROUP_1_OFF_LAST (DMAR_MMIO_OFF_FRCD_LO_REG + 8) * DMAR_FRCD_REG_COUNT
132/** Last valid offset in group 1 (exclusive). */
133#define DMAR_MMIO_GROUP_1_OFF_END (DMAR_MMIO_GROUP_1_OFF_LAST + 8 /* sizeof FRCD_HI_REG */)
134/** Size of the group 1 (in bytes). */
135#define DMAR_MMIO_GROUP_1_SIZE (DMAR_MMIO_GROUP_1_OFF_END - DMAR_MMIO_GROUP_1_OFF_FIRST)
136
137/** DMAR implementation's major version number (exposed to software).
138 * We report 6 as the major version since we support queued-invalidations as
139 * software may make assumptions based on that.
140 *
141 * See Intel VT-d spec. 10.4.7 "Context Command Register" (CCMD_REG.CAIG). */
142#define DMAR_VER_MAJOR 6
143/** DMAR implementation's minor version number (exposed to software). */
144#define DMAR_VER_MINOR 0
145
146/** Number of domain supported (0=16, 1=64, 2=256, 3=1K, 4=4K, 5=16K, 6=64K,
147 * 7=Reserved). */
148#define DMAR_ND 6
149
150/** @name DMAR_PERM_XXX: DMA request permissions.
151 * The order of R, W, X bits is important as it corresponds to those bits in
152 * page-table entries.
153 *
154 * @{ */
155/** DMA request permission: Read. */
156#define DMAR_PERM_READ RT_BIT(0)
157/** DMA request permission: Write. */
158#define DMAR_PERM_WRITE RT_BIT(1)
159/** DMA request permission: Execute (ER). */
160#define DMAR_PERM_EXE RT_BIT(2)
161/** DMA request permission: Supervisor privilege (PR). */
162#define DMAR_PERM_PRIV RT_BIT(3)
163/** DMA request permissions: All. */
164#define DMAR_PERM_ALL (DMAR_PERM_READ | DMAR_PERM_WRITE | DMAR_PERM_EXE | DMAR_PERM_PRIV)
165/** @} */
166
167/** Release log prefix string. */
168#define DMAR_LOG_PFX "Intel-IOMMU"
169/** The current saved state version. */
170#define DMAR_SAVED_STATE_VERSION 1
171
172
173/*********************************************************************************************************************************
174* Structures and Typedefs *
175*********************************************************************************************************************************/
176/**
177 * DMAR error diagnostics.
178 * Sorted alphabetically so it's easier to add and locate items, no other reason.
179 *
180 * @note Members of this enum are used as array indices, so no gaps in enum
181 * values are not allowed. Update g_apszDmarDiagDesc when you modify
182 * fields in this enum.
183 */
184typedef enum
185{
186 /* No error, this must be zero! */
187 kDmarDiag_None = 0,
188
189 /* Address Translation Faults. */
190 kDmarDiag_At_Lm_CtxEntry_Not_Present,
191 kDmarDiag_At_Lm_CtxEntry_Read_Failed,
192 kDmarDiag_At_Lm_CtxEntry_Rsvd,
193 kDmarDiag_At_Lm_Pt_At_Block,
194 kDmarDiag_At_Lm_Pt_Aw_Invalid,
195 kDmarDiag_At_Lm_RootEntry_Not_Present,
196 kDmarDiag_At_Lm_RootEntry_Read_Failed,
197 kDmarDiag_At_Lm_RootEntry_Rsvd,
198 kDmarDiag_At_Lm_Tt_Invalid,
199 kDmarDiag_At_Lm_Ut_At_Block,
200 kDmarDiag_At_Lm_Ut_Aw_Invalid,
201 kDmarDiag_At_Rta_Adms_Not_Supported,
202 kDmarDiag_At_Rta_Rsvd,
203 kDmarDiag_At_Rta_Smts_Not_Supported,
204 kDmarDiag_At_Xm_AddrIn_Invalid,
205 kDmarDiag_At_Xm_AddrOut_Invalid,
206 kDmarDiag_At_Xm_Perm_Denied,
207 kDmarDiag_At_Xm_Pte_Rsvd,
208 kDmarDiag_At_Xm_Pte_Sllps_Invalid,
209 kDmarDiag_At_Xm_Read_Pte_Failed,
210 kDmarDiag_At_Xm_Slpptr_Read_Failed,
211
212 /* CCMD_REG faults. */
213 kDmarDiag_CcmdReg_Not_Supported,
214 kDmarDiag_CcmdReg_Qi_Enabled,
215 kDmarDiag_CcmdReg_Ttm_Invalid,
216
217 /* IQA_REG faults. */
218 kDmarDiag_IqaReg_Dsc_Fetch_Error,
219 kDmarDiag_IqaReg_Dw_128_Invalid,
220 kDmarDiag_IqaReg_Dw_256_Invalid,
221
222 /* Invalidation Queue Error Info. */
223 kDmarDiag_Iqei_Dsc_Type_Invalid,
224 kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd,
225 kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd,
226 kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid,
227 kDmarDiag_Iqei_Ttm_Rsvd,
228
229 /* IQT_REG faults. */
230 kDmarDiag_IqtReg_Qt_Invalid,
231 kDmarDiag_IqtReg_Qt_Not_Aligned,
232
233 /* Interrupt Remapping Faults. */
234 kDmarDiag_Ir_Cfi_Blocked,
235 kDmarDiag_Ir_Rfi_Intr_Index_Invalid,
236 kDmarDiag_Ir_Rfi_Irte_Mode_Invalid,
237 kDmarDiag_Ir_Rfi_Irte_Not_Present,
238 kDmarDiag_Ir_Rfi_Irte_Read_Failed,
239 kDmarDiag_Ir_Rfi_Irte_Rsvd,
240 kDmarDiag_Ir_Rfi_Irte_Svt_Bus,
241 kDmarDiag_Ir_Rfi_Irte_Svt_Masked,
242 kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd,
243 kDmarDiag_Ir_Rfi_Rsvd,
244
245 /* Member for determining array index limit. */
246 kDmarDiag_End,
247
248 /* Usual 32-bit type size hack. */
249 kDmarDiag_32Bit_Hack = 0x7fffffff
250} DMARDIAG;
251AssertCompileSize(DMARDIAG, 4);
252
253/** DMAR diagnostic enum description expansion.
254 * The below construct ensures typos in the input to this macro are caught
255 * during compile time. */
256#define DMARDIAG_DESC(a_Name) RT_CONCAT(kDmarDiag_, a_Name) < kDmarDiag_End ? RT_STR(a_Name) : "Ignored"
257
258/** DMAR diagnostics description for members in DMARDIAG. */
259static const char *const g_apszDmarDiagDesc[] =
260{
261 DMARDIAG_DESC(None ),
262
263 /* Address Translation Faults. */
264 DMARDIAG_DESC(At_Lm_CtxEntry_Not_Present ),
265 DMARDIAG_DESC(At_Lm_CtxEntry_Read_Failed ),
266 DMARDIAG_DESC(At_Lm_CtxEntry_Rsvd ),
267 DMARDIAG_DESC(At_Lm_Pt_At_Block ),
268 DMARDIAG_DESC(At_Lm_Pt_Aw_Invalid ),
269 DMARDIAG_DESC(At_Lm_RootEntry_Not_Present),
270 DMARDIAG_DESC(At_Lm_RootEntry_Read_Failed),
271 DMARDIAG_DESC(At_Lm_RootEntry_Rsvd ),
272 DMARDIAG_DESC(At_Lm_Tt_Invalid ),
273 DMARDIAG_DESC(At_Lm_Ut_At_Block ),
274 DMARDIAG_DESC(At_Lm_Ut_Aw_Invalid ),
275 DMARDIAG_DESC(At_Rta_Adms_Not_Supported ),
276 DMARDIAG_DESC(At_Rta_Rsvd ),
277 DMARDIAG_DESC(At_Rta_Smts_Not_Supported ),
278 DMARDIAG_DESC(At_Xm_AddrIn_Invalid ),
279 DMARDIAG_DESC(At_Xm_AddrOut_Invalid ),
280 DMARDIAG_DESC(At_Xm_Perm_Denied ),
281 DMARDIAG_DESC(At_Xm_Pte_Rsvd ),
282 DMARDIAG_DESC(At_Xm_Pte_Sllps_Invalid ),
283 DMARDIAG_DESC(At_Xm_Read_Pte_Failed ),
284 DMARDIAG_DESC(At_Xm_Slpptr_Read_Failed ),
285
286 /* CCMD_REG faults. */
287 DMARDIAG_DESC(CcmdReg_Not_Supported ),
288 DMARDIAG_DESC(CcmdReg_Qi_Enabled ),
289 DMARDIAG_DESC(CcmdReg_Ttm_Invalid ),
290
291 /* IQA_REG faults. */
292 DMARDIAG_DESC(IqaReg_Dsc_Fetch_Error ),
293 DMARDIAG_DESC(IqaReg_Dw_128_Invalid ),
294 DMARDIAG_DESC(IqaReg_Dw_256_Invalid ),
295
296 /* Invalidation Queue Error Info. */
297 DMARDIAG_DESC(Iqei_Dsc_Type_Invalid ),
298 DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_0_1_Rsvd ),
299 DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_2_3_Rsvd ),
300 DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_Invalid ),
301 DMARDIAG_DESC(Iqei_Ttm_Rsvd ),
302
303 /* IQT_REG faults. */
304 DMARDIAG_DESC(IqtReg_Qt_Invalid ),
305 DMARDIAG_DESC(IqtReg_Qt_Not_Aligned ),
306
307 /* Interrupt remapping faults. */
308 DMARDIAG_DESC(Ir_Cfi_Blocked ),
309 DMARDIAG_DESC(Ir_Rfi_Intr_Index_Invalid ),
310 DMARDIAG_DESC(Ir_Rfi_Irte_Mode_Invalid ),
311 DMARDIAG_DESC(Ir_Rfi_Irte_Not_Present ),
312 DMARDIAG_DESC(Ir_Rfi_Irte_Read_Failed ),
313 DMARDIAG_DESC(Ir_Rfi_Irte_Rsvd ),
314 DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Bus ),
315 DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Masked ),
316 DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Rsvd ),
317 DMARDIAG_DESC(Ir_Rfi_Rsvd ),
318 /* kDmarDiag_End */
319};
320AssertCompile(RT_ELEMENTS(g_apszDmarDiagDesc) == kDmarDiag_End);
321#undef DMARDIAG_DESC
322
323/**
324 * The shared DMAR device state.
325 */
326typedef struct DMAR
327{
328 /** IOMMU device index. */
329 uint32_t idxIommu;
330 /** Padding. */
331 uint32_t u32Padding0;
332
333 /** Registers (group 0). */
334 uint8_t abRegs0[DMAR_MMIO_GROUP_0_SIZE];
335 /** Registers (group 1). */
336 uint8_t abRegs1[DMAR_MMIO_GROUP_1_SIZE];
337
338 /** @name Lazily activated registers.
339 * These are the active values for lazily activated registers. Software is free to
340 * modify the actual register values while remapping/translation is enabled but they
341 * take effect only when explicitly signaled by software, hence we need to hold the
342 * active values separately.
343 * @{ */
344 /** Currently active IRTA_REG. */
345 uint64_t uIrtaReg;
346 /** Currently active RTADDR_REG. */
347 uint64_t uRtaddrReg;
348 /** @} */
349
350 /** @name Register copies for a tiny bit faster and more convenient access.
351 * @{ */
352 /** Copy of VER_REG. */
353 uint8_t uVerReg;
354 /** Alignment. */
355 uint8_t abPadding0[7];
356 /** Copy of CAP_REG. */
357 uint64_t fCapReg;
358 /** Copy of ECAP_REG. */
359 uint64_t fExtCapReg;
360 /** @} */
361
362 /** Host-address width (HAW) base address mask. */
363 uint64_t fHawBaseMask;
364 /** Maximum guest-address width (MGAW) invalid address mask. */
365 uint64_t fMgawInvMask;
366 /** Context-entry qword-1 valid mask. */
367 uint64_t fCtxEntryQw1ValidMask;
368 /** Maximum supported paging level (3, 4 or 5). */
369 uint8_t cMaxPagingLevel;
370 /** DMA request valid permissions mask. */
371 uint8_t fPermValidMask;
372 /** Alignment. */
373 uint8_t abPadding1[6];
374
375 /** The event semaphore the invalidation-queue thread waits on. */
376 SUPSEMEVENT hEvtInvQueue;
377 /** Error diagnostic. */
378 DMARDIAG enmDiag;
379 /** Padding. */
380 uint32_t uPadding0;
381 /** The MMIO handle. */
382 IOMMMIOHANDLE hMmio;
383
384#ifdef VBOX_WITH_STATISTICS
385 STAMCOUNTER StatMmioReadR3; /**< Number of MMIO reads in R3. */
386 STAMCOUNTER StatMmioReadRZ; /**< Number of MMIO reads in RZ. */
387 STAMCOUNTER StatMmioWriteR3; /**< Number of MMIO writes in R3. */
388 STAMCOUNTER StatMmioWriteRZ; /**< Number of MMIO writes in RZ. */
389
390 STAMCOUNTER StatMsiRemapCfiR3; /**< Number of compatibility-format interrupts remap requests in R3. */
391 STAMCOUNTER StatMsiRemapCfiRZ; /**< Number of compatibility-format interrupts remap requests in RZ. */
392 STAMCOUNTER StatMsiRemapRfiR3; /**< Number of remappable-format interrupts remap requests in R3. */
393 STAMCOUNTER StatMsiRemapRfiRZ; /**< Number of remappable-format interrupts remap requests in RZ. */
394
395 STAMCOUNTER StatMemReadR3; /**< Number of memory read translation requests in R3. */
396 STAMCOUNTER StatMemReadRZ; /**< Number of memory read translation requests in RZ. */
397 STAMCOUNTER StatMemWriteR3; /**< Number of memory write translation requests in R3. */
398 STAMCOUNTER StatMemWriteRZ; /**< Number of memory write translation requests in RZ. */
399
400 STAMCOUNTER StatMemBulkReadR3; /**< Number of memory read bulk translation requests in R3. */
401 STAMCOUNTER StatMemBulkReadRZ; /**< Number of memory read bulk translation requests in RZ. */
402 STAMCOUNTER StatMemBulkWriteR3; /**< Number of memory write bulk translation requests in R3. */
403 STAMCOUNTER StatMemBulkWriteRZ; /**< Number of memory write bulk translation requests in RZ. */
404
405 STAMCOUNTER StatCcInvDsc; /**< Number of Context-cache descriptors processed. */
406 STAMCOUNTER StatIotlbInvDsc; /**< Number of IOTLB descriptors processed. */
407 STAMCOUNTER StatDevtlbInvDsc; /**< Number of Device-TLB descriptors processed. */
408 STAMCOUNTER StatIecInvDsc; /**< Number of Interrupt-Entry cache descriptors processed. */
409 STAMCOUNTER StatInvWaitDsc; /**< Number of Invalidation wait descriptors processed. */
410 STAMCOUNTER StatPasidIotlbInvDsc; /**< Number of PASID-based IOTLB descriptors processed. */
411 STAMCOUNTER StatPasidCacheInvDsc; /**< Number of PASID-cache descriptors processed. */
412 STAMCOUNTER StatPasidDevtlbInvDsc; /**< Number of PASID-based device-TLB descriptors processed. */
413#endif
414} DMAR;
415/** Pointer to the DMAR device state. */
416typedef DMAR *PDMAR;
417/** Pointer to the const DMAR device state. */
418typedef DMAR const *PCDMAR;
419AssertCompileMemberAlignment(DMAR, abRegs0, 8);
420AssertCompileMemberAlignment(DMAR, abRegs1, 8);
421
422/**
423 * The ring-3 DMAR device state.
424 */
425typedef struct DMARR3
426{
427 /** Device instance. */
428 PPDMDEVINSR3 pDevInsR3;
429 /** The IOMMU helper. */
430 R3PTRTYPE(PCPDMIOMMUHLPR3) pIommuHlpR3;
431 /** The invalidation-queue thread. */
432 R3PTRTYPE(PPDMTHREAD) pInvQueueThread;
433} DMARR3;
434/** Pointer to the ring-3 DMAR device state. */
435typedef DMARR3 *PDMARR3;
436/** Pointer to the const ring-3 DMAR device state. */
437typedef DMARR3 const *PCDMARR3;
438
439/**
440 * The ring-0 DMAR device state.
441 */
442typedef struct DMARR0
443{
444 /** Device instance. */
445 PPDMDEVINSR0 pDevInsR0;
446 /** The IOMMU helper. */
447 R0PTRTYPE(PCPDMIOMMUHLPR0) pIommuHlpR0;
448} DMARR0;
449/** Pointer to the ring-0 IOMMU device state. */
450typedef DMARR0 *PDMARR0;
451/** Pointer to the const ring-0 IOMMU device state. */
452typedef DMARR0 const *PCDMARR0;
453
454/**
455 * The raw-mode DMAR device state.
456 */
457typedef struct DMARRC
458{
459 /** Device instance. */
460 PPDMDEVINSRC pDevInsRC;
461 /** The IOMMU helper. */
462 RCPTRTYPE(PCPDMIOMMUHLPRC) pIommuHlpRC;
463} DMARRC;
464/** Pointer to the raw-mode DMAR device state. */
465typedef DMARRC *PDMARRC;
466/** Pointer to the const raw-mode DMAR device state. */
467typedef DMARRC const *PCIDMARRC;
468
469/** The DMAR device state for the current context. */
470typedef CTX_SUFF(DMAR) DMARCC;
471/** Pointer to the DMAR device state for the current context. */
472typedef CTX_SUFF(PDMAR) PDMARCC;
473/** Pointer to the const DMAR device state for the current context. */
474typedef CTX_SUFF(PDMAR) const PCDMARCC;
475
476/**
477 * DMAR originated events that generate interrupts.
478 */
479typedef enum DMAREVENTTYPE
480{
481 /** Invalidation completion event. */
482 DMAREVENTTYPE_INV_COMPLETE = 0,
483 /** Fault event. */
484 DMAREVENTTYPE_FAULT
485} DMAREVENTTYPE;
486
487/**
488 * I/O Page.
489 */
490typedef struct DMARIOPAGE
491{
492 /** The base DMA address of a page. */
493 RTGCPHYS GCPhysBase;
494 /** The page shift. */
495 uint8_t cShift;
496 /** The permissions of this page (DMAR_PERM_XXX). */
497 uint8_t fPerm;
498} DMARIOPAGE;
499/** Pointer to an I/O page. */
500typedef DMARIOPAGE *PDMARIOPAGE;
501/** Pointer to a const I/O address range. */
502typedef DMARIOPAGE const *PCDMARIOPAGE;
503
504/**
505 * I/O Address Range.
506 */
507typedef struct DMARIOADDRRANGE
508{
509 /** The starting DMA address of this range. */
510 uint64_t uAddr;
511 /** The size of the range (in bytes). */
512 size_t cb;
513 /** The permissions of this range (DMAR_PERM_XXX). */
514 uint8_t fPerm;
515} DMARIOADDRRANGE;
516/** Pointer to an I/O address range. */
517typedef DMARIOADDRRANGE *PDMARIOADDRRANGE;
518/** Pointer to a const I/O address range. */
519typedef DMARIOADDRRANGE const *PCDMARIOADDRRANGE;
520
521/**
522 * DMA Memory Request (Input).
523 */
524typedef struct DMARMEMREQIN
525{
526 /** The address range being accessed. */
527 DMARIOADDRRANGE AddrRange;
528 /** The source device ID (bus, device, function). */
529 uint16_t idDevice;
530 /** The PASID if present (can be NIL_PCIPASID). */
531 PCIPASID Pasid;
532 /* The address translation type. */
533 PCIADDRTYPE enmAddrType;
534 /** The request type. */
535 VTDREQTYPE enmReqType;
536} DMARMEMREQIN;
537/** Pointer to a DMA memory request input. */
538typedef DMARMEMREQIN *PDMARMEMREQIN;
539/** Pointer to a const DMA memory input. */
540typedef DMARMEMREQIN const *PCDMARMEMREQIN;
541
542/**
543 * DMA Memory Request (Output).
544 */
545typedef struct DMARMEMREQOUT
546{
547 /** The address range of the translated region. */
548 DMARIOADDRRANGE AddrRange;
549 /** The domain ID of the translated region. */
550 uint16_t idDomain;
551} DMARMEMREQOUT;
552/** Pointer to a DMA memory request output. */
553typedef DMARMEMREQOUT *PDMARMEMREQOUT;
554/** Pointer to a const DMA memory request output. */
555typedef DMARMEMREQOUT const *PCDMARMEMREQOUT;
556
557/**
558 * DMA Memory Request (Auxiliary Info).
559 * These get updated and used as part of the translation process.
560 */
561typedef struct DMARMEMREQAUX
562{
563 /** The table translation mode (VTD_TTM_XXX). */
564 uint8_t fTtm;
565 /** The fault processing disabled (FPD) bit. */
566 uint8_t fFpd;
567 /** The paging level of the translation. */
568 uint8_t cPagingLevel;
569 uint8_t abPadding[5];
570 /** The address of the first-level page-table. */
571 uint64_t GCPhysFlPt;
572 /** The address of second-level page-table. */
573 uint64_t GCPhysSlPt;
574} DMARMEMREQAUX;
575/** Pointer to a DMA memory request output. */
576typedef DMARMEMREQAUX *PDMARMEMREQAUX;
577/** Pointer to a const DMA memory request output. */
578typedef DMARMEMREQAUX const *PCDMARMEMREQAUX;
579
580/**
581 * DMA Memory Request Remapping Information.
582 */
583typedef struct DMARMEMREQREMAP
584{
585 /** The DMA memory request input. */
586 DMARMEMREQIN In;
587 /** DMA memory request auxiliary information. */
588 DMARMEMREQAUX Aux;
589 /** The DMA memory request output. */
590 DMARMEMREQOUT Out;
591} DMARMEMREQREMAP;
592/** Pointer to a DMA remap info. */
593typedef DMARMEMREQREMAP *PDMARMEMREQREMAP;
594/** Pointer to a const DMA remap info. */
595typedef DMARMEMREQREMAP const *PCDMARMEMREQREMAP;
596
597/**
598 * Callback function to lookup a DMA address.
599 *
600 * @returns VBox status code.
601 * @param pDevIns The IOMMU device instance.
602 * @param pMemReqIn The DMA memory request input.
603 * @param pMemReqAux The DMA memory request auxiliary info.
604 * @param pIoPageOut Where to store the output of the lookup.
605 */
606typedef DECLCALLBACKTYPE(int, FNDMADDRLOOKUP,(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux,
607 PDMARIOPAGE pIoPageOut));
608/** Pointer to a DMA address-lookup function. */
609typedef FNDMADDRLOOKUP *PFNDMADDRLOOKUP;
610
611
612/*********************************************************************************************************************************
613* Global Variables *
614*********************************************************************************************************************************/
615/**
616 * Read-write masks for DMAR registers (group 0).
617 */
618static uint32_t const g_au32RwMasks0[] =
619{
620 /* Offset Register Low High */
621 /* 0x000 VER_REG */ VTD_VER_REG_RW_MASK,
622 /* 0x004 Reserved */ 0,
623 /* 0x008 CAP_REG */ DMAR_LO_U32(VTD_CAP_REG_RW_MASK), DMAR_HI_U32(VTD_CAP_REG_RW_MASK),
624 /* 0x010 ECAP_REG */ DMAR_LO_U32(VTD_ECAP_REG_RW_MASK), DMAR_HI_U32(VTD_ECAP_REG_RW_MASK),
625 /* 0x018 GCMD_REG */ VTD_GCMD_REG_RW_MASK,
626 /* 0x01c GSTS_REG */ VTD_GSTS_REG_RW_MASK,
627 /* 0x020 RTADDR_REG */ DMAR_LO_U32(VTD_RTADDR_REG_RW_MASK), DMAR_HI_U32(VTD_RTADDR_REG_RW_MASK),
628 /* 0x028 CCMD_REG */ DMAR_LO_U32(VTD_CCMD_REG_RW_MASK), DMAR_HI_U32(VTD_CCMD_REG_RW_MASK),
629 /* 0x030 Reserved */ 0,
630 /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW_MASK,
631 /* 0x038 FECTL_REG */ VTD_FECTL_REG_RW_MASK,
632 /* 0x03c FEDATA_REG */ VTD_FEDATA_REG_RW_MASK,
633 /* 0x040 FEADDR_REG */ VTD_FEADDR_REG_RW_MASK,
634 /* 0x044 FEUADDR_REG */ VTD_FEUADDR_REG_RW_MASK,
635 /* 0x048 Reserved */ 0, 0,
636 /* 0x050 Reserved */ 0, 0,
637 /* 0x058 AFLOG_REG */ DMAR_LO_U32(VTD_AFLOG_REG_RW_MASK), DMAR_HI_U32(VTD_AFLOG_REG_RW_MASK),
638 /* 0x060 Reserved */ 0,
639 /* 0x064 PMEN_REG */ 0, /* RO as we don't support PLMR and PHMR. */
640 /* 0x068 PLMBASE_REG */ 0, /* RO as we don't support PLMR. */
641 /* 0x06c PLMLIMIT_REG */ 0, /* RO as we don't support PLMR. */
642 /* 0x070 PHMBASE_REG */ 0, 0, /* RO as we don't support PHMR. */
643 /* 0x078 PHMLIMIT_REG */ 0, 0, /* RO as we don't support PHMR. */
644 /* 0x080 IQH_REG */ DMAR_LO_U32(VTD_IQH_REG_RW_MASK), DMAR_HI_U32(VTD_IQH_REG_RW_MASK),
645 /* 0x088 IQT_REG */ DMAR_LO_U32(VTD_IQT_REG_RW_MASK), DMAR_HI_U32(VTD_IQT_REG_RW_MASK),
646 /* 0x090 IQA_REG */ DMAR_LO_U32(VTD_IQA_REG_RW_MASK), DMAR_HI_U32(VTD_IQA_REG_RW_MASK),
647 /* 0x098 Reserved */ 0,
648 /* 0x09c ICS_REG */ VTD_ICS_REG_RW_MASK,
649 /* 0x0a0 IECTL_REG */ VTD_IECTL_REG_RW_MASK,
650 /* 0x0a4 IEDATA_REG */ VTD_IEDATA_REG_RW_MASK,
651 /* 0x0a8 IEADDR_REG */ VTD_IEADDR_REG_RW_MASK,
652 /* 0x0ac IEUADDR_REG */ VTD_IEUADDR_REG_RW_MASK,
653 /* 0x0b0 IQERCD_REG */ DMAR_LO_U32(VTD_IQERCD_REG_RW_MASK), DMAR_HI_U32(VTD_IQERCD_REG_RW_MASK),
654 /* 0x0b8 IRTA_REG */ DMAR_LO_U32(VTD_IRTA_REG_RW_MASK), DMAR_HI_U32(VTD_IRTA_REG_RW_MASK),
655 /* 0x0c0 PQH_REG */ DMAR_LO_U32(VTD_PQH_REG_RW_MASK), DMAR_HI_U32(VTD_PQH_REG_RW_MASK),
656 /* 0x0c8 PQT_REG */ DMAR_LO_U32(VTD_PQT_REG_RW_MASK), DMAR_HI_U32(VTD_PQT_REG_RW_MASK),
657 /* 0x0d0 PQA_REG */ DMAR_LO_U32(VTD_PQA_REG_RW_MASK), DMAR_HI_U32(VTD_PQA_REG_RW_MASK),
658 /* 0x0d8 Reserved */ 0,
659 /* 0x0dc PRS_REG */ VTD_PRS_REG_RW_MASK,
660 /* 0x0e0 PECTL_REG */ VTD_PECTL_REG_RW_MASK,
661 /* 0x0e4 PEDATA_REG */ VTD_PEDATA_REG_RW_MASK,
662 /* 0x0e8 PEADDR_REG */ VTD_PEADDR_REG_RW_MASK,
663 /* 0x0ec PEUADDR_REG */ VTD_PEUADDR_REG_RW_MASK,
664 /* 0x0f0 Reserved */ 0, 0,
665 /* 0x0f8 Reserved */ 0, 0,
666 /* 0x100 MTRRCAP_REG */ DMAR_LO_U32(VTD_MTRRCAP_REG_RW_MASK), DMAR_HI_U32(VTD_MTRRCAP_REG_RW_MASK),
667 /* 0x108 MTRRDEF_REG */ 0, 0, /* RO as we don't support MTS. */
668 /* 0x110 Reserved */ 0, 0,
669 /* 0x118 Reserved */ 0, 0,
670 /* 0x120 MTRR_FIX64_00000_REG */ 0, 0, /* RO as we don't support MTS. */
671 /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
672 /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
673 /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
674 /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
675 /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
676 /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
677 /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
678 /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
679 /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
680 /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
681 /* 0x178 Reserved */ 0, 0,
682 /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0, /* RO as we don't support MTS. */
683 /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
684 /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
685 /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
686 /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
687 /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
688 /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
689 /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
690 /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
691 /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
692 /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
693 /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
694 /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
695 /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
696 /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
697 /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
698 /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
699 /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
700 /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
701 /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
702};
703AssertCompile(sizeof(g_au32RwMasks0) == DMAR_MMIO_GROUP_0_SIZE);
704
705/**
706 * Read-only Status, Write-1-to-clear masks for DMAR registers (group 0).
707 */
708static uint32_t const g_au32Rw1cMasks0[] =
709{
710 /* Offset Register Low High */
711 /* 0x000 VER_REG */ 0,
712 /* 0x004 Reserved */ 0,
713 /* 0x008 CAP_REG */ 0, 0,
714 /* 0x010 ECAP_REG */ 0, 0,
715 /* 0x018 GCMD_REG */ 0,
716 /* 0x01c GSTS_REG */ 0,
717 /* 0x020 RTADDR_REG */ 0, 0,
718 /* 0x028 CCMD_REG */ 0, 0,
719 /* 0x030 Reserved */ 0,
720 /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW1C_MASK,
721 /* 0x038 FECTL_REG */ 0,
722 /* 0x03c FEDATA_REG */ 0,
723 /* 0x040 FEADDR_REG */ 0,
724 /* 0x044 FEUADDR_REG */ 0,
725 /* 0x048 Reserved */ 0, 0,
726 /* 0x050 Reserved */ 0, 0,
727 /* 0x058 AFLOG_REG */ 0, 0,
728 /* 0x060 Reserved */ 0,
729 /* 0x064 PMEN_REG */ 0,
730 /* 0x068 PLMBASE_REG */ 0,
731 /* 0x06c PLMLIMIT_REG */ 0,
732 /* 0x070 PHMBASE_REG */ 0, 0,
733 /* 0x078 PHMLIMIT_REG */ 0, 0,
734 /* 0x080 IQH_REG */ 0, 0,
735 /* 0x088 IQT_REG */ 0, 0,
736 /* 0x090 IQA_REG */ 0, 0,
737 /* 0x098 Reserved */ 0,
738 /* 0x09c ICS_REG */ VTD_ICS_REG_RW1C_MASK,
739 /* 0x0a0 IECTL_REG */ 0,
740 /* 0x0a4 IEDATA_REG */ 0,
741 /* 0x0a8 IEADDR_REG */ 0,
742 /* 0x0ac IEUADDR_REG */ 0,
743 /* 0x0b0 IQERCD_REG */ 0, 0,
744 /* 0x0b8 IRTA_REG */ 0, 0,
745 /* 0x0c0 PQH_REG */ 0, 0,
746 /* 0x0c8 PQT_REG */ 0, 0,
747 /* 0x0d0 PQA_REG */ 0, 0,
748 /* 0x0d8 Reserved */ 0,
749 /* 0x0dc PRS_REG */ 0,
750 /* 0x0e0 PECTL_REG */ 0,
751 /* 0x0e4 PEDATA_REG */ 0,
752 /* 0x0e8 PEADDR_REG */ 0,
753 /* 0x0ec PEUADDR_REG */ 0,
754 /* 0x0f0 Reserved */ 0, 0,
755 /* 0x0f8 Reserved */ 0, 0,
756 /* 0x100 MTRRCAP_REG */ 0, 0,
757 /* 0x108 MTRRDEF_REG */ 0, 0,
758 /* 0x110 Reserved */ 0, 0,
759 /* 0x118 Reserved */ 0, 0,
760 /* 0x120 MTRR_FIX64_00000_REG */ 0, 0,
761 /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
762 /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
763 /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
764 /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
765 /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
766 /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
767 /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
768 /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
769 /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
770 /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
771 /* 0x178 Reserved */ 0, 0,
772 /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0,
773 /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
774 /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
775 /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
776 /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
777 /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
778 /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
779 /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
780 /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
781 /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
782 /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
783 /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
784 /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
785 /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
786 /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
787 /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
788 /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
789 /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
790 /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
791 /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
792};
793AssertCompile(sizeof(g_au32Rw1cMasks0) == DMAR_MMIO_GROUP_0_SIZE);
794
795/**
796 * Read-write masks for DMAR registers (group 1).
797 */
798static uint32_t const g_au32RwMasks1[] =
799{
800 /* Offset Register Low High */
801 /* 0xe00 VCCAP_REG */ DMAR_LO_U32(VTD_VCCAP_REG_RW_MASK), DMAR_HI_U32(VTD_VCCAP_REG_RW_MASK),
802 /* 0xe08 VCMD_EO_REG */ DMAR_LO_U32(VTD_VCMD_EO_REG_RW_MASK), DMAR_HI_U32(VTD_VCMD_EO_REG_RW_MASK),
803 /* 0xe10 VCMD_REG */ 0, 0, /* RO: VCS not supported. */
804 /* 0xe18 VCMDRSVD_REG */ 0, 0,
805 /* 0xe20 VCRSP_REG */ 0, 0, /* RO: VCS not supported. */
806 /* 0xe28 VCRSPRSVD_REG */ 0, 0,
807 /* 0xe30 Reserved */ 0, 0,
808 /* 0xe38 Reserved */ 0, 0,
809 /* 0xe40 Reserved */ 0, 0,
810 /* 0xe48 Reserved */ 0, 0,
811 /* 0xe50 IVA_REG */ DMAR_LO_U32(VTD_IVA_REG_RW_MASK), DMAR_HI_U32(VTD_IVA_REG_RW_MASK),
812 /* 0xe58 IOTLB_REG */ DMAR_LO_U32(VTD_IOTLB_REG_RW_MASK), DMAR_HI_U32(VTD_IOTLB_REG_RW_MASK),
813 /* 0xe60 Reserved */ 0, 0,
814 /* 0xe68 Reserved */ 0, 0,
815 /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW_MASK),
816 /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW_MASK),
817};
818AssertCompile(sizeof(g_au32RwMasks1) == DMAR_MMIO_GROUP_1_SIZE);
819AssertCompile((DMAR_MMIO_OFF_FRCD_LO_REG - DMAR_MMIO_GROUP_1_OFF_FIRST) + DMAR_FRCD_REG_COUNT * 2 * sizeof(uint64_t) );
820
821/**
822 * Read-only Status, Write-1-to-clear masks for DMAR registers (group 1).
823 */
824static uint32_t const g_au32Rw1cMasks1[] =
825{
826 /* Offset Register Low High */
827 /* 0xe00 VCCAP_REG */ 0, 0,
828 /* 0xe08 VCMD_EO_REG */ 0, 0,
829 /* 0xe10 VCMD_REG */ 0, 0,
830 /* 0xe18 VCMDRSVD_REG */ 0, 0,
831 /* 0xe20 VCRSP_REG */ 0, 0,
832 /* 0xe28 VCRSPRSVD_REG */ 0, 0,
833 /* 0xe30 Reserved */ 0, 0,
834 /* 0xe38 Reserved */ 0, 0,
835 /* 0xe40 Reserved */ 0, 0,
836 /* 0xe48 Reserved */ 0, 0,
837 /* 0xe50 IVA_REG */ 0, 0,
838 /* 0xe58 IOTLB_REG */ 0, 0,
839 /* 0xe60 Reserved */ 0, 0,
840 /* 0xe68 Reserved */ 0, 0,
841 /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW1C_MASK),
842 /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW1C_MASK),
843};
844AssertCompile(sizeof(g_au32Rw1cMasks1) == DMAR_MMIO_GROUP_1_SIZE);
845
846/** Array of RW masks for each register group. */
847static uint8_t const *g_apbRwMasks[] = { (uint8_t *)&g_au32RwMasks0[0], (uint8_t *)&g_au32RwMasks1[0] };
848
849/** Array of RW1C masks for each register group. */
850static uint8_t const *g_apbRw1cMasks[] = { (uint8_t *)&g_au32Rw1cMasks0[0], (uint8_t *)&g_au32Rw1cMasks1[0] };
851
852/* Masks arrays must be identical in size (even bounds checking code assumes this). */
853AssertCompile(sizeof(g_apbRw1cMasks) == sizeof(g_apbRwMasks));
854
855/** Array of valid domain-ID bits. */
856static uint16_t const g_auNdMask[] = { 0xf, 0x3f, 0xff, 0x3ff, 0xfff, 0x3fff, 0xffff, 0 };
857AssertCompile(RT_ELEMENTS(g_auNdMask) >= DMAR_ND);
858
859
860#ifndef VBOX_DEVICE_STRUCT_TESTCASE
861/**
862 * Returns the supported adjusted guest-address width (SAGAW) given the maximum
863 * guest address width (MGAW).
864 *
865 * @returns The CAP_REG.SAGAW value.
866 * @param uMgaw The CAP_REG.MGAW value.
867 */
868static uint8_t vtdCapRegGetSagaw(uint8_t uMgaw)
869{
870 /*
871 * It doesn't make sense to me that a CPU (or IOMMU hardware) will ever support
872 * 5-level paging but not 4 or 3-level paging. So smaller page-table levels
873 * are always OR'ed in below.
874 *
875 * The bit values below (57, 48, 39 bits) represents the levels of page-table walks
876 * for 4KB base page size (5-level, 4-level and 3-level paging respectively).
877 *
878 * See Intel VT-d spec. 10.4.2 "Capability Register".
879 */
880 ++uMgaw;
881 uint8_t const fSagaw = uMgaw >= 57 ? RT_BIT(3) | RT_BIT(2) | RT_BIT(1)
882 : uMgaw >= 48 ? RT_BIT(2) | RT_BIT(1)
883 : uMgaw >= 39 ? RT_BIT(1)
884 : 0;
885 return fSagaw;
886}
887
888
889/**
890 * Returns the maximum supported paging level given the supported adjusted
891 * guest-address width (SAGAW) field.
892 *
893 * @returns The highest paging level supported, 0 if invalid.
894 * @param fSagaw The CAP_REG.SAGAW value.
895 */
896static uint8_t vtdCapRegGetMaxPagingLevel(uint8_t fSagaw)
897{
898 uint8_t const cMaxPagingLevel = fSagaw & RT_BIT(3) ? 5
899 : fSagaw & RT_BIT(2) ? 4
900 : fSagaw & RT_BIT(1) ? 3
901 : 0;
902 return cMaxPagingLevel;
903}
904
905
906/**
907 * Returns whether the interrupt remapping (IR) fault is qualified or not.
908 *
909 * @returns @c true if qualified, @c false otherwise.
910 * @param enmIrFault The interrupt remapping fault condition.
911 */
912static bool vtdIrFaultIsQualified(VTDIRFAULT enmIrFault)
913{
914 switch (enmIrFault)
915 {
916 case VTDIRFAULT_IRTE_NOT_PRESENT:
917 case VTDIRFAULT_IRTE_PRESENT_RSVD:
918 case VTDIRFAULT_IRTE_PRESENT_INVALID:
919 case VTDIRFAULT_PID_READ_FAILED:
920 case VTDIRFAULT_PID_RSVD:
921 return true;
922 default:
923 return false;
924 }
925}
926
927
928/**
929 * Returns table translation mode's descriptive name.
930 *
931 * @returns The descriptive name.
932 * @param uTtm The RTADDR_REG.TTM value.
933 */
934static const char* vtdRtaddrRegGetTtmDesc(uint8_t uTtm)
935{
936 Assert(!(uTtm & 3));
937 static const char* s_apszTtmNames[] =
938 {
939 "Legacy Mode",
940 "Scalable Mode",
941 "Reserved",
942 "Abort-DMA Mode"
943 };
944 return s_apszTtmNames[uTtm & (RT_ELEMENTS(s_apszTtmNames) - 1)];
945}
946
947
948/**
949 * Gets the index of the group the register belongs to given its MMIO offset.
950 *
951 * @returns The group index.
952 * @param offReg The MMIO offset of the register.
953 * @param cbReg The size of the access being made (for bounds checking on
954 * debug builds).
955 */
956DECLINLINE(uint8_t) dmarRegGetGroupIndex(uint16_t offReg, uint8_t cbReg)
957{
958 uint16_t const offLast = offReg + cbReg - 1;
959 AssertCompile(DMAR_MMIO_GROUP_0_OFF_FIRST == 0);
960 AssertMsg(DMAR_IS_MMIO_OFF_VALID(offLast), ("off=%#x cb=%u\n", offReg, cbReg));
961 return !(offLast < DMAR_MMIO_GROUP_0_OFF_END);
962}
963
964
965/**
966 * Gets the group the register belongs to given its MMIO offset.
967 *
968 * @returns Pointer to the first element of the register group.
969 * @param pThis The shared DMAR device state.
970 * @param offReg The MMIO offset of the register.
971 * @param cbReg The size of the access being made (for bounds checking on
972 * debug builds).
973 * @param pIdxGroup Where to store the index of the register group the register
974 * belongs to.
975 */
976DECLINLINE(uint8_t *) dmarRegGetGroup(PDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
977{
978 *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
979 uint8_t *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
980 return apbRegs[*pIdxGroup];
981}
982
983
984/**
985 * Const/read-only version of dmarRegGetGroup.
986 *
987 * @copydoc dmarRegGetGroup
988 */
989DECLINLINE(uint8_t const*) dmarRegGetGroupRo(PCDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
990{
991 *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
992 uint8_t const *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
993 return apbRegs[*pIdxGroup];
994}
995
996
997/**
998 * Writes a 32-bit register with the exactly the supplied value.
999 *
1000 * @param pThis The shared DMAR device state.
1001 * @param offReg The MMIO offset of the register.
1002 * @param uReg The 32-bit value to write.
1003 */
1004static void dmarRegWriteRaw32(PDMAR pThis, uint16_t offReg, uint32_t uReg)
1005{
1006 uint8_t idxGroup;
1007 uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint32_t), &idxGroup);
1008 NOREF(idxGroup);
1009 *(uint32_t *)(pabRegs + offReg) = uReg;
1010}
1011
1012
1013/**
1014 * Writes a 64-bit register with the exactly the supplied value.
1015 *
1016 * @param pThis The shared DMAR device state.
1017 * @param offReg The MMIO offset of the register.
1018 * @param uReg The 64-bit value to write.
1019 */
1020static void dmarRegWriteRaw64(PDMAR pThis, uint16_t offReg, uint64_t uReg)
1021{
1022 uint8_t idxGroup;
1023 uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint64_t), &idxGroup);
1024 NOREF(idxGroup);
1025 *(uint64_t *)(pabRegs + offReg) = uReg;
1026}
1027
1028
1029/**
1030 * Reads a 32-bit register with exactly the value it contains.
1031 *
1032 * @returns The raw register value.
1033 * @param pThis The shared DMAR device state.
1034 * @param offReg The MMIO offset of the register.
1035 */
1036static uint32_t dmarRegReadRaw32(PCDMAR pThis, uint16_t offReg)
1037{
1038 uint8_t idxGroup;
1039 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
1040 NOREF(idxGroup);
1041 return *(uint32_t *)(pabRegs + offReg);
1042}
1043
1044
1045/**
1046 * Reads a 64-bit register with exactly the value it contains.
1047 *
1048 * @returns The raw register value.
1049 * @param pThis The shared DMAR device state.
1050 * @param offReg The MMIO offset of the register.
1051 */
1052static uint64_t dmarRegReadRaw64(PCDMAR pThis, uint16_t offReg)
1053{
1054 uint8_t idxGroup;
1055 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
1056 NOREF(idxGroup);
1057 return *(uint64_t *)(pabRegs + offReg);
1058}
1059
1060
1061/**
1062 * Reads a 32-bit register with exactly the value it contains along with their
1063 * corresponding masks
1064 *
1065 * @param pThis The shared DMAR device state.
1066 * @param offReg The MMIO offset of the register.
1067 * @param puReg Where to store the raw 32-bit register value.
1068 * @param pfRwMask Where to store the RW mask corresponding to this register.
1069 * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
1070 */
1071static void dmarRegReadRaw32Ex(PCDMAR pThis, uint16_t offReg, uint32_t *puReg, uint32_t *pfRwMask, uint32_t *pfRw1cMask)
1072{
1073 uint8_t idxGroup;
1074 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
1075 Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
1076 uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
1077 uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
1078 *puReg = *(uint32_t *)(pabRegs + offReg);
1079 *pfRwMask = *(uint32_t *)(pabRwMasks + offReg);
1080 *pfRw1cMask = *(uint32_t *)(pabRw1cMasks + offReg);
1081}
1082
1083
1084/**
1085 * Reads a 64-bit register with exactly the value it contains along with their
1086 * corresponding masks.
1087 *
1088 * @param pThis The shared DMAR device state.
1089 * @param offReg The MMIO offset of the register.
1090 * @param puReg Where to store the raw 64-bit register value.
1091 * @param pfRwMask Where to store the RW mask corresponding to this register.
1092 * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
1093 */
1094static void dmarRegReadRaw64Ex(PCDMAR pThis, uint16_t offReg, uint64_t *puReg, uint64_t *pfRwMask, uint64_t *pfRw1cMask)
1095{
1096 uint8_t idxGroup;
1097 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
1098 Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
1099 uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
1100 uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
1101 *puReg = *(uint64_t *)(pabRegs + offReg);
1102 *pfRwMask = *(uint64_t *)(pabRwMasks + offReg);
1103 *pfRw1cMask = *(uint64_t *)(pabRw1cMasks + offReg);
1104}
1105
1106
1107/**
1108 * Writes a 32-bit register as it would be when written by software.
1109 * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
1110 *
1111 * @returns The value that's actually written to the register.
1112 * @param pThis The shared DMAR device state.
1113 * @param offReg The MMIO offset of the register.
1114 * @param uReg The 32-bit value to write.
1115 * @param puPrev Where to store the register value prior to writing.
1116 */
1117static uint32_t dmarRegWrite32(PDMAR pThis, uint16_t offReg, uint32_t uReg, uint32_t *puPrev)
1118{
1119 /* Read current value from the 32-bit register. */
1120 uint32_t uCurReg;
1121 uint32_t fRwMask;
1122 uint32_t fRw1cMask;
1123 dmarRegReadRaw32Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
1124 *puPrev = uCurReg;
1125
1126 uint32_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
1127 uint32_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
1128 uint32_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
1129 uint32_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
1130
1131 /* Write new value to the 32-bit register. */
1132 dmarRegWriteRaw32(pThis, offReg, uNewReg);
1133 return uNewReg;
1134}
1135
1136
1137/**
1138 * Writes a 64-bit register as it would be when written by software.
1139 * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
1140 *
1141 * @returns The value that's actually written to the register.
1142 * @param pThis The shared DMAR device state.
1143 * @param offReg The MMIO offset of the register.
1144 * @param uReg The 64-bit value to write.
1145 * @param puPrev Where to store the register value prior to writing.
1146 */
1147static uint64_t dmarRegWrite64(PDMAR pThis, uint16_t offReg, uint64_t uReg, uint64_t *puPrev)
1148{
1149 /* Read current value from the 64-bit register. */
1150 uint64_t uCurReg;
1151 uint64_t fRwMask;
1152 uint64_t fRw1cMask;
1153 dmarRegReadRaw64Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
1154 *puPrev = uCurReg;
1155
1156 uint64_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
1157 uint64_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
1158 uint64_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
1159 uint64_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
1160
1161 /* Write new value to the 64-bit register. */
1162 dmarRegWriteRaw64(pThis, offReg, uNewReg);
1163 return uNewReg;
1164}
1165
1166
1167/**
1168 * Reads a 32-bit register as it would be when read by software.
1169 *
1170 * @returns The register value.
1171 * @param pThis The shared DMAR device state.
1172 * @param offReg The MMIO offset of the register.
1173 */
1174static uint32_t dmarRegRead32(PCDMAR pThis, uint16_t offReg)
1175{
1176 return dmarRegReadRaw32(pThis, offReg);
1177}
1178
1179
1180/**
1181 * Reads a 64-bit register as it would be when read by software.
1182 *
1183 * @returns The register value.
1184 * @param pThis The shared DMAR device state.
1185 * @param offReg The MMIO offset of the register.
1186 */
1187static uint64_t dmarRegRead64(PCDMAR pThis, uint16_t offReg)
1188{
1189 return dmarRegReadRaw64(pThis, offReg);
1190}
1191
1192
1193/**
1194 * Modifies a 32-bit register.
1195 *
1196 * @param pThis The shared DMAR device state.
1197 * @param offReg The MMIO offset of the register.
1198 * @param fAndMask The AND mask (applied first).
1199 * @param fOrMask The OR mask.
1200 * @remarks This does NOT apply RO or RW1C masks while modifying the
1201 * register.
1202 */
1203static void dmarRegChangeRaw32(PDMAR pThis, uint16_t offReg, uint32_t fAndMask, uint32_t fOrMask)
1204{
1205 uint32_t uReg = dmarRegReadRaw32(pThis, offReg);
1206 uReg = (uReg & fAndMask) | fOrMask;
1207 dmarRegWriteRaw32(pThis, offReg, uReg);
1208}
1209
1210
1211/**
1212 * Modifies a 64-bit register.
1213 *
1214 * @param pThis The shared DMAR device state.
1215 * @param offReg The MMIO offset of the register.
1216 * @param fAndMask The AND mask (applied first).
1217 * @param fOrMask The OR mask.
1218 * @remarks This does NOT apply RO or RW1C masks while modifying the
1219 * register.
1220 */
1221static void dmarRegChangeRaw64(PDMAR pThis, uint16_t offReg, uint64_t fAndMask, uint64_t fOrMask)
1222{
1223 uint64_t uReg = dmarRegReadRaw64(pThis, offReg);
1224 uReg = (uReg & fAndMask) | fOrMask;
1225 dmarRegWriteRaw64(pThis, offReg, uReg);
1226}
1227
1228
1229/**
1230 * Checks if the invalidation-queue is empty.
1231 *
1232 * Extended version which optionally returns the current queue head and tail
1233 * offsets.
1234 *
1235 * @returns @c true if empty, @c false otherwise.
1236 * @param pThis The shared DMAR device state.
1237 * @param poffQh Where to store the queue head offset. Optional, can be NULL.
1238 * @param poffQt Where to store the queue tail offset. Optional, can be NULL.
1239 */
1240static bool dmarInvQueueIsEmptyEx(PCDMAR pThis, uint32_t *poffQh, uint32_t *poffQt)
1241{
1242 /* Read only the low-32 bits of the queue head and queue tail as high bits are all RsvdZ.*/
1243 uint32_t const uIqtReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQT_REG);
1244 uint32_t const uIqhReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQH_REG);
1245
1246 /* Don't bother masking QT, QH since other bits are RsvdZ. */
1247 Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
1248 Assert(!(uIqhReg & ~VTD_BF_IQH_REG_QH_MASK));
1249 if (poffQh)
1250 *poffQh = uIqhReg;
1251 if (poffQt)
1252 *poffQt = uIqtReg;
1253 return uIqtReg == uIqhReg;
1254}
1255
1256
1257/**
1258 * Checks if the invalidation-queue is empty.
1259 *
1260 * @returns @c true if empty, @c false otherwise.
1261 * @param pThis The shared DMAR device state.
1262 */
1263static bool dmarInvQueueIsEmpty(PCDMAR pThis)
1264{
1265 return dmarInvQueueIsEmptyEx(pThis, NULL /* poffQh */, NULL /* poffQt */);
1266}
1267
1268
1269/**
1270 * Checks if the invalidation-queue is capable of processing requests.
1271 *
1272 * @returns @c true if the invalidation-queue can process requests, @c false
1273 * otherwise.
1274 * @param pThis The shared DMAR device state.
1275 */
1276static bool dmarInvQueueCanProcessRequests(PCDMAR pThis)
1277{
1278 /* Check if queued-invalidation is enabled. */
1279 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1280 if (uGstsReg & VTD_BF_GSTS_REG_QIES_MASK)
1281 {
1282 /* Check if there are no invalidation-queue or timeout errors. */
1283 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1284 if (!(uFstsReg & (VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_ITE_MASK)))
1285 return true;
1286 }
1287 return false;
1288}
1289
1290
1291/**
1292 * Wakes up the invalidation-queue thread if there are requests to be processed.
1293 *
1294 * @param pDevIns The IOMMU device instance.
1295 */
1296static void dmarInvQueueThreadWakeUpIfNeeded(PPDMDEVINS pDevIns)
1297{
1298 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1299 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1300 LogFlowFunc(("\n"));
1301
1302 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1303
1304 if ( dmarInvQueueCanProcessRequests(pThis)
1305 && !dmarInvQueueIsEmpty(pThis))
1306 {
1307 Log4Func(("Signaling the invalidation-queue thread\n"));
1308 PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
1309 }
1310}
1311
1312
1313/**
1314 * Raises an event on behalf of the DMAR.
1315 *
1316 * These are events that are generated by the DMAR itself (like faults and
1317 * invalidation completion notifications).
1318 *
1319 * @param pDevIns The IOMMU device instance.
1320 * @param enmEventType The DMAR event type.
1321 *
1322 * @remarks The DMAR lock must be held while calling this function.
1323 */
1324static void dmarEventRaiseInterrupt(PPDMDEVINS pDevIns, DMAREVENTTYPE enmEventType)
1325{
1326 uint16_t offCtlReg;
1327 uint32_t fIntrMaskedMask;
1328 uint32_t fIntrPendingMask;
1329 uint16_t offMsiAddrLoReg;
1330 uint16_t offMsiAddrHiReg;
1331 uint16_t offMsiDataReg;
1332 switch (enmEventType)
1333 {
1334 case DMAREVENTTYPE_INV_COMPLETE:
1335 {
1336 offCtlReg = VTD_MMIO_OFF_IECTL_REG;
1337 fIntrMaskedMask = VTD_BF_IECTL_REG_IM_MASK;
1338 fIntrPendingMask = VTD_BF_IECTL_REG_IP_MASK;
1339 offMsiAddrLoReg = VTD_MMIO_OFF_IEADDR_REG;
1340 offMsiAddrHiReg = VTD_MMIO_OFF_IEUADDR_REG;
1341 offMsiDataReg = VTD_MMIO_OFF_IEDATA_REG;
1342 break;
1343 }
1344
1345 case DMAREVENTTYPE_FAULT:
1346 {
1347 offCtlReg = VTD_MMIO_OFF_FECTL_REG;
1348 fIntrMaskedMask = VTD_BF_FECTL_REG_IM_MASK;
1349 fIntrPendingMask = VTD_BF_FECTL_REG_IP_MASK;
1350 offMsiAddrLoReg = VTD_MMIO_OFF_FEADDR_REG;
1351 offMsiAddrHiReg = VTD_MMIO_OFF_FEUADDR_REG;
1352 offMsiDataReg = VTD_MMIO_OFF_FEDATA_REG;
1353 break;
1354 }
1355
1356 default:
1357 {
1358 /* Shouldn't ever happen. */
1359 AssertMsgFailedReturnVoid(("DMAR event type %#x unknown!\n", enmEventType));
1360 }
1361 }
1362
1363 /* Check if software has masked the interrupt. */
1364 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1365 uint32_t uCtlReg = dmarRegReadRaw32(pThis, offCtlReg);
1366 if (!(uCtlReg & fIntrMaskedMask))
1367 {
1368 /*
1369 * Interrupt is unmasked, raise it.
1370 * Interrupts generated by the DMAR have trigger mode and level as 0.
1371 * See Intel spec. 5.1.6 "Remapping Hardware Event Interrupt Programming".
1372 */
1373 MSIMSG Msi;
1374 Msi.Addr.au32[0] = dmarRegReadRaw32(pThis, offMsiAddrLoReg);
1375 Msi.Addr.au32[1] = (pThis->fExtCapReg & VTD_BF_ECAP_REG_EIM_MASK) ? dmarRegReadRaw32(pThis, offMsiAddrHiReg) : 0;
1376 Msi.Data.u32 = dmarRegReadRaw32(pThis, offMsiDataReg);
1377 Assert(Msi.Data.n.u1Level == 0);
1378 Assert(Msi.Data.n.u1TriggerMode == 0);
1379
1380 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1381 pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi(pDevIns, &Msi, 0 /* uTagSrc */);
1382
1383 /* Clear interrupt pending bit. */
1384 uCtlReg &= ~fIntrPendingMask;
1385 dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg);
1386 }
1387 else
1388 {
1389 /* Interrupt is masked, set the interrupt pending bit. */
1390 uCtlReg |= fIntrPendingMask;
1391 dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg);
1392 }
1393}
1394
1395
1396/**
1397 * Raises an interrupt in response to a fault event.
1398 *
1399 * @param pDevIns The IOMMU device instance.
1400 *
1401 * @remarks This assumes the caller has already set the required status bits in the
1402 * FSTS_REG (namely one or more of PPF, PFO, IQE, ICE or ITE bits).
1403 */
1404static void dmarFaultEventRaiseInterrupt(PPDMDEVINS pDevIns)
1405{
1406 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1407 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1408
1409#ifdef RT_STRICT
1410 {
1411 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
1412 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1413 uint32_t const fFaultMask = VTD_BF_FSTS_REG_PPF_MASK | VTD_BF_FSTS_REG_PFO_MASK
1414 /* | VTD_BF_FSTS_REG_APF_MASK | VTD_BF_FSTS_REG_AFO_MASK */ /* AFL not supported */
1415 /* | VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK */ /* Device-TLBs not supported */
1416 | VTD_BF_FSTS_REG_IQE_MASK;
1417 Assert(uFstsReg & fFaultMask);
1418 }
1419#endif
1420 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT);
1421}
1422
1423
1424#ifdef IN_RING3
1425/**
1426 * Raises an interrupt in response to an invalidation (complete) event.
1427 *
1428 * @param pDevIns The IOMMU device instance.
1429 */
1430static void dmarR3InvEventRaiseInterrupt(PPDMDEVINS pDevIns)
1431{
1432 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1433 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1434 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1435
1436 uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
1437 if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK))
1438 {
1439 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_ICS_REG, UINT32_MAX, VTD_BF_ICS_REG_IWC_MASK);
1440 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE);
1441 }
1442}
1443#endif /* IN_RING3 */
1444
1445
1446/**
1447 * Checks if a primary fault can be recorded.
1448 *
1449 * @returns @c true if the fault can be recorded, @c false otherwise.
1450 * @param pDevIns The IOMMU device instance.
1451 * @param pThis The shared DMAR device state.
1452 *
1453 * @remarks Warning: This function has side-effects wrt the DMAR register state. Do
1454 * NOT call it unless there is a fault condition!
1455 */
1456static bool dmarPrimaryFaultCanRecord(PPDMDEVINS pDevIns, PDMAR pThis)
1457{
1458 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1459 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1460
1461 uint32_t uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1462 if (uFstsReg & VTD_BF_FSTS_REG_PFO_MASK)
1463 return false;
1464
1465 /*
1466 * If we add more FRCD registers, we'll have to loop through them here.
1467 * Since we support only one FRCD_REG, we don't support "compression of multiple faults",
1468 * nor do we need to increment FRI.
1469 *
1470 * See Intel VT-d spec. 7.2.1 "Primary Fault Logging".
1471 */
1472 AssertCompile(DMAR_FRCD_REG_COUNT == 1);
1473 uint64_t const uFrcdRegHi = dmarRegReadRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG);
1474 if (uFrcdRegHi & VTD_BF_1_FRCD_REG_F_MASK)
1475 {
1476 uFstsReg |= VTD_BF_FSTS_REG_PFO_MASK;
1477 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, uFstsReg);
1478 return false;
1479 }
1480
1481 return true;
1482}
1483
1484
1485/**
1486 * Records a primary fault.
1487 *
1488 * @param pDevIns The IOMMU device instance.
1489 * @param uFrcdHi The FRCD_HI_REG value for this fault.
1490 * @param uFrcdLo The FRCD_LO_REG value for this fault.
1491 */
1492static void dmarPrimaryFaultRecord(PPDMDEVINS pDevIns, uint64_t uFrcdHi, uint64_t uFrcdLo)
1493{
1494 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1495 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1496
1497 DMAR_LOCK(pDevIns, pThisCC);
1498
1499 /* We don't support advance fault logging. */
1500 Assert(!(dmarRegRead32(pThis, VTD_MMIO_OFF_GSTS_REG) & VTD_BF_GSTS_REG_AFLS_MASK));
1501
1502 if (dmarPrimaryFaultCanRecord(pDevIns, pThis))
1503 {
1504 /* Update the fault recording registers with the fault information. */
1505 dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG, uFrcdHi);
1506 dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_LO_REG, uFrcdLo);
1507
1508 /* Set the Pending Primary Fault (PPF) field in the status register. */
1509 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, VTD_BF_FSTS_REG_PPF_MASK);
1510
1511 /* Raise interrupt if necessary. */
1512 dmarFaultEventRaiseInterrupt(pDevIns);
1513 }
1514
1515 DMAR_UNLOCK(pDevIns, pThisCC);
1516}
1517
1518
1519/**
1520 * Records an interrupt request fault.
1521 *
1522 * @param pDevIns The IOMMU device instance.
1523 * @param enmDiag The diagnostic reason.
1524 * @param idDevice The device ID (bus, device, function).
1525 * @param idxIntr The interrupt index.
1526 * @param pIrte The IRTE that caused this fault. Can be NULL if the fault is
1527 * not qualified.
1528 */
1529static void dmarIrFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, uint16_t idDevice, uint16_t idxIntr, PCVTD_IRTE_T pIrte)
1530{
1531 /*
1532 * Update the diagnostic reason (even if software wants to supress faults).
1533 */
1534 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1535 pThis->enmDiag = enmDiag;
1536
1537 /*
1538 * Figure out the fault reason to report to software from our diagnostic code.
1539 * The case labels below are sorted alphabetically for convenience.
1540 */
1541 VTDIRFAULT enmIrFault;
1542 switch (enmDiag)
1543 {
1544 case kDmarDiag_Ir_Cfi_Blocked: enmIrFault = VTDIRFAULT_CFI_BLOCKED; break;
1545 case kDmarDiag_Ir_Rfi_Intr_Index_Invalid: enmIrFault = VTDIRFAULT_INTR_INDEX_INVALID; break;
1546 case kDmarDiag_Ir_Rfi_Irte_Mode_Invalid: enmIrFault = VTDIRFAULT_IRTE_PRESENT_RSVD; break;
1547 case kDmarDiag_Ir_Rfi_Irte_Not_Present: enmIrFault = VTDIRFAULT_IRTE_NOT_PRESENT; break;
1548 case kDmarDiag_Ir_Rfi_Irte_Read_Failed: enmIrFault = VTDIRFAULT_IRTE_READ_FAILED; break;
1549 case kDmarDiag_Ir_Rfi_Irte_Rsvd:
1550 case kDmarDiag_Ir_Rfi_Irte_Svt_Bus:
1551 case kDmarDiag_Ir_Rfi_Irte_Svt_Masked:
1552 case kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd: enmIrFault = VTDIRFAULT_IRTE_PRESENT_RSVD; break;
1553 case kDmarDiag_Ir_Rfi_Rsvd: enmIrFault = VTDIRFAULT_REMAPPABLE_INTR_RSVD; break;
1554
1555 /* Shouldn't ever happen. */
1556 default:
1557 {
1558 AssertLogRelMsgFailedReturnVoid(("%s: Invalid interrupt remapping fault diagnostic code %#x\n", DMAR_LOG_PFX,
1559 enmDiag));
1560 }
1561 }
1562
1563 /*
1564 * Qualified faults are those that can be suppressed by software using the FPD bit
1565 * in the interrupt-remapping table entry.
1566 */
1567 bool fFpd;
1568 bool const fQualifiedFault = vtdIrFaultIsQualified(enmIrFault);
1569 if (fQualifiedFault)
1570 {
1571 AssertReturnVoid(pIrte);
1572 fFpd = RT_BOOL(pIrte->au64[0] & VTD_BF_0_IRTE_FPD_MASK);
1573 }
1574 else
1575 fFpd = false;
1576
1577 if (!fFpd)
1578 {
1579 /* Construct and record the error. */
1580 uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice)
1581 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmIrFault)
1582 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1);
1583 uint64_t const uFrcdLo = (uint64_t)idxIntr << 48;
1584 dmarPrimaryFaultRecord(pDevIns, uFrcdHi, uFrcdLo);
1585 }
1586}
1587
1588
1589/**
1590 * Records an address translation fault.
1591 *
1592 * @param pDevIns The IOMMU device instance.
1593 * @param enmDiag The diagnostic reason.
1594 * @param pMemReqIn The DMA memory request input.
1595 * @param pMemReqAux The DMA memory request auxiliary info.
1596 */
1597static void dmarAtFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux)
1598{
1599 /*
1600 * Update the diagnostic reason (even if software wants to supress faults).
1601 */
1602 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1603 pThis->enmDiag = enmDiag;
1604
1605 /*
1606 * Qualified faults are those that can be suppressed by software using the FPD bit
1607 * in the context entry, scalable-mode context entry etc.
1608 */
1609 if (!pMemReqAux->fFpd)
1610 {
1611 /*
1612 * Figure out the fault reason to report to software from our diagnostic code.
1613 * The case labels below are sorted alphabetically for convenience.
1614 */
1615 VTDATFAULT enmAtFault;
1616 bool const fLm = pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE;
1617 switch (enmDiag)
1618 {
1619 /* LM (Legacy Mode) faults. */
1620 case kDmarDiag_At_Lm_CtxEntry_Not_Present: enmAtFault = VTDATFAULT_LCT_2; break;
1621 case kDmarDiag_At_Lm_CtxEntry_Read_Failed: enmAtFault = VTDATFAULT_LCT_1; break;
1622 case kDmarDiag_At_Lm_CtxEntry_Rsvd: enmAtFault = VTDATFAULT_LCT_3; break;
1623 case kDmarDiag_At_Lm_Pt_At_Block: enmAtFault = VTDATFAULT_LCT_5; break;
1624 case kDmarDiag_At_Lm_Pt_Aw_Invalid: enmAtFault = VTDATFAULT_LGN_1_3; break;
1625 case kDmarDiag_At_Lm_RootEntry_Not_Present: enmAtFault = VTDATFAULT_LRT_2; break;
1626 case kDmarDiag_At_Lm_RootEntry_Read_Failed: enmAtFault = VTDATFAULT_LRT_1; break;
1627 case kDmarDiag_At_Lm_RootEntry_Rsvd: enmAtFault = VTDATFAULT_LRT_3; break;
1628 case kDmarDiag_At_Lm_Tt_Invalid: enmAtFault = VTDATFAULT_LCT_4_2; break;
1629 case kDmarDiag_At_Lm_Ut_At_Block: enmAtFault = VTDATFAULT_LCT_5; break;
1630 case kDmarDiag_At_Lm_Ut_Aw_Invalid: enmAtFault = VTDATFAULT_LCT_4_1; break;
1631
1632 /* RTA (Root Table Address) faults. */
1633 case kDmarDiag_At_Rta_Adms_Not_Supported: enmAtFault = VTDATFAULT_RTA_1_1; break;
1634 case kDmarDiag_At_Rta_Rsvd: enmAtFault = VTDATFAULT_RTA_1_2; break;
1635 case kDmarDiag_At_Rta_Smts_Not_Supported: enmAtFault = VTDATFAULT_RTA_1_3; break;
1636
1637 /* XM (Legacy mode or Scalable Mode) faults. */
1638 case kDmarDiag_At_Xm_AddrIn_Invalid: enmAtFault = fLm ? VTDATFAULT_LGN_1_1 : VTDATFAULT_SGN_5; break;
1639 case kDmarDiag_At_Xm_AddrOut_Invalid: enmAtFault = fLm ? VTDATFAULT_LGN_4 : VTDATFAULT_SGN_8; break;
1640 case kDmarDiag_At_Xm_Perm_Denied: enmAtFault = fLm ? VTDATFAULT_LSL_2 : VTDATFAULT_SSL_2; break;
1641 case kDmarDiag_At_Xm_Pte_Rsvd:
1642 case kDmarDiag_At_Xm_Pte_Sllps_Invalid: enmAtFault = fLm ? VTDATFAULT_LSL_2 : VTDATFAULT_SSL_3; break;
1643 case kDmarDiag_At_Xm_Read_Pte_Failed: enmAtFault = fLm ? VTDATFAULT_LSL_1 : VTDATFAULT_SSL_1; break;
1644 case kDmarDiag_At_Xm_Slpptr_Read_Failed: enmAtFault = fLm ? VTDATFAULT_LCT_4_3 : VTDATFAULT_SSL_4; break;
1645
1646 /* Shouldn't ever happen. */
1647 default:
1648 {
1649 AssertLogRelMsgFailedReturnVoid(("%s: Invalid address translation fault diagnostic code %#x\n",
1650 DMAR_LOG_PFX, enmDiag));
1651 }
1652 }
1653
1654 /* Construct and record the error. */
1655 uint16_t const idDevice = pMemReqIn->idDevice;
1656 uint8_t const fType1 = pMemReqIn->enmReqType & RT_BIT(1);
1657 uint8_t const fType2 = pMemReqIn->enmReqType & RT_BIT(0);
1658 uint8_t const fExec = pMemReqIn->AddrRange.fPerm & DMAR_PERM_EXE;
1659 uint8_t const fPriv = pMemReqIn->AddrRange.fPerm & DMAR_PERM_PRIV;
1660 bool const fHasPasid = PCIPASID_IS_VALID(pMemReqIn->Pasid);
1661 uint32_t const uPasid = PCIPASID_VAL(pMemReqIn->Pasid);
1662 PCIADDRTYPE const enmAt = pMemReqIn->enmAddrType;
1663
1664 uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice)
1665 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T2, fType2)
1666 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PP, fHasPasid)
1667 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_EXE, fExec)
1668 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PRIV, fPriv)
1669 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmAtFault)
1670 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PV, uPasid)
1671 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_AT, enmAt)
1672 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T1, fType1)
1673 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1);
1674 uint64_t const uFrcdLo = pMemReqIn->AddrRange.uAddr & X86_PAGE_BASE_MASK;
1675 dmarPrimaryFaultRecord(pDevIns, uFrcdHi, uFrcdLo);
1676 }
1677}
1678
1679
1680/**
1681 * Records an IQE fault.
1682 *
1683 * @param pDevIns The IOMMU device instance.
1684 * @param enmIqei The IQE information.
1685 * @param enmDiag The diagnostic reason.
1686 */
1687static void dmarIqeFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDIQEI enmIqei)
1688{
1689 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1690 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1691
1692 DMAR_LOCK(pDevIns, pThisCC);
1693
1694 /* Update the diagnostic reason. */
1695 pThis->enmDiag = enmDiag;
1696
1697 /* Set the error bit. */
1698 uint32_t const fIqe = RT_BF_MAKE(VTD_BF_FSTS_REG_IQE, 1);
1699 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, fIqe);
1700
1701 /* Set the error information. */
1702 uint64_t const fIqei = RT_BF_MAKE(VTD_BF_IQERCD_REG_IQEI, enmIqei);
1703 dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG, UINT64_MAX, fIqei);
1704
1705 dmarFaultEventRaiseInterrupt(pDevIns);
1706
1707 DMAR_UNLOCK(pDevIns, pThisCC);
1708}
1709
1710
1711/**
1712 * Handles writes to GCMD_REG.
1713 *
1714 * @returns Strict VBox status code.
1715 * @param pDevIns The IOMMU device instance.
1716 * @param uGcmdReg The value written to GCMD_REG.
1717 */
1718static VBOXSTRICTRC dmarGcmdRegWrite(PPDMDEVINS pDevIns, uint32_t uGcmdReg)
1719{
1720 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1721 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1722 uint32_t const fChanged = uGstsReg ^ uGcmdReg;
1723 uint64_t const fExtCapReg = pThis->fExtCapReg;
1724
1725 /* Queued-invalidation. */
1726 if ( (fExtCapReg & VTD_BF_ECAP_REG_QI_MASK)
1727 && (fChanged & VTD_BF_GCMD_REG_QIE_MASK))
1728 {
1729 if (uGcmdReg & VTD_BF_GCMD_REG_QIE_MASK)
1730 {
1731 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_QIES_MASK);
1732 dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
1733 }
1734 else
1735 {
1736 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_QIES_MASK, 0 /* fOrMask */);
1737 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IQH_REG, 0);
1738 }
1739 }
1740
1741 if (fExtCapReg & VTD_BF_ECAP_REG_IR_MASK)
1742 {
1743 /* Set Interrupt Remapping Table Pointer (SIRTP). */
1744 if (uGcmdReg & VTD_BF_GCMD_REG_SIRTP_MASK)
1745 {
1746 /** @todo Perform global invalidation of all interrupt-entry cache when ESIRTPS is
1747 * supported. */
1748 pThis->uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
1749 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRTPS_MASK);
1750 }
1751
1752 /* Interrupt remapping. */
1753 if (fChanged & VTD_BF_GCMD_REG_IRE_MASK)
1754 {
1755 if (uGcmdReg & VTD_BF_GCMD_REG_IRE_MASK)
1756 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRES_MASK);
1757 else
1758 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_IRES_MASK, 0 /* fOrMask */);
1759 }
1760
1761 /* Compatibility format interrupts. */
1762 if (fChanged & VTD_BF_GCMD_REG_CFI_MASK)
1763 {
1764 if (uGcmdReg & VTD_BF_GCMD_REG_CFI_MASK)
1765 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_CFIS_MASK);
1766 else
1767 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_CFIS_MASK, 0 /* fOrMask */);
1768 }
1769 }
1770
1771 /* Set Root Table Pointer (SRTP). */
1772 if (uGcmdReg & VTD_BF_GCMD_REG_SRTP_MASK)
1773 {
1774 /** @todo Perform global invalidation of all remapping translation caches when
1775 * ESRTPS is supported. */
1776 pThis->uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
1777 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_RTPS_MASK);
1778 }
1779
1780 /* Translation (DMA remapping). */
1781 if (fChanged & VTD_BF_GCMD_REG_TE_MASK)
1782 {
1783 if (uGcmdReg & VTD_BF_GCMD_REG_TE_MASK)
1784 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_TES_MASK);
1785 else
1786 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_TES_MASK, 0 /* fOrMask */);
1787 }
1788
1789 return VINF_SUCCESS;
1790}
1791
1792
1793/**
1794 * Handles writes to CCMD_REG.
1795 *
1796 * @returns Strict VBox status code.
1797 * @param pDevIns The IOMMU device instance.
1798 * @param offReg The MMIO register offset.
1799 * @param cbReg The size of the MMIO access (in bytes).
1800 * @param uCcmdReg The value written to CCMD_REG.
1801 */
1802static VBOXSTRICTRC dmarCcmdRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uCcmdReg)
1803{
1804 /* At present, we only care about responding to high 32-bits writes, low 32-bits are data. */
1805 if (offReg + cbReg > VTD_MMIO_OFF_CCMD_REG + 4)
1806 {
1807 /* Check if we need to invalidate the context-context. */
1808 bool const fIcc = RT_BF_GET(uCcmdReg, VTD_BF_CCMD_REG_ICC);
1809 if (fIcc)
1810 {
1811 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1812 uint8_t const uMajorVersion = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX);
1813 if (uMajorVersion < 6)
1814 {
1815 /* Register-based invalidation can only be used when queued-invalidations are not enabled. */
1816 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1817 if (!(uGstsReg & VTD_BF_GSTS_REG_QIES_MASK))
1818 {
1819 /* Verify table translation mode is legacy. */
1820 uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
1821 if (fTtm == VTD_TTM_LEGACY_MODE)
1822 {
1823 /** @todo Invalidate. */
1824 return VINF_SUCCESS;
1825 }
1826 pThis->enmDiag = kDmarDiag_CcmdReg_Ttm_Invalid;
1827 }
1828 else
1829 pThis->enmDiag = kDmarDiag_CcmdReg_Qi_Enabled;
1830 }
1831 else
1832 pThis->enmDiag = kDmarDiag_CcmdReg_Not_Supported;
1833 dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_CCMD_REG_CAIG_MASK, 0 /* fOrMask */);
1834 }
1835 }
1836 return VINF_SUCCESS;
1837}
1838
1839
1840/**
1841 * Handles writes to FECTL_REG.
1842 *
1843 * @returns Strict VBox status code.
1844 * @param pDevIns The IOMMU device instance.
1845 * @param uFectlReg The value written to FECTL_REG.
1846 */
1847static VBOXSTRICTRC dmarFectlRegWrite(PPDMDEVINS pDevIns, uint32_t uFectlReg)
1848{
1849 /*
1850 * If software unmasks the interrupt when the interrupt is pending, we must raise
1851 * the interrupt now (which will consequently clear the interrupt pending (IP) bit).
1852 */
1853 if ( (uFectlReg & VTD_BF_FECTL_REG_IP_MASK)
1854 && ~(uFectlReg & VTD_BF_FECTL_REG_IM_MASK))
1855 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT);
1856 return VINF_SUCCESS;
1857}
1858
1859
1860/**
1861 * Handles writes to FSTS_REG.
1862 *
1863 * @returns Strict VBox status code.
1864 * @param pDevIns The IOMMU device instance.
1865 * @param uFstsReg The value written to FSTS_REG.
1866 * @param uPrev The value in FSTS_REG prior to writing it.
1867 */
1868static VBOXSTRICTRC dmarFstsRegWrite(PPDMDEVINS pDevIns, uint32_t uFstsReg, uint32_t uPrev)
1869{
1870 /*
1871 * If software clears other status bits in FSTS_REG (pertaining to primary fault logging),
1872 * the interrupt pending (IP) bit must be cleared.
1873 *
1874 * See Intel VT-d spec. 10.4.10 "Fault Event Control Register".
1875 */
1876 uint32_t const fChanged = uPrev ^ uFstsReg;
1877 if (fChanged & ( VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK
1878 | VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_PFO_MASK))
1879 {
1880 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1881 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */);
1882 }
1883 return VINF_SUCCESS;
1884}
1885
1886
1887/**
1888 * Handles writes to IQT_REG.
1889 *
1890 * @returns Strict VBox status code.
1891 * @param pDevIns The IOMMU device instance.
1892 * @param offReg The MMIO register offset.
1893 * @param uIqtReg The value written to IQT_REG.
1894 */
1895static VBOXSTRICTRC dmarIqtRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqtReg)
1896{
1897 /* We only care about the low 32-bits, high 32-bits are reserved. */
1898 Assert(offReg == VTD_MMIO_OFF_IQT_REG);
1899 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1900
1901 /* Paranoia. */
1902 Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
1903
1904 uint32_t const offQt = uIqtReg;
1905 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
1906 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
1907
1908 /* If the descriptor width is 256-bits, the queue tail offset must be aligned accordingly. */
1909 if ( fDw != VTD_IQA_REG_DW_256_BIT
1910 || !(offQt & RT_BIT(4)))
1911 dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
1912 else
1913 {
1914 /* Hardware treats bit 4 as RsvdZ in this situation, so clear it. */
1915 dmarRegChangeRaw32(pThis, offReg, ~RT_BIT(4), 0 /* fOrMask */);
1916 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Not_Aligned, VTDIQEI_QUEUE_TAIL_MISALIGNED);
1917 }
1918 return VINF_SUCCESS;
1919}
1920
1921
1922/**
1923 * Handles writes to IQA_REG.
1924 *
1925 * @returns Strict VBox status code.
1926 * @param pDevIns The IOMMU device instance.
1927 * @param offReg The MMIO register offset.
1928 * @param uIqaReg The value written to IQA_REG.
1929 */
1930static VBOXSTRICTRC dmarIqaRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqaReg)
1931{
1932 /* At present, we only care about the low 32-bits, high 32-bits are data. */
1933 Assert(offReg == VTD_MMIO_OFF_IQA_REG); NOREF(offReg);
1934
1935 /** @todo What happens if IQA_REG is written when dmarInvQueueCanProcessRequests
1936 * returns true? The Intel VT-d spec. doesn't state anywhere that it
1937 * cannot happen or that it's ignored when it does happen. */
1938
1939 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1940 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
1941 if (fDw == VTD_IQA_REG_DW_256_BIT)
1942 {
1943 bool const fSupports256BitDw = (pThis->fExtCapReg & (VTD_BF_ECAP_REG_SMTS_MASK | VTD_BF_ECAP_REG_ADMS_MASK));
1944 if (fSupports256BitDw)
1945 { /* likely */ }
1946 else
1947 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dw_256_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH);
1948 }
1949 /* else: 128-bit descriptor width is validated lazily, see explanation in dmarR3InvQueueProcessRequests. */
1950
1951 return VINF_SUCCESS;
1952}
1953
1954
1955/**
1956 * Handles writes to ICS_REG.
1957 *
1958 * @returns Strict VBox status code.
1959 * @param pDevIns The IOMMU device instance.
1960 * @param uIcsReg The value written to ICS_REG.
1961 */
1962static VBOXSTRICTRC dmarIcsRegWrite(PPDMDEVINS pDevIns, uint32_t uIcsReg)
1963{
1964 /*
1965 * If the IP field is set when software services the interrupt condition,
1966 * (by clearing the IWC field), the IP field must be cleared.
1967 */
1968 if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK))
1969 {
1970 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1971 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, ~VTD_BF_IECTL_REG_IP_MASK, 0 /* fOrMask */);
1972 }
1973 return VINF_SUCCESS;
1974}
1975
1976
1977/**
1978 * Handles writes to IECTL_REG.
1979 *
1980 * @returns Strict VBox status code.
1981 * @param pDevIns The IOMMU device instance.
1982 * @param uIectlReg The value written to IECTL_REG.
1983 */
1984static VBOXSTRICTRC dmarIectlRegWrite(PPDMDEVINS pDevIns, uint32_t uIectlReg)
1985{
1986 /*
1987 * If software unmasks the interrupt when the interrupt is pending, we must raise
1988 * the interrupt now (which will consequently clear the interrupt pending (IP) bit).
1989 */
1990 if ( (uIectlReg & VTD_BF_IECTL_REG_IP_MASK)
1991 && ~(uIectlReg & VTD_BF_IECTL_REG_IM_MASK))
1992 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE);
1993 return VINF_SUCCESS;
1994}
1995
1996
1997/**
1998 * Handles writes to FRCD_REG (High 64-bits).
1999 *
2000 * @returns Strict VBox status code.
2001 * @param pDevIns The IOMMU device instance.
2002 * @param offReg The MMIO register offset.
2003 * @param cbReg The size of the MMIO access (in bytes).
2004 * @param uFrcdHiReg The value written to FRCD_REG.
2005 * @param uPrev The value in FRCD_REG prior to writing it.
2006 */
2007static VBOXSTRICTRC dmarFrcdHiRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uFrcdHiReg, uint64_t uPrev)
2008{
2009 /* We only care about responding to high 32-bits, low 32-bits are read-only. */
2010 if (offReg + cbReg > DMAR_MMIO_OFF_FRCD_HI_REG + 4)
2011 {
2012 /*
2013 * If software cleared the RW1C F (fault) bit in all FRCD_REGs, hardware clears the
2014 * Primary Pending Fault (PPF) and the interrupt pending (IP) bits. Our implementation
2015 * has only 1 FRCD register.
2016 *
2017 * See Intel VT-d spec. 10.4.10 "Fault Event Control Register".
2018 */
2019 AssertCompile(DMAR_FRCD_REG_COUNT == 1);
2020 uint64_t const fChanged = uPrev ^ uFrcdHiReg;
2021 if (fChanged & VTD_BF_1_FRCD_REG_F_MASK)
2022 {
2023 Assert(!(uFrcdHiReg & VTD_BF_1_FRCD_REG_F_MASK)); /* Software should only ever be able to clear this bit. */
2024 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2025 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, ~VTD_BF_FSTS_REG_PPF_MASK, 0 /* fOrMask */);
2026 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */);
2027 }
2028 }
2029 return VINF_SUCCESS;
2030}
2031
2032
2033/**
2034 * Performs a PCI target abort for a DMA remapping (DR) operation.
2035 *
2036 * @param pDevIns The IOMMU device instance.
2037 */
2038static void dmarDrTargetAbort(PPDMDEVINS pDevIns)
2039{
2040 /** @todo r=ramshankar: I don't know for sure if a PCI target abort is caused or not
2041 * as the Intel VT-d spec. is vague. Wording seems to suggest it does, but
2042 * who knows. */
2043 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
2044 uint16_t const u16Status = PDMPciDevGetStatus(pPciDev) | VBOX_PCI_STATUS_SIG_TARGET_ABORT;
2045 PDMPciDevSetStatus(pPciDev, u16Status);
2046}
2047
2048
2049/**
2050 * Checks whether the address width (AW) is supported by our hardware
2051 * implementation for legacy mode address translation.
2052 *
2053 * @returns @c true if it's supported, @c false otherwise.
2054 * @param pThis The shared DMAR device state.
2055 * @param pCtxEntry The context entry.
2056 * @param pcPagingLevel Where to store the paging level. Optional, can be NULL.
2057 */
2058static bool dmarDrLegacyModeIsAwValid(PCDMAR pThis, PCVTD_CONTEXT_ENTRY_T pCtxEntry, uint8_t *pcPagingLevel)
2059{
2060 uint8_t const fTt = RT_BF_GET(pCtxEntry->au64[0], VTD_BF_0_CONTEXT_ENTRY_TT);
2061 uint8_t const fAw = RT_BF_GET(pCtxEntry->au64[1], VTD_BF_1_CONTEXT_ENTRY_AW);
2062 uint8_t const fAwMask = RT_BIT(fAw);
2063 uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW);
2064 Assert(!(fSagaw & ~(RT_BIT(1) | RT_BIT(2) | RT_BIT(3))));
2065
2066 uint8_t const cPagingLevel = fAw + 2;
2067 if (pcPagingLevel)
2068 *pcPagingLevel = cPagingLevel;
2069
2070 /* With pass-through, the address width must be the largest AGAW supported by hardware. */
2071 if (fTt == VTD_TT_UNTRANSLATED_PT)
2072 {
2073 Assert(pThis->cMaxPagingLevel >= 3 && pThis->cMaxPagingLevel <= 5); /* Paranoia. */
2074 return cPagingLevel == pThis->cMaxPagingLevel;
2075 }
2076
2077 /* The address width must be any of the ones supported by hardware. */
2078 if (fAw < 4)
2079 return (fSagaw & fAwMask) != 0;
2080
2081 return false;
2082}
2083
2084
2085/**
2086 * Reads a root entry from guest memory.
2087 *
2088 * @returns VBox status code.
2089 * @param pDevIns The IOMMU device instance.
2090 * @param uRtaddrReg The current RTADDR_REG value.
2091 * @param idxRootEntry The index of the root entry to read.
2092 * @param pRootEntry Where to store the read root entry.
2093 */
2094static int dmarDrReadRootEntry(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, uint8_t idxRootEntry, PVTD_ROOT_ENTRY_T pRootEntry)
2095{
2096 size_t const cbRootEntry = sizeof(*pRootEntry);
2097 RTGCPHYS const GCPhysRootEntry = (uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK) + (idxRootEntry * cbRootEntry);
2098 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysRootEntry, pRootEntry, cbRootEntry);
2099}
2100
2101
2102/**
2103 * Reads a context entry from guest memory.
2104 *
2105 * @returns VBox status code.
2106 * @param pDevIns The IOMMU device instance.
2107 * @param GCPhysCtxTable The physical address of the context table.
2108 * @param idxCtxEntry The index of the context entry to read.
2109 * @param pCtxEntry Where to store the read context entry.
2110 */
2111static int dmarDrReadCtxEntry(PPDMDEVINS pDevIns, RTGCPHYS GCPhysCtxTable, uint8_t idxCtxEntry, PVTD_CONTEXT_ENTRY_T pCtxEntry)
2112{
2113 /* We don't verify bits 63:HAW of GCPhysCtxTable is 0 since reading from such an address should fail anyway. */
2114 size_t const cbCtxEntry = sizeof(*pCtxEntry);
2115 RTGCPHYS const GCPhysCtxEntry = GCPhysCtxTable + (idxCtxEntry * cbCtxEntry);
2116 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysCtxEntry, pCtxEntry, cbCtxEntry);
2117}
2118
2119
2120/**
2121 * Validates and updates the output I/O page of a translation.
2122 *
2123 * @returns VBox status code.
2124 * @param pDevIns The IOMMU device instance.
2125 * @param GCPhysBase The output address of the translation.
2126 * @param cShift The page shift of the translated address.
2127 * @param fPerm The permissions granted for the translated region.
2128 * @param pMemReqIn The DMA memory request input.
2129 * @param pMemReqAux The DMA memory request auxiliary info.
2130 * @param pIoPageOut Where to store the output of the translation.
2131 */
2132static int dmarDrUpdateIoPageOut(PPDMDEVINS pDevIns, RTGCPHYS GCPhysBase, uint8_t cShift, uint8_t fPerm,
2133 PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux, PDMARIOPAGE pIoPageOut)
2134{
2135 Assert(!(GCPhysBase & X86_PAGE_4K_OFFSET_MASK));
2136
2137 /* Ensure the output address is not in the interrupt address range. */
2138 if (GCPhysBase - VBOX_MSI_ADDR_BASE >= VBOX_MSI_ADDR_SIZE)
2139 {
2140 pIoPageOut->GCPhysBase = GCPhysBase;
2141 pIoPageOut->cShift = cShift;
2142 pIoPageOut->fPerm = fPerm;
2143 return VINF_SUCCESS;
2144 }
2145
2146 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_AddrOut_Invalid, pMemReqIn, pMemReqAux);
2147 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2148}
2149
2150
2151/**
2152 * Performs second level translation by walking the I/O page tables.
2153 *
2154 * This is a DMA address-lookup callback function which performs the translation
2155 * (and access control) as part of the lookup.
2156 *
2157 * @returns VBox status code.
2158 * @param pDevIns The IOMMU device instance.
2159 * @param pMemReqIn The DMA memory request input.
2160 * @param pMemReqAux The DMA memory request auxiliary info.
2161 * @param pIoPageOut Where to store the output of the translation.
2162 */
2163static DECLCALLBACK(int) dmarDrSecondLevelTranslate(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux,
2164 PDMARIOPAGE pIoPageOut)
2165{
2166 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
2167
2168 /* Sanity. */
2169 Assert(pIoPageOut);
2170 Assert(pMemReqIn->AddrRange.fPerm & (DMAR_PERM_READ | DMAR_PERM_WRITE));
2171 Assert( pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE
2172 || pMemReqAux->fTtm == VTD_TTM_SCALABLE_MODE);
2173 Assert(!(pMemReqAux->GCPhysSlPt & X86_PAGE_4K_OFFSET_MASK));
2174
2175 /* Mask of reserved paging entry bits. */
2176 static uint64_t const s_auPtEntityInvMasks[] = { ~VTD_SL_PTE_VALID_MASK,
2177 ~VTD_SL_PDE_VALID_MASK,
2178 ~VTD_SL_PDPE_VALID_MASK,
2179 ~VTD_SL_PML4E_VALID_MASK,
2180 ~VTD_SL_PML5E_VALID_MASK };
2181
2182 /* Paranoia. */
2183 Assert(pMemReqAux->cPagingLevel >= 3 && pMemReqAux->cPagingLevel <= 5);
2184 AssertCompile(RT_ELEMENTS(s_auPtEntityInvMasks) == 5);
2185
2186 /* Second-level translations restricts input address to an implementation-specific MGAW. */
2187 uint64_t const uAddrIn = pMemReqIn->AddrRange.uAddr;
2188 if (!(uAddrIn & pThis->fMgawInvMask))
2189 { /* likely */ }
2190 else
2191 {
2192 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_AddrIn_Invalid, pMemReqIn, pMemReqAux);
2193 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2194 }
2195
2196 /*
2197 * Traverse the I/O page table starting with the SLPTPTR (second-level page table pointer).
2198 * Unlike AMD IOMMU paging, here there is no feature for "skipping" levels.
2199 */
2200 uint64_t uPtEntity = pMemReqAux->GCPhysSlPt;
2201 for (int8_t idxLevel = pMemReqAux->cPagingLevel - 1; idxLevel >= 0; idxLevel--)
2202 {
2203 /*
2204 * Read the paging entry for the current level.
2205 */
2206 uint8_t const cLevelShift = X86_PAGE_4K_SHIFT + (idxLevel * 9);
2207 {
2208 uint16_t const idxPte = (uAddrIn >> cLevelShift) & UINT64_C(0x1ff);
2209 uint16_t const offPte = idxPte << 3;
2210 RTGCPHYS const GCPhysPtEntity = (uPtEntity & X86_PAGE_4K_BASE_MASK) | offPte;
2211 int const rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysPtEntity, &uPtEntity, sizeof(uPtEntity));
2212 if (RT_SUCCESS(rc))
2213 { /* likely */ }
2214 else
2215 {
2216 if ((GCPhysPtEntity & X86_PAGE_BASE_MASK) == pMemReqAux->GCPhysSlPt)
2217 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Slpptr_Read_Failed, pMemReqIn, pMemReqAux);
2218 else
2219 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Read_Pte_Failed, pMemReqIn, pMemReqAux);
2220 break;
2221 }
2222 }
2223
2224 /*
2225 * Check I/O permissions.
2226 * This must be done prior to check reserved bits for properly reporting errors SSL.2 and SSL.3.
2227 * See Intel spec. 7.1.3 "Fault conditions and Remapping hardware behavior for various request".
2228 */
2229 uint8_t const fReqPerm = pMemReqIn->AddrRange.fPerm & pThis->fPermValidMask;
2230 uint8_t const fPtPerm = uPtEntity & pThis->fPermValidMask;
2231 Assert(!(fReqPerm & DMAR_PERM_EXE)); /* No Execute-requests support yet. */
2232 Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_SLADS_MASK)); /* No Second-level access/dirty support. */
2233 if ((fPtPerm & fReqPerm) == fReqPerm)
2234 { /* likely */ }
2235 else
2236 {
2237 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Perm_Denied, pMemReqIn, pMemReqAux);
2238 break;
2239 }
2240
2241 /*
2242 * Validate reserved bits of the current paging entry.
2243 */
2244 if (!(uPtEntity & s_auPtEntityInvMasks[idxLevel]))
2245 { /* likely */ }
2246 else
2247 {
2248 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Pte_Rsvd, pMemReqIn, pMemReqAux);
2249 break;
2250 }
2251
2252 /*
2253 * Check if this is a 1GB page or a 2MB page.
2254 */
2255 AssertCompile(VTD_BF_SL_PDE_PS_MASK == VTD_BF_SL_PDPE_PS_MASK);
2256 uint8_t const fLargePage = RT_BF_GET(uPtEntity, VTD_BF_SL_PDE_PS);
2257 if (fLargePage && idxLevel > 0)
2258 {
2259 Assert(idxLevel == 1 || idxLevel == 2); /* Is guaranteed by the reserved bits check above. */
2260 uint8_t const fSllpsMask = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SLLPS);
2261 if (fSllpsMask & RT_BIT(idxLevel - 1))
2262 {
2263 /*
2264 * We don't support MTS (asserted below), hence IPAT and EMT fields of the paging entity are ignored.
2265 * All other reserved bits are identical to the regular page-size paging entity which we've already
2266 * checked above.
2267 */
2268 Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_MTS_MASK));
2269
2270 RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift);
2271 return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut);
2272 }
2273
2274 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Pte_Sllps_Invalid, pMemReqIn, pMemReqAux);
2275 break;
2276 }
2277
2278 /*
2279 * If this is the final PTE, compute the translation address and we're done.
2280 */
2281 if (idxLevel == 0)
2282 {
2283 RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift);
2284 return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut);
2285 }
2286 }
2287
2288 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2289}
2290
2291
2292/**
2293 * Checks whether two consecutive I/O page results of a DMA memory request
2294 * translates to a physically contiguous region.
2295 *
2296 * @returns @c true if the I/O pages are contiguous, @c false otherwise.
2297 * @param pIoPagePrev The previous I/O page.
2298 * @param pIoPage The current I/O page.
2299 */
2300static bool dmarIsIoPageAccessContig(PCDMARIOPAGE pIoPagePrev, PCDMARIOPAGE pIoPage)
2301{
2302 /* Paranoia: Permissions for pages of a DMA memory request must be identical. */
2303 Assert(pIoPagePrev->fPerm == pIoPage->fPerm);
2304
2305 size_t const cbPrev = RT_BIT_64(pIoPagePrev->cShift);
2306 RTGCPHYS const GCPhysPrev = pIoPagePrev->GCPhysBase;
2307 RTGCPHYS const GCPhys = pIoPage->GCPhysBase;
2308#ifdef RT_STRICT
2309 /* Paranoia: Ensure offset bits are 0. */
2310 {
2311 uint64_t const fOffMaskPrev = X86_GET_PAGE_OFFSET_MASK(pIoPagePrev->cShift);
2312 uint64_t const fOffMask = X86_GET_PAGE_OFFSET_MASK(pIoPage->cShift);
2313 Assert(!(GCPhysPrev & fOffMaskPrev));
2314 Assert(!(GCPhys & fOffMask));
2315 }
2316#endif
2317 return GCPhysPrev + cbPrev == GCPhys;
2318}
2319
2320
2321/**
2322 * Looks up the range of addresses for a DMA memory request remapping.
2323 *
2324 * @returns VBox status code.
2325 * @param pDevIns The IOMMU device instance.
2326 * @param pfnLookup The DMA address lookup function.
2327 * @param pMemReqRemap The DMA memory request remapping info.
2328 */
2329static int dmarDrMemRangeLookup(PPDMDEVINS pDevIns, PFNDMADDRLOOKUP pfnLookup, PDMARMEMREQREMAP pMemReqRemap)
2330{
2331 AssertPtr(pfnLookup);
2332
2333 RTGCPHYS GCPhysAddr = NIL_RTGCPHYS;
2334 DMARMEMREQIN MemReqIn = pMemReqRemap->In;
2335 uint64_t const uAddrIn = MemReqIn.AddrRange.uAddr;
2336 size_t const cbAddrIn = MemReqIn.AddrRange.cb;
2337 uint64_t uAddrInBase = MemReqIn.AddrRange.uAddr & X86_PAGE_4K_BASE_MASK;
2338 uint64_t offAddrIn = MemReqIn.AddrRange.uAddr & X86_PAGE_4K_OFFSET_MASK;
2339 size_t cbRemaining = cbAddrIn;
2340
2341 int rc;
2342 DMARIOPAGE IoPagePrev;
2343 RT_ZERO(IoPagePrev);
2344 for (;;)
2345 {
2346 /* Update the input memory request with the next address in our range that needs translation. */
2347 MemReqIn.AddrRange.uAddr = uAddrInBase;
2348 MemReqIn.AddrRange.cb = cbRemaining; /* Not currently accessed by pfnLookup, but keep things consistent. */
2349
2350 DMARIOPAGE IoPage;
2351 rc = pfnLookup(pDevIns, &MemReqIn, &pMemReqRemap->Aux, &IoPage);
2352 if (RT_SUCCESS(rc))
2353 {
2354 Assert(IoPage.cShift >= X86_PAGE_4K_SHIFT && IoPage.cShift <= X86_PAGE_1G_SHIFT);
2355
2356 /* Store the translated address before continuing to access more pages. */
2357 if (cbRemaining == cbAddrIn)
2358 {
2359 uint64_t const fOffMask = X86_GET_PAGE_OFFSET_MASK(IoPage.cShift);
2360 uint64_t const offAddrOut = uAddrIn & fOffMask;
2361 Assert(!(IoPage.GCPhysBase & fOffMask));
2362 GCPhysAddr = IoPage.GCPhysBase | offAddrOut;
2363 }
2364 /* Check if addresses translated so far result in a physically contiguous region. */
2365 else if (!dmarIsIoPageAccessContig(&IoPagePrev, &IoPage))
2366 {
2367 rc = VERR_OUT_OF_RANGE;
2368 break;
2369 }
2370
2371 /* Store the I/O page lookup from the first/previous access. */
2372 IoPagePrev = IoPage;
2373
2374 /* Check if we need to access more pages. */
2375 size_t const cbPage = RT_BIT_64(IoPage.cShift);
2376 if (cbRemaining > cbPage - offAddrIn)
2377 {
2378 cbRemaining -= (cbPage - offAddrIn); /* Calculate how much more we need to access. */
2379 uAddrInBase += cbPage; /* Update address of the next access. */
2380 offAddrIn = 0; /* After first page, all pages are accessed from offset 0. */
2381 }
2382 else
2383 {
2384 /* Caller (PDM) doesn't expect more data accessed than what was requested. */
2385 cbRemaining = 0;
2386 break;
2387 }
2388 }
2389 else
2390 break;
2391 }
2392
2393 pMemReqRemap->Out.AddrRange.uAddr = GCPhysAddr;
2394 pMemReqRemap->Out.AddrRange.cb = cbAddrIn - cbRemaining;
2395 pMemReqRemap->Out.AddrRange.fPerm = IoPagePrev.fPerm;
2396 return rc;
2397}
2398
2399
2400/**
2401 * Handles legacy mode DMA address remapping.
2402 *
2403 * @returns VBox status code.
2404 * @param pDevIns The IOMMU device instance.
2405 * @param uRtaddrReg The current RTADDR_REG value.
2406 * @param pMemReqRemap The DMA memory request remapping info.
2407 */
2408static int dmarDrLegacyModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
2409{
2410 PCDMARMEMREQIN pMemReqIn = &pMemReqRemap->In;
2411 PDMARMEMREQAUX pMemReqAux = &pMemReqRemap->Aux;
2412 PDMARMEMREQOUT pMemReqOut = &pMemReqRemap->Out;
2413 Assert(pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE); /* Paranoia. */
2414
2415 /* Read the root-entry from guest memory. */
2416 uint8_t const idxRootEntry = RT_HI_U8(pMemReqIn->idDevice);
2417 VTD_ROOT_ENTRY_T RootEntry;
2418 int rc = dmarDrReadRootEntry(pDevIns, uRtaddrReg, idxRootEntry, &RootEntry);
2419 if (RT_SUCCESS(rc))
2420 {
2421 /* Check if the root entry is present (must be done before validating reserved bits). */
2422 uint64_t const uRootEntryQword0 = RootEntry.au64[0];
2423 uint64_t const uRootEntryQword1 = RootEntry.au64[1];
2424 bool const fRootEntryPresent = RT_BF_GET(uRootEntryQword0, VTD_BF_0_ROOT_ENTRY_P);
2425 if (fRootEntryPresent)
2426 {
2427 /* Validate reserved bits in the root entry. */
2428 if ( !(uRootEntryQword0 & ~VTD_ROOT_ENTRY_0_VALID_MASK)
2429 && !(uRootEntryQword1 & ~VTD_ROOT_ENTRY_1_VALID_MASK))
2430 {
2431 /* Read the context-entry from guest memory. */
2432 RTGCPHYS const GCPhysCtxTable = uRootEntryQword0 & VTD_BF_0_ROOT_ENTRY_CTP_MASK;
2433 uint8_t const idxCtxEntry = RT_LO_U8(pMemReqIn->idDevice);
2434 VTD_CONTEXT_ENTRY_T CtxEntry;
2435 rc = dmarDrReadCtxEntry(pDevIns, GCPhysCtxTable, idxCtxEntry, &CtxEntry);
2436 if (RT_SUCCESS(rc))
2437 {
2438 uint64_t const uCtxEntryQword0 = CtxEntry.au64[0];
2439 uint64_t const uCtxEntryQword1 = CtxEntry.au64[1];
2440
2441 /* Note the FPD bit which software can use to supress translation faults from here on in. */
2442 pMemReqAux->fFpd = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_FPD);
2443
2444 /* Check if the context-entry is present (must be done before validating reserved bits). */
2445 bool const fCtxEntryPresent = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_P);
2446 if (fCtxEntryPresent)
2447 {
2448 /* Validate reserved bits in the context-entry. */
2449 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
2450 if ( !(uCtxEntryQword0 & ~VTD_CONTEXT_ENTRY_0_VALID_MASK)
2451 && !(uCtxEntryQword1 & ~pThis->fCtxEntryQw1ValidMask))
2452 {
2453 /* Get the domain ID for this mapping. */
2454 pMemReqOut->idDomain = RT_BF_GET(uCtxEntryQword1, VTD_BF_1_CONTEXT_ENTRY_DID);
2455
2456 /* Validate the translation type (TT). */
2457 uint8_t const fTt = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_TT);
2458 switch (fTt)
2459 {
2460 case VTD_TT_UNTRANSLATED_SLP:
2461 {
2462 /*
2463 * Untranslated requests are translated using second-level paging structures referenced
2464 * through SLPTPTR. Translated requests and Translation Requests are blocked.
2465 */
2466 if (pMemReqIn->enmAddrType == PCIADDRTYPE_UNTRANSLATED)
2467 {
2468 /* Validate the address width and get the paging level. */
2469 uint8_t cPagingLevel;
2470 if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, &cPagingLevel))
2471 {
2472 /*
2473 * The second-level page table is located at the physical address specified
2474 * in the context entry with which we can finally perform second-level translation.
2475 */
2476 pMemReqAux->cPagingLevel = cPagingLevel;
2477 pMemReqAux->GCPhysSlPt = uCtxEntryQword0 & VTD_BF_0_CONTEXT_ENTRY_SLPTPTR_MASK;
2478 return dmarDrMemRangeLookup(pDevIns, dmarDrSecondLevelTranslate, pMemReqRemap);
2479 }
2480 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Ut_Aw_Invalid, pMemReqIn, pMemReqAux);
2481 }
2482 else
2483 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Ut_At_Block, pMemReqIn, pMemReqAux);
2484 break;
2485 }
2486
2487 case VTD_TT_UNTRANSLATED_PT:
2488 {
2489 /*
2490 * Untranslated requests are processed as pass-through (PT) if PT is supported.
2491 * Translated and translation requests are blocked. If PT isn't supported this TT value
2492 * is reserved which I assume raises a fault (hence fallthru below).
2493 */
2494 if (pThis->fExtCapReg & VTD_BF_ECAP_REG_PT_MASK)
2495 {
2496 if (pMemReqRemap->In.enmAddrType == PCIADDRTYPE_UNTRANSLATED)
2497 {
2498 if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, NULL /* pcPagingLevel */))
2499 {
2500 PDMARMEMREQOUT pOut = &pMemReqRemap->Out;
2501 PCDMARMEMREQIN pIn = &pMemReqRemap->In;
2502 pOut->AddrRange.uAddr = pIn->AddrRange.uAddr;
2503 pOut->AddrRange.cb = pIn->AddrRange.cb;
2504 pOut->AddrRange.fPerm = DMAR_PERM_ALL;
2505 return VINF_SUCCESS;
2506 }
2507 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Pt_Aw_Invalid, pMemReqIn, pMemReqAux);
2508 }
2509 else
2510 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Pt_At_Block, pMemReqIn, pMemReqAux);
2511 break;
2512 }
2513 RT_FALL_THRU();
2514 }
2515
2516 case VTD_TT_UNTRANSLATED_DEV_TLB:
2517 {
2518 /*
2519 * Untranslated, translated and translation requests are supported but requires
2520 * device-TLB support. We don't support device-TLBs, so it's treated as reserved.
2521 */
2522 Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_DT_MASK));
2523 RT_FALL_THRU();
2524 }
2525
2526 default:
2527 {
2528 /* Any other TT value is reserved. */
2529 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Tt_Invalid, pMemReqIn, pMemReqAux);
2530 break;
2531 }
2532 }
2533 }
2534 else
2535 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Rsvd, pMemReqIn, pMemReqAux);
2536 }
2537 else
2538 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Not_Present, pMemReqIn, pMemReqAux);
2539 }
2540 else
2541 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Read_Failed, pMemReqIn, pMemReqAux);
2542 }
2543 else
2544 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Rsvd, pMemReqIn, pMemReqAux);
2545 }
2546 else
2547 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Not_Present, pMemReqIn, pMemReqAux);
2548 }
2549 else
2550 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Read_Failed, pMemReqIn, pMemReqAux);
2551 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2552}
2553
2554
2555/**
2556 * Handles remapping of DMA address requests in scalable mode.
2557 *
2558 * @returns VBox status code.
2559 * @param pDevIns The IOMMU device instance.
2560 * @param uRtaddrReg The current RTADDR_REG value.
2561 * @param pMemReqRemap The DMA memory request remapping info.
2562 */
2563static int dmarDrScalableModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
2564{
2565 RT_NOREF3(pDevIns, uRtaddrReg, pMemReqRemap);
2566 return VERR_NOT_IMPLEMENTED;
2567}
2568
2569
2570/**
2571 * Gets the DMA access permissions and the address-translation request
2572 * type given the PDM IOMMU memory access flags.
2573 *
2574 * @param pDevIns The IOMMU device instance.
2575 * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
2576 * @param fBulk Whether this is a bulk memory access (used for
2577 * statistics).
2578 * @param penmReqType Where to store the address-translation request type.
2579 * @param pfReqPerm Where to store the DMA access permissions.
2580 */
2581static void dmarDrGetPermAndReqType(PPDMDEVINS pDevIns, uint32_t fFlags, bool fBulk, PVTDREQTYPE penmReqType, uint8_t *pfReqPerm)
2582{
2583 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2584 if (fFlags & PDMIOMMU_MEM_F_READ)
2585 {
2586 *penmReqType = VTDREQTYPE_READ;
2587 *pfReqPerm = DMAR_PERM_READ;
2588#ifdef VBOX_WITH_STATISTICS
2589 if (!fBulk)
2590 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemRead));
2591 else
2592 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemBulkRead));
2593#else
2594 RT_NOREF2(pThis, fBulk);
2595#endif
2596 }
2597 else
2598 {
2599 *penmReqType = VTDREQTYPE_WRITE;
2600 *pfReqPerm = DMAR_PERM_WRITE;
2601#ifdef VBOX_WITH_STATISTICS
2602 if (!fBulk)
2603 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemWrite));
2604 else
2605 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemBulkWrite));
2606#else
2607 RT_NOREF2(pThis, fBulk);
2608#endif
2609 }
2610}
2611
2612
2613/**
2614 * Handles DMA remapping based on the table translation mode (TTM).
2615 *
2616 * @returns VBox status code.
2617 * @param pDevIns The IOMMU device instance.
2618 * @param uRtaddrReg The current RTADDR_REG value.
2619 * @param pMemReqRemap The DMA memory request remapping info.
2620 */
2621static int dmarDrMemReqRemap(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
2622{
2623 int rc;
2624 switch (pMemReqRemap->Aux.fTtm)
2625 {
2626 case VTD_TTM_LEGACY_MODE:
2627 {
2628 rc = dmarDrLegacyModeRemapAddr(pDevIns, uRtaddrReg, pMemReqRemap);
2629 break;
2630 }
2631
2632 case VTD_TTM_SCALABLE_MODE:
2633 {
2634 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
2635 if (pThis->fExtCapReg & VTD_BF_ECAP_REG_SMTS_MASK)
2636 rc = dmarDrScalableModeRemapAddr(pDevIns, uRtaddrReg, pMemReqRemap);
2637 else
2638 {
2639 rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2640 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Smts_Not_Supported, &pMemReqRemap->In, &pMemReqRemap->Aux);
2641 }
2642 break;
2643 }
2644
2645 case VTD_TTM_ABORT_DMA_MODE:
2646 {
2647 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
2648 if (pThis->fExtCapReg & VTD_BF_ECAP_REG_ADMS_MASK)
2649 dmarDrTargetAbort(pDevIns);
2650 else
2651 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Adms_Not_Supported, &pMemReqRemap->In, &pMemReqRemap->Aux);
2652 rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2653 break;
2654 }
2655
2656 default:
2657 {
2658 rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2659 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Rsvd, &pMemReqRemap->In, &pMemReqRemap->Aux);
2660 break;
2661 }
2662 }
2663 return rc;
2664}
2665
2666
2667/**
2668 * Memory access bulk (one or more 4K pages) request from a device.
2669 *
2670 * @returns VBox status code.
2671 * @param pDevIns The IOMMU device instance.
2672 * @param idDevice The device ID (bus, device, function).
2673 * @param cIovas The number of addresses being accessed.
2674 * @param pauIovas The I/O virtual addresses for each page being accessed.
2675 * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
2676 * @param paGCPhysSpa Where to store the translated physical addresses.
2677 *
2678 * @thread Any.
2679 */
2680static DECLCALLBACK(int) iommuIntelMemBulkAccess(PPDMDEVINS pDevIns, uint16_t idDevice, size_t cIovas, uint64_t const *pauIovas,
2681 uint32_t fFlags, PRTGCPHYS paGCPhysSpa)
2682{
2683 /* Validate. */
2684 AssertPtr(pDevIns);
2685 Assert(cIovas > 0);
2686 AssertPtr(pauIovas);
2687 AssertPtr(paGCPhysSpa);
2688 Assert(!(fFlags & ~PDMIOMMU_MEM_F_VALID_MASK));
2689
2690 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2691 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
2692
2693 DMAR_LOCK(pDevIns, pThisCC);
2694 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
2695 uint64_t const uRtaddrReg = pThis->uRtaddrReg;
2696 DMAR_UNLOCK(pDevIns, pThisCC);
2697
2698 if (uGstsReg & VTD_BF_GSTS_REG_TES_MASK)
2699 {
2700 VTDREQTYPE enmReqType;
2701 uint8_t fReqPerm;
2702 dmarDrGetPermAndReqType(pDevIns, fFlags, true /* fBulk */, &enmReqType, &fReqPerm);
2703
2704 DMARMEMREQREMAP MemReqRemap;
2705 RT_ZERO(MemReqRemap);
2706 MemReqRemap.In.AddrRange.cb = X86_PAGE_SIZE;
2707 MemReqRemap.In.AddrRange.fPerm = fReqPerm;
2708 MemReqRemap.In.idDevice = idDevice;
2709 MemReqRemap.In.Pasid = NIL_PCIPASID;
2710 MemReqRemap.In.enmAddrType = PCIADDRTYPE_UNTRANSLATED;
2711 MemReqRemap.In.enmReqType = enmReqType;
2712 MemReqRemap.Aux.fTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
2713 MemReqRemap.Out.AddrRange.uAddr = NIL_RTGCPHYS;
2714
2715 for (size_t i = 0; i < cIovas; i++)
2716 {
2717 MemReqRemap.In.AddrRange.uAddr = pauIovas[i] & X86_PAGE_BASE_MASK;
2718 int const rc = dmarDrMemReqRemap(pDevIns, uRtaddrReg, &MemReqRemap);
2719 if (RT_SUCCESS(rc))
2720 {
2721 paGCPhysSpa[i] = MemReqRemap.Out.AddrRange.uAddr | (pauIovas[i] & X86_PAGE_OFFSET_MASK);
2722 Assert(MemReqRemap.Out.AddrRange.cb == MemReqRemap.In.AddrRange.cb);
2723 }
2724 else
2725 {
2726 LogFlowFunc(("idDevice=%#x uIova=%#RX64 fPerm=%#x rc=%Rrc\n", idDevice, pauIovas[i], fReqPerm, rc));
2727 return rc;
2728 }
2729 }
2730 }
2731 else
2732 {
2733 /* Addresses are forwarded without translation when the translation is disabled. */
2734 for (size_t i = 0; i < cIovas; i++)
2735 paGCPhysSpa[i] = pauIovas[i];
2736 }
2737
2738 return VINF_SUCCESS;
2739}
2740
2741
2742/**
2743 * Memory access transaction from a device.
2744 *
2745 * @returns VBox status code.
2746 * @param pDevIns The IOMMU device instance.
2747 * @param idDevice The device ID (bus, device, function).
2748 * @param uIova The I/O virtual address being accessed.
2749 * @param cbIova The size of the access.
2750 * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
2751 * @param pGCPhysSpa Where to store the translated system physical address.
2752 * @param pcbContiguous Where to store the number of contiguous bytes translated
2753 * and permission-checked.
2754 *
2755 * @thread Any.
2756 */
2757static DECLCALLBACK(int) iommuIntelMemAccess(PPDMDEVINS pDevIns, uint16_t idDevice, uint64_t uIova, size_t cbIova,
2758 uint32_t fFlags, PRTGCPHYS pGCPhysSpa, size_t *pcbContiguous)
2759{
2760 /* Validate. */
2761 AssertPtr(pDevIns);
2762 AssertPtr(pGCPhysSpa);
2763 AssertPtr(pcbContiguous);
2764 Assert(cbIova > 0); /** @todo Are we going to support ZLR (zero-length reads to write-only pages)? */
2765 Assert(!(fFlags & ~PDMIOMMU_MEM_F_VALID_MASK));
2766
2767 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2768 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
2769
2770 DMAR_LOCK(pDevIns, pThisCC);
2771 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
2772 uint64_t const uRtaddrReg = pThis->uRtaddrReg;
2773 DMAR_UNLOCK(pDevIns, pThisCC);
2774
2775 if (uGstsReg & VTD_BF_GSTS_REG_TES_MASK)
2776 {
2777 VTDREQTYPE enmReqType;
2778 uint8_t fReqPerm;
2779 dmarDrGetPermAndReqType(pDevIns, fFlags, false /* fBulk */, &enmReqType, &fReqPerm);
2780
2781 DMARMEMREQREMAP MemReqRemap;
2782 RT_ZERO(MemReqRemap);
2783 MemReqRemap.In.AddrRange.uAddr = uIova;
2784 MemReqRemap.In.AddrRange.cb = cbIova;
2785 MemReqRemap.In.AddrRange.fPerm = fReqPerm;
2786 MemReqRemap.In.idDevice = idDevice;
2787 MemReqRemap.In.Pasid = NIL_PCIPASID;
2788 MemReqRemap.In.enmAddrType = PCIADDRTYPE_UNTRANSLATED;
2789 MemReqRemap.In.enmReqType = enmReqType;
2790 MemReqRemap.Aux.fTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
2791 MemReqRemap.Out.AddrRange.uAddr = NIL_RTGCPHYS;
2792
2793 int const rc = dmarDrMemReqRemap(pDevIns, uRtaddrReg, &MemReqRemap);
2794 *pGCPhysSpa = MemReqRemap.Out.AddrRange.uAddr;
2795 *pcbContiguous = MemReqRemap.Out.AddrRange.cb;
2796 return rc;
2797 }
2798
2799 *pGCPhysSpa = uIova;
2800 *pcbContiguous = cbIova;
2801 return VINF_SUCCESS;
2802}
2803
2804
2805/**
2806 * Reads an IRTE from guest memory.
2807 *
2808 * @returns VBox status code.
2809 * @param pDevIns The IOMMU device instance.
2810 * @param uIrtaReg The IRTA_REG.
2811 * @param idxIntr The interrupt index.
2812 * @param pIrte Where to store the read IRTE.
2813 */
2814static int dmarIrReadIrte(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idxIntr, PVTD_IRTE_T pIrte)
2815{
2816 Assert(idxIntr < VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg));
2817
2818 size_t const cbIrte = sizeof(*pIrte);
2819 RTGCPHYS const GCPhysIrte = (uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK) + (idxIntr * cbIrte);
2820 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysIrte, pIrte, cbIrte);
2821}
2822
2823
2824/**
2825 * Remaps the source MSI to the destination MSI given the IRTE.
2826 *
2827 * @param fExtIntrMode Whether extended interrupt mode is enabled (i.e
2828 * IRTA_REG.EIME).
2829 * @param pIrte The IRTE used for the remapping.
2830 * @param pMsiIn The source MSI (currently unused).
2831 * @param pMsiOut Where to store the remapped MSI.
2832 */
2833static void dmarIrRemapFromIrte(bool fExtIntrMode, PCVTD_IRTE_T pIrte, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
2834{
2835 NOREF(pMsiIn);
2836 uint64_t const uIrteQword0 = pIrte->au64[0];
2837
2838 /*
2839 * Let's start with a clean slate and preserve unspecified bits if the need arises.
2840 * For instance, address bits 1:0 is supposed to be "ignored" by remapping hardware,
2841 * but it's not clear if hardware zeroes out these bits in the remapped MSI or if
2842 * it copies it from the source MSI.
2843 */
2844 RT_ZERO(*pMsiOut);
2845 pMsiOut->Addr.n.u1DestMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DM);
2846 pMsiOut->Addr.n.u1RedirHint = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_RH);
2847 pMsiOut->Addr.n.u12Addr = VBOX_MSI_ADDR_BASE >> VBOX_MSI_ADDR_SHIFT;
2848 if (fExtIntrMode)
2849 {
2850 /*
2851 * Apparently the DMAR stuffs the high 24-bits of the destination ID into the
2852 * high 24-bits of the upper 32-bits of the message address, see @bugref{9967#c22}.
2853 */
2854 uint32_t const idDest = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST);
2855 pMsiOut->Addr.n.u8DestId = idDest;
2856 pMsiOut->Addr.n.u32Rsvd0 = idDest & UINT32_C(0xffffff00);
2857 }
2858 else
2859 pMsiOut->Addr.n.u8DestId = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST_XAPIC);
2860
2861 pMsiOut->Data.n.u8Vector = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_V);
2862 pMsiOut->Data.n.u3DeliveryMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DLM);
2863 pMsiOut->Data.n.u1Level = 1;
2864 pMsiOut->Data.n.u1TriggerMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_TM);
2865}
2866
2867
2868/**
2869 * Handles remapping of interrupts in remappable interrupt format.
2870 *
2871 * @returns VBox status code.
2872 * @param pDevIns The IOMMU device instance.
2873 * @param uIrtaReg The IRTA_REG.
2874 * @param idDevice The device ID (bus, device, function).
2875 * @param pMsiIn The source MSI.
2876 * @param pMsiOut Where to store the remapped MSI.
2877 */
2878static int dmarIrRemapIntr(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
2879{
2880 Assert(pMsiIn->Addr.dmar_remap.fIntrFormat == VTD_INTR_FORMAT_REMAPPABLE);
2881
2882 /* Validate reserved bits in the interrupt request. */
2883 AssertCompile(VTD_REMAPPABLE_MSI_ADDR_VALID_MASK == UINT32_MAX);
2884 if (!(pMsiIn->Data.u32 & ~VTD_REMAPPABLE_MSI_DATA_VALID_MASK))
2885 {
2886 /* Compute the index into the interrupt remap table. */
2887 uint16_t const uHandleHi = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_HI);
2888 uint16_t const uHandleLo = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_LO);
2889 uint16_t const uHandle = uHandleLo | (uHandleHi << 15);
2890 bool const fSubHandleValid = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_SHV);
2891 uint16_t const idxIntr = fSubHandleValid
2892 ? uHandle + RT_BF_GET(pMsiIn->Data.u32, VTD_BF_REMAPPABLE_MSI_DATA_SUBHANDLE)
2893 : uHandle;
2894
2895 /* Validate the index. */
2896 uint32_t const cEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg);
2897 if (idxIntr < cEntries)
2898 {
2899 /** @todo Implement and read IRTE from interrupt-entry cache here. */
2900
2901 /* Read the interrupt remap table entry (IRTE) at the index. */
2902 VTD_IRTE_T Irte;
2903 int rc = dmarIrReadIrte(pDevIns, uIrtaReg, idxIntr, &Irte);
2904 if (RT_SUCCESS(rc))
2905 {
2906 /* Check if the IRTE is present (this must be done -before- checking reserved bits). */
2907 uint64_t const uIrteQword0 = Irte.au64[0];
2908 uint64_t const uIrteQword1 = Irte.au64[1];
2909 bool const fPresent = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_P);
2910 if (fPresent)
2911 {
2912 /* Validate reserved bits in the IRTE. */
2913 bool const fExtIntrMode = RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME);
2914 uint64_t const fQw0ValidMask = fExtIntrMode ? VTD_IRTE_0_X2APIC_VALID_MASK : VTD_IRTE_0_XAPIC_VALID_MASK;
2915 if ( !(uIrteQword0 & ~fQw0ValidMask)
2916 && !(uIrteQword1 & ~VTD_IRTE_1_VALID_MASK))
2917 {
2918 /* Validate requester id (the device ID) as configured in the IRTE. */
2919 bool fSrcValid;
2920 DMARDIAG enmIrDiag;
2921 uint8_t const fSvt = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SVT);
2922 switch (fSvt)
2923 {
2924 case VTD_IRTE_SVT_NONE:
2925 {
2926 fSrcValid = true;
2927 enmIrDiag = kDmarDiag_None;
2928 break;
2929 }
2930
2931 case VTD_IRTE_SVT_VALIDATE_MASK:
2932 {
2933 static uint16_t const s_afValidMasks[] = { 0xffff, 0xfffb, 0xfff9, 0xfff8 };
2934 uint8_t const idxMask = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SQ) & 3;
2935 uint16_t const fValidMask = s_afValidMasks[idxMask];
2936 uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID);
2937 fSrcValid = (idDevice & fValidMask) == (idSource & fValidMask);
2938 enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Masked;
2939 break;
2940 }
2941
2942 case VTD_IRTE_SVT_VALIDATE_BUS_RANGE:
2943 {
2944 uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID);
2945 uint8_t const uBusFirst = RT_HI_U8(idSource);
2946 uint8_t const uBusLast = RT_LO_U8(idSource);
2947 uint8_t const idDeviceBus = idDevice >> VBOX_PCI_BUS_SHIFT;
2948 fSrcValid = (idDeviceBus >= uBusFirst && idDeviceBus <= uBusLast);
2949 enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Bus;
2950 break;
2951 }
2952
2953 default:
2954 {
2955 fSrcValid = false;
2956 enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd;
2957 break;
2958 }
2959 }
2960
2961 if (fSrcValid)
2962 {
2963 uint8_t const fPostedMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_IM);
2964 if (!fPostedMode)
2965 {
2966 dmarIrRemapFromIrte(fExtIntrMode, &Irte, pMsiIn, pMsiOut);
2967 return VINF_SUCCESS;
2968 }
2969 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Mode_Invalid, idDevice, idxIntr, &Irte);
2970 }
2971 else
2972 dmarIrFaultRecord(pDevIns, enmIrDiag, idDevice, idxIntr, &Irte);
2973 }
2974 else
2975 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Rsvd, idDevice, idxIntr, &Irte);
2976 }
2977 else
2978 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Not_Present, idDevice, idxIntr, &Irte);
2979 }
2980 else
2981 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Read_Failed, idDevice, idxIntr, NULL /* pIrte */);
2982 }
2983 else
2984 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Intr_Index_Invalid, idDevice, idxIntr, NULL /* pIrte */);
2985 }
2986 else
2987 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Rsvd, idDevice, 0 /* idxIntr */, NULL /* pIrte */);
2988 return VERR_IOMMU_INTR_REMAP_DENIED;
2989}
2990
2991
2992/**
2993 * Interrupt remap request from a device.
2994 *
2995 * @returns VBox status code.
2996 * @param pDevIns The IOMMU device instance.
2997 * @param idDevice The device ID (bus, device, function).
2998 * @param pMsiIn The source MSI.
2999 * @param pMsiOut Where to store the remapped MSI.
3000 */
3001static DECLCALLBACK(int) iommuIntelMsiRemap(PPDMDEVINS pDevIns, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
3002{
3003 /* Validate. */
3004 Assert(pDevIns);
3005 Assert(pMsiIn);
3006 Assert(pMsiOut);
3007 RT_NOREF1(idDevice);
3008
3009 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3010 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
3011
3012 /* Lock and read all registers required for interrupt remapping up-front. */
3013 DMAR_LOCK(pDevIns, pThisCC);
3014 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
3015 uint64_t const uIrtaReg = pThis->uIrtaReg;
3016 DMAR_UNLOCK(pDevIns, pThisCC);
3017
3018 /* Check if interrupt remapping is enabled. */
3019 if (uGstsReg & VTD_BF_GSTS_REG_IRES_MASK)
3020 {
3021 bool const fIsRemappable = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_INTR_FMT);
3022 if (!fIsRemappable)
3023 {
3024 /* Handle compatibility format interrupts. */
3025 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapCfi));
3026
3027 /* If EIME is enabled or CFIs are disabled, block the interrupt. */
3028 if ( (uIrtaReg & VTD_BF_IRTA_REG_EIME_MASK)
3029 || !(uGstsReg & VTD_BF_GSTS_REG_CFIS_MASK))
3030 {
3031 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Cfi_Blocked, VTDIRFAULT_CFI_BLOCKED, idDevice, 0 /* idxIntr */);
3032 return VERR_IOMMU_INTR_REMAP_DENIED;
3033 }
3034
3035 /* Interrupt isn't subject to remapping, pass-through the interrupt. */
3036 *pMsiOut = *pMsiIn;
3037 return VINF_SUCCESS;
3038 }
3039
3040 /* Handle remappable format interrupts. */
3041 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapRfi));
3042 return dmarIrRemapIntr(pDevIns, uIrtaReg, idDevice, pMsiIn, pMsiOut);
3043 }
3044
3045 /* Interrupt-remapping isn't enabled, all interrupts are pass-through. */
3046 *pMsiOut = *pMsiIn;
3047 return VINF_SUCCESS;
3048}
3049
3050
3051/**
3052 * @callback_method_impl{FNIOMMMIONEWWRITE}
3053 */
3054static DECLCALLBACK(VBOXSTRICTRC) dmarMmioWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb)
3055{
3056 RT_NOREF1(pvUser);
3057 DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
3058
3059 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3060 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioWrite));
3061
3062 uint16_t const offReg = off;
3063 uint16_t const offLast = offReg + cb - 1;
3064 if (DMAR_IS_MMIO_OFF_VALID(offLast))
3065 {
3066 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
3067 DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_WRITE);
3068
3069 uint64_t uPrev = 0;
3070 uint64_t const uRegWritten = cb == 8 ? dmarRegWrite64(pThis, offReg, *(uint64_t *)pv, &uPrev)
3071 : dmarRegWrite32(pThis, offReg, *(uint32_t *)pv, (uint32_t *)&uPrev);
3072 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
3073 switch (off)
3074 {
3075 case VTD_MMIO_OFF_GCMD_REG: /* 32-bit */
3076 {
3077 rcStrict = dmarGcmdRegWrite(pDevIns, uRegWritten);
3078 break;
3079 }
3080
3081 case VTD_MMIO_OFF_CCMD_REG: /* 64-bit */
3082 case VTD_MMIO_OFF_CCMD_REG + 4:
3083 {
3084 rcStrict = dmarCcmdRegWrite(pDevIns, offReg, cb, uRegWritten);
3085 break;
3086 }
3087
3088 case VTD_MMIO_OFF_FSTS_REG: /* 32-bit */
3089 {
3090 rcStrict = dmarFstsRegWrite(pDevIns, uRegWritten, uPrev);
3091 break;
3092 }
3093
3094 case VTD_MMIO_OFF_FECTL_REG: /* 32-bit */
3095 {
3096 rcStrict = dmarFectlRegWrite(pDevIns, uRegWritten);
3097 break;
3098 }
3099
3100 case VTD_MMIO_OFF_IQT_REG: /* 64-bit */
3101 /* VTD_MMIO_OFF_IQT_REG + 4: */ /* High 32-bits reserved. */
3102 {
3103 rcStrict = dmarIqtRegWrite(pDevIns, offReg, uRegWritten);
3104 break;
3105 }
3106
3107 case VTD_MMIO_OFF_IQA_REG: /* 64-bit */
3108 /* VTD_MMIO_OFF_IQA_REG + 4: */ /* High 32-bits data. */
3109 {
3110 rcStrict = dmarIqaRegWrite(pDevIns, offReg, uRegWritten);
3111 break;
3112 }
3113
3114 case VTD_MMIO_OFF_ICS_REG: /* 32-bit */
3115 {
3116 rcStrict = dmarIcsRegWrite(pDevIns, uRegWritten);
3117 break;
3118 }
3119
3120 case VTD_MMIO_OFF_IECTL_REG: /* 32-bit */
3121 {
3122 rcStrict = dmarIectlRegWrite(pDevIns, uRegWritten);
3123 break;
3124 }
3125
3126 case DMAR_MMIO_OFF_FRCD_HI_REG: /* 64-bit */
3127 case DMAR_MMIO_OFF_FRCD_HI_REG + 4:
3128 {
3129 rcStrict = dmarFrcdHiRegWrite(pDevIns, offReg, cb, uRegWritten, uPrev);
3130 break;
3131 }
3132 }
3133
3134 DMAR_UNLOCK(pDevIns, pThisCC);
3135 LogFlowFunc(("offReg=%#x uRegWritten=%#RX64 rc=%Rrc\n", offReg, uRegWritten, VBOXSTRICTRC_VAL(rcStrict)));
3136 return rcStrict;
3137 }
3138
3139 return VINF_IOM_MMIO_UNUSED_FF;
3140}
3141
3142
3143/**
3144 * @callback_method_impl{FNIOMMMIONEWREAD}
3145 */
3146static DECLCALLBACK(VBOXSTRICTRC) dmarMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb)
3147{
3148 RT_NOREF1(pvUser);
3149 DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
3150
3151 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3152 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioRead));
3153
3154 uint16_t const offReg = off;
3155 uint16_t const offLast = offReg + cb - 1;
3156 if (DMAR_IS_MMIO_OFF_VALID(offLast))
3157 {
3158 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
3159 DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_READ);
3160
3161 if (cb == 8)
3162 {
3163 *(uint64_t *)pv = dmarRegRead64(pThis, offReg);
3164 LogFlowFunc(("offReg=%#x pv=%#RX64\n", offReg, *(uint64_t *)pv));
3165 }
3166 else
3167 {
3168 *(uint32_t *)pv = dmarRegRead32(pThis, offReg);
3169 LogFlowFunc(("offReg=%#x pv=%#RX32\n", offReg, *(uint32_t *)pv));
3170 }
3171
3172 DMAR_UNLOCK(pDevIns, pThisCC);
3173 return VINF_SUCCESS;
3174 }
3175
3176 return VINF_IOM_MMIO_UNUSED_FF;
3177}
3178
3179
3180#ifdef IN_RING3
3181/**
3182 * Process requests in the invalidation queue.
3183 *
3184 * @param pDevIns The IOMMU device instance.
3185 * @param pvRequests The requests to process.
3186 * @param cbRequests The size of all requests (in bytes).
3187 * @param fDw The descriptor width (VTD_IQA_REG_DW_128_BIT or
3188 * VTD_IQA_REG_DW_256_BIT).
3189 * @param fTtm The table translation mode. Must not be VTD_TTM_RSVD.
3190 */
3191static void dmarR3InvQueueProcessRequests(PPDMDEVINS pDevIns, void const *pvRequests, uint32_t cbRequests, uint8_t fDw,
3192 uint8_t fTtm)
3193{
3194#define DMAR_IQE_FAULT_RECORD_RET(a_enmDiag, a_enmIqei) \
3195 do \
3196 { \
3197 dmarIqeFaultRecord(pDevIns, (a_enmDiag), (a_enmIqei)); \
3198 return; \
3199 } while (0)
3200
3201 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3202 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3203
3204 DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3);
3205 Assert(fTtm != VTD_TTM_RSVD); /* Should've beeen handled by caller. */
3206
3207 /*
3208 * The below check is redundant since we check both TTM and DW for each
3209 * descriptor type we process. However, the order of errors reported by hardware
3210 * may differ hence this is kept commented out but not removed if we need to
3211 * change this in the future.
3212 *
3213 * In our implementation, we would report the descriptor type as invalid,
3214 * while on real hardware it may report descriptor width as invalid.
3215 * The Intel VT-d spec. is not clear which error takes preceedence.
3216 */
3217#if 0
3218 /*
3219 * Verify that 128-bit descriptors are not used when operating in scalable mode.
3220 * We don't check this while software writes IQA_REG but defer it until now because
3221 * RTADDR_REG can be updated lazily (via GCMD_REG.SRTP). The 256-bit descriptor check
3222 * -IS- performed when software writes IQA_REG since it only requires checking against
3223 * immutable hardware features.
3224 */
3225 if ( fTtm != VTD_TTM_SCALABLE_MODE
3226 || fDw != VTD_IQA_REG_DW_128_BIT)
3227 { /* likely */ }
3228 else
3229 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_IqaReg_Dw_128_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH);
3230#endif
3231
3232 /*
3233 * Process requests in FIFO order.
3234 */
3235 uint8_t const cbDsc = fDw == VTD_IQA_REG_DW_256_BIT ? 32 : 16;
3236 for (uint32_t offDsc = 0; offDsc < cbRequests; offDsc += cbDsc)
3237 {
3238 uint64_t const *puDscQwords = (uint64_t const *)((uintptr_t)pvRequests + offDsc);
3239 uint64_t const uQword0 = puDscQwords[0];
3240 uint64_t const uQword1 = puDscQwords[1];
3241 uint8_t const fDscType = VTD_GENERIC_INV_DSC_GET_TYPE(uQword0);
3242 switch (fDscType)
3243 {
3244 case VTD_INV_WAIT_DSC_TYPE:
3245 {
3246 /* Validate descriptor type. */
3247 if ( fTtm == VTD_TTM_LEGACY_MODE
3248 || fDw == VTD_IQA_REG_DW_256_BIT)
3249 { /* likely */ }
3250 else
3251 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE);
3252
3253 /* Validate reserved bits. */
3254 uint64_t const fValidMask0 = !(pThis->fExtCapReg & VTD_BF_ECAP_REG_PDS_MASK)
3255 ? VTD_INV_WAIT_DSC_0_VALID_MASK & ~VTD_BF_0_INV_WAIT_DSC_PD_MASK
3256 : VTD_INV_WAIT_DSC_0_VALID_MASK;
3257 if ( !(uQword0 & ~fValidMask0)
3258 && !(uQword1 & ~VTD_INV_WAIT_DSC_1_VALID_MASK))
3259 { /* likely */ }
3260 else
3261 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION);
3262
3263 if (fDw == VTD_IQA_REG_DW_256_BIT)
3264 {
3265 if ( !puDscQwords[2]
3266 && !puDscQwords[3])
3267 { /* likely */ }
3268 else
3269 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION);
3270 }
3271
3272 /* Perform status write (this must be done prior to generating the completion interrupt). */
3273 bool const fSw = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_SW);
3274 if (fSw)
3275 {
3276 uint32_t const uStatus = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_STDATA);
3277 RTGCPHYS const GCPhysStatus = uQword1 & VTD_BF_1_INV_WAIT_DSC_STADDR_MASK;
3278 int const rc = PDMDevHlpPhysWrite(pDevIns, GCPhysStatus, (void const*)&uStatus, sizeof(uStatus));
3279 AssertRC(rc);
3280 }
3281
3282 /* Generate invalidation event interrupt. */
3283 bool const fIf = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_IF);
3284 if (fIf)
3285 {
3286 DMAR_LOCK(pDevIns, pThisR3);
3287 dmarR3InvEventRaiseInterrupt(pDevIns);
3288 DMAR_UNLOCK(pDevIns, pThisR3);
3289 }
3290
3291 STAM_COUNTER_INC(&pThis->StatInvWaitDsc);
3292 break;
3293 }
3294
3295 case VTD_CC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatCcInvDsc); break;
3296 case VTD_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIotlbInvDsc); break;
3297 case VTD_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatDevtlbInvDsc); break;
3298 case VTD_IEC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIecInvDsc); break;
3299 case VTD_P_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidIotlbInvDsc); break;
3300 case VTD_PC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidCacheInvDsc); break;
3301 case VTD_P_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidDevtlbInvDsc); break;
3302 default:
3303 {
3304 /* Stop processing further requests. */
3305 LogFunc(("Invalid descriptor type: %#x\n", fDscType));
3306 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Dsc_Type_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE);
3307 }
3308 }
3309 }
3310#undef DMAR_IQE_FAULT_RECORD_RET
3311}
3312
3313
3314/**
3315 * The invalidation-queue thread.
3316 *
3317 * @returns VBox status code.
3318 * @param pDevIns The IOMMU device instance.
3319 * @param pThread The command thread.
3320 */
3321static DECLCALLBACK(int) dmarR3InvQueueThread(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
3322{
3323 NOREF(pThread);
3324 LogFlowFunc(("\n"));
3325
3326 if (pThread->enmState == PDMTHREADSTATE_INITIALIZING)
3327 return VINF_SUCCESS;
3328
3329 /*
3330 * Pre-allocate the maximum size of the invalidation queue allowed by the spec.
3331 * This prevents trashing the heap as well as deal with out-of-memory situations
3332 * up-front while starting the VM. It also simplifies the code from having to
3333 * dynamically grow/shrink the allocation based on how software sizes the queue.
3334 * Guests normally don't alter the queue size all the time, but that's not an
3335 * assumption we can make.
3336 */
3337 uint8_t const cMaxPages = 1 << VTD_BF_IQA_REG_QS_MASK;
3338 size_t const cbMaxQs = cMaxPages << X86_PAGE_SHIFT;
3339 void *pvRequests = RTMemAllocZ(cbMaxQs);
3340 AssertPtrReturn(pvRequests, VERR_NO_MEMORY);
3341
3342 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3343 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3344
3345 while (pThread->enmState == PDMTHREADSTATE_RUNNING)
3346 {
3347 /*
3348 * Sleep until we are woken up.
3349 */
3350 {
3351 int const rc = PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEvtInvQueue, RT_INDEFINITE_WAIT);
3352 AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), rc);
3353 if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING))
3354 break;
3355 }
3356
3357 DMAR_LOCK(pDevIns, pThisR3);
3358 if (dmarInvQueueCanProcessRequests(pThis))
3359 {
3360 uint32_t offQueueHead;
3361 uint32_t offQueueTail;
3362 bool const fIsEmpty = dmarInvQueueIsEmptyEx(pThis, &offQueueHead, &offQueueTail);
3363 if (!fIsEmpty)
3364 {
3365 /*
3366 * Get the current queue size, descriptor width, queue base address and the
3367 * table translation mode while the lock is still held.
3368 */
3369 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
3370 uint8_t const cQueuePages = 1 << (uIqaReg & VTD_BF_IQA_REG_QS_MASK);
3371 uint32_t const cbQueue = cQueuePages << X86_PAGE_SHIFT;
3372 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
3373 uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
3374 RTGCPHYS const GCPhysRequests = (uIqaReg & VTD_BF_IQA_REG_IQA_MASK) + offQueueHead;
3375
3376 /* Paranoia. */
3377 Assert(cbQueue <= cbMaxQs);
3378 Assert(!(offQueueTail & ~VTD_BF_IQT_REG_QT_MASK));
3379 Assert(!(offQueueHead & ~VTD_BF_IQH_REG_QH_MASK));
3380 Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueTail & RT_BIT(4)));
3381 Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueHead & RT_BIT(4)));
3382 Assert(offQueueHead < cbQueue);
3383
3384 /*
3385 * A table translation mode of "reserved" isn't valid for any descriptor type.
3386 * However, RTADDR_REG can be modified in parallel to invalidation-queue processing,
3387 * but if ESRTPS is support, we will perform a global invalidation when software
3388 * changes RTADDR_REG, or it's the responsibility of software to do it explicitly.
3389 * So caching TTM while reading all descriptors should not be a problem.
3390 *
3391 * Also, validate the queue tail offset as it's mutable by software.
3392 */
3393 if ( fTtm != VTD_TTM_RSVD
3394 && offQueueTail < cbQueue)
3395 {
3396 /* Don't hold the lock while reading (a potentially large amount of) requests */
3397 DMAR_UNLOCK(pDevIns, pThisR3);
3398
3399 int rc;
3400 uint32_t cbRequests;
3401 if (offQueueTail > offQueueHead)
3402 {
3403 /* The requests have not wrapped around, read them in one go. */
3404 cbRequests = offQueueTail - offQueueHead;
3405 rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbRequests);
3406 }
3407 else
3408 {
3409 /* The requests have wrapped around, read forward and wrapped-around. */
3410 uint32_t const cbForward = cbQueue - offQueueHead;
3411 rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbForward);
3412
3413 uint32_t const cbWrapped = offQueueTail;
3414 if ( RT_SUCCESS(rc)
3415 && cbWrapped > 0)
3416 {
3417 rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests + cbForward,
3418 (void *)((uintptr_t)pvRequests + cbForward), cbWrapped);
3419 }
3420 cbRequests = cbForward + cbWrapped;
3421 }
3422
3423 /* Re-acquire the lock since we need to update device state. */
3424 DMAR_LOCK(pDevIns, pThisR3);
3425
3426 if (RT_SUCCESS(rc))
3427 {
3428 /* Indicate to software we've fetched all requests. */
3429 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_IQH_REG, offQueueTail);
3430
3431 /* Don't hold the lock while processing requests. */
3432 DMAR_UNLOCK(pDevIns, pThisR3);
3433
3434 /* Process all requests. */
3435 Assert(cbRequests <= cbQueue);
3436 dmarR3InvQueueProcessRequests(pDevIns, pvRequests, cbRequests, fDw, fTtm);
3437
3438 /*
3439 * We've processed all requests and the lock shouldn't be held at this point.
3440 * Using 'continue' here allows us to skip re-acquiring the lock just to release
3441 * it again before going back to the thread loop. It's a bit ugly but it certainly
3442 * helps with performance.
3443 */
3444 DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3);
3445 continue;
3446 }
3447 else
3448 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dsc_Fetch_Error, VTDIQEI_FETCH_DESCRIPTOR_ERR);
3449 }
3450 else
3451 {
3452 if (fTtm == VTD_TTM_RSVD)
3453 dmarIqeFaultRecord(pDevIns, kDmarDiag_Iqei_Ttm_Rsvd, VTDIQEI_INVALID_TTM);
3454 else
3455 {
3456 Assert(offQueueTail >= cbQueue);
3457 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Invalid, VTDIQEI_INVALID_TAIL_PTR);
3458 }
3459 }
3460 }
3461 }
3462 DMAR_UNLOCK(pDevIns, pThisR3);
3463 }
3464
3465 RTMemFree(pvRequests);
3466 pvRequests = NULL;
3467
3468 LogFlowFunc(("Invalidation-queue thread terminating\n"));
3469 return VINF_SUCCESS;
3470}
3471
3472
3473/**
3474 * Wakes up the invalidation-queue thread so it can respond to a state
3475 * change.
3476 *
3477 * @returns VBox status code.
3478 * @param pDevIns The IOMMU device instance.
3479 * @param pThread The invalidation-queue thread.
3480 *
3481 * @thread EMT.
3482 */
3483static DECLCALLBACK(int) dmarR3InvQueueThreadWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
3484{
3485 RT_NOREF(pThread);
3486 LogFlowFunc(("\n"));
3487 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3488 return PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
3489}
3490
3491
3492/**
3493 * @callback_method_impl{FNDBGFHANDLERDEV}
3494 */
3495static DECLCALLBACK(void) dmarR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
3496{
3497 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3498 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3499 bool const fVerbose = RTStrCmp(pszArgs, "verbose") == 0;
3500
3501 /*
3502 * We lock the device to get a consistent register state as it is
3503 * ASSUMED pHlp->pfnPrintf is expensive, so we copy the registers (the
3504 * ones we care about here) into temporaries and release the lock ASAP.
3505 *
3506 * Order of register being read and outputted is in accordance with the
3507 * spec. for no particular reason.
3508 * See Intel VT-d spec. 10.4 "Register Descriptions".
3509 */
3510 DMAR_LOCK(pDevIns, pThisR3);
3511
3512 DMARDIAG const enmDiag = pThis->enmDiag;
3513 uint32_t const uVerReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_VER_REG);
3514 uint64_t const uCapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CAP_REG);
3515 uint64_t const uEcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_ECAP_REG);
3516 uint32_t const uGcmdReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GCMD_REG);
3517 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
3518 uint64_t const uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
3519 uint64_t const uCcmdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CCMD_REG);
3520 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
3521 uint32_t const uFectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FECTL_REG);
3522 uint32_t const uFedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEDATA_REG);
3523 uint32_t const uFeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEADDR_REG);
3524 uint32_t const uFeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEUADDR_REG);
3525 uint64_t const uAflogReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_AFLOG_REG);
3526 uint32_t const uPmenReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PMEN_REG);
3527 uint32_t const uPlmbaseReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMBASE_REG);
3528 uint32_t const uPlmlimitReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMLIMIT_REG);
3529 uint64_t const uPhmbaseReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMBASE_REG);
3530 uint64_t const uPhmlimitReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMLIMIT_REG);
3531 uint64_t const uIqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQH_REG);
3532 uint64_t const uIqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQT_REG);
3533 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
3534 uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
3535 uint32_t const uIectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IECTL_REG);
3536 uint32_t const uIedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEDATA_REG);
3537 uint32_t const uIeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEADDR_REG);
3538 uint32_t const uIeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEUADDR_REG);
3539 uint64_t const uIqercdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG);
3540 uint64_t const uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
3541 uint64_t const uPqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQH_REG);
3542 uint64_t const uPqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQT_REG);
3543 uint64_t const uPqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQA_REG);
3544 uint32_t const uPrsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PRS_REG);
3545 uint32_t const uPectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PECTL_REG);
3546 uint32_t const uPedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEDATA_REG);
3547 uint32_t const uPeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEADDR_REG);
3548 uint32_t const uPeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEUADDR_REG);
3549 uint64_t const uMtrrcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRCAP_REG);
3550 uint64_t const uMtrrdefReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRDEF_REG);
3551
3552 DMAR_UNLOCK(pDevIns, pThisR3);
3553
3554 const char *const pszDiag = enmDiag < RT_ELEMENTS(g_apszDmarDiagDesc) ? g_apszDmarDiagDesc[enmDiag] : "(Unknown)";
3555 pHlp->pfnPrintf(pHlp, "Intel-IOMMU:\n");
3556 pHlp->pfnPrintf(pHlp, " Diag = %s\n", pszDiag);
3557
3558 /*
3559 * Non-verbose output.
3560 */
3561 if (!fVerbose)
3562 {
3563 pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
3564 pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
3565 pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
3566 pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
3567 pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
3568 pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
3569 pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
3570 pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
3571 pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
3572 pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
3573 pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
3574 pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
3575 pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
3576 pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
3577 pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
3578 pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
3579 pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
3580 pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
3581 pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
3582 pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
3583 pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
3584 pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
3585 pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
3586 pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
3587 pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
3588 pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
3589 pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
3590 pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
3591 pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
3592 pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
3593 pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
3594 pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
3595 pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
3596 pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
3597 pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
3598 pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
3599 pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
3600 pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
3601 pHlp->pfnPrintf(pHlp, "\n");
3602 return;
3603 }
3604
3605 /*
3606 * Verbose output.
3607 */
3608 pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
3609 {
3610 pHlp->pfnPrintf(pHlp, " MAJ = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MAX));
3611 pHlp->pfnPrintf(pHlp, " MIN = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MIN));
3612 }
3613 pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
3614 {
3615 uint8_t const uMgaw = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MGAW);
3616 uint8_t const uNfr = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_NFR);
3617 pHlp->pfnPrintf(pHlp, " ND = %u\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ND));
3618 pHlp->pfnPrintf(pHlp, " AFL = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_AFL));
3619 pHlp->pfnPrintf(pHlp, " RWBF = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_RWBF));
3620 pHlp->pfnPrintf(pHlp, " PLMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PLMR));
3621 pHlp->pfnPrintf(pHlp, " PHMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PHMR));
3622 pHlp->pfnPrintf(pHlp, " CM = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_CM));
3623 pHlp->pfnPrintf(pHlp, " SAGAW = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SAGAW));
3624 pHlp->pfnPrintf(pHlp, " MGAW = %#x (%u bits)\n", uMgaw, uMgaw + 1);
3625 pHlp->pfnPrintf(pHlp, " ZLR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ZLR));
3626 pHlp->pfnPrintf(pHlp, " FRO = %#x bytes\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FRO));
3627 pHlp->pfnPrintf(pHlp, " SLLPS = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SLLPS));
3628 pHlp->pfnPrintf(pHlp, " PSI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PSI));
3629 pHlp->pfnPrintf(pHlp, " NFR = %u (%u FRCD register%s)\n", uNfr, uNfr + 1, uNfr > 0 ? "s" : "");
3630 pHlp->pfnPrintf(pHlp, " MAMV = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MAMV));
3631 pHlp->pfnPrintf(pHlp, " DWD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DWD));
3632 pHlp->pfnPrintf(pHlp, " DRD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DRD));
3633 pHlp->pfnPrintf(pHlp, " FL1GP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL1GP));
3634 pHlp->pfnPrintf(pHlp, " PI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PI));
3635 pHlp->pfnPrintf(pHlp, " FL5LP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL5LP));
3636 pHlp->pfnPrintf(pHlp, " ESIRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESIRTPS));
3637 pHlp->pfnPrintf(pHlp, " ESRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESRTPS));
3638 }
3639 pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
3640 {
3641 uint8_t const uPss = RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PSS);
3642 pHlp->pfnPrintf(pHlp, " C = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_C));
3643 pHlp->pfnPrintf(pHlp, " QI = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_QI));
3644 pHlp->pfnPrintf(pHlp, " DT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DT));
3645 pHlp->pfnPrintf(pHlp, " IR = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IR));
3646 pHlp->pfnPrintf(pHlp, " EIM = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EIM));
3647 pHlp->pfnPrintf(pHlp, " PT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PT));
3648 pHlp->pfnPrintf(pHlp, " SC = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SC));
3649 pHlp->pfnPrintf(pHlp, " IRO = %#x bytes\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IRO));
3650 pHlp->pfnPrintf(pHlp, " MHMV = %#x\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MHMV));
3651 pHlp->pfnPrintf(pHlp, " MTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MTS));
3652 pHlp->pfnPrintf(pHlp, " NEST = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NEST));
3653 pHlp->pfnPrintf(pHlp, " PRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PRS));
3654 pHlp->pfnPrintf(pHlp, " ERS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ERS));
3655 pHlp->pfnPrintf(pHlp, " SRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SRS));
3656 pHlp->pfnPrintf(pHlp, " NWFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NWFS));
3657 pHlp->pfnPrintf(pHlp, " EAFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EAFS));
3658 pHlp->pfnPrintf(pHlp, " PSS = %u (%u bits)\n", uPss, uPss > 0 ? uPss + 1 : 0);
3659 pHlp->pfnPrintf(pHlp, " PASID = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PASID));
3660 pHlp->pfnPrintf(pHlp, " DIT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DIT));
3661 pHlp->pfnPrintf(pHlp, " PDS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PDS));
3662 pHlp->pfnPrintf(pHlp, " SMTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMTS));
3663 pHlp->pfnPrintf(pHlp, " VCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_VCS));
3664 pHlp->pfnPrintf(pHlp, " SLADS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLADS));
3665 pHlp->pfnPrintf(pHlp, " SLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLTS));
3666 pHlp->pfnPrintf(pHlp, " FLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_FLTS));
3667 pHlp->pfnPrintf(pHlp, " SMPWCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMPWCS));
3668 pHlp->pfnPrintf(pHlp, " RPS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPS));
3669 pHlp->pfnPrintf(pHlp, " ADMS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ADMS));
3670 pHlp->pfnPrintf(pHlp, " RPRIVS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPRIVS));
3671 }
3672 pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
3673 {
3674 uint8_t const fCfi = RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_CFI);
3675 pHlp->pfnPrintf(pHlp, " CFI = %u (%s)\n", fCfi, fCfi ? "Passthrough" : "Blocked");
3676 pHlp->pfnPrintf(pHlp, " SIRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SIRTP));
3677 pHlp->pfnPrintf(pHlp, " IRE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_IRE));
3678 pHlp->pfnPrintf(pHlp, " QIE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_QIE));
3679 pHlp->pfnPrintf(pHlp, " WBF = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_WBF));
3680 pHlp->pfnPrintf(pHlp, " EAFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
3681 pHlp->pfnPrintf(pHlp, " SFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
3682 pHlp->pfnPrintf(pHlp, " SRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SRTP));
3683 pHlp->pfnPrintf(pHlp, " TE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_TE));
3684 }
3685 pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
3686 {
3687 uint8_t const fCfis = RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_CFIS);
3688 pHlp->pfnPrintf(pHlp, " CFIS = %u (%s)\n", fCfis, fCfis ? "Passthrough" : "Blocked");
3689 pHlp->pfnPrintf(pHlp, " IRTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRTPS));
3690 pHlp->pfnPrintf(pHlp, " IRES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRES));
3691 pHlp->pfnPrintf(pHlp, " QIES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_QIES));
3692 pHlp->pfnPrintf(pHlp, " WBFS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_WBFS));
3693 pHlp->pfnPrintf(pHlp, " AFLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_AFLS));
3694 pHlp->pfnPrintf(pHlp, " FLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_FLS));
3695 pHlp->pfnPrintf(pHlp, " RTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_RTPS));
3696 pHlp->pfnPrintf(pHlp, " TES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_TES));
3697 }
3698 pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
3699 {
3700 uint8_t const uTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
3701 pHlp->pfnPrintf(pHlp, " RTA = %#RX64\n", uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK);
3702 pHlp->pfnPrintf(pHlp, " TTM = %u (%s)\n", uTtm, vtdRtaddrRegGetTtmDesc(uTtm));
3703 }
3704 pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
3705 pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
3706 {
3707 pHlp->pfnPrintf(pHlp, " PFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PFO));
3708 pHlp->pfnPrintf(pHlp, " PPF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PPF));
3709 pHlp->pfnPrintf(pHlp, " AFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_AFO));
3710 pHlp->pfnPrintf(pHlp, " APF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_APF));
3711 pHlp->pfnPrintf(pHlp, " IQE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_IQE));
3712 pHlp->pfnPrintf(pHlp, " ICS = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ICE));
3713 pHlp->pfnPrintf(pHlp, " ITE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ITE));
3714 pHlp->pfnPrintf(pHlp, " FRI = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_FRI));
3715 }
3716 pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
3717 {
3718 pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IM));
3719 pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IP));
3720 }
3721 pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
3722 pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
3723 pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
3724 pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
3725 pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
3726 pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
3727 pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
3728 pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
3729 pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
3730 pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
3731 pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
3732 pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
3733 {
3734 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
3735 uint8_t const fQs = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_QS);
3736 uint8_t const cQueuePages = 1 << fQs;
3737 pHlp->pfnPrintf(pHlp, " DW = %u (%s)\n", fDw, fDw == VTD_IQA_REG_DW_128_BIT ? "128-bit" : "256-bit");
3738 pHlp->pfnPrintf(pHlp, " QS = %u (%u page%s)\n", fQs, cQueuePages, cQueuePages > 1 ? "s" : "");
3739 }
3740 pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
3741 {
3742 pHlp->pfnPrintf(pHlp, " IWC = %u\n", RT_BF_GET(uIcsReg, VTD_BF_ICS_REG_IWC));
3743 }
3744 pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
3745 {
3746 pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IM));
3747 pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IP));
3748 }
3749 pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
3750 pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
3751 pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
3752 pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
3753 {
3754 pHlp->pfnPrintf(pHlp, " ICESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ICESID));
3755 pHlp->pfnPrintf(pHlp, " ITESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ITESID));
3756 pHlp->pfnPrintf(pHlp, " IQEI = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_IQEI));
3757 }
3758 pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
3759 {
3760 uint32_t const cIrtEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg);
3761 uint32_t const cbIrt = sizeof(VTD_IRTE_T) * cIrtEntries;
3762 pHlp->pfnPrintf(pHlp, " IRTA = %#RX64\n", uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK);
3763 pHlp->pfnPrintf(pHlp, " EIME = %RTbool\n", RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME));
3764 pHlp->pfnPrintf(pHlp, " S = %u entries (%u bytes)\n", cIrtEntries, cbIrt);
3765 }
3766 pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
3767 pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
3768 pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
3769 pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
3770 pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
3771 pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
3772 pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
3773 pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
3774 pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
3775 pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
3776 pHlp->pfnPrintf(pHlp, "\n");
3777}
3778
3779
3780/**
3781 * Initializes all registers in the DMAR unit.
3782 *
3783 * @param pDevIns The IOMMU device instance.
3784 */
3785static void dmarR3RegsInit(PPDMDEVINS pDevIns)
3786{
3787 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3788 LogFlowFunc(("\n"));
3789
3790 /*
3791 * Wipe all registers (required on reset).
3792 */
3793 RT_ZERO(pThis->abRegs0);
3794 RT_ZERO(pThis->abRegs1);
3795
3796 /*
3797 * Initialize registers not mutable by software prior to initializing other registers.
3798 */
3799 /* VER_REG */
3800 {
3801 pThis->uVerReg = RT_BF_MAKE(VTD_BF_VER_REG_MIN, DMAR_VER_MINOR)
3802 | RT_BF_MAKE(VTD_BF_VER_REG_MAX, DMAR_VER_MAJOR);
3803 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_VER_REG, pThis->uVerReg);
3804 }
3805
3806 uint8_t const fFlts = 0; /* First-level translation support. */
3807 uint8_t const fSlts = 1; /* Second-level translation support. */
3808 uint8_t const fPt = 1; /* Pass-Through support. */
3809 uint8_t const fSmts = fFlts & fSlts & fPt; /* Scalable mode translation support.*/
3810 uint8_t const fNest = 0; /* Nested translation support. */
3811
3812 /* CAP_REG */
3813 {
3814 uint8_t cGstPhysAddrBits;
3815 uint8_t cGstLinearAddrBits;
3816 PDMDevHlpCpuGetGuestAddrWidths(pDevIns, &cGstPhysAddrBits, &cGstLinearAddrBits);
3817
3818 uint8_t const fFl1gp = 1; /* First-level 1GB pages support. */
3819 uint8_t const fFl5lp = 1; /* First-level 5-level paging support (PML5E). */
3820 uint8_t const fSl2mp = 1; /* Second-level 2MB pages support. */
3821 uint8_t const fSl2gp = fSl2mp & 1; /* Second-level 1GB pages support. */
3822 uint8_t const fSllps = fSl2mp | (fSl2gp << 1); /* Second-level large page support. */
3823 uint8_t const fMamv = (fSl2gp ? X86_PAGE_1G_SHIFT /* Maximum address mask value (for 2nd-level invalidations). */
3824 : X86_PAGE_2M_SHIFT)
3825 - X86_PAGE_4K_SHIFT;
3826 uint8_t const fNd = DMAR_ND; /* Number of domains supported. */
3827 uint8_t const fPsi = 1; /* Page selective invalidation. */
3828 uint8_t const uMgaw = cGstPhysAddrBits - 1; /* Maximum guest address width. */
3829 uint8_t const fSagaw = vtdCapRegGetSagaw(uMgaw); /* Supported adjust guest address width. */
3830 uint16_t const offFro = DMAR_MMIO_OFF_FRCD_LO_REG >> 4; /* MMIO offset of FRCD registers. */
3831 uint8_t const fEsrtps = 1; /* Enhanced SRTPS (auto invalidate cache on SRTP). */
3832 uint8_t const fEsirtps = 1; /* Enhanced SIRTPS (auto invalidate cache on SIRTP). */
3833
3834 pThis->fCapReg = RT_BF_MAKE(VTD_BF_CAP_REG_ND, fNd)
3835 | RT_BF_MAKE(VTD_BF_CAP_REG_AFL, 0) /* Advanced fault logging not supported. */
3836 | RT_BF_MAKE(VTD_BF_CAP_REG_RWBF, 0) /* Software need not flush write-buffers. */
3837 | RT_BF_MAKE(VTD_BF_CAP_REG_PLMR, 0) /* Protected Low-Memory Region not supported. */
3838 | RT_BF_MAKE(VTD_BF_CAP_REG_PHMR, 0) /* Protected High-Memory Region not supported. */
3839 | RT_BF_MAKE(VTD_BF_CAP_REG_CM, 1) /* Software should invalidate on mapping structure changes. */
3840 | RT_BF_MAKE(VTD_BF_CAP_REG_SAGAW, fSlts ? fSagaw : 0)
3841 | RT_BF_MAKE(VTD_BF_CAP_REG_MGAW, uMgaw)
3842 | RT_BF_MAKE(VTD_BF_CAP_REG_ZLR, 1) /** @todo Figure out if/how to support zero-length reads. */
3843 | RT_BF_MAKE(VTD_BF_CAP_REG_FRO, offFro)
3844 | RT_BF_MAKE(VTD_BF_CAP_REG_SLLPS, fSlts & fSllps)
3845 | RT_BF_MAKE(VTD_BF_CAP_REG_PSI, fPsi)
3846 | RT_BF_MAKE(VTD_BF_CAP_REG_NFR, DMAR_FRCD_REG_COUNT - 1)
3847 | RT_BF_MAKE(VTD_BF_CAP_REG_MAMV, fPsi & fMamv)
3848 | RT_BF_MAKE(VTD_BF_CAP_REG_DWD, 1)
3849 | RT_BF_MAKE(VTD_BF_CAP_REG_DRD, 1)
3850 | RT_BF_MAKE(VTD_BF_CAP_REG_FL1GP, fFlts & fFl1gp)
3851 | RT_BF_MAKE(VTD_BF_CAP_REG_PI, 0) /* Posted Interrupts not supported. */
3852 | RT_BF_MAKE(VTD_BF_CAP_REG_FL5LP, fFlts & fFl5lp)
3853 | RT_BF_MAKE(VTD_BF_CAP_REG_ESIRTPS, fEsirtps)
3854 | RT_BF_MAKE(VTD_BF_CAP_REG_ESRTPS, fEsrtps);
3855 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_CAP_REG, pThis->fCapReg);
3856
3857 AssertCompile(fNd <= RT_ELEMENTS(g_auNdMask));
3858 pThis->fHawBaseMask = ~(UINT64_MAX << cGstPhysAddrBits) & X86_PAGE_4K_BASE_MASK;
3859 pThis->fMgawInvMask = UINT64_MAX << cGstPhysAddrBits;
3860 pThis->cMaxPagingLevel = vtdCapRegGetMaxPagingLevel(fSagaw);
3861 pThis->fCtxEntryQw1ValidMask = VTD_BF_1_CONTEXT_ENTRY_AW_MASK
3862 | VTD_BF_1_CONTEXT_ENTRY_IGN_6_3_MASK
3863 | RT_BF_MAKE(VTD_BF_1_CONTEXT_ENTRY_DID, g_auNdMask[fNd]);
3864 }
3865
3866 /* ECAP_REG */
3867 {
3868 uint8_t const fQi = 1; /* Queued-invalidations. */
3869 uint8_t const fIr = !!(DMAR_ACPI_DMAR_FLAGS & ACPI_DMAR_F_INTR_REMAP); /* Interrupt remapping support. */
3870 uint8_t const fMhmv = 0xf; /* Maximum handle mask value. */
3871 uint16_t const offIro = DMAR_MMIO_OFF_IVA_REG >> 4; /* MMIO offset of IOTLB registers. */
3872 uint8_t const fEim = 1; /* Extended interrupt mode.*/
3873 uint8_t const fAdms = 1; /* Abort DMA mode support. */
3874 uint8_t const fErs = 0; /* Execute Request (not supported). */
3875
3876 pThis->fExtCapReg = RT_BF_MAKE(VTD_BF_ECAP_REG_C, 0) /* Accesses don't snoop CPU cache. */
3877 | RT_BF_MAKE(VTD_BF_ECAP_REG_QI, fQi)
3878 | RT_BF_MAKE(VTD_BF_ECAP_REG_DT, 0) /* Device-TLBs not supported. */
3879 | RT_BF_MAKE(VTD_BF_ECAP_REG_IR, fQi & fIr)
3880 | RT_BF_MAKE(VTD_BF_ECAP_REG_EIM, fIr & fEim)
3881 | RT_BF_MAKE(VTD_BF_ECAP_REG_PT, fPt)
3882 | RT_BF_MAKE(VTD_BF_ECAP_REG_SC, 0) /* Snoop control not supported. */
3883 | RT_BF_MAKE(VTD_BF_ECAP_REG_IRO, offIro)
3884 | RT_BF_MAKE(VTD_BF_ECAP_REG_MHMV, fIr & fMhmv)
3885 | RT_BF_MAKE(VTD_BF_ECAP_REG_MTS, 0) /* Memory type not supported. */
3886 | RT_BF_MAKE(VTD_BF_ECAP_REG_NEST, fNest)
3887 | RT_BF_MAKE(VTD_BF_ECAP_REG_PRS, 0) /* 0 as DT not supported. */
3888 | RT_BF_MAKE(VTD_BF_ECAP_REG_ERS, fErs)
3889 | RT_BF_MAKE(VTD_BF_ECAP_REG_SRS, 0) /* Supervisor request not supported. */
3890 | RT_BF_MAKE(VTD_BF_ECAP_REG_NWFS, 0) /* 0 as DT not supported. */
3891 | RT_BF_MAKE(VTD_BF_ECAP_REG_EAFS, 0) /* 0 as SMPWCS not supported. */
3892 | RT_BF_MAKE(VTD_BF_ECAP_REG_PSS, 0) /* 0 as PASID not supported. */
3893 | RT_BF_MAKE(VTD_BF_ECAP_REG_PASID, 0) /* PASID not supported. */
3894 | RT_BF_MAKE(VTD_BF_ECAP_REG_DIT, 0) /* 0 as DT not supported. */
3895 | RT_BF_MAKE(VTD_BF_ECAP_REG_PDS, 0) /* 0 as DT not supported. */
3896 | RT_BF_MAKE(VTD_BF_ECAP_REG_SMTS, fSmts)
3897 | RT_BF_MAKE(VTD_BF_ECAP_REG_VCS, 0) /* 0 as PASID not supported (commands seem PASID specific). */
3898 | RT_BF_MAKE(VTD_BF_ECAP_REG_SLADS, 0) /* Second-level accessed/dirty not supported. */
3899 | RT_BF_MAKE(VTD_BF_ECAP_REG_SLTS, fSlts)
3900 | RT_BF_MAKE(VTD_BF_ECAP_REG_FLTS, fFlts)
3901 | RT_BF_MAKE(VTD_BF_ECAP_REG_SMPWCS, 0) /* 0 as PASID not supported. */
3902 | RT_BF_MAKE(VTD_BF_ECAP_REG_RPS, 0) /* We don't support RID_PASID field in SM context entry. */
3903 | RT_BF_MAKE(VTD_BF_ECAP_REG_ADMS, fAdms)
3904 | RT_BF_MAKE(VTD_BF_ECAP_REG_RPRIVS, 0); /* 0 as SRS not supported. */
3905 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_ECAP_REG, pThis->fExtCapReg);
3906
3907 pThis->fPermValidMask = DMAR_PERM_READ | DMAR_PERM_WRITE;
3908 if (fErs)
3909 pThis->fPermValidMask = DMAR_PERM_EXE;
3910 }
3911
3912 /*
3913 * Initialize registers mutable by software.
3914 */
3915 /* FECTL_REG */
3916 {
3917 uint32_t const uCtl = RT_BF_MAKE(VTD_BF_FECTL_REG_IM, 1);
3918 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, uCtl);
3919 }
3920
3921 /* ICETL_REG */
3922 {
3923 uint32_t const uCtl = RT_BF_MAKE(VTD_BF_IECTL_REG_IM, 1);
3924 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, uCtl);
3925 }
3926
3927#ifdef VBOX_STRICT
3928 Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_PRS)); /* PECTL_REG - Reserved if don't support PRS. */
3929 Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_MTS)); /* MTRRCAP_REG - Reserved if we don't support MTS. */
3930#endif
3931}
3932
3933
3934/**
3935 * @callback_method_impl{FNSSMDEVSAVEEXEC}
3936 */
3937static DECLCALLBACK(int) dmarR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
3938{
3939 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
3940 PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
3941 LogFlowFunc(("\n"));
3942
3943 /* First, save software-immutable registers that we validate on state load. */
3944 pHlp->pfnSSMPutU32(pSSM, pThis->uVerReg);
3945 pHlp->pfnSSMPutU64(pSSM, pThis->fCapReg);
3946 pHlp->pfnSSMPutU64(pSSM, pThis->fExtCapReg);
3947
3948 /* Save MMIO registers. */
3949 pHlp->pfnSSMPutU32(pSSM, DMAR_MMIO_GROUP_COUNT);
3950 pHlp->pfnSSMPutU32(pSSM, sizeof(pThis->abRegs0));
3951 pHlp->pfnSSMPutMem(pSSM, &pThis->abRegs0[0], sizeof(pThis->abRegs0));
3952 pHlp->pfnSSMPutU32(pSSM, sizeof(pThis->abRegs1));
3953 pHlp->pfnSSMPutMem(pSSM, &pThis->abRegs1[0], sizeof(pThis->abRegs1));
3954
3955 /*
3956 * Save our implemention-defined MMIO registers offsets.
3957 * The register themselves are currently all part of group 1 (saved above).
3958 * We save these to ensure they're located where the code expects them while loading state.
3959 */
3960 pHlp->pfnSSMPutU16(pSSM, DMAR_MMIO_OFF_IMPL_COUNT);
3961 AssertCompile(DMAR_MMIO_OFF_IMPL_COUNT == 2);
3962 pHlp->pfnSSMPutU16(pSSM, DMAR_MMIO_OFF_IVA_REG);
3963 pHlp->pfnSSMPutU16(pSSM, DMAR_MMIO_OFF_FRCD_LO_REG);
3964
3965 /* Save lazily activated registers. */
3966 pHlp->pfnSSMPutU64(pSSM, pThis->uIrtaReg);
3967 pHlp->pfnSSMPutU64(pSSM, pThis->uRtaddrReg);
3968
3969 /* Save terminator marker and return status. */
3970 return pHlp->pfnSSMPutU32(pSSM, UINT32_MAX);
3971}
3972
3973
3974/**
3975 * @callback_method_impl{FNSSMDEVLOADEXEC}
3976 */
3977static DECLCALLBACK(int) dmarR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3978{
3979 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3980 PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
3981 int const rcDataErr = VERR_SSM_UNEXPECTED_DATA;
3982 int const rcFmtErr = VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
3983 LogFlowFunc(("\n"));
3984
3985 /*
3986 * Validate saved-state version.
3987 */
3988 AssertReturn(uPass == SSM_PASS_FINAL, VERR_WRONG_ORDER);
3989 if (uVersion != DMAR_SAVED_STATE_VERSION)
3990 {
3991 LogRel(("%s: Invalid saved-state version %#x\n", DMAR_LOG_PFX, uVersion));
3992 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3993 }
3994
3995 /*
3996 * Load and validate software-immutable registers.
3997 * The features we had exposed to the guest (in the saved state) must be identical
3998 * to what is currently emulated.
3999 */
4000 {
4001 /* VER_REG */
4002 uint32_t uVerReg = 0;
4003 int rc = pHlp->pfnSSMGetU32(pSSM, &uVerReg);
4004 AssertRCReturn(rc, rc);
4005 AssertLogRelMsgReturn(uVerReg == pThis->uVerReg,
4006 ("%s: VER_REG mismatch (expected %#RX32 got %#RX32)\n", DMAR_LOG_PFX, pThis->uVerReg, uVerReg),
4007 rcDataErr);
4008 /* CAP_REG */
4009 uint64_t fCapReg = 0;
4010 pHlp->pfnSSMGetU64(pSSM, &fCapReg);
4011 AssertLogRelMsgReturn(fCapReg == pThis->fCapReg,
4012 ("%s: CAP_REG mismatch (expected %#RX64 got %#RX64)\n", DMAR_LOG_PFX, pThis->fCapReg, fCapReg),
4013 rcDataErr);
4014 /* ECAP_REG */
4015 uint64_t fExtCapReg = 0;
4016 pHlp->pfnSSMGetU64(pSSM, &fExtCapReg);
4017 AssertLogRelMsgReturn(fExtCapReg == pThis->fExtCapReg,
4018 ("%s: ECAP_REG mismatch (expected %#RX64 got %#RX64)\n", DMAR_LOG_PFX, pThis->fExtCapReg,
4019 fExtCapReg), rcDataErr);
4020 }
4021
4022 /*
4023 * Load MMIO registers.
4024 */
4025 {
4026 /* Group count. */
4027 uint32_t cRegGroups = 0;
4028 pHlp->pfnSSMGetU32(pSSM, &cRegGroups);
4029 AssertLogRelMsgReturn(cRegGroups == DMAR_MMIO_GROUP_COUNT,
4030 ("%s: MMIO group count mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_GROUP_COUNT,
4031 cRegGroups), rcFmtErr);
4032 /* Group 0. */
4033 uint32_t cbRegs0 = 0;
4034 pHlp->pfnSSMGetU32(pSSM, &cbRegs0);
4035 AssertLogRelMsgReturn(cbRegs0 == sizeof(pThis->abRegs0),
4036 ("%s: MMIO group 0 size mismatch (expected %u got %u)\n", DMAR_LOG_PFX, sizeof(pThis->abRegs0),
4037 cbRegs0), rcFmtErr);
4038 pHlp->pfnSSMGetMem(pSSM, &pThis->abRegs0[0], cbRegs0);
4039 /* Group 1. */
4040 uint32_t cbRegs1 = 0;
4041 pHlp->pfnSSMGetU32(pSSM, &cbRegs1);
4042 AssertLogRelMsgReturn(cbRegs1 == sizeof(pThis->abRegs1),
4043 ("%s: MMIO group 1 size mismatch (expected %u got %u)\n", DMAR_LOG_PFX, sizeof(pThis->abRegs1),
4044 cbRegs1), rcFmtErr);
4045 pHlp->pfnSSMGetMem(pSSM, &pThis->abRegs1[0], cbRegs1);
4046 }
4047
4048 /*
4049 * Validate implementation-defined MMIO register offsets.
4050 */
4051 {
4052 /* Offset count. */
4053 uint16_t cOffsets = 0;
4054 pHlp->pfnSSMGetU16(pSSM, &cOffsets);
4055 AssertLogRelMsgReturn(cOffsets == DMAR_MMIO_OFF_IMPL_COUNT,
4056 ("%s: MMIO offset count mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_IMPL_COUNT,
4057 cOffsets), rcFmtErr);
4058 /* IVA_REG. */
4059 uint16_t offReg = 0;
4060 pHlp->pfnSSMGetU16(pSSM, &offReg);
4061 AssertLogRelMsgReturn(offReg == DMAR_MMIO_OFF_IVA_REG,
4062 ("%s: IVA_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_IVA_REG,
4063 offReg), rcFmtErr);
4064 /* IOTLB_REG. */
4065 AssertLogRelMsgReturn(offReg + 8 == DMAR_MMIO_OFF_IOTLB_REG,
4066 ("%s: IOTLB_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_IOTLB_REG,
4067 offReg), rcFmtErr);
4068 /* FRCD_LO_REG. */
4069 pHlp->pfnSSMGetU16(pSSM, &offReg);
4070 AssertLogRelMsgReturn(offReg == DMAR_MMIO_OFF_FRCD_LO_REG,
4071 ("%s: FRCD_LO_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_FRCD_LO_REG,
4072 offReg), rcFmtErr);
4073 /* FRCD_HI_REG. */
4074 AssertLogRelMsgReturn(offReg + 8 == DMAR_MMIO_OFF_FRCD_HI_REG,
4075 ("%s: FRCD_HI_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_FRCD_HI_REG,
4076 offReg), rcFmtErr);
4077 }
4078
4079 /*
4080 * Load lazily activated registers.
4081 */
4082 {
4083 /* Active IRTA_REG. */
4084 pHlp->pfnSSMGetU64(pSSM, &pThis->uIrtaReg);
4085 AssertLogRelMsgReturn(!(pThis->uIrtaReg & ~VTD_IRTA_REG_RW_MASK),
4086 ("%s: IRTA_REG reserved bits set %#RX64\n", DMAR_LOG_PFX, pThis->uIrtaReg), rcDataErr);
4087 /* Active RTADDR_REG. */
4088 pHlp->pfnSSMGetU64(pSSM, &pThis->uRtaddrReg);
4089 AssertLogRelMsgReturn(!(pThis->uRtaddrReg & ~VTD_RTADDR_REG_RW_MASK),
4090 ("%s: RTADDR_REG reserved bits set %#RX64\n", DMAR_LOG_PFX, pThis->uRtaddrReg), rcDataErr);
4091 }
4092
4093 /*
4094 * Verify terminator marker.
4095 */
4096 {
4097 uint32_t uEndMarker = 0;
4098 int const rc = pHlp->pfnSSMGetU32(pSSM, &uEndMarker);
4099 AssertRCReturn(rc, rc);
4100 AssertLogRelMsgReturn(uEndMarker == UINT32_MAX,
4101 ("%s: End marker mismatch (expected %#RX32 got %#RX32)\n", DMAR_LOG_PFX, UINT32_MAX, uEndMarker),
4102 rcFmtErr);
4103 }
4104 return VINF_SUCCESS;
4105}
4106
4107
4108/**
4109 * @callback_method_impl{FNSSMDEVLOADDONE}
4110 */
4111static DECLCALLBACK(int) dmarR3LoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
4112{
4113 PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3);
4114 LogFlowFunc(("\n"));
4115 RT_NOREF(pSSM);
4116 AssertPtrReturn(pThisR3, VERR_INVALID_POINTER);
4117
4118 DMAR_LOCK(pDevIns, pThisR3);
4119 dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
4120 DMAR_UNLOCK(pDevIns, pThisR3);
4121 return VINF_SUCCESS;
4122}
4123
4124
4125/**
4126 * @interface_method_impl{PDMDEVREG,pfnReset}
4127 */
4128static DECLCALLBACK(void) iommuIntelR3Reset(PPDMDEVINS pDevIns)
4129{
4130 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
4131 LogFlowFunc(("\n"));
4132
4133 DMAR_LOCK(pDevIns, pThisR3);
4134 dmarR3RegsInit(pDevIns);
4135 DMAR_UNLOCK(pDevIns, pThisR3);
4136}
4137
4138
4139/**
4140 * @interface_method_impl{PDMDEVREG,pfnDestruct}
4141 */
4142static DECLCALLBACK(int) iommuIntelR3Destruct(PPDMDEVINS pDevIns)
4143{
4144 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
4145 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
4146 LogFlowFunc(("\n"));
4147
4148 DMAR_LOCK(pDevIns, pThisR3);
4149
4150 if (pThis->hEvtInvQueue != NIL_SUPSEMEVENT)
4151 {
4152 PDMDevHlpSUPSemEventClose(pDevIns, pThis->hEvtInvQueue);
4153 pThis->hEvtInvQueue = NIL_SUPSEMEVENT;
4154 }
4155
4156 DMAR_UNLOCK(pDevIns, pThisR3);
4157 return VINF_SUCCESS;
4158}
4159
4160
4161/**
4162 * @interface_method_impl{PDMDEVREG,pfnConstruct}
4163 */
4164static DECLCALLBACK(int) iommuIntelR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
4165{
4166 RT_NOREF(pCfg);
4167
4168 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
4169 PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3);
4170 pThisR3->pDevInsR3 = pDevIns;
4171
4172 LogFlowFunc(("iInstance=%d\n", iInstance));
4173 NOREF(iInstance);
4174
4175 /*
4176 * Register the IOMMU with PDM.
4177 */
4178 PDMIOMMUREGR3 IommuReg;
4179 RT_ZERO(IommuReg);
4180 IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
4181 IommuReg.pfnMemAccess = iommuIntelMemAccess;
4182 IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
4183 IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
4184 IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
4185 int rc = PDMDevHlpIommuRegister(pDevIns, &IommuReg, &pThisR3->CTX_SUFF(pIommuHlp), &pThis->idxIommu);
4186 if (RT_FAILURE(rc))
4187 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to register ourselves as an IOMMU device"));
4188 if (pThisR3->CTX_SUFF(pIommuHlp)->u32Version != PDM_IOMMUHLPR3_VERSION)
4189 return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
4190 N_("IOMMU helper version mismatch; got %#x expected %#x"),
4191 pThisR3->CTX_SUFF(pIommuHlp)->u32Version, PDM_IOMMUHLPR3_VERSION);
4192 if (pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd != PDM_IOMMUHLPR3_VERSION)
4193 return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
4194 N_("IOMMU helper end-version mismatch; got %#x expected %#x"),
4195 pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd, PDM_IOMMUHLPR3_VERSION);
4196 AssertPtr(pThisR3->pIommuHlpR3->pfnLock);
4197 AssertPtr(pThisR3->pIommuHlpR3->pfnUnlock);
4198 AssertPtr(pThisR3->pIommuHlpR3->pfnLockIsOwner);
4199 AssertPtr(pThisR3->pIommuHlpR3->pfnSendMsi);
4200
4201 /*
4202 * Use PDM's critical section (via helpers) for the IOMMU device.
4203 */
4204 rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
4205 AssertRCReturn(rc, rc);
4206
4207 /*
4208 * Initialize PCI configuration registers.
4209 */
4210 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
4211 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
4212
4213 /* Header. */
4214 PDMPciDevSetVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
4215 PDMPciDevSetDeviceId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
4216 PDMPciDevSetRevisionId(pPciDev, DMAR_PCI_REVISION_ID); /* VirtualBox specific device implementation revision */
4217 PDMPciDevSetClassBase(pPciDev, VBOX_PCI_CLASS_SYSTEM); /* System Base Peripheral */
4218 PDMPciDevSetClassSub(pPciDev, VBOX_PCI_SUB_SYSTEM_OTHER); /* Other */
4219 PDMPciDevSetHeaderType(pPciDev, 0); /* Single function, type 0 */
4220 PDMPciDevSetSubSystemId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
4221 PDMPciDevSetSubSystemVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
4222
4223 /** @todo Chipset spec says PCI Express Capability Id. Relevant for us? */
4224 PDMPciDevSetStatus(pPciDev, 0);
4225 PDMPciDevSetCapabilityList(pPciDev, 0);
4226 /** @todo VTBAR at 0x180? */
4227
4228 /*
4229 * Register the PCI function with PDM.
4230 */
4231 rc = PDMDevHlpPCIRegister(pDevIns, pPciDev);
4232 AssertLogRelRCReturn(rc, rc);
4233
4234 /*
4235 * Register MMIO region.
4236 */
4237 AssertCompile(!(DMAR_MMIO_BASE_PHYSADDR & X86_PAGE_4K_OFFSET_MASK));
4238 rc = PDMDevHlpMmioCreateAndMap(pDevIns, DMAR_MMIO_BASE_PHYSADDR, DMAR_MMIO_SIZE, dmarMmioWrite, dmarMmioRead,
4239 IOMMMIO_FLAGS_READ_DWORD_QWORD | IOMMMIO_FLAGS_WRITE_DWORD_QWORD_ZEROED, "Intel-IOMMU",
4240 &pThis->hMmio);
4241 AssertLogRelRCReturn(rc, rc);
4242
4243 /*
4244 * Register saved state handlers.
4245 */
4246 rc = PDMDevHlpSSMRegisterEx(pDevIns, DMAR_SAVED_STATE_VERSION, sizeof(DMAR), NULL /* pszBefore */,
4247 NULL /* pfnLivePrep */, NULL /* pfnLiveExec */, NULL /* pfnLiveVote */,
4248 NULL /* pfnSavePrep */, dmarR3SaveExec, NULL /* pfnSaveDone */,
4249 NULL /* pfnLoadPrep */, dmarR3LoadExec, dmarR3LoadDone);
4250 AssertLogRelRCReturn(rc, rc);
4251
4252 /*
4253 * Register debugger info items.
4254 */
4255 rc = PDMDevHlpDBGFInfoRegister(pDevIns, "iommu", "Display IOMMU state.", dmarR3DbgInfo);
4256 AssertLogRelRCReturn(rc, rc);
4257
4258#ifdef VBOX_WITH_STATISTICS
4259 /*
4260 * Statistics.
4261 */
4262 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadR3, STAMTYPE_COUNTER, "R3/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in R3");
4263 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadRZ, STAMTYPE_COUNTER, "RZ/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in RZ.");
4264
4265 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteR3, STAMTYPE_COUNTER, "R3/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in R3.");
4266 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteRZ, STAMTYPE_COUNTER, "RZ/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in RZ.");
4267
4268 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiR3, STAMTYPE_COUNTER, "R3/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in R3.");
4269 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in RZ.");
4270 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiR3, STAMTYPE_COUNTER, "R3/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in R3.");
4271 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in RZ.");
4272
4273 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadR3, STAMTYPE_COUNTER, "R3/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in R3.");
4274 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadRZ, STAMTYPE_COUNTER, "RZ/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in RZ.");
4275
4276 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteR3, STAMTYPE_COUNTER, "R3/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in R3.");
4277 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteRZ, STAMTYPE_COUNTER, "RZ/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in RZ.");
4278
4279 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadR3, STAMTYPE_COUNTER, "R3/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in R3.");
4280 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadRZ, STAMTYPE_COUNTER, "RZ/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in RZ.");
4281
4282 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteR3, STAMTYPE_COUNTER, "R3/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in R3.");
4283 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteRZ, STAMTYPE_COUNTER, "RZ/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in RZ.");
4284
4285 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCcInvDsc, STAMTYPE_COUNTER, "R3/QI/CcInv", STAMUNIT_OCCURENCES, "Number of cc_inv_dsc processed.");
4286 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/IotlbInv", STAMUNIT_OCCURENCES, "Number of iotlb_inv_dsc processed.");
4287 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/DevtlbInv", STAMUNIT_OCCURENCES, "Number of dev_tlb_inv_dsc processed.");
4288 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIecInvDsc, STAMTYPE_COUNTER, "R3/QI/IecInv", STAMUNIT_OCCURENCES, "Number of iec_inv processed.");
4289 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatInvWaitDsc, STAMTYPE_COUNTER, "R3/QI/InvWait", STAMUNIT_OCCURENCES, "Number of inv_wait_dsc processed.");
4290 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidIotlbInv", STAMUNIT_OCCURENCES, "Number of p_iotlb_inv_dsc processed.");
4291 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidCacheInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidCacheInv", STAMUNIT_OCCURENCES, "Number of pc_inv_dsc pprocessed.");
4292 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidDevtlbInv", STAMUNIT_OCCURENCES, "Number of p_dev_tlb_inv_dsc processed.");
4293#endif
4294
4295 /*
4296 * Initialize registers.
4297 */
4298 dmarR3RegsInit(pDevIns);
4299
4300 /*
4301 * Create invalidation-queue thread and semaphore.
4302 */
4303 char szInvQueueThread[32];
4304 RT_ZERO(szInvQueueThread);
4305 RTStrPrintf(szInvQueueThread, sizeof(szInvQueueThread), "IOMMU-QI-%u", iInstance);
4306 rc = PDMDevHlpThreadCreate(pDevIns, &pThisR3->pInvQueueThread, pThis, dmarR3InvQueueThread, dmarR3InvQueueThreadWakeUp,
4307 0 /* cbStack */, RTTHREADTYPE_IO, szInvQueueThread);
4308 AssertLogRelRCReturn(rc, rc);
4309
4310 rc = PDMDevHlpSUPSemEventCreate(pDevIns, &pThis->hEvtInvQueue);
4311 AssertLogRelRCReturn(rc, rc);
4312
4313 /*
4314 * Log some of the features exposed to software.
4315 */
4316 uint8_t const uVerMax = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX);
4317 uint8_t const uVerMin = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MIN);
4318 uint8_t const cMgawBits = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_MGAW) + 1;
4319 uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW);
4320 uint16_t const offFrcd = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_FRO);
4321 uint16_t const offIva = RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_IRO);
4322 LogRel(("%s: Mapped at %#RGp (%u-level page-table supported)\n",
4323 DMAR_LOG_PFX, DMAR_MMIO_BASE_PHYSADDR, pThis->cMaxPagingLevel));
4324 LogRel(("%s: Version=%u.%u Cap=%#RX64 ExtCap=%#RX64 Mgaw=%u bits Sagaw=%#x HawBaseMask=%#RX64 MgawInvMask=%#RX64 FRO=%#x IRO=%#x\n",
4325 DMAR_LOG_PFX, uVerMax, uVerMin, pThis->fCapReg, pThis->fExtCapReg, cMgawBits, fSagaw, pThis->fHawBaseMask,
4326 pThis->fMgawInvMask, offFrcd, offIva));
4327 return VINF_SUCCESS;
4328}
4329
4330#else
4331
4332/**
4333 * @callback_method_impl{PDMDEVREGR0,pfnConstruct}
4334 */
4335static DECLCALLBACK(int) iommuIntelRZConstruct(PPDMDEVINS pDevIns)
4336{
4337 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
4338 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
4339 PDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDMARCC);
4340 pThisCC->CTX_SUFF(pDevIns) = pDevIns;
4341
4342 /* We will use PDM's critical section (via helpers) for the IOMMU device. */
4343 int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
4344 AssertRCReturn(rc, rc);
4345
4346 /* Set up the MMIO RZ handlers. */
4347 rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmio, dmarMmioWrite, dmarMmioRead, NULL /* pvUser */);
4348 AssertRCReturn(rc, rc);
4349
4350 /* Set up the IOMMU RZ callbacks. */
4351 PDMIOMMUREGCC IommuReg;
4352 RT_ZERO(IommuReg);
4353 IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
4354 IommuReg.idxIommu = pThis->idxIommu;
4355 IommuReg.pfnMemAccess = iommuIntelMemAccess;
4356 IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
4357 IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
4358 IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
4359
4360 rc = PDMDevHlpIommuSetUpContext(pDevIns, &IommuReg, &pThisCC->CTX_SUFF(pIommuHlp));
4361 AssertRCReturn(rc, rc);
4362 AssertPtrReturn(pThisCC->CTX_SUFF(pIommuHlp), VERR_IOMMU_IPE_1);
4363 AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32Version == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
4364 AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32TheEnd == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
4365 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLock);
4366 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnUnlock);
4367 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLockIsOwner);
4368 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi);
4369
4370 return VINF_SUCCESS;
4371}
4372
4373#endif
4374
4375
4376/**
4377 * The device registration structure.
4378 */
4379PDMDEVREG const g_DeviceIommuIntel =
4380{
4381 /* .u32Version = */ PDM_DEVREG_VERSION,
4382 /* .uReserved0 = */ 0,
4383 /* .szName = */ "iommu-intel",
4384 /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE,
4385 /* .fClass = */ PDM_DEVREG_CLASS_PCI_BUILTIN,
4386 /* .cMaxInstances = */ 1,
4387 /* .uSharedVersion = */ 42,
4388 /* .cbInstanceShared = */ sizeof(DMAR),
4389 /* .cbInstanceCC = */ sizeof(DMARCC),
4390 /* .cbInstanceRC = */ sizeof(DMARRC),
4391 /* .cMaxPciDevices = */ 1,
4392 /* .cMaxMsixVectors = */ 0,
4393 /* .pszDescription = */ "IOMMU (Intel)",
4394#if defined(IN_RING3)
4395 /* .pszRCMod = */ "VBoxDDRC.rc",
4396 /* .pszR0Mod = */ "VBoxDDR0.r0",
4397 /* .pfnConstruct = */ iommuIntelR3Construct,
4398 /* .pfnDestruct = */ iommuIntelR3Destruct,
4399 /* .pfnRelocate = */ NULL,
4400 /* .pfnMemSetup = */ NULL,
4401 /* .pfnPowerOn = */ NULL,
4402 /* .pfnReset = */ iommuIntelR3Reset,
4403 /* .pfnSuspend = */ NULL,
4404 /* .pfnResume = */ NULL,
4405 /* .pfnAttach = */ NULL,
4406 /* .pfnDetach = */ NULL,
4407 /* .pfnQueryInterface = */ NULL,
4408 /* .pfnInitComplete = */ NULL,
4409 /* .pfnPowerOff = */ NULL,
4410 /* .pfnSoftReset = */ NULL,
4411 /* .pfnReserved0 = */ NULL,
4412 /* .pfnReserved1 = */ NULL,
4413 /* .pfnReserved2 = */ NULL,
4414 /* .pfnReserved3 = */ NULL,
4415 /* .pfnReserved4 = */ NULL,
4416 /* .pfnReserved5 = */ NULL,
4417 /* .pfnReserved6 = */ NULL,
4418 /* .pfnReserved7 = */ NULL,
4419#elif defined(IN_RING0)
4420 /* .pfnEarlyConstruct = */ NULL,
4421 /* .pfnConstruct = */ iommuIntelRZConstruct,
4422 /* .pfnDestruct = */ NULL,
4423 /* .pfnFinalDestruct = */ NULL,
4424 /* .pfnRequest = */ NULL,
4425 /* .pfnReserved0 = */ NULL,
4426 /* .pfnReserved1 = */ NULL,
4427 /* .pfnReserved2 = */ NULL,
4428 /* .pfnReserved3 = */ NULL,
4429 /* .pfnReserved4 = */ NULL,
4430 /* .pfnReserved5 = */ NULL,
4431 /* .pfnReserved6 = */ NULL,
4432 /* .pfnReserved7 = */ NULL,
4433#elif defined(IN_RC)
4434 /* .pfnConstruct = */ iommuIntelRZConstruct,
4435 /* .pfnReserved0 = */ NULL,
4436 /* .pfnReserved1 = */ NULL,
4437 /* .pfnReserved2 = */ NULL,
4438 /* .pfnReserved3 = */ NULL,
4439 /* .pfnReserved4 = */ NULL,
4440 /* .pfnReserved5 = */ NULL,
4441 /* .pfnReserved6 = */ NULL,
4442 /* .pfnReserved7 = */ NULL,
4443#else
4444# error "Not in IN_RING3, IN_RING0 or IN_RC!"
4445#endif
4446 /* .u32VersionEnd = */ PDM_DEVREG_VERSION
4447};
4448
4449#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
4450
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette