1 | /** @file
|
---|
2 | An OrderedCollectionLib instance that provides a red-black tree
|
---|
3 | implementation, and allocates and releases tree nodes with
|
---|
4 | MemoryAllocationLib.
|
---|
5 |
|
---|
6 | This library instance is useful when a fast associative container is needed.
|
---|
7 | Worst case time complexity is O(log n) for Find(), Next(), Prev(), Min(),
|
---|
8 | Max(), Insert(), and Delete(), where "n" is the number of elements in the
|
---|
9 | tree. Complete ordered traversal takes O(n) time.
|
---|
10 |
|
---|
11 | The implementation is also useful as a fast priority queue.
|
---|
12 |
|
---|
13 | Copyright (C) 2014, Red Hat, Inc.
|
---|
14 | Copyright (c) 2014, Intel Corporation. All rights reserved.<BR>
|
---|
15 |
|
---|
16 | SPDX-License-Identifier: BSD-2-Clause-Patent
|
---|
17 | **/
|
---|
18 |
|
---|
19 | #include <Library/OrderedCollectionLib.h>
|
---|
20 | #include <Library/DebugLib.h>
|
---|
21 | #include <Library/MemoryAllocationLib.h>
|
---|
22 |
|
---|
23 | typedef enum {
|
---|
24 | RedBlackTreeRed,
|
---|
25 | RedBlackTreeBlack
|
---|
26 | } RED_BLACK_TREE_COLOR;
|
---|
27 |
|
---|
28 | //
|
---|
29 | // Incomplete types and convenience typedefs are present in the library class
|
---|
30 | // header. Beside completing the types, we introduce typedefs here that reflect
|
---|
31 | // the implementation closely.
|
---|
32 | //
|
---|
33 | typedef ORDERED_COLLECTION RED_BLACK_TREE;
|
---|
34 | typedef ORDERED_COLLECTION_ENTRY RED_BLACK_TREE_NODE;
|
---|
35 | typedef ORDERED_COLLECTION_USER_COMPARE RED_BLACK_TREE_USER_COMPARE;
|
---|
36 | typedef ORDERED_COLLECTION_KEY_COMPARE RED_BLACK_TREE_KEY_COMPARE;
|
---|
37 |
|
---|
38 | struct ORDERED_COLLECTION {
|
---|
39 | RED_BLACK_TREE_NODE *Root;
|
---|
40 | RED_BLACK_TREE_USER_COMPARE UserStructCompare;
|
---|
41 | RED_BLACK_TREE_KEY_COMPARE KeyCompare;
|
---|
42 | };
|
---|
43 |
|
---|
44 | struct ORDERED_COLLECTION_ENTRY {
|
---|
45 | VOID *UserStruct;
|
---|
46 | RED_BLACK_TREE_NODE *Parent;
|
---|
47 | RED_BLACK_TREE_NODE *Left;
|
---|
48 | RED_BLACK_TREE_NODE *Right;
|
---|
49 | RED_BLACK_TREE_COLOR Color;
|
---|
50 | };
|
---|
51 |
|
---|
52 |
|
---|
53 | /**
|
---|
54 | Retrieve the user structure linked by the specified tree node.
|
---|
55 |
|
---|
56 | Read-only operation.
|
---|
57 |
|
---|
58 | @param[in] Node Pointer to the tree node whose associated user structure we
|
---|
59 | want to retrieve. The caller is responsible for passing a
|
---|
60 | non-NULL argument.
|
---|
61 |
|
---|
62 | @return Pointer to user structure linked by Node.
|
---|
63 | **/
|
---|
64 | VOID *
|
---|
65 | EFIAPI
|
---|
66 | OrderedCollectionUserStruct (
|
---|
67 | IN CONST RED_BLACK_TREE_NODE *Node
|
---|
68 | )
|
---|
69 | {
|
---|
70 | return Node->UserStruct;
|
---|
71 | }
|
---|
72 |
|
---|
73 | /**
|
---|
74 | A slow function that asserts that the tree is a valid red-black tree, and
|
---|
75 | that it orders user structures correctly.
|
---|
76 |
|
---|
77 | Read-only operation.
|
---|
78 |
|
---|
79 | This function uses the stack for recursion and is not recommended for
|
---|
80 | "production use".
|
---|
81 |
|
---|
82 | @param[in] Tree The tree to validate.
|
---|
83 | **/
|
---|
84 | VOID
|
---|
85 | RedBlackTreeValidate (
|
---|
86 | IN CONST RED_BLACK_TREE *Tree
|
---|
87 | );
|
---|
88 |
|
---|
89 |
|
---|
90 | /**
|
---|
91 | Allocate and initialize the RED_BLACK_TREE structure.
|
---|
92 |
|
---|
93 | Allocation occurs via MemoryAllocationLib's AllocatePool() function.
|
---|
94 |
|
---|
95 | @param[in] UserStructCompare This caller-provided function will be used to
|
---|
96 | order two user structures linked into the
|
---|
97 | tree, during the insertion procedure.
|
---|
98 |
|
---|
99 | @param[in] KeyCompare This caller-provided function will be used to
|
---|
100 | order the standalone search key against user
|
---|
101 | structures linked into the tree, during the
|
---|
102 | lookup procedure.
|
---|
103 |
|
---|
104 | @retval NULL If allocation failed.
|
---|
105 |
|
---|
106 | @return Pointer to the allocated, initialized RED_BLACK_TREE structure,
|
---|
107 | otherwise.
|
---|
108 | **/
|
---|
109 | RED_BLACK_TREE *
|
---|
110 | EFIAPI
|
---|
111 | OrderedCollectionInit (
|
---|
112 | IN RED_BLACK_TREE_USER_COMPARE UserStructCompare,
|
---|
113 | IN RED_BLACK_TREE_KEY_COMPARE KeyCompare
|
---|
114 | )
|
---|
115 | {
|
---|
116 | RED_BLACK_TREE *Tree;
|
---|
117 |
|
---|
118 | Tree = AllocatePool (sizeof *Tree);
|
---|
119 | if (Tree == NULL) {
|
---|
120 | return NULL;
|
---|
121 | }
|
---|
122 |
|
---|
123 | Tree->Root = NULL;
|
---|
124 | Tree->UserStructCompare = UserStructCompare;
|
---|
125 | Tree->KeyCompare = KeyCompare;
|
---|
126 |
|
---|
127 | if (FeaturePcdGet (PcdValidateOrderedCollection)) {
|
---|
128 | RedBlackTreeValidate (Tree);
|
---|
129 | }
|
---|
130 | return Tree;
|
---|
131 | }
|
---|
132 |
|
---|
133 |
|
---|
134 | /**
|
---|
135 | Check whether the tree is empty (has no nodes).
|
---|
136 |
|
---|
137 | Read-only operation.
|
---|
138 |
|
---|
139 | @param[in] Tree The tree to check for emptiness.
|
---|
140 |
|
---|
141 | @retval TRUE The tree is empty.
|
---|
142 |
|
---|
143 | @retval FALSE The tree is not empty.
|
---|
144 | **/
|
---|
145 | BOOLEAN
|
---|
146 | EFIAPI
|
---|
147 | OrderedCollectionIsEmpty (
|
---|
148 | IN CONST RED_BLACK_TREE *Tree
|
---|
149 | )
|
---|
150 | {
|
---|
151 | return (BOOLEAN)(Tree->Root == NULL);
|
---|
152 | }
|
---|
153 |
|
---|
154 |
|
---|
155 | /**
|
---|
156 | Uninitialize and release an empty RED_BLACK_TREE structure.
|
---|
157 |
|
---|
158 | Read-write operation.
|
---|
159 |
|
---|
160 | Release occurs via MemoryAllocationLib's FreePool() function.
|
---|
161 |
|
---|
162 | It is the caller's responsibility to delete all nodes from the tree before
|
---|
163 | calling this function.
|
---|
164 |
|
---|
165 | @param[in] Tree The empty tree to uninitialize and release.
|
---|
166 | **/
|
---|
167 | VOID
|
---|
168 | EFIAPI
|
---|
169 | OrderedCollectionUninit (
|
---|
170 | IN RED_BLACK_TREE *Tree
|
---|
171 | )
|
---|
172 | {
|
---|
173 | ASSERT (OrderedCollectionIsEmpty (Tree));
|
---|
174 | FreePool (Tree);
|
---|
175 | }
|
---|
176 |
|
---|
177 |
|
---|
178 | /**
|
---|
179 | Look up the tree node that links the user structure that matches the
|
---|
180 | specified standalone key.
|
---|
181 |
|
---|
182 | Read-only operation.
|
---|
183 |
|
---|
184 | @param[in] Tree The tree to search for StandaloneKey.
|
---|
185 |
|
---|
186 | @param[in] StandaloneKey The key to locate among the user structures linked
|
---|
187 | into Tree. StandaloneKey will be passed to
|
---|
188 | Tree->KeyCompare().
|
---|
189 |
|
---|
190 | @retval NULL StandaloneKey could not be found.
|
---|
191 |
|
---|
192 | @return The tree node that links to the user structure matching
|
---|
193 | StandaloneKey, otherwise.
|
---|
194 | **/
|
---|
195 | RED_BLACK_TREE_NODE *
|
---|
196 | EFIAPI
|
---|
197 | OrderedCollectionFind (
|
---|
198 | IN CONST RED_BLACK_TREE *Tree,
|
---|
199 | IN CONST VOID *StandaloneKey
|
---|
200 | )
|
---|
201 | {
|
---|
202 | RED_BLACK_TREE_NODE *Node;
|
---|
203 |
|
---|
204 | Node = Tree->Root;
|
---|
205 | while (Node != NULL) {
|
---|
206 | INTN Result;
|
---|
207 |
|
---|
208 | Result = Tree->KeyCompare (StandaloneKey, Node->UserStruct);
|
---|
209 | if (Result == 0) {
|
---|
210 | break;
|
---|
211 | }
|
---|
212 | Node = (Result < 0) ? Node->Left : Node->Right;
|
---|
213 | }
|
---|
214 | return Node;
|
---|
215 | }
|
---|
216 |
|
---|
217 |
|
---|
218 | /**
|
---|
219 | Find the tree node of the minimum user structure stored in the tree.
|
---|
220 |
|
---|
221 | Read-only operation.
|
---|
222 |
|
---|
223 | @param[in] Tree The tree to return the minimum node of. The user structure
|
---|
224 | linked by the minimum node compares less than all other user
|
---|
225 | structures in the tree.
|
---|
226 |
|
---|
227 | @retval NULL If Tree is empty.
|
---|
228 |
|
---|
229 | @return The tree node that links the minimum user structure, otherwise.
|
---|
230 | **/
|
---|
231 | RED_BLACK_TREE_NODE *
|
---|
232 | EFIAPI
|
---|
233 | OrderedCollectionMin (
|
---|
234 | IN CONST RED_BLACK_TREE *Tree
|
---|
235 | )
|
---|
236 | {
|
---|
237 | RED_BLACK_TREE_NODE *Node;
|
---|
238 |
|
---|
239 | Node = Tree->Root;
|
---|
240 | if (Node == NULL) {
|
---|
241 | return NULL;
|
---|
242 | }
|
---|
243 | while (Node->Left != NULL) {
|
---|
244 | Node = Node->Left;
|
---|
245 | }
|
---|
246 | return Node;
|
---|
247 | }
|
---|
248 |
|
---|
249 |
|
---|
250 | /**
|
---|
251 | Find the tree node of the maximum user structure stored in the tree.
|
---|
252 |
|
---|
253 | Read-only operation.
|
---|
254 |
|
---|
255 | @param[in] Tree The tree to return the maximum node of. The user structure
|
---|
256 | linked by the maximum node compares greater than all other
|
---|
257 | user structures in the tree.
|
---|
258 |
|
---|
259 | @retval NULL If Tree is empty.
|
---|
260 |
|
---|
261 | @return The tree node that links the maximum user structure, otherwise.
|
---|
262 | **/
|
---|
263 | RED_BLACK_TREE_NODE *
|
---|
264 | EFIAPI
|
---|
265 | OrderedCollectionMax (
|
---|
266 | IN CONST RED_BLACK_TREE *Tree
|
---|
267 | )
|
---|
268 | {
|
---|
269 | RED_BLACK_TREE_NODE *Node;
|
---|
270 |
|
---|
271 | Node = Tree->Root;
|
---|
272 | if (Node == NULL) {
|
---|
273 | return NULL;
|
---|
274 | }
|
---|
275 | while (Node->Right != NULL) {
|
---|
276 | Node = Node->Right;
|
---|
277 | }
|
---|
278 | return Node;
|
---|
279 | }
|
---|
280 |
|
---|
281 |
|
---|
282 | /**
|
---|
283 | Get the tree node of the least user structure that is greater than the one
|
---|
284 | linked by Node.
|
---|
285 |
|
---|
286 | Read-only operation.
|
---|
287 |
|
---|
288 | @param[in] Node The node to get the successor node of.
|
---|
289 |
|
---|
290 | @retval NULL If Node is NULL, or Node is the maximum node of its containing
|
---|
291 | tree (ie. Node has no successor node).
|
---|
292 |
|
---|
293 | @return The tree node linking the least user structure that is greater
|
---|
294 | than the one linked by Node, otherwise.
|
---|
295 | **/
|
---|
296 | RED_BLACK_TREE_NODE *
|
---|
297 | EFIAPI
|
---|
298 | OrderedCollectionNext (
|
---|
299 | IN CONST RED_BLACK_TREE_NODE *Node
|
---|
300 | )
|
---|
301 | {
|
---|
302 | RED_BLACK_TREE_NODE *Walk;
|
---|
303 | CONST RED_BLACK_TREE_NODE *Child;
|
---|
304 |
|
---|
305 | if (Node == NULL) {
|
---|
306 | return NULL;
|
---|
307 | }
|
---|
308 |
|
---|
309 | //
|
---|
310 | // If Node has a right subtree, then the successor is the minimum node of
|
---|
311 | // that subtree.
|
---|
312 | //
|
---|
313 | Walk = Node->Right;
|
---|
314 | if (Walk != NULL) {
|
---|
315 | while (Walk->Left != NULL) {
|
---|
316 | Walk = Walk->Left;
|
---|
317 | }
|
---|
318 | return Walk;
|
---|
319 | }
|
---|
320 |
|
---|
321 | //
|
---|
322 | // Otherwise we have to ascend as long as we're our parent's right child (ie.
|
---|
323 | // ascending to the left).
|
---|
324 | //
|
---|
325 | Child = Node;
|
---|
326 | Walk = Child->Parent;
|
---|
327 | while (Walk != NULL && Child == Walk->Right) {
|
---|
328 | Child = Walk;
|
---|
329 | Walk = Child->Parent;
|
---|
330 | }
|
---|
331 | return Walk;
|
---|
332 | }
|
---|
333 |
|
---|
334 |
|
---|
335 | /**
|
---|
336 | Get the tree node of the greatest user structure that is less than the one
|
---|
337 | linked by Node.
|
---|
338 |
|
---|
339 | Read-only operation.
|
---|
340 |
|
---|
341 | @param[in] Node The node to get the predecessor node of.
|
---|
342 |
|
---|
343 | @retval NULL If Node is NULL, or Node is the minimum node of its containing
|
---|
344 | tree (ie. Node has no predecessor node).
|
---|
345 |
|
---|
346 | @return The tree node linking the greatest user structure that is less
|
---|
347 | than the one linked by Node, otherwise.
|
---|
348 | **/
|
---|
349 | RED_BLACK_TREE_NODE *
|
---|
350 | EFIAPI
|
---|
351 | OrderedCollectionPrev (
|
---|
352 | IN CONST RED_BLACK_TREE_NODE *Node
|
---|
353 | )
|
---|
354 | {
|
---|
355 | RED_BLACK_TREE_NODE *Walk;
|
---|
356 | CONST RED_BLACK_TREE_NODE *Child;
|
---|
357 |
|
---|
358 | if (Node == NULL) {
|
---|
359 | return NULL;
|
---|
360 | }
|
---|
361 |
|
---|
362 | //
|
---|
363 | // If Node has a left subtree, then the predecessor is the maximum node of
|
---|
364 | // that subtree.
|
---|
365 | //
|
---|
366 | Walk = Node->Left;
|
---|
367 | if (Walk != NULL) {
|
---|
368 | while (Walk->Right != NULL) {
|
---|
369 | Walk = Walk->Right;
|
---|
370 | }
|
---|
371 | return Walk;
|
---|
372 | }
|
---|
373 |
|
---|
374 | //
|
---|
375 | // Otherwise we have to ascend as long as we're our parent's left child (ie.
|
---|
376 | // ascending to the right).
|
---|
377 | //
|
---|
378 | Child = Node;
|
---|
379 | Walk = Child->Parent;
|
---|
380 | while (Walk != NULL && Child == Walk->Left) {
|
---|
381 | Child = Walk;
|
---|
382 | Walk = Child->Parent;
|
---|
383 | }
|
---|
384 | return Walk;
|
---|
385 | }
|
---|
386 |
|
---|
387 |
|
---|
388 | /**
|
---|
389 | Rotate tree nodes around Pivot to the right.
|
---|
390 |
|
---|
391 | Parent Parent
|
---|
392 | | |
|
---|
393 | Pivot LeftChild
|
---|
394 | / . . \_
|
---|
395 | LeftChild Node1 ---> Node2 Pivot
|
---|
396 | . \ / .
|
---|
397 | Node2 LeftRightChild LeftRightChild Node1
|
---|
398 |
|
---|
399 | The ordering Node2 < LeftChild < LeftRightChild < Pivot < Node1 is kept
|
---|
400 | intact. Parent (if any) is either at the left extreme or the right extreme of
|
---|
401 | this ordering, and that relation is also kept intact.
|
---|
402 |
|
---|
403 | Edges marked with a dot (".") don't change during rotation.
|
---|
404 |
|
---|
405 | Internal read-write operation.
|
---|
406 |
|
---|
407 | @param[in,out] Pivot The tree node to rotate other nodes right around. It
|
---|
408 | is the caller's responsibility to ensure that
|
---|
409 | Pivot->Left is not NULL.
|
---|
410 |
|
---|
411 | @param[out] NewRoot If Pivot has a parent node on input, then the
|
---|
412 | function updates Pivot's original parent on output
|
---|
413 | according to the rotation, and NewRoot is not
|
---|
414 | accessed.
|
---|
415 |
|
---|
416 | If Pivot has no parent node on input (ie. Pivot is
|
---|
417 | the root of the tree), then the function stores the
|
---|
418 | new root node of the tree in NewRoot.
|
---|
419 | **/
|
---|
420 | VOID
|
---|
421 | RedBlackTreeRotateRight (
|
---|
422 | IN OUT RED_BLACK_TREE_NODE *Pivot,
|
---|
423 | OUT RED_BLACK_TREE_NODE **NewRoot
|
---|
424 | )
|
---|
425 | {
|
---|
426 | RED_BLACK_TREE_NODE *Parent;
|
---|
427 | RED_BLACK_TREE_NODE *LeftChild;
|
---|
428 | RED_BLACK_TREE_NODE *LeftRightChild;
|
---|
429 |
|
---|
430 | Parent = Pivot->Parent;
|
---|
431 | LeftChild = Pivot->Left;
|
---|
432 | LeftRightChild = LeftChild->Right;
|
---|
433 |
|
---|
434 | Pivot->Left = LeftRightChild;
|
---|
435 | if (LeftRightChild != NULL) {
|
---|
436 | LeftRightChild->Parent = Pivot;
|
---|
437 | }
|
---|
438 | LeftChild->Parent = Parent;
|
---|
439 | if (Parent == NULL) {
|
---|
440 | *NewRoot = LeftChild;
|
---|
441 | } else {
|
---|
442 | if (Pivot == Parent->Left) {
|
---|
443 | Parent->Left = LeftChild;
|
---|
444 | } else {
|
---|
445 | Parent->Right = LeftChild;
|
---|
446 | }
|
---|
447 | }
|
---|
448 | LeftChild->Right = Pivot;
|
---|
449 | Pivot->Parent = LeftChild;
|
---|
450 | }
|
---|
451 |
|
---|
452 |
|
---|
453 | /**
|
---|
454 | Rotate tree nodes around Pivot to the left.
|
---|
455 |
|
---|
456 | Parent Parent
|
---|
457 | | |
|
---|
458 | Pivot RightChild
|
---|
459 | . \ / .
|
---|
460 | Node1 RightChild ---> Pivot Node2
|
---|
461 | /. . \_
|
---|
462 | RightLeftChild Node2 Node1 RightLeftChild
|
---|
463 |
|
---|
464 | The ordering Node1 < Pivot < RightLeftChild < RightChild < Node2 is kept
|
---|
465 | intact. Parent (if any) is either at the left extreme or the right extreme of
|
---|
466 | this ordering, and that relation is also kept intact.
|
---|
467 |
|
---|
468 | Edges marked with a dot (".") don't change during rotation.
|
---|
469 |
|
---|
470 | Internal read-write operation.
|
---|
471 |
|
---|
472 | @param[in,out] Pivot The tree node to rotate other nodes left around. It
|
---|
473 | is the caller's responsibility to ensure that
|
---|
474 | Pivot->Right is not NULL.
|
---|
475 |
|
---|
476 | @param[out] NewRoot If Pivot has a parent node on input, then the
|
---|
477 | function updates Pivot's original parent on output
|
---|
478 | according to the rotation, and NewRoot is not
|
---|
479 | accessed.
|
---|
480 |
|
---|
481 | If Pivot has no parent node on input (ie. Pivot is
|
---|
482 | the root of the tree), then the function stores the
|
---|
483 | new root node of the tree in NewRoot.
|
---|
484 | **/
|
---|
485 | VOID
|
---|
486 | RedBlackTreeRotateLeft (
|
---|
487 | IN OUT RED_BLACK_TREE_NODE *Pivot,
|
---|
488 | OUT RED_BLACK_TREE_NODE **NewRoot
|
---|
489 | )
|
---|
490 | {
|
---|
491 | RED_BLACK_TREE_NODE *Parent;
|
---|
492 | RED_BLACK_TREE_NODE *RightChild;
|
---|
493 | RED_BLACK_TREE_NODE *RightLeftChild;
|
---|
494 |
|
---|
495 | Parent = Pivot->Parent;
|
---|
496 | RightChild = Pivot->Right;
|
---|
497 | RightLeftChild = RightChild->Left;
|
---|
498 |
|
---|
499 | Pivot->Right = RightLeftChild;
|
---|
500 | if (RightLeftChild != NULL) {
|
---|
501 | RightLeftChild->Parent = Pivot;
|
---|
502 | }
|
---|
503 | RightChild->Parent = Parent;
|
---|
504 | if (Parent == NULL) {
|
---|
505 | *NewRoot = RightChild;
|
---|
506 | } else {
|
---|
507 | if (Pivot == Parent->Left) {
|
---|
508 | Parent->Left = RightChild;
|
---|
509 | } else {
|
---|
510 | Parent->Right = RightChild;
|
---|
511 | }
|
---|
512 | }
|
---|
513 | RightChild->Left = Pivot;
|
---|
514 | Pivot->Parent = RightChild;
|
---|
515 | }
|
---|
516 |
|
---|
517 |
|
---|
518 | /**
|
---|
519 | Insert (link) a user structure into the tree.
|
---|
520 |
|
---|
521 | Read-write operation.
|
---|
522 |
|
---|
523 | This function allocates the new tree node with MemoryAllocationLib's
|
---|
524 | AllocatePool() function.
|
---|
525 |
|
---|
526 | @param[in,out] Tree The tree to insert UserStruct into.
|
---|
527 |
|
---|
528 | @param[out] Node The meaning of this optional, output-only
|
---|
529 | parameter depends on the return value of the
|
---|
530 | function.
|
---|
531 |
|
---|
532 | When insertion is successful (RETURN_SUCCESS),
|
---|
533 | Node is set on output to the new tree node that
|
---|
534 | now links UserStruct.
|
---|
535 |
|
---|
536 | When insertion fails due to lack of memory
|
---|
537 | (RETURN_OUT_OF_RESOURCES), Node is not changed.
|
---|
538 |
|
---|
539 | When insertion fails due to key collision (ie.
|
---|
540 | another user structure is already in the tree that
|
---|
541 | compares equal to UserStruct), with return value
|
---|
542 | RETURN_ALREADY_STARTED, then Node is set on output
|
---|
543 | to the node that links the colliding user
|
---|
544 | structure. This enables "find-or-insert" in one
|
---|
545 | function call, or helps with later removal of the
|
---|
546 | colliding element.
|
---|
547 |
|
---|
548 | @param[in] UserStruct The user structure to link into the tree.
|
---|
549 | UserStruct is ordered against in-tree user
|
---|
550 | structures with the Tree->UserStructCompare()
|
---|
551 | function.
|
---|
552 |
|
---|
553 | @retval RETURN_SUCCESS Insertion successful. A new tree node has
|
---|
554 | been allocated, linking UserStruct. The new
|
---|
555 | tree node is reported back in Node (if the
|
---|
556 | caller requested it).
|
---|
557 |
|
---|
558 | Existing RED_BLACK_TREE_NODE pointers into
|
---|
559 | Tree remain valid. For example, on-going
|
---|
560 | iterations in the caller can continue with
|
---|
561 | OrderedCollectionNext() /
|
---|
562 | OrderedCollectionPrev(), and they will
|
---|
563 | return the new node at some point if user
|
---|
564 | structure order dictates it.
|
---|
565 |
|
---|
566 | @retval RETURN_OUT_OF_RESOURCES AllocatePool() failed to allocate memory for
|
---|
567 | the new tree node. The tree has not been
|
---|
568 | changed. Existing RED_BLACK_TREE_NODE
|
---|
569 | pointers into Tree remain valid.
|
---|
570 |
|
---|
571 | @retval RETURN_ALREADY_STARTED A user structure has been found in the tree
|
---|
572 | that compares equal to UserStruct. The node
|
---|
573 | linking the colliding user structure is
|
---|
574 | reported back in Node (if the caller
|
---|
575 | requested it). The tree has not been
|
---|
576 | changed. Existing RED_BLACK_TREE_NODE
|
---|
577 | pointers into Tree remain valid.
|
---|
578 | **/
|
---|
579 | RETURN_STATUS
|
---|
580 | EFIAPI
|
---|
581 | OrderedCollectionInsert (
|
---|
582 | IN OUT RED_BLACK_TREE *Tree,
|
---|
583 | OUT RED_BLACK_TREE_NODE **Node OPTIONAL,
|
---|
584 | IN VOID *UserStruct
|
---|
585 | )
|
---|
586 | {
|
---|
587 | RED_BLACK_TREE_NODE *Tmp;
|
---|
588 | RED_BLACK_TREE_NODE *Parent;
|
---|
589 | INTN Result;
|
---|
590 | RETURN_STATUS Status;
|
---|
591 | RED_BLACK_TREE_NODE *NewRoot;
|
---|
592 |
|
---|
593 | Tmp = Tree->Root;
|
---|
594 | Parent = NULL;
|
---|
595 | Result = 0;
|
---|
596 |
|
---|
597 | //
|
---|
598 | // First look for a collision, saving the last examined node for the case
|
---|
599 | // when there's no collision.
|
---|
600 | //
|
---|
601 | while (Tmp != NULL) {
|
---|
602 | Result = Tree->UserStructCompare (UserStruct, Tmp->UserStruct);
|
---|
603 | if (Result == 0) {
|
---|
604 | break;
|
---|
605 | }
|
---|
606 | Parent = Tmp;
|
---|
607 | Tmp = (Result < 0) ? Tmp->Left : Tmp->Right;
|
---|
608 | }
|
---|
609 |
|
---|
610 | if (Tmp != NULL) {
|
---|
611 | if (Node != NULL) {
|
---|
612 | *Node = Tmp;
|
---|
613 | }
|
---|
614 | Status = RETURN_ALREADY_STARTED;
|
---|
615 | goto Done;
|
---|
616 | }
|
---|
617 |
|
---|
618 | //
|
---|
619 | // no collision, allocate a new node
|
---|
620 | //
|
---|
621 | Tmp = AllocatePool (sizeof *Tmp);
|
---|
622 | if (Tmp == NULL) {
|
---|
623 | Status = RETURN_OUT_OF_RESOURCES;
|
---|
624 | goto Done;
|
---|
625 | }
|
---|
626 | if (Node != NULL) {
|
---|
627 | *Node = Tmp;
|
---|
628 | }
|
---|
629 |
|
---|
630 | //
|
---|
631 | // reference the user structure from the node
|
---|
632 | //
|
---|
633 | Tmp->UserStruct = UserStruct;
|
---|
634 |
|
---|
635 | //
|
---|
636 | // Link the node as a child to the correct side of the parent.
|
---|
637 | // If there's no parent, the new node is the root node in the tree.
|
---|
638 | //
|
---|
639 | Tmp->Parent = Parent;
|
---|
640 | Tmp->Left = NULL;
|
---|
641 | Tmp->Right = NULL;
|
---|
642 | if (Parent == NULL) {
|
---|
643 | Tree->Root = Tmp;
|
---|
644 | Tmp->Color = RedBlackTreeBlack;
|
---|
645 | Status = RETURN_SUCCESS;
|
---|
646 | goto Done;
|
---|
647 | }
|
---|
648 | if (Result < 0) {
|
---|
649 | Parent->Left = Tmp;
|
---|
650 | } else {
|
---|
651 | Parent->Right = Tmp;
|
---|
652 | }
|
---|
653 | Tmp->Color = RedBlackTreeRed;
|
---|
654 |
|
---|
655 | //
|
---|
656 | // Red-black tree properties:
|
---|
657 | //
|
---|
658 | // #1 Each node is either red or black (RED_BLACK_TREE_NODE.Color).
|
---|
659 | //
|
---|
660 | // #2 Each leaf (ie. a pseudo-node pointed-to by a NULL valued
|
---|
661 | // RED_BLACK_TREE_NODE.Left or RED_BLACK_TREE_NODE.Right field) is black.
|
---|
662 | //
|
---|
663 | // #3 Each red node has two black children.
|
---|
664 | //
|
---|
665 | // #4 For any node N, and for any leaves L1 and L2 reachable from N, the
|
---|
666 | // paths N..L1 and N..L2 contain the same number of black nodes.
|
---|
667 | //
|
---|
668 | // #5 The root node is black.
|
---|
669 | //
|
---|
670 | // By replacing a leaf with a red node above, only property #3 may have been
|
---|
671 | // broken. (Note that this is the only edge across which property #3 might
|
---|
672 | // not hold in the entire tree.) Restore property #3.
|
---|
673 | //
|
---|
674 |
|
---|
675 | NewRoot = Tree->Root;
|
---|
676 | while (Tmp != NewRoot && Parent->Color == RedBlackTreeRed) {
|
---|
677 | RED_BLACK_TREE_NODE *GrandParent;
|
---|
678 | RED_BLACK_TREE_NODE *Uncle;
|
---|
679 |
|
---|
680 | //
|
---|
681 | // Tmp is not the root node. Tmp is red. Tmp's parent is red. (Breaking
|
---|
682 | // property #3.)
|
---|
683 | //
|
---|
684 | // Due to property #5, Tmp's parent cannot be the root node, hence Tmp's
|
---|
685 | // grandparent exists.
|
---|
686 | //
|
---|
687 | // Tmp's grandparent is black, because property #3 is only broken between
|
---|
688 | // Tmp and Tmp's parent.
|
---|
689 | //
|
---|
690 | GrandParent = Parent->Parent;
|
---|
691 |
|
---|
692 | if (Parent == GrandParent->Left) {
|
---|
693 | Uncle = GrandParent->Right;
|
---|
694 | if (Uncle != NULL && Uncle->Color == RedBlackTreeRed) {
|
---|
695 | //
|
---|
696 | // GrandParent (black)
|
---|
697 | // / \_
|
---|
698 | // Parent (red) Uncle (red)
|
---|
699 | // |
|
---|
700 | // Tmp (red)
|
---|
701 | //
|
---|
702 |
|
---|
703 | Parent->Color = RedBlackTreeBlack;
|
---|
704 | Uncle->Color = RedBlackTreeBlack;
|
---|
705 | GrandParent->Color = RedBlackTreeRed;
|
---|
706 |
|
---|
707 | //
|
---|
708 | // GrandParent (red)
|
---|
709 | // / \_
|
---|
710 | // Parent (black) Uncle (black)
|
---|
711 | // |
|
---|
712 | // Tmp (red)
|
---|
713 | //
|
---|
714 | // We restored property #3 between Tmp and Tmp's parent, without
|
---|
715 | // breaking property #4. However, we may have broken property #3
|
---|
716 | // between Tmp's grandparent and Tmp's great-grandparent (if any), so
|
---|
717 | // repeat the loop for Tmp's grandparent.
|
---|
718 | //
|
---|
719 | // If Tmp's grandparent has no parent, then the loop will terminate,
|
---|
720 | // and we will have broken property #5, by coloring the root red. We'll
|
---|
721 | // restore property #5 after the loop, without breaking any others.
|
---|
722 | //
|
---|
723 | Tmp = GrandParent;
|
---|
724 | Parent = Tmp->Parent;
|
---|
725 | } else {
|
---|
726 | //
|
---|
727 | // Tmp's uncle is black (satisfied by the case too when Tmp's uncle is
|
---|
728 | // NULL, see property #2).
|
---|
729 | //
|
---|
730 |
|
---|
731 | if (Tmp == Parent->Right) {
|
---|
732 | //
|
---|
733 | // GrandParent (black): D
|
---|
734 | // / \_
|
---|
735 | // Parent (red): A Uncle (black): E
|
---|
736 | // \_
|
---|
737 | // Tmp (red): B
|
---|
738 | // \_
|
---|
739 | // black: C
|
---|
740 | //
|
---|
741 | // Rotate left, pivoting on node A. This keeps the breakage of
|
---|
742 | // property #3 in the same spot, and keeps other properties intact
|
---|
743 | // (because both Tmp and its parent are red).
|
---|
744 | //
|
---|
745 | Tmp = Parent;
|
---|
746 | RedBlackTreeRotateLeft (Tmp, &NewRoot);
|
---|
747 | Parent = Tmp->Parent;
|
---|
748 |
|
---|
749 | //
|
---|
750 | // With the rotation we reached the same configuration as if Tmp had
|
---|
751 | // been a left child to begin with.
|
---|
752 | //
|
---|
753 | // GrandParent (black): D
|
---|
754 | // / \_
|
---|
755 | // Parent (red): B Uncle (black): E
|
---|
756 | // / \_
|
---|
757 | // Tmp (red): A black: C
|
---|
758 | //
|
---|
759 | ASSERT (GrandParent == Parent->Parent);
|
---|
760 | }
|
---|
761 |
|
---|
762 | Parent->Color = RedBlackTreeBlack;
|
---|
763 | GrandParent->Color = RedBlackTreeRed;
|
---|
764 |
|
---|
765 | //
|
---|
766 | // Property #3 is now restored, but we've broken property #4. Namely,
|
---|
767 | // paths going through node E now see a decrease in black count, while
|
---|
768 | // paths going through node B don't.
|
---|
769 | //
|
---|
770 | // GrandParent (red): D
|
---|
771 | // / \_
|
---|
772 | // Parent (black): B Uncle (black): E
|
---|
773 | // / \_
|
---|
774 | // Tmp (red): A black: C
|
---|
775 | //
|
---|
776 |
|
---|
777 | RedBlackTreeRotateRight (GrandParent, &NewRoot);
|
---|
778 |
|
---|
779 | //
|
---|
780 | // Property #4 has been restored for node E, and preserved for others.
|
---|
781 | //
|
---|
782 | // Parent (black): B
|
---|
783 | // / \_
|
---|
784 | // Tmp (red): A [GrandParent] (red): D
|
---|
785 | // / \_
|
---|
786 | // black: C [Uncle] (black): E
|
---|
787 | //
|
---|
788 | // This configuration terminates the loop because Tmp's parent is now
|
---|
789 | // black.
|
---|
790 | //
|
---|
791 | }
|
---|
792 | } else {
|
---|
793 | //
|
---|
794 | // Symmetrical to the other branch.
|
---|
795 | //
|
---|
796 | Uncle = GrandParent->Left;
|
---|
797 | if (Uncle != NULL && Uncle->Color == RedBlackTreeRed) {
|
---|
798 | Parent->Color = RedBlackTreeBlack;
|
---|
799 | Uncle->Color = RedBlackTreeBlack;
|
---|
800 | GrandParent->Color = RedBlackTreeRed;
|
---|
801 | Tmp = GrandParent;
|
---|
802 | Parent = Tmp->Parent;
|
---|
803 | } else {
|
---|
804 | if (Tmp == Parent->Left) {
|
---|
805 | Tmp = Parent;
|
---|
806 | RedBlackTreeRotateRight (Tmp, &NewRoot);
|
---|
807 | Parent = Tmp->Parent;
|
---|
808 | ASSERT (GrandParent == Parent->Parent);
|
---|
809 | }
|
---|
810 | Parent->Color = RedBlackTreeBlack;
|
---|
811 | GrandParent->Color = RedBlackTreeRed;
|
---|
812 | RedBlackTreeRotateLeft (GrandParent, &NewRoot);
|
---|
813 | }
|
---|
814 | }
|
---|
815 | }
|
---|
816 |
|
---|
817 | NewRoot->Color = RedBlackTreeBlack;
|
---|
818 | Tree->Root = NewRoot;
|
---|
819 | Status = RETURN_SUCCESS;
|
---|
820 |
|
---|
821 | Done:
|
---|
822 | if (FeaturePcdGet (PcdValidateOrderedCollection)) {
|
---|
823 | RedBlackTreeValidate (Tree);
|
---|
824 | }
|
---|
825 | return Status;
|
---|
826 | }
|
---|
827 |
|
---|
828 |
|
---|
829 | /**
|
---|
830 | Check if a node is black, allowing for leaf nodes (see property #2).
|
---|
831 |
|
---|
832 | This is a convenience shorthand.
|
---|
833 |
|
---|
834 | param[in] Node The node to check. Node may be NULL, corresponding to a leaf.
|
---|
835 |
|
---|
836 | @return If Node is NULL or colored black.
|
---|
837 | **/
|
---|
838 | BOOLEAN
|
---|
839 | NodeIsNullOrBlack (
|
---|
840 | IN CONST RED_BLACK_TREE_NODE *Node
|
---|
841 | )
|
---|
842 | {
|
---|
843 | return (BOOLEAN)(Node == NULL || Node->Color == RedBlackTreeBlack);
|
---|
844 | }
|
---|
845 |
|
---|
846 |
|
---|
847 | /**
|
---|
848 | Delete a node from the tree, unlinking the associated user structure.
|
---|
849 |
|
---|
850 | Read-write operation.
|
---|
851 |
|
---|
852 | @param[in,out] Tree The tree to delete Node from.
|
---|
853 |
|
---|
854 | @param[in] Node The tree node to delete from Tree. The caller is
|
---|
855 | responsible for ensuring that Node belongs to
|
---|
856 | Tree, and that Node is non-NULL and valid. Node is
|
---|
857 | typically an earlier return value, or output
|
---|
858 | parameter, of:
|
---|
859 |
|
---|
860 | - OrderedCollectionFind(), for deleting a node by
|
---|
861 | user structure key,
|
---|
862 |
|
---|
863 | - OrderedCollectionMin() / OrderedCollectionMax(),
|
---|
864 | for deleting the minimum / maximum node,
|
---|
865 |
|
---|
866 | - OrderedCollectionNext() /
|
---|
867 | OrderedCollectionPrev(), for deleting a node
|
---|
868 | found during an iteration,
|
---|
869 |
|
---|
870 | - OrderedCollectionInsert() with return value
|
---|
871 | RETURN_ALREADY_STARTED, for deleting a node
|
---|
872 | whose linked user structure caused collision
|
---|
873 | during insertion.
|
---|
874 |
|
---|
875 | Given a non-empty Tree, Tree->Root is also a valid
|
---|
876 | Node argument (typically used for simplicity in
|
---|
877 | loops that empty the tree completely).
|
---|
878 |
|
---|
879 | Node is released with MemoryAllocationLib's
|
---|
880 | FreePool() function.
|
---|
881 |
|
---|
882 | Existing RED_BLACK_TREE_NODE pointers (ie.
|
---|
883 | iterators) *different* from Node remain valid. For
|
---|
884 | example:
|
---|
885 |
|
---|
886 | - OrderedCollectionNext() /
|
---|
887 | OrderedCollectionPrev() iterations in the caller
|
---|
888 | can be continued from Node, if
|
---|
889 | OrderedCollectionNext() or
|
---|
890 | OrderedCollectionPrev() is called on Node
|
---|
891 | *before* OrderedCollectionDelete() is. That is,
|
---|
892 | fetch the successor / predecessor node first,
|
---|
893 | then delete Node.
|
---|
894 |
|
---|
895 | - On-going iterations in the caller that would
|
---|
896 | have otherwise returned Node at some point, as
|
---|
897 | dictated by user structure order, will correctly
|
---|
898 | reflect the absence of Node after
|
---|
899 | OrderedCollectionDelete() is called
|
---|
900 | mid-iteration.
|
---|
901 |
|
---|
902 | @param[out] UserStruct If the caller provides this optional output-only
|
---|
903 | parameter, then on output it is set to the user
|
---|
904 | structure originally linked by Node (which is now
|
---|
905 | freed).
|
---|
906 |
|
---|
907 | This is a convenience that may save the caller a
|
---|
908 | OrderedCollectionUserStruct() invocation before
|
---|
909 | calling OrderedCollectionDelete(), in order to
|
---|
910 | retrieve the user structure being unlinked.
|
---|
911 | **/
|
---|
912 | VOID
|
---|
913 | EFIAPI
|
---|
914 | OrderedCollectionDelete (
|
---|
915 | IN OUT RED_BLACK_TREE *Tree,
|
---|
916 | IN RED_BLACK_TREE_NODE *Node,
|
---|
917 | OUT VOID **UserStruct OPTIONAL
|
---|
918 | )
|
---|
919 | {
|
---|
920 | RED_BLACK_TREE_NODE *NewRoot;
|
---|
921 | RED_BLACK_TREE_NODE *OrigLeftChild;
|
---|
922 | RED_BLACK_TREE_NODE *OrigRightChild;
|
---|
923 | RED_BLACK_TREE_NODE *OrigParent;
|
---|
924 | RED_BLACK_TREE_NODE *Child;
|
---|
925 | RED_BLACK_TREE_NODE *Parent;
|
---|
926 | RED_BLACK_TREE_COLOR ColorOfUnlinked;
|
---|
927 |
|
---|
928 | NewRoot = Tree->Root;
|
---|
929 | OrigLeftChild = Node->Left,
|
---|
930 | OrigRightChild = Node->Right,
|
---|
931 | OrigParent = Node->Parent;
|
---|
932 |
|
---|
933 | if (UserStruct != NULL) {
|
---|
934 | *UserStruct = Node->UserStruct;
|
---|
935 | }
|
---|
936 |
|
---|
937 | //
|
---|
938 | // After this block, no matter which branch we take:
|
---|
939 | // - Child will point to the unique (or NULL) original child of the node that
|
---|
940 | // we will have unlinked,
|
---|
941 | // - Parent will point to the *position* of the original parent of the node
|
---|
942 | // that we will have unlinked.
|
---|
943 | //
|
---|
944 | if (OrigLeftChild == NULL || OrigRightChild == NULL) {
|
---|
945 | //
|
---|
946 | // Node has at most one child. We can connect that child (if any) with
|
---|
947 | // Node's parent (if any), unlinking Node. This will preserve ordering
|
---|
948 | // because the subtree rooted in Node's child (if any) remains on the same
|
---|
949 | // side of Node's parent (if any) that Node was before.
|
---|
950 | //
|
---|
951 | Parent = OrigParent;
|
---|
952 | Child = (OrigLeftChild != NULL) ? OrigLeftChild : OrigRightChild;
|
---|
953 | ColorOfUnlinked = Node->Color;
|
---|
954 |
|
---|
955 | if (Child != NULL) {
|
---|
956 | Child->Parent = Parent;
|
---|
957 | }
|
---|
958 | if (OrigParent == NULL) {
|
---|
959 | NewRoot = Child;
|
---|
960 | } else {
|
---|
961 | if (Node == OrigParent->Left) {
|
---|
962 | OrigParent->Left = Child;
|
---|
963 | } else {
|
---|
964 | OrigParent->Right = Child;
|
---|
965 | }
|
---|
966 | }
|
---|
967 | } else {
|
---|
968 | //
|
---|
969 | // Node has two children. We unlink Node's successor, and then link it into
|
---|
970 | // Node's place, keeping Node's original color. This preserves ordering
|
---|
971 | // because:
|
---|
972 | // - Node's left subtree is less than Node, hence less than Node's
|
---|
973 | // successor.
|
---|
974 | // - Node's right subtree is greater than Node. Node's successor is the
|
---|
975 | // minimum of that subtree, hence Node's successor is less than Node's
|
---|
976 | // right subtree with its minimum removed.
|
---|
977 | // - Node's successor is in Node's subtree, hence it falls on the same side
|
---|
978 | // of Node's parent as Node itself. The relinking doesn't change this
|
---|
979 | // relation.
|
---|
980 | //
|
---|
981 | RED_BLACK_TREE_NODE *ToRelink;
|
---|
982 |
|
---|
983 | ToRelink = OrigRightChild;
|
---|
984 | if (ToRelink->Left == NULL) {
|
---|
985 | //
|
---|
986 | // OrigRightChild itself is Node's successor, it has no left child:
|
---|
987 | //
|
---|
988 | // OrigParent
|
---|
989 | // |
|
---|
990 | // Node: B
|
---|
991 | // / \_
|
---|
992 | // OrigLeftChild: A OrigRightChild: E <--- Parent, ToRelink
|
---|
993 | // \_
|
---|
994 | // F <--- Child
|
---|
995 | //
|
---|
996 | Parent = OrigRightChild;
|
---|
997 | Child = OrigRightChild->Right;
|
---|
998 | } else {
|
---|
999 | do {
|
---|
1000 | ToRelink = ToRelink->Left;
|
---|
1001 | } while (ToRelink->Left != NULL);
|
---|
1002 |
|
---|
1003 | //
|
---|
1004 | // Node's successor is the minimum of OrigRightChild's proper subtree:
|
---|
1005 | //
|
---|
1006 | // OrigParent
|
---|
1007 | // |
|
---|
1008 | // Node: B
|
---|
1009 | // / \_
|
---|
1010 | // OrigLeftChild: A OrigRightChild: E <--- Parent
|
---|
1011 | // /
|
---|
1012 | // C <--- ToRelink
|
---|
1013 | // \_
|
---|
1014 | // D <--- Child
|
---|
1015 | Parent = ToRelink->Parent;
|
---|
1016 | Child = ToRelink->Right;
|
---|
1017 |
|
---|
1018 | //
|
---|
1019 | // Unlink Node's successor (ie. ToRelink):
|
---|
1020 | //
|
---|
1021 | // OrigParent
|
---|
1022 | // |
|
---|
1023 | // Node: B
|
---|
1024 | // / \_
|
---|
1025 | // OrigLeftChild: A OrigRightChild: E <--- Parent
|
---|
1026 | // /
|
---|
1027 | // D <--- Child
|
---|
1028 | //
|
---|
1029 | // C <--- ToRelink
|
---|
1030 | //
|
---|
1031 | Parent->Left = Child;
|
---|
1032 | if (Child != NULL) {
|
---|
1033 | Child->Parent = Parent;
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 | //
|
---|
1037 | // We start to link Node's unlinked successor into Node's place:
|
---|
1038 | //
|
---|
1039 | // OrigParent
|
---|
1040 | // |
|
---|
1041 | // Node: B C <--- ToRelink
|
---|
1042 | // / \_
|
---|
1043 | // OrigLeftChild: A OrigRightChild: E <--- Parent
|
---|
1044 | // /
|
---|
1045 | // D <--- Child
|
---|
1046 | //
|
---|
1047 | //
|
---|
1048 | //
|
---|
1049 | ToRelink->Right = OrigRightChild;
|
---|
1050 | OrigRightChild->Parent = ToRelink;
|
---|
1051 | }
|
---|
1052 |
|
---|
1053 | //
|
---|
1054 | // The rest handles both cases, attaching ToRelink (Node's original
|
---|
1055 | // successor) to OrigLeftChild and OrigParent.
|
---|
1056 | //
|
---|
1057 | // Parent,
|
---|
1058 | // OrigParent ToRelink OrigParent
|
---|
1059 | // | | |
|
---|
1060 | // Node: B | Node: B Parent
|
---|
1061 | // v |
|
---|
1062 | // OrigRightChild: E C <--- ToRelink |
|
---|
1063 | // / \ / \ v
|
---|
1064 | // OrigLeftChild: A F OrigLeftChild: A OrigRightChild: E
|
---|
1065 | // ^ /
|
---|
1066 | // | D <--- Child
|
---|
1067 | // Child
|
---|
1068 | //
|
---|
1069 | ToRelink->Left = OrigLeftChild;
|
---|
1070 | OrigLeftChild->Parent = ToRelink;
|
---|
1071 |
|
---|
1072 | //
|
---|
1073 | // Node's color must be preserved in Node's original place.
|
---|
1074 | //
|
---|
1075 | ColorOfUnlinked = ToRelink->Color;
|
---|
1076 | ToRelink->Color = Node->Color;
|
---|
1077 |
|
---|
1078 | //
|
---|
1079 | // Finish linking Node's unlinked successor into Node's place.
|
---|
1080 | //
|
---|
1081 | // Parent,
|
---|
1082 | // Node: B ToRelink Node: B
|
---|
1083 | // |
|
---|
1084 | // OrigParent | OrigParent Parent
|
---|
1085 | // | v | |
|
---|
1086 | // OrigRightChild: E C <--- ToRelink |
|
---|
1087 | // / \ / \ v
|
---|
1088 | // OrigLeftChild: A F OrigLeftChild: A OrigRightChild: E
|
---|
1089 | // ^ /
|
---|
1090 | // | D <--- Child
|
---|
1091 | // Child
|
---|
1092 | //
|
---|
1093 | ToRelink->Parent = OrigParent;
|
---|
1094 | if (OrigParent == NULL) {
|
---|
1095 | NewRoot = ToRelink;
|
---|
1096 | } else {
|
---|
1097 | if (Node == OrigParent->Left) {
|
---|
1098 | OrigParent->Left = ToRelink;
|
---|
1099 | } else {
|
---|
1100 | OrigParent->Right = ToRelink;
|
---|
1101 | }
|
---|
1102 | }
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 | FreePool (Node);
|
---|
1106 |
|
---|
1107 | //
|
---|
1108 | // If the node that we unlinked from its original spot (ie. Node itself, or
|
---|
1109 | // Node's successor), was red, then we broke neither property #3 nor property
|
---|
1110 | // #4: we didn't create any red-red edge between Child and Parent, and we
|
---|
1111 | // didn't change the black count on any path.
|
---|
1112 | //
|
---|
1113 | if (ColorOfUnlinked == RedBlackTreeBlack) {
|
---|
1114 | //
|
---|
1115 | // However, if the unlinked node was black, then we have to transfer its
|
---|
1116 | // "black-increment" to its unique child (pointed-to by Child), lest we
|
---|
1117 | // break property #4 for its ancestors.
|
---|
1118 | //
|
---|
1119 | // If Child is red, we can simply color it black. If Child is black
|
---|
1120 | // already, we can't technically transfer a black-increment to it, due to
|
---|
1121 | // property #1.
|
---|
1122 | //
|
---|
1123 | // In the following loop we ascend searching for a red node to color black,
|
---|
1124 | // or until we reach the root (in which case we can drop the
|
---|
1125 | // black-increment). Inside the loop body, Child has a black value of 2,
|
---|
1126 | // transitorily breaking property #1 locally, but maintaining property #4
|
---|
1127 | // globally.
|
---|
1128 | //
|
---|
1129 | // Rotations in the loop preserve property #4.
|
---|
1130 | //
|
---|
1131 | while (Child != NewRoot && NodeIsNullOrBlack (Child)) {
|
---|
1132 | RED_BLACK_TREE_NODE *Sibling;
|
---|
1133 | RED_BLACK_TREE_NODE *LeftNephew;
|
---|
1134 | RED_BLACK_TREE_NODE *RightNephew;
|
---|
1135 |
|
---|
1136 | if (Child == Parent->Left) {
|
---|
1137 | Sibling = Parent->Right;
|
---|
1138 | //
|
---|
1139 | // Sibling can never be NULL (ie. a leaf).
|
---|
1140 | //
|
---|
1141 | // If Sibling was NULL, then the black count on the path from Parent to
|
---|
1142 | // Sibling would equal Parent's black value, plus 1 (due to property
|
---|
1143 | // #2). Whereas the black count on the path from Parent to any leaf via
|
---|
1144 | // Child would be at least Parent's black value, plus 2 (due to Child's
|
---|
1145 | // black value of 2). This would clash with property #4.
|
---|
1146 | //
|
---|
1147 | // (Sibling can be black of course, but it has to be an internal node.
|
---|
1148 | // Internality allows Sibling to have children, bumping the black
|
---|
1149 | // counts of paths that go through it.)
|
---|
1150 | //
|
---|
1151 | ASSERT (Sibling != NULL);
|
---|
1152 | if (Sibling->Color == RedBlackTreeRed) {
|
---|
1153 | //
|
---|
1154 | // Sibling's red color implies its children (if any), node C and node
|
---|
1155 | // E, are black (property #3). It also implies that Parent is black.
|
---|
1156 | //
|
---|
1157 | // grandparent grandparent
|
---|
1158 | // | |
|
---|
1159 | // Parent,b:B b:D
|
---|
1160 | // / \ / \_
|
---|
1161 | // Child,2b:A Sibling,r:D ---> Parent,r:B b:E
|
---|
1162 | // /\ /\_
|
---|
1163 | // b:C b:E Child,2b:A Sibling,b:C
|
---|
1164 | //
|
---|
1165 | Sibling->Color = RedBlackTreeBlack;
|
---|
1166 | Parent->Color = RedBlackTreeRed;
|
---|
1167 | RedBlackTreeRotateLeft (Parent, &NewRoot);
|
---|
1168 | Sibling = Parent->Right;
|
---|
1169 | //
|
---|
1170 | // Same reasoning as above.
|
---|
1171 | //
|
---|
1172 | ASSERT (Sibling != NULL);
|
---|
1173 | }
|
---|
1174 |
|
---|
1175 | //
|
---|
1176 | // Sibling is black, and not NULL. (Ie. Sibling is a black internal
|
---|
1177 | // node.)
|
---|
1178 | //
|
---|
1179 | ASSERT (Sibling->Color == RedBlackTreeBlack);
|
---|
1180 | LeftNephew = Sibling->Left;
|
---|
1181 | RightNephew = Sibling->Right;
|
---|
1182 | if (NodeIsNullOrBlack (LeftNephew) &&
|
---|
1183 | NodeIsNullOrBlack (RightNephew)) {
|
---|
1184 | //
|
---|
1185 | // In this case we can "steal" one black value from Child and Sibling
|
---|
1186 | // each, and pass it to Parent. "Stealing" means that Sibling (black
|
---|
1187 | // value 1) becomes red, Child (black value 2) becomes singly-black,
|
---|
1188 | // and Parent will have to be examined if it can eat the
|
---|
1189 | // black-increment.
|
---|
1190 | //
|
---|
1191 | // Sibling is allowed to become red because both of its children are
|
---|
1192 | // black (property #3).
|
---|
1193 | //
|
---|
1194 | // grandparent Parent
|
---|
1195 | // | |
|
---|
1196 | // Parent,x:B Child,x:B
|
---|
1197 | // / \ / \_
|
---|
1198 | // Child,2b:A Sibling,b:D ---> b:A r:D
|
---|
1199 | // /\ /\_
|
---|
1200 | // LeftNephew,b:C RightNephew,b:E b:C b:E
|
---|
1201 | //
|
---|
1202 | Sibling->Color = RedBlackTreeRed;
|
---|
1203 | Child = Parent;
|
---|
1204 | Parent = Parent->Parent;
|
---|
1205 | //
|
---|
1206 | // Continue ascending.
|
---|
1207 | //
|
---|
1208 | } else {
|
---|
1209 | //
|
---|
1210 | // At least one nephew is red.
|
---|
1211 | //
|
---|
1212 | if (NodeIsNullOrBlack (RightNephew)) {
|
---|
1213 | //
|
---|
1214 | // Since the right nephew is black, the left nephew is red. Due to
|
---|
1215 | // property #3, LeftNephew has two black children, hence node E is
|
---|
1216 | // black.
|
---|
1217 | //
|
---|
1218 | // Together with the rotation, this enables us to color node F red
|
---|
1219 | // (because property #3 will be satisfied). We flip node D to black
|
---|
1220 | // to maintain property #4.
|
---|
1221 | //
|
---|
1222 | // grandparent grandparent
|
---|
1223 | // | |
|
---|
1224 | // Parent,x:B Parent,x:B
|
---|
1225 | // /\ /\_
|
---|
1226 | // Child,2b:A Sibling,b:F ---> Child,2b:A Sibling,b:D
|
---|
1227 | // /\ / \_
|
---|
1228 | // LeftNephew,r:D RightNephew,b:G b:C RightNephew,r:F
|
---|
1229 | // /\ /\_
|
---|
1230 | // b:C b:E b:E b:G
|
---|
1231 | //
|
---|
1232 | LeftNephew->Color = RedBlackTreeBlack;
|
---|
1233 | Sibling->Color = RedBlackTreeRed;
|
---|
1234 | RedBlackTreeRotateRight (Sibling, &NewRoot);
|
---|
1235 | Sibling = Parent->Right;
|
---|
1236 | RightNephew = Sibling->Right;
|
---|
1237 | //
|
---|
1238 | // These operations ensure that...
|
---|
1239 | //
|
---|
1240 | }
|
---|
1241 | //
|
---|
1242 | // ... RightNephew is definitely red here, plus Sibling is (still)
|
---|
1243 | // black and non-NULL.
|
---|
1244 | //
|
---|
1245 | ASSERT (RightNephew != NULL);
|
---|
1246 | ASSERT (RightNephew->Color == RedBlackTreeRed);
|
---|
1247 | ASSERT (Sibling != NULL);
|
---|
1248 | ASSERT (Sibling->Color == RedBlackTreeBlack);
|
---|
1249 | //
|
---|
1250 | // In this case we can flush the extra black-increment immediately,
|
---|
1251 | // restoring property #1 for Child (node A): we color RightNephew
|
---|
1252 | // (node E) from red to black.
|
---|
1253 | //
|
---|
1254 | // In order to maintain property #4, we exchange colors between
|
---|
1255 | // Parent and Sibling (nodes B and D), and rotate left around Parent
|
---|
1256 | // (node B). The transformation doesn't change the black count
|
---|
1257 | // increase incurred by each partial path, eg.
|
---|
1258 | // - ascending from node A: 2 + x == 1 + 1 + x
|
---|
1259 | // - ascending from node C: y + 1 + x == y + 1 + x
|
---|
1260 | // - ascending from node E: 0 + 1 + x == 1 + x
|
---|
1261 | //
|
---|
1262 | // The color exchange is valid, because even if x stands for red,
|
---|
1263 | // both children of node D are black after the transformation
|
---|
1264 | // (preserving property #3).
|
---|
1265 | //
|
---|
1266 | // grandparent grandparent
|
---|
1267 | // | |
|
---|
1268 | // Parent,x:B x:D
|
---|
1269 | // / \ / \_
|
---|
1270 | // Child,2b:A Sibling,b:D ---> b:B b:E
|
---|
1271 | // / \ / \_
|
---|
1272 | // y:C RightNephew,r:E b:A y:C
|
---|
1273 | //
|
---|
1274 | //
|
---|
1275 | Sibling->Color = Parent->Color;
|
---|
1276 | Parent->Color = RedBlackTreeBlack;
|
---|
1277 | RightNephew->Color = RedBlackTreeBlack;
|
---|
1278 | RedBlackTreeRotateLeft (Parent, &NewRoot);
|
---|
1279 | Child = NewRoot;
|
---|
1280 | //
|
---|
1281 | // This terminates the loop.
|
---|
1282 | //
|
---|
1283 | }
|
---|
1284 | } else {
|
---|
1285 | //
|
---|
1286 | // Mirrors the other branch.
|
---|
1287 | //
|
---|
1288 | Sibling = Parent->Left;
|
---|
1289 | ASSERT (Sibling != NULL);
|
---|
1290 | if (Sibling->Color == RedBlackTreeRed) {
|
---|
1291 | Sibling->Color = RedBlackTreeBlack;
|
---|
1292 | Parent->Color = RedBlackTreeRed;
|
---|
1293 | RedBlackTreeRotateRight (Parent, &NewRoot);
|
---|
1294 | Sibling = Parent->Left;
|
---|
1295 | ASSERT (Sibling != NULL);
|
---|
1296 | }
|
---|
1297 |
|
---|
1298 | ASSERT (Sibling->Color == RedBlackTreeBlack);
|
---|
1299 | RightNephew = Sibling->Right;
|
---|
1300 | LeftNephew = Sibling->Left;
|
---|
1301 | if (NodeIsNullOrBlack (RightNephew) &&
|
---|
1302 | NodeIsNullOrBlack (LeftNephew)) {
|
---|
1303 | Sibling->Color = RedBlackTreeRed;
|
---|
1304 | Child = Parent;
|
---|
1305 | Parent = Parent->Parent;
|
---|
1306 | } else {
|
---|
1307 | if (NodeIsNullOrBlack (LeftNephew)) {
|
---|
1308 | RightNephew->Color = RedBlackTreeBlack;
|
---|
1309 | Sibling->Color = RedBlackTreeRed;
|
---|
1310 | RedBlackTreeRotateLeft (Sibling, &NewRoot);
|
---|
1311 | Sibling = Parent->Left;
|
---|
1312 | LeftNephew = Sibling->Left;
|
---|
1313 | }
|
---|
1314 | ASSERT (LeftNephew != NULL);
|
---|
1315 | ASSERT (LeftNephew->Color == RedBlackTreeRed);
|
---|
1316 | ASSERT (Sibling != NULL);
|
---|
1317 | ASSERT (Sibling->Color == RedBlackTreeBlack);
|
---|
1318 | Sibling->Color = Parent->Color;
|
---|
1319 | Parent->Color = RedBlackTreeBlack;
|
---|
1320 | LeftNephew->Color = RedBlackTreeBlack;
|
---|
1321 | RedBlackTreeRotateRight (Parent, &NewRoot);
|
---|
1322 | Child = NewRoot;
|
---|
1323 | }
|
---|
1324 | }
|
---|
1325 | }
|
---|
1326 |
|
---|
1327 | if (Child != NULL) {
|
---|
1328 | Child->Color = RedBlackTreeBlack;
|
---|
1329 | }
|
---|
1330 | }
|
---|
1331 |
|
---|
1332 | Tree->Root = NewRoot;
|
---|
1333 |
|
---|
1334 | if (FeaturePcdGet (PcdValidateOrderedCollection)) {
|
---|
1335 | RedBlackTreeValidate (Tree);
|
---|
1336 | }
|
---|
1337 | }
|
---|
1338 |
|
---|
1339 |
|
---|
1340 | /**
|
---|
1341 | Recursively check the red-black tree properties #1 to #4 on a node.
|
---|
1342 |
|
---|
1343 | @param[in] Node The root of the subtree to validate.
|
---|
1344 |
|
---|
1345 | @retval The black-height of Node's parent.
|
---|
1346 | **/
|
---|
1347 | UINT32
|
---|
1348 | RedBlackTreeRecursiveCheck (
|
---|
1349 | IN CONST RED_BLACK_TREE_NODE *Node
|
---|
1350 | )
|
---|
1351 | {
|
---|
1352 | UINT32 LeftHeight;
|
---|
1353 | UINT32 RightHeight;
|
---|
1354 |
|
---|
1355 | //
|
---|
1356 | // property #2
|
---|
1357 | //
|
---|
1358 | if (Node == NULL) {
|
---|
1359 | return 1;
|
---|
1360 | }
|
---|
1361 |
|
---|
1362 | //
|
---|
1363 | // property #1
|
---|
1364 | //
|
---|
1365 | ASSERT (Node->Color == RedBlackTreeRed || Node->Color == RedBlackTreeBlack);
|
---|
1366 |
|
---|
1367 | //
|
---|
1368 | // property #3
|
---|
1369 | //
|
---|
1370 | if (Node->Color == RedBlackTreeRed) {
|
---|
1371 | ASSERT (NodeIsNullOrBlack (Node->Left));
|
---|
1372 | ASSERT (NodeIsNullOrBlack (Node->Right));
|
---|
1373 | }
|
---|
1374 |
|
---|
1375 | //
|
---|
1376 | // property #4
|
---|
1377 | //
|
---|
1378 | LeftHeight = RedBlackTreeRecursiveCheck (Node->Left);
|
---|
1379 | RightHeight = RedBlackTreeRecursiveCheck (Node->Right);
|
---|
1380 | ASSERT (LeftHeight == RightHeight);
|
---|
1381 |
|
---|
1382 | return (Node->Color == RedBlackTreeBlack) + LeftHeight;
|
---|
1383 | }
|
---|
1384 |
|
---|
1385 |
|
---|
1386 | /**
|
---|
1387 | A slow function that asserts that the tree is a valid red-black tree, and
|
---|
1388 | that it orders user structures correctly.
|
---|
1389 |
|
---|
1390 | Read-only operation.
|
---|
1391 |
|
---|
1392 | This function uses the stack for recursion and is not recommended for
|
---|
1393 | "production use".
|
---|
1394 |
|
---|
1395 | @param[in] Tree The tree to validate.
|
---|
1396 | **/
|
---|
1397 | VOID
|
---|
1398 | RedBlackTreeValidate (
|
---|
1399 | IN CONST RED_BLACK_TREE *Tree
|
---|
1400 | )
|
---|
1401 | {
|
---|
1402 | UINT32 BlackHeight;
|
---|
1403 | UINT32 ForwardCount;
|
---|
1404 | UINT32 BackwardCount;
|
---|
1405 | CONST RED_BLACK_TREE_NODE *Last;
|
---|
1406 | CONST RED_BLACK_TREE_NODE *Node;
|
---|
1407 |
|
---|
1408 | DEBUG ((DEBUG_VERBOSE, "%a: Tree=%p\n", __FUNCTION__, Tree));
|
---|
1409 |
|
---|
1410 | //
|
---|
1411 | // property #5
|
---|
1412 | //
|
---|
1413 | ASSERT (NodeIsNullOrBlack (Tree->Root));
|
---|
1414 |
|
---|
1415 | //
|
---|
1416 | // check the other properties
|
---|
1417 | //
|
---|
1418 | BlackHeight = RedBlackTreeRecursiveCheck (Tree->Root) - 1;
|
---|
1419 |
|
---|
1420 | //
|
---|
1421 | // forward ordering
|
---|
1422 | //
|
---|
1423 | Last = OrderedCollectionMin (Tree);
|
---|
1424 | ForwardCount = (Last != NULL);
|
---|
1425 | for (Node = OrderedCollectionNext (Last); Node != NULL;
|
---|
1426 | Node = OrderedCollectionNext (Last)) {
|
---|
1427 | ASSERT (Tree->UserStructCompare (Last->UserStruct, Node->UserStruct) < 0);
|
---|
1428 | Last = Node;
|
---|
1429 | ++ForwardCount;
|
---|
1430 | }
|
---|
1431 |
|
---|
1432 | //
|
---|
1433 | // backward ordering
|
---|
1434 | //
|
---|
1435 | Last = OrderedCollectionMax (Tree);
|
---|
1436 | BackwardCount = (Last != NULL);
|
---|
1437 | for (Node = OrderedCollectionPrev (Last); Node != NULL;
|
---|
1438 | Node = OrderedCollectionPrev (Last)) {
|
---|
1439 | ASSERT (Tree->UserStructCompare (Last->UserStruct, Node->UserStruct) > 0);
|
---|
1440 | Last = Node;
|
---|
1441 | ++BackwardCount;
|
---|
1442 | }
|
---|
1443 |
|
---|
1444 | ASSERT (ForwardCount == BackwardCount);
|
---|
1445 |
|
---|
1446 | DEBUG ((DEBUG_VERBOSE, "%a: Tree=%p BlackHeight=%Ld Count=%Ld\n",
|
---|
1447 | __FUNCTION__, Tree, (INT64)BlackHeight, (INT64)ForwardCount));
|
---|
1448 | }
|
---|