1 | /* $Id: DevIommuIntel.cpp 89729 2021-06-16 05:57:51Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IOMMU - Input/Output Memory Management Unit - Intel implementation.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2021 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #define LOG_GROUP LOG_GROUP_DEV_IOMMU
|
---|
23 | #include "VBoxDD.h"
|
---|
24 | #include "DevIommuIntel.h"
|
---|
25 |
|
---|
26 | #include <VBox/iommu-intel.h>
|
---|
27 | #include <iprt/mem.h>
|
---|
28 | #include <iprt/string.h>
|
---|
29 |
|
---|
30 |
|
---|
31 | /*********************************************************************************************************************************
|
---|
32 | * Defined Constants And Macros *
|
---|
33 | *********************************************************************************************************************************/
|
---|
34 | /** Gets the low uint32_t of a uint64_t or something equivalent.
|
---|
35 | *
|
---|
36 | * This is suitable for casting constants outside code (since RT_LO_U32 can't be
|
---|
37 | * used as it asserts for correctness when compiling on certain compilers). */
|
---|
38 | #define DMAR_LO_U32(a) (uint32_t)(UINT32_MAX & (a))
|
---|
39 |
|
---|
40 | /** Gets the high uint32_t of a uint64_t or something equivalent.
|
---|
41 | *
|
---|
42 | * This is suitable for casting constants outside code (since RT_HI_U32 can't be
|
---|
43 | * used as it asserts for correctness when compiling on certain compilers). */
|
---|
44 | #define DMAR_HI_U32(a) (uint32_t)((a) >> 32)
|
---|
45 |
|
---|
46 | /** Asserts MMIO access' offset and size are valid or returns appropriate error
|
---|
47 | * code suitable for returning from MMIO access handlers. */
|
---|
48 | #define DMAR_ASSERT_MMIO_ACCESS_RET(a_off, a_cb) \
|
---|
49 | do { \
|
---|
50 | AssertReturn((a_cb) == 4 || (a_cb) == 8, VINF_IOM_MMIO_UNUSED_FF); \
|
---|
51 | AssertReturn(!((a_off) & ((a_cb) - 1)), VINF_IOM_MMIO_UNUSED_FF); \
|
---|
52 | } while (0)
|
---|
53 |
|
---|
54 | /** Checks if the MMIO offset is valid. */
|
---|
55 | #define DMAR_IS_MMIO_OFF_VALID(a_off) ( (a_off) < DMAR_MMIO_GROUP_0_OFF_END \
|
---|
56 | || (a_off) - DMAR_MMIO_GROUP_1_OFF_FIRST < (unsigned)DMAR_MMIO_GROUP_1_SIZE)
|
---|
57 |
|
---|
58 | /** Acquires the DMAR lock but returns with the given busy error code on failure. */
|
---|
59 | #define DMAR_LOCK_RET(a_pDevIns, a_pThisCC, a_rcBusy) \
|
---|
60 | do { \
|
---|
61 | if ((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), (a_rcBusy)) == VINF_SUCCESS) \
|
---|
62 | { /* likely */ } \
|
---|
63 | else \
|
---|
64 | return (a_rcBusy); \
|
---|
65 | } while (0)
|
---|
66 |
|
---|
67 | /** Acquires the DMAR lock (not expected to fail). */
|
---|
68 | #ifdef IN_RING3
|
---|
69 | # define DMAR_LOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VERR_IGNORED)
|
---|
70 | #else
|
---|
71 | # define DMAR_LOCK(a_pDevIns, a_pThisCC) \
|
---|
72 | do { \
|
---|
73 | int const rcLock = (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VINF_SUCCESS); \
|
---|
74 | AssertRC(rcLock); \
|
---|
75 | } while (0)
|
---|
76 | #endif
|
---|
77 |
|
---|
78 | /** Release the DMAR lock. */
|
---|
79 | #define DMAR_UNLOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnUnlock(a_pDevIns)
|
---|
80 |
|
---|
81 | /** Asserts that the calling thread owns the DMAR lock. */
|
---|
82 | #define DMAR_ASSERT_LOCK_IS_OWNER(a_pDevIns, a_pThisCC) \
|
---|
83 | do { \
|
---|
84 | Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns)); \
|
---|
85 | RT_NOREF1(a_pThisCC); \
|
---|
86 | } while (0)
|
---|
87 |
|
---|
88 | /** Asserts that the calling thread does not own the DMAR lock. */
|
---|
89 | #define DMAR_ASSERT_LOCK_IS_NOT_OWNER(a_pDevIns, a_pThisCC) \
|
---|
90 | do { \
|
---|
91 | Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns) == false); \
|
---|
92 | RT_NOREF1(a_pThisCC); \
|
---|
93 | } while (0)
|
---|
94 |
|
---|
95 | /** The number of fault recording registers our implementation supports.
|
---|
96 | * Normal guest operation shouldn't trigger faults anyway, so we only support the
|
---|
97 | * minimum number of registers (which is 1).
|
---|
98 | *
|
---|
99 | * See Intel VT-d spec. 10.4.2 "Capability Register" (CAP_REG.NFR). */
|
---|
100 | #define DMAR_FRCD_REG_COUNT UINT32_C(1)
|
---|
101 |
|
---|
102 | /** Number of register groups (used in saved states). */
|
---|
103 | #define DMAR_MMIO_GROUP_COUNT 2
|
---|
104 | /** Offset of first register in group 0. */
|
---|
105 | #define DMAR_MMIO_GROUP_0_OFF_FIRST VTD_MMIO_OFF_VER_REG
|
---|
106 | /** Offset of last register in group 0 (inclusive). */
|
---|
107 | #define DMAR_MMIO_GROUP_0_OFF_LAST VTD_MMIO_OFF_MTRR_PHYSMASK9_REG
|
---|
108 | /** Last valid offset in group 0 (exclusive). */
|
---|
109 | #define DMAR_MMIO_GROUP_0_OFF_END (DMAR_MMIO_GROUP_0_OFF_LAST + 8 /* sizeof MTRR_PHYSMASK9_REG */)
|
---|
110 | /** Size of the group 0 (in bytes). */
|
---|
111 | #define DMAR_MMIO_GROUP_0_SIZE (DMAR_MMIO_GROUP_0_OFF_END - DMAR_MMIO_GROUP_0_OFF_FIRST)
|
---|
112 | /** Number of implementation-defined MMIO register offsets - IVA_REG and
|
---|
113 | * FRCD_LO_REG (used in saved state). IOTLB_REG and FRCD_HI_REG are derived from
|
---|
114 | * IVA_REG and FRCD_LO_REG respectively */
|
---|
115 | #define DMAR_MMIO_OFF_IMPL_COUNT 2
|
---|
116 | /** Implementation-specific MMIO offset of IVA_REG (used in saved state). */
|
---|
117 | #define DMAR_MMIO_OFF_IVA_REG 0xe50
|
---|
118 | /** Implementation-specific MMIO offset of IOTLB_REG. */
|
---|
119 | #define DMAR_MMIO_OFF_IOTLB_REG 0xe58
|
---|
120 | /** Implementation-specific MMIO offset of FRCD_LO_REG (used in saved state). */
|
---|
121 | #define DMAR_MMIO_OFF_FRCD_LO_REG 0xe70
|
---|
122 | /** Implementation-specific MMIO offset of FRCD_HI_REG. */
|
---|
123 | #define DMAR_MMIO_OFF_FRCD_HI_REG 0xe78
|
---|
124 | AssertCompile(!(DMAR_MMIO_OFF_FRCD_LO_REG & 0xf));
|
---|
125 | AssertCompile(DMAR_MMIO_OFF_IOTLB_REG == DMAR_MMIO_OFF_IVA_REG + 8);
|
---|
126 | AssertCompile(DMAR_MMIO_OFF_FRCD_HI_REG == DMAR_MMIO_OFF_FRCD_LO_REG + 8);
|
---|
127 |
|
---|
128 | /** Offset of first register in group 1. */
|
---|
129 | #define DMAR_MMIO_GROUP_1_OFF_FIRST VTD_MMIO_OFF_VCCAP_REG
|
---|
130 | /** Offset of last register in group 1 (inclusive). */
|
---|
131 | #define DMAR_MMIO_GROUP_1_OFF_LAST (DMAR_MMIO_OFF_FRCD_LO_REG + 8) * DMAR_FRCD_REG_COUNT
|
---|
132 | /** Last valid offset in group 1 (exclusive). */
|
---|
133 | #define DMAR_MMIO_GROUP_1_OFF_END (DMAR_MMIO_GROUP_1_OFF_LAST + 8 /* sizeof FRCD_HI_REG */)
|
---|
134 | /** Size of the group 1 (in bytes). */
|
---|
135 | #define DMAR_MMIO_GROUP_1_SIZE (DMAR_MMIO_GROUP_1_OFF_END - DMAR_MMIO_GROUP_1_OFF_FIRST)
|
---|
136 |
|
---|
137 | /** DMAR implementation's major version number (exposed to software).
|
---|
138 | * We report 6 as the major version since we support queued-invalidations as
|
---|
139 | * software may make assumptions based on that.
|
---|
140 | *
|
---|
141 | * See Intel VT-d spec. 10.4.7 "Context Command Register" (CCMD_REG.CAIG). */
|
---|
142 | #define DMAR_VER_MAJOR 6
|
---|
143 | /** DMAR implementation's minor version number (exposed to software). */
|
---|
144 | #define DMAR_VER_MINOR 0
|
---|
145 |
|
---|
146 | /** Number of domain supported (0=16, 1=64, 2=256, 3=1K, 4=4K, 5=16K, 6=64K,
|
---|
147 | * 7=Reserved). */
|
---|
148 | #define DMAR_ND 6
|
---|
149 |
|
---|
150 | /** @name DMAR_PERM_XXX: DMA request permissions.
|
---|
151 | * The order of R, W, X bits is important as it corresponds to those bits in
|
---|
152 | * page-table entries.
|
---|
153 | *
|
---|
154 | * @{ */
|
---|
155 | /** DMA request permission: Read. */
|
---|
156 | #define DMAR_PERM_READ RT_BIT(0)
|
---|
157 | /** DMA request permission: Write. */
|
---|
158 | #define DMAR_PERM_WRITE RT_BIT(1)
|
---|
159 | /** DMA request permission: Execute (ER). */
|
---|
160 | #define DMAR_PERM_EXE RT_BIT(2)
|
---|
161 | /** DMA request permission: Supervisor privilege (PR). */
|
---|
162 | #define DMAR_PERM_PRIV RT_BIT(3)
|
---|
163 | /** DMA request permissions: All. */
|
---|
164 | #define DMAR_PERM_ALL (DMAR_PERM_READ | DMAR_PERM_WRITE | DMAR_PERM_EXE | DMAR_PERM_PRIV)
|
---|
165 | /** @} */
|
---|
166 |
|
---|
167 | /** Release log prefix string. */
|
---|
168 | #define DMAR_LOG_PFX "Intel-IOMMU"
|
---|
169 | /** The current saved state version. */
|
---|
170 | #define DMAR_SAVED_STATE_VERSION 1
|
---|
171 |
|
---|
172 |
|
---|
173 | /*********************************************************************************************************************************
|
---|
174 | * Structures and Typedefs *
|
---|
175 | *********************************************************************************************************************************/
|
---|
176 | /**
|
---|
177 | * DMAR error diagnostics.
|
---|
178 | * Sorted alphabetically so it's easier to add and locate items, no other reason.
|
---|
179 | *
|
---|
180 | * @note Members of this enum are used as array indices, so no gaps in enum
|
---|
181 | * values are not allowed. Update g_apszDmarDiagDesc when you modify
|
---|
182 | * fields in this enum.
|
---|
183 | */
|
---|
184 | typedef enum
|
---|
185 | {
|
---|
186 | /* No error, this must be zero! */
|
---|
187 | kDmarDiag_None = 0,
|
---|
188 |
|
---|
189 | /* Address Translation Faults. */
|
---|
190 | kDmarDiag_At_Lm_CtxEntry_Not_Present,
|
---|
191 | kDmarDiag_At_Lm_CtxEntry_Read_Failed,
|
---|
192 | kDmarDiag_At_Lm_CtxEntry_Rsvd,
|
---|
193 | kDmarDiag_At_Lm_Pt_At_Block,
|
---|
194 | kDmarDiag_At_Lm_Pt_Aw_Invalid,
|
---|
195 | kDmarDiag_At_Lm_RootEntry_Not_Present,
|
---|
196 | kDmarDiag_At_Lm_RootEntry_Read_Failed,
|
---|
197 | kDmarDiag_At_Lm_RootEntry_Rsvd,
|
---|
198 | kDmarDiag_At_Lm_Tt_Invalid,
|
---|
199 | kDmarDiag_At_Lm_Ut_At_Block,
|
---|
200 | kDmarDiag_At_Lm_Ut_Aw_Invalid,
|
---|
201 | kDmarDiag_At_Rta_Adms_Not_Supported,
|
---|
202 | kDmarDiag_At_Rta_Rsvd,
|
---|
203 | kDmarDiag_At_Rta_Smts_Not_Supported,
|
---|
204 | kDmarDiag_At_Xm_AddrIn_Invalid,
|
---|
205 | kDmarDiag_At_Xm_AddrOut_Invalid,
|
---|
206 | kDmarDiag_At_Xm_Perm_Denied,
|
---|
207 | kDmarDiag_At_Xm_Pte_Rsvd,
|
---|
208 | kDmarDiag_At_Xm_Pte_Sllps_Invalid,
|
---|
209 | kDmarDiag_At_Xm_Read_Pte_Failed,
|
---|
210 | kDmarDiag_At_Xm_Slpptr_Read_Failed,
|
---|
211 |
|
---|
212 | /* CCMD_REG faults. */
|
---|
213 | kDmarDiag_CcmdReg_Not_Supported,
|
---|
214 | kDmarDiag_CcmdReg_Qi_Enabled,
|
---|
215 | kDmarDiag_CcmdReg_Ttm_Invalid,
|
---|
216 |
|
---|
217 | /* IQA_REG faults. */
|
---|
218 | kDmarDiag_IqaReg_Dsc_Fetch_Error,
|
---|
219 | kDmarDiag_IqaReg_Dw_128_Invalid,
|
---|
220 | kDmarDiag_IqaReg_Dw_256_Invalid,
|
---|
221 |
|
---|
222 | /* Invalidation Queue Error Info. */
|
---|
223 | kDmarDiag_Iqei_Dsc_Type_Invalid,
|
---|
224 | kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd,
|
---|
225 | kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd,
|
---|
226 | kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid,
|
---|
227 | kDmarDiag_Iqei_Ttm_Rsvd,
|
---|
228 |
|
---|
229 | /* IQT_REG faults. */
|
---|
230 | kDmarDiag_IqtReg_Qt_Invalid,
|
---|
231 | kDmarDiag_IqtReg_Qt_Not_Aligned,
|
---|
232 |
|
---|
233 | /* Interrupt Remapping Faults. */
|
---|
234 | kDmarDiag_Ir_Cfi_Blocked,
|
---|
235 | kDmarDiag_Ir_Rfi_Intr_Index_Invalid,
|
---|
236 | kDmarDiag_Ir_Rfi_Irte_Mode_Invalid,
|
---|
237 | kDmarDiag_Ir_Rfi_Irte_Not_Present,
|
---|
238 | kDmarDiag_Ir_Rfi_Irte_Read_Failed,
|
---|
239 | kDmarDiag_Ir_Rfi_Irte_Rsvd,
|
---|
240 | kDmarDiag_Ir_Rfi_Irte_Svt_Bus,
|
---|
241 | kDmarDiag_Ir_Rfi_Irte_Svt_Masked,
|
---|
242 | kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd,
|
---|
243 | kDmarDiag_Ir_Rfi_Rsvd,
|
---|
244 |
|
---|
245 | /* Member for determining array index limit. */
|
---|
246 | kDmarDiag_End,
|
---|
247 |
|
---|
248 | /* Usual 32-bit type size hack. */
|
---|
249 | kDmarDiag_32Bit_Hack = 0x7fffffff
|
---|
250 | } DMARDIAG;
|
---|
251 | AssertCompileSize(DMARDIAG, 4);
|
---|
252 |
|
---|
253 | /** DMAR diagnostic enum description expansion.
|
---|
254 | * The below construct ensures typos in the input to this macro are caught
|
---|
255 | * during compile time. */
|
---|
256 | #define DMARDIAG_DESC(a_Name) RT_CONCAT(kDmarDiag_, a_Name) < kDmarDiag_End ? RT_STR(a_Name) : "Ignored"
|
---|
257 |
|
---|
258 | /** DMAR diagnostics description for members in DMARDIAG. */
|
---|
259 | static const char *const g_apszDmarDiagDesc[] =
|
---|
260 | {
|
---|
261 | DMARDIAG_DESC(None ),
|
---|
262 |
|
---|
263 | /* Address Translation Faults. */
|
---|
264 | DMARDIAG_DESC(At_Lm_CtxEntry_Not_Present ),
|
---|
265 | DMARDIAG_DESC(At_Lm_CtxEntry_Read_Failed ),
|
---|
266 | DMARDIAG_DESC(At_Lm_CtxEntry_Rsvd ),
|
---|
267 | DMARDIAG_DESC(At_Lm_Pt_At_Block ),
|
---|
268 | DMARDIAG_DESC(At_Lm_Pt_Aw_Invalid ),
|
---|
269 | DMARDIAG_DESC(At_Lm_RootEntry_Not_Present),
|
---|
270 | DMARDIAG_DESC(At_Lm_RootEntry_Read_Failed),
|
---|
271 | DMARDIAG_DESC(At_Lm_RootEntry_Rsvd ),
|
---|
272 | DMARDIAG_DESC(At_Lm_Tt_Invalid ),
|
---|
273 | DMARDIAG_DESC(At_Lm_Ut_At_Block ),
|
---|
274 | DMARDIAG_DESC(At_Lm_Ut_Aw_Invalid ),
|
---|
275 | DMARDIAG_DESC(At_Rta_Adms_Not_Supported ),
|
---|
276 | DMARDIAG_DESC(At_Rta_Rsvd ),
|
---|
277 | DMARDIAG_DESC(At_Rta_Smts_Not_Supported ),
|
---|
278 | DMARDIAG_DESC(At_Xm_AddrIn_Invalid ),
|
---|
279 | DMARDIAG_DESC(At_Xm_AddrOut_Invalid ),
|
---|
280 | DMARDIAG_DESC(At_Xm_Perm_Denied ),
|
---|
281 | DMARDIAG_DESC(At_Xm_Pte_Rsvd ),
|
---|
282 | DMARDIAG_DESC(At_Xm_Pte_Sllps_Invalid ),
|
---|
283 | DMARDIAG_DESC(At_Xm_Read_Pte_Failed ),
|
---|
284 | DMARDIAG_DESC(At_Xm_Slpptr_Read_Failed ),
|
---|
285 |
|
---|
286 | /* CCMD_REG faults. */
|
---|
287 | DMARDIAG_DESC(CcmdReg_Not_Supported ),
|
---|
288 | DMARDIAG_DESC(CcmdReg_Qi_Enabled ),
|
---|
289 | DMARDIAG_DESC(CcmdReg_Ttm_Invalid ),
|
---|
290 |
|
---|
291 | /* IQA_REG faults. */
|
---|
292 | DMARDIAG_DESC(IqaReg_Dsc_Fetch_Error ),
|
---|
293 | DMARDIAG_DESC(IqaReg_Dw_128_Invalid ),
|
---|
294 | DMARDIAG_DESC(IqaReg_Dw_256_Invalid ),
|
---|
295 |
|
---|
296 | /* Invalidation Queue Error Info. */
|
---|
297 | DMARDIAG_DESC(Iqei_Dsc_Type_Invalid ),
|
---|
298 | DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_0_1_Rsvd ),
|
---|
299 | DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_2_3_Rsvd ),
|
---|
300 | DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_Invalid ),
|
---|
301 | DMARDIAG_DESC(Iqei_Ttm_Rsvd ),
|
---|
302 |
|
---|
303 | /* IQT_REG faults. */
|
---|
304 | DMARDIAG_DESC(IqtReg_Qt_Invalid ),
|
---|
305 | DMARDIAG_DESC(IqtReg_Qt_Not_Aligned ),
|
---|
306 |
|
---|
307 | /* Interrupt remapping faults. */
|
---|
308 | DMARDIAG_DESC(Ir_Cfi_Blocked ),
|
---|
309 | DMARDIAG_DESC(Ir_Rfi_Intr_Index_Invalid ),
|
---|
310 | DMARDIAG_DESC(Ir_Rfi_Irte_Mode_Invalid ),
|
---|
311 | DMARDIAG_DESC(Ir_Rfi_Irte_Not_Present ),
|
---|
312 | DMARDIAG_DESC(Ir_Rfi_Irte_Read_Failed ),
|
---|
313 | DMARDIAG_DESC(Ir_Rfi_Irte_Rsvd ),
|
---|
314 | DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Bus ),
|
---|
315 | DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Masked ),
|
---|
316 | DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Rsvd ),
|
---|
317 | DMARDIAG_DESC(Ir_Rfi_Rsvd ),
|
---|
318 | /* kDmarDiag_End */
|
---|
319 | };
|
---|
320 | AssertCompile(RT_ELEMENTS(g_apszDmarDiagDesc) == kDmarDiag_End);
|
---|
321 | #undef DMARDIAG_DESC
|
---|
322 |
|
---|
323 | /**
|
---|
324 | * The shared DMAR device state.
|
---|
325 | */
|
---|
326 | typedef struct DMAR
|
---|
327 | {
|
---|
328 | /** IOMMU device index. */
|
---|
329 | uint32_t idxIommu;
|
---|
330 | /** Padding. */
|
---|
331 | uint32_t u32Padding0;
|
---|
332 |
|
---|
333 | /** Registers (group 0). */
|
---|
334 | uint8_t abRegs0[DMAR_MMIO_GROUP_0_SIZE];
|
---|
335 | /** Registers (group 1). */
|
---|
336 | uint8_t abRegs1[DMAR_MMIO_GROUP_1_SIZE];
|
---|
337 |
|
---|
338 | /** @name Lazily activated registers.
|
---|
339 | * These are the active values for lazily activated registers. Software is free to
|
---|
340 | * modify the actual register values while remapping/translation is enabled but they
|
---|
341 | * take effect only when explicitly signaled by software, hence we need to hold the
|
---|
342 | * active values separately.
|
---|
343 | * @{ */
|
---|
344 | /** Currently active IRTA_REG. */
|
---|
345 | uint64_t uIrtaReg;
|
---|
346 | /** Currently active RTADDR_REG. */
|
---|
347 | uint64_t uRtaddrReg;
|
---|
348 | /** @} */
|
---|
349 |
|
---|
350 | /** @name Register copies for a tiny bit faster and more convenient access.
|
---|
351 | * @{ */
|
---|
352 | /** Copy of VER_REG. */
|
---|
353 | uint8_t uVerReg;
|
---|
354 | /** Alignment. */
|
---|
355 | uint8_t abPadding0[7];
|
---|
356 | /** Copy of CAP_REG. */
|
---|
357 | uint64_t fCapReg;
|
---|
358 | /** Copy of ECAP_REG. */
|
---|
359 | uint64_t fExtCapReg;
|
---|
360 | /** @} */
|
---|
361 |
|
---|
362 | /** Host-address width (HAW) base address mask. */
|
---|
363 | uint64_t fHawBaseMask;
|
---|
364 | /** Maximum guest-address width (MGAW) invalid address mask. */
|
---|
365 | uint64_t fMgawInvMask;
|
---|
366 | /** Context-entry qword-1 valid mask. */
|
---|
367 | uint64_t fCtxEntryQw1ValidMask;
|
---|
368 | /** Maximum supported paging level (3, 4 or 5). */
|
---|
369 | uint8_t cMaxPagingLevel;
|
---|
370 | /** DMA request valid permissions mask. */
|
---|
371 | uint8_t fPermValidMask;
|
---|
372 | /** Alignment. */
|
---|
373 | uint8_t abPadding1[6];
|
---|
374 |
|
---|
375 | /** The event semaphore the invalidation-queue thread waits on. */
|
---|
376 | SUPSEMEVENT hEvtInvQueue;
|
---|
377 | /** Error diagnostic. */
|
---|
378 | DMARDIAG enmDiag;
|
---|
379 | /** Padding. */
|
---|
380 | uint32_t uPadding0;
|
---|
381 | /** The MMIO handle. */
|
---|
382 | IOMMMIOHANDLE hMmio;
|
---|
383 |
|
---|
384 | #ifdef VBOX_WITH_STATISTICS
|
---|
385 | STAMCOUNTER StatMmioReadR3; /**< Number of MMIO reads in R3. */
|
---|
386 | STAMCOUNTER StatMmioReadRZ; /**< Number of MMIO reads in RZ. */
|
---|
387 | STAMCOUNTER StatMmioWriteR3; /**< Number of MMIO writes in R3. */
|
---|
388 | STAMCOUNTER StatMmioWriteRZ; /**< Number of MMIO writes in RZ. */
|
---|
389 |
|
---|
390 | STAMCOUNTER StatMsiRemapCfiR3; /**< Number of compatibility-format interrupts remap requests in R3. */
|
---|
391 | STAMCOUNTER StatMsiRemapCfiRZ; /**< Number of compatibility-format interrupts remap requests in RZ. */
|
---|
392 | STAMCOUNTER StatMsiRemapRfiR3; /**< Number of remappable-format interrupts remap requests in R3. */
|
---|
393 | STAMCOUNTER StatMsiRemapRfiRZ; /**< Number of remappable-format interrupts remap requests in RZ. */
|
---|
394 |
|
---|
395 | STAMCOUNTER StatMemReadR3; /**< Number of memory read translation requests in R3. */
|
---|
396 | STAMCOUNTER StatMemReadRZ; /**< Number of memory read translation requests in RZ. */
|
---|
397 | STAMCOUNTER StatMemWriteR3; /**< Number of memory write translation requests in R3. */
|
---|
398 | STAMCOUNTER StatMemWriteRZ; /**< Number of memory write translation requests in RZ. */
|
---|
399 |
|
---|
400 | STAMCOUNTER StatMemBulkReadR3; /**< Number of memory read bulk translation requests in R3. */
|
---|
401 | STAMCOUNTER StatMemBulkReadRZ; /**< Number of memory read bulk translation requests in RZ. */
|
---|
402 | STAMCOUNTER StatMemBulkWriteR3; /**< Number of memory write bulk translation requests in R3. */
|
---|
403 | STAMCOUNTER StatMemBulkWriteRZ; /**< Number of memory write bulk translation requests in RZ. */
|
---|
404 |
|
---|
405 | STAMCOUNTER StatCcInvDsc; /**< Number of Context-cache descriptors processed. */
|
---|
406 | STAMCOUNTER StatIotlbInvDsc; /**< Number of IOTLB descriptors processed. */
|
---|
407 | STAMCOUNTER StatDevtlbInvDsc; /**< Number of Device-TLB descriptors processed. */
|
---|
408 | STAMCOUNTER StatIecInvDsc; /**< Number of Interrupt-Entry cache descriptors processed. */
|
---|
409 | STAMCOUNTER StatInvWaitDsc; /**< Number of Invalidation wait descriptors processed. */
|
---|
410 | STAMCOUNTER StatPasidIotlbInvDsc; /**< Number of PASID-based IOTLB descriptors processed. */
|
---|
411 | STAMCOUNTER StatPasidCacheInvDsc; /**< Number of PASID-cache descriptors processed. */
|
---|
412 | STAMCOUNTER StatPasidDevtlbInvDsc; /**< Number of PASID-based device-TLB descriptors processed. */
|
---|
413 | #endif
|
---|
414 | } DMAR;
|
---|
415 | /** Pointer to the DMAR device state. */
|
---|
416 | typedef DMAR *PDMAR;
|
---|
417 | /** Pointer to the const DMAR device state. */
|
---|
418 | typedef DMAR const *PCDMAR;
|
---|
419 | AssertCompileMemberAlignment(DMAR, abRegs0, 8);
|
---|
420 | AssertCompileMemberAlignment(DMAR, abRegs1, 8);
|
---|
421 |
|
---|
422 | /**
|
---|
423 | * The ring-3 DMAR device state.
|
---|
424 | */
|
---|
425 | typedef struct DMARR3
|
---|
426 | {
|
---|
427 | /** Device instance. */
|
---|
428 | PPDMDEVINSR3 pDevInsR3;
|
---|
429 | /** The IOMMU helper. */
|
---|
430 | R3PTRTYPE(PCPDMIOMMUHLPR3) pIommuHlpR3;
|
---|
431 | /** The invalidation-queue thread. */
|
---|
432 | R3PTRTYPE(PPDMTHREAD) pInvQueueThread;
|
---|
433 | } DMARR3;
|
---|
434 | /** Pointer to the ring-3 DMAR device state. */
|
---|
435 | typedef DMARR3 *PDMARR3;
|
---|
436 | /** Pointer to the const ring-3 DMAR device state. */
|
---|
437 | typedef DMARR3 const *PCDMARR3;
|
---|
438 |
|
---|
439 | /**
|
---|
440 | * The ring-0 DMAR device state.
|
---|
441 | */
|
---|
442 | typedef struct DMARR0
|
---|
443 | {
|
---|
444 | /** Device instance. */
|
---|
445 | PPDMDEVINSR0 pDevInsR0;
|
---|
446 | /** The IOMMU helper. */
|
---|
447 | R0PTRTYPE(PCPDMIOMMUHLPR0) pIommuHlpR0;
|
---|
448 | } DMARR0;
|
---|
449 | /** Pointer to the ring-0 IOMMU device state. */
|
---|
450 | typedef DMARR0 *PDMARR0;
|
---|
451 | /** Pointer to the const ring-0 IOMMU device state. */
|
---|
452 | typedef DMARR0 const *PCDMARR0;
|
---|
453 |
|
---|
454 | /**
|
---|
455 | * The raw-mode DMAR device state.
|
---|
456 | */
|
---|
457 | typedef struct DMARRC
|
---|
458 | {
|
---|
459 | /** Device instance. */
|
---|
460 | PPDMDEVINSRC pDevInsRC;
|
---|
461 | /** The IOMMU helper. */
|
---|
462 | RCPTRTYPE(PCPDMIOMMUHLPRC) pIommuHlpRC;
|
---|
463 | } DMARRC;
|
---|
464 | /** Pointer to the raw-mode DMAR device state. */
|
---|
465 | typedef DMARRC *PDMARRC;
|
---|
466 | /** Pointer to the const raw-mode DMAR device state. */
|
---|
467 | typedef DMARRC const *PCIDMARRC;
|
---|
468 |
|
---|
469 | /** The DMAR device state for the current context. */
|
---|
470 | typedef CTX_SUFF(DMAR) DMARCC;
|
---|
471 | /** Pointer to the DMAR device state for the current context. */
|
---|
472 | typedef CTX_SUFF(PDMAR) PDMARCC;
|
---|
473 | /** Pointer to the const DMAR device state for the current context. */
|
---|
474 | typedef CTX_SUFF(PDMAR) const PCDMARCC;
|
---|
475 |
|
---|
476 | /**
|
---|
477 | * DMAR originated events that generate interrupts.
|
---|
478 | */
|
---|
479 | typedef enum DMAREVENTTYPE
|
---|
480 | {
|
---|
481 | /** Invalidation completion event. */
|
---|
482 | DMAREVENTTYPE_INV_COMPLETE = 0,
|
---|
483 | /** Fault event. */
|
---|
484 | DMAREVENTTYPE_FAULT
|
---|
485 | } DMAREVENTTYPE;
|
---|
486 |
|
---|
487 | /**
|
---|
488 | * I/O Page.
|
---|
489 | */
|
---|
490 | typedef struct DMARIOPAGE
|
---|
491 | {
|
---|
492 | /** The base DMA address of a page. */
|
---|
493 | RTGCPHYS GCPhysBase;
|
---|
494 | /** The page shift. */
|
---|
495 | uint8_t cShift;
|
---|
496 | /** The permissions of this page (DMAR_PERM_XXX). */
|
---|
497 | uint8_t fPerm;
|
---|
498 | } DMARIOPAGE;
|
---|
499 | /** Pointer to an I/O page. */
|
---|
500 | typedef DMARIOPAGE *PDMARIOPAGE;
|
---|
501 | /** Pointer to a const I/O address range. */
|
---|
502 | typedef DMARIOPAGE const *PCDMARIOPAGE;
|
---|
503 |
|
---|
504 | /**
|
---|
505 | * I/O Address Range.
|
---|
506 | */
|
---|
507 | typedef struct DMARIOADDRRANGE
|
---|
508 | {
|
---|
509 | /** The starting DMA address of this range. */
|
---|
510 | uint64_t uAddr;
|
---|
511 | /** The size of the range (in bytes). */
|
---|
512 | size_t cb;
|
---|
513 | /** The permissions of this range (DMAR_PERM_XXX). */
|
---|
514 | uint8_t fPerm;
|
---|
515 | } DMARIOADDRRANGE;
|
---|
516 | /** Pointer to an I/O address range. */
|
---|
517 | typedef DMARIOADDRRANGE *PDMARIOADDRRANGE;
|
---|
518 | /** Pointer to a const I/O address range. */
|
---|
519 | typedef DMARIOADDRRANGE const *PCDMARIOADDRRANGE;
|
---|
520 |
|
---|
521 | /**
|
---|
522 | * DMA Memory Request (Input).
|
---|
523 | */
|
---|
524 | typedef struct DMARMEMREQIN
|
---|
525 | {
|
---|
526 | /** The address range being accessed. */
|
---|
527 | DMARIOADDRRANGE AddrRange;
|
---|
528 | /** The source device ID (bus, device, function). */
|
---|
529 | uint16_t idDevice;
|
---|
530 | /** The PASID if present (can be NIL_PCIPASID). */
|
---|
531 | PCIPASID Pasid;
|
---|
532 | /* The address translation type. */
|
---|
533 | PCIADDRTYPE enmAddrType;
|
---|
534 | /** The request type. */
|
---|
535 | VTDREQTYPE enmReqType;
|
---|
536 | } DMARMEMREQIN;
|
---|
537 | /** Pointer to a DMA memory request input. */
|
---|
538 | typedef DMARMEMREQIN *PDMARMEMREQIN;
|
---|
539 | /** Pointer to a const DMA memory input. */
|
---|
540 | typedef DMARMEMREQIN const *PCDMARMEMREQIN;
|
---|
541 |
|
---|
542 | /**
|
---|
543 | * DMA Memory Request (Output).
|
---|
544 | */
|
---|
545 | typedef struct DMARMEMREQOUT
|
---|
546 | {
|
---|
547 | /** The address range of the translated region. */
|
---|
548 | DMARIOADDRRANGE AddrRange;
|
---|
549 | /** The domain ID of the translated region. */
|
---|
550 | uint16_t idDomain;
|
---|
551 | } DMARMEMREQOUT;
|
---|
552 | /** Pointer to a DMA memory request output. */
|
---|
553 | typedef DMARMEMREQOUT *PDMARMEMREQOUT;
|
---|
554 | /** Pointer to a const DMA memory request output. */
|
---|
555 | typedef DMARMEMREQOUT const *PCDMARMEMREQOUT;
|
---|
556 |
|
---|
557 | /**
|
---|
558 | * DMA Memory Request (Auxiliary Info).
|
---|
559 | * These get updated and used as part of the translation process.
|
---|
560 | */
|
---|
561 | typedef struct DMARMEMREQAUX
|
---|
562 | {
|
---|
563 | /** The table translation mode (VTD_TTM_XXX). */
|
---|
564 | uint8_t fTtm;
|
---|
565 | /** The fault processing disabled (FPD) bit. */
|
---|
566 | uint8_t fFpd;
|
---|
567 | /** The paging level of the translation. */
|
---|
568 | uint8_t cPagingLevel;
|
---|
569 | uint8_t abPadding[5];
|
---|
570 | /** The address of the first-level page-table. */
|
---|
571 | uint64_t GCPhysFlPt;
|
---|
572 | /** The address of second-level page-table. */
|
---|
573 | uint64_t GCPhysSlPt;
|
---|
574 | } DMARMEMREQAUX;
|
---|
575 | /** Pointer to a DMA memory request output. */
|
---|
576 | typedef DMARMEMREQAUX *PDMARMEMREQAUX;
|
---|
577 | /** Pointer to a const DMA memory request output. */
|
---|
578 | typedef DMARMEMREQAUX const *PCDMARMEMREQAUX;
|
---|
579 |
|
---|
580 | /**
|
---|
581 | * DMA Memory Request Remapping Information.
|
---|
582 | */
|
---|
583 | typedef struct DMARMEMREQREMAP
|
---|
584 | {
|
---|
585 | /** The DMA memory request input. */
|
---|
586 | DMARMEMREQIN In;
|
---|
587 | /** DMA memory request auxiliary information. */
|
---|
588 | DMARMEMREQAUX Aux;
|
---|
589 | /** The DMA memory request output. */
|
---|
590 | DMARMEMREQOUT Out;
|
---|
591 | } DMARMEMREQREMAP;
|
---|
592 | /** Pointer to a DMA remap info. */
|
---|
593 | typedef DMARMEMREQREMAP *PDMARMEMREQREMAP;
|
---|
594 | /** Pointer to a const DMA remap info. */
|
---|
595 | typedef DMARMEMREQREMAP const *PCDMARMEMREQREMAP;
|
---|
596 |
|
---|
597 | /**
|
---|
598 | * Callback function to lookup a DMA address.
|
---|
599 | *
|
---|
600 | * @returns VBox status code.
|
---|
601 | * @param pDevIns The IOMMU device instance.
|
---|
602 | * @param pMemReqIn The DMA memory request input.
|
---|
603 | * @param pMemReqAux The DMA memory request auxiliary info.
|
---|
604 | * @param pIoPageOut Where to store the output of the lookup.
|
---|
605 | */
|
---|
606 | typedef DECLCALLBACKTYPE(int, FNDMADDRLOOKUP,(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux,
|
---|
607 | PDMARIOPAGE pIoPageOut));
|
---|
608 | /** Pointer to a DMA address-lookup function. */
|
---|
609 | typedef FNDMADDRLOOKUP *PFNDMADDRLOOKUP;
|
---|
610 |
|
---|
611 |
|
---|
612 | /*********************************************************************************************************************************
|
---|
613 | * Global Variables *
|
---|
614 | *********************************************************************************************************************************/
|
---|
615 | /**
|
---|
616 | * Read-write masks for DMAR registers (group 0).
|
---|
617 | */
|
---|
618 | static uint32_t const g_au32RwMasks0[] =
|
---|
619 | {
|
---|
620 | /* Offset Register Low High */
|
---|
621 | /* 0x000 VER_REG */ VTD_VER_REG_RW_MASK,
|
---|
622 | /* 0x004 Reserved */ 0,
|
---|
623 | /* 0x008 CAP_REG */ DMAR_LO_U32(VTD_CAP_REG_RW_MASK), DMAR_HI_U32(VTD_CAP_REG_RW_MASK),
|
---|
624 | /* 0x010 ECAP_REG */ DMAR_LO_U32(VTD_ECAP_REG_RW_MASK), DMAR_HI_U32(VTD_ECAP_REG_RW_MASK),
|
---|
625 | /* 0x018 GCMD_REG */ VTD_GCMD_REG_RW_MASK,
|
---|
626 | /* 0x01c GSTS_REG */ VTD_GSTS_REG_RW_MASK,
|
---|
627 | /* 0x020 RTADDR_REG */ DMAR_LO_U32(VTD_RTADDR_REG_RW_MASK), DMAR_HI_U32(VTD_RTADDR_REG_RW_MASK),
|
---|
628 | /* 0x028 CCMD_REG */ DMAR_LO_U32(VTD_CCMD_REG_RW_MASK), DMAR_HI_U32(VTD_CCMD_REG_RW_MASK),
|
---|
629 | /* 0x030 Reserved */ 0,
|
---|
630 | /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW_MASK,
|
---|
631 | /* 0x038 FECTL_REG */ VTD_FECTL_REG_RW_MASK,
|
---|
632 | /* 0x03c FEDATA_REG */ VTD_FEDATA_REG_RW_MASK,
|
---|
633 | /* 0x040 FEADDR_REG */ VTD_FEADDR_REG_RW_MASK,
|
---|
634 | /* 0x044 FEUADDR_REG */ VTD_FEUADDR_REG_RW_MASK,
|
---|
635 | /* 0x048 Reserved */ 0, 0,
|
---|
636 | /* 0x050 Reserved */ 0, 0,
|
---|
637 | /* 0x058 AFLOG_REG */ DMAR_LO_U32(VTD_AFLOG_REG_RW_MASK), DMAR_HI_U32(VTD_AFLOG_REG_RW_MASK),
|
---|
638 | /* 0x060 Reserved */ 0,
|
---|
639 | /* 0x064 PMEN_REG */ 0, /* RO as we don't support PLMR and PHMR. */
|
---|
640 | /* 0x068 PLMBASE_REG */ 0, /* RO as we don't support PLMR. */
|
---|
641 | /* 0x06c PLMLIMIT_REG */ 0, /* RO as we don't support PLMR. */
|
---|
642 | /* 0x070 PHMBASE_REG */ 0, 0, /* RO as we don't support PHMR. */
|
---|
643 | /* 0x078 PHMLIMIT_REG */ 0, 0, /* RO as we don't support PHMR. */
|
---|
644 | /* 0x080 IQH_REG */ DMAR_LO_U32(VTD_IQH_REG_RW_MASK), DMAR_HI_U32(VTD_IQH_REG_RW_MASK),
|
---|
645 | /* 0x088 IQT_REG */ DMAR_LO_U32(VTD_IQT_REG_RW_MASK), DMAR_HI_U32(VTD_IQT_REG_RW_MASK),
|
---|
646 | /* 0x090 IQA_REG */ DMAR_LO_U32(VTD_IQA_REG_RW_MASK), DMAR_HI_U32(VTD_IQA_REG_RW_MASK),
|
---|
647 | /* 0x098 Reserved */ 0,
|
---|
648 | /* 0x09c ICS_REG */ VTD_ICS_REG_RW_MASK,
|
---|
649 | /* 0x0a0 IECTL_REG */ VTD_IECTL_REG_RW_MASK,
|
---|
650 | /* 0x0a4 IEDATA_REG */ VTD_IEDATA_REG_RW_MASK,
|
---|
651 | /* 0x0a8 IEADDR_REG */ VTD_IEADDR_REG_RW_MASK,
|
---|
652 | /* 0x0ac IEUADDR_REG */ VTD_IEUADDR_REG_RW_MASK,
|
---|
653 | /* 0x0b0 IQERCD_REG */ DMAR_LO_U32(VTD_IQERCD_REG_RW_MASK), DMAR_HI_U32(VTD_IQERCD_REG_RW_MASK),
|
---|
654 | /* 0x0b8 IRTA_REG */ DMAR_LO_U32(VTD_IRTA_REG_RW_MASK), DMAR_HI_U32(VTD_IRTA_REG_RW_MASK),
|
---|
655 | /* 0x0c0 PQH_REG */ DMAR_LO_U32(VTD_PQH_REG_RW_MASK), DMAR_HI_U32(VTD_PQH_REG_RW_MASK),
|
---|
656 | /* 0x0c8 PQT_REG */ DMAR_LO_U32(VTD_PQT_REG_RW_MASK), DMAR_HI_U32(VTD_PQT_REG_RW_MASK),
|
---|
657 | /* 0x0d0 PQA_REG */ DMAR_LO_U32(VTD_PQA_REG_RW_MASK), DMAR_HI_U32(VTD_PQA_REG_RW_MASK),
|
---|
658 | /* 0x0d8 Reserved */ 0,
|
---|
659 | /* 0x0dc PRS_REG */ VTD_PRS_REG_RW_MASK,
|
---|
660 | /* 0x0e0 PECTL_REG */ VTD_PECTL_REG_RW_MASK,
|
---|
661 | /* 0x0e4 PEDATA_REG */ VTD_PEDATA_REG_RW_MASK,
|
---|
662 | /* 0x0e8 PEADDR_REG */ VTD_PEADDR_REG_RW_MASK,
|
---|
663 | /* 0x0ec PEUADDR_REG */ VTD_PEUADDR_REG_RW_MASK,
|
---|
664 | /* 0x0f0 Reserved */ 0, 0,
|
---|
665 | /* 0x0f8 Reserved */ 0, 0,
|
---|
666 | /* 0x100 MTRRCAP_REG */ DMAR_LO_U32(VTD_MTRRCAP_REG_RW_MASK), DMAR_HI_U32(VTD_MTRRCAP_REG_RW_MASK),
|
---|
667 | /* 0x108 MTRRDEF_REG */ 0, 0, /* RO as we don't support MTS. */
|
---|
668 | /* 0x110 Reserved */ 0, 0,
|
---|
669 | /* 0x118 Reserved */ 0, 0,
|
---|
670 | /* 0x120 MTRR_FIX64_00000_REG */ 0, 0, /* RO as we don't support MTS. */
|
---|
671 | /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
|
---|
672 | /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
|
---|
673 | /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
|
---|
674 | /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
|
---|
675 | /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
|
---|
676 | /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
|
---|
677 | /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
|
---|
678 | /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
|
---|
679 | /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
|
---|
680 | /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
|
---|
681 | /* 0x178 Reserved */ 0, 0,
|
---|
682 | /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0, /* RO as we don't support MTS. */
|
---|
683 | /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
|
---|
684 | /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
|
---|
685 | /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
|
---|
686 | /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
|
---|
687 | /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
|
---|
688 | /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
|
---|
689 | /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
|
---|
690 | /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
|
---|
691 | /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
|
---|
692 | /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
|
---|
693 | /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
|
---|
694 | /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
|
---|
695 | /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
|
---|
696 | /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
|
---|
697 | /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
|
---|
698 | /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
|
---|
699 | /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
|
---|
700 | /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
|
---|
701 | /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
|
---|
702 | };
|
---|
703 | AssertCompile(sizeof(g_au32RwMasks0) == DMAR_MMIO_GROUP_0_SIZE);
|
---|
704 |
|
---|
705 | /**
|
---|
706 | * Read-only Status, Write-1-to-clear masks for DMAR registers (group 0).
|
---|
707 | */
|
---|
708 | static uint32_t const g_au32Rw1cMasks0[] =
|
---|
709 | {
|
---|
710 | /* Offset Register Low High */
|
---|
711 | /* 0x000 VER_REG */ 0,
|
---|
712 | /* 0x004 Reserved */ 0,
|
---|
713 | /* 0x008 CAP_REG */ 0, 0,
|
---|
714 | /* 0x010 ECAP_REG */ 0, 0,
|
---|
715 | /* 0x018 GCMD_REG */ 0,
|
---|
716 | /* 0x01c GSTS_REG */ 0,
|
---|
717 | /* 0x020 RTADDR_REG */ 0, 0,
|
---|
718 | /* 0x028 CCMD_REG */ 0, 0,
|
---|
719 | /* 0x030 Reserved */ 0,
|
---|
720 | /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW1C_MASK,
|
---|
721 | /* 0x038 FECTL_REG */ 0,
|
---|
722 | /* 0x03c FEDATA_REG */ 0,
|
---|
723 | /* 0x040 FEADDR_REG */ 0,
|
---|
724 | /* 0x044 FEUADDR_REG */ 0,
|
---|
725 | /* 0x048 Reserved */ 0, 0,
|
---|
726 | /* 0x050 Reserved */ 0, 0,
|
---|
727 | /* 0x058 AFLOG_REG */ 0, 0,
|
---|
728 | /* 0x060 Reserved */ 0,
|
---|
729 | /* 0x064 PMEN_REG */ 0,
|
---|
730 | /* 0x068 PLMBASE_REG */ 0,
|
---|
731 | /* 0x06c PLMLIMIT_REG */ 0,
|
---|
732 | /* 0x070 PHMBASE_REG */ 0, 0,
|
---|
733 | /* 0x078 PHMLIMIT_REG */ 0, 0,
|
---|
734 | /* 0x080 IQH_REG */ 0, 0,
|
---|
735 | /* 0x088 IQT_REG */ 0, 0,
|
---|
736 | /* 0x090 IQA_REG */ 0, 0,
|
---|
737 | /* 0x098 Reserved */ 0,
|
---|
738 | /* 0x09c ICS_REG */ VTD_ICS_REG_RW1C_MASK,
|
---|
739 | /* 0x0a0 IECTL_REG */ 0,
|
---|
740 | /* 0x0a4 IEDATA_REG */ 0,
|
---|
741 | /* 0x0a8 IEADDR_REG */ 0,
|
---|
742 | /* 0x0ac IEUADDR_REG */ 0,
|
---|
743 | /* 0x0b0 IQERCD_REG */ 0, 0,
|
---|
744 | /* 0x0b8 IRTA_REG */ 0, 0,
|
---|
745 | /* 0x0c0 PQH_REG */ 0, 0,
|
---|
746 | /* 0x0c8 PQT_REG */ 0, 0,
|
---|
747 | /* 0x0d0 PQA_REG */ 0, 0,
|
---|
748 | /* 0x0d8 Reserved */ 0,
|
---|
749 | /* 0x0dc PRS_REG */ 0,
|
---|
750 | /* 0x0e0 PECTL_REG */ 0,
|
---|
751 | /* 0x0e4 PEDATA_REG */ 0,
|
---|
752 | /* 0x0e8 PEADDR_REG */ 0,
|
---|
753 | /* 0x0ec PEUADDR_REG */ 0,
|
---|
754 | /* 0x0f0 Reserved */ 0, 0,
|
---|
755 | /* 0x0f8 Reserved */ 0, 0,
|
---|
756 | /* 0x100 MTRRCAP_REG */ 0, 0,
|
---|
757 | /* 0x108 MTRRDEF_REG */ 0, 0,
|
---|
758 | /* 0x110 Reserved */ 0, 0,
|
---|
759 | /* 0x118 Reserved */ 0, 0,
|
---|
760 | /* 0x120 MTRR_FIX64_00000_REG */ 0, 0,
|
---|
761 | /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
|
---|
762 | /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
|
---|
763 | /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
|
---|
764 | /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
|
---|
765 | /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
|
---|
766 | /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
|
---|
767 | /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
|
---|
768 | /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
|
---|
769 | /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
|
---|
770 | /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
|
---|
771 | /* 0x178 Reserved */ 0, 0,
|
---|
772 | /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0,
|
---|
773 | /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
|
---|
774 | /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
|
---|
775 | /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
|
---|
776 | /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
|
---|
777 | /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
|
---|
778 | /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
|
---|
779 | /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
|
---|
780 | /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
|
---|
781 | /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
|
---|
782 | /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
|
---|
783 | /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
|
---|
784 | /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
|
---|
785 | /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
|
---|
786 | /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
|
---|
787 | /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
|
---|
788 | /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
|
---|
789 | /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
|
---|
790 | /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
|
---|
791 | /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
|
---|
792 | };
|
---|
793 | AssertCompile(sizeof(g_au32Rw1cMasks0) == DMAR_MMIO_GROUP_0_SIZE);
|
---|
794 |
|
---|
795 | /**
|
---|
796 | * Read-write masks for DMAR registers (group 1).
|
---|
797 | */
|
---|
798 | static uint32_t const g_au32RwMasks1[] =
|
---|
799 | {
|
---|
800 | /* Offset Register Low High */
|
---|
801 | /* 0xe00 VCCAP_REG */ DMAR_LO_U32(VTD_VCCAP_REG_RW_MASK), DMAR_HI_U32(VTD_VCCAP_REG_RW_MASK),
|
---|
802 | /* 0xe08 VCMD_EO_REG */ DMAR_LO_U32(VTD_VCMD_EO_REG_RW_MASK), DMAR_HI_U32(VTD_VCMD_EO_REG_RW_MASK),
|
---|
803 | /* 0xe10 VCMD_REG */ 0, 0, /* RO: VCS not supported. */
|
---|
804 | /* 0xe18 VCMDRSVD_REG */ 0, 0,
|
---|
805 | /* 0xe20 VCRSP_REG */ 0, 0, /* RO: VCS not supported. */
|
---|
806 | /* 0xe28 VCRSPRSVD_REG */ 0, 0,
|
---|
807 | /* 0xe30 Reserved */ 0, 0,
|
---|
808 | /* 0xe38 Reserved */ 0, 0,
|
---|
809 | /* 0xe40 Reserved */ 0, 0,
|
---|
810 | /* 0xe48 Reserved */ 0, 0,
|
---|
811 | /* 0xe50 IVA_REG */ DMAR_LO_U32(VTD_IVA_REG_RW_MASK), DMAR_HI_U32(VTD_IVA_REG_RW_MASK),
|
---|
812 | /* 0xe58 IOTLB_REG */ DMAR_LO_U32(VTD_IOTLB_REG_RW_MASK), DMAR_HI_U32(VTD_IOTLB_REG_RW_MASK),
|
---|
813 | /* 0xe60 Reserved */ 0, 0,
|
---|
814 | /* 0xe68 Reserved */ 0, 0,
|
---|
815 | /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW_MASK),
|
---|
816 | /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW_MASK),
|
---|
817 | };
|
---|
818 | AssertCompile(sizeof(g_au32RwMasks1) == DMAR_MMIO_GROUP_1_SIZE);
|
---|
819 | AssertCompile((DMAR_MMIO_OFF_FRCD_LO_REG - DMAR_MMIO_GROUP_1_OFF_FIRST) + DMAR_FRCD_REG_COUNT * 2 * sizeof(uint64_t) );
|
---|
820 |
|
---|
821 | /**
|
---|
822 | * Read-only Status, Write-1-to-clear masks for DMAR registers (group 1).
|
---|
823 | */
|
---|
824 | static uint32_t const g_au32Rw1cMasks1[] =
|
---|
825 | {
|
---|
826 | /* Offset Register Low High */
|
---|
827 | /* 0xe00 VCCAP_REG */ 0, 0,
|
---|
828 | /* 0xe08 VCMD_EO_REG */ 0, 0,
|
---|
829 | /* 0xe10 VCMD_REG */ 0, 0,
|
---|
830 | /* 0xe18 VCMDRSVD_REG */ 0, 0,
|
---|
831 | /* 0xe20 VCRSP_REG */ 0, 0,
|
---|
832 | /* 0xe28 VCRSPRSVD_REG */ 0, 0,
|
---|
833 | /* 0xe30 Reserved */ 0, 0,
|
---|
834 | /* 0xe38 Reserved */ 0, 0,
|
---|
835 | /* 0xe40 Reserved */ 0, 0,
|
---|
836 | /* 0xe48 Reserved */ 0, 0,
|
---|
837 | /* 0xe50 IVA_REG */ 0, 0,
|
---|
838 | /* 0xe58 IOTLB_REG */ 0, 0,
|
---|
839 | /* 0xe60 Reserved */ 0, 0,
|
---|
840 | /* 0xe68 Reserved */ 0, 0,
|
---|
841 | /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW1C_MASK),
|
---|
842 | /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW1C_MASK),
|
---|
843 | };
|
---|
844 | AssertCompile(sizeof(g_au32Rw1cMasks1) == DMAR_MMIO_GROUP_1_SIZE);
|
---|
845 |
|
---|
846 | /** Array of RW masks for each register group. */
|
---|
847 | static uint8_t const *g_apbRwMasks[] = { (uint8_t *)&g_au32RwMasks0[0], (uint8_t *)&g_au32RwMasks1[0] };
|
---|
848 |
|
---|
849 | /** Array of RW1C masks for each register group. */
|
---|
850 | static uint8_t const *g_apbRw1cMasks[] = { (uint8_t *)&g_au32Rw1cMasks0[0], (uint8_t *)&g_au32Rw1cMasks1[0] };
|
---|
851 |
|
---|
852 | /* Masks arrays must be identical in size (even bounds checking code assumes this). */
|
---|
853 | AssertCompile(sizeof(g_apbRw1cMasks) == sizeof(g_apbRwMasks));
|
---|
854 |
|
---|
855 | /** Array of valid domain-ID bits. */
|
---|
856 | static uint16_t const g_auNdMask[] = { 0xf, 0x3f, 0xff, 0x3ff, 0xfff, 0x3fff, 0xffff, 0 };
|
---|
857 | AssertCompile(RT_ELEMENTS(g_auNdMask) >= DMAR_ND);
|
---|
858 |
|
---|
859 |
|
---|
860 | #ifndef VBOX_DEVICE_STRUCT_TESTCASE
|
---|
861 | /**
|
---|
862 | * Returns the supported adjusted guest-address width (SAGAW) given the maximum
|
---|
863 | * guest address width (MGAW).
|
---|
864 | *
|
---|
865 | * @returns The CAP_REG.SAGAW value.
|
---|
866 | * @param uMgaw The CAP_REG.MGAW value.
|
---|
867 | */
|
---|
868 | static uint8_t vtdCapRegGetSagaw(uint8_t uMgaw)
|
---|
869 | {
|
---|
870 | /*
|
---|
871 | * It doesn't make sense to me that a CPU (or IOMMU hardware) will ever support
|
---|
872 | * 5-level paging but not 4 or 3-level paging. So smaller page-table levels
|
---|
873 | * are always OR'ed in below.
|
---|
874 | *
|
---|
875 | * The bit values below (57, 48, 39 bits) represents the levels of page-table walks
|
---|
876 | * for 4KB base page size (5-level, 4-level and 3-level paging respectively).
|
---|
877 | *
|
---|
878 | * See Intel VT-d spec. 10.4.2 "Capability Register".
|
---|
879 | */
|
---|
880 | ++uMgaw;
|
---|
881 | uint8_t const fSagaw = uMgaw >= 57 ? RT_BIT(3) | RT_BIT(2) | RT_BIT(1)
|
---|
882 | : uMgaw >= 48 ? RT_BIT(2) | RT_BIT(1)
|
---|
883 | : uMgaw >= 39 ? RT_BIT(1)
|
---|
884 | : 0;
|
---|
885 | return fSagaw;
|
---|
886 | }
|
---|
887 |
|
---|
888 |
|
---|
889 | /**
|
---|
890 | * Returns the maximum supported paging level given the supported adjusted
|
---|
891 | * guest-address width (SAGAW) field.
|
---|
892 | *
|
---|
893 | * @returns The highest paging level supported, 0 if invalid.
|
---|
894 | * @param fSagaw The CAP_REG.SAGAW value.
|
---|
895 | */
|
---|
896 | static uint8_t vtdCapRegGetMaxPagingLevel(uint8_t fSagaw)
|
---|
897 | {
|
---|
898 | uint8_t const cMaxPagingLevel = fSagaw & RT_BIT(3) ? 5
|
---|
899 | : fSagaw & RT_BIT(2) ? 4
|
---|
900 | : fSagaw & RT_BIT(1) ? 3
|
---|
901 | : 0;
|
---|
902 | return cMaxPagingLevel;
|
---|
903 | }
|
---|
904 |
|
---|
905 |
|
---|
906 | /**
|
---|
907 | * Returns whether the interrupt remapping (IR) fault is qualified or not.
|
---|
908 | *
|
---|
909 | * @returns @c true if qualified, @c false otherwise.
|
---|
910 | * @param enmIrFault The interrupt remapping fault condition.
|
---|
911 | */
|
---|
912 | static bool vtdIrFaultIsQualified(VTDIRFAULT enmIrFault)
|
---|
913 | {
|
---|
914 | switch (enmIrFault)
|
---|
915 | {
|
---|
916 | case VTDIRFAULT_IRTE_NOT_PRESENT:
|
---|
917 | case VTDIRFAULT_IRTE_PRESENT_RSVD:
|
---|
918 | case VTDIRFAULT_IRTE_PRESENT_INVALID:
|
---|
919 | case VTDIRFAULT_PID_READ_FAILED:
|
---|
920 | case VTDIRFAULT_PID_RSVD:
|
---|
921 | return true;
|
---|
922 | default:
|
---|
923 | return false;
|
---|
924 | }
|
---|
925 | }
|
---|
926 |
|
---|
927 |
|
---|
928 | /**
|
---|
929 | * Returns table translation mode's descriptive name.
|
---|
930 | *
|
---|
931 | * @returns The descriptive name.
|
---|
932 | * @param uTtm The RTADDR_REG.TTM value.
|
---|
933 | */
|
---|
934 | static const char* vtdRtaddrRegGetTtmDesc(uint8_t uTtm)
|
---|
935 | {
|
---|
936 | Assert(!(uTtm & 3));
|
---|
937 | static const char* s_apszTtmNames[] =
|
---|
938 | {
|
---|
939 | "Legacy Mode",
|
---|
940 | "Scalable Mode",
|
---|
941 | "Reserved",
|
---|
942 | "Abort-DMA Mode"
|
---|
943 | };
|
---|
944 | return s_apszTtmNames[uTtm & (RT_ELEMENTS(s_apszTtmNames) - 1)];
|
---|
945 | }
|
---|
946 |
|
---|
947 |
|
---|
948 | /**
|
---|
949 | * Gets the index of the group the register belongs to given its MMIO offset.
|
---|
950 | *
|
---|
951 | * @returns The group index.
|
---|
952 | * @param offReg The MMIO offset of the register.
|
---|
953 | * @param cbReg The size of the access being made (for bounds checking on
|
---|
954 | * debug builds).
|
---|
955 | */
|
---|
956 | DECLINLINE(uint8_t) dmarRegGetGroupIndex(uint16_t offReg, uint8_t cbReg)
|
---|
957 | {
|
---|
958 | uint16_t const offLast = offReg + cbReg - 1;
|
---|
959 | AssertCompile(DMAR_MMIO_GROUP_0_OFF_FIRST == 0);
|
---|
960 | AssertMsg(DMAR_IS_MMIO_OFF_VALID(offLast), ("off=%#x cb=%u\n", offReg, cbReg));
|
---|
961 | return !(offLast < DMAR_MMIO_GROUP_0_OFF_END);
|
---|
962 | }
|
---|
963 |
|
---|
964 |
|
---|
965 | /**
|
---|
966 | * Gets the group the register belongs to given its MMIO offset.
|
---|
967 | *
|
---|
968 | * @returns Pointer to the first element of the register group.
|
---|
969 | * @param pThis The shared DMAR device state.
|
---|
970 | * @param offReg The MMIO offset of the register.
|
---|
971 | * @param cbReg The size of the access being made (for bounds checking on
|
---|
972 | * debug builds).
|
---|
973 | * @param pIdxGroup Where to store the index of the register group the register
|
---|
974 | * belongs to.
|
---|
975 | */
|
---|
976 | DECLINLINE(uint8_t *) dmarRegGetGroup(PDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
|
---|
977 | {
|
---|
978 | *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
|
---|
979 | uint8_t *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
|
---|
980 | return apbRegs[*pIdxGroup];
|
---|
981 | }
|
---|
982 |
|
---|
983 |
|
---|
984 | /**
|
---|
985 | * Const/read-only version of dmarRegGetGroup.
|
---|
986 | *
|
---|
987 | * @copydoc dmarRegGetGroup
|
---|
988 | */
|
---|
989 | DECLINLINE(uint8_t const*) dmarRegGetGroupRo(PCDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
|
---|
990 | {
|
---|
991 | *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
|
---|
992 | uint8_t const *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
|
---|
993 | return apbRegs[*pIdxGroup];
|
---|
994 | }
|
---|
995 |
|
---|
996 |
|
---|
997 | /**
|
---|
998 | * Writes a 32-bit register with the exactly the supplied value.
|
---|
999 | *
|
---|
1000 | * @param pThis The shared DMAR device state.
|
---|
1001 | * @param offReg The MMIO offset of the register.
|
---|
1002 | * @param uReg The 32-bit value to write.
|
---|
1003 | */
|
---|
1004 | static void dmarRegWriteRaw32(PDMAR pThis, uint16_t offReg, uint32_t uReg)
|
---|
1005 | {
|
---|
1006 | uint8_t idxGroup;
|
---|
1007 | uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint32_t), &idxGroup);
|
---|
1008 | NOREF(idxGroup);
|
---|
1009 | *(uint32_t *)(pabRegs + offReg) = uReg;
|
---|
1010 | }
|
---|
1011 |
|
---|
1012 |
|
---|
1013 | /**
|
---|
1014 | * Writes a 64-bit register with the exactly the supplied value.
|
---|
1015 | *
|
---|
1016 | * @param pThis The shared DMAR device state.
|
---|
1017 | * @param offReg The MMIO offset of the register.
|
---|
1018 | * @param uReg The 64-bit value to write.
|
---|
1019 | */
|
---|
1020 | static void dmarRegWriteRaw64(PDMAR pThis, uint16_t offReg, uint64_t uReg)
|
---|
1021 | {
|
---|
1022 | uint8_t idxGroup;
|
---|
1023 | uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint64_t), &idxGroup);
|
---|
1024 | NOREF(idxGroup);
|
---|
1025 | *(uint64_t *)(pabRegs + offReg) = uReg;
|
---|
1026 | }
|
---|
1027 |
|
---|
1028 |
|
---|
1029 | /**
|
---|
1030 | * Reads a 32-bit register with exactly the value it contains.
|
---|
1031 | *
|
---|
1032 | * @returns The raw register value.
|
---|
1033 | * @param pThis The shared DMAR device state.
|
---|
1034 | * @param offReg The MMIO offset of the register.
|
---|
1035 | */
|
---|
1036 | static uint32_t dmarRegReadRaw32(PCDMAR pThis, uint16_t offReg)
|
---|
1037 | {
|
---|
1038 | uint8_t idxGroup;
|
---|
1039 | uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
|
---|
1040 | NOREF(idxGroup);
|
---|
1041 | return *(uint32_t *)(pabRegs + offReg);
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 |
|
---|
1045 | /**
|
---|
1046 | * Reads a 64-bit register with exactly the value it contains.
|
---|
1047 | *
|
---|
1048 | * @returns The raw register value.
|
---|
1049 | * @param pThis The shared DMAR device state.
|
---|
1050 | * @param offReg The MMIO offset of the register.
|
---|
1051 | */
|
---|
1052 | static uint64_t dmarRegReadRaw64(PCDMAR pThis, uint16_t offReg)
|
---|
1053 | {
|
---|
1054 | uint8_t idxGroup;
|
---|
1055 | uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
|
---|
1056 | NOREF(idxGroup);
|
---|
1057 | return *(uint64_t *)(pabRegs + offReg);
|
---|
1058 | }
|
---|
1059 |
|
---|
1060 |
|
---|
1061 | /**
|
---|
1062 | * Reads a 32-bit register with exactly the value it contains along with their
|
---|
1063 | * corresponding masks
|
---|
1064 | *
|
---|
1065 | * @param pThis The shared DMAR device state.
|
---|
1066 | * @param offReg The MMIO offset of the register.
|
---|
1067 | * @param puReg Where to store the raw 32-bit register value.
|
---|
1068 | * @param pfRwMask Where to store the RW mask corresponding to this register.
|
---|
1069 | * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
|
---|
1070 | */
|
---|
1071 | static void dmarRegReadRaw32Ex(PCDMAR pThis, uint16_t offReg, uint32_t *puReg, uint32_t *pfRwMask, uint32_t *pfRw1cMask)
|
---|
1072 | {
|
---|
1073 | uint8_t idxGroup;
|
---|
1074 | uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
|
---|
1075 | Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
|
---|
1076 | uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
|
---|
1077 | uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
|
---|
1078 | *puReg = *(uint32_t *)(pabRegs + offReg);
|
---|
1079 | *pfRwMask = *(uint32_t *)(pabRwMasks + offReg);
|
---|
1080 | *pfRw1cMask = *(uint32_t *)(pabRw1cMasks + offReg);
|
---|
1081 | }
|
---|
1082 |
|
---|
1083 |
|
---|
1084 | /**
|
---|
1085 | * Reads a 64-bit register with exactly the value it contains along with their
|
---|
1086 | * corresponding masks.
|
---|
1087 | *
|
---|
1088 | * @param pThis The shared DMAR device state.
|
---|
1089 | * @param offReg The MMIO offset of the register.
|
---|
1090 | * @param puReg Where to store the raw 64-bit register value.
|
---|
1091 | * @param pfRwMask Where to store the RW mask corresponding to this register.
|
---|
1092 | * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
|
---|
1093 | */
|
---|
1094 | static void dmarRegReadRaw64Ex(PCDMAR pThis, uint16_t offReg, uint64_t *puReg, uint64_t *pfRwMask, uint64_t *pfRw1cMask)
|
---|
1095 | {
|
---|
1096 | uint8_t idxGroup;
|
---|
1097 | uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
|
---|
1098 | Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
|
---|
1099 | uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
|
---|
1100 | uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
|
---|
1101 | *puReg = *(uint64_t *)(pabRegs + offReg);
|
---|
1102 | *pfRwMask = *(uint64_t *)(pabRwMasks + offReg);
|
---|
1103 | *pfRw1cMask = *(uint64_t *)(pabRw1cMasks + offReg);
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 |
|
---|
1107 | /**
|
---|
1108 | * Writes a 32-bit register as it would be when written by software.
|
---|
1109 | * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
|
---|
1110 | *
|
---|
1111 | * @returns The value that's actually written to the register.
|
---|
1112 | * @param pThis The shared DMAR device state.
|
---|
1113 | * @param offReg The MMIO offset of the register.
|
---|
1114 | * @param uReg The 32-bit value to write.
|
---|
1115 | * @param puPrev Where to store the register value prior to writing.
|
---|
1116 | */
|
---|
1117 | static uint32_t dmarRegWrite32(PDMAR pThis, uint16_t offReg, uint32_t uReg, uint32_t *puPrev)
|
---|
1118 | {
|
---|
1119 | /* Read current value from the 32-bit register. */
|
---|
1120 | uint32_t uCurReg;
|
---|
1121 | uint32_t fRwMask;
|
---|
1122 | uint32_t fRw1cMask;
|
---|
1123 | dmarRegReadRaw32Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
|
---|
1124 | *puPrev = uCurReg;
|
---|
1125 |
|
---|
1126 | uint32_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
|
---|
1127 | uint32_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
|
---|
1128 | uint32_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
|
---|
1129 | uint32_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
|
---|
1130 |
|
---|
1131 | /* Write new value to the 32-bit register. */
|
---|
1132 | dmarRegWriteRaw32(pThis, offReg, uNewReg);
|
---|
1133 | return uNewReg;
|
---|
1134 | }
|
---|
1135 |
|
---|
1136 |
|
---|
1137 | /**
|
---|
1138 | * Writes a 64-bit register as it would be when written by software.
|
---|
1139 | * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
|
---|
1140 | *
|
---|
1141 | * @returns The value that's actually written to the register.
|
---|
1142 | * @param pThis The shared DMAR device state.
|
---|
1143 | * @param offReg The MMIO offset of the register.
|
---|
1144 | * @param uReg The 64-bit value to write.
|
---|
1145 | * @param puPrev Where to store the register value prior to writing.
|
---|
1146 | */
|
---|
1147 | static uint64_t dmarRegWrite64(PDMAR pThis, uint16_t offReg, uint64_t uReg, uint64_t *puPrev)
|
---|
1148 | {
|
---|
1149 | /* Read current value from the 64-bit register. */
|
---|
1150 | uint64_t uCurReg;
|
---|
1151 | uint64_t fRwMask;
|
---|
1152 | uint64_t fRw1cMask;
|
---|
1153 | dmarRegReadRaw64Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
|
---|
1154 | *puPrev = uCurReg;
|
---|
1155 |
|
---|
1156 | uint64_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
|
---|
1157 | uint64_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
|
---|
1158 | uint64_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
|
---|
1159 | uint64_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
|
---|
1160 |
|
---|
1161 | /* Write new value to the 64-bit register. */
|
---|
1162 | dmarRegWriteRaw64(pThis, offReg, uNewReg);
|
---|
1163 | return uNewReg;
|
---|
1164 | }
|
---|
1165 |
|
---|
1166 |
|
---|
1167 | /**
|
---|
1168 | * Reads a 32-bit register as it would be when read by software.
|
---|
1169 | *
|
---|
1170 | * @returns The register value.
|
---|
1171 | * @param pThis The shared DMAR device state.
|
---|
1172 | * @param offReg The MMIO offset of the register.
|
---|
1173 | */
|
---|
1174 | static uint32_t dmarRegRead32(PCDMAR pThis, uint16_t offReg)
|
---|
1175 | {
|
---|
1176 | return dmarRegReadRaw32(pThis, offReg);
|
---|
1177 | }
|
---|
1178 |
|
---|
1179 |
|
---|
1180 | /**
|
---|
1181 | * Reads a 64-bit register as it would be when read by software.
|
---|
1182 | *
|
---|
1183 | * @returns The register value.
|
---|
1184 | * @param pThis The shared DMAR device state.
|
---|
1185 | * @param offReg The MMIO offset of the register.
|
---|
1186 | */
|
---|
1187 | static uint64_t dmarRegRead64(PCDMAR pThis, uint16_t offReg)
|
---|
1188 | {
|
---|
1189 | return dmarRegReadRaw64(pThis, offReg);
|
---|
1190 | }
|
---|
1191 |
|
---|
1192 |
|
---|
1193 | /**
|
---|
1194 | * Modifies a 32-bit register.
|
---|
1195 | *
|
---|
1196 | * @param pThis The shared DMAR device state.
|
---|
1197 | * @param offReg The MMIO offset of the register.
|
---|
1198 | * @param fAndMask The AND mask (applied first).
|
---|
1199 | * @param fOrMask The OR mask.
|
---|
1200 | * @remarks This does NOT apply RO or RW1C masks while modifying the
|
---|
1201 | * register.
|
---|
1202 | */
|
---|
1203 | static void dmarRegChangeRaw32(PDMAR pThis, uint16_t offReg, uint32_t fAndMask, uint32_t fOrMask)
|
---|
1204 | {
|
---|
1205 | uint32_t uReg = dmarRegReadRaw32(pThis, offReg);
|
---|
1206 | uReg = (uReg & fAndMask) | fOrMask;
|
---|
1207 | dmarRegWriteRaw32(pThis, offReg, uReg);
|
---|
1208 | }
|
---|
1209 |
|
---|
1210 |
|
---|
1211 | /**
|
---|
1212 | * Modifies a 64-bit register.
|
---|
1213 | *
|
---|
1214 | * @param pThis The shared DMAR device state.
|
---|
1215 | * @param offReg The MMIO offset of the register.
|
---|
1216 | * @param fAndMask The AND mask (applied first).
|
---|
1217 | * @param fOrMask The OR mask.
|
---|
1218 | * @remarks This does NOT apply RO or RW1C masks while modifying the
|
---|
1219 | * register.
|
---|
1220 | */
|
---|
1221 | static void dmarRegChangeRaw64(PDMAR pThis, uint16_t offReg, uint64_t fAndMask, uint64_t fOrMask)
|
---|
1222 | {
|
---|
1223 | uint64_t uReg = dmarRegReadRaw64(pThis, offReg);
|
---|
1224 | uReg = (uReg & fAndMask) | fOrMask;
|
---|
1225 | dmarRegWriteRaw64(pThis, offReg, uReg);
|
---|
1226 | }
|
---|
1227 |
|
---|
1228 |
|
---|
1229 | /**
|
---|
1230 | * Checks if the invalidation-queue is empty.
|
---|
1231 | *
|
---|
1232 | * Extended version which optionally returns the current queue head and tail
|
---|
1233 | * offsets.
|
---|
1234 | *
|
---|
1235 | * @returns @c true if empty, @c false otherwise.
|
---|
1236 | * @param pThis The shared DMAR device state.
|
---|
1237 | * @param poffQh Where to store the queue head offset. Optional, can be NULL.
|
---|
1238 | * @param poffQt Where to store the queue tail offset. Optional, can be NULL.
|
---|
1239 | */
|
---|
1240 | static bool dmarInvQueueIsEmptyEx(PCDMAR pThis, uint32_t *poffQh, uint32_t *poffQt)
|
---|
1241 | {
|
---|
1242 | /* Read only the low-32 bits of the queue head and queue tail as high bits are all RsvdZ.*/
|
---|
1243 | uint32_t const uIqtReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQT_REG);
|
---|
1244 | uint32_t const uIqhReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQH_REG);
|
---|
1245 |
|
---|
1246 | /* Don't bother masking QT, QH since other bits are RsvdZ. */
|
---|
1247 | Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
|
---|
1248 | Assert(!(uIqhReg & ~VTD_BF_IQH_REG_QH_MASK));
|
---|
1249 | if (poffQh)
|
---|
1250 | *poffQh = uIqhReg;
|
---|
1251 | if (poffQt)
|
---|
1252 | *poffQt = uIqtReg;
|
---|
1253 | return uIqtReg == uIqhReg;
|
---|
1254 | }
|
---|
1255 |
|
---|
1256 |
|
---|
1257 | /**
|
---|
1258 | * Checks if the invalidation-queue is empty.
|
---|
1259 | *
|
---|
1260 | * @returns @c true if empty, @c false otherwise.
|
---|
1261 | * @param pThis The shared DMAR device state.
|
---|
1262 | */
|
---|
1263 | static bool dmarInvQueueIsEmpty(PCDMAR pThis)
|
---|
1264 | {
|
---|
1265 | return dmarInvQueueIsEmptyEx(pThis, NULL /* poffQh */, NULL /* poffQt */);
|
---|
1266 | }
|
---|
1267 |
|
---|
1268 |
|
---|
1269 | /**
|
---|
1270 | * Checks if the invalidation-queue is capable of processing requests.
|
---|
1271 | *
|
---|
1272 | * @returns @c true if the invalidation-queue can process requests, @c false
|
---|
1273 | * otherwise.
|
---|
1274 | * @param pThis The shared DMAR device state.
|
---|
1275 | */
|
---|
1276 | static bool dmarInvQueueCanProcessRequests(PCDMAR pThis)
|
---|
1277 | {
|
---|
1278 | /* Check if queued-invalidation is enabled. */
|
---|
1279 | uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
|
---|
1280 | if (uGstsReg & VTD_BF_GSTS_REG_QIES_MASK)
|
---|
1281 | {
|
---|
1282 | /* Check if there are no invalidation-queue or timeout errors. */
|
---|
1283 | uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
|
---|
1284 | if (!(uFstsReg & (VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_ITE_MASK)))
|
---|
1285 | return true;
|
---|
1286 | }
|
---|
1287 | return false;
|
---|
1288 | }
|
---|
1289 |
|
---|
1290 |
|
---|
1291 | /**
|
---|
1292 | * Wakes up the invalidation-queue thread if there are requests to be processed.
|
---|
1293 | *
|
---|
1294 | * @param pDevIns The IOMMU device instance.
|
---|
1295 | */
|
---|
1296 | static void dmarInvQueueThreadWakeUpIfNeeded(PPDMDEVINS pDevIns)
|
---|
1297 | {
|
---|
1298 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1299 | PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
|
---|
1300 | LogFlowFunc(("\n"));
|
---|
1301 |
|
---|
1302 | DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
|
---|
1303 |
|
---|
1304 | if ( dmarInvQueueCanProcessRequests(pThis)
|
---|
1305 | && !dmarInvQueueIsEmpty(pThis))
|
---|
1306 | {
|
---|
1307 | Log4Func(("Signaling the invalidation-queue thread\n"));
|
---|
1308 | PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
|
---|
1309 | }
|
---|
1310 | }
|
---|
1311 |
|
---|
1312 |
|
---|
1313 | /**
|
---|
1314 | * Raises an event on behalf of the DMAR.
|
---|
1315 | *
|
---|
1316 | * These are events that are generated by the DMAR itself (like faults and
|
---|
1317 | * invalidation completion notifications).
|
---|
1318 | *
|
---|
1319 | * @param pDevIns The IOMMU device instance.
|
---|
1320 | * @param enmEventType The DMAR event type.
|
---|
1321 | *
|
---|
1322 | * @remarks The DMAR lock must be held while calling this function.
|
---|
1323 | */
|
---|
1324 | static void dmarEventRaiseInterrupt(PPDMDEVINS pDevIns, DMAREVENTTYPE enmEventType)
|
---|
1325 | {
|
---|
1326 | uint16_t offCtlReg;
|
---|
1327 | uint32_t fIntrMaskedMask;
|
---|
1328 | uint32_t fIntrPendingMask;
|
---|
1329 | uint16_t offMsiAddrLoReg;
|
---|
1330 | uint16_t offMsiAddrHiReg;
|
---|
1331 | uint16_t offMsiDataReg;
|
---|
1332 | switch (enmEventType)
|
---|
1333 | {
|
---|
1334 | case DMAREVENTTYPE_INV_COMPLETE:
|
---|
1335 | {
|
---|
1336 | offCtlReg = VTD_MMIO_OFF_IECTL_REG;
|
---|
1337 | fIntrMaskedMask = VTD_BF_IECTL_REG_IM_MASK;
|
---|
1338 | fIntrPendingMask = VTD_BF_IECTL_REG_IP_MASK;
|
---|
1339 | offMsiAddrLoReg = VTD_MMIO_OFF_IEADDR_REG;
|
---|
1340 | offMsiAddrHiReg = VTD_MMIO_OFF_IEUADDR_REG;
|
---|
1341 | offMsiDataReg = VTD_MMIO_OFF_IEDATA_REG;
|
---|
1342 | break;
|
---|
1343 | }
|
---|
1344 |
|
---|
1345 | case DMAREVENTTYPE_FAULT:
|
---|
1346 | {
|
---|
1347 | offCtlReg = VTD_MMIO_OFF_FECTL_REG;
|
---|
1348 | fIntrMaskedMask = VTD_BF_FECTL_REG_IM_MASK;
|
---|
1349 | fIntrPendingMask = VTD_BF_FECTL_REG_IP_MASK;
|
---|
1350 | offMsiAddrLoReg = VTD_MMIO_OFF_FEADDR_REG;
|
---|
1351 | offMsiAddrHiReg = VTD_MMIO_OFF_FEUADDR_REG;
|
---|
1352 | offMsiDataReg = VTD_MMIO_OFF_FEDATA_REG;
|
---|
1353 | break;
|
---|
1354 | }
|
---|
1355 |
|
---|
1356 | default:
|
---|
1357 | {
|
---|
1358 | /* Shouldn't ever happen. */
|
---|
1359 | AssertMsgFailedReturnVoid(("DMAR event type %#x unknown!\n", enmEventType));
|
---|
1360 | }
|
---|
1361 | }
|
---|
1362 |
|
---|
1363 | /* Check if software has masked the interrupt. */
|
---|
1364 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1365 | uint32_t uCtlReg = dmarRegReadRaw32(pThis, offCtlReg);
|
---|
1366 | if (!(uCtlReg & fIntrMaskedMask))
|
---|
1367 | {
|
---|
1368 | /*
|
---|
1369 | * Interrupt is unmasked, raise it.
|
---|
1370 | * Interrupts generated by the DMAR have trigger mode and level as 0.
|
---|
1371 | * See Intel spec. 5.1.6 "Remapping Hardware Event Interrupt Programming".
|
---|
1372 | */
|
---|
1373 | MSIMSG Msi;
|
---|
1374 | Msi.Addr.au32[0] = dmarRegReadRaw32(pThis, offMsiAddrLoReg);
|
---|
1375 | Msi.Addr.au32[1] = (pThis->fExtCapReg & VTD_BF_ECAP_REG_EIM_MASK) ? dmarRegReadRaw32(pThis, offMsiAddrHiReg) : 0;
|
---|
1376 | Msi.Data.u32 = dmarRegReadRaw32(pThis, offMsiDataReg);
|
---|
1377 | Assert(Msi.Data.n.u1Level == 0);
|
---|
1378 | Assert(Msi.Data.n.u1TriggerMode == 0);
|
---|
1379 |
|
---|
1380 | PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
|
---|
1381 | pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi(pDevIns, &Msi, 0 /* uTagSrc */);
|
---|
1382 |
|
---|
1383 | /* Clear interrupt pending bit. */
|
---|
1384 | uCtlReg &= ~fIntrPendingMask;
|
---|
1385 | dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg);
|
---|
1386 | }
|
---|
1387 | else
|
---|
1388 | {
|
---|
1389 | /* Interrupt is masked, set the interrupt pending bit. */
|
---|
1390 | uCtlReg |= fIntrPendingMask;
|
---|
1391 | dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg);
|
---|
1392 | }
|
---|
1393 | }
|
---|
1394 |
|
---|
1395 |
|
---|
1396 | /**
|
---|
1397 | * Raises an interrupt in response to a fault event.
|
---|
1398 | *
|
---|
1399 | * @param pDevIns The IOMMU device instance.
|
---|
1400 | *
|
---|
1401 | * @remarks This assumes the caller has already set the required status bits in the
|
---|
1402 | * FSTS_REG (namely one or more of PPF, PFO, IQE, ICE or ITE bits).
|
---|
1403 | */
|
---|
1404 | static void dmarFaultEventRaiseInterrupt(PPDMDEVINS pDevIns)
|
---|
1405 | {
|
---|
1406 | PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
|
---|
1407 | DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
|
---|
1408 |
|
---|
1409 | #ifdef RT_STRICT
|
---|
1410 | {
|
---|
1411 | PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
|
---|
1412 | uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
|
---|
1413 | uint32_t const fFaultMask = VTD_BF_FSTS_REG_PPF_MASK | VTD_BF_FSTS_REG_PFO_MASK
|
---|
1414 | /* | VTD_BF_FSTS_REG_APF_MASK | VTD_BF_FSTS_REG_AFO_MASK */ /* AFL not supported */
|
---|
1415 | /* | VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK */ /* Device-TLBs not supported */
|
---|
1416 | | VTD_BF_FSTS_REG_IQE_MASK;
|
---|
1417 | Assert(uFstsReg & fFaultMask);
|
---|
1418 | }
|
---|
1419 | #endif
|
---|
1420 | dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT);
|
---|
1421 | }
|
---|
1422 |
|
---|
1423 |
|
---|
1424 | #ifdef IN_RING3
|
---|
1425 | /**
|
---|
1426 | * Raises an interrupt in response to an invalidation (complete) event.
|
---|
1427 | *
|
---|
1428 | * @param pDevIns The IOMMU device instance.
|
---|
1429 | */
|
---|
1430 | static void dmarR3InvEventRaiseInterrupt(PPDMDEVINS pDevIns)
|
---|
1431 | {
|
---|
1432 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1433 | PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
|
---|
1434 | DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
|
---|
1435 |
|
---|
1436 | uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
|
---|
1437 | if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK))
|
---|
1438 | {
|
---|
1439 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_ICS_REG, UINT32_MAX, VTD_BF_ICS_REG_IWC_MASK);
|
---|
1440 | dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE);
|
---|
1441 | }
|
---|
1442 | }
|
---|
1443 | #endif /* IN_RING3 */
|
---|
1444 |
|
---|
1445 |
|
---|
1446 | /**
|
---|
1447 | * Checks if a primary fault can be recorded.
|
---|
1448 | *
|
---|
1449 | * @returns @c true if the fault can be recorded, @c false otherwise.
|
---|
1450 | * @param pDevIns The IOMMU device instance.
|
---|
1451 | * @param pThis The shared DMAR device state.
|
---|
1452 | *
|
---|
1453 | * @remarks Warning: This function has side-effects wrt the DMAR register state. Do
|
---|
1454 | * NOT call it unless there is a fault condition!
|
---|
1455 | */
|
---|
1456 | static bool dmarPrimaryFaultCanRecord(PPDMDEVINS pDevIns, PDMAR pThis)
|
---|
1457 | {
|
---|
1458 | PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
|
---|
1459 | DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
|
---|
1460 |
|
---|
1461 | uint32_t uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
|
---|
1462 | if (uFstsReg & VTD_BF_FSTS_REG_PFO_MASK)
|
---|
1463 | return false;
|
---|
1464 |
|
---|
1465 | /*
|
---|
1466 | * If we add more FRCD registers, we'll have to loop through them here.
|
---|
1467 | * Since we support only one FRCD_REG, we don't support "compression of multiple faults",
|
---|
1468 | * nor do we need to increment FRI.
|
---|
1469 | *
|
---|
1470 | * See Intel VT-d spec. 7.2.1 "Primary Fault Logging".
|
---|
1471 | */
|
---|
1472 | AssertCompile(DMAR_FRCD_REG_COUNT == 1);
|
---|
1473 | uint64_t const uFrcdRegHi = dmarRegReadRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG);
|
---|
1474 | if (uFrcdRegHi & VTD_BF_1_FRCD_REG_F_MASK)
|
---|
1475 | {
|
---|
1476 | uFstsReg |= VTD_BF_FSTS_REG_PFO_MASK;
|
---|
1477 | dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, uFstsReg);
|
---|
1478 | return false;
|
---|
1479 | }
|
---|
1480 |
|
---|
1481 | return true;
|
---|
1482 | }
|
---|
1483 |
|
---|
1484 |
|
---|
1485 | /**
|
---|
1486 | * Records a primary fault.
|
---|
1487 | *
|
---|
1488 | * @param pDevIns The IOMMU device instance.
|
---|
1489 | * @param uFrcdHi The FRCD_HI_REG value for this fault.
|
---|
1490 | * @param uFrcdLo The FRCD_LO_REG value for this fault.
|
---|
1491 | */
|
---|
1492 | static void dmarPrimaryFaultRecord(PPDMDEVINS pDevIns, uint64_t uFrcdHi, uint64_t uFrcdLo)
|
---|
1493 | {
|
---|
1494 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1495 | PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
|
---|
1496 |
|
---|
1497 | DMAR_LOCK(pDevIns, pThisCC);
|
---|
1498 |
|
---|
1499 | /* We don't support advance fault logging. */
|
---|
1500 | Assert(!(dmarRegRead32(pThis, VTD_MMIO_OFF_GSTS_REG) & VTD_BF_GSTS_REG_AFLS_MASK));
|
---|
1501 |
|
---|
1502 | if (dmarPrimaryFaultCanRecord(pDevIns, pThis))
|
---|
1503 | {
|
---|
1504 | /* Update the fault recording registers with the fault information. */
|
---|
1505 | dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG, uFrcdHi);
|
---|
1506 | dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_LO_REG, uFrcdLo);
|
---|
1507 |
|
---|
1508 | /* Set the Pending Primary Fault (PPF) field in the status register. */
|
---|
1509 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, VTD_BF_FSTS_REG_PPF_MASK);
|
---|
1510 |
|
---|
1511 | /* Raise interrupt if necessary. */
|
---|
1512 | dmarFaultEventRaiseInterrupt(pDevIns);
|
---|
1513 | }
|
---|
1514 |
|
---|
1515 | DMAR_UNLOCK(pDevIns, pThisCC);
|
---|
1516 | }
|
---|
1517 |
|
---|
1518 |
|
---|
1519 | /**
|
---|
1520 | * Records an interrupt request fault.
|
---|
1521 | *
|
---|
1522 | * @param pDevIns The IOMMU device instance.
|
---|
1523 | * @param enmDiag The diagnostic reason.
|
---|
1524 | * @param idDevice The device ID (bus, device, function).
|
---|
1525 | * @param idxIntr The interrupt index.
|
---|
1526 | * @param pIrte The IRTE that caused this fault. Can be NULL if the fault is
|
---|
1527 | * not qualified.
|
---|
1528 | */
|
---|
1529 | static void dmarIrFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, uint16_t idDevice, uint16_t idxIntr, PCVTD_IRTE_T pIrte)
|
---|
1530 | {
|
---|
1531 | /*
|
---|
1532 | * Update the diagnostic reason (even if software wants to supress faults).
|
---|
1533 | */
|
---|
1534 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1535 | pThis->enmDiag = enmDiag;
|
---|
1536 |
|
---|
1537 | /*
|
---|
1538 | * Figure out the fault reason to report to software from our diagnostic code.
|
---|
1539 | * The case labels below are sorted alphabetically for convenience.
|
---|
1540 | */
|
---|
1541 | VTDIRFAULT enmIrFault;
|
---|
1542 | switch (enmDiag)
|
---|
1543 | {
|
---|
1544 | case kDmarDiag_Ir_Cfi_Blocked: enmIrFault = VTDIRFAULT_CFI_BLOCKED; break;
|
---|
1545 | case kDmarDiag_Ir_Rfi_Intr_Index_Invalid: enmIrFault = VTDIRFAULT_INTR_INDEX_INVALID; break;
|
---|
1546 | case kDmarDiag_Ir_Rfi_Irte_Mode_Invalid: enmIrFault = VTDIRFAULT_IRTE_PRESENT_RSVD; break;
|
---|
1547 | case kDmarDiag_Ir_Rfi_Irte_Not_Present: enmIrFault = VTDIRFAULT_IRTE_NOT_PRESENT; break;
|
---|
1548 | case kDmarDiag_Ir_Rfi_Irte_Read_Failed: enmIrFault = VTDIRFAULT_IRTE_READ_FAILED; break;
|
---|
1549 | case kDmarDiag_Ir_Rfi_Irte_Rsvd:
|
---|
1550 | case kDmarDiag_Ir_Rfi_Irte_Svt_Bus:
|
---|
1551 | case kDmarDiag_Ir_Rfi_Irte_Svt_Masked:
|
---|
1552 | case kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd: enmIrFault = VTDIRFAULT_IRTE_PRESENT_RSVD; break;
|
---|
1553 | case kDmarDiag_Ir_Rfi_Rsvd: enmIrFault = VTDIRFAULT_REMAPPABLE_INTR_RSVD; break;
|
---|
1554 |
|
---|
1555 | /* Shouldn't ever happen. */
|
---|
1556 | default:
|
---|
1557 | {
|
---|
1558 | AssertLogRelMsgFailedReturnVoid(("%s: Invalid interrupt remapping fault diagnostic code %#x\n", DMAR_LOG_PFX,
|
---|
1559 | enmDiag));
|
---|
1560 | }
|
---|
1561 | }
|
---|
1562 |
|
---|
1563 | /*
|
---|
1564 | * Qualified faults are those that can be suppressed by software using the FPD bit
|
---|
1565 | * in the interrupt-remapping table entry.
|
---|
1566 | */
|
---|
1567 | bool fFpd;
|
---|
1568 | bool const fQualifiedFault = vtdIrFaultIsQualified(enmIrFault);
|
---|
1569 | if (fQualifiedFault)
|
---|
1570 | {
|
---|
1571 | AssertReturnVoid(pIrte);
|
---|
1572 | fFpd = RT_BOOL(pIrte->au64[0] & VTD_BF_0_IRTE_FPD_MASK);
|
---|
1573 | }
|
---|
1574 | else
|
---|
1575 | fFpd = false;
|
---|
1576 |
|
---|
1577 | if (!fFpd)
|
---|
1578 | {
|
---|
1579 | /* Construct and record the error. */
|
---|
1580 | uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice)
|
---|
1581 | | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmIrFault)
|
---|
1582 | | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1);
|
---|
1583 | uint64_t const uFrcdLo = (uint64_t)idxIntr << 48;
|
---|
1584 | dmarPrimaryFaultRecord(pDevIns, uFrcdHi, uFrcdLo);
|
---|
1585 | }
|
---|
1586 | }
|
---|
1587 |
|
---|
1588 |
|
---|
1589 | /**
|
---|
1590 | * Records an address translation fault.
|
---|
1591 | *
|
---|
1592 | * @param pDevIns The IOMMU device instance.
|
---|
1593 | * @param enmDiag The diagnostic reason.
|
---|
1594 | * @param pMemReqIn The DMA memory request input.
|
---|
1595 | * @param pMemReqAux The DMA memory request auxiliary info.
|
---|
1596 | */
|
---|
1597 | static void dmarAtFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux)
|
---|
1598 | {
|
---|
1599 | /*
|
---|
1600 | * Update the diagnostic reason (even if software wants to supress faults).
|
---|
1601 | */
|
---|
1602 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1603 | pThis->enmDiag = enmDiag;
|
---|
1604 |
|
---|
1605 | /*
|
---|
1606 | * Qualified faults are those that can be suppressed by software using the FPD bit
|
---|
1607 | * in the context entry, scalable-mode context entry etc.
|
---|
1608 | */
|
---|
1609 | if (!pMemReqAux->fFpd)
|
---|
1610 | {
|
---|
1611 | /*
|
---|
1612 | * Figure out the fault reason to report to software from our diagnostic code.
|
---|
1613 | * The case labels below are sorted alphabetically for convenience.
|
---|
1614 | */
|
---|
1615 | VTDATFAULT enmAtFault;
|
---|
1616 | bool const fLm = pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE;
|
---|
1617 | switch (enmDiag)
|
---|
1618 | {
|
---|
1619 | /* LM (Legacy Mode) faults. */
|
---|
1620 | case kDmarDiag_At_Lm_CtxEntry_Not_Present: enmAtFault = VTDATFAULT_LCT_2; break;
|
---|
1621 | case kDmarDiag_At_Lm_CtxEntry_Read_Failed: enmAtFault = VTDATFAULT_LCT_1; break;
|
---|
1622 | case kDmarDiag_At_Lm_CtxEntry_Rsvd: enmAtFault = VTDATFAULT_LCT_3; break;
|
---|
1623 | case kDmarDiag_At_Lm_Pt_At_Block: enmAtFault = VTDATFAULT_LCT_5; break;
|
---|
1624 | case kDmarDiag_At_Lm_Pt_Aw_Invalid: enmAtFault = VTDATFAULT_LGN_1_3; break;
|
---|
1625 | case kDmarDiag_At_Lm_RootEntry_Not_Present: enmAtFault = VTDATFAULT_LRT_2; break;
|
---|
1626 | case kDmarDiag_At_Lm_RootEntry_Read_Failed: enmAtFault = VTDATFAULT_LRT_1; break;
|
---|
1627 | case kDmarDiag_At_Lm_RootEntry_Rsvd: enmAtFault = VTDATFAULT_LRT_3; break;
|
---|
1628 | case kDmarDiag_At_Lm_Tt_Invalid: enmAtFault = VTDATFAULT_LCT_4_2; break;
|
---|
1629 | case kDmarDiag_At_Lm_Ut_At_Block: enmAtFault = VTDATFAULT_LCT_5; break;
|
---|
1630 | case kDmarDiag_At_Lm_Ut_Aw_Invalid: enmAtFault = VTDATFAULT_LCT_4_1; break;
|
---|
1631 |
|
---|
1632 | /* RTA (Root Table Address) faults. */
|
---|
1633 | case kDmarDiag_At_Rta_Adms_Not_Supported: enmAtFault = VTDATFAULT_RTA_1_1; break;
|
---|
1634 | case kDmarDiag_At_Rta_Rsvd: enmAtFault = VTDATFAULT_RTA_1_2; break;
|
---|
1635 | case kDmarDiag_At_Rta_Smts_Not_Supported: enmAtFault = VTDATFAULT_RTA_1_3; break;
|
---|
1636 |
|
---|
1637 | /* XM (Legacy mode or Scalable Mode) faults. */
|
---|
1638 | case kDmarDiag_At_Xm_AddrIn_Invalid: enmAtFault = fLm ? VTDATFAULT_LGN_1_1 : VTDATFAULT_SGN_5; break;
|
---|
1639 | case kDmarDiag_At_Xm_AddrOut_Invalid: enmAtFault = fLm ? VTDATFAULT_LGN_4 : VTDATFAULT_SGN_8; break;
|
---|
1640 | case kDmarDiag_At_Xm_Perm_Denied: enmAtFault = fLm ? VTDATFAULT_LSL_2 : VTDATFAULT_SSL_2; break;
|
---|
1641 | case kDmarDiag_At_Xm_Pte_Rsvd:
|
---|
1642 | case kDmarDiag_At_Xm_Pte_Sllps_Invalid: enmAtFault = fLm ? VTDATFAULT_LSL_2 : VTDATFAULT_SSL_3; break;
|
---|
1643 | case kDmarDiag_At_Xm_Read_Pte_Failed: enmAtFault = fLm ? VTDATFAULT_LSL_1 : VTDATFAULT_SSL_1; break;
|
---|
1644 | case kDmarDiag_At_Xm_Slpptr_Read_Failed: enmAtFault = fLm ? VTDATFAULT_LCT_4_3 : VTDATFAULT_SSL_4; break;
|
---|
1645 |
|
---|
1646 | /* Shouldn't ever happen. */
|
---|
1647 | default:
|
---|
1648 | {
|
---|
1649 | AssertLogRelMsgFailedReturnVoid(("%s: Invalid address translation fault diagnostic code %#x\n",
|
---|
1650 | DMAR_LOG_PFX, enmDiag));
|
---|
1651 | }
|
---|
1652 | }
|
---|
1653 |
|
---|
1654 | /* Construct and record the error. */
|
---|
1655 | uint16_t const idDevice = pMemReqIn->idDevice;
|
---|
1656 | uint8_t const fType1 = pMemReqIn->enmReqType & RT_BIT(1);
|
---|
1657 | uint8_t const fType2 = pMemReqIn->enmReqType & RT_BIT(0);
|
---|
1658 | uint8_t const fExec = pMemReqIn->AddrRange.fPerm & DMAR_PERM_EXE;
|
---|
1659 | uint8_t const fPriv = pMemReqIn->AddrRange.fPerm & DMAR_PERM_PRIV;
|
---|
1660 | bool const fHasPasid = PCIPASID_IS_VALID(pMemReqIn->Pasid);
|
---|
1661 | uint32_t const uPasid = PCIPASID_VAL(pMemReqIn->Pasid);
|
---|
1662 | PCIADDRTYPE const enmAt = pMemReqIn->enmAddrType;
|
---|
1663 |
|
---|
1664 | uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice)
|
---|
1665 | | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T2, fType2)
|
---|
1666 | | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PP, fHasPasid)
|
---|
1667 | | RT_BF_MAKE(VTD_BF_1_FRCD_REG_EXE, fExec)
|
---|
1668 | | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PRIV, fPriv)
|
---|
1669 | | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmAtFault)
|
---|
1670 | | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PV, uPasid)
|
---|
1671 | | RT_BF_MAKE(VTD_BF_1_FRCD_REG_AT, enmAt)
|
---|
1672 | | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T1, fType1)
|
---|
1673 | | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1);
|
---|
1674 | uint64_t const uFrcdLo = pMemReqIn->AddrRange.uAddr & X86_PAGE_BASE_MASK;
|
---|
1675 | dmarPrimaryFaultRecord(pDevIns, uFrcdHi, uFrcdLo);
|
---|
1676 | }
|
---|
1677 | }
|
---|
1678 |
|
---|
1679 |
|
---|
1680 | /**
|
---|
1681 | * Records an IQE fault.
|
---|
1682 | *
|
---|
1683 | * @param pDevIns The IOMMU device instance.
|
---|
1684 | * @param enmIqei The IQE information.
|
---|
1685 | * @param enmDiag The diagnostic reason.
|
---|
1686 | */
|
---|
1687 | static void dmarIqeFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDIQEI enmIqei)
|
---|
1688 | {
|
---|
1689 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1690 | PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
|
---|
1691 |
|
---|
1692 | DMAR_LOCK(pDevIns, pThisCC);
|
---|
1693 |
|
---|
1694 | /* Update the diagnostic reason. */
|
---|
1695 | pThis->enmDiag = enmDiag;
|
---|
1696 |
|
---|
1697 | /* Set the error bit. */
|
---|
1698 | uint32_t const fIqe = RT_BF_MAKE(VTD_BF_FSTS_REG_IQE, 1);
|
---|
1699 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, fIqe);
|
---|
1700 |
|
---|
1701 | /* Set the error information. */
|
---|
1702 | uint64_t const fIqei = RT_BF_MAKE(VTD_BF_IQERCD_REG_IQEI, enmIqei);
|
---|
1703 | dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG, UINT64_MAX, fIqei);
|
---|
1704 |
|
---|
1705 | dmarFaultEventRaiseInterrupt(pDevIns);
|
---|
1706 |
|
---|
1707 | DMAR_UNLOCK(pDevIns, pThisCC);
|
---|
1708 | }
|
---|
1709 |
|
---|
1710 |
|
---|
1711 | /**
|
---|
1712 | * Handles writes to GCMD_REG.
|
---|
1713 | *
|
---|
1714 | * @returns Strict VBox status code.
|
---|
1715 | * @param pDevIns The IOMMU device instance.
|
---|
1716 | * @param uGcmdReg The value written to GCMD_REG.
|
---|
1717 | */
|
---|
1718 | static VBOXSTRICTRC dmarGcmdRegWrite(PPDMDEVINS pDevIns, uint32_t uGcmdReg)
|
---|
1719 | {
|
---|
1720 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1721 | uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
|
---|
1722 | uint32_t const fChanged = uGstsReg ^ uGcmdReg;
|
---|
1723 | uint64_t const fExtCapReg = pThis->fExtCapReg;
|
---|
1724 |
|
---|
1725 | /* Queued-invalidation. */
|
---|
1726 | if ( (fExtCapReg & VTD_BF_ECAP_REG_QI_MASK)
|
---|
1727 | && (fChanged & VTD_BF_GCMD_REG_QIE_MASK))
|
---|
1728 | {
|
---|
1729 | if (uGcmdReg & VTD_BF_GCMD_REG_QIE_MASK)
|
---|
1730 | {
|
---|
1731 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_QIES_MASK);
|
---|
1732 | dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
|
---|
1733 | }
|
---|
1734 | else
|
---|
1735 | {
|
---|
1736 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_QIES_MASK, 0 /* fOrMask */);
|
---|
1737 | dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IQH_REG, 0);
|
---|
1738 | }
|
---|
1739 | }
|
---|
1740 |
|
---|
1741 | if (fExtCapReg & VTD_BF_ECAP_REG_IR_MASK)
|
---|
1742 | {
|
---|
1743 | /* Set Interrupt Remapping Table Pointer (SIRTP). */
|
---|
1744 | if (uGcmdReg & VTD_BF_GCMD_REG_SIRTP_MASK)
|
---|
1745 | {
|
---|
1746 | /** @todo Perform global invalidation of all interrupt-entry cache when ESIRTPS is
|
---|
1747 | * supported. */
|
---|
1748 | pThis->uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
|
---|
1749 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRTPS_MASK);
|
---|
1750 | }
|
---|
1751 |
|
---|
1752 | /* Interrupt remapping. */
|
---|
1753 | if (fChanged & VTD_BF_GCMD_REG_IRE_MASK)
|
---|
1754 | {
|
---|
1755 | if (uGcmdReg & VTD_BF_GCMD_REG_IRE_MASK)
|
---|
1756 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRES_MASK);
|
---|
1757 | else
|
---|
1758 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_IRES_MASK, 0 /* fOrMask */);
|
---|
1759 | }
|
---|
1760 |
|
---|
1761 | /* Compatibility format interrupts. */
|
---|
1762 | if (fChanged & VTD_BF_GCMD_REG_CFI_MASK)
|
---|
1763 | {
|
---|
1764 | if (uGcmdReg & VTD_BF_GCMD_REG_CFI_MASK)
|
---|
1765 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_CFIS_MASK);
|
---|
1766 | else
|
---|
1767 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_CFIS_MASK, 0 /* fOrMask */);
|
---|
1768 | }
|
---|
1769 | }
|
---|
1770 |
|
---|
1771 | /* Set Root Table Pointer (SRTP). */
|
---|
1772 | if (uGcmdReg & VTD_BF_GCMD_REG_SRTP_MASK)
|
---|
1773 | {
|
---|
1774 | /** @todo Perform global invalidation of all remapping translation caches when
|
---|
1775 | * ESRTPS is supported. */
|
---|
1776 | pThis->uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
|
---|
1777 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_RTPS_MASK);
|
---|
1778 | }
|
---|
1779 |
|
---|
1780 | /* Translation (DMA remapping). */
|
---|
1781 | if (fChanged & VTD_BF_GCMD_REG_TE_MASK)
|
---|
1782 | {
|
---|
1783 | if (uGcmdReg & VTD_BF_GCMD_REG_TE_MASK)
|
---|
1784 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_TES_MASK);
|
---|
1785 | else
|
---|
1786 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_TES_MASK, 0 /* fOrMask */);
|
---|
1787 | }
|
---|
1788 |
|
---|
1789 | return VINF_SUCCESS;
|
---|
1790 | }
|
---|
1791 |
|
---|
1792 |
|
---|
1793 | /**
|
---|
1794 | * Handles writes to CCMD_REG.
|
---|
1795 | *
|
---|
1796 | * @returns Strict VBox status code.
|
---|
1797 | * @param pDevIns The IOMMU device instance.
|
---|
1798 | * @param offReg The MMIO register offset.
|
---|
1799 | * @param cbReg The size of the MMIO access (in bytes).
|
---|
1800 | * @param uCcmdReg The value written to CCMD_REG.
|
---|
1801 | */
|
---|
1802 | static VBOXSTRICTRC dmarCcmdRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uCcmdReg)
|
---|
1803 | {
|
---|
1804 | /* At present, we only care about responding to high 32-bits writes, low 32-bits are data. */
|
---|
1805 | if (offReg + cbReg > VTD_MMIO_OFF_CCMD_REG + 4)
|
---|
1806 | {
|
---|
1807 | /* Check if we need to invalidate the context-context. */
|
---|
1808 | bool const fIcc = RT_BF_GET(uCcmdReg, VTD_BF_CCMD_REG_ICC);
|
---|
1809 | if (fIcc)
|
---|
1810 | {
|
---|
1811 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1812 | uint8_t const uMajorVersion = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX);
|
---|
1813 | if (uMajorVersion < 6)
|
---|
1814 | {
|
---|
1815 | /* Register-based invalidation can only be used when queued-invalidations are not enabled. */
|
---|
1816 | uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
|
---|
1817 | if (!(uGstsReg & VTD_BF_GSTS_REG_QIES_MASK))
|
---|
1818 | {
|
---|
1819 | /* Verify table translation mode is legacy. */
|
---|
1820 | uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
|
---|
1821 | if (fTtm == VTD_TTM_LEGACY_MODE)
|
---|
1822 | {
|
---|
1823 | /** @todo Invalidate. */
|
---|
1824 | return VINF_SUCCESS;
|
---|
1825 | }
|
---|
1826 | pThis->enmDiag = kDmarDiag_CcmdReg_Ttm_Invalid;
|
---|
1827 | }
|
---|
1828 | else
|
---|
1829 | pThis->enmDiag = kDmarDiag_CcmdReg_Qi_Enabled;
|
---|
1830 | }
|
---|
1831 | else
|
---|
1832 | pThis->enmDiag = kDmarDiag_CcmdReg_Not_Supported;
|
---|
1833 | dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_CCMD_REG_CAIG_MASK, 0 /* fOrMask */);
|
---|
1834 | }
|
---|
1835 | }
|
---|
1836 | return VINF_SUCCESS;
|
---|
1837 | }
|
---|
1838 |
|
---|
1839 |
|
---|
1840 | /**
|
---|
1841 | * Handles writes to FECTL_REG.
|
---|
1842 | *
|
---|
1843 | * @returns Strict VBox status code.
|
---|
1844 | * @param pDevIns The IOMMU device instance.
|
---|
1845 | * @param uFectlReg The value written to FECTL_REG.
|
---|
1846 | */
|
---|
1847 | static VBOXSTRICTRC dmarFectlRegWrite(PPDMDEVINS pDevIns, uint32_t uFectlReg)
|
---|
1848 | {
|
---|
1849 | /*
|
---|
1850 | * If software unmasks the interrupt when the interrupt is pending, we must raise
|
---|
1851 | * the interrupt now (which will consequently clear the interrupt pending (IP) bit).
|
---|
1852 | */
|
---|
1853 | if ( (uFectlReg & VTD_BF_FECTL_REG_IP_MASK)
|
---|
1854 | && ~(uFectlReg & VTD_BF_FECTL_REG_IM_MASK))
|
---|
1855 | dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT);
|
---|
1856 | return VINF_SUCCESS;
|
---|
1857 | }
|
---|
1858 |
|
---|
1859 |
|
---|
1860 | /**
|
---|
1861 | * Handles writes to FSTS_REG.
|
---|
1862 | *
|
---|
1863 | * @returns Strict VBox status code.
|
---|
1864 | * @param pDevIns The IOMMU device instance.
|
---|
1865 | * @param uFstsReg The value written to FSTS_REG.
|
---|
1866 | * @param uPrev The value in FSTS_REG prior to writing it.
|
---|
1867 | */
|
---|
1868 | static VBOXSTRICTRC dmarFstsRegWrite(PPDMDEVINS pDevIns, uint32_t uFstsReg, uint32_t uPrev)
|
---|
1869 | {
|
---|
1870 | /*
|
---|
1871 | * If software clears other status bits in FSTS_REG (pertaining to primary fault logging),
|
---|
1872 | * the interrupt pending (IP) bit must be cleared.
|
---|
1873 | *
|
---|
1874 | * See Intel VT-d spec. 10.4.10 "Fault Event Control Register".
|
---|
1875 | */
|
---|
1876 | uint32_t const fChanged = uPrev ^ uFstsReg;
|
---|
1877 | if (fChanged & ( VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK
|
---|
1878 | | VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_PFO_MASK))
|
---|
1879 | {
|
---|
1880 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1881 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */);
|
---|
1882 | }
|
---|
1883 | return VINF_SUCCESS;
|
---|
1884 | }
|
---|
1885 |
|
---|
1886 |
|
---|
1887 | /**
|
---|
1888 | * Handles writes to IQT_REG.
|
---|
1889 | *
|
---|
1890 | * @returns Strict VBox status code.
|
---|
1891 | * @param pDevIns The IOMMU device instance.
|
---|
1892 | * @param offReg The MMIO register offset.
|
---|
1893 | * @param uIqtReg The value written to IQT_REG.
|
---|
1894 | */
|
---|
1895 | static VBOXSTRICTRC dmarIqtRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqtReg)
|
---|
1896 | {
|
---|
1897 | /* We only care about the low 32-bits, high 32-bits are reserved. */
|
---|
1898 | Assert(offReg == VTD_MMIO_OFF_IQT_REG);
|
---|
1899 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1900 |
|
---|
1901 | /* Paranoia. */
|
---|
1902 | Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
|
---|
1903 |
|
---|
1904 | uint32_t const offQt = uIqtReg;
|
---|
1905 | uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
|
---|
1906 | uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
|
---|
1907 |
|
---|
1908 | /* If the descriptor width is 256-bits, the queue tail offset must be aligned accordingly. */
|
---|
1909 | if ( fDw != VTD_IQA_REG_DW_256_BIT
|
---|
1910 | || !(offQt & RT_BIT(4)))
|
---|
1911 | dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
|
---|
1912 | else
|
---|
1913 | {
|
---|
1914 | /* Hardware treats bit 4 as RsvdZ in this situation, so clear it. */
|
---|
1915 | dmarRegChangeRaw32(pThis, offReg, ~RT_BIT(4), 0 /* fOrMask */);
|
---|
1916 | dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Not_Aligned, VTDIQEI_QUEUE_TAIL_MISALIGNED);
|
---|
1917 | }
|
---|
1918 | return VINF_SUCCESS;
|
---|
1919 | }
|
---|
1920 |
|
---|
1921 |
|
---|
1922 | /**
|
---|
1923 | * Handles writes to IQA_REG.
|
---|
1924 | *
|
---|
1925 | * @returns Strict VBox status code.
|
---|
1926 | * @param pDevIns The IOMMU device instance.
|
---|
1927 | * @param offReg The MMIO register offset.
|
---|
1928 | * @param uIqaReg The value written to IQA_REG.
|
---|
1929 | */
|
---|
1930 | static VBOXSTRICTRC dmarIqaRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqaReg)
|
---|
1931 | {
|
---|
1932 | /* At present, we only care about the low 32-bits, high 32-bits are data. */
|
---|
1933 | Assert(offReg == VTD_MMIO_OFF_IQA_REG); NOREF(offReg);
|
---|
1934 |
|
---|
1935 | /** @todo What happens if IQA_REG is written when dmarInvQueueCanProcessRequests
|
---|
1936 | * returns true? The Intel VT-d spec. doesn't state anywhere that it
|
---|
1937 | * cannot happen or that it's ignored when it does happen. */
|
---|
1938 |
|
---|
1939 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1940 | uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
|
---|
1941 | if (fDw == VTD_IQA_REG_DW_256_BIT)
|
---|
1942 | {
|
---|
1943 | bool const fSupports256BitDw = (pThis->fExtCapReg & (VTD_BF_ECAP_REG_SMTS_MASK | VTD_BF_ECAP_REG_ADMS_MASK));
|
---|
1944 | if (fSupports256BitDw)
|
---|
1945 | { /* likely */ }
|
---|
1946 | else
|
---|
1947 | dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dw_256_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH);
|
---|
1948 | }
|
---|
1949 | /* else: 128-bit descriptor width is validated lazily, see explanation in dmarR3InvQueueProcessRequests. */
|
---|
1950 |
|
---|
1951 | return VINF_SUCCESS;
|
---|
1952 | }
|
---|
1953 |
|
---|
1954 |
|
---|
1955 | /**
|
---|
1956 | * Handles writes to ICS_REG.
|
---|
1957 | *
|
---|
1958 | * @returns Strict VBox status code.
|
---|
1959 | * @param pDevIns The IOMMU device instance.
|
---|
1960 | * @param uIcsReg The value written to ICS_REG.
|
---|
1961 | */
|
---|
1962 | static VBOXSTRICTRC dmarIcsRegWrite(PPDMDEVINS pDevIns, uint32_t uIcsReg)
|
---|
1963 | {
|
---|
1964 | /*
|
---|
1965 | * If the IP field is set when software services the interrupt condition,
|
---|
1966 | * (by clearing the IWC field), the IP field must be cleared.
|
---|
1967 | */
|
---|
1968 | if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK))
|
---|
1969 | {
|
---|
1970 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
1971 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, ~VTD_BF_IECTL_REG_IP_MASK, 0 /* fOrMask */);
|
---|
1972 | }
|
---|
1973 | return VINF_SUCCESS;
|
---|
1974 | }
|
---|
1975 |
|
---|
1976 |
|
---|
1977 | /**
|
---|
1978 | * Handles writes to IECTL_REG.
|
---|
1979 | *
|
---|
1980 | * @returns Strict VBox status code.
|
---|
1981 | * @param pDevIns The IOMMU device instance.
|
---|
1982 | * @param uIectlReg The value written to IECTL_REG.
|
---|
1983 | */
|
---|
1984 | static VBOXSTRICTRC dmarIectlRegWrite(PPDMDEVINS pDevIns, uint32_t uIectlReg)
|
---|
1985 | {
|
---|
1986 | /*
|
---|
1987 | * If software unmasks the interrupt when the interrupt is pending, we must raise
|
---|
1988 | * the interrupt now (which will consequently clear the interrupt pending (IP) bit).
|
---|
1989 | */
|
---|
1990 | if ( (uIectlReg & VTD_BF_IECTL_REG_IP_MASK)
|
---|
1991 | && ~(uIectlReg & VTD_BF_IECTL_REG_IM_MASK))
|
---|
1992 | dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE);
|
---|
1993 | return VINF_SUCCESS;
|
---|
1994 | }
|
---|
1995 |
|
---|
1996 |
|
---|
1997 | /**
|
---|
1998 | * Handles writes to FRCD_REG (High 64-bits).
|
---|
1999 | *
|
---|
2000 | * @returns Strict VBox status code.
|
---|
2001 | * @param pDevIns The IOMMU device instance.
|
---|
2002 | * @param offReg The MMIO register offset.
|
---|
2003 | * @param cbReg The size of the MMIO access (in bytes).
|
---|
2004 | * @param uFrcdHiReg The value written to FRCD_REG.
|
---|
2005 | * @param uPrev The value in FRCD_REG prior to writing it.
|
---|
2006 | */
|
---|
2007 | static VBOXSTRICTRC dmarFrcdHiRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uFrcdHiReg, uint64_t uPrev)
|
---|
2008 | {
|
---|
2009 | /* We only care about responding to high 32-bits, low 32-bits are read-only. */
|
---|
2010 | if (offReg + cbReg > DMAR_MMIO_OFF_FRCD_HI_REG + 4)
|
---|
2011 | {
|
---|
2012 | /*
|
---|
2013 | * If software cleared the RW1C F (fault) bit in all FRCD_REGs, hardware clears the
|
---|
2014 | * Primary Pending Fault (PPF) and the interrupt pending (IP) bits. Our implementation
|
---|
2015 | * has only 1 FRCD register.
|
---|
2016 | *
|
---|
2017 | * See Intel VT-d spec. 10.4.10 "Fault Event Control Register".
|
---|
2018 | */
|
---|
2019 | AssertCompile(DMAR_FRCD_REG_COUNT == 1);
|
---|
2020 | uint64_t const fChanged = uPrev ^ uFrcdHiReg;
|
---|
2021 | if (fChanged & VTD_BF_1_FRCD_REG_F_MASK)
|
---|
2022 | {
|
---|
2023 | Assert(!(uFrcdHiReg & VTD_BF_1_FRCD_REG_F_MASK)); /* Software should only ever be able to clear this bit. */
|
---|
2024 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
2025 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, ~VTD_BF_FSTS_REG_PPF_MASK, 0 /* fOrMask */);
|
---|
2026 | dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */);
|
---|
2027 | }
|
---|
2028 | }
|
---|
2029 | return VINF_SUCCESS;
|
---|
2030 | }
|
---|
2031 |
|
---|
2032 |
|
---|
2033 | /**
|
---|
2034 | * Performs a PCI target abort for a DMA remapping (DR) operation.
|
---|
2035 | *
|
---|
2036 | * @param pDevIns The IOMMU device instance.
|
---|
2037 | */
|
---|
2038 | static void dmarDrTargetAbort(PPDMDEVINS pDevIns)
|
---|
2039 | {
|
---|
2040 | /** @todo r=ramshankar: I don't know for sure if a PCI target abort is caused or not
|
---|
2041 | * as the Intel VT-d spec. is vague. Wording seems to suggest it does, but
|
---|
2042 | * who knows. */
|
---|
2043 | PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
|
---|
2044 | uint16_t const u16Status = PDMPciDevGetStatus(pPciDev) | VBOX_PCI_STATUS_SIG_TARGET_ABORT;
|
---|
2045 | PDMPciDevSetStatus(pPciDev, u16Status);
|
---|
2046 | }
|
---|
2047 |
|
---|
2048 |
|
---|
2049 | /**
|
---|
2050 | * Checks whether the address width (AW) is supported by our hardware
|
---|
2051 | * implementation for legacy mode address translation.
|
---|
2052 | *
|
---|
2053 | * @returns @c true if it's supported, @c false otherwise.
|
---|
2054 | * @param pThis The shared DMAR device state.
|
---|
2055 | * @param pCtxEntry The context entry.
|
---|
2056 | * @param pcPagingLevel Where to store the paging level. Optional, can be NULL.
|
---|
2057 | */
|
---|
2058 | static bool dmarDrLegacyModeIsAwValid(PCDMAR pThis, PCVTD_CONTEXT_ENTRY_T pCtxEntry, uint8_t *pcPagingLevel)
|
---|
2059 | {
|
---|
2060 | uint8_t const fTt = RT_BF_GET(pCtxEntry->au64[0], VTD_BF_0_CONTEXT_ENTRY_TT);
|
---|
2061 | uint8_t const fAw = RT_BF_GET(pCtxEntry->au64[1], VTD_BF_1_CONTEXT_ENTRY_AW);
|
---|
2062 | uint8_t const fAwMask = RT_BIT(fAw);
|
---|
2063 | uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW);
|
---|
2064 | Assert(!(fSagaw & ~(RT_BIT(1) | RT_BIT(2) | RT_BIT(3))));
|
---|
2065 |
|
---|
2066 | uint8_t const cPagingLevel = fAw + 2;
|
---|
2067 | if (pcPagingLevel)
|
---|
2068 | *pcPagingLevel = cPagingLevel;
|
---|
2069 |
|
---|
2070 | /* With pass-through, the address width must be the largest AGAW supported by hardware. */
|
---|
2071 | if (fTt == VTD_TT_UNTRANSLATED_PT)
|
---|
2072 | {
|
---|
2073 | Assert(pThis->cMaxPagingLevel >= 3 && pThis->cMaxPagingLevel <= 5); /* Paranoia. */
|
---|
2074 | return cPagingLevel == pThis->cMaxPagingLevel;
|
---|
2075 | }
|
---|
2076 |
|
---|
2077 | /* The address width must be any of the ones supported by hardware. */
|
---|
2078 | if (fAw < 4)
|
---|
2079 | return (fSagaw & fAwMask) != 0;
|
---|
2080 |
|
---|
2081 | return false;
|
---|
2082 | }
|
---|
2083 |
|
---|
2084 |
|
---|
2085 | /**
|
---|
2086 | * Reads a root entry from guest memory.
|
---|
2087 | *
|
---|
2088 | * @returns VBox status code.
|
---|
2089 | * @param pDevIns The IOMMU device instance.
|
---|
2090 | * @param uRtaddrReg The current RTADDR_REG value.
|
---|
2091 | * @param idxRootEntry The index of the root entry to read.
|
---|
2092 | * @param pRootEntry Where to store the read root entry.
|
---|
2093 | */
|
---|
2094 | static int dmarDrReadRootEntry(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, uint8_t idxRootEntry, PVTD_ROOT_ENTRY_T pRootEntry)
|
---|
2095 | {
|
---|
2096 | size_t const cbRootEntry = sizeof(*pRootEntry);
|
---|
2097 | RTGCPHYS const GCPhysRootEntry = (uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK) + (idxRootEntry * cbRootEntry);
|
---|
2098 | return PDMDevHlpPhysReadMeta(pDevIns, GCPhysRootEntry, pRootEntry, cbRootEntry);
|
---|
2099 | }
|
---|
2100 |
|
---|
2101 |
|
---|
2102 | /**
|
---|
2103 | * Reads a context entry from guest memory.
|
---|
2104 | *
|
---|
2105 | * @returns VBox status code.
|
---|
2106 | * @param pDevIns The IOMMU device instance.
|
---|
2107 | * @param GCPhysCtxTable The physical address of the context table.
|
---|
2108 | * @param idxCtxEntry The index of the context entry to read.
|
---|
2109 | * @param pCtxEntry Where to store the read context entry.
|
---|
2110 | */
|
---|
2111 | static int dmarDrReadCtxEntry(PPDMDEVINS pDevIns, RTGCPHYS GCPhysCtxTable, uint8_t idxCtxEntry, PVTD_CONTEXT_ENTRY_T pCtxEntry)
|
---|
2112 | {
|
---|
2113 | /* We don't verify bits 63:HAW of GCPhysCtxTable is 0 since reading from such an address should fail anyway. */
|
---|
2114 | size_t const cbCtxEntry = sizeof(*pCtxEntry);
|
---|
2115 | RTGCPHYS const GCPhysCtxEntry = GCPhysCtxTable + (idxCtxEntry * cbCtxEntry);
|
---|
2116 | return PDMDevHlpPhysReadMeta(pDevIns, GCPhysCtxEntry, pCtxEntry, cbCtxEntry);
|
---|
2117 | }
|
---|
2118 |
|
---|
2119 |
|
---|
2120 | /**
|
---|
2121 | * Validates and updates the output I/O page of a translation.
|
---|
2122 | *
|
---|
2123 | * @returns VBox status code.
|
---|
2124 | * @param pDevIns The IOMMU device instance.
|
---|
2125 | * @param GCPhysBase The output address of the translation.
|
---|
2126 | * @param cShift The page shift of the translated address.
|
---|
2127 | * @param fPerm The permissions granted for the translated region.
|
---|
2128 | * @param pMemReqIn The DMA memory request input.
|
---|
2129 | * @param pMemReqAux The DMA memory request auxiliary info.
|
---|
2130 | * @param pIoPageOut Where to store the output of the translation.
|
---|
2131 | */
|
---|
2132 | static int dmarDrUpdateIoPageOut(PPDMDEVINS pDevIns, RTGCPHYS GCPhysBase, uint8_t cShift, uint8_t fPerm,
|
---|
2133 | PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux, PDMARIOPAGE pIoPageOut)
|
---|
2134 | {
|
---|
2135 | Assert(!(GCPhysBase & X86_PAGE_4K_OFFSET_MASK));
|
---|
2136 |
|
---|
2137 | /* Ensure the output address is not in the interrupt address range. */
|
---|
2138 | if (GCPhysBase - VBOX_MSI_ADDR_BASE >= VBOX_MSI_ADDR_SIZE)
|
---|
2139 | {
|
---|
2140 | pIoPageOut->GCPhysBase = GCPhysBase;
|
---|
2141 | pIoPageOut->cShift = cShift;
|
---|
2142 | pIoPageOut->fPerm = fPerm;
|
---|
2143 | return VINF_SUCCESS;
|
---|
2144 | }
|
---|
2145 |
|
---|
2146 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_AddrOut_Invalid, pMemReqIn, pMemReqAux);
|
---|
2147 | return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
|
---|
2148 | }
|
---|
2149 |
|
---|
2150 |
|
---|
2151 | /**
|
---|
2152 | * Performs second level translation by walking the I/O page tables.
|
---|
2153 | *
|
---|
2154 | * This is a DMA address-lookup callback function which performs the translation
|
---|
2155 | * (and access control) as part of the lookup.
|
---|
2156 | *
|
---|
2157 | * @returns VBox status code.
|
---|
2158 | * @param pDevIns The IOMMU device instance.
|
---|
2159 | * @param pMemReqIn The DMA memory request input.
|
---|
2160 | * @param pMemReqAux The DMA memory request auxiliary info.
|
---|
2161 | * @param pIoPageOut Where to store the output of the translation.
|
---|
2162 | */
|
---|
2163 | static DECLCALLBACK(int) dmarDrSecondLevelTranslate(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux,
|
---|
2164 | PDMARIOPAGE pIoPageOut)
|
---|
2165 | {
|
---|
2166 | PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
|
---|
2167 |
|
---|
2168 | /* Sanity. */
|
---|
2169 | Assert(pIoPageOut);
|
---|
2170 | Assert(pMemReqIn->AddrRange.fPerm & (DMAR_PERM_READ | DMAR_PERM_WRITE));
|
---|
2171 | Assert( pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE
|
---|
2172 | || pMemReqAux->fTtm == VTD_TTM_SCALABLE_MODE);
|
---|
2173 | Assert(!(pMemReqAux->GCPhysSlPt & X86_PAGE_4K_OFFSET_MASK));
|
---|
2174 |
|
---|
2175 | /* Mask of reserved paging entry bits. */
|
---|
2176 | static uint64_t const s_auPtEntityInvMasks[] = { ~VTD_SL_PTE_VALID_MASK,
|
---|
2177 | ~VTD_SL_PDE_VALID_MASK,
|
---|
2178 | ~VTD_SL_PDPE_VALID_MASK,
|
---|
2179 | ~VTD_SL_PML4E_VALID_MASK,
|
---|
2180 | ~VTD_SL_PML5E_VALID_MASK };
|
---|
2181 |
|
---|
2182 | /* Paranoia. */
|
---|
2183 | Assert(pMemReqAux->cPagingLevel >= 3 && pMemReqAux->cPagingLevel <= 5);
|
---|
2184 | AssertCompile(RT_ELEMENTS(s_auPtEntityInvMasks) == 5);
|
---|
2185 |
|
---|
2186 | /* Second-level translations restricts input address to an implementation-specific MGAW. */
|
---|
2187 | uint64_t const uAddrIn = pMemReqIn->AddrRange.uAddr;
|
---|
2188 | if (!(uAddrIn & pThis->fMgawInvMask))
|
---|
2189 | { /* likely */ }
|
---|
2190 | else
|
---|
2191 | {
|
---|
2192 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_AddrIn_Invalid, pMemReqIn, pMemReqAux);
|
---|
2193 | return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
|
---|
2194 | }
|
---|
2195 |
|
---|
2196 | /*
|
---|
2197 | * Traverse the I/O page table starting with the SLPTPTR (second-level page table pointer).
|
---|
2198 | * Unlike AMD IOMMU paging, here there is no feature for "skipping" levels.
|
---|
2199 | */
|
---|
2200 | uint64_t uPtEntity = pMemReqAux->GCPhysSlPt;
|
---|
2201 | for (int8_t idxLevel = pMemReqAux->cPagingLevel - 1; idxLevel >= 0; idxLevel--)
|
---|
2202 | {
|
---|
2203 | /*
|
---|
2204 | * Read the paging entry for the current level.
|
---|
2205 | */
|
---|
2206 | uint8_t const cLevelShift = X86_PAGE_4K_SHIFT + (idxLevel * 9);
|
---|
2207 | {
|
---|
2208 | uint16_t const idxPte = (uAddrIn >> cLevelShift) & UINT64_C(0x1ff);
|
---|
2209 | uint16_t const offPte = idxPte << 3;
|
---|
2210 | RTGCPHYS const GCPhysPtEntity = (uPtEntity & X86_PAGE_4K_BASE_MASK) | offPte;
|
---|
2211 | int const rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysPtEntity, &uPtEntity, sizeof(uPtEntity));
|
---|
2212 | if (RT_SUCCESS(rc))
|
---|
2213 | { /* likely */ }
|
---|
2214 | else
|
---|
2215 | {
|
---|
2216 | if ((GCPhysPtEntity & X86_PAGE_BASE_MASK) == pMemReqAux->GCPhysSlPt)
|
---|
2217 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Slpptr_Read_Failed, pMemReqIn, pMemReqAux);
|
---|
2218 | else
|
---|
2219 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Read_Pte_Failed, pMemReqIn, pMemReqAux);
|
---|
2220 | break;
|
---|
2221 | }
|
---|
2222 | }
|
---|
2223 |
|
---|
2224 | /*
|
---|
2225 | * Check I/O permissions.
|
---|
2226 | * This must be done prior to check reserved bits for properly reporting errors SSL.2 and SSL.3.
|
---|
2227 | * See Intel spec. 7.1.3 "Fault conditions and Remapping hardware behavior for various request".
|
---|
2228 | */
|
---|
2229 | uint8_t const fReqPerm = pMemReqIn->AddrRange.fPerm & pThis->fPermValidMask;
|
---|
2230 | uint8_t const fPtPerm = uPtEntity & pThis->fPermValidMask;
|
---|
2231 | Assert(!(fReqPerm & DMAR_PERM_EXE)); /* No Execute-requests support yet. */
|
---|
2232 | Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_SLADS_MASK)); /* No Second-level access/dirty support. */
|
---|
2233 | if ((fPtPerm & fReqPerm) == fReqPerm)
|
---|
2234 | { /* likely */ }
|
---|
2235 | else
|
---|
2236 | {
|
---|
2237 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Perm_Denied, pMemReqIn, pMemReqAux);
|
---|
2238 | break;
|
---|
2239 | }
|
---|
2240 |
|
---|
2241 | /*
|
---|
2242 | * Validate reserved bits of the current paging entry.
|
---|
2243 | */
|
---|
2244 | if (!(uPtEntity & s_auPtEntityInvMasks[idxLevel]))
|
---|
2245 | { /* likely */ }
|
---|
2246 | else
|
---|
2247 | {
|
---|
2248 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Pte_Rsvd, pMemReqIn, pMemReqAux);
|
---|
2249 | break;
|
---|
2250 | }
|
---|
2251 |
|
---|
2252 | /*
|
---|
2253 | * Check if this is a 1GB page or a 2MB page.
|
---|
2254 | */
|
---|
2255 | AssertCompile(VTD_BF_SL_PDE_PS_MASK == VTD_BF_SL_PDPE_PS_MASK);
|
---|
2256 | uint8_t const fLargePage = RT_BF_GET(uPtEntity, VTD_BF_SL_PDE_PS);
|
---|
2257 | if (fLargePage && idxLevel > 0)
|
---|
2258 | {
|
---|
2259 | Assert(idxLevel == 1 || idxLevel == 2); /* Is guaranteed by the reserved bits check above. */
|
---|
2260 | uint8_t const fSllpsMask = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SLLPS);
|
---|
2261 | if (fSllpsMask & RT_BIT(idxLevel - 1))
|
---|
2262 | {
|
---|
2263 | /*
|
---|
2264 | * We don't support MTS (asserted below), hence IPAT and EMT fields of the paging entity are ignored.
|
---|
2265 | * All other reserved bits are identical to the regular page-size paging entity which we've already
|
---|
2266 | * checked above.
|
---|
2267 | */
|
---|
2268 | Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_MTS_MASK));
|
---|
2269 |
|
---|
2270 | RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift);
|
---|
2271 | return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut);
|
---|
2272 | }
|
---|
2273 |
|
---|
2274 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Pte_Sllps_Invalid, pMemReqIn, pMemReqAux);
|
---|
2275 | break;
|
---|
2276 | }
|
---|
2277 |
|
---|
2278 | /*
|
---|
2279 | * If this is the final PTE, compute the translation address and we're done.
|
---|
2280 | */
|
---|
2281 | if (idxLevel == 0)
|
---|
2282 | {
|
---|
2283 | RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift);
|
---|
2284 | return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut);
|
---|
2285 | }
|
---|
2286 | }
|
---|
2287 |
|
---|
2288 | return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
|
---|
2289 | }
|
---|
2290 |
|
---|
2291 |
|
---|
2292 | /**
|
---|
2293 | * Checks whether two consecutive I/O page results of a DMA memory request
|
---|
2294 | * translates to a physically contiguous region.
|
---|
2295 | *
|
---|
2296 | * @returns @c true if the I/O pages are contiguous, @c false otherwise.
|
---|
2297 | * @param pIoPagePrev The previous I/O page.
|
---|
2298 | * @param pIoPage The current I/O page.
|
---|
2299 | */
|
---|
2300 | static bool dmarIsIoPageAccessContig(PCDMARIOPAGE pIoPagePrev, PCDMARIOPAGE pIoPage)
|
---|
2301 | {
|
---|
2302 | /* Paranoia: Permissions for pages of a DMA memory request must be identical. */
|
---|
2303 | Assert(pIoPagePrev->fPerm == pIoPage->fPerm);
|
---|
2304 |
|
---|
2305 | size_t const cbPrev = RT_BIT_64(pIoPagePrev->cShift);
|
---|
2306 | RTGCPHYS const GCPhysPrev = pIoPagePrev->GCPhysBase;
|
---|
2307 | RTGCPHYS const GCPhys = pIoPage->GCPhysBase;
|
---|
2308 | #ifdef RT_STRICT
|
---|
2309 | /* Paranoia: Ensure offset bits are 0. */
|
---|
2310 | {
|
---|
2311 | uint64_t const fOffMaskPrev = X86_GET_PAGE_OFFSET_MASK(pIoPagePrev->cShift);
|
---|
2312 | uint64_t const fOffMask = X86_GET_PAGE_OFFSET_MASK(pIoPage->cShift);
|
---|
2313 | Assert(!(GCPhysPrev & fOffMaskPrev));
|
---|
2314 | Assert(!(GCPhys & fOffMask));
|
---|
2315 | }
|
---|
2316 | #endif
|
---|
2317 | return GCPhysPrev + cbPrev == GCPhys;
|
---|
2318 | }
|
---|
2319 |
|
---|
2320 |
|
---|
2321 | /**
|
---|
2322 | * Looks up the range of addresses for a DMA memory request remapping.
|
---|
2323 | *
|
---|
2324 | * @returns VBox status code.
|
---|
2325 | * @param pDevIns The IOMMU device instance.
|
---|
2326 | * @param pfnLookup The DMA address lookup function.
|
---|
2327 | * @param pMemReqRemap The DMA memory request remapping info.
|
---|
2328 | */
|
---|
2329 | static int dmarDrMemRangeLookup(PPDMDEVINS pDevIns, PFNDMADDRLOOKUP pfnLookup, PDMARMEMREQREMAP pMemReqRemap)
|
---|
2330 | {
|
---|
2331 | AssertPtr(pfnLookup);
|
---|
2332 |
|
---|
2333 | RTGCPHYS GCPhysAddr = NIL_RTGCPHYS;
|
---|
2334 | DMARMEMREQIN MemReqIn = pMemReqRemap->In;
|
---|
2335 | uint64_t const uAddrIn = MemReqIn.AddrRange.uAddr;
|
---|
2336 | size_t const cbAddrIn = MemReqIn.AddrRange.cb;
|
---|
2337 | uint64_t uAddrInBase = MemReqIn.AddrRange.uAddr & X86_PAGE_4K_BASE_MASK;
|
---|
2338 | uint64_t offAddrIn = MemReqIn.AddrRange.uAddr & X86_PAGE_4K_OFFSET_MASK;
|
---|
2339 | size_t cbRemaining = cbAddrIn;
|
---|
2340 |
|
---|
2341 | int rc;
|
---|
2342 | DMARIOPAGE IoPagePrev;
|
---|
2343 | RT_ZERO(IoPagePrev);
|
---|
2344 | for (;;)
|
---|
2345 | {
|
---|
2346 | /* Update the input memory request with the next address in our range that needs translation. */
|
---|
2347 | MemReqIn.AddrRange.uAddr = uAddrInBase;
|
---|
2348 | MemReqIn.AddrRange.cb = cbRemaining; /* Not currently accessed by pfnLookup, but keep things consistent. */
|
---|
2349 |
|
---|
2350 | DMARIOPAGE IoPage;
|
---|
2351 | rc = pfnLookup(pDevIns, &MemReqIn, &pMemReqRemap->Aux, &IoPage);
|
---|
2352 | if (RT_SUCCESS(rc))
|
---|
2353 | {
|
---|
2354 | Assert(IoPage.cShift >= X86_PAGE_4K_SHIFT && IoPage.cShift <= X86_PAGE_1G_SHIFT);
|
---|
2355 |
|
---|
2356 | /* Store the translated address before continuing to access more pages. */
|
---|
2357 | if (cbRemaining == cbAddrIn)
|
---|
2358 | {
|
---|
2359 | uint64_t const fOffMask = X86_GET_PAGE_OFFSET_MASK(IoPage.cShift);
|
---|
2360 | uint64_t const offAddrOut = uAddrIn & fOffMask;
|
---|
2361 | Assert(!(IoPage.GCPhysBase & fOffMask));
|
---|
2362 | GCPhysAddr = IoPage.GCPhysBase | offAddrOut;
|
---|
2363 | }
|
---|
2364 | /* Check if addresses translated so far result in a physically contiguous region. */
|
---|
2365 | else if (!dmarIsIoPageAccessContig(&IoPagePrev, &IoPage))
|
---|
2366 | {
|
---|
2367 | rc = VERR_OUT_OF_RANGE;
|
---|
2368 | break;
|
---|
2369 | }
|
---|
2370 |
|
---|
2371 | /* Store the I/O page lookup from the first/previous access. */
|
---|
2372 | IoPagePrev = IoPage;
|
---|
2373 |
|
---|
2374 | /* Check if we need to access more pages. */
|
---|
2375 | size_t const cbPage = RT_BIT_64(IoPage.cShift);
|
---|
2376 | if (cbRemaining > cbPage - offAddrIn)
|
---|
2377 | {
|
---|
2378 | cbRemaining -= (cbPage - offAddrIn); /* Calculate how much more we need to access. */
|
---|
2379 | uAddrInBase += cbPage; /* Update address of the next access. */
|
---|
2380 | offAddrIn = 0; /* After first page, all pages are accessed from offset 0. */
|
---|
2381 | }
|
---|
2382 | else
|
---|
2383 | {
|
---|
2384 | /* Caller (PDM) doesn't expect more data accessed than what was requested. */
|
---|
2385 | cbRemaining = 0;
|
---|
2386 | break;
|
---|
2387 | }
|
---|
2388 | }
|
---|
2389 | else
|
---|
2390 | break;
|
---|
2391 | }
|
---|
2392 |
|
---|
2393 | pMemReqRemap->Out.AddrRange.uAddr = GCPhysAddr;
|
---|
2394 | pMemReqRemap->Out.AddrRange.cb = cbAddrIn - cbRemaining;
|
---|
2395 | pMemReqRemap->Out.AddrRange.fPerm = IoPagePrev.fPerm;
|
---|
2396 | return rc;
|
---|
2397 | }
|
---|
2398 |
|
---|
2399 |
|
---|
2400 | /**
|
---|
2401 | * Handles legacy mode DMA address remapping.
|
---|
2402 | *
|
---|
2403 | * @returns VBox status code.
|
---|
2404 | * @param pDevIns The IOMMU device instance.
|
---|
2405 | * @param uRtaddrReg The current RTADDR_REG value.
|
---|
2406 | * @param pMemReqRemap The DMA memory request remapping info.
|
---|
2407 | */
|
---|
2408 | static int dmarDrLegacyModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
|
---|
2409 | {
|
---|
2410 | PCDMARMEMREQIN pMemReqIn = &pMemReqRemap->In;
|
---|
2411 | PDMARMEMREQAUX pMemReqAux = &pMemReqRemap->Aux;
|
---|
2412 | PDMARMEMREQOUT pMemReqOut = &pMemReqRemap->Out;
|
---|
2413 | Assert(pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE); /* Paranoia. */
|
---|
2414 |
|
---|
2415 | /* Read the root-entry from guest memory. */
|
---|
2416 | uint8_t const idxRootEntry = RT_HI_U8(pMemReqIn->idDevice);
|
---|
2417 | VTD_ROOT_ENTRY_T RootEntry;
|
---|
2418 | int rc = dmarDrReadRootEntry(pDevIns, uRtaddrReg, idxRootEntry, &RootEntry);
|
---|
2419 | if (RT_SUCCESS(rc))
|
---|
2420 | {
|
---|
2421 | /* Check if the root entry is present (must be done before validating reserved bits). */
|
---|
2422 | uint64_t const uRootEntryQword0 = RootEntry.au64[0];
|
---|
2423 | uint64_t const uRootEntryQword1 = RootEntry.au64[1];
|
---|
2424 | bool const fRootEntryPresent = RT_BF_GET(uRootEntryQword0, VTD_BF_0_ROOT_ENTRY_P);
|
---|
2425 | if (fRootEntryPresent)
|
---|
2426 | {
|
---|
2427 | /* Validate reserved bits in the root entry. */
|
---|
2428 | if ( !(uRootEntryQword0 & ~VTD_ROOT_ENTRY_0_VALID_MASK)
|
---|
2429 | && !(uRootEntryQword1 & ~VTD_ROOT_ENTRY_1_VALID_MASK))
|
---|
2430 | {
|
---|
2431 | /* Read the context-entry from guest memory. */
|
---|
2432 | RTGCPHYS const GCPhysCtxTable = uRootEntryQword0 & VTD_BF_0_ROOT_ENTRY_CTP_MASK;
|
---|
2433 | uint8_t const idxCtxEntry = RT_LO_U8(pMemReqIn->idDevice);
|
---|
2434 | VTD_CONTEXT_ENTRY_T CtxEntry;
|
---|
2435 | rc = dmarDrReadCtxEntry(pDevIns, GCPhysCtxTable, idxCtxEntry, &CtxEntry);
|
---|
2436 | if (RT_SUCCESS(rc))
|
---|
2437 | {
|
---|
2438 | uint64_t const uCtxEntryQword0 = CtxEntry.au64[0];
|
---|
2439 | uint64_t const uCtxEntryQword1 = CtxEntry.au64[1];
|
---|
2440 |
|
---|
2441 | /* Note the FPD bit which software can use to supress translation faults from here on in. */
|
---|
2442 | pMemReqAux->fFpd = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_FPD);
|
---|
2443 |
|
---|
2444 | /* Check if the context-entry is present (must be done before validating reserved bits). */
|
---|
2445 | bool const fCtxEntryPresent = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_P);
|
---|
2446 | if (fCtxEntryPresent)
|
---|
2447 | {
|
---|
2448 | /* Validate reserved bits in the context-entry. */
|
---|
2449 | PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
|
---|
2450 | if ( !(uCtxEntryQword0 & ~VTD_CONTEXT_ENTRY_0_VALID_MASK)
|
---|
2451 | && !(uCtxEntryQword1 & ~pThis->fCtxEntryQw1ValidMask))
|
---|
2452 | {
|
---|
2453 | /* Get the domain ID for this mapping. */
|
---|
2454 | pMemReqOut->idDomain = RT_BF_GET(uCtxEntryQword1, VTD_BF_1_CONTEXT_ENTRY_DID);
|
---|
2455 |
|
---|
2456 | /* Validate the translation type (TT). */
|
---|
2457 | uint8_t const fTt = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_TT);
|
---|
2458 | switch (fTt)
|
---|
2459 | {
|
---|
2460 | case VTD_TT_UNTRANSLATED_SLP:
|
---|
2461 | {
|
---|
2462 | /*
|
---|
2463 | * Untranslated requests are translated using second-level paging structures referenced
|
---|
2464 | * through SLPTPTR. Translated requests and Translation Requests are blocked.
|
---|
2465 | */
|
---|
2466 | if (pMemReqIn->enmAddrType == PCIADDRTYPE_UNTRANSLATED)
|
---|
2467 | {
|
---|
2468 | /* Validate the address width and get the paging level. */
|
---|
2469 | uint8_t cPagingLevel;
|
---|
2470 | if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, &cPagingLevel))
|
---|
2471 | {
|
---|
2472 | /*
|
---|
2473 | * The second-level page table is located at the physical address specified
|
---|
2474 | * in the context entry with which we can finally perform second-level translation.
|
---|
2475 | */
|
---|
2476 | pMemReqAux->cPagingLevel = cPagingLevel;
|
---|
2477 | pMemReqAux->GCPhysSlPt = uCtxEntryQword0 & VTD_BF_0_CONTEXT_ENTRY_SLPTPTR_MASK;
|
---|
2478 | return dmarDrMemRangeLookup(pDevIns, dmarDrSecondLevelTranslate, pMemReqRemap);
|
---|
2479 | }
|
---|
2480 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Ut_Aw_Invalid, pMemReqIn, pMemReqAux);
|
---|
2481 | }
|
---|
2482 | else
|
---|
2483 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Ut_At_Block, pMemReqIn, pMemReqAux);
|
---|
2484 | break;
|
---|
2485 | }
|
---|
2486 |
|
---|
2487 | case VTD_TT_UNTRANSLATED_PT:
|
---|
2488 | {
|
---|
2489 | /*
|
---|
2490 | * Untranslated requests are processed as pass-through (PT) if PT is supported.
|
---|
2491 | * Translated and translation requests are blocked. If PT isn't supported this TT value
|
---|
2492 | * is reserved which I assume raises a fault (hence fallthru below).
|
---|
2493 | */
|
---|
2494 | if (pThis->fExtCapReg & VTD_BF_ECAP_REG_PT_MASK)
|
---|
2495 | {
|
---|
2496 | if (pMemReqRemap->In.enmAddrType == PCIADDRTYPE_UNTRANSLATED)
|
---|
2497 | {
|
---|
2498 | if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, NULL /* pcPagingLevel */))
|
---|
2499 | {
|
---|
2500 | PDMARMEMREQOUT pOut = &pMemReqRemap->Out;
|
---|
2501 | PCDMARMEMREQIN pIn = &pMemReqRemap->In;
|
---|
2502 | pOut->AddrRange.uAddr = pIn->AddrRange.uAddr;
|
---|
2503 | pOut->AddrRange.cb = pIn->AddrRange.cb;
|
---|
2504 | pOut->AddrRange.fPerm = DMAR_PERM_ALL;
|
---|
2505 | return VINF_SUCCESS;
|
---|
2506 | }
|
---|
2507 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Pt_Aw_Invalid, pMemReqIn, pMemReqAux);
|
---|
2508 | }
|
---|
2509 | else
|
---|
2510 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Pt_At_Block, pMemReqIn, pMemReqAux);
|
---|
2511 | break;
|
---|
2512 | }
|
---|
2513 | RT_FALL_THRU();
|
---|
2514 | }
|
---|
2515 |
|
---|
2516 | case VTD_TT_UNTRANSLATED_DEV_TLB:
|
---|
2517 | {
|
---|
2518 | /*
|
---|
2519 | * Untranslated, translated and translation requests are supported but requires
|
---|
2520 | * device-TLB support. We don't support device-TLBs, so it's treated as reserved.
|
---|
2521 | */
|
---|
2522 | Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_DT_MASK));
|
---|
2523 | RT_FALL_THRU();
|
---|
2524 | }
|
---|
2525 |
|
---|
2526 | default:
|
---|
2527 | {
|
---|
2528 | /* Any other TT value is reserved. */
|
---|
2529 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Tt_Invalid, pMemReqIn, pMemReqAux);
|
---|
2530 | break;
|
---|
2531 | }
|
---|
2532 | }
|
---|
2533 | }
|
---|
2534 | else
|
---|
2535 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Rsvd, pMemReqIn, pMemReqAux);
|
---|
2536 | }
|
---|
2537 | else
|
---|
2538 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Not_Present, pMemReqIn, pMemReqAux);
|
---|
2539 | }
|
---|
2540 | else
|
---|
2541 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Read_Failed, pMemReqIn, pMemReqAux);
|
---|
2542 | }
|
---|
2543 | else
|
---|
2544 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Rsvd, pMemReqIn, pMemReqAux);
|
---|
2545 | }
|
---|
2546 | else
|
---|
2547 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Not_Present, pMemReqIn, pMemReqAux);
|
---|
2548 | }
|
---|
2549 | else
|
---|
2550 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Read_Failed, pMemReqIn, pMemReqAux);
|
---|
2551 | return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
|
---|
2552 | }
|
---|
2553 |
|
---|
2554 |
|
---|
2555 | /**
|
---|
2556 | * Handles remapping of DMA address requests in scalable mode.
|
---|
2557 | *
|
---|
2558 | * @returns VBox status code.
|
---|
2559 | * @param pDevIns The IOMMU device instance.
|
---|
2560 | * @param uRtaddrReg The current RTADDR_REG value.
|
---|
2561 | * @param pMemReqRemap The DMA memory request remapping info.
|
---|
2562 | */
|
---|
2563 | static int dmarDrScalableModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
|
---|
2564 | {
|
---|
2565 | RT_NOREF3(pDevIns, uRtaddrReg, pMemReqRemap);
|
---|
2566 | return VERR_NOT_IMPLEMENTED;
|
---|
2567 | }
|
---|
2568 |
|
---|
2569 |
|
---|
2570 | /**
|
---|
2571 | * Gets the DMA access permissions and the address-translation request
|
---|
2572 | * type given the PDM IOMMU memory access flags.
|
---|
2573 | *
|
---|
2574 | * @param pDevIns The IOMMU device instance.
|
---|
2575 | * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
|
---|
2576 | * @param fBulk Whether this is a bulk memory access (used for
|
---|
2577 | * statistics).
|
---|
2578 | * @param penmReqType Where to store the address-translation request type.
|
---|
2579 | * @param pfReqPerm Where to store the DMA access permissions.
|
---|
2580 | */
|
---|
2581 | static void dmarDrGetPermAndReqType(PPDMDEVINS pDevIns, uint32_t fFlags, bool fBulk, PVTDREQTYPE penmReqType, uint8_t *pfReqPerm)
|
---|
2582 | {
|
---|
2583 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
2584 | if (fFlags & PDMIOMMU_MEM_F_READ)
|
---|
2585 | {
|
---|
2586 | *penmReqType = VTDREQTYPE_READ;
|
---|
2587 | *pfReqPerm = DMAR_PERM_READ;
|
---|
2588 | #ifdef VBOX_WITH_STATISTICS
|
---|
2589 | if (!fBulk)
|
---|
2590 | STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemRead));
|
---|
2591 | else
|
---|
2592 | STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemBulkRead));
|
---|
2593 | #else
|
---|
2594 | RT_NOREF2(pThis, fBulk);
|
---|
2595 | #endif
|
---|
2596 | }
|
---|
2597 | else
|
---|
2598 | {
|
---|
2599 | *penmReqType = VTDREQTYPE_WRITE;
|
---|
2600 | *pfReqPerm = DMAR_PERM_WRITE;
|
---|
2601 | #ifdef VBOX_WITH_STATISTICS
|
---|
2602 | if (!fBulk)
|
---|
2603 | STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemWrite));
|
---|
2604 | else
|
---|
2605 | STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemBulkWrite));
|
---|
2606 | #else
|
---|
2607 | RT_NOREF2(pThis, fBulk);
|
---|
2608 | #endif
|
---|
2609 | }
|
---|
2610 | }
|
---|
2611 |
|
---|
2612 |
|
---|
2613 | /**
|
---|
2614 | * Handles DMA remapping based on the table translation mode (TTM).
|
---|
2615 | *
|
---|
2616 | * @returns VBox status code.
|
---|
2617 | * @param pDevIns The IOMMU device instance.
|
---|
2618 | * @param uRtaddrReg The current RTADDR_REG value.
|
---|
2619 | * @param pMemReqRemap The DMA memory request remapping info.
|
---|
2620 | */
|
---|
2621 | static int dmarDrMemReqRemap(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
|
---|
2622 | {
|
---|
2623 | int rc;
|
---|
2624 | switch (pMemReqRemap->Aux.fTtm)
|
---|
2625 | {
|
---|
2626 | case VTD_TTM_LEGACY_MODE:
|
---|
2627 | {
|
---|
2628 | rc = dmarDrLegacyModeRemapAddr(pDevIns, uRtaddrReg, pMemReqRemap);
|
---|
2629 | break;
|
---|
2630 | }
|
---|
2631 |
|
---|
2632 | case VTD_TTM_SCALABLE_MODE:
|
---|
2633 | {
|
---|
2634 | PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
|
---|
2635 | if (pThis->fExtCapReg & VTD_BF_ECAP_REG_SMTS_MASK)
|
---|
2636 | rc = dmarDrScalableModeRemapAddr(pDevIns, uRtaddrReg, pMemReqRemap);
|
---|
2637 | else
|
---|
2638 | {
|
---|
2639 | rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
|
---|
2640 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Smts_Not_Supported, &pMemReqRemap->In, &pMemReqRemap->Aux);
|
---|
2641 | }
|
---|
2642 | break;
|
---|
2643 | }
|
---|
2644 |
|
---|
2645 | case VTD_TTM_ABORT_DMA_MODE:
|
---|
2646 | {
|
---|
2647 | PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
|
---|
2648 | if (pThis->fExtCapReg & VTD_BF_ECAP_REG_ADMS_MASK)
|
---|
2649 | dmarDrTargetAbort(pDevIns);
|
---|
2650 | else
|
---|
2651 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Adms_Not_Supported, &pMemReqRemap->In, &pMemReqRemap->Aux);
|
---|
2652 | rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
|
---|
2653 | break;
|
---|
2654 | }
|
---|
2655 |
|
---|
2656 | default:
|
---|
2657 | {
|
---|
2658 | rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
|
---|
2659 | dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Rsvd, &pMemReqRemap->In, &pMemReqRemap->Aux);
|
---|
2660 | break;
|
---|
2661 | }
|
---|
2662 | }
|
---|
2663 | return rc;
|
---|
2664 | }
|
---|
2665 |
|
---|
2666 |
|
---|
2667 | /**
|
---|
2668 | * Memory access bulk (one or more 4K pages) request from a device.
|
---|
2669 | *
|
---|
2670 | * @returns VBox status code.
|
---|
2671 | * @param pDevIns The IOMMU device instance.
|
---|
2672 | * @param idDevice The device ID (bus, device, function).
|
---|
2673 | * @param cIovas The number of addresses being accessed.
|
---|
2674 | * @param pauIovas The I/O virtual addresses for each page being accessed.
|
---|
2675 | * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
|
---|
2676 | * @param paGCPhysSpa Where to store the translated physical addresses.
|
---|
2677 | *
|
---|
2678 | * @thread Any.
|
---|
2679 | */
|
---|
2680 | static DECLCALLBACK(int) iommuIntelMemBulkAccess(PPDMDEVINS pDevIns, uint16_t idDevice, size_t cIovas, uint64_t const *pauIovas,
|
---|
2681 | uint32_t fFlags, PRTGCPHYS paGCPhysSpa)
|
---|
2682 | {
|
---|
2683 | /* Validate. */
|
---|
2684 | AssertPtr(pDevIns);
|
---|
2685 | Assert(cIovas > 0);
|
---|
2686 | AssertPtr(pauIovas);
|
---|
2687 | AssertPtr(paGCPhysSpa);
|
---|
2688 | Assert(!(fFlags & ~PDMIOMMU_MEM_F_VALID_MASK));
|
---|
2689 |
|
---|
2690 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
2691 | PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
|
---|
2692 |
|
---|
2693 | DMAR_LOCK(pDevIns, pThisCC);
|
---|
2694 | uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
|
---|
2695 | uint64_t const uRtaddrReg = pThis->uRtaddrReg;
|
---|
2696 | DMAR_UNLOCK(pDevIns, pThisCC);
|
---|
2697 |
|
---|
2698 | if (uGstsReg & VTD_BF_GSTS_REG_TES_MASK)
|
---|
2699 | {
|
---|
2700 | VTDREQTYPE enmReqType;
|
---|
2701 | uint8_t fReqPerm;
|
---|
2702 | dmarDrGetPermAndReqType(pDevIns, fFlags, true /* fBulk */, &enmReqType, &fReqPerm);
|
---|
2703 |
|
---|
2704 | DMARMEMREQREMAP MemReqRemap;
|
---|
2705 | RT_ZERO(MemReqRemap);
|
---|
2706 | MemReqRemap.In.AddrRange.cb = X86_PAGE_SIZE;
|
---|
2707 | MemReqRemap.In.AddrRange.fPerm = fReqPerm;
|
---|
2708 | MemReqRemap.In.idDevice = idDevice;
|
---|
2709 | MemReqRemap.In.Pasid = NIL_PCIPASID;
|
---|
2710 | MemReqRemap.In.enmAddrType = PCIADDRTYPE_UNTRANSLATED;
|
---|
2711 | MemReqRemap.In.enmReqType = enmReqType;
|
---|
2712 | MemReqRemap.Aux.fTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
|
---|
2713 | MemReqRemap.Out.AddrRange.uAddr = NIL_RTGCPHYS;
|
---|
2714 |
|
---|
2715 | for (size_t i = 0; i < cIovas; i++)
|
---|
2716 | {
|
---|
2717 | MemReqRemap.In.AddrRange.uAddr = pauIovas[i] & X86_PAGE_BASE_MASK;
|
---|
2718 | int const rc = dmarDrMemReqRemap(pDevIns, uRtaddrReg, &MemReqRemap);
|
---|
2719 | if (RT_SUCCESS(rc))
|
---|
2720 | {
|
---|
2721 | paGCPhysSpa[i] = MemReqRemap.Out.AddrRange.uAddr | (pauIovas[i] & X86_PAGE_OFFSET_MASK);
|
---|
2722 | Assert(MemReqRemap.Out.AddrRange.cb == MemReqRemap.In.AddrRange.cb);
|
---|
2723 | }
|
---|
2724 | else
|
---|
2725 | {
|
---|
2726 | LogFlowFunc(("idDevice=%#x uIova=%#RX64 fPerm=%#x rc=%Rrc\n", idDevice, pauIovas[i], fReqPerm, rc));
|
---|
2727 | return rc;
|
---|
2728 | }
|
---|
2729 | }
|
---|
2730 | }
|
---|
2731 | else
|
---|
2732 | {
|
---|
2733 | /* Addresses are forwarded without translation when the translation is disabled. */
|
---|
2734 | for (size_t i = 0; i < cIovas; i++)
|
---|
2735 | paGCPhysSpa[i] = pauIovas[i];
|
---|
2736 | }
|
---|
2737 |
|
---|
2738 | return VINF_SUCCESS;
|
---|
2739 | }
|
---|
2740 |
|
---|
2741 |
|
---|
2742 | /**
|
---|
2743 | * Memory access transaction from a device.
|
---|
2744 | *
|
---|
2745 | * @returns VBox status code.
|
---|
2746 | * @param pDevIns The IOMMU device instance.
|
---|
2747 | * @param idDevice The device ID (bus, device, function).
|
---|
2748 | * @param uIova The I/O virtual address being accessed.
|
---|
2749 | * @param cbIova The size of the access.
|
---|
2750 | * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
|
---|
2751 | * @param pGCPhysSpa Where to store the translated system physical address.
|
---|
2752 | * @param pcbContiguous Where to store the number of contiguous bytes translated
|
---|
2753 | * and permission-checked.
|
---|
2754 | *
|
---|
2755 | * @thread Any.
|
---|
2756 | */
|
---|
2757 | static DECLCALLBACK(int) iommuIntelMemAccess(PPDMDEVINS pDevIns, uint16_t idDevice, uint64_t uIova, size_t cbIova,
|
---|
2758 | uint32_t fFlags, PRTGCPHYS pGCPhysSpa, size_t *pcbContiguous)
|
---|
2759 | {
|
---|
2760 | /* Validate. */
|
---|
2761 | AssertPtr(pDevIns);
|
---|
2762 | AssertPtr(pGCPhysSpa);
|
---|
2763 | AssertPtr(pcbContiguous);
|
---|
2764 | Assert(cbIova > 0); /** @todo Are we going to support ZLR (zero-length reads to write-only pages)? */
|
---|
2765 | Assert(!(fFlags & ~PDMIOMMU_MEM_F_VALID_MASK));
|
---|
2766 |
|
---|
2767 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
2768 | PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
|
---|
2769 |
|
---|
2770 | DMAR_LOCK(pDevIns, pThisCC);
|
---|
2771 | uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
|
---|
2772 | uint64_t const uRtaddrReg = pThis->uRtaddrReg;
|
---|
2773 | DMAR_UNLOCK(pDevIns, pThisCC);
|
---|
2774 |
|
---|
2775 | if (uGstsReg & VTD_BF_GSTS_REG_TES_MASK)
|
---|
2776 | {
|
---|
2777 | VTDREQTYPE enmReqType;
|
---|
2778 | uint8_t fReqPerm;
|
---|
2779 | dmarDrGetPermAndReqType(pDevIns, fFlags, false /* fBulk */, &enmReqType, &fReqPerm);
|
---|
2780 |
|
---|
2781 | DMARMEMREQREMAP MemReqRemap;
|
---|
2782 | RT_ZERO(MemReqRemap);
|
---|
2783 | MemReqRemap.In.AddrRange.uAddr = uIova;
|
---|
2784 | MemReqRemap.In.AddrRange.cb = cbIova;
|
---|
2785 | MemReqRemap.In.AddrRange.fPerm = fReqPerm;
|
---|
2786 | MemReqRemap.In.idDevice = idDevice;
|
---|
2787 | MemReqRemap.In.Pasid = NIL_PCIPASID;
|
---|
2788 | MemReqRemap.In.enmAddrType = PCIADDRTYPE_UNTRANSLATED;
|
---|
2789 | MemReqRemap.In.enmReqType = enmReqType;
|
---|
2790 | MemReqRemap.Aux.fTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
|
---|
2791 | MemReqRemap.Out.AddrRange.uAddr = NIL_RTGCPHYS;
|
---|
2792 |
|
---|
2793 | int const rc = dmarDrMemReqRemap(pDevIns, uRtaddrReg, &MemReqRemap);
|
---|
2794 | *pGCPhysSpa = MemReqRemap.Out.AddrRange.uAddr;
|
---|
2795 | *pcbContiguous = MemReqRemap.Out.AddrRange.cb;
|
---|
2796 | return rc;
|
---|
2797 | }
|
---|
2798 |
|
---|
2799 | *pGCPhysSpa = uIova;
|
---|
2800 | *pcbContiguous = cbIova;
|
---|
2801 | return VINF_SUCCESS;
|
---|
2802 | }
|
---|
2803 |
|
---|
2804 |
|
---|
2805 | /**
|
---|
2806 | * Reads an IRTE from guest memory.
|
---|
2807 | *
|
---|
2808 | * @returns VBox status code.
|
---|
2809 | * @param pDevIns The IOMMU device instance.
|
---|
2810 | * @param uIrtaReg The IRTA_REG.
|
---|
2811 | * @param idxIntr The interrupt index.
|
---|
2812 | * @param pIrte Where to store the read IRTE.
|
---|
2813 | */
|
---|
2814 | static int dmarIrReadIrte(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idxIntr, PVTD_IRTE_T pIrte)
|
---|
2815 | {
|
---|
2816 | Assert(idxIntr < VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg));
|
---|
2817 |
|
---|
2818 | size_t const cbIrte = sizeof(*pIrte);
|
---|
2819 | RTGCPHYS const GCPhysIrte = (uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK) + (idxIntr * cbIrte);
|
---|
2820 | return PDMDevHlpPhysReadMeta(pDevIns, GCPhysIrte, pIrte, cbIrte);
|
---|
2821 | }
|
---|
2822 |
|
---|
2823 |
|
---|
2824 | /**
|
---|
2825 | * Remaps the source MSI to the destination MSI given the IRTE.
|
---|
2826 | *
|
---|
2827 | * @param fExtIntrMode Whether extended interrupt mode is enabled (i.e
|
---|
2828 | * IRTA_REG.EIME).
|
---|
2829 | * @param pIrte The IRTE used for the remapping.
|
---|
2830 | * @param pMsiIn The source MSI (currently unused).
|
---|
2831 | * @param pMsiOut Where to store the remapped MSI.
|
---|
2832 | */
|
---|
2833 | static void dmarIrRemapFromIrte(bool fExtIntrMode, PCVTD_IRTE_T pIrte, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
|
---|
2834 | {
|
---|
2835 | NOREF(pMsiIn);
|
---|
2836 | uint64_t const uIrteQword0 = pIrte->au64[0];
|
---|
2837 |
|
---|
2838 | /*
|
---|
2839 | * Let's start with a clean slate and preserve unspecified bits if the need arises.
|
---|
2840 | * For instance, address bits 1:0 is supposed to be "ignored" by remapping hardware,
|
---|
2841 | * but it's not clear if hardware zeroes out these bits in the remapped MSI or if
|
---|
2842 | * it copies it from the source MSI.
|
---|
2843 | */
|
---|
2844 | RT_ZERO(*pMsiOut);
|
---|
2845 | pMsiOut->Addr.n.u1DestMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DM);
|
---|
2846 | pMsiOut->Addr.n.u1RedirHint = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_RH);
|
---|
2847 | pMsiOut->Addr.n.u12Addr = VBOX_MSI_ADDR_BASE >> VBOX_MSI_ADDR_SHIFT;
|
---|
2848 | if (fExtIntrMode)
|
---|
2849 | {
|
---|
2850 | /*
|
---|
2851 | * Apparently the DMAR stuffs the high 24-bits of the destination ID into the
|
---|
2852 | * high 24-bits of the upper 32-bits of the message address, see @bugref{9967#c22}.
|
---|
2853 | */
|
---|
2854 | uint32_t const idDest = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST);
|
---|
2855 | pMsiOut->Addr.n.u8DestId = idDest;
|
---|
2856 | pMsiOut->Addr.n.u32Rsvd0 = idDest & UINT32_C(0xffffff00);
|
---|
2857 | }
|
---|
2858 | else
|
---|
2859 | pMsiOut->Addr.n.u8DestId = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST_XAPIC);
|
---|
2860 |
|
---|
2861 | pMsiOut->Data.n.u8Vector = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_V);
|
---|
2862 | pMsiOut->Data.n.u3DeliveryMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DLM);
|
---|
2863 | pMsiOut->Data.n.u1Level = 1;
|
---|
2864 | pMsiOut->Data.n.u1TriggerMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_TM);
|
---|
2865 | }
|
---|
2866 |
|
---|
2867 |
|
---|
2868 | /**
|
---|
2869 | * Handles remapping of interrupts in remappable interrupt format.
|
---|
2870 | *
|
---|
2871 | * @returns VBox status code.
|
---|
2872 | * @param pDevIns The IOMMU device instance.
|
---|
2873 | * @param uIrtaReg The IRTA_REG.
|
---|
2874 | * @param idDevice The device ID (bus, device, function).
|
---|
2875 | * @param pMsiIn The source MSI.
|
---|
2876 | * @param pMsiOut Where to store the remapped MSI.
|
---|
2877 | */
|
---|
2878 | static int dmarIrRemapIntr(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
|
---|
2879 | {
|
---|
2880 | Assert(pMsiIn->Addr.dmar_remap.fIntrFormat == VTD_INTR_FORMAT_REMAPPABLE);
|
---|
2881 |
|
---|
2882 | /* Validate reserved bits in the interrupt request. */
|
---|
2883 | AssertCompile(VTD_REMAPPABLE_MSI_ADDR_VALID_MASK == UINT32_MAX);
|
---|
2884 | if (!(pMsiIn->Data.u32 & ~VTD_REMAPPABLE_MSI_DATA_VALID_MASK))
|
---|
2885 | {
|
---|
2886 | /* Compute the index into the interrupt remap table. */
|
---|
2887 | uint16_t const uHandleHi = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_HI);
|
---|
2888 | uint16_t const uHandleLo = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_LO);
|
---|
2889 | uint16_t const uHandle = uHandleLo | (uHandleHi << 15);
|
---|
2890 | bool const fSubHandleValid = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_SHV);
|
---|
2891 | uint16_t const idxIntr = fSubHandleValid
|
---|
2892 | ? uHandle + RT_BF_GET(pMsiIn->Data.u32, VTD_BF_REMAPPABLE_MSI_DATA_SUBHANDLE)
|
---|
2893 | : uHandle;
|
---|
2894 |
|
---|
2895 | /* Validate the index. */
|
---|
2896 | uint32_t const cEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg);
|
---|
2897 | if (idxIntr < cEntries)
|
---|
2898 | {
|
---|
2899 | /** @todo Implement and read IRTE from interrupt-entry cache here. */
|
---|
2900 |
|
---|
2901 | /* Read the interrupt remap table entry (IRTE) at the index. */
|
---|
2902 | VTD_IRTE_T Irte;
|
---|
2903 | int rc = dmarIrReadIrte(pDevIns, uIrtaReg, idxIntr, &Irte);
|
---|
2904 | if (RT_SUCCESS(rc))
|
---|
2905 | {
|
---|
2906 | /* Check if the IRTE is present (this must be done -before- checking reserved bits). */
|
---|
2907 | uint64_t const uIrteQword0 = Irte.au64[0];
|
---|
2908 | uint64_t const uIrteQword1 = Irte.au64[1];
|
---|
2909 | bool const fPresent = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_P);
|
---|
2910 | if (fPresent)
|
---|
2911 | {
|
---|
2912 | /* Validate reserved bits in the IRTE. */
|
---|
2913 | bool const fExtIntrMode = RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME);
|
---|
2914 | uint64_t const fQw0ValidMask = fExtIntrMode ? VTD_IRTE_0_X2APIC_VALID_MASK : VTD_IRTE_0_XAPIC_VALID_MASK;
|
---|
2915 | if ( !(uIrteQword0 & ~fQw0ValidMask)
|
---|
2916 | && !(uIrteQword1 & ~VTD_IRTE_1_VALID_MASK))
|
---|
2917 | {
|
---|
2918 | /* Validate requester id (the device ID) as configured in the IRTE. */
|
---|
2919 | bool fSrcValid;
|
---|
2920 | DMARDIAG enmIrDiag;
|
---|
2921 | uint8_t const fSvt = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SVT);
|
---|
2922 | switch (fSvt)
|
---|
2923 | {
|
---|
2924 | case VTD_IRTE_SVT_NONE:
|
---|
2925 | {
|
---|
2926 | fSrcValid = true;
|
---|
2927 | enmIrDiag = kDmarDiag_None;
|
---|
2928 | break;
|
---|
2929 | }
|
---|
2930 |
|
---|
2931 | case VTD_IRTE_SVT_VALIDATE_MASK:
|
---|
2932 | {
|
---|
2933 | static uint16_t const s_afValidMasks[] = { 0xffff, 0xfffb, 0xfff9, 0xfff8 };
|
---|
2934 | uint8_t const idxMask = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SQ) & 3;
|
---|
2935 | uint16_t const fValidMask = s_afValidMasks[idxMask];
|
---|
2936 | uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID);
|
---|
2937 | fSrcValid = (idDevice & fValidMask) == (idSource & fValidMask);
|
---|
2938 | enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Masked;
|
---|
2939 | break;
|
---|
2940 | }
|
---|
2941 |
|
---|
2942 | case VTD_IRTE_SVT_VALIDATE_BUS_RANGE:
|
---|
2943 | {
|
---|
2944 | uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID);
|
---|
2945 | uint8_t const uBusFirst = RT_HI_U8(idSource);
|
---|
2946 | uint8_t const uBusLast = RT_LO_U8(idSource);
|
---|
2947 | uint8_t const idDeviceBus = idDevice >> VBOX_PCI_BUS_SHIFT;
|
---|
2948 | fSrcValid = (idDeviceBus >= uBusFirst && idDeviceBus <= uBusLast);
|
---|
2949 | enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Bus;
|
---|
2950 | break;
|
---|
2951 | }
|
---|
2952 |
|
---|
2953 | default:
|
---|
2954 | {
|
---|
2955 | fSrcValid = false;
|
---|
2956 | enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd;
|
---|
2957 | break;
|
---|
2958 | }
|
---|
2959 | }
|
---|
2960 |
|
---|
2961 | if (fSrcValid)
|
---|
2962 | {
|
---|
2963 | uint8_t const fPostedMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_IM);
|
---|
2964 | if (!fPostedMode)
|
---|
2965 | {
|
---|
2966 | dmarIrRemapFromIrte(fExtIntrMode, &Irte, pMsiIn, pMsiOut);
|
---|
2967 | return VINF_SUCCESS;
|
---|
2968 | }
|
---|
2969 | dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Mode_Invalid, idDevice, idxIntr, &Irte);
|
---|
2970 | }
|
---|
2971 | else
|
---|
2972 | dmarIrFaultRecord(pDevIns, enmIrDiag, idDevice, idxIntr, &Irte);
|
---|
2973 | }
|
---|
2974 | else
|
---|
2975 | dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Rsvd, idDevice, idxIntr, &Irte);
|
---|
2976 | }
|
---|
2977 | else
|
---|
2978 | dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Not_Present, idDevice, idxIntr, &Irte);
|
---|
2979 | }
|
---|
2980 | else
|
---|
2981 | dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Read_Failed, idDevice, idxIntr, NULL /* pIrte */);
|
---|
2982 | }
|
---|
2983 | else
|
---|
2984 | dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Intr_Index_Invalid, idDevice, idxIntr, NULL /* pIrte */);
|
---|
2985 | }
|
---|
2986 | else
|
---|
2987 | dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Rsvd, idDevice, 0 /* idxIntr */, NULL /* pIrte */);
|
---|
2988 | return VERR_IOMMU_INTR_REMAP_DENIED;
|
---|
2989 | }
|
---|
2990 |
|
---|
2991 |
|
---|
2992 | /**
|
---|
2993 | * Interrupt remap request from a device.
|
---|
2994 | *
|
---|
2995 | * @returns VBox status code.
|
---|
2996 | * @param pDevIns The IOMMU device instance.
|
---|
2997 | * @param idDevice The device ID (bus, device, function).
|
---|
2998 | * @param pMsiIn The source MSI.
|
---|
2999 | * @param pMsiOut Where to store the remapped MSI.
|
---|
3000 | */
|
---|
3001 | static DECLCALLBACK(int) iommuIntelMsiRemap(PPDMDEVINS pDevIns, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
|
---|
3002 | {
|
---|
3003 | /* Validate. */
|
---|
3004 | Assert(pDevIns);
|
---|
3005 | Assert(pMsiIn);
|
---|
3006 | Assert(pMsiOut);
|
---|
3007 | RT_NOREF1(idDevice);
|
---|
3008 |
|
---|
3009 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
3010 | PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
|
---|
3011 |
|
---|
3012 | /* Lock and read all registers required for interrupt remapping up-front. */
|
---|
3013 | DMAR_LOCK(pDevIns, pThisCC);
|
---|
3014 | uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
|
---|
3015 | uint64_t const uIrtaReg = pThis->uIrtaReg;
|
---|
3016 | DMAR_UNLOCK(pDevIns, pThisCC);
|
---|
3017 |
|
---|
3018 | /* Check if interrupt remapping is enabled. */
|
---|
3019 | if (uGstsReg & VTD_BF_GSTS_REG_IRES_MASK)
|
---|
3020 | {
|
---|
3021 | bool const fIsRemappable = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_INTR_FMT);
|
---|
3022 | if (!fIsRemappable)
|
---|
3023 | {
|
---|
3024 | /* Handle compatibility format interrupts. */
|
---|
3025 | STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapCfi));
|
---|
3026 |
|
---|
3027 | /* If EIME is enabled or CFIs are disabled, block the interrupt. */
|
---|
3028 | if ( (uIrtaReg & VTD_BF_IRTA_REG_EIME_MASK)
|
---|
3029 | || !(uGstsReg & VTD_BF_GSTS_REG_CFIS_MASK))
|
---|
3030 | {
|
---|
3031 | dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Cfi_Blocked, VTDIRFAULT_CFI_BLOCKED, idDevice, 0 /* idxIntr */);
|
---|
3032 | return VERR_IOMMU_INTR_REMAP_DENIED;
|
---|
3033 | }
|
---|
3034 |
|
---|
3035 | /* Interrupt isn't subject to remapping, pass-through the interrupt. */
|
---|
3036 | *pMsiOut = *pMsiIn;
|
---|
3037 | return VINF_SUCCESS;
|
---|
3038 | }
|
---|
3039 |
|
---|
3040 | /* Handle remappable format interrupts. */
|
---|
3041 | STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapRfi));
|
---|
3042 | return dmarIrRemapIntr(pDevIns, uIrtaReg, idDevice, pMsiIn, pMsiOut);
|
---|
3043 | }
|
---|
3044 |
|
---|
3045 | /* Interrupt-remapping isn't enabled, all interrupts are pass-through. */
|
---|
3046 | *pMsiOut = *pMsiIn;
|
---|
3047 | return VINF_SUCCESS;
|
---|
3048 | }
|
---|
3049 |
|
---|
3050 |
|
---|
3051 | /**
|
---|
3052 | * @callback_method_impl{FNIOMMMIONEWWRITE}
|
---|
3053 | */
|
---|
3054 | static DECLCALLBACK(VBOXSTRICTRC) dmarMmioWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb)
|
---|
3055 | {
|
---|
3056 | RT_NOREF1(pvUser);
|
---|
3057 | DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
|
---|
3058 |
|
---|
3059 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
3060 | STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioWrite));
|
---|
3061 |
|
---|
3062 | uint16_t const offReg = off;
|
---|
3063 | uint16_t const offLast = offReg + cb - 1;
|
---|
3064 | if (DMAR_IS_MMIO_OFF_VALID(offLast))
|
---|
3065 | {
|
---|
3066 | PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
|
---|
3067 | DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_WRITE);
|
---|
3068 |
|
---|
3069 | uint64_t uPrev = 0;
|
---|
3070 | uint64_t const uRegWritten = cb == 8 ? dmarRegWrite64(pThis, offReg, *(uint64_t *)pv, &uPrev)
|
---|
3071 | : dmarRegWrite32(pThis, offReg, *(uint32_t *)pv, (uint32_t *)&uPrev);
|
---|
3072 | VBOXSTRICTRC rcStrict = VINF_SUCCESS;
|
---|
3073 | switch (off)
|
---|
3074 | {
|
---|
3075 | case VTD_MMIO_OFF_GCMD_REG: /* 32-bit */
|
---|
3076 | {
|
---|
3077 | rcStrict = dmarGcmdRegWrite(pDevIns, uRegWritten);
|
---|
3078 | break;
|
---|
3079 | }
|
---|
3080 |
|
---|
3081 | case VTD_MMIO_OFF_CCMD_REG: /* 64-bit */
|
---|
3082 | case VTD_MMIO_OFF_CCMD_REG + 4:
|
---|
3083 | {
|
---|
3084 | rcStrict = dmarCcmdRegWrite(pDevIns, offReg, cb, uRegWritten);
|
---|
3085 | break;
|
---|
3086 | }
|
---|
3087 |
|
---|
3088 | case VTD_MMIO_OFF_FSTS_REG: /* 32-bit */
|
---|
3089 | {
|
---|
3090 | rcStrict = dmarFstsRegWrite(pDevIns, uRegWritten, uPrev);
|
---|
3091 | break;
|
---|
3092 | }
|
---|
3093 |
|
---|
3094 | case VTD_MMIO_OFF_FECTL_REG: /* 32-bit */
|
---|
3095 | {
|
---|
3096 | rcStrict = dmarFectlRegWrite(pDevIns, uRegWritten);
|
---|
3097 | break;
|
---|
3098 | }
|
---|
3099 |
|
---|
3100 | case VTD_MMIO_OFF_IQT_REG: /* 64-bit */
|
---|
3101 | /* VTD_MMIO_OFF_IQT_REG + 4: */ /* High 32-bits reserved. */
|
---|
3102 | {
|
---|
3103 | rcStrict = dmarIqtRegWrite(pDevIns, offReg, uRegWritten);
|
---|
3104 | break;
|
---|
3105 | }
|
---|
3106 |
|
---|
3107 | case VTD_MMIO_OFF_IQA_REG: /* 64-bit */
|
---|
3108 | /* VTD_MMIO_OFF_IQA_REG + 4: */ /* High 32-bits data. */
|
---|
3109 | {
|
---|
3110 | rcStrict = dmarIqaRegWrite(pDevIns, offReg, uRegWritten);
|
---|
3111 | break;
|
---|
3112 | }
|
---|
3113 |
|
---|
3114 | case VTD_MMIO_OFF_ICS_REG: /* 32-bit */
|
---|
3115 | {
|
---|
3116 | rcStrict = dmarIcsRegWrite(pDevIns, uRegWritten);
|
---|
3117 | break;
|
---|
3118 | }
|
---|
3119 |
|
---|
3120 | case VTD_MMIO_OFF_IECTL_REG: /* 32-bit */
|
---|
3121 | {
|
---|
3122 | rcStrict = dmarIectlRegWrite(pDevIns, uRegWritten);
|
---|
3123 | break;
|
---|
3124 | }
|
---|
3125 |
|
---|
3126 | case DMAR_MMIO_OFF_FRCD_HI_REG: /* 64-bit */
|
---|
3127 | case DMAR_MMIO_OFF_FRCD_HI_REG + 4:
|
---|
3128 | {
|
---|
3129 | rcStrict = dmarFrcdHiRegWrite(pDevIns, offReg, cb, uRegWritten, uPrev);
|
---|
3130 | break;
|
---|
3131 | }
|
---|
3132 | }
|
---|
3133 |
|
---|
3134 | DMAR_UNLOCK(pDevIns, pThisCC);
|
---|
3135 | LogFlowFunc(("offReg=%#x uRegWritten=%#RX64 rc=%Rrc\n", offReg, uRegWritten, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3136 | return rcStrict;
|
---|
3137 | }
|
---|
3138 |
|
---|
3139 | return VINF_IOM_MMIO_UNUSED_FF;
|
---|
3140 | }
|
---|
3141 |
|
---|
3142 |
|
---|
3143 | /**
|
---|
3144 | * @callback_method_impl{FNIOMMMIONEWREAD}
|
---|
3145 | */
|
---|
3146 | static DECLCALLBACK(VBOXSTRICTRC) dmarMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb)
|
---|
3147 | {
|
---|
3148 | RT_NOREF1(pvUser);
|
---|
3149 | DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
|
---|
3150 |
|
---|
3151 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
3152 | STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioRead));
|
---|
3153 |
|
---|
3154 | uint16_t const offReg = off;
|
---|
3155 | uint16_t const offLast = offReg + cb - 1;
|
---|
3156 | if (DMAR_IS_MMIO_OFF_VALID(offLast))
|
---|
3157 | {
|
---|
3158 | PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
|
---|
3159 | DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_READ);
|
---|
3160 |
|
---|
3161 | if (cb == 8)
|
---|
3162 | {
|
---|
3163 | *(uint64_t *)pv = dmarRegRead64(pThis, offReg);
|
---|
3164 | LogFlowFunc(("offReg=%#x pv=%#RX64\n", offReg, *(uint64_t *)pv));
|
---|
3165 | }
|
---|
3166 | else
|
---|
3167 | {
|
---|
3168 | *(uint32_t *)pv = dmarRegRead32(pThis, offReg);
|
---|
3169 | LogFlowFunc(("offReg=%#x pv=%#RX32\n", offReg, *(uint32_t *)pv));
|
---|
3170 | }
|
---|
3171 |
|
---|
3172 | DMAR_UNLOCK(pDevIns, pThisCC);
|
---|
3173 | return VINF_SUCCESS;
|
---|
3174 | }
|
---|
3175 |
|
---|
3176 | return VINF_IOM_MMIO_UNUSED_FF;
|
---|
3177 | }
|
---|
3178 |
|
---|
3179 |
|
---|
3180 | #ifdef IN_RING3
|
---|
3181 | /**
|
---|
3182 | * Process requests in the invalidation queue.
|
---|
3183 | *
|
---|
3184 | * @param pDevIns The IOMMU device instance.
|
---|
3185 | * @param pvRequests The requests to process.
|
---|
3186 | * @param cbRequests The size of all requests (in bytes).
|
---|
3187 | * @param fDw The descriptor width (VTD_IQA_REG_DW_128_BIT or
|
---|
3188 | * VTD_IQA_REG_DW_256_BIT).
|
---|
3189 | * @param fTtm The table translation mode. Must not be VTD_TTM_RSVD.
|
---|
3190 | */
|
---|
3191 | static void dmarR3InvQueueProcessRequests(PPDMDEVINS pDevIns, void const *pvRequests, uint32_t cbRequests, uint8_t fDw,
|
---|
3192 | uint8_t fTtm)
|
---|
3193 | {
|
---|
3194 | #define DMAR_IQE_FAULT_RECORD_RET(a_enmDiag, a_enmIqei) \
|
---|
3195 | do \
|
---|
3196 | { \
|
---|
3197 | dmarIqeFaultRecord(pDevIns, (a_enmDiag), (a_enmIqei)); \
|
---|
3198 | return; \
|
---|
3199 | } while (0)
|
---|
3200 |
|
---|
3201 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
3202 | PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
|
---|
3203 |
|
---|
3204 | DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3);
|
---|
3205 | Assert(fTtm != VTD_TTM_RSVD); /* Should've beeen handled by caller. */
|
---|
3206 |
|
---|
3207 | /*
|
---|
3208 | * The below check is redundant since we check both TTM and DW for each
|
---|
3209 | * descriptor type we process. However, the order of errors reported by hardware
|
---|
3210 | * may differ hence this is kept commented out but not removed if we need to
|
---|
3211 | * change this in the future.
|
---|
3212 | *
|
---|
3213 | * In our implementation, we would report the descriptor type as invalid,
|
---|
3214 | * while on real hardware it may report descriptor width as invalid.
|
---|
3215 | * The Intel VT-d spec. is not clear which error takes preceedence.
|
---|
3216 | */
|
---|
3217 | #if 0
|
---|
3218 | /*
|
---|
3219 | * Verify that 128-bit descriptors are not used when operating in scalable mode.
|
---|
3220 | * We don't check this while software writes IQA_REG but defer it until now because
|
---|
3221 | * RTADDR_REG can be updated lazily (via GCMD_REG.SRTP). The 256-bit descriptor check
|
---|
3222 | * -IS- performed when software writes IQA_REG since it only requires checking against
|
---|
3223 | * immutable hardware features.
|
---|
3224 | */
|
---|
3225 | if ( fTtm != VTD_TTM_SCALABLE_MODE
|
---|
3226 | || fDw != VTD_IQA_REG_DW_128_BIT)
|
---|
3227 | { /* likely */ }
|
---|
3228 | else
|
---|
3229 | DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_IqaReg_Dw_128_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH);
|
---|
3230 | #endif
|
---|
3231 |
|
---|
3232 | /*
|
---|
3233 | * Process requests in FIFO order.
|
---|
3234 | */
|
---|
3235 | uint8_t const cbDsc = fDw == VTD_IQA_REG_DW_256_BIT ? 32 : 16;
|
---|
3236 | for (uint32_t offDsc = 0; offDsc < cbRequests; offDsc += cbDsc)
|
---|
3237 | {
|
---|
3238 | uint64_t const *puDscQwords = (uint64_t const *)((uintptr_t)pvRequests + offDsc);
|
---|
3239 | uint64_t const uQword0 = puDscQwords[0];
|
---|
3240 | uint64_t const uQword1 = puDscQwords[1];
|
---|
3241 | uint8_t const fDscType = VTD_GENERIC_INV_DSC_GET_TYPE(uQword0);
|
---|
3242 | switch (fDscType)
|
---|
3243 | {
|
---|
3244 | case VTD_INV_WAIT_DSC_TYPE:
|
---|
3245 | {
|
---|
3246 | /* Validate descriptor type. */
|
---|
3247 | if ( fTtm == VTD_TTM_LEGACY_MODE
|
---|
3248 | || fDw == VTD_IQA_REG_DW_256_BIT)
|
---|
3249 | { /* likely */ }
|
---|
3250 | else
|
---|
3251 | DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE);
|
---|
3252 |
|
---|
3253 | /* Validate reserved bits. */
|
---|
3254 | uint64_t const fValidMask0 = !(pThis->fExtCapReg & VTD_BF_ECAP_REG_PDS_MASK)
|
---|
3255 | ? VTD_INV_WAIT_DSC_0_VALID_MASK & ~VTD_BF_0_INV_WAIT_DSC_PD_MASK
|
---|
3256 | : VTD_INV_WAIT_DSC_0_VALID_MASK;
|
---|
3257 | if ( !(uQword0 & ~fValidMask0)
|
---|
3258 | && !(uQword1 & ~VTD_INV_WAIT_DSC_1_VALID_MASK))
|
---|
3259 | { /* likely */ }
|
---|
3260 | else
|
---|
3261 | DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION);
|
---|
3262 |
|
---|
3263 | if (fDw == VTD_IQA_REG_DW_256_BIT)
|
---|
3264 | {
|
---|
3265 | if ( !puDscQwords[2]
|
---|
3266 | && !puDscQwords[3])
|
---|
3267 | { /* likely */ }
|
---|
3268 | else
|
---|
3269 | DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION);
|
---|
3270 | }
|
---|
3271 |
|
---|
3272 | /* Perform status write (this must be done prior to generating the completion interrupt). */
|
---|
3273 | bool const fSw = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_SW);
|
---|
3274 | if (fSw)
|
---|
3275 | {
|
---|
3276 | uint32_t const uStatus = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_STDATA);
|
---|
3277 | RTGCPHYS const GCPhysStatus = uQword1 & VTD_BF_1_INV_WAIT_DSC_STADDR_MASK;
|
---|
3278 | int const rc = PDMDevHlpPhysWrite(pDevIns, GCPhysStatus, (void const*)&uStatus, sizeof(uStatus));
|
---|
3279 | AssertRC(rc);
|
---|
3280 | }
|
---|
3281 |
|
---|
3282 | /* Generate invalidation event interrupt. */
|
---|
3283 | bool const fIf = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_IF);
|
---|
3284 | if (fIf)
|
---|
3285 | {
|
---|
3286 | DMAR_LOCK(pDevIns, pThisR3);
|
---|
3287 | dmarR3InvEventRaiseInterrupt(pDevIns);
|
---|
3288 | DMAR_UNLOCK(pDevIns, pThisR3);
|
---|
3289 | }
|
---|
3290 |
|
---|
3291 | STAM_COUNTER_INC(&pThis->StatInvWaitDsc);
|
---|
3292 | break;
|
---|
3293 | }
|
---|
3294 |
|
---|
3295 | case VTD_CC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatCcInvDsc); break;
|
---|
3296 | case VTD_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIotlbInvDsc); break;
|
---|
3297 | case VTD_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatDevtlbInvDsc); break;
|
---|
3298 | case VTD_IEC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIecInvDsc); break;
|
---|
3299 | case VTD_P_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidIotlbInvDsc); break;
|
---|
3300 | case VTD_PC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidCacheInvDsc); break;
|
---|
3301 | case VTD_P_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidDevtlbInvDsc); break;
|
---|
3302 | default:
|
---|
3303 | {
|
---|
3304 | /* Stop processing further requests. */
|
---|
3305 | LogFunc(("Invalid descriptor type: %#x\n", fDscType));
|
---|
3306 | DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Dsc_Type_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE);
|
---|
3307 | }
|
---|
3308 | }
|
---|
3309 | }
|
---|
3310 | #undef DMAR_IQE_FAULT_RECORD_RET
|
---|
3311 | }
|
---|
3312 |
|
---|
3313 |
|
---|
3314 | /**
|
---|
3315 | * The invalidation-queue thread.
|
---|
3316 | *
|
---|
3317 | * @returns VBox status code.
|
---|
3318 | * @param pDevIns The IOMMU device instance.
|
---|
3319 | * @param pThread The command thread.
|
---|
3320 | */
|
---|
3321 | static DECLCALLBACK(int) dmarR3InvQueueThread(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
|
---|
3322 | {
|
---|
3323 | NOREF(pThread);
|
---|
3324 | LogFlowFunc(("\n"));
|
---|
3325 |
|
---|
3326 | if (pThread->enmState == PDMTHREADSTATE_INITIALIZING)
|
---|
3327 | return VINF_SUCCESS;
|
---|
3328 |
|
---|
3329 | /*
|
---|
3330 | * Pre-allocate the maximum size of the invalidation queue allowed by the spec.
|
---|
3331 | * This prevents trashing the heap as well as deal with out-of-memory situations
|
---|
3332 | * up-front while starting the VM. It also simplifies the code from having to
|
---|
3333 | * dynamically grow/shrink the allocation based on how software sizes the queue.
|
---|
3334 | * Guests normally don't alter the queue size all the time, but that's not an
|
---|
3335 | * assumption we can make.
|
---|
3336 | */
|
---|
3337 | uint8_t const cMaxPages = 1 << VTD_BF_IQA_REG_QS_MASK;
|
---|
3338 | size_t const cbMaxQs = cMaxPages << X86_PAGE_SHIFT;
|
---|
3339 | void *pvRequests = RTMemAllocZ(cbMaxQs);
|
---|
3340 | AssertPtrReturn(pvRequests, VERR_NO_MEMORY);
|
---|
3341 |
|
---|
3342 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
3343 | PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
|
---|
3344 |
|
---|
3345 | while (pThread->enmState == PDMTHREADSTATE_RUNNING)
|
---|
3346 | {
|
---|
3347 | /*
|
---|
3348 | * Sleep until we are woken up.
|
---|
3349 | */
|
---|
3350 | {
|
---|
3351 | int const rc = PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEvtInvQueue, RT_INDEFINITE_WAIT);
|
---|
3352 | AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), rc);
|
---|
3353 | if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING))
|
---|
3354 | break;
|
---|
3355 | }
|
---|
3356 |
|
---|
3357 | DMAR_LOCK(pDevIns, pThisR3);
|
---|
3358 | if (dmarInvQueueCanProcessRequests(pThis))
|
---|
3359 | {
|
---|
3360 | uint32_t offQueueHead;
|
---|
3361 | uint32_t offQueueTail;
|
---|
3362 | bool const fIsEmpty = dmarInvQueueIsEmptyEx(pThis, &offQueueHead, &offQueueTail);
|
---|
3363 | if (!fIsEmpty)
|
---|
3364 | {
|
---|
3365 | /*
|
---|
3366 | * Get the current queue size, descriptor width, queue base address and the
|
---|
3367 | * table translation mode while the lock is still held.
|
---|
3368 | */
|
---|
3369 | uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
|
---|
3370 | uint8_t const cQueuePages = 1 << (uIqaReg & VTD_BF_IQA_REG_QS_MASK);
|
---|
3371 | uint32_t const cbQueue = cQueuePages << X86_PAGE_SHIFT;
|
---|
3372 | uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
|
---|
3373 | uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
|
---|
3374 | RTGCPHYS const GCPhysRequests = (uIqaReg & VTD_BF_IQA_REG_IQA_MASK) + offQueueHead;
|
---|
3375 |
|
---|
3376 | /* Paranoia. */
|
---|
3377 | Assert(cbQueue <= cbMaxQs);
|
---|
3378 | Assert(!(offQueueTail & ~VTD_BF_IQT_REG_QT_MASK));
|
---|
3379 | Assert(!(offQueueHead & ~VTD_BF_IQH_REG_QH_MASK));
|
---|
3380 | Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueTail & RT_BIT(4)));
|
---|
3381 | Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueHead & RT_BIT(4)));
|
---|
3382 | Assert(offQueueHead < cbQueue);
|
---|
3383 |
|
---|
3384 | /*
|
---|
3385 | * A table translation mode of "reserved" isn't valid for any descriptor type.
|
---|
3386 | * However, RTADDR_REG can be modified in parallel to invalidation-queue processing,
|
---|
3387 | * but if ESRTPS is support, we will perform a global invalidation when software
|
---|
3388 | * changes RTADDR_REG, or it's the responsibility of software to do it explicitly.
|
---|
3389 | * So caching TTM while reading all descriptors should not be a problem.
|
---|
3390 | *
|
---|
3391 | * Also, validate the queue tail offset as it's mutable by software.
|
---|
3392 | */
|
---|
3393 | if ( fTtm != VTD_TTM_RSVD
|
---|
3394 | && offQueueTail < cbQueue)
|
---|
3395 | {
|
---|
3396 | /* Don't hold the lock while reading (a potentially large amount of) requests */
|
---|
3397 | DMAR_UNLOCK(pDevIns, pThisR3);
|
---|
3398 |
|
---|
3399 | int rc;
|
---|
3400 | uint32_t cbRequests;
|
---|
3401 | if (offQueueTail > offQueueHead)
|
---|
3402 | {
|
---|
3403 | /* The requests have not wrapped around, read them in one go. */
|
---|
3404 | cbRequests = offQueueTail - offQueueHead;
|
---|
3405 | rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbRequests);
|
---|
3406 | }
|
---|
3407 | else
|
---|
3408 | {
|
---|
3409 | /* The requests have wrapped around, read forward and wrapped-around. */
|
---|
3410 | uint32_t const cbForward = cbQueue - offQueueHead;
|
---|
3411 | rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbForward);
|
---|
3412 |
|
---|
3413 | uint32_t const cbWrapped = offQueueTail;
|
---|
3414 | if ( RT_SUCCESS(rc)
|
---|
3415 | && cbWrapped > 0)
|
---|
3416 | {
|
---|
3417 | rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests + cbForward,
|
---|
3418 | (void *)((uintptr_t)pvRequests + cbForward), cbWrapped);
|
---|
3419 | }
|
---|
3420 | cbRequests = cbForward + cbWrapped;
|
---|
3421 | }
|
---|
3422 |
|
---|
3423 | /* Re-acquire the lock since we need to update device state. */
|
---|
3424 | DMAR_LOCK(pDevIns, pThisR3);
|
---|
3425 |
|
---|
3426 | if (RT_SUCCESS(rc))
|
---|
3427 | {
|
---|
3428 | /* Indicate to software we've fetched all requests. */
|
---|
3429 | dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_IQH_REG, offQueueTail);
|
---|
3430 |
|
---|
3431 | /* Don't hold the lock while processing requests. */
|
---|
3432 | DMAR_UNLOCK(pDevIns, pThisR3);
|
---|
3433 |
|
---|
3434 | /* Process all requests. */
|
---|
3435 | Assert(cbRequests <= cbQueue);
|
---|
3436 | dmarR3InvQueueProcessRequests(pDevIns, pvRequests, cbRequests, fDw, fTtm);
|
---|
3437 |
|
---|
3438 | /*
|
---|
3439 | * We've processed all requests and the lock shouldn't be held at this point.
|
---|
3440 | * Using 'continue' here allows us to skip re-acquiring the lock just to release
|
---|
3441 | * it again before going back to the thread loop. It's a bit ugly but it certainly
|
---|
3442 | * helps with performance.
|
---|
3443 | */
|
---|
3444 | DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3);
|
---|
3445 | continue;
|
---|
3446 | }
|
---|
3447 | else
|
---|
3448 | dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dsc_Fetch_Error, VTDIQEI_FETCH_DESCRIPTOR_ERR);
|
---|
3449 | }
|
---|
3450 | else
|
---|
3451 | {
|
---|
3452 | if (fTtm == VTD_TTM_RSVD)
|
---|
3453 | dmarIqeFaultRecord(pDevIns, kDmarDiag_Iqei_Ttm_Rsvd, VTDIQEI_INVALID_TTM);
|
---|
3454 | else
|
---|
3455 | {
|
---|
3456 | Assert(offQueueTail >= cbQueue);
|
---|
3457 | dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Invalid, VTDIQEI_INVALID_TAIL_PTR);
|
---|
3458 | }
|
---|
3459 | }
|
---|
3460 | }
|
---|
3461 | }
|
---|
3462 | DMAR_UNLOCK(pDevIns, pThisR3);
|
---|
3463 | }
|
---|
3464 |
|
---|
3465 | RTMemFree(pvRequests);
|
---|
3466 | pvRequests = NULL;
|
---|
3467 |
|
---|
3468 | LogFlowFunc(("Invalidation-queue thread terminating\n"));
|
---|
3469 | return VINF_SUCCESS;
|
---|
3470 | }
|
---|
3471 |
|
---|
3472 |
|
---|
3473 | /**
|
---|
3474 | * Wakes up the invalidation-queue thread so it can respond to a state
|
---|
3475 | * change.
|
---|
3476 | *
|
---|
3477 | * @returns VBox status code.
|
---|
3478 | * @param pDevIns The IOMMU device instance.
|
---|
3479 | * @param pThread The invalidation-queue thread.
|
---|
3480 | *
|
---|
3481 | * @thread EMT.
|
---|
3482 | */
|
---|
3483 | static DECLCALLBACK(int) dmarR3InvQueueThreadWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
|
---|
3484 | {
|
---|
3485 | RT_NOREF(pThread);
|
---|
3486 | LogFlowFunc(("\n"));
|
---|
3487 | PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
3488 | return PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
|
---|
3489 | }
|
---|
3490 |
|
---|
3491 |
|
---|
3492 | /**
|
---|
3493 | * @callback_method_impl{FNDBGFHANDLERDEV}
|
---|
3494 | */
|
---|
3495 | static DECLCALLBACK(void) dmarR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
|
---|
3496 | {
|
---|
3497 | PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
3498 | PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
|
---|
3499 | bool const fVerbose = RTStrCmp(pszArgs, "verbose") == 0;
|
---|
3500 |
|
---|
3501 | /*
|
---|
3502 | * We lock the device to get a consistent register state as it is
|
---|
3503 | * ASSUMED pHlp->pfnPrintf is expensive, so we copy the registers (the
|
---|
3504 | * ones we care about here) into temporaries and release the lock ASAP.
|
---|
3505 | *
|
---|
3506 | * Order of register being read and outputted is in accordance with the
|
---|
3507 | * spec. for no particular reason.
|
---|
3508 | * See Intel VT-d spec. 10.4 "Register Descriptions".
|
---|
3509 | */
|
---|
3510 | DMAR_LOCK(pDevIns, pThisR3);
|
---|
3511 |
|
---|
3512 | DMARDIAG const enmDiag = pThis->enmDiag;
|
---|
3513 | uint32_t const uVerReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_VER_REG);
|
---|
3514 | uint64_t const uCapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CAP_REG);
|
---|
3515 | uint64_t const uEcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_ECAP_REG);
|
---|
3516 | uint32_t const uGcmdReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GCMD_REG);
|
---|
3517 | uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
|
---|
3518 | uint64_t const uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
|
---|
3519 | uint64_t const uCcmdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CCMD_REG);
|
---|
3520 | uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
|
---|
3521 | uint32_t const uFectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FECTL_REG);
|
---|
3522 | uint32_t const uFedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEDATA_REG);
|
---|
3523 | uint32_t const uFeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEADDR_REG);
|
---|
3524 | uint32_t const uFeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEUADDR_REG);
|
---|
3525 | uint64_t const uAflogReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_AFLOG_REG);
|
---|
3526 | uint32_t const uPmenReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PMEN_REG);
|
---|
3527 | uint32_t const uPlmbaseReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMBASE_REG);
|
---|
3528 | uint32_t const uPlmlimitReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMLIMIT_REG);
|
---|
3529 | uint64_t const uPhmbaseReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMBASE_REG);
|
---|
3530 | uint64_t const uPhmlimitReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMLIMIT_REG);
|
---|
3531 | uint64_t const uIqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQH_REG);
|
---|
3532 | uint64_t const uIqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQT_REG);
|
---|
3533 | uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
|
---|
3534 | uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
|
---|
3535 | uint32_t const uIectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IECTL_REG);
|
---|
3536 | uint32_t const uIedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEDATA_REG);
|
---|
3537 | uint32_t const uIeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEADDR_REG);
|
---|
3538 | uint32_t const uIeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEUADDR_REG);
|
---|
3539 | uint64_t const uIqercdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG);
|
---|
3540 | uint64_t const uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
|
---|
3541 | uint64_t const uPqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQH_REG);
|
---|
3542 | uint64_t const uPqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQT_REG);
|
---|
3543 | uint64_t const uPqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQA_REG);
|
---|
3544 | uint32_t const uPrsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PRS_REG);
|
---|
3545 | uint32_t const uPectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PECTL_REG);
|
---|
3546 | uint32_t const uPedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEDATA_REG);
|
---|
3547 | uint32_t const uPeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEADDR_REG);
|
---|
3548 | uint32_t const uPeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEUADDR_REG);
|
---|
3549 | uint64_t const uMtrrcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRCAP_REG);
|
---|
3550 | uint64_t const uMtrrdefReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRDEF_REG);
|
---|
3551 |
|
---|
3552 | DMAR_UNLOCK(pDevIns, pThisR3);
|
---|
3553 |
|
---|
3554 | const char *const pszDiag = enmDiag < RT_ELEMENTS(g_apszDmarDiagDesc) ? g_apszDmarDiagDesc[enmDiag] : "(Unknown)";
|
---|
3555 | pHlp->pfnPrintf(pHlp, "Intel-IOMMU:\n");
|
---|
3556 | pHlp->pfnPrintf(pHlp, " Diag = %s\n", pszDiag);
|
---|
3557 |
|
---|
3558 | /*
|
---|
3559 | * Non-verbose output.
|
---|
3560 | */
|
---|
3561 | if (!fVerbose)
|
---|
3562 | {
|
---|
3563 | pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
|
---|
3564 | pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
|
---|
3565 | pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
|
---|
3566 | pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
|
---|
3567 | pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
|
---|
3568 | pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
|
---|
3569 | pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
|
---|
3570 | pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
|
---|
3571 | pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
|
---|
3572 | pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
|
---|
3573 | pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
|
---|
3574 | pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
|
---|
3575 | pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
|
---|
3576 | pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
|
---|
3577 | pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
|
---|
3578 | pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
|
---|
3579 | pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
|
---|
3580 | pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
|
---|
3581 | pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
|
---|
3582 | pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
|
---|
3583 | pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
|
---|
3584 | pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
|
---|
3585 | pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
|
---|
3586 | pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
|
---|
3587 | pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
|
---|
3588 | pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
|
---|
3589 | pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
|
---|
3590 | pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
|
---|
3591 | pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
|
---|
3592 | pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
|
---|
3593 | pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
|
---|
3594 | pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
|
---|
3595 | pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
|
---|
3596 | pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
|
---|
3597 | pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
|
---|
3598 | pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
|
---|
3599 | pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
|
---|
3600 | pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
|
---|
3601 | pHlp->pfnPrintf(pHlp, "\n");
|
---|
3602 | return;
|
---|
3603 | }
|
---|
3604 |
|
---|
3605 | /*
|
---|
3606 | * Verbose output.
|
---|
3607 | */
|
---|
3608 | pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
|
---|
3609 | {
|
---|
3610 | pHlp->pfnPrintf(pHlp, " MAJ = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MAX));
|
---|
3611 | pHlp->pfnPrintf(pHlp, " MIN = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MIN));
|
---|
3612 | }
|
---|
3613 | pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
|
---|
3614 | {
|
---|
3615 | uint8_t const uMgaw = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MGAW);
|
---|
3616 | uint8_t const uNfr = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_NFR);
|
---|
3617 | pHlp->pfnPrintf(pHlp, " ND = %u\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ND));
|
---|
3618 | pHlp->pfnPrintf(pHlp, " AFL = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_AFL));
|
---|
3619 | pHlp->pfnPrintf(pHlp, " RWBF = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_RWBF));
|
---|
3620 | pHlp->pfnPrintf(pHlp, " PLMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PLMR));
|
---|
3621 | pHlp->pfnPrintf(pHlp, " PHMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PHMR));
|
---|
3622 | pHlp->pfnPrintf(pHlp, " CM = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_CM));
|
---|
3623 | pHlp->pfnPrintf(pHlp, " SAGAW = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SAGAW));
|
---|
3624 | pHlp->pfnPrintf(pHlp, " MGAW = %#x (%u bits)\n", uMgaw, uMgaw + 1);
|
---|
3625 | pHlp->pfnPrintf(pHlp, " ZLR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ZLR));
|
---|
3626 | pHlp->pfnPrintf(pHlp, " FRO = %#x bytes\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FRO));
|
---|
3627 | pHlp->pfnPrintf(pHlp, " SLLPS = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SLLPS));
|
---|
3628 | pHlp->pfnPrintf(pHlp, " PSI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PSI));
|
---|
3629 | pHlp->pfnPrintf(pHlp, " NFR = %u (%u FRCD register%s)\n", uNfr, uNfr + 1, uNfr > 0 ? "s" : "");
|
---|
3630 | pHlp->pfnPrintf(pHlp, " MAMV = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MAMV));
|
---|
3631 | pHlp->pfnPrintf(pHlp, " DWD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DWD));
|
---|
3632 | pHlp->pfnPrintf(pHlp, " DRD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DRD));
|
---|
3633 | pHlp->pfnPrintf(pHlp, " FL1GP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL1GP));
|
---|
3634 | pHlp->pfnPrintf(pHlp, " PI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PI));
|
---|
3635 | pHlp->pfnPrintf(pHlp, " FL5LP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL5LP));
|
---|
3636 | pHlp->pfnPrintf(pHlp, " ESIRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESIRTPS));
|
---|
3637 | pHlp->pfnPrintf(pHlp, " ESRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESRTPS));
|
---|
3638 | }
|
---|
3639 | pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
|
---|
3640 | {
|
---|
3641 | uint8_t const uPss = RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PSS);
|
---|
3642 | pHlp->pfnPrintf(pHlp, " C = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_C));
|
---|
3643 | pHlp->pfnPrintf(pHlp, " QI = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_QI));
|
---|
3644 | pHlp->pfnPrintf(pHlp, " DT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DT));
|
---|
3645 | pHlp->pfnPrintf(pHlp, " IR = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IR));
|
---|
3646 | pHlp->pfnPrintf(pHlp, " EIM = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EIM));
|
---|
3647 | pHlp->pfnPrintf(pHlp, " PT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PT));
|
---|
3648 | pHlp->pfnPrintf(pHlp, " SC = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SC));
|
---|
3649 | pHlp->pfnPrintf(pHlp, " IRO = %#x bytes\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IRO));
|
---|
3650 | pHlp->pfnPrintf(pHlp, " MHMV = %#x\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MHMV));
|
---|
3651 | pHlp->pfnPrintf(pHlp, " MTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MTS));
|
---|
3652 | pHlp->pfnPrintf(pHlp, " NEST = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NEST));
|
---|
3653 | pHlp->pfnPrintf(pHlp, " PRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PRS));
|
---|
3654 | pHlp->pfnPrintf(pHlp, " ERS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ERS));
|
---|
3655 | pHlp->pfnPrintf(pHlp, " SRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SRS));
|
---|
3656 | pHlp->pfnPrintf(pHlp, " NWFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NWFS));
|
---|
3657 | pHlp->pfnPrintf(pHlp, " EAFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EAFS));
|
---|
3658 | pHlp->pfnPrintf(pHlp, " PSS = %u (%u bits)\n", uPss, uPss > 0 ? uPss + 1 : 0);
|
---|
3659 | pHlp->pfnPrintf(pHlp, " PASID = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PASID));
|
---|
3660 | pHlp->pfnPrintf(pHlp, " DIT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DIT));
|
---|
3661 | pHlp->pfnPrintf(pHlp, " PDS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PDS));
|
---|
3662 | pHlp->pfnPrintf(pHlp, " SMTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMTS));
|
---|
3663 | pHlp->pfnPrintf(pHlp, " VCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_VCS));
|
---|
3664 | pHlp->pfnPrintf(pHlp, " SLADS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLADS));
|
---|
3665 | pHlp->pfnPrintf(pHlp, " SLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLTS));
|
---|
3666 | pHlp->pfnPrintf(pHlp, " FLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_FLTS));
|
---|
3667 | pHlp->pfnPrintf(pHlp, " SMPWCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMPWCS));
|
---|
3668 | pHlp->pfnPrintf(pHlp, " RPS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPS));
|
---|
3669 | pHlp->pfnPrintf(pHlp, " ADMS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ADMS));
|
---|
3670 | pHlp->pfnPrintf(pHlp, " RPRIVS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPRIVS));
|
---|
3671 | }
|
---|
3672 | pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
|
---|
3673 | {
|
---|
3674 | uint8_t const fCfi = RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_CFI);
|
---|
3675 | pHlp->pfnPrintf(pHlp, " CFI = %u (%s)\n", fCfi, fCfi ? "Passthrough" : "Blocked");
|
---|
3676 | pHlp->pfnPrintf(pHlp, " SIRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SIRTP));
|
---|
3677 | pHlp->pfnPrintf(pHlp, " IRE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_IRE));
|
---|
3678 | pHlp->pfnPrintf(pHlp, " QIE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_QIE));
|
---|
3679 | pHlp->pfnPrintf(pHlp, " WBF = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_WBF));
|
---|
3680 | pHlp->pfnPrintf(pHlp, " EAFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
|
---|
3681 | pHlp->pfnPrintf(pHlp, " SFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
|
---|
3682 | pHlp->pfnPrintf(pHlp, " SRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SRTP));
|
---|
3683 | pHlp->pfnPrintf(pHlp, " TE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_TE));
|
---|
3684 | }
|
---|
3685 | pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
|
---|
3686 | {
|
---|
3687 | uint8_t const fCfis = RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_CFIS);
|
---|
3688 | pHlp->pfnPrintf(pHlp, " CFIS = %u (%s)\n", fCfis, fCfis ? "Passthrough" : "Blocked");
|
---|
3689 | pHlp->pfnPrintf(pHlp, " IRTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRTPS));
|
---|
3690 | pHlp->pfnPrintf(pHlp, " IRES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRES));
|
---|
3691 | pHlp->pfnPrintf(pHlp, " QIES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_QIES));
|
---|
3692 | pHlp->pfnPrintf(pHlp, " WBFS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_WBFS));
|
---|
3693 | pHlp->pfnPrintf(pHlp, " AFLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_AFLS));
|
---|
3694 | pHlp->pfnPrintf(pHlp, " FLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_FLS));
|
---|
3695 | pHlp->pfnPrintf(pHlp, " RTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_RTPS));
|
---|
3696 | pHlp->pfnPrintf(pHlp, " TES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_TES));
|
---|
3697 | }
|
---|
3698 | pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
|
---|
3699 | {
|
---|
3700 | uint8_t const uTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
|
---|
3701 | pHlp->pfnPrintf(pHlp, " RTA = %#RX64\n", uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK);
|
---|
3702 | pHlp->pfnPrintf(pHlp, " TTM = %u (%s)\n", uTtm, vtdRtaddrRegGetTtmDesc(uTtm));
|
---|
3703 | }
|
---|
3704 | pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
|
---|
3705 | pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
|
---|
3706 | {
|
---|
3707 | pHlp->pfnPrintf(pHlp, " PFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PFO));
|
---|
3708 | pHlp->pfnPrintf(pHlp, " PPF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PPF));
|
---|
3709 | pHlp->pfnPrintf(pHlp, " AFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_AFO));
|
---|
3710 | pHlp->pfnPrintf(pHlp, " APF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_APF));
|
---|
3711 | pHlp->pfnPrintf(pHlp, " IQE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_IQE));
|
---|
3712 | pHlp->pfnPrintf(pHlp, " ICS = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ICE));
|
---|
3713 | pHlp->pfnPrintf(pHlp, " ITE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ITE));
|
---|
3714 | pHlp->pfnPrintf(pHlp, " FRI = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_FRI));
|
---|
3715 | }
|
---|
3716 | pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
|
---|
3717 | {
|
---|
3718 | pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IM));
|
---|
3719 | pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IP));
|
---|
3720 | }
|
---|
3721 | pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
|
---|
3722 | pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
|
---|
3723 | pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
|
---|
3724 | pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
|
---|
3725 | pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
|
---|
3726 | pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
|
---|
3727 | pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
|
---|
3728 | pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
|
---|
3729 | pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
|
---|
3730 | pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
|
---|
3731 | pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
|
---|
3732 | pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
|
---|
3733 | {
|
---|
3734 | uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
|
---|
3735 | uint8_t const fQs = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_QS);
|
---|
3736 | uint8_t const cQueuePages = 1 << fQs;
|
---|
3737 | pHlp->pfnPrintf(pHlp, " DW = %u (%s)\n", fDw, fDw == VTD_IQA_REG_DW_128_BIT ? "128-bit" : "256-bit");
|
---|
3738 | pHlp->pfnPrintf(pHlp, " QS = %u (%u page%s)\n", fQs, cQueuePages, cQueuePages > 1 ? "s" : "");
|
---|
3739 | }
|
---|
3740 | pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
|
---|
3741 | {
|
---|
3742 | pHlp->pfnPrintf(pHlp, " IWC = %u\n", RT_BF_GET(uIcsReg, VTD_BF_ICS_REG_IWC));
|
---|
3743 | }
|
---|
3744 | pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
|
---|
3745 | {
|
---|
3746 | pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IM));
|
---|
3747 | pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IP));
|
---|
3748 | }
|
---|
3749 | pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
|
---|
3750 | pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
|
---|
3751 | pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
|
---|
3752 | pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
|
---|
3753 | {
|
---|
3754 | pHlp->pfnPrintf(pHlp, " ICESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ICESID));
|
---|
3755 | pHlp->pfnPrintf(pHlp, " ITESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ITESID));
|
---|
3756 | pHlp->pfnPrintf(pHlp, " IQEI = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_IQEI));
|
---|
3757 | }
|
---|
3758 | pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
|
---|
3759 | {
|
---|
3760 | uint32_t const cIrtEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg);
|
---|
3761 | uint32_t const cbIrt = sizeof(VTD_IRTE_T) * cIrtEntries;
|
---|
3762 | pHlp->pfnPrintf(pHlp, " IRTA = %#RX64\n", uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK);
|
---|
3763 | pHlp->pfnPrintf(pHlp, " EIME = %RTbool\n", RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME));
|
---|
3764 | pHlp->pfnPrintf(pHlp, " S = %u entries (%u bytes)\n", cIrtEntries, cbIrt);
|
---|
3765 | }
|
---|
3766 | pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
|
---|
3767 | pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
|
---|
3768 | pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
|
---|
3769 | pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
|
---|
3770 | pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
|
---|
3771 | pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
|
---|
3772 | pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
|
---|
3773 | pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
|
---|
3774 | pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
|
---|
3775 | pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
|
---|
3776 | pHlp->pfnPrintf(pHlp, "\n");
|
---|
3777 | }
|
---|
3778 |
|
---|
3779 |
|
---|
3780 | /**
|
---|
3781 | * Initializes all registers in the DMAR unit.
|
---|
3782 | *
|
---|
3783 | * @param pDevIns The IOMMU device instance.
|
---|
3784 | */
|
---|
3785 | static void dmarR3RegsInit(PPDMDEVINS pDevIns)
|
---|
3786 | {
|
---|
3787 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
3788 | LogFlowFunc(("\n"));
|
---|
3789 |
|
---|
3790 | /*
|
---|
3791 | * Wipe all registers (required on reset).
|
---|
3792 | */
|
---|
3793 | RT_ZERO(pThis->abRegs0);
|
---|
3794 | RT_ZERO(pThis->abRegs1);
|
---|
3795 |
|
---|
3796 | /*
|
---|
3797 | * Initialize registers not mutable by software prior to initializing other registers.
|
---|
3798 | */
|
---|
3799 | /* VER_REG */
|
---|
3800 | {
|
---|
3801 | pThis->uVerReg = RT_BF_MAKE(VTD_BF_VER_REG_MIN, DMAR_VER_MINOR)
|
---|
3802 | | RT_BF_MAKE(VTD_BF_VER_REG_MAX, DMAR_VER_MAJOR);
|
---|
3803 | dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_VER_REG, pThis->uVerReg);
|
---|
3804 | }
|
---|
3805 |
|
---|
3806 | uint8_t const fFlts = 0; /* First-level translation support. */
|
---|
3807 | uint8_t const fSlts = 1; /* Second-level translation support. */
|
---|
3808 | uint8_t const fPt = 1; /* Pass-Through support. */
|
---|
3809 | uint8_t const fSmts = fFlts & fSlts & fPt; /* Scalable mode translation support.*/
|
---|
3810 | uint8_t const fNest = 0; /* Nested translation support. */
|
---|
3811 |
|
---|
3812 | /* CAP_REG */
|
---|
3813 | {
|
---|
3814 | uint8_t cGstPhysAddrBits;
|
---|
3815 | uint8_t cGstLinearAddrBits;
|
---|
3816 | PDMDevHlpCpuGetGuestAddrWidths(pDevIns, &cGstPhysAddrBits, &cGstLinearAddrBits);
|
---|
3817 |
|
---|
3818 | uint8_t const fFl1gp = 1; /* First-level 1GB pages support. */
|
---|
3819 | uint8_t const fFl5lp = 1; /* First-level 5-level paging support (PML5E). */
|
---|
3820 | uint8_t const fSl2mp = 1; /* Second-level 2MB pages support. */
|
---|
3821 | uint8_t const fSl2gp = fSl2mp & 1; /* Second-level 1GB pages support. */
|
---|
3822 | uint8_t const fSllps = fSl2mp | (fSl2gp << 1); /* Second-level large page support. */
|
---|
3823 | uint8_t const fMamv = (fSl2gp ? X86_PAGE_1G_SHIFT /* Maximum address mask value (for 2nd-level invalidations). */
|
---|
3824 | : X86_PAGE_2M_SHIFT)
|
---|
3825 | - X86_PAGE_4K_SHIFT;
|
---|
3826 | uint8_t const fNd = DMAR_ND; /* Number of domains supported. */
|
---|
3827 | uint8_t const fPsi = 1; /* Page selective invalidation. */
|
---|
3828 | uint8_t const uMgaw = cGstPhysAddrBits - 1; /* Maximum guest address width. */
|
---|
3829 | uint8_t const fSagaw = vtdCapRegGetSagaw(uMgaw); /* Supported adjust guest address width. */
|
---|
3830 | uint16_t const offFro = DMAR_MMIO_OFF_FRCD_LO_REG >> 4; /* MMIO offset of FRCD registers. */
|
---|
3831 | uint8_t const fEsrtps = 1; /* Enhanced SRTPS (auto invalidate cache on SRTP). */
|
---|
3832 | uint8_t const fEsirtps = 1; /* Enhanced SIRTPS (auto invalidate cache on SIRTP). */
|
---|
3833 |
|
---|
3834 | pThis->fCapReg = RT_BF_MAKE(VTD_BF_CAP_REG_ND, fNd)
|
---|
3835 | | RT_BF_MAKE(VTD_BF_CAP_REG_AFL, 0) /* Advanced fault logging not supported. */
|
---|
3836 | | RT_BF_MAKE(VTD_BF_CAP_REG_RWBF, 0) /* Software need not flush write-buffers. */
|
---|
3837 | | RT_BF_MAKE(VTD_BF_CAP_REG_PLMR, 0) /* Protected Low-Memory Region not supported. */
|
---|
3838 | | RT_BF_MAKE(VTD_BF_CAP_REG_PHMR, 0) /* Protected High-Memory Region not supported. */
|
---|
3839 | | RT_BF_MAKE(VTD_BF_CAP_REG_CM, 1) /* Software should invalidate on mapping structure changes. */
|
---|
3840 | | RT_BF_MAKE(VTD_BF_CAP_REG_SAGAW, fSlts ? fSagaw : 0)
|
---|
3841 | | RT_BF_MAKE(VTD_BF_CAP_REG_MGAW, uMgaw)
|
---|
3842 | | RT_BF_MAKE(VTD_BF_CAP_REG_ZLR, 1) /** @todo Figure out if/how to support zero-length reads. */
|
---|
3843 | | RT_BF_MAKE(VTD_BF_CAP_REG_FRO, offFro)
|
---|
3844 | | RT_BF_MAKE(VTD_BF_CAP_REG_SLLPS, fSlts & fSllps)
|
---|
3845 | | RT_BF_MAKE(VTD_BF_CAP_REG_PSI, fPsi)
|
---|
3846 | | RT_BF_MAKE(VTD_BF_CAP_REG_NFR, DMAR_FRCD_REG_COUNT - 1)
|
---|
3847 | | RT_BF_MAKE(VTD_BF_CAP_REG_MAMV, fPsi & fMamv)
|
---|
3848 | | RT_BF_MAKE(VTD_BF_CAP_REG_DWD, 1)
|
---|
3849 | | RT_BF_MAKE(VTD_BF_CAP_REG_DRD, 1)
|
---|
3850 | | RT_BF_MAKE(VTD_BF_CAP_REG_FL1GP, fFlts & fFl1gp)
|
---|
3851 | | RT_BF_MAKE(VTD_BF_CAP_REG_PI, 0) /* Posted Interrupts not supported. */
|
---|
3852 | | RT_BF_MAKE(VTD_BF_CAP_REG_FL5LP, fFlts & fFl5lp)
|
---|
3853 | | RT_BF_MAKE(VTD_BF_CAP_REG_ESIRTPS, fEsirtps)
|
---|
3854 | | RT_BF_MAKE(VTD_BF_CAP_REG_ESRTPS, fEsrtps);
|
---|
3855 | dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_CAP_REG, pThis->fCapReg);
|
---|
3856 |
|
---|
3857 | AssertCompile(fNd <= RT_ELEMENTS(g_auNdMask));
|
---|
3858 | pThis->fHawBaseMask = ~(UINT64_MAX << cGstPhysAddrBits) & X86_PAGE_4K_BASE_MASK;
|
---|
3859 | pThis->fMgawInvMask = UINT64_MAX << cGstPhysAddrBits;
|
---|
3860 | pThis->cMaxPagingLevel = vtdCapRegGetMaxPagingLevel(fSagaw);
|
---|
3861 | pThis->fCtxEntryQw1ValidMask = VTD_BF_1_CONTEXT_ENTRY_AW_MASK
|
---|
3862 | | VTD_BF_1_CONTEXT_ENTRY_IGN_6_3_MASK
|
---|
3863 | | RT_BF_MAKE(VTD_BF_1_CONTEXT_ENTRY_DID, g_auNdMask[fNd]);
|
---|
3864 | }
|
---|
3865 |
|
---|
3866 | /* ECAP_REG */
|
---|
3867 | {
|
---|
3868 | uint8_t const fQi = 1; /* Queued-invalidations. */
|
---|
3869 | uint8_t const fIr = !!(DMAR_ACPI_DMAR_FLAGS & ACPI_DMAR_F_INTR_REMAP); /* Interrupt remapping support. */
|
---|
3870 | uint8_t const fMhmv = 0xf; /* Maximum handle mask value. */
|
---|
3871 | uint16_t const offIro = DMAR_MMIO_OFF_IVA_REG >> 4; /* MMIO offset of IOTLB registers. */
|
---|
3872 | uint8_t const fEim = 1; /* Extended interrupt mode.*/
|
---|
3873 | uint8_t const fAdms = 1; /* Abort DMA mode support. */
|
---|
3874 | uint8_t const fErs = 0; /* Execute Request (not supported). */
|
---|
3875 |
|
---|
3876 | pThis->fExtCapReg = RT_BF_MAKE(VTD_BF_ECAP_REG_C, 0) /* Accesses don't snoop CPU cache. */
|
---|
3877 | | RT_BF_MAKE(VTD_BF_ECAP_REG_QI, fQi)
|
---|
3878 | | RT_BF_MAKE(VTD_BF_ECAP_REG_DT, 0) /* Device-TLBs not supported. */
|
---|
3879 | | RT_BF_MAKE(VTD_BF_ECAP_REG_IR, fQi & fIr)
|
---|
3880 | | RT_BF_MAKE(VTD_BF_ECAP_REG_EIM, fIr & fEim)
|
---|
3881 | | RT_BF_MAKE(VTD_BF_ECAP_REG_PT, fPt)
|
---|
3882 | | RT_BF_MAKE(VTD_BF_ECAP_REG_SC, 0) /* Snoop control not supported. */
|
---|
3883 | | RT_BF_MAKE(VTD_BF_ECAP_REG_IRO, offIro)
|
---|
3884 | | RT_BF_MAKE(VTD_BF_ECAP_REG_MHMV, fIr & fMhmv)
|
---|
3885 | | RT_BF_MAKE(VTD_BF_ECAP_REG_MTS, 0) /* Memory type not supported. */
|
---|
3886 | | RT_BF_MAKE(VTD_BF_ECAP_REG_NEST, fNest)
|
---|
3887 | | RT_BF_MAKE(VTD_BF_ECAP_REG_PRS, 0) /* 0 as DT not supported. */
|
---|
3888 | | RT_BF_MAKE(VTD_BF_ECAP_REG_ERS, fErs)
|
---|
3889 | | RT_BF_MAKE(VTD_BF_ECAP_REG_SRS, 0) /* Supervisor request not supported. */
|
---|
3890 | | RT_BF_MAKE(VTD_BF_ECAP_REG_NWFS, 0) /* 0 as DT not supported. */
|
---|
3891 | | RT_BF_MAKE(VTD_BF_ECAP_REG_EAFS, 0) /* 0 as SMPWCS not supported. */
|
---|
3892 | | RT_BF_MAKE(VTD_BF_ECAP_REG_PSS, 0) /* 0 as PASID not supported. */
|
---|
3893 | | RT_BF_MAKE(VTD_BF_ECAP_REG_PASID, 0) /* PASID not supported. */
|
---|
3894 | | RT_BF_MAKE(VTD_BF_ECAP_REG_DIT, 0) /* 0 as DT not supported. */
|
---|
3895 | | RT_BF_MAKE(VTD_BF_ECAP_REG_PDS, 0) /* 0 as DT not supported. */
|
---|
3896 | | RT_BF_MAKE(VTD_BF_ECAP_REG_SMTS, fSmts)
|
---|
3897 | | RT_BF_MAKE(VTD_BF_ECAP_REG_VCS, 0) /* 0 as PASID not supported (commands seem PASID specific). */
|
---|
3898 | | RT_BF_MAKE(VTD_BF_ECAP_REG_SLADS, 0) /* Second-level accessed/dirty not supported. */
|
---|
3899 | | RT_BF_MAKE(VTD_BF_ECAP_REG_SLTS, fSlts)
|
---|
3900 | | RT_BF_MAKE(VTD_BF_ECAP_REG_FLTS, fFlts)
|
---|
3901 | | RT_BF_MAKE(VTD_BF_ECAP_REG_SMPWCS, 0) /* 0 as PASID not supported. */
|
---|
3902 | | RT_BF_MAKE(VTD_BF_ECAP_REG_RPS, 0) /* We don't support RID_PASID field in SM context entry. */
|
---|
3903 | | RT_BF_MAKE(VTD_BF_ECAP_REG_ADMS, fAdms)
|
---|
3904 | | RT_BF_MAKE(VTD_BF_ECAP_REG_RPRIVS, 0); /* 0 as SRS not supported. */
|
---|
3905 | dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_ECAP_REG, pThis->fExtCapReg);
|
---|
3906 |
|
---|
3907 | pThis->fPermValidMask = DMAR_PERM_READ | DMAR_PERM_WRITE;
|
---|
3908 | if (fErs)
|
---|
3909 | pThis->fPermValidMask = DMAR_PERM_EXE;
|
---|
3910 | }
|
---|
3911 |
|
---|
3912 | /*
|
---|
3913 | * Initialize registers mutable by software.
|
---|
3914 | */
|
---|
3915 | /* FECTL_REG */
|
---|
3916 | {
|
---|
3917 | uint32_t const uCtl = RT_BF_MAKE(VTD_BF_FECTL_REG_IM, 1);
|
---|
3918 | dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, uCtl);
|
---|
3919 | }
|
---|
3920 |
|
---|
3921 | /* ICETL_REG */
|
---|
3922 | {
|
---|
3923 | uint32_t const uCtl = RT_BF_MAKE(VTD_BF_IECTL_REG_IM, 1);
|
---|
3924 | dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, uCtl);
|
---|
3925 | }
|
---|
3926 |
|
---|
3927 | #ifdef VBOX_STRICT
|
---|
3928 | Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_PRS)); /* PECTL_REG - Reserved if don't support PRS. */
|
---|
3929 | Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_MTS)); /* MTRRCAP_REG - Reserved if we don't support MTS. */
|
---|
3930 | #endif
|
---|
3931 | }
|
---|
3932 |
|
---|
3933 |
|
---|
3934 | /**
|
---|
3935 | * @callback_method_impl{FNSSMDEVSAVEEXEC}
|
---|
3936 | */
|
---|
3937 | static DECLCALLBACK(int) dmarR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
|
---|
3938 | {
|
---|
3939 | PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
|
---|
3940 | PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
|
---|
3941 | LogFlowFunc(("\n"));
|
---|
3942 |
|
---|
3943 | /* First, save software-immutable registers that we validate on state load. */
|
---|
3944 | pHlp->pfnSSMPutU32(pSSM, pThis->uVerReg);
|
---|
3945 | pHlp->pfnSSMPutU64(pSSM, pThis->fCapReg);
|
---|
3946 | pHlp->pfnSSMPutU64(pSSM, pThis->fExtCapReg);
|
---|
3947 |
|
---|
3948 | /* Save MMIO registers. */
|
---|
3949 | pHlp->pfnSSMPutU32(pSSM, DMAR_MMIO_GROUP_COUNT);
|
---|
3950 | pHlp->pfnSSMPutU32(pSSM, sizeof(pThis->abRegs0));
|
---|
3951 | pHlp->pfnSSMPutMem(pSSM, &pThis->abRegs0[0], sizeof(pThis->abRegs0));
|
---|
3952 | pHlp->pfnSSMPutU32(pSSM, sizeof(pThis->abRegs1));
|
---|
3953 | pHlp->pfnSSMPutMem(pSSM, &pThis->abRegs1[0], sizeof(pThis->abRegs1));
|
---|
3954 |
|
---|
3955 | /*
|
---|
3956 | * Save our implemention-defined MMIO registers offsets.
|
---|
3957 | * The register themselves are currently all part of group 1 (saved above).
|
---|
3958 | * We save these to ensure they're located where the code expects them while loading state.
|
---|
3959 | */
|
---|
3960 | pHlp->pfnSSMPutU16(pSSM, DMAR_MMIO_OFF_IMPL_COUNT);
|
---|
3961 | AssertCompile(DMAR_MMIO_OFF_IMPL_COUNT == 2);
|
---|
3962 | pHlp->pfnSSMPutU16(pSSM, DMAR_MMIO_OFF_IVA_REG);
|
---|
3963 | pHlp->pfnSSMPutU16(pSSM, DMAR_MMIO_OFF_FRCD_LO_REG);
|
---|
3964 |
|
---|
3965 | /* Save lazily activated registers. */
|
---|
3966 | pHlp->pfnSSMPutU64(pSSM, pThis->uIrtaReg);
|
---|
3967 | pHlp->pfnSSMPutU64(pSSM, pThis->uRtaddrReg);
|
---|
3968 |
|
---|
3969 | /* Save terminator marker and return status. */
|
---|
3970 | return pHlp->pfnSSMPutU32(pSSM, UINT32_MAX);
|
---|
3971 | }
|
---|
3972 |
|
---|
3973 |
|
---|
3974 | /**
|
---|
3975 | * @callback_method_impl{FNSSMDEVLOADEXEC}
|
---|
3976 | */
|
---|
3977 | static DECLCALLBACK(int) dmarR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
|
---|
3978 | {
|
---|
3979 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
3980 | PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
|
---|
3981 | int const rcDataErr = VERR_SSM_UNEXPECTED_DATA;
|
---|
3982 | int const rcFmtErr = VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
|
---|
3983 | LogFlowFunc(("\n"));
|
---|
3984 |
|
---|
3985 | /*
|
---|
3986 | * Validate saved-state version.
|
---|
3987 | */
|
---|
3988 | AssertReturn(uPass == SSM_PASS_FINAL, VERR_WRONG_ORDER);
|
---|
3989 | if (uVersion != DMAR_SAVED_STATE_VERSION)
|
---|
3990 | {
|
---|
3991 | LogRel(("%s: Invalid saved-state version %#x\n", DMAR_LOG_PFX, uVersion));
|
---|
3992 | return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
|
---|
3993 | }
|
---|
3994 |
|
---|
3995 | /*
|
---|
3996 | * Load and validate software-immutable registers.
|
---|
3997 | * The features we had exposed to the guest (in the saved state) must be identical
|
---|
3998 | * to what is currently emulated.
|
---|
3999 | */
|
---|
4000 | {
|
---|
4001 | /* VER_REG */
|
---|
4002 | uint32_t uVerReg = 0;
|
---|
4003 | int rc = pHlp->pfnSSMGetU32(pSSM, &uVerReg);
|
---|
4004 | AssertRCReturn(rc, rc);
|
---|
4005 | AssertLogRelMsgReturn(uVerReg == pThis->uVerReg,
|
---|
4006 | ("%s: VER_REG mismatch (expected %#RX32 got %#RX32)\n", DMAR_LOG_PFX, pThis->uVerReg, uVerReg),
|
---|
4007 | rcDataErr);
|
---|
4008 | /* CAP_REG */
|
---|
4009 | uint64_t fCapReg = 0;
|
---|
4010 | pHlp->pfnSSMGetU64(pSSM, &fCapReg);
|
---|
4011 | AssertLogRelMsgReturn(fCapReg == pThis->fCapReg,
|
---|
4012 | ("%s: CAP_REG mismatch (expected %#RX64 got %#RX64)\n", DMAR_LOG_PFX, pThis->fCapReg, fCapReg),
|
---|
4013 | rcDataErr);
|
---|
4014 | /* ECAP_REG */
|
---|
4015 | uint64_t fExtCapReg = 0;
|
---|
4016 | pHlp->pfnSSMGetU64(pSSM, &fExtCapReg);
|
---|
4017 | AssertLogRelMsgReturn(fExtCapReg == pThis->fExtCapReg,
|
---|
4018 | ("%s: ECAP_REG mismatch (expected %#RX64 got %#RX64)\n", DMAR_LOG_PFX, pThis->fExtCapReg,
|
---|
4019 | fExtCapReg), rcDataErr);
|
---|
4020 | }
|
---|
4021 |
|
---|
4022 | /*
|
---|
4023 | * Load MMIO registers.
|
---|
4024 | */
|
---|
4025 | {
|
---|
4026 | /* Group count. */
|
---|
4027 | uint32_t cRegGroups = 0;
|
---|
4028 | pHlp->pfnSSMGetU32(pSSM, &cRegGroups);
|
---|
4029 | AssertLogRelMsgReturn(cRegGroups == DMAR_MMIO_GROUP_COUNT,
|
---|
4030 | ("%s: MMIO group count mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_GROUP_COUNT,
|
---|
4031 | cRegGroups), rcFmtErr);
|
---|
4032 | /* Group 0. */
|
---|
4033 | uint32_t cbRegs0 = 0;
|
---|
4034 | pHlp->pfnSSMGetU32(pSSM, &cbRegs0);
|
---|
4035 | AssertLogRelMsgReturn(cbRegs0 == sizeof(pThis->abRegs0),
|
---|
4036 | ("%s: MMIO group 0 size mismatch (expected %u got %u)\n", DMAR_LOG_PFX, sizeof(pThis->abRegs0),
|
---|
4037 | cbRegs0), rcFmtErr);
|
---|
4038 | pHlp->pfnSSMGetMem(pSSM, &pThis->abRegs0[0], cbRegs0);
|
---|
4039 | /* Group 1. */
|
---|
4040 | uint32_t cbRegs1 = 0;
|
---|
4041 | pHlp->pfnSSMGetU32(pSSM, &cbRegs1);
|
---|
4042 | AssertLogRelMsgReturn(cbRegs1 == sizeof(pThis->abRegs1),
|
---|
4043 | ("%s: MMIO group 1 size mismatch (expected %u got %u)\n", DMAR_LOG_PFX, sizeof(pThis->abRegs1),
|
---|
4044 | cbRegs1), rcFmtErr);
|
---|
4045 | pHlp->pfnSSMGetMem(pSSM, &pThis->abRegs1[0], cbRegs1);
|
---|
4046 | }
|
---|
4047 |
|
---|
4048 | /*
|
---|
4049 | * Validate implementation-defined MMIO register offsets.
|
---|
4050 | */
|
---|
4051 | {
|
---|
4052 | /* Offset count. */
|
---|
4053 | uint16_t cOffsets = 0;
|
---|
4054 | pHlp->pfnSSMGetU16(pSSM, &cOffsets);
|
---|
4055 | AssertLogRelMsgReturn(cOffsets == DMAR_MMIO_OFF_IMPL_COUNT,
|
---|
4056 | ("%s: MMIO offset count mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_IMPL_COUNT,
|
---|
4057 | cOffsets), rcFmtErr);
|
---|
4058 | /* IVA_REG. */
|
---|
4059 | uint16_t offReg = 0;
|
---|
4060 | pHlp->pfnSSMGetU16(pSSM, &offReg);
|
---|
4061 | AssertLogRelMsgReturn(offReg == DMAR_MMIO_OFF_IVA_REG,
|
---|
4062 | ("%s: IVA_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_IVA_REG,
|
---|
4063 | offReg), rcFmtErr);
|
---|
4064 | /* IOTLB_REG. */
|
---|
4065 | AssertLogRelMsgReturn(offReg + 8 == DMAR_MMIO_OFF_IOTLB_REG,
|
---|
4066 | ("%s: IOTLB_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_IOTLB_REG,
|
---|
4067 | offReg), rcFmtErr);
|
---|
4068 | /* FRCD_LO_REG. */
|
---|
4069 | pHlp->pfnSSMGetU16(pSSM, &offReg);
|
---|
4070 | AssertLogRelMsgReturn(offReg == DMAR_MMIO_OFF_FRCD_LO_REG,
|
---|
4071 | ("%s: FRCD_LO_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_FRCD_LO_REG,
|
---|
4072 | offReg), rcFmtErr);
|
---|
4073 | /* FRCD_HI_REG. */
|
---|
4074 | AssertLogRelMsgReturn(offReg + 8 == DMAR_MMIO_OFF_FRCD_HI_REG,
|
---|
4075 | ("%s: FRCD_HI_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_FRCD_HI_REG,
|
---|
4076 | offReg), rcFmtErr);
|
---|
4077 | }
|
---|
4078 |
|
---|
4079 | /*
|
---|
4080 | * Load lazily activated registers.
|
---|
4081 | */
|
---|
4082 | {
|
---|
4083 | /* Active IRTA_REG. */
|
---|
4084 | pHlp->pfnSSMGetU64(pSSM, &pThis->uIrtaReg);
|
---|
4085 | AssertLogRelMsgReturn(!(pThis->uIrtaReg & ~VTD_IRTA_REG_RW_MASK),
|
---|
4086 | ("%s: IRTA_REG reserved bits set %#RX64\n", DMAR_LOG_PFX, pThis->uIrtaReg), rcDataErr);
|
---|
4087 | /* Active RTADDR_REG. */
|
---|
4088 | pHlp->pfnSSMGetU64(pSSM, &pThis->uRtaddrReg);
|
---|
4089 | AssertLogRelMsgReturn(!(pThis->uRtaddrReg & ~VTD_RTADDR_REG_RW_MASK),
|
---|
4090 | ("%s: RTADDR_REG reserved bits set %#RX64\n", DMAR_LOG_PFX, pThis->uRtaddrReg), rcDataErr);
|
---|
4091 | }
|
---|
4092 |
|
---|
4093 | /*
|
---|
4094 | * Verify terminator marker.
|
---|
4095 | */
|
---|
4096 | {
|
---|
4097 | uint32_t uEndMarker = 0;
|
---|
4098 | int const rc = pHlp->pfnSSMGetU32(pSSM, &uEndMarker);
|
---|
4099 | AssertRCReturn(rc, rc);
|
---|
4100 | AssertLogRelMsgReturn(uEndMarker == UINT32_MAX,
|
---|
4101 | ("%s: End marker mismatch (expected %#RX32 got %#RX32)\n", DMAR_LOG_PFX, UINT32_MAX, uEndMarker),
|
---|
4102 | rcFmtErr);
|
---|
4103 | }
|
---|
4104 | return VINF_SUCCESS;
|
---|
4105 | }
|
---|
4106 |
|
---|
4107 |
|
---|
4108 | /**
|
---|
4109 | * @callback_method_impl{FNSSMDEVLOADDONE}
|
---|
4110 | */
|
---|
4111 | static DECLCALLBACK(int) dmarR3LoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
|
---|
4112 | {
|
---|
4113 | PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3);
|
---|
4114 | LogFlowFunc(("\n"));
|
---|
4115 | RT_NOREF(pSSM);
|
---|
4116 | AssertPtrReturn(pThisR3, VERR_INVALID_POINTER);
|
---|
4117 |
|
---|
4118 | DMAR_LOCK(pDevIns, pThisR3);
|
---|
4119 | dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
|
---|
4120 | DMAR_UNLOCK(pDevIns, pThisR3);
|
---|
4121 | return VINF_SUCCESS;
|
---|
4122 | }
|
---|
4123 |
|
---|
4124 |
|
---|
4125 | /**
|
---|
4126 | * @interface_method_impl{PDMDEVREG,pfnReset}
|
---|
4127 | */
|
---|
4128 | static DECLCALLBACK(void) iommuIntelR3Reset(PPDMDEVINS pDevIns)
|
---|
4129 | {
|
---|
4130 | PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
|
---|
4131 | LogFlowFunc(("\n"));
|
---|
4132 |
|
---|
4133 | DMAR_LOCK(pDevIns, pThisR3);
|
---|
4134 | dmarR3RegsInit(pDevIns);
|
---|
4135 | DMAR_UNLOCK(pDevIns, pThisR3);
|
---|
4136 | }
|
---|
4137 |
|
---|
4138 |
|
---|
4139 | /**
|
---|
4140 | * @interface_method_impl{PDMDEVREG,pfnDestruct}
|
---|
4141 | */
|
---|
4142 | static DECLCALLBACK(int) iommuIntelR3Destruct(PPDMDEVINS pDevIns)
|
---|
4143 | {
|
---|
4144 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
4145 | PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
|
---|
4146 | LogFlowFunc(("\n"));
|
---|
4147 |
|
---|
4148 | DMAR_LOCK(pDevIns, pThisR3);
|
---|
4149 |
|
---|
4150 | if (pThis->hEvtInvQueue != NIL_SUPSEMEVENT)
|
---|
4151 | {
|
---|
4152 | PDMDevHlpSUPSemEventClose(pDevIns, pThis->hEvtInvQueue);
|
---|
4153 | pThis->hEvtInvQueue = NIL_SUPSEMEVENT;
|
---|
4154 | }
|
---|
4155 |
|
---|
4156 | DMAR_UNLOCK(pDevIns, pThisR3);
|
---|
4157 | return VINF_SUCCESS;
|
---|
4158 | }
|
---|
4159 |
|
---|
4160 |
|
---|
4161 | /**
|
---|
4162 | * @interface_method_impl{PDMDEVREG,pfnConstruct}
|
---|
4163 | */
|
---|
4164 | static DECLCALLBACK(int) iommuIntelR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
|
---|
4165 | {
|
---|
4166 | RT_NOREF(pCfg);
|
---|
4167 |
|
---|
4168 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
4169 | PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3);
|
---|
4170 | pThisR3->pDevInsR3 = pDevIns;
|
---|
4171 |
|
---|
4172 | LogFlowFunc(("iInstance=%d\n", iInstance));
|
---|
4173 | NOREF(iInstance);
|
---|
4174 |
|
---|
4175 | /*
|
---|
4176 | * Register the IOMMU with PDM.
|
---|
4177 | */
|
---|
4178 | PDMIOMMUREGR3 IommuReg;
|
---|
4179 | RT_ZERO(IommuReg);
|
---|
4180 | IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
|
---|
4181 | IommuReg.pfnMemAccess = iommuIntelMemAccess;
|
---|
4182 | IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
|
---|
4183 | IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
|
---|
4184 | IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
|
---|
4185 | int rc = PDMDevHlpIommuRegister(pDevIns, &IommuReg, &pThisR3->CTX_SUFF(pIommuHlp), &pThis->idxIommu);
|
---|
4186 | if (RT_FAILURE(rc))
|
---|
4187 | return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to register ourselves as an IOMMU device"));
|
---|
4188 | if (pThisR3->CTX_SUFF(pIommuHlp)->u32Version != PDM_IOMMUHLPR3_VERSION)
|
---|
4189 | return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
|
---|
4190 | N_("IOMMU helper version mismatch; got %#x expected %#x"),
|
---|
4191 | pThisR3->CTX_SUFF(pIommuHlp)->u32Version, PDM_IOMMUHLPR3_VERSION);
|
---|
4192 | if (pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd != PDM_IOMMUHLPR3_VERSION)
|
---|
4193 | return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
|
---|
4194 | N_("IOMMU helper end-version mismatch; got %#x expected %#x"),
|
---|
4195 | pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd, PDM_IOMMUHLPR3_VERSION);
|
---|
4196 | AssertPtr(pThisR3->pIommuHlpR3->pfnLock);
|
---|
4197 | AssertPtr(pThisR3->pIommuHlpR3->pfnUnlock);
|
---|
4198 | AssertPtr(pThisR3->pIommuHlpR3->pfnLockIsOwner);
|
---|
4199 | AssertPtr(pThisR3->pIommuHlpR3->pfnSendMsi);
|
---|
4200 |
|
---|
4201 | /*
|
---|
4202 | * Use PDM's critical section (via helpers) for the IOMMU device.
|
---|
4203 | */
|
---|
4204 | rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
|
---|
4205 | AssertRCReturn(rc, rc);
|
---|
4206 |
|
---|
4207 | /*
|
---|
4208 | * Initialize PCI configuration registers.
|
---|
4209 | */
|
---|
4210 | PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
|
---|
4211 | PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
|
---|
4212 |
|
---|
4213 | /* Header. */
|
---|
4214 | PDMPciDevSetVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
|
---|
4215 | PDMPciDevSetDeviceId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
|
---|
4216 | PDMPciDevSetRevisionId(pPciDev, DMAR_PCI_REVISION_ID); /* VirtualBox specific device implementation revision */
|
---|
4217 | PDMPciDevSetClassBase(pPciDev, VBOX_PCI_CLASS_SYSTEM); /* System Base Peripheral */
|
---|
4218 | PDMPciDevSetClassSub(pPciDev, VBOX_PCI_SUB_SYSTEM_OTHER); /* Other */
|
---|
4219 | PDMPciDevSetHeaderType(pPciDev, 0); /* Single function, type 0 */
|
---|
4220 | PDMPciDevSetSubSystemId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
|
---|
4221 | PDMPciDevSetSubSystemVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
|
---|
4222 |
|
---|
4223 | /** @todo Chipset spec says PCI Express Capability Id. Relevant for us? */
|
---|
4224 | PDMPciDevSetStatus(pPciDev, 0);
|
---|
4225 | PDMPciDevSetCapabilityList(pPciDev, 0);
|
---|
4226 | /** @todo VTBAR at 0x180? */
|
---|
4227 |
|
---|
4228 | /*
|
---|
4229 | * Register the PCI function with PDM.
|
---|
4230 | */
|
---|
4231 | rc = PDMDevHlpPCIRegister(pDevIns, pPciDev);
|
---|
4232 | AssertLogRelRCReturn(rc, rc);
|
---|
4233 |
|
---|
4234 | /*
|
---|
4235 | * Register MMIO region.
|
---|
4236 | */
|
---|
4237 | AssertCompile(!(DMAR_MMIO_BASE_PHYSADDR & X86_PAGE_4K_OFFSET_MASK));
|
---|
4238 | rc = PDMDevHlpMmioCreateAndMap(pDevIns, DMAR_MMIO_BASE_PHYSADDR, DMAR_MMIO_SIZE, dmarMmioWrite, dmarMmioRead,
|
---|
4239 | IOMMMIO_FLAGS_READ_DWORD_QWORD | IOMMMIO_FLAGS_WRITE_DWORD_QWORD_ZEROED, "Intel-IOMMU",
|
---|
4240 | &pThis->hMmio);
|
---|
4241 | AssertLogRelRCReturn(rc, rc);
|
---|
4242 |
|
---|
4243 | /*
|
---|
4244 | * Register saved state handlers.
|
---|
4245 | */
|
---|
4246 | rc = PDMDevHlpSSMRegisterEx(pDevIns, DMAR_SAVED_STATE_VERSION, sizeof(DMAR), NULL /* pszBefore */,
|
---|
4247 | NULL /* pfnLivePrep */, NULL /* pfnLiveExec */, NULL /* pfnLiveVote */,
|
---|
4248 | NULL /* pfnSavePrep */, dmarR3SaveExec, NULL /* pfnSaveDone */,
|
---|
4249 | NULL /* pfnLoadPrep */, dmarR3LoadExec, dmarR3LoadDone);
|
---|
4250 | AssertLogRelRCReturn(rc, rc);
|
---|
4251 |
|
---|
4252 | /*
|
---|
4253 | * Register debugger info items.
|
---|
4254 | */
|
---|
4255 | rc = PDMDevHlpDBGFInfoRegister(pDevIns, "iommu", "Display IOMMU state.", dmarR3DbgInfo);
|
---|
4256 | AssertLogRelRCReturn(rc, rc);
|
---|
4257 |
|
---|
4258 | #ifdef VBOX_WITH_STATISTICS
|
---|
4259 | /*
|
---|
4260 | * Statistics.
|
---|
4261 | */
|
---|
4262 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadR3, STAMTYPE_COUNTER, "R3/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in R3");
|
---|
4263 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadRZ, STAMTYPE_COUNTER, "RZ/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in RZ.");
|
---|
4264 |
|
---|
4265 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteR3, STAMTYPE_COUNTER, "R3/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in R3.");
|
---|
4266 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteRZ, STAMTYPE_COUNTER, "RZ/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in RZ.");
|
---|
4267 |
|
---|
4268 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiR3, STAMTYPE_COUNTER, "R3/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in R3.");
|
---|
4269 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in RZ.");
|
---|
4270 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiR3, STAMTYPE_COUNTER, "R3/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in R3.");
|
---|
4271 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in RZ.");
|
---|
4272 |
|
---|
4273 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadR3, STAMTYPE_COUNTER, "R3/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in R3.");
|
---|
4274 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadRZ, STAMTYPE_COUNTER, "RZ/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in RZ.");
|
---|
4275 |
|
---|
4276 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteR3, STAMTYPE_COUNTER, "R3/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in R3.");
|
---|
4277 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteRZ, STAMTYPE_COUNTER, "RZ/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in RZ.");
|
---|
4278 |
|
---|
4279 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadR3, STAMTYPE_COUNTER, "R3/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in R3.");
|
---|
4280 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadRZ, STAMTYPE_COUNTER, "RZ/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in RZ.");
|
---|
4281 |
|
---|
4282 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteR3, STAMTYPE_COUNTER, "R3/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in R3.");
|
---|
4283 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteRZ, STAMTYPE_COUNTER, "RZ/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in RZ.");
|
---|
4284 |
|
---|
4285 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCcInvDsc, STAMTYPE_COUNTER, "R3/QI/CcInv", STAMUNIT_OCCURENCES, "Number of cc_inv_dsc processed.");
|
---|
4286 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/IotlbInv", STAMUNIT_OCCURENCES, "Number of iotlb_inv_dsc processed.");
|
---|
4287 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/DevtlbInv", STAMUNIT_OCCURENCES, "Number of dev_tlb_inv_dsc processed.");
|
---|
4288 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIecInvDsc, STAMTYPE_COUNTER, "R3/QI/IecInv", STAMUNIT_OCCURENCES, "Number of iec_inv processed.");
|
---|
4289 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatInvWaitDsc, STAMTYPE_COUNTER, "R3/QI/InvWait", STAMUNIT_OCCURENCES, "Number of inv_wait_dsc processed.");
|
---|
4290 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidIotlbInv", STAMUNIT_OCCURENCES, "Number of p_iotlb_inv_dsc processed.");
|
---|
4291 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidCacheInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidCacheInv", STAMUNIT_OCCURENCES, "Number of pc_inv_dsc pprocessed.");
|
---|
4292 | PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidDevtlbInv", STAMUNIT_OCCURENCES, "Number of p_dev_tlb_inv_dsc processed.");
|
---|
4293 | #endif
|
---|
4294 |
|
---|
4295 | /*
|
---|
4296 | * Initialize registers.
|
---|
4297 | */
|
---|
4298 | dmarR3RegsInit(pDevIns);
|
---|
4299 |
|
---|
4300 | /*
|
---|
4301 | * Create invalidation-queue thread and semaphore.
|
---|
4302 | */
|
---|
4303 | char szInvQueueThread[32];
|
---|
4304 | RT_ZERO(szInvQueueThread);
|
---|
4305 | RTStrPrintf(szInvQueueThread, sizeof(szInvQueueThread), "IOMMU-QI-%u", iInstance);
|
---|
4306 | rc = PDMDevHlpThreadCreate(pDevIns, &pThisR3->pInvQueueThread, pThis, dmarR3InvQueueThread, dmarR3InvQueueThreadWakeUp,
|
---|
4307 | 0 /* cbStack */, RTTHREADTYPE_IO, szInvQueueThread);
|
---|
4308 | AssertLogRelRCReturn(rc, rc);
|
---|
4309 |
|
---|
4310 | rc = PDMDevHlpSUPSemEventCreate(pDevIns, &pThis->hEvtInvQueue);
|
---|
4311 | AssertLogRelRCReturn(rc, rc);
|
---|
4312 |
|
---|
4313 | /*
|
---|
4314 | * Log some of the features exposed to software.
|
---|
4315 | */
|
---|
4316 | uint8_t const uVerMax = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX);
|
---|
4317 | uint8_t const uVerMin = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MIN);
|
---|
4318 | uint8_t const cMgawBits = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_MGAW) + 1;
|
---|
4319 | uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW);
|
---|
4320 | uint16_t const offFrcd = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_FRO);
|
---|
4321 | uint16_t const offIva = RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_IRO);
|
---|
4322 | LogRel(("%s: Mapped at %#RGp (%u-level page-table supported)\n",
|
---|
4323 | DMAR_LOG_PFX, DMAR_MMIO_BASE_PHYSADDR, pThis->cMaxPagingLevel));
|
---|
4324 | LogRel(("%s: Version=%u.%u Cap=%#RX64 ExtCap=%#RX64 Mgaw=%u bits Sagaw=%#x HawBaseMask=%#RX64 MgawInvMask=%#RX64 FRO=%#x IRO=%#x\n",
|
---|
4325 | DMAR_LOG_PFX, uVerMax, uVerMin, pThis->fCapReg, pThis->fExtCapReg, cMgawBits, fSagaw, pThis->fHawBaseMask,
|
---|
4326 | pThis->fMgawInvMask, offFrcd, offIva));
|
---|
4327 | return VINF_SUCCESS;
|
---|
4328 | }
|
---|
4329 |
|
---|
4330 | #else
|
---|
4331 |
|
---|
4332 | /**
|
---|
4333 | * @callback_method_impl{PDMDEVREGR0,pfnConstruct}
|
---|
4334 | */
|
---|
4335 | static DECLCALLBACK(int) iommuIntelRZConstruct(PPDMDEVINS pDevIns)
|
---|
4336 | {
|
---|
4337 | PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
|
---|
4338 | PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
|
---|
4339 | PDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDMARCC);
|
---|
4340 | pThisCC->CTX_SUFF(pDevIns) = pDevIns;
|
---|
4341 |
|
---|
4342 | /* We will use PDM's critical section (via helpers) for the IOMMU device. */
|
---|
4343 | int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
|
---|
4344 | AssertRCReturn(rc, rc);
|
---|
4345 |
|
---|
4346 | /* Set up the MMIO RZ handlers. */
|
---|
4347 | rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmio, dmarMmioWrite, dmarMmioRead, NULL /* pvUser */);
|
---|
4348 | AssertRCReturn(rc, rc);
|
---|
4349 |
|
---|
4350 | /* Set up the IOMMU RZ callbacks. */
|
---|
4351 | PDMIOMMUREGCC IommuReg;
|
---|
4352 | RT_ZERO(IommuReg);
|
---|
4353 | IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
|
---|
4354 | IommuReg.idxIommu = pThis->idxIommu;
|
---|
4355 | IommuReg.pfnMemAccess = iommuIntelMemAccess;
|
---|
4356 | IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
|
---|
4357 | IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
|
---|
4358 | IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
|
---|
4359 |
|
---|
4360 | rc = PDMDevHlpIommuSetUpContext(pDevIns, &IommuReg, &pThisCC->CTX_SUFF(pIommuHlp));
|
---|
4361 | AssertRCReturn(rc, rc);
|
---|
4362 | AssertPtrReturn(pThisCC->CTX_SUFF(pIommuHlp), VERR_IOMMU_IPE_1);
|
---|
4363 | AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32Version == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
|
---|
4364 | AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32TheEnd == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
|
---|
4365 | AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLock);
|
---|
4366 | AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnUnlock);
|
---|
4367 | AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLockIsOwner);
|
---|
4368 | AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi);
|
---|
4369 |
|
---|
4370 | return VINF_SUCCESS;
|
---|
4371 | }
|
---|
4372 |
|
---|
4373 | #endif
|
---|
4374 |
|
---|
4375 |
|
---|
4376 | /**
|
---|
4377 | * The device registration structure.
|
---|
4378 | */
|
---|
4379 | PDMDEVREG const g_DeviceIommuIntel =
|
---|
4380 | {
|
---|
4381 | /* .u32Version = */ PDM_DEVREG_VERSION,
|
---|
4382 | /* .uReserved0 = */ 0,
|
---|
4383 | /* .szName = */ "iommu-intel",
|
---|
4384 | /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE,
|
---|
4385 | /* .fClass = */ PDM_DEVREG_CLASS_PCI_BUILTIN,
|
---|
4386 | /* .cMaxInstances = */ 1,
|
---|
4387 | /* .uSharedVersion = */ 42,
|
---|
4388 | /* .cbInstanceShared = */ sizeof(DMAR),
|
---|
4389 | /* .cbInstanceCC = */ sizeof(DMARCC),
|
---|
4390 | /* .cbInstanceRC = */ sizeof(DMARRC),
|
---|
4391 | /* .cMaxPciDevices = */ 1,
|
---|
4392 | /* .cMaxMsixVectors = */ 0,
|
---|
4393 | /* .pszDescription = */ "IOMMU (Intel)",
|
---|
4394 | #if defined(IN_RING3)
|
---|
4395 | /* .pszRCMod = */ "VBoxDDRC.rc",
|
---|
4396 | /* .pszR0Mod = */ "VBoxDDR0.r0",
|
---|
4397 | /* .pfnConstruct = */ iommuIntelR3Construct,
|
---|
4398 | /* .pfnDestruct = */ iommuIntelR3Destruct,
|
---|
4399 | /* .pfnRelocate = */ NULL,
|
---|
4400 | /* .pfnMemSetup = */ NULL,
|
---|
4401 | /* .pfnPowerOn = */ NULL,
|
---|
4402 | /* .pfnReset = */ iommuIntelR3Reset,
|
---|
4403 | /* .pfnSuspend = */ NULL,
|
---|
4404 | /* .pfnResume = */ NULL,
|
---|
4405 | /* .pfnAttach = */ NULL,
|
---|
4406 | /* .pfnDetach = */ NULL,
|
---|
4407 | /* .pfnQueryInterface = */ NULL,
|
---|
4408 | /* .pfnInitComplete = */ NULL,
|
---|
4409 | /* .pfnPowerOff = */ NULL,
|
---|
4410 | /* .pfnSoftReset = */ NULL,
|
---|
4411 | /* .pfnReserved0 = */ NULL,
|
---|
4412 | /* .pfnReserved1 = */ NULL,
|
---|
4413 | /* .pfnReserved2 = */ NULL,
|
---|
4414 | /* .pfnReserved3 = */ NULL,
|
---|
4415 | /* .pfnReserved4 = */ NULL,
|
---|
4416 | /* .pfnReserved5 = */ NULL,
|
---|
4417 | /* .pfnReserved6 = */ NULL,
|
---|
4418 | /* .pfnReserved7 = */ NULL,
|
---|
4419 | #elif defined(IN_RING0)
|
---|
4420 | /* .pfnEarlyConstruct = */ NULL,
|
---|
4421 | /* .pfnConstruct = */ iommuIntelRZConstruct,
|
---|
4422 | /* .pfnDestruct = */ NULL,
|
---|
4423 | /* .pfnFinalDestruct = */ NULL,
|
---|
4424 | /* .pfnRequest = */ NULL,
|
---|
4425 | /* .pfnReserved0 = */ NULL,
|
---|
4426 | /* .pfnReserved1 = */ NULL,
|
---|
4427 | /* .pfnReserved2 = */ NULL,
|
---|
4428 | /* .pfnReserved3 = */ NULL,
|
---|
4429 | /* .pfnReserved4 = */ NULL,
|
---|
4430 | /* .pfnReserved5 = */ NULL,
|
---|
4431 | /* .pfnReserved6 = */ NULL,
|
---|
4432 | /* .pfnReserved7 = */ NULL,
|
---|
4433 | #elif defined(IN_RC)
|
---|
4434 | /* .pfnConstruct = */ iommuIntelRZConstruct,
|
---|
4435 | /* .pfnReserved0 = */ NULL,
|
---|
4436 | /* .pfnReserved1 = */ NULL,
|
---|
4437 | /* .pfnReserved2 = */ NULL,
|
---|
4438 | /* .pfnReserved3 = */ NULL,
|
---|
4439 | /* .pfnReserved4 = */ NULL,
|
---|
4440 | /* .pfnReserved5 = */ NULL,
|
---|
4441 | /* .pfnReserved6 = */ NULL,
|
---|
4442 | /* .pfnReserved7 = */ NULL,
|
---|
4443 | #else
|
---|
4444 | # error "Not in IN_RING3, IN_RING0 or IN_RC!"
|
---|
4445 | #endif
|
---|
4446 | /* .u32VersionEnd = */ PDM_DEVREG_VERSION
|
---|
4447 | };
|
---|
4448 |
|
---|
4449 | #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
|
---|
4450 |
|
---|