VirtualBox

source: vbox/trunk/src/VBox/Devices/EFI/Firmware/NetworkPkg/Ip6Dxe/Ip6Output.c

Last change on this file was 99404, checked in by vboxsync, 21 months ago

Devices/EFI/FirmwareNew: Update to edk2-stable202302 and make it build, bugref:4643

  • Property svn:eol-style set to native
File size: 30.4 KB
Line 
1/** @file
2 The internal functions and routines to transmit the IP6 packet.
3
4 Copyright (c) 2009 - 2015, Intel Corporation. All rights reserved.<BR>
5
6 SPDX-License-Identifier: BSD-2-Clause-Patent
7
8**/
9
10#include "Ip6Impl.h"
11
12UINT32 mIp6Id;
13
14/**
15 Output all the available source addresses to a list entry head SourceList. The
16 number of source addresses are also returned.
17
18 @param[in] IpSb Points to an IP6 service binding instance.
19 @param[out] SourceList The list entry head of all source addresses.
20 It is the caller's responsibility to free the
21 resources.
22 @param[out] SourceCount The number of source addresses.
23
24 @retval EFI_SUCCESS The source addresses were copied to a list entry head
25 SourceList.
26 @retval EFI_OUT_OF_RESOURCES Failed to allocate resources to complete the operation.
27
28**/
29EFI_STATUS
30Ip6CandidateSource (
31 IN IP6_SERVICE *IpSb,
32 OUT LIST_ENTRY *SourceList,
33 OUT UINT32 *SourceCount
34 )
35{
36 IP6_INTERFACE *IpIf;
37 LIST_ENTRY *Entry;
38 LIST_ENTRY *Entry2;
39 IP6_ADDRESS_INFO *AddrInfo;
40 IP6_ADDRESS_INFO *Copy;
41
42 *SourceCount = 0;
43
44 if (IpSb->LinkLocalOk) {
45 Copy = AllocatePool (sizeof (IP6_ADDRESS_INFO));
46 if (Copy == NULL) {
47 return EFI_OUT_OF_RESOURCES;
48 }
49
50 Copy->Signature = IP6_ADDR_INFO_SIGNATURE;
51 IP6_COPY_ADDRESS (&Copy->Address, &IpSb->LinkLocalAddr);
52 Copy->IsAnycast = FALSE;
53 Copy->PrefixLength = IP6_LINK_LOCAL_PREFIX_LENGTH;
54 Copy->ValidLifetime = (UINT32)IP6_INFINIT_LIFETIME;
55 Copy->PreferredLifetime = (UINT32)IP6_INFINIT_LIFETIME;
56
57 InsertTailList (SourceList, &Copy->Link);
58 (*SourceCount)++;
59 }
60
61 NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {
62 IpIf = NET_LIST_USER_STRUCT (Entry, IP6_INTERFACE, Link);
63
64 NET_LIST_FOR_EACH (Entry2, &IpIf->AddressList) {
65 AddrInfo = NET_LIST_USER_STRUCT_S (Entry2, IP6_ADDRESS_INFO, Link, IP6_ADDR_INFO_SIGNATURE);
66
67 if (AddrInfo->IsAnycast) {
68 //
69 // Never use an anycast address.
70 //
71 continue;
72 }
73
74 Copy = AllocateCopyPool (sizeof (IP6_ADDRESS_INFO), AddrInfo);
75 if (Copy == NULL) {
76 return EFI_OUT_OF_RESOURCES;
77 }
78
79 InsertTailList (SourceList, &Copy->Link);
80 (*SourceCount)++;
81 }
82 }
83
84 return EFI_SUCCESS;
85}
86
87/**
88 Calculate how many bits are the same between two IPv6 addresses.
89
90 @param[in] AddressA Points to an IPv6 address.
91 @param[in] AddressB Points to another IPv6 address.
92
93 @return The common bits of the AddressA and AddressB.
94
95**/
96UINT8
97Ip6CommonPrefixLen (
98 IN EFI_IPv6_ADDRESS *AddressA,
99 IN EFI_IPv6_ADDRESS *AddressB
100 )
101{
102 UINT8 Count;
103 UINT8 Index;
104 UINT8 ByteA;
105 UINT8 ByteB;
106 UINT8 NumBits;
107
108 Count = 0;
109 Index = 0;
110
111 while (Index < 16) {
112 ByteA = AddressA->Addr[Index];
113 ByteB = AddressB->Addr[Index];
114
115 if (ByteA == ByteB) {
116 Count += 8;
117 Index++;
118 continue;
119 }
120
121 //
122 // Check how many bits are common between the two bytes.
123 //
124 NumBits = 8;
125 ByteA = (UINT8)(ByteA ^ ByteB);
126
127 while (ByteA != 0) {
128 NumBits--;
129 ByteA = (UINT8)(ByteA >> 1);
130 }
131
132 return (UINT8)(Count + NumBits);
133 }
134
135 return Count;
136}
137
138/**
139 Output all the available source addresses to a list entry head SourceList. The
140 number of source addresses are also returned.
141
142 @param[in] IpSb Points to a IP6 service binding instance.
143 @param[in] Destination The IPv6 destination address.
144 @param[out] Source The selected IPv6 source address according to
145 the Destination.
146
147 @retval EFI_SUCCESS The source addresses were copied to a list entry
148 head SourceList.
149 @retval EFI_NO_MAPPING The IPv6 stack is not auto configured.
150
151**/
152EFI_STATUS
153Ip6SelectSourceAddress (
154 IN IP6_SERVICE *IpSb,
155 IN EFI_IPv6_ADDRESS *Destination,
156 OUT EFI_IPv6_ADDRESS *Source
157 )
158{
159 EFI_STATUS Status;
160 LIST_ENTRY SourceList;
161 UINT32 SourceCount;
162 UINT8 ScopeD;
163 LIST_ENTRY *Entry;
164 IP6_ADDRESS_INFO *AddrInfo;
165 IP6_PREFIX_LIST_ENTRY *Prefix;
166 UINT8 LastCommonLength;
167 UINT8 CurrentCommonLength;
168 EFI_IPv6_ADDRESS *TmpAddress;
169
170 NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
171
172 Status = EFI_SUCCESS;
173 InitializeListHead (&SourceList);
174
175 if (!IpSb->LinkLocalOk) {
176 return EFI_NO_MAPPING;
177 }
178
179 //
180 // Rule 1: Prefer same address.
181 //
182 if (Ip6IsOneOfSetAddress (IpSb, Destination, NULL, NULL)) {
183 IP6_COPY_ADDRESS (Source, Destination);
184 goto Exit;
185 }
186
187 //
188 // Rule 2: Prefer appropriate scope.
189 //
190 if (IP6_IS_MULTICAST (Destination)) {
191 ScopeD = (UINT8)(Destination->Addr[1] >> 4);
192 } else if (NetIp6IsLinkLocalAddr (Destination)) {
193 ScopeD = 0x2;
194 } else {
195 ScopeD = 0xE;
196 }
197
198 if (ScopeD <= 0x2) {
199 //
200 // Return the link-local address if it exists
201 // One IP6_SERVICE only has one link-local address.
202 //
203 IP6_COPY_ADDRESS (Source, &IpSb->LinkLocalAddr);
204 goto Exit;
205 }
206
207 //
208 // All candidate source addresses are global unicast address.
209 //
210 Ip6CandidateSource (IpSb, &SourceList, &SourceCount);
211
212 if (SourceCount == 0) {
213 Status = EFI_NO_MAPPING;
214 goto Exit;
215 }
216
217 IP6_COPY_ADDRESS (Source, &IpSb->LinkLocalAddr);
218
219 if (SourceCount == 1) {
220 goto Exit;
221 }
222
223 //
224 // Rule 3: Avoid deprecated addresses.
225 // TODO: check the "deprecated" state of the stateful configured address
226 //
227 NET_LIST_FOR_EACH (Entry, &IpSb->AutonomousPrefix) {
228 Prefix = NET_LIST_USER_STRUCT (Entry, IP6_PREFIX_LIST_ENTRY, Link);
229 if (Prefix->PreferredLifetime == 0) {
230 Ip6RemoveAddr (NULL, &SourceList, &SourceCount, &Prefix->Prefix, Prefix->PrefixLength);
231
232 if (SourceCount == 1) {
233 goto Exit;
234 }
235 }
236 }
237
238 //
239 // TODO: Rule 4: Prefer home addresses.
240 // TODO: Rule 5: Prefer outgoing interface.
241 // TODO: Rule 6: Prefer matching label.
242 // TODO: Rule 7: Prefer public addresses.
243 //
244
245 //
246 // Rule 8: Use longest matching prefix.
247 //
248 LastCommonLength = Ip6CommonPrefixLen (Source, Destination);
249 TmpAddress = NULL;
250
251 for (Entry = SourceList.ForwardLink; Entry != &SourceList; Entry = Entry->ForwardLink) {
252 AddrInfo = NET_LIST_USER_STRUCT_S (Entry, IP6_ADDRESS_INFO, Link, IP6_ADDR_INFO_SIGNATURE);
253
254 CurrentCommonLength = Ip6CommonPrefixLen (&AddrInfo->Address, Destination);
255 if (CurrentCommonLength > LastCommonLength) {
256 LastCommonLength = CurrentCommonLength;
257 TmpAddress = &AddrInfo->Address;
258 }
259 }
260
261 if (TmpAddress != NULL) {
262 IP6_COPY_ADDRESS (Source, TmpAddress);
263 }
264
265Exit:
266
267 Ip6RemoveAddr (NULL, &SourceList, &SourceCount, NULL, 0);
268
269 return Status;
270}
271
272/**
273 Select an interface to send the packet generated in the IP6 driver
274 itself: that is, not by the requests of the IP6 child's consumer. Such
275 packets include the ICMPv6 echo replies and other ICMPv6 error packets.
276
277 @param[in] IpSb The IP4 service that wants to send the packets.
278 @param[in] Destination The destination of the packet.
279 @param[in, out] Source The source of the packet.
280
281 @return NULL if no proper interface is found, otherwise, the interface that
282 can be used to send the system packet from.
283
284**/
285IP6_INTERFACE *
286Ip6SelectInterface (
287 IN IP6_SERVICE *IpSb,
288 IN EFI_IPv6_ADDRESS *Destination,
289 IN OUT EFI_IPv6_ADDRESS *Source
290 )
291{
292 EFI_STATUS Status;
293 EFI_IPv6_ADDRESS SelectedSource;
294 IP6_INTERFACE *IpIf;
295 BOOLEAN Exist;
296
297 NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
298 ASSERT (Destination != NULL && Source != NULL);
299
300 if (NetIp6IsUnspecifiedAddr (Destination)) {
301 return NULL;
302 }
303
304 if (!NetIp6IsUnspecifiedAddr (Source)) {
305 Exist = Ip6IsOneOfSetAddress (IpSb, Source, &IpIf, NULL);
306 ASSERT (Exist);
307
308 return IpIf;
309 }
310
311 //
312 // If source is unspecified, select a source according to the destination.
313 //
314 Status = Ip6SelectSourceAddress (IpSb, Destination, &SelectedSource);
315 if (EFI_ERROR (Status)) {
316 return IpSb->DefaultInterface;
317 }
318
319 Ip6IsOneOfSetAddress (IpSb, &SelectedSource, &IpIf, NULL);
320 IP6_COPY_ADDRESS (Source, &SelectedSource);
321
322 return IpIf;
323}
324
325/**
326 The default callback function for the system generated packet.
327 It will free the packet.
328
329 @param[in] Packet The packet that transmitted.
330 @param[in] IoStatus The result of the transmission, succeeded or failed.
331 @param[in] LinkFlag Not used when transmitted. Check IP6_FRAME_CALLBACK
332 for reference.
333 @param[in] Context The context provided by us.
334
335**/
336VOID
337Ip6SysPacketSent (
338 NET_BUF *Packet,
339 EFI_STATUS IoStatus,
340 UINT32 LinkFlag,
341 VOID *Context
342 )
343{
344 NetbufFree (Packet);
345 Packet = NULL;
346}
347
348/**
349 Prefix an IP6 basic head and unfragmentable extension headers and a fragment header
350 to the Packet. Used for IP6 fragmentation.
351
352 @param[in] IpSb The IP6 service instance to transmit the packet.
353 @param[in] Packet The packet to prefix the IP6 header to.
354 @param[in] Head The caller supplied header.
355 @param[in] FragmentOffset The fragment offset of the data following the header.
356 @param[in] ExtHdrs The length of the original extension header.
357 @param[in] ExtHdrsLen The length of the extension headers.
358 @param[in] LastHeader The pointer of next header of last extension header.
359 @param[in] HeadLen The length of the unfragmented part of the IP6 header.
360
361 @retval EFI_BAD_BUFFER_SIZE There is no enough room in the head space of
362 Packet.
363 @retval EFI_SUCCESS The operation performed successfully.
364
365**/
366EFI_STATUS
367Ip6PrependHead (
368 IN IP6_SERVICE *IpSb,
369 IN NET_BUF *Packet,
370 IN EFI_IP6_HEADER *Head,
371 IN UINT16 FragmentOffset,
372 IN UINT8 *ExtHdrs,
373 IN UINT32 ExtHdrsLen,
374 IN UINT8 LastHeader,
375 IN UINT32 HeadLen
376 )
377{
378 UINT32 Len;
379 UINT32 UnFragExtHdrsLen;
380 EFI_IP6_HEADER *PacketHead;
381 UINT8 *UpdatedExtHdrs;
382 EFI_STATUS Status;
383 UINT8 NextHeader;
384
385 UpdatedExtHdrs = NULL;
386
387 //
388 // HeadLen is the length of the fixed part of the sequences of fragments, i.e.
389 // the unfragment part.
390 //
391 PacketHead = (EFI_IP6_HEADER *)NetbufAllocSpace (Packet, HeadLen, NET_BUF_HEAD);
392 if (PacketHead == NULL) {
393 return EFI_BAD_BUFFER_SIZE;
394 }
395
396 //
397 // Set the head up, convert the host byte order to network byte order
398 //
399 CopyMem (PacketHead, Head, sizeof (EFI_IP6_HEADER));
400 PacketHead->PayloadLength = HTONS ((UINT16)(Packet->TotalSize - sizeof (EFI_IP6_HEADER)));
401 Packet->Ip.Ip6 = PacketHead;
402
403 Len = HeadLen - sizeof (EFI_IP6_HEADER);
404 UnFragExtHdrsLen = Len - sizeof (IP6_FRAGMENT_HEADER);
405
406 if (UnFragExtHdrsLen == 0) {
407 PacketHead->NextHeader = IP6_FRAGMENT;
408 }
409
410 //
411 // Append the extension headers: firstly copy the unfragmentable headers, then append
412 // fragmentation header.
413 //
414 if ((FragmentOffset & IP6_FRAGMENT_OFFSET_MASK) == 0) {
415 NextHeader = Head->NextHeader;
416 } else {
417 NextHeader = PacketHead->NextHeader;
418 }
419
420 Status = Ip6FillFragmentHeader (
421 IpSb,
422 NextHeader,
423 LastHeader,
424 ExtHdrs,
425 ExtHdrsLen,
426 FragmentOffset,
427 &UpdatedExtHdrs
428 );
429 if (EFI_ERROR (Status)) {
430 return Status;
431 }
432
433 CopyMem (
434 (UINT8 *)(PacketHead + 1),
435 UpdatedExtHdrs,
436 UnFragExtHdrsLen + sizeof (IP6_FRAGMENT_HEADER)
437 );
438
439 FreePool (UpdatedExtHdrs);
440 return EFI_SUCCESS;
441}
442
443/**
444 Transmit an IP6 packet. The packet comes either from the IP6
445 child's consumer (IpInstance != NULL) or the IP6 driver itself
446 (IpInstance == NULL). It will route the packet, fragment it,
447 then transmit all the fragments through an interface.
448
449 @param[in] IpSb The IP6 service instance to transmit the packet.
450 @param[in] Interface The IP6 interface to transmit the packet. Ignored
451 if NULL.
452 @param[in] IpInstance The IP6 child that issues the transmission. It is
453 NULL if the packet is from the system.
454 @param[in] Packet The user data to send, excluding the IP header.
455 @param[in] Head The caller supplied header. The caller should set
456 the following header fields: NextHeader, HopLimit,
457 Src, Dest, FlowLabel, PayloadLength. This function
458 will fill in the Ver, TrafficClass.
459 @param[in] ExtHdrs The extension headers to append to the IPv6 basic
460 header.
461 @param[in] ExtHdrsLen The length of the extension headers.
462 @param[in] Callback The callback function to issue when transmission
463 completed.
464 @param[in] Context The opaque context for the callback.
465
466 @retval EFI_INVALID_PARAMETER Any input parameter or the packet is invalid.
467 @retval EFI_NO_MAPPING There is no interface to the destination.
468 @retval EFI_NOT_FOUND There is no route to the destination.
469 @retval EFI_SUCCESS The packet successfully transmitted.
470 @retval EFI_OUT_OF_RESOURCES Failed to finish the operation due to lack of
471 resources.
472 @retval Others Failed to transmit the packet.
473
474**/
475EFI_STATUS
476Ip6Output (
477 IN IP6_SERVICE *IpSb,
478 IN IP6_INTERFACE *Interface OPTIONAL,
479 IN IP6_PROTOCOL *IpInstance OPTIONAL,
480 IN NET_BUF *Packet,
481 IN EFI_IP6_HEADER *Head,
482 IN UINT8 *ExtHdrs,
483 IN UINT32 ExtHdrsLen,
484 IN IP6_FRAME_CALLBACK Callback,
485 IN VOID *Context
486 )
487{
488 IP6_INTERFACE *IpIf;
489 EFI_IPv6_ADDRESS NextHop;
490 IP6_NEIGHBOR_ENTRY *NeighborCache;
491 IP6_ROUTE_CACHE_ENTRY *RouteCache;
492 EFI_STATUS Status;
493 UINT32 Mtu;
494 UINT32 HeadLen;
495 UINT16 FragmentOffset;
496 UINT8 *LastHeader;
497 UINT32 UnFragmentLen;
498 UINT32 UnFragmentHdrsLen;
499 UINT32 FragmentHdrsLen;
500 UINT16 *Checksum;
501 UINT16 PacketChecksum;
502 UINT16 PseudoChecksum;
503 UINT32 Index;
504 UINT32 PacketLen;
505 UINT32 RealExtLen;
506 UINT32 Offset;
507 NET_BUF *TmpPacket;
508 NET_BUF *Fragment;
509 UINT32 Num;
510 UINT8 *Buf;
511 EFI_IP6_HEADER *PacketHead;
512 IP6_ICMP_HEAD *IcmpHead;
513 IP6_TXTOKEN_WRAP *Wrap;
514 IP6_ROUTE_ENTRY *RouteEntry;
515 UINT8 *UpdatedExtHdrs;
516 UINT8 NextHeader;
517 UINT8 LastHeaderBackup;
518 BOOLEAN FragmentHeadInserted;
519 UINT8 *ExtHdrsBackup;
520 UINT8 NextHeaderBackup;
521 EFI_IPv6_ADDRESS Source;
522 EFI_IPv6_ADDRESS Destination;
523
524 NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
525
526 //
527 // RFC2460: Each extension header is an integer multiple of 8 octets long,
528 // in order to retain 8-octet alignment for subsequent headers.
529 //
530 if ((ExtHdrsLen & 0x7) != 0) {
531 return EFI_INVALID_PARAMETER;
532 }
533
534 LastHeader = NULL;
535
536 Ip6IsExtsValid (
537 NULL,
538 NULL,
539 &Head->NextHeader,
540 ExtHdrs,
541 ExtHdrsLen,
542 FALSE,
543 NULL,
544 &LastHeader,
545 NULL,
546 NULL,
547 NULL
548 );
549
550 //
551 // Select an interface/source for system packet, application
552 // should select them itself.
553 //
554 IpIf = Interface;
555 if (IpIf == NULL) {
556 //
557 // IpInstance->Interface is NULL when IpInstance is configured with both stationaddress
558 // and destinationaddress is unspecified.
559 //
560 if ((IpInstance == NULL) || (IpInstance->Interface == NULL)) {
561 IpIf = Ip6SelectInterface (IpSb, &Head->DestinationAddress, &Head->SourceAddress);
562 if (IpInstance != NULL) {
563 IpInstance->Interface = IpIf;
564 }
565 } else {
566 IpIf = IpInstance->Interface;
567 }
568 }
569
570 if (IpIf == NULL) {
571 return EFI_NO_MAPPING;
572 }
573
574 //
575 // Update the common field in Head here.
576 //
577 Head->Version = 6;
578 Head->TrafficClassL = 0;
579 Head->TrafficClassH = 0;
580
581 Checksum = NULL;
582 NextHeader = *LastHeader;
583
584 switch (NextHeader) {
585 case EFI_IP_PROTO_UDP:
586 Packet->Udp = (EFI_UDP_HEADER *)NetbufGetByte (Packet, 0, NULL);
587 ASSERT (Packet->Udp != NULL);
588 if (Packet->Udp->Checksum == 0) {
589 Checksum = &Packet->Udp->Checksum;
590 }
591
592 break;
593
594 case EFI_IP_PROTO_TCP:
595 Packet->Tcp = (TCP_HEAD *)NetbufGetByte (Packet, 0, NULL);
596 ASSERT (Packet->Tcp != NULL);
597 if (Packet->Tcp->Checksum == 0) {
598 Checksum = &Packet->Tcp->Checksum;
599 }
600
601 break;
602
603 case IP6_ICMP:
604 //
605 // Don't send ICMP packet to an IPv6 anycast address.
606 //
607 if (Ip6IsAnycast (IpSb, &Head->DestinationAddress)) {
608 return EFI_INVALID_PARAMETER;
609 }
610
611 IcmpHead = (IP6_ICMP_HEAD *)NetbufGetByte (Packet, 0, NULL);
612 ASSERT (IcmpHead != NULL);
613 if (IcmpHead->Checksum == 0) {
614 Checksum = &IcmpHead->Checksum;
615 }
616
617 break;
618
619 default:
620 break;
621 }
622
623 if (Checksum != NULL) {
624 //
625 // Calculate the checksum for upper layer protocol if it is not calculated due to lack of
626 // IPv6 source address.
627 //
628 PacketChecksum = NetbufChecksum (Packet);
629 PseudoChecksum = NetIp6PseudoHeadChecksum (
630 &Head->SourceAddress,
631 &Head->DestinationAddress,
632 NextHeader,
633 Packet->TotalSize
634 );
635 *Checksum = (UINT16) ~NetAddChecksum (PacketChecksum, PseudoChecksum);
636 }
637
638 Status = Ip6IpSecProcessPacket (
639 IpSb,
640 &Head,
641 LastHeader, // no need get the lasthead value for output
642 &Packet,
643 &ExtHdrs,
644 &ExtHdrsLen,
645 EfiIPsecOutBound,
646 Context
647 );
648
649 if (EFI_ERROR (Status)) {
650 return Status;
651 }
652
653 LastHeader = NULL;
654 //
655 // Check incoming parameters.
656 //
657 if (!Ip6IsExtsValid (
658 IpSb,
659 Packet,
660 &Head->NextHeader,
661 ExtHdrs,
662 ExtHdrsLen,
663 FALSE,
664 NULL,
665 &LastHeader,
666 &RealExtLen,
667 &UnFragmentHdrsLen,
668 NULL
669 ))
670 {
671 return EFI_INVALID_PARAMETER;
672 }
673
674 if ((RealExtLen & 0x7) != 0) {
675 return EFI_INVALID_PARAMETER;
676 }
677
678 LastHeaderBackup = *LastHeader;
679
680 //
681 // Perform next hop determination:
682 // For multicast packets, the next-hop is always the destination address and
683 // is considered to be on-link.
684 //
685 if (IP6_IS_MULTICAST (&Head->DestinationAddress)) {
686 IP6_COPY_ADDRESS (&NextHop, &Head->DestinationAddress);
687 } else {
688 //
689 // For unicast packets, use a combination of the Destination Cache, the Prefix List
690 // and the Default Router List to determine the IP address of the appropriate next hop.
691 //
692
693 NeighborCache = Ip6FindNeighborEntry (IpSb, &Head->DestinationAddress);
694 if (NeighborCache != NULL) {
695 //
696 // Hit Neighbor Cache.
697 //
698 IP6_COPY_ADDRESS (&NextHop, &Head->DestinationAddress);
699 } else {
700 //
701 // Not in Neighbor Cache, check Router cache
702 //
703 RouteCache = Ip6Route (IpSb, &Head->DestinationAddress, &Head->SourceAddress);
704 if (RouteCache == NULL) {
705 return EFI_NOT_FOUND;
706 }
707
708 IP6_COPY_ADDRESS (&NextHop, &RouteCache->NextHop);
709 Ip6FreeRouteCacheEntry (RouteCache);
710 }
711 }
712
713 //
714 // Examines the Neighbor Cache for link-layer information about that neighbor.
715 // DO NOT create neighbor cache if neighbor is itself - when reporting ICMP error.
716 //
717 if (!IP6_IS_MULTICAST (&NextHop) && !EFI_IP6_EQUAL (&Head->DestinationAddress, &Head->SourceAddress)) {
718 NeighborCache = Ip6FindNeighborEntry (IpSb, &NextHop);
719 if (NeighborCache == NULL) {
720 NeighborCache = Ip6CreateNeighborEntry (IpSb, Ip6OnArpResolved, &NextHop, NULL);
721
722 if (NeighborCache == NULL) {
723 return EFI_OUT_OF_RESOURCES;
724 }
725
726 //
727 // Send out multicast neighbor solicitation for address resolution immediately.
728 //
729 Ip6CreateSNMulticastAddr (&NeighborCache->Neighbor, &Destination);
730 Status = Ip6SelectSourceAddress (IpSb, &NeighborCache->Neighbor, &Source);
731 if (EFI_ERROR (Status)) {
732 return Status;
733 }
734
735 Status = Ip6SendNeighborSolicit (
736 IpSb,
737 &Source,
738 &Destination,
739 &NeighborCache->Neighbor,
740 &IpSb->SnpMode.CurrentAddress
741 );
742 if (EFI_ERROR (Status)) {
743 return Status;
744 }
745
746 --NeighborCache->Transmit;
747 NeighborCache->Ticks = IP6_GET_TICKS (IpSb->RetransTimer) + 1;
748 }
749
750 NeighborCache->Interface = IpIf;
751 }
752
753 UpdatedExtHdrs = NULL;
754 ExtHdrsBackup = NULL;
755 NextHeaderBackup = 0;
756 FragmentHeadInserted = FALSE;
757
758 //
759 // Check whether we received Packet Too Big message for the packet sent to the
760 // Destination. If yes include a Fragment Header in the subsequent packets.
761 //
762 RouteEntry = Ip6FindRouteEntry (
763 IpSb->RouteTable,
764 &Head->DestinationAddress,
765 NULL
766 );
767 if (RouteEntry != NULL) {
768 if ((RouteEntry->Flag & IP6_PACKET_TOO_BIG) == IP6_PACKET_TOO_BIG) {
769 //
770 // FragmentHead is inserted after Hop-by-Hop Options header, Destination
771 // Options header (first occur), Routing header, and before Fragment header,
772 // Authentication header, Encapsulating Security Payload header, and
773 // Destination Options header (last occur), and upper-layer header.
774 //
775 Status = Ip6FillFragmentHeader (
776 IpSb,
777 Head->NextHeader,
778 LastHeaderBackup,
779 ExtHdrs,
780 ExtHdrsLen,
781 0,
782 &UpdatedExtHdrs
783 );
784 if (EFI_ERROR (Status)) {
785 return Status;
786 }
787
788 if ((ExtHdrs == NULL) && (ExtHdrsLen == 0)) {
789 NextHeaderBackup = Head->NextHeader;
790 Head->NextHeader = IP6_FRAGMENT;
791 }
792
793 ExtHdrsBackup = ExtHdrs;
794 ExtHdrs = UpdatedExtHdrs;
795 ExtHdrsLen = ExtHdrsLen + sizeof (IP6_FRAGMENT_HEADER);
796 RealExtLen = RealExtLen + sizeof (IP6_FRAGMENT_HEADER);
797
798 mIp6Id++;
799
800 FragmentHeadInserted = TRUE;
801 }
802
803 Ip6FreeRouteEntry (RouteEntry);
804 }
805
806 //
807 // OK, selected the source and route, fragment the packet then send
808 // them. Tag each fragment other than the first one as spawn from it.
809 // Each extension header is an integer multiple of 8 octets long, in
810 // order to retain 8-octet alignment for subsequent headers.
811 //
812 Mtu = IpSb->MaxPacketSize + sizeof (EFI_IP6_HEADER);
813 HeadLen = sizeof (EFI_IP6_HEADER) + RealExtLen;
814
815 if (Packet->TotalSize + HeadLen > Mtu) {
816 //
817 // Remove the inserted Fragment Header since we need fragment the packet.
818 //
819 if (FragmentHeadInserted) {
820 ExtHdrs = ExtHdrsBackup;
821 ExtHdrsLen = ExtHdrsLen - sizeof (IP6_FRAGMENT_HEADER);
822
823 if ((ExtHdrs == NULL) && (ExtHdrsLen == 0)) {
824 Head->NextHeader = NextHeaderBackup;
825 }
826 }
827
828 FragmentHdrsLen = ExtHdrsLen - UnFragmentHdrsLen;
829
830 //
831 // The packet is beyond the maximum which can be described through the
832 // fragment offset field in Fragment header.
833 //
834 if ((((Packet->TotalSize + FragmentHdrsLen) >> 3) & (~0x1fff)) != 0) {
835 Status = EFI_BAD_BUFFER_SIZE;
836 goto Error;
837 }
838
839 if (FragmentHdrsLen != 0) {
840 //
841 // Append the fragmentable extension hdrs before the upper layer payload
842 // to form a new NET_BUF. This NET_BUF contains all the buffer which will
843 // be fragmented below.
844 //
845 TmpPacket = NetbufGetFragment (Packet, 0, Packet->TotalSize, FragmentHdrsLen);
846 ASSERT (TmpPacket != NULL);
847
848 //
849 // Allocate the space to contain the fragmentable hdrs and copy the data.
850 //
851 Buf = NetbufAllocSpace (TmpPacket, FragmentHdrsLen, TRUE);
852 ASSERT (Buf != NULL);
853 CopyMem (Buf, ExtHdrs + UnFragmentHdrsLen, FragmentHdrsLen);
854
855 //
856 // Free the old Packet.
857 //
858 NetbufFree (Packet);
859 Packet = TmpPacket;
860 }
861
862 //
863 // The unfragment part which appears in every fragmented IPv6 packet includes
864 // the IPv6 header, the unfragmentable extension hdrs and the fragment header.
865 //
866 UnFragmentLen = sizeof (EFI_IP6_HEADER) + UnFragmentHdrsLen + sizeof (IP6_FRAGMENT_HEADER);
867
868 //
869 // Mtu now is the length of the fragment part in a full-length fragment.
870 //
871 Mtu = (Mtu - UnFragmentLen) & (~0x07);
872 Num = (Packet->TotalSize + Mtu - 1) / Mtu;
873
874 for (Index = 0, Offset = 0, PacketLen = Mtu; Index < Num; Index++) {
875 //
876 // Get fragment from the Packet, append UnFragmentLen spare buffer
877 // before the fragmented data, the corresponding data is filled in later.
878 //
879 Fragment = NetbufGetFragment (Packet, Offset, PacketLen, UnFragmentLen);
880 if (Fragment == NULL) {
881 Status = EFI_OUT_OF_RESOURCES;
882 goto Error;
883 }
884
885 FragmentOffset = (UINT16)((UINT16)Offset | 0x1);
886 if (Index == Num - 1) {
887 //
888 // The last fragment, clear the M flag.
889 //
890 FragmentOffset &= (~0x1);
891 }
892
893 Status = Ip6PrependHead (
894 IpSb,
895 Fragment,
896 Head,
897 FragmentOffset,
898 ExtHdrs,
899 ExtHdrsLen,
900 LastHeaderBackup,
901 UnFragmentLen
902 );
903 ASSERT (Status == EFI_SUCCESS);
904
905 Status = Ip6SendFrame (
906 IpIf,
907 IpInstance,
908 Fragment,
909 &NextHop,
910 Ip6SysPacketSent,
911 Packet
912 );
913 if (EFI_ERROR (Status)) {
914 goto Error;
915 }
916
917 //
918 // The last fragment of upper layer packet, update the IP6 token status.
919 //
920 if ((Index == Num -1) && (Context != NULL)) {
921 Wrap = (IP6_TXTOKEN_WRAP *)Context;
922 Wrap->Token->Status = Status;
923 }
924
925 Offset += PacketLen;
926 PacketLen = Packet->TotalSize - Offset;
927 if (PacketLen > Mtu) {
928 PacketLen = Mtu;
929 }
930 }
931
932 NetbufFree (Packet);
933 mIp6Id++;
934
935 if (UpdatedExtHdrs != NULL) {
936 FreePool (UpdatedExtHdrs);
937 }
938
939 return EFI_SUCCESS;
940 }
941
942 //
943 // Need not fragment the packet, send it in one frame.
944 //
945 PacketHead = (EFI_IP6_HEADER *)NetbufAllocSpace (Packet, HeadLen, NET_BUF_HEAD);
946 if (PacketHead == NULL) {
947 Status = EFI_BAD_BUFFER_SIZE;
948 goto Error;
949 }
950
951 CopyMem (PacketHead, Head, sizeof (EFI_IP6_HEADER));
952 Packet->Ip.Ip6 = PacketHead;
953
954 if (ExtHdrs != NULL) {
955 Buf = (UINT8 *)(PacketHead + 1);
956 CopyMem (Buf, ExtHdrs, ExtHdrsLen);
957 }
958
959 if (UpdatedExtHdrs != NULL) {
960 //
961 // A Fragment Header is inserted to the packet, update the payload length.
962 //
963 PacketHead->PayloadLength = (UINT16)(NTOHS (PacketHead->PayloadLength) +
964 sizeof (IP6_FRAGMENT_HEADER));
965 PacketHead->PayloadLength = HTONS (PacketHead->PayloadLength);
966 FreePool (UpdatedExtHdrs);
967 }
968
969 return Ip6SendFrame (
970 IpIf,
971 IpInstance,
972 Packet,
973 &NextHop,
974 Callback,
975 Context
976 );
977
978Error:
979 if (UpdatedExtHdrs != NULL) {
980 FreePool (UpdatedExtHdrs);
981 }
982
983 Ip6CancelPacket (IpIf, Packet, Status);
984 return Status;
985}
986
987/**
988 The filter function to find a packet and all its fragments.
989 The packet's fragments have their Context set to the packet.
990
991 @param[in] Frame The frames hold by the low level interface.
992 @param[in] Context Context to the function, which is the packet.
993
994 @retval TRUE This is the packet to cancel or its fragments.
995 @retval FALSE This is an unrelated packet.
996
997**/
998BOOLEAN
999Ip6CancelPacketFragments (
1000 IN IP6_LINK_TX_TOKEN *Frame,
1001 IN VOID *Context
1002 )
1003{
1004 if ((Frame->Packet == (NET_BUF *)Context) || (Frame->Context == Context)) {
1005 return TRUE;
1006 }
1007
1008 return FALSE;
1009}
1010
1011/**
1012 Remove all the frames on the interface that pass the FrameToCancel,
1013 either queued on ARP queues or that have already been delivered to
1014 MNP and not yet recycled.
1015
1016 @param[in] Interface Interface to remove the frames from.
1017 @param[in] IoStatus The transmit status returned to the frames' callback.
1018 @param[in] FrameToCancel Function to select the frame to cancel; NULL to select all.
1019 @param[in] Context Opaque parameters passed to FrameToCancel. Ignored if
1020 FrameToCancel is NULL.
1021
1022**/
1023VOID
1024Ip6CancelFrames (
1025 IN IP6_INTERFACE *Interface,
1026 IN EFI_STATUS IoStatus,
1027 IN IP6_FRAME_TO_CANCEL FrameToCancel OPTIONAL,
1028 IN VOID *Context OPTIONAL
1029 )
1030{
1031 LIST_ENTRY *Entry;
1032 LIST_ENTRY *Next;
1033 IP6_LINK_TX_TOKEN *Token;
1034 IP6_SERVICE *IpSb;
1035 IP6_NEIGHBOR_ENTRY *ArpQue;
1036 EFI_STATUS Status;
1037
1038 IpSb = Interface->Service;
1039 NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
1040
1041 //
1042 // Cancel all the pending frames on ARP requests
1043 //
1044 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Interface->ArpQues) {
1045 ArpQue = NET_LIST_USER_STRUCT (Entry, IP6_NEIGHBOR_ENTRY, ArpList);
1046
1047 Status = Ip6FreeNeighborEntry (
1048 IpSb,
1049 ArpQue,
1050 FALSE,
1051 FALSE,
1052 IoStatus,
1053 FrameToCancel,
1054 Context
1055 );
1056 ASSERT_EFI_ERROR (Status);
1057 }
1058
1059 //
1060 // Cancel all the frames that have been delivered to MNP
1061 // but not yet recycled.
1062 //
1063 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Interface->SentFrames) {
1064 Token = NET_LIST_USER_STRUCT (Entry, IP6_LINK_TX_TOKEN, Link);
1065
1066 if ((FrameToCancel == NULL) || FrameToCancel (Token, Context)) {
1067 IpSb->Mnp->Cancel (IpSb->Mnp, &Token->MnpToken);
1068 }
1069 }
1070}
1071
1072/**
1073 Cancel the Packet and all its fragments.
1074
1075 @param[in] IpIf The interface from which the Packet is sent.
1076 @param[in] Packet The Packet to cancel.
1077 @param[in] IoStatus The status returns to the sender.
1078
1079**/
1080VOID
1081Ip6CancelPacket (
1082 IN IP6_INTERFACE *IpIf,
1083 IN NET_BUF *Packet,
1084 IN EFI_STATUS IoStatus
1085 )
1086{
1087 Ip6CancelFrames (IpIf, IoStatus, Ip6CancelPacketFragments, Packet);
1088}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette