1 | /** @file
|
---|
2 | Code for Processor S3 restoration
|
---|
3 |
|
---|
4 | Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.<BR>
|
---|
5 | SPDX-License-Identifier: BSD-2-Clause-Patent
|
---|
6 |
|
---|
7 | **/
|
---|
8 |
|
---|
9 | #include "PiSmmCpuDxeSmm.h"
|
---|
10 |
|
---|
11 | #pragma pack(1)
|
---|
12 | typedef struct {
|
---|
13 | UINTN Lock;
|
---|
14 | VOID *StackStart;
|
---|
15 | UINTN StackSize;
|
---|
16 | VOID *ApFunction;
|
---|
17 | IA32_DESCRIPTOR GdtrProfile;
|
---|
18 | IA32_DESCRIPTOR IdtrProfile;
|
---|
19 | UINT32 BufferStart;
|
---|
20 | UINT32 Cr3;
|
---|
21 | UINTN InitializeFloatingPointUnitsAddress;
|
---|
22 | } MP_CPU_EXCHANGE_INFO;
|
---|
23 | #pragma pack()
|
---|
24 |
|
---|
25 | typedef struct {
|
---|
26 | UINT8 *RendezvousFunnelAddress;
|
---|
27 | UINTN PModeEntryOffset;
|
---|
28 | UINTN FlatJumpOffset;
|
---|
29 | UINTN Size;
|
---|
30 | UINTN LModeEntryOffset;
|
---|
31 | UINTN LongJumpOffset;
|
---|
32 | } MP_ASSEMBLY_ADDRESS_MAP;
|
---|
33 |
|
---|
34 | //
|
---|
35 | // Flags used when program the register.
|
---|
36 | //
|
---|
37 | typedef struct {
|
---|
38 | volatile UINTN MemoryMappedLock; // Spinlock used to program mmio
|
---|
39 | volatile UINT32 *CoreSemaphoreCount; // Semaphore container used to program
|
---|
40 | // core level semaphore.
|
---|
41 | volatile UINT32 *PackageSemaphoreCount; // Semaphore container used to program
|
---|
42 | // package level semaphore.
|
---|
43 | } PROGRAM_CPU_REGISTER_FLAGS;
|
---|
44 |
|
---|
45 | //
|
---|
46 | // Signal that SMM BASE relocation is complete.
|
---|
47 | //
|
---|
48 | volatile BOOLEAN mInitApsAfterSmmBaseReloc;
|
---|
49 |
|
---|
50 | /**
|
---|
51 | Get starting address and size of the rendezvous entry for APs.
|
---|
52 | Information for fixing a jump instruction in the code is also returned.
|
---|
53 |
|
---|
54 | @param AddressMap Output buffer for address map information.
|
---|
55 | **/
|
---|
56 | VOID *
|
---|
57 | EFIAPI
|
---|
58 | AsmGetAddressMap (
|
---|
59 | MP_ASSEMBLY_ADDRESS_MAP *AddressMap
|
---|
60 | );
|
---|
61 |
|
---|
62 | #define LEGACY_REGION_SIZE (2 * 0x1000)
|
---|
63 | #define LEGACY_REGION_BASE (0xA0000 - LEGACY_REGION_SIZE)
|
---|
64 |
|
---|
65 | PROGRAM_CPU_REGISTER_FLAGS mCpuFlags;
|
---|
66 | ACPI_CPU_DATA mAcpiCpuData;
|
---|
67 | volatile UINT32 mNumberToFinish;
|
---|
68 | MP_CPU_EXCHANGE_INFO *mExchangeInfo;
|
---|
69 | BOOLEAN mRestoreSmmConfigurationInS3 = FALSE;
|
---|
70 |
|
---|
71 | //
|
---|
72 | // S3 boot flag
|
---|
73 | //
|
---|
74 | BOOLEAN mSmmS3Flag = FALSE;
|
---|
75 |
|
---|
76 | //
|
---|
77 | // Pointer to structure used during S3 Resume
|
---|
78 | //
|
---|
79 | SMM_S3_RESUME_STATE *mSmmS3ResumeState = NULL;
|
---|
80 |
|
---|
81 | BOOLEAN mAcpiS3Enable = TRUE;
|
---|
82 |
|
---|
83 | UINT8 *mApHltLoopCode = NULL;
|
---|
84 | UINT8 mApHltLoopCodeTemplate[] = {
|
---|
85 | 0x8B, 0x44, 0x24, 0x04, // mov eax, dword ptr [esp+4]
|
---|
86 | 0xF0, 0xFF, 0x08, // lock dec dword ptr [eax]
|
---|
87 | 0xFA, // cli
|
---|
88 | 0xF4, // hlt
|
---|
89 | 0xEB, 0xFC // jmp $-2
|
---|
90 | };
|
---|
91 |
|
---|
92 | /**
|
---|
93 | Sync up the MTRR values for all processors.
|
---|
94 |
|
---|
95 | @param MtrrTable Table holding fixed/variable MTRR values to be loaded.
|
---|
96 | **/
|
---|
97 | VOID
|
---|
98 | EFIAPI
|
---|
99 | LoadMtrrData (
|
---|
100 | EFI_PHYSICAL_ADDRESS MtrrTable
|
---|
101 | )
|
---|
102 | /*++
|
---|
103 |
|
---|
104 | Routine Description:
|
---|
105 |
|
---|
106 | Sync up the MTRR values for all processors.
|
---|
107 |
|
---|
108 | Arguments:
|
---|
109 |
|
---|
110 | Returns:
|
---|
111 | None
|
---|
112 |
|
---|
113 | --*/
|
---|
114 | {
|
---|
115 | MTRR_SETTINGS *MtrrSettings;
|
---|
116 |
|
---|
117 | MtrrSettings = (MTRR_SETTINGS *) (UINTN) MtrrTable;
|
---|
118 | MtrrSetAllMtrrs (MtrrSettings);
|
---|
119 | }
|
---|
120 |
|
---|
121 | /**
|
---|
122 | Increment semaphore by 1.
|
---|
123 |
|
---|
124 | @param Sem IN: 32-bit unsigned integer
|
---|
125 |
|
---|
126 | **/
|
---|
127 | VOID
|
---|
128 | S3ReleaseSemaphore (
|
---|
129 | IN OUT volatile UINT32 *Sem
|
---|
130 | )
|
---|
131 | {
|
---|
132 | InterlockedIncrement (Sem);
|
---|
133 | }
|
---|
134 |
|
---|
135 | /**
|
---|
136 | Decrement the semaphore by 1 if it is not zero.
|
---|
137 |
|
---|
138 | Performs an atomic decrement operation for semaphore.
|
---|
139 | The compare exchange operation must be performed using
|
---|
140 | MP safe mechanisms.
|
---|
141 |
|
---|
142 | @param Sem IN: 32-bit unsigned integer
|
---|
143 |
|
---|
144 | **/
|
---|
145 | VOID
|
---|
146 | S3WaitForSemaphore (
|
---|
147 | IN OUT volatile UINT32 *Sem
|
---|
148 | )
|
---|
149 | {
|
---|
150 | UINT32 Value;
|
---|
151 |
|
---|
152 | do {
|
---|
153 | Value = *Sem;
|
---|
154 | } while (Value == 0 ||
|
---|
155 | InterlockedCompareExchange32 (
|
---|
156 | Sem,
|
---|
157 | Value,
|
---|
158 | Value - 1
|
---|
159 | ) != Value);
|
---|
160 | }
|
---|
161 |
|
---|
162 | /**
|
---|
163 | Read / write CR value.
|
---|
164 |
|
---|
165 | @param[in] CrIndex The CR index which need to read/write.
|
---|
166 | @param[in] Read Read or write. TRUE is read.
|
---|
167 | @param[in,out] CrValue CR value.
|
---|
168 |
|
---|
169 | @retval EFI_SUCCESS means read/write success, else return EFI_UNSUPPORTED.
|
---|
170 | **/
|
---|
171 | UINTN
|
---|
172 | ReadWriteCr (
|
---|
173 | IN UINT32 CrIndex,
|
---|
174 | IN BOOLEAN Read,
|
---|
175 | IN OUT UINTN *CrValue
|
---|
176 | )
|
---|
177 | {
|
---|
178 | switch (CrIndex) {
|
---|
179 | case 0:
|
---|
180 | if (Read) {
|
---|
181 | *CrValue = AsmReadCr0 ();
|
---|
182 | } else {
|
---|
183 | AsmWriteCr0 (*CrValue);
|
---|
184 | }
|
---|
185 | break;
|
---|
186 | case 2:
|
---|
187 | if (Read) {
|
---|
188 | *CrValue = AsmReadCr2 ();
|
---|
189 | } else {
|
---|
190 | AsmWriteCr2 (*CrValue);
|
---|
191 | }
|
---|
192 | break;
|
---|
193 | case 3:
|
---|
194 | if (Read) {
|
---|
195 | *CrValue = AsmReadCr3 ();
|
---|
196 | } else {
|
---|
197 | AsmWriteCr3 (*CrValue);
|
---|
198 | }
|
---|
199 | break;
|
---|
200 | case 4:
|
---|
201 | if (Read) {
|
---|
202 | *CrValue = AsmReadCr4 ();
|
---|
203 | } else {
|
---|
204 | AsmWriteCr4 (*CrValue);
|
---|
205 | }
|
---|
206 | break;
|
---|
207 | default:
|
---|
208 | return EFI_UNSUPPORTED;;
|
---|
209 | }
|
---|
210 |
|
---|
211 | return EFI_SUCCESS;
|
---|
212 | }
|
---|
213 |
|
---|
214 | /**
|
---|
215 | Initialize the CPU registers from a register table.
|
---|
216 |
|
---|
217 | @param[in] RegisterTable The register table for this AP.
|
---|
218 | @param[in] ApLocation AP location info for this ap.
|
---|
219 | @param[in] CpuStatus CPU status info for this CPU.
|
---|
220 | @param[in] CpuFlags Flags data structure used when program the register.
|
---|
221 |
|
---|
222 | @note This service could be called by BSP/APs.
|
---|
223 | **/
|
---|
224 | VOID
|
---|
225 | ProgramProcessorRegister (
|
---|
226 | IN CPU_REGISTER_TABLE *RegisterTable,
|
---|
227 | IN EFI_CPU_PHYSICAL_LOCATION *ApLocation,
|
---|
228 | IN CPU_STATUS_INFORMATION *CpuStatus,
|
---|
229 | IN PROGRAM_CPU_REGISTER_FLAGS *CpuFlags
|
---|
230 | )
|
---|
231 | {
|
---|
232 | CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
|
---|
233 | UINTN Index;
|
---|
234 | UINTN Value;
|
---|
235 | CPU_REGISTER_TABLE_ENTRY *RegisterTableEntryHead;
|
---|
236 | volatile UINT32 *SemaphorePtr;
|
---|
237 | UINT32 FirstThread;
|
---|
238 | UINT32 PackageThreadsCount;
|
---|
239 | UINT32 CurrentThread;
|
---|
240 | UINTN ProcessorIndex;
|
---|
241 | UINTN ValidThreadCount;
|
---|
242 | UINT32 *ValidCoreCountPerPackage;
|
---|
243 | EFI_STATUS Status;
|
---|
244 | UINT64 CurrentValue;
|
---|
245 |
|
---|
246 | //
|
---|
247 | // Traverse Register Table of this logical processor
|
---|
248 | //
|
---|
249 | RegisterTableEntryHead = (CPU_REGISTER_TABLE_ENTRY *) (UINTN) RegisterTable->RegisterTableEntry;
|
---|
250 |
|
---|
251 | for (Index = 0; Index < RegisterTable->TableLength; Index++) {
|
---|
252 |
|
---|
253 | RegisterTableEntry = &RegisterTableEntryHead[Index];
|
---|
254 |
|
---|
255 | //
|
---|
256 | // Check the type of specified register
|
---|
257 | //
|
---|
258 | switch (RegisterTableEntry->RegisterType) {
|
---|
259 | //
|
---|
260 | // The specified register is Control Register
|
---|
261 | //
|
---|
262 | case ControlRegister:
|
---|
263 | Status = ReadWriteCr (RegisterTableEntry->Index, TRUE, &Value);
|
---|
264 | if (EFI_ERROR (Status)) {
|
---|
265 | break;
|
---|
266 | }
|
---|
267 | if (RegisterTableEntry->TestThenWrite) {
|
---|
268 | CurrentValue = BitFieldRead64 (
|
---|
269 | Value,
|
---|
270 | RegisterTableEntry->ValidBitStart,
|
---|
271 | RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1
|
---|
272 | );
|
---|
273 | if (CurrentValue == RegisterTableEntry->Value) {
|
---|
274 | break;
|
---|
275 | }
|
---|
276 | }
|
---|
277 | Value = (UINTN) BitFieldWrite64 (
|
---|
278 | Value,
|
---|
279 | RegisterTableEntry->ValidBitStart,
|
---|
280 | RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
|
---|
281 | RegisterTableEntry->Value
|
---|
282 | );
|
---|
283 | ReadWriteCr (RegisterTableEntry->Index, FALSE, &Value);
|
---|
284 | break;
|
---|
285 | //
|
---|
286 | // The specified register is Model Specific Register
|
---|
287 | //
|
---|
288 | case Msr:
|
---|
289 | if (RegisterTableEntry->TestThenWrite) {
|
---|
290 | Value = (UINTN)AsmReadMsr64 (RegisterTableEntry->Index);
|
---|
291 | if (RegisterTableEntry->ValidBitLength >= 64) {
|
---|
292 | if (Value == RegisterTableEntry->Value) {
|
---|
293 | break;
|
---|
294 | }
|
---|
295 | } else {
|
---|
296 | CurrentValue = BitFieldRead64 (
|
---|
297 | Value,
|
---|
298 | RegisterTableEntry->ValidBitStart,
|
---|
299 | RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1
|
---|
300 | );
|
---|
301 | if (CurrentValue == RegisterTableEntry->Value) {
|
---|
302 | break;
|
---|
303 | }
|
---|
304 | }
|
---|
305 | }
|
---|
306 |
|
---|
307 | //
|
---|
308 | // If this function is called to restore register setting after INIT signal,
|
---|
309 | // there is no need to restore MSRs in register table.
|
---|
310 | //
|
---|
311 | if (RegisterTableEntry->ValidBitLength >= 64) {
|
---|
312 | //
|
---|
313 | // If length is not less than 64 bits, then directly write without reading
|
---|
314 | //
|
---|
315 | AsmWriteMsr64 (
|
---|
316 | RegisterTableEntry->Index,
|
---|
317 | RegisterTableEntry->Value
|
---|
318 | );
|
---|
319 | } else {
|
---|
320 | //
|
---|
321 | // Set the bit section according to bit start and length
|
---|
322 | //
|
---|
323 | AsmMsrBitFieldWrite64 (
|
---|
324 | RegisterTableEntry->Index,
|
---|
325 | RegisterTableEntry->ValidBitStart,
|
---|
326 | RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
|
---|
327 | RegisterTableEntry->Value
|
---|
328 | );
|
---|
329 | }
|
---|
330 | break;
|
---|
331 | //
|
---|
332 | // MemoryMapped operations
|
---|
333 | //
|
---|
334 | case MemoryMapped:
|
---|
335 | AcquireSpinLock (&CpuFlags->MemoryMappedLock);
|
---|
336 | MmioBitFieldWrite32 (
|
---|
337 | (UINTN)(RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32)),
|
---|
338 | RegisterTableEntry->ValidBitStart,
|
---|
339 | RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
|
---|
340 | (UINT32)RegisterTableEntry->Value
|
---|
341 | );
|
---|
342 | ReleaseSpinLock (&CpuFlags->MemoryMappedLock);
|
---|
343 | break;
|
---|
344 | //
|
---|
345 | // Enable or disable cache
|
---|
346 | //
|
---|
347 | case CacheControl:
|
---|
348 | //
|
---|
349 | // If value of the entry is 0, then disable cache. Otherwise, enable cache.
|
---|
350 | //
|
---|
351 | if (RegisterTableEntry->Value == 0) {
|
---|
352 | AsmDisableCache ();
|
---|
353 | } else {
|
---|
354 | AsmEnableCache ();
|
---|
355 | }
|
---|
356 | break;
|
---|
357 |
|
---|
358 | case Semaphore:
|
---|
359 | // Semaphore works logic like below:
|
---|
360 | //
|
---|
361 | // V(x) = LibReleaseSemaphore (Semaphore[FirstThread + x]);
|
---|
362 | // P(x) = LibWaitForSemaphore (Semaphore[FirstThread + x]);
|
---|
363 | //
|
---|
364 | // All threads (T0...Tn) waits in P() line and continues running
|
---|
365 | // together.
|
---|
366 | //
|
---|
367 | //
|
---|
368 | // T0 T1 ... Tn
|
---|
369 | //
|
---|
370 | // V(0...n) V(0...n) ... V(0...n)
|
---|
371 | // n * P(0) n * P(1) ... n * P(n)
|
---|
372 | //
|
---|
373 | ASSERT (
|
---|
374 | (ApLocation != NULL) &&
|
---|
375 | (CpuStatus->ValidCoreCountPerPackage != 0) &&
|
---|
376 | (CpuFlags->CoreSemaphoreCount != NULL) &&
|
---|
377 | (CpuFlags->PackageSemaphoreCount != NULL)
|
---|
378 | );
|
---|
379 | switch (RegisterTableEntry->Value) {
|
---|
380 | case CoreDepType:
|
---|
381 | SemaphorePtr = CpuFlags->CoreSemaphoreCount;
|
---|
382 | //
|
---|
383 | // Get Offset info for the first thread in the core which current thread belongs to.
|
---|
384 | //
|
---|
385 | FirstThread = (ApLocation->Package * CpuStatus->MaxCoreCount + ApLocation->Core) * CpuStatus->MaxThreadCount;
|
---|
386 | CurrentThread = FirstThread + ApLocation->Thread;
|
---|
387 | //
|
---|
388 | // First Notify all threads in current Core that this thread has ready.
|
---|
389 | //
|
---|
390 | for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount; ProcessorIndex ++) {
|
---|
391 | S3ReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
|
---|
392 | }
|
---|
393 | //
|
---|
394 | // Second, check whether all valid threads in current core have ready.
|
---|
395 | //
|
---|
396 | for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount; ProcessorIndex ++) {
|
---|
397 | S3WaitForSemaphore (&SemaphorePtr[CurrentThread]);
|
---|
398 | }
|
---|
399 | break;
|
---|
400 |
|
---|
401 | case PackageDepType:
|
---|
402 | SemaphorePtr = CpuFlags->PackageSemaphoreCount;
|
---|
403 | ValidCoreCountPerPackage = (UINT32 *)(UINTN)CpuStatus->ValidCoreCountPerPackage;
|
---|
404 | //
|
---|
405 | // Get Offset info for the first thread in the package which current thread belongs to.
|
---|
406 | //
|
---|
407 | FirstThread = ApLocation->Package * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount;
|
---|
408 | //
|
---|
409 | // Get the possible threads count for current package.
|
---|
410 | //
|
---|
411 | PackageThreadsCount = CpuStatus->MaxThreadCount * CpuStatus->MaxCoreCount;
|
---|
412 | CurrentThread = FirstThread + CpuStatus->MaxThreadCount * ApLocation->Core + ApLocation->Thread;
|
---|
413 | //
|
---|
414 | // Get the valid thread count for current package.
|
---|
415 | //
|
---|
416 | ValidThreadCount = CpuStatus->MaxThreadCount * ValidCoreCountPerPackage[ApLocation->Package];
|
---|
417 |
|
---|
418 | //
|
---|
419 | // Different packages may have different valid cores in them. If driver maintail clearly
|
---|
420 | // cores number in different packages, the logic will be much complicated.
|
---|
421 | // Here driver just simply records the max core number in all packages and use it as expect
|
---|
422 | // core number for all packages.
|
---|
423 | // In below two steps logic, first current thread will Release semaphore for each thread
|
---|
424 | // in current package. Maybe some threads are not valid in this package, but driver don't
|
---|
425 | // care. Second, driver will let current thread wait semaphore for all valid threads in
|
---|
426 | // current package. Because only the valid threads will do release semaphore for this
|
---|
427 | // thread, driver here only need to wait the valid thread count.
|
---|
428 | //
|
---|
429 |
|
---|
430 | //
|
---|
431 | // First Notify all threads in current package that this thread has ready.
|
---|
432 | //
|
---|
433 | for (ProcessorIndex = 0; ProcessorIndex < PackageThreadsCount ; ProcessorIndex ++) {
|
---|
434 | S3ReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
|
---|
435 | }
|
---|
436 | //
|
---|
437 | // Second, check whether all valid threads in current package have ready.
|
---|
438 | //
|
---|
439 | for (ProcessorIndex = 0; ProcessorIndex < ValidThreadCount; ProcessorIndex ++) {
|
---|
440 | S3WaitForSemaphore (&SemaphorePtr[CurrentThread]);
|
---|
441 | }
|
---|
442 | break;
|
---|
443 |
|
---|
444 | default:
|
---|
445 | break;
|
---|
446 | }
|
---|
447 | break;
|
---|
448 |
|
---|
449 | default:
|
---|
450 | break;
|
---|
451 | }
|
---|
452 | }
|
---|
453 | }
|
---|
454 |
|
---|
455 | /**
|
---|
456 |
|
---|
457 | Set Processor register for one AP.
|
---|
458 |
|
---|
459 | @param PreSmmRegisterTable Use pre Smm register table or register table.
|
---|
460 |
|
---|
461 | **/
|
---|
462 | VOID
|
---|
463 | SetRegister (
|
---|
464 | IN BOOLEAN PreSmmRegisterTable
|
---|
465 | )
|
---|
466 | {
|
---|
467 | CPU_REGISTER_TABLE *RegisterTable;
|
---|
468 | CPU_REGISTER_TABLE *RegisterTables;
|
---|
469 | UINT32 InitApicId;
|
---|
470 | UINTN ProcIndex;
|
---|
471 | UINTN Index;
|
---|
472 |
|
---|
473 | if (PreSmmRegisterTable) {
|
---|
474 | RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable;
|
---|
475 | } else {
|
---|
476 | RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable;
|
---|
477 | }
|
---|
478 |
|
---|
479 | InitApicId = GetInitialApicId ();
|
---|
480 | RegisterTable = NULL;
|
---|
481 | ProcIndex = (UINTN)-1;
|
---|
482 | for (Index = 0; Index < mAcpiCpuData.NumberOfCpus; Index++) {
|
---|
483 | if (RegisterTables[Index].InitialApicId == InitApicId) {
|
---|
484 | RegisterTable = &RegisterTables[Index];
|
---|
485 | ProcIndex = Index;
|
---|
486 | break;
|
---|
487 | }
|
---|
488 | }
|
---|
489 | ASSERT (RegisterTable != NULL);
|
---|
490 |
|
---|
491 | if (mAcpiCpuData.ApLocation != 0) {
|
---|
492 | ProgramProcessorRegister (
|
---|
493 | RegisterTable,
|
---|
494 | (EFI_CPU_PHYSICAL_LOCATION *)(UINTN)mAcpiCpuData.ApLocation + ProcIndex,
|
---|
495 | &mAcpiCpuData.CpuStatus,
|
---|
496 | &mCpuFlags
|
---|
497 | );
|
---|
498 | } else {
|
---|
499 | ProgramProcessorRegister (
|
---|
500 | RegisterTable,
|
---|
501 | NULL,
|
---|
502 | &mAcpiCpuData.CpuStatus,
|
---|
503 | &mCpuFlags
|
---|
504 | );
|
---|
505 | }
|
---|
506 | }
|
---|
507 |
|
---|
508 | /**
|
---|
509 | AP initialization before then after SMBASE relocation in the S3 boot path.
|
---|
510 | **/
|
---|
511 | VOID
|
---|
512 | InitializeAp (
|
---|
513 | VOID
|
---|
514 | )
|
---|
515 | {
|
---|
516 | UINTN TopOfStack;
|
---|
517 | UINT8 Stack[128];
|
---|
518 |
|
---|
519 | LoadMtrrData (mAcpiCpuData.MtrrTable);
|
---|
520 |
|
---|
521 | SetRegister (TRUE);
|
---|
522 |
|
---|
523 | //
|
---|
524 | // Count down the number with lock mechanism.
|
---|
525 | //
|
---|
526 | InterlockedDecrement (&mNumberToFinish);
|
---|
527 |
|
---|
528 | //
|
---|
529 | // Wait for BSP to signal SMM Base relocation done.
|
---|
530 | //
|
---|
531 | while (!mInitApsAfterSmmBaseReloc) {
|
---|
532 | CpuPause ();
|
---|
533 | }
|
---|
534 |
|
---|
535 | ProgramVirtualWireMode ();
|
---|
536 | DisableLvtInterrupts ();
|
---|
537 |
|
---|
538 | SetRegister (FALSE);
|
---|
539 |
|
---|
540 | //
|
---|
541 | // Place AP into the safe code, count down the number with lock mechanism in the safe code.
|
---|
542 | //
|
---|
543 | TopOfStack = (UINTN) Stack + sizeof (Stack);
|
---|
544 | TopOfStack &= ~(UINTN) (CPU_STACK_ALIGNMENT - 1);
|
---|
545 | CopyMem ((VOID *) (UINTN) mApHltLoopCode, mApHltLoopCodeTemplate, sizeof (mApHltLoopCodeTemplate));
|
---|
546 | TransferApToSafeState ((UINTN)mApHltLoopCode, TopOfStack, (UINTN)&mNumberToFinish);
|
---|
547 | }
|
---|
548 |
|
---|
549 | /**
|
---|
550 | Prepares startup vector for APs.
|
---|
551 |
|
---|
552 | This function prepares startup vector for APs.
|
---|
553 |
|
---|
554 | @param WorkingBuffer The address of the work buffer.
|
---|
555 | **/
|
---|
556 | VOID
|
---|
557 | PrepareApStartupVector (
|
---|
558 | EFI_PHYSICAL_ADDRESS WorkingBuffer
|
---|
559 | )
|
---|
560 | {
|
---|
561 | EFI_PHYSICAL_ADDRESS StartupVector;
|
---|
562 | MP_ASSEMBLY_ADDRESS_MAP AddressMap;
|
---|
563 |
|
---|
564 | //
|
---|
565 | // Get the address map of startup code for AP,
|
---|
566 | // including code size, and offset of long jump instructions to redirect.
|
---|
567 | //
|
---|
568 | ZeroMem (&AddressMap, sizeof (AddressMap));
|
---|
569 | AsmGetAddressMap (&AddressMap);
|
---|
570 |
|
---|
571 | StartupVector = WorkingBuffer;
|
---|
572 |
|
---|
573 | //
|
---|
574 | // Copy AP startup code to startup vector, and then redirect the long jump
|
---|
575 | // instructions for mode switching.
|
---|
576 | //
|
---|
577 | CopyMem ((VOID *) (UINTN) StartupVector, AddressMap.RendezvousFunnelAddress, AddressMap.Size);
|
---|
578 | *(UINT32 *) (UINTN) (StartupVector + AddressMap.FlatJumpOffset + 3) = (UINT32) (StartupVector + AddressMap.PModeEntryOffset);
|
---|
579 | if (AddressMap.LongJumpOffset != 0) {
|
---|
580 | *(UINT32 *) (UINTN) (StartupVector + AddressMap.LongJumpOffset + 2) = (UINT32) (StartupVector + AddressMap.LModeEntryOffset);
|
---|
581 | }
|
---|
582 |
|
---|
583 | //
|
---|
584 | // Get the start address of exchange data between BSP and AP.
|
---|
585 | //
|
---|
586 | mExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) (StartupVector + AddressMap.Size);
|
---|
587 | ZeroMem ((VOID *) mExchangeInfo, sizeof (MP_CPU_EXCHANGE_INFO));
|
---|
588 |
|
---|
589 | CopyMem ((VOID *) (UINTN) &mExchangeInfo->GdtrProfile, (VOID *) (UINTN) mAcpiCpuData.GdtrProfile, sizeof (IA32_DESCRIPTOR));
|
---|
590 | CopyMem ((VOID *) (UINTN) &mExchangeInfo->IdtrProfile, (VOID *) (UINTN) mAcpiCpuData.IdtrProfile, sizeof (IA32_DESCRIPTOR));
|
---|
591 |
|
---|
592 | mExchangeInfo->StackStart = (VOID *) (UINTN) mAcpiCpuData.StackAddress;
|
---|
593 | mExchangeInfo->StackSize = mAcpiCpuData.StackSize;
|
---|
594 | mExchangeInfo->BufferStart = (UINT32) StartupVector;
|
---|
595 | mExchangeInfo->Cr3 = (UINT32) (AsmReadCr3 ());
|
---|
596 | mExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
|
---|
597 | }
|
---|
598 |
|
---|
599 | /**
|
---|
600 | The function is invoked before SMBASE relocation in S3 path to restores CPU status.
|
---|
601 |
|
---|
602 | The function is invoked before SMBASE relocation in S3 path. It does first time microcode load
|
---|
603 | and restores MTRRs for both BSP and APs.
|
---|
604 |
|
---|
605 | **/
|
---|
606 | VOID
|
---|
607 | InitializeCpuBeforeRebase (
|
---|
608 | VOID
|
---|
609 | )
|
---|
610 | {
|
---|
611 | LoadMtrrData (mAcpiCpuData.MtrrTable);
|
---|
612 |
|
---|
613 | SetRegister (TRUE);
|
---|
614 |
|
---|
615 | ProgramVirtualWireMode ();
|
---|
616 |
|
---|
617 | PrepareApStartupVector (mAcpiCpuData.StartupVector);
|
---|
618 |
|
---|
619 | if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
|
---|
620 | ASSERT (mNumberOfCpus <= mAcpiCpuData.NumberOfCpus);
|
---|
621 | } else {
|
---|
622 | ASSERT (mNumberOfCpus == mAcpiCpuData.NumberOfCpus);
|
---|
623 | }
|
---|
624 | mNumberToFinish = (UINT32)(mNumberOfCpus - 1);
|
---|
625 | mExchangeInfo->ApFunction = (VOID *) (UINTN) InitializeAp;
|
---|
626 |
|
---|
627 | //
|
---|
628 | // Execute code for before SmmBaseReloc. Note: This flag is maintained across S3 boots.
|
---|
629 | //
|
---|
630 | mInitApsAfterSmmBaseReloc = FALSE;
|
---|
631 |
|
---|
632 | //
|
---|
633 | // Send INIT IPI - SIPI to all APs
|
---|
634 | //
|
---|
635 | SendInitSipiSipiAllExcludingSelf ((UINT32)mAcpiCpuData.StartupVector);
|
---|
636 |
|
---|
637 | while (mNumberToFinish > 0) {
|
---|
638 | CpuPause ();
|
---|
639 | }
|
---|
640 | }
|
---|
641 |
|
---|
642 | /**
|
---|
643 | The function is invoked after SMBASE relocation in S3 path to restores CPU status.
|
---|
644 |
|
---|
645 | The function is invoked after SMBASE relocation in S3 path. It restores configuration according to
|
---|
646 | data saved by normal boot path for both BSP and APs.
|
---|
647 |
|
---|
648 | **/
|
---|
649 | VOID
|
---|
650 | InitializeCpuAfterRebase (
|
---|
651 | VOID
|
---|
652 | )
|
---|
653 | {
|
---|
654 | if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
|
---|
655 | ASSERT (mNumberOfCpus <= mAcpiCpuData.NumberOfCpus);
|
---|
656 | } else {
|
---|
657 | ASSERT (mNumberOfCpus == mAcpiCpuData.NumberOfCpus);
|
---|
658 | }
|
---|
659 | mNumberToFinish = (UINT32)(mNumberOfCpus - 1);
|
---|
660 |
|
---|
661 | //
|
---|
662 | // Signal that SMM base relocation is complete and to continue initialization for all APs.
|
---|
663 | //
|
---|
664 | mInitApsAfterSmmBaseReloc = TRUE;
|
---|
665 |
|
---|
666 | //
|
---|
667 | // Must begin set register after all APs have continue their initialization.
|
---|
668 | // This is a requirement to support semaphore mechanism in register table.
|
---|
669 | // Because if semaphore's dependence type is package type, semaphore will wait
|
---|
670 | // for all Aps in one package finishing their tasks before set next register
|
---|
671 | // for all APs. If the Aps not begin its task during BSP doing its task, the
|
---|
672 | // BSP thread will hang because it is waiting for other Aps in the same
|
---|
673 | // package finishing their task.
|
---|
674 | //
|
---|
675 | SetRegister (FALSE);
|
---|
676 |
|
---|
677 | while (mNumberToFinish > 0) {
|
---|
678 | CpuPause ();
|
---|
679 | }
|
---|
680 | }
|
---|
681 |
|
---|
682 | /**
|
---|
683 | Restore SMM Configuration in S3 boot path.
|
---|
684 |
|
---|
685 | **/
|
---|
686 | VOID
|
---|
687 | RestoreSmmConfigurationInS3 (
|
---|
688 | VOID
|
---|
689 | )
|
---|
690 | {
|
---|
691 | if (!mAcpiS3Enable) {
|
---|
692 | return;
|
---|
693 | }
|
---|
694 |
|
---|
695 | //
|
---|
696 | // Restore SMM Configuration in S3 boot path.
|
---|
697 | //
|
---|
698 | if (mRestoreSmmConfigurationInS3) {
|
---|
699 | //
|
---|
700 | // Need make sure gSmst is correct because below function may use them.
|
---|
701 | //
|
---|
702 | gSmst->SmmStartupThisAp = gSmmCpuPrivate->SmmCoreEntryContext.SmmStartupThisAp;
|
---|
703 | gSmst->CurrentlyExecutingCpu = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
|
---|
704 | gSmst->NumberOfCpus = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
|
---|
705 | gSmst->CpuSaveStateSize = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveStateSize;
|
---|
706 | gSmst->CpuSaveState = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveState;
|
---|
707 |
|
---|
708 | //
|
---|
709 | // Configure SMM Code Access Check feature if available.
|
---|
710 | //
|
---|
711 | ConfigSmmCodeAccessCheck ();
|
---|
712 |
|
---|
713 | SmmCpuFeaturesCompleteSmmReadyToLock ();
|
---|
714 |
|
---|
715 | mRestoreSmmConfigurationInS3 = FALSE;
|
---|
716 | }
|
---|
717 | }
|
---|
718 |
|
---|
719 | /**
|
---|
720 | Perform SMM initialization for all processors in the S3 boot path.
|
---|
721 |
|
---|
722 | For a native platform, MP initialization in the S3 boot path is also performed in this function.
|
---|
723 | **/
|
---|
724 | VOID
|
---|
725 | EFIAPI
|
---|
726 | SmmRestoreCpu (
|
---|
727 | VOID
|
---|
728 | )
|
---|
729 | {
|
---|
730 | SMM_S3_RESUME_STATE *SmmS3ResumeState;
|
---|
731 | IA32_DESCRIPTOR Ia32Idtr;
|
---|
732 | IA32_DESCRIPTOR X64Idtr;
|
---|
733 | IA32_IDT_GATE_DESCRIPTOR IdtEntryTable[EXCEPTION_VECTOR_NUMBER];
|
---|
734 | EFI_STATUS Status;
|
---|
735 |
|
---|
736 | DEBUG ((EFI_D_INFO, "SmmRestoreCpu()\n"));
|
---|
737 |
|
---|
738 | mSmmS3Flag = TRUE;
|
---|
739 |
|
---|
740 | //
|
---|
741 | // See if there is enough context to resume PEI Phase
|
---|
742 | //
|
---|
743 | if (mSmmS3ResumeState == NULL) {
|
---|
744 | DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
|
---|
745 | CpuDeadLoop ();
|
---|
746 | }
|
---|
747 |
|
---|
748 | SmmS3ResumeState = mSmmS3ResumeState;
|
---|
749 | ASSERT (SmmS3ResumeState != NULL);
|
---|
750 |
|
---|
751 | if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
|
---|
752 | //
|
---|
753 | // Save the IA32 IDT Descriptor
|
---|
754 | //
|
---|
755 | AsmReadIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
|
---|
756 |
|
---|
757 | //
|
---|
758 | // Setup X64 IDT table
|
---|
759 | //
|
---|
760 | ZeroMem (IdtEntryTable, sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32);
|
---|
761 | X64Idtr.Base = (UINTN) IdtEntryTable;
|
---|
762 | X64Idtr.Limit = (UINT16) (sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32 - 1);
|
---|
763 | AsmWriteIdtr ((IA32_DESCRIPTOR *) &X64Idtr);
|
---|
764 |
|
---|
765 | //
|
---|
766 | // Setup the default exception handler
|
---|
767 | //
|
---|
768 | Status = InitializeCpuExceptionHandlers (NULL);
|
---|
769 | ASSERT_EFI_ERROR (Status);
|
---|
770 |
|
---|
771 | //
|
---|
772 | // Initialize Debug Agent to support source level debug
|
---|
773 | //
|
---|
774 | InitializeDebugAgent (DEBUG_AGENT_INIT_THUNK_PEI_IA32TOX64, (VOID *)&Ia32Idtr, NULL);
|
---|
775 | }
|
---|
776 |
|
---|
777 | //
|
---|
778 | // Skip initialization if mAcpiCpuData is not valid
|
---|
779 | //
|
---|
780 | if (mAcpiCpuData.NumberOfCpus > 0) {
|
---|
781 | //
|
---|
782 | // First time microcode load and restore MTRRs
|
---|
783 | //
|
---|
784 | InitializeCpuBeforeRebase ();
|
---|
785 | }
|
---|
786 |
|
---|
787 | //
|
---|
788 | // Restore SMBASE for BSP and all APs
|
---|
789 | //
|
---|
790 | SmmRelocateBases ();
|
---|
791 |
|
---|
792 | //
|
---|
793 | // Skip initialization if mAcpiCpuData is not valid
|
---|
794 | //
|
---|
795 | if (mAcpiCpuData.NumberOfCpus > 0) {
|
---|
796 | //
|
---|
797 | // Restore MSRs for BSP and all APs
|
---|
798 | //
|
---|
799 | InitializeCpuAfterRebase ();
|
---|
800 | }
|
---|
801 |
|
---|
802 | //
|
---|
803 | // Set a flag to restore SMM configuration in S3 path.
|
---|
804 | //
|
---|
805 | mRestoreSmmConfigurationInS3 = TRUE;
|
---|
806 |
|
---|
807 | DEBUG (( EFI_D_INFO, "SMM S3 Return CS = %x\n", SmmS3ResumeState->ReturnCs));
|
---|
808 | DEBUG (( EFI_D_INFO, "SMM S3 Return Entry Point = %x\n", SmmS3ResumeState->ReturnEntryPoint));
|
---|
809 | DEBUG (( EFI_D_INFO, "SMM S3 Return Context1 = %x\n", SmmS3ResumeState->ReturnContext1));
|
---|
810 | DEBUG (( EFI_D_INFO, "SMM S3 Return Context2 = %x\n", SmmS3ResumeState->ReturnContext2));
|
---|
811 | DEBUG (( EFI_D_INFO, "SMM S3 Return Stack Pointer = %x\n", SmmS3ResumeState->ReturnStackPointer));
|
---|
812 |
|
---|
813 | //
|
---|
814 | // If SMM is in 32-bit mode, then use SwitchStack() to resume PEI Phase
|
---|
815 | //
|
---|
816 | if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) {
|
---|
817 | DEBUG ((EFI_D_INFO, "Call SwitchStack() to return to S3 Resume in PEI Phase\n"));
|
---|
818 |
|
---|
819 | SwitchStack (
|
---|
820 | (SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->ReturnEntryPoint,
|
---|
821 | (VOID *)(UINTN)SmmS3ResumeState->ReturnContext1,
|
---|
822 | (VOID *)(UINTN)SmmS3ResumeState->ReturnContext2,
|
---|
823 | (VOID *)(UINTN)SmmS3ResumeState->ReturnStackPointer
|
---|
824 | );
|
---|
825 | }
|
---|
826 |
|
---|
827 | //
|
---|
828 | // If SMM is in 64-bit mode, then use AsmDisablePaging64() to resume PEI Phase
|
---|
829 | //
|
---|
830 | if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
|
---|
831 | DEBUG ((EFI_D_INFO, "Call AsmDisablePaging64() to return to S3 Resume in PEI Phase\n"));
|
---|
832 | //
|
---|
833 | // Disable interrupt of Debug timer, since new IDT table is for IA32 and will not work in long mode.
|
---|
834 | //
|
---|
835 | SaveAndSetDebugTimerInterrupt (FALSE);
|
---|
836 | //
|
---|
837 | // Restore IA32 IDT table
|
---|
838 | //
|
---|
839 | AsmWriteIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
|
---|
840 | AsmDisablePaging64 (
|
---|
841 | SmmS3ResumeState->ReturnCs,
|
---|
842 | (UINT32)SmmS3ResumeState->ReturnEntryPoint,
|
---|
843 | (UINT32)SmmS3ResumeState->ReturnContext1,
|
---|
844 | (UINT32)SmmS3ResumeState->ReturnContext2,
|
---|
845 | (UINT32)SmmS3ResumeState->ReturnStackPointer
|
---|
846 | );
|
---|
847 | }
|
---|
848 |
|
---|
849 | //
|
---|
850 | // Can not resume PEI Phase
|
---|
851 | //
|
---|
852 | DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
|
---|
853 | CpuDeadLoop ();
|
---|
854 | }
|
---|
855 |
|
---|
856 | /**
|
---|
857 | Initialize SMM S3 resume state structure used during S3 Resume.
|
---|
858 |
|
---|
859 | @param[in] Cr3 The base address of the page tables to use in SMM.
|
---|
860 |
|
---|
861 | **/
|
---|
862 | VOID
|
---|
863 | InitSmmS3ResumeState (
|
---|
864 | IN UINT32 Cr3
|
---|
865 | )
|
---|
866 | {
|
---|
867 | VOID *GuidHob;
|
---|
868 | EFI_SMRAM_DESCRIPTOR *SmramDescriptor;
|
---|
869 | SMM_S3_RESUME_STATE *SmmS3ResumeState;
|
---|
870 | EFI_PHYSICAL_ADDRESS Address;
|
---|
871 | EFI_STATUS Status;
|
---|
872 |
|
---|
873 | if (!mAcpiS3Enable) {
|
---|
874 | return;
|
---|
875 | }
|
---|
876 |
|
---|
877 | GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid);
|
---|
878 | if (GuidHob == NULL) {
|
---|
879 | DEBUG ((
|
---|
880 | DEBUG_ERROR,
|
---|
881 | "ERROR:%a(): HOB(gEfiAcpiVariableGuid=%g) needed by S3 resume doesn't exist!\n",
|
---|
882 | __FUNCTION__,
|
---|
883 | &gEfiAcpiVariableGuid
|
---|
884 | ));
|
---|
885 | CpuDeadLoop ();
|
---|
886 | } else {
|
---|
887 | SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *) GET_GUID_HOB_DATA (GuidHob);
|
---|
888 |
|
---|
889 | DEBUG ((EFI_D_INFO, "SMM S3 SMRAM Structure = %x\n", SmramDescriptor));
|
---|
890 | DEBUG ((EFI_D_INFO, "SMM S3 Structure = %x\n", SmramDescriptor->CpuStart));
|
---|
891 |
|
---|
892 | SmmS3ResumeState = (SMM_S3_RESUME_STATE *)(UINTN)SmramDescriptor->CpuStart;
|
---|
893 | ZeroMem (SmmS3ResumeState, sizeof (SMM_S3_RESUME_STATE));
|
---|
894 |
|
---|
895 | mSmmS3ResumeState = SmmS3ResumeState;
|
---|
896 | SmmS3ResumeState->Smst = (EFI_PHYSICAL_ADDRESS)(UINTN)gSmst;
|
---|
897 |
|
---|
898 | SmmS3ResumeState->SmmS3ResumeEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)SmmRestoreCpu;
|
---|
899 |
|
---|
900 | SmmS3ResumeState->SmmS3StackSize = SIZE_32KB;
|
---|
901 | SmmS3ResumeState->SmmS3StackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES ((UINTN)SmmS3ResumeState->SmmS3StackSize));
|
---|
902 | if (SmmS3ResumeState->SmmS3StackBase == 0) {
|
---|
903 | SmmS3ResumeState->SmmS3StackSize = 0;
|
---|
904 | }
|
---|
905 |
|
---|
906 | SmmS3ResumeState->SmmS3Cr0 = mSmmCr0;
|
---|
907 | SmmS3ResumeState->SmmS3Cr3 = Cr3;
|
---|
908 | SmmS3ResumeState->SmmS3Cr4 = mSmmCr4;
|
---|
909 |
|
---|
910 | if (sizeof (UINTN) == sizeof (UINT64)) {
|
---|
911 | SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_64;
|
---|
912 | }
|
---|
913 | if (sizeof (UINTN) == sizeof (UINT32)) {
|
---|
914 | SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_32;
|
---|
915 | }
|
---|
916 |
|
---|
917 | //
|
---|
918 | // Patch SmmS3ResumeState->SmmS3Cr3
|
---|
919 | //
|
---|
920 | InitSmmS3Cr3 ();
|
---|
921 | }
|
---|
922 |
|
---|
923 | //
|
---|
924 | // Allocate safe memory in ACPI NVS for AP to execute hlt loop in
|
---|
925 | // protected mode on S3 path
|
---|
926 | //
|
---|
927 | Address = BASE_4GB - 1;
|
---|
928 | Status = gBS->AllocatePages (
|
---|
929 | AllocateMaxAddress,
|
---|
930 | EfiACPIMemoryNVS,
|
---|
931 | EFI_SIZE_TO_PAGES (sizeof (mApHltLoopCodeTemplate)),
|
---|
932 | &Address
|
---|
933 | );
|
---|
934 | ASSERT_EFI_ERROR (Status);
|
---|
935 | mApHltLoopCode = (UINT8 *) (UINTN) Address;
|
---|
936 | }
|
---|
937 |
|
---|
938 | /**
|
---|
939 | Copy register table from ACPI NVS memory into SMRAM.
|
---|
940 |
|
---|
941 | @param[in] DestinationRegisterTableList Points to destination register table.
|
---|
942 | @param[in] SourceRegisterTableList Points to source register table.
|
---|
943 | @param[in] NumberOfCpus Number of CPUs.
|
---|
944 |
|
---|
945 | **/
|
---|
946 | VOID
|
---|
947 | CopyRegisterTable (
|
---|
948 | IN CPU_REGISTER_TABLE *DestinationRegisterTableList,
|
---|
949 | IN CPU_REGISTER_TABLE *SourceRegisterTableList,
|
---|
950 | IN UINT32 NumberOfCpus
|
---|
951 | )
|
---|
952 | {
|
---|
953 | UINTN Index;
|
---|
954 | CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
|
---|
955 |
|
---|
956 | CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
|
---|
957 | for (Index = 0; Index < NumberOfCpus; Index++) {
|
---|
958 | if (DestinationRegisterTableList[Index].AllocatedSize != 0) {
|
---|
959 | RegisterTableEntry = AllocateCopyPool (
|
---|
960 | DestinationRegisterTableList[Index].AllocatedSize,
|
---|
961 | (VOID *)(UINTN)SourceRegisterTableList[Index].RegisterTableEntry
|
---|
962 | );
|
---|
963 | ASSERT (RegisterTableEntry != NULL);
|
---|
964 | DestinationRegisterTableList[Index].RegisterTableEntry = (EFI_PHYSICAL_ADDRESS)(UINTN)RegisterTableEntry;
|
---|
965 | }
|
---|
966 | }
|
---|
967 | }
|
---|
968 |
|
---|
969 | /**
|
---|
970 | Get ACPI CPU data.
|
---|
971 |
|
---|
972 | **/
|
---|
973 | VOID
|
---|
974 | GetAcpiCpuData (
|
---|
975 | VOID
|
---|
976 | )
|
---|
977 | {
|
---|
978 | ACPI_CPU_DATA *AcpiCpuData;
|
---|
979 | IA32_DESCRIPTOR *Gdtr;
|
---|
980 | IA32_DESCRIPTOR *Idtr;
|
---|
981 | VOID *GdtForAp;
|
---|
982 | VOID *IdtForAp;
|
---|
983 | VOID *MachineCheckHandlerForAp;
|
---|
984 | CPU_STATUS_INFORMATION *CpuStatus;
|
---|
985 |
|
---|
986 | if (!mAcpiS3Enable) {
|
---|
987 | return;
|
---|
988 | }
|
---|
989 |
|
---|
990 | //
|
---|
991 | // Prevent use of mAcpiCpuData by initialize NumberOfCpus to 0
|
---|
992 | //
|
---|
993 | mAcpiCpuData.NumberOfCpus = 0;
|
---|
994 |
|
---|
995 | //
|
---|
996 | // If PcdCpuS3DataAddress was never set, then do not copy CPU S3 Data into SMRAM
|
---|
997 | //
|
---|
998 | AcpiCpuData = (ACPI_CPU_DATA *)(UINTN)PcdGet64 (PcdCpuS3DataAddress);
|
---|
999 | if (AcpiCpuData == 0) {
|
---|
1000 | return;
|
---|
1001 | }
|
---|
1002 |
|
---|
1003 | //
|
---|
1004 | // For a native platform, copy the CPU S3 data into SMRAM for use on CPU S3 Resume.
|
---|
1005 | //
|
---|
1006 | CopyMem (&mAcpiCpuData, AcpiCpuData, sizeof (mAcpiCpuData));
|
---|
1007 |
|
---|
1008 | mAcpiCpuData.MtrrTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (MTRR_SETTINGS));
|
---|
1009 | ASSERT (mAcpiCpuData.MtrrTable != 0);
|
---|
1010 |
|
---|
1011 | CopyMem ((VOID *)(UINTN)mAcpiCpuData.MtrrTable, (VOID *)(UINTN)AcpiCpuData->MtrrTable, sizeof (MTRR_SETTINGS));
|
---|
1012 |
|
---|
1013 | mAcpiCpuData.GdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
|
---|
1014 | ASSERT (mAcpiCpuData.GdtrProfile != 0);
|
---|
1015 |
|
---|
1016 | CopyMem ((VOID *)(UINTN)mAcpiCpuData.GdtrProfile, (VOID *)(UINTN)AcpiCpuData->GdtrProfile, sizeof (IA32_DESCRIPTOR));
|
---|
1017 |
|
---|
1018 | mAcpiCpuData.IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
|
---|
1019 | ASSERT (mAcpiCpuData.IdtrProfile != 0);
|
---|
1020 |
|
---|
1021 | CopyMem ((VOID *)(UINTN)mAcpiCpuData.IdtrProfile, (VOID *)(UINTN)AcpiCpuData->IdtrProfile, sizeof (IA32_DESCRIPTOR));
|
---|
1022 |
|
---|
1023 | mAcpiCpuData.PreSmmInitRegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
|
---|
1024 | ASSERT (mAcpiCpuData.PreSmmInitRegisterTable != 0);
|
---|
1025 |
|
---|
1026 | CopyRegisterTable (
|
---|
1027 | (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable,
|
---|
1028 | (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->PreSmmInitRegisterTable,
|
---|
1029 | mAcpiCpuData.NumberOfCpus
|
---|
1030 | );
|
---|
1031 |
|
---|
1032 | mAcpiCpuData.RegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
|
---|
1033 | ASSERT (mAcpiCpuData.RegisterTable != 0);
|
---|
1034 |
|
---|
1035 | CopyRegisterTable (
|
---|
1036 | (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable,
|
---|
1037 | (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->RegisterTable,
|
---|
1038 | mAcpiCpuData.NumberOfCpus
|
---|
1039 | );
|
---|
1040 |
|
---|
1041 | //
|
---|
1042 | // Copy AP's GDT, IDT and Machine Check handler into SMRAM.
|
---|
1043 | //
|
---|
1044 | Gdtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.GdtrProfile;
|
---|
1045 | Idtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.IdtrProfile;
|
---|
1046 |
|
---|
1047 | GdtForAp = AllocatePool ((Gdtr->Limit + 1) + (Idtr->Limit + 1) + mAcpiCpuData.ApMachineCheckHandlerSize);
|
---|
1048 | ASSERT (GdtForAp != NULL);
|
---|
1049 | IdtForAp = (VOID *) ((UINTN)GdtForAp + (Gdtr->Limit + 1));
|
---|
1050 | MachineCheckHandlerForAp = (VOID *) ((UINTN)IdtForAp + (Idtr->Limit + 1));
|
---|
1051 |
|
---|
1052 | CopyMem (GdtForAp, (VOID *)Gdtr->Base, Gdtr->Limit + 1);
|
---|
1053 | CopyMem (IdtForAp, (VOID *)Idtr->Base, Idtr->Limit + 1);
|
---|
1054 | CopyMem (MachineCheckHandlerForAp, (VOID *)(UINTN)mAcpiCpuData.ApMachineCheckHandlerBase, mAcpiCpuData.ApMachineCheckHandlerSize);
|
---|
1055 |
|
---|
1056 | Gdtr->Base = (UINTN)GdtForAp;
|
---|
1057 | Idtr->Base = (UINTN)IdtForAp;
|
---|
1058 | mAcpiCpuData.ApMachineCheckHandlerBase = (EFI_PHYSICAL_ADDRESS)(UINTN)MachineCheckHandlerForAp;
|
---|
1059 |
|
---|
1060 | CpuStatus = &mAcpiCpuData.CpuStatus;
|
---|
1061 | CopyMem (CpuStatus, &AcpiCpuData->CpuStatus, sizeof (CPU_STATUS_INFORMATION));
|
---|
1062 | if (AcpiCpuData->CpuStatus.ValidCoreCountPerPackage != 0) {
|
---|
1063 | CpuStatus->ValidCoreCountPerPackage = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (
|
---|
1064 | sizeof (UINT32) * CpuStatus->PackageCount,
|
---|
1065 | (UINT32 *)(UINTN)AcpiCpuData->CpuStatus.ValidCoreCountPerPackage
|
---|
1066 | );
|
---|
1067 | ASSERT (CpuStatus->ValidCoreCountPerPackage != 0);
|
---|
1068 | }
|
---|
1069 | if (AcpiCpuData->ApLocation != 0) {
|
---|
1070 | mAcpiCpuData.ApLocation = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (
|
---|
1071 | mAcpiCpuData.NumberOfCpus * sizeof (EFI_CPU_PHYSICAL_LOCATION),
|
---|
1072 | (EFI_CPU_PHYSICAL_LOCATION *)(UINTN)AcpiCpuData->ApLocation
|
---|
1073 | );
|
---|
1074 | ASSERT (mAcpiCpuData.ApLocation != 0);
|
---|
1075 | }
|
---|
1076 | if (CpuStatus->PackageCount != 0) {
|
---|
1077 | mCpuFlags.CoreSemaphoreCount = AllocateZeroPool (
|
---|
1078 | sizeof (UINT32) * CpuStatus->PackageCount *
|
---|
1079 | CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount
|
---|
1080 | );
|
---|
1081 | ASSERT (mCpuFlags.CoreSemaphoreCount != NULL);
|
---|
1082 | mCpuFlags.PackageSemaphoreCount = AllocateZeroPool (
|
---|
1083 | sizeof (UINT32) * CpuStatus->PackageCount *
|
---|
1084 | CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount
|
---|
1085 | );
|
---|
1086 | ASSERT (mCpuFlags.PackageSemaphoreCount != NULL);
|
---|
1087 | }
|
---|
1088 | InitializeSpinLock((SPIN_LOCK*) &mCpuFlags.MemoryMappedLock);
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 | /**
|
---|
1092 | Get ACPI S3 enable flag.
|
---|
1093 |
|
---|
1094 | **/
|
---|
1095 | VOID
|
---|
1096 | GetAcpiS3EnableFlag (
|
---|
1097 | VOID
|
---|
1098 | )
|
---|
1099 | {
|
---|
1100 | mAcpiS3Enable = PcdGetBool (PcdAcpiS3Enable);
|
---|
1101 | }
|
---|