1 | /** @file
|
---|
2 | SMM MP service implementation
|
---|
3 |
|
---|
4 | Copyright (c) 2009 - 2019, Intel Corporation. All rights reserved.<BR>
|
---|
5 | Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
|
---|
6 |
|
---|
7 | SPDX-License-Identifier: BSD-2-Clause-Patent
|
---|
8 |
|
---|
9 | **/
|
---|
10 |
|
---|
11 | #include "PiSmmCpuDxeSmm.h"
|
---|
12 |
|
---|
13 | //
|
---|
14 | // Slots for all MTRR( FIXED MTRR + VARIABLE MTRR + MTRR_LIB_IA32_MTRR_DEF_TYPE)
|
---|
15 | //
|
---|
16 | MTRR_SETTINGS gSmiMtrrs;
|
---|
17 | UINT64 gPhyMask;
|
---|
18 | SMM_DISPATCHER_MP_SYNC_DATA *mSmmMpSyncData = NULL;
|
---|
19 | UINTN mSmmMpSyncDataSize;
|
---|
20 | SMM_CPU_SEMAPHORES mSmmCpuSemaphores;
|
---|
21 | UINTN mSemaphoreSize;
|
---|
22 | SPIN_LOCK *mPFLock = NULL;
|
---|
23 | SMM_CPU_SYNC_MODE mCpuSmmSyncMode;
|
---|
24 | BOOLEAN mMachineCheckSupported = FALSE;
|
---|
25 |
|
---|
26 | /**
|
---|
27 | Performs an atomic compare exchange operation to get semaphore.
|
---|
28 | The compare exchange operation must be performed using
|
---|
29 | MP safe mechanisms.
|
---|
30 |
|
---|
31 | @param Sem IN: 32-bit unsigned integer
|
---|
32 | OUT: original integer - 1
|
---|
33 | @return Original integer - 1
|
---|
34 |
|
---|
35 | **/
|
---|
36 | UINT32
|
---|
37 | WaitForSemaphore (
|
---|
38 | IN OUT volatile UINT32 *Sem
|
---|
39 | )
|
---|
40 | {
|
---|
41 | UINT32 Value;
|
---|
42 |
|
---|
43 | do {
|
---|
44 | Value = *Sem;
|
---|
45 | } while (Value == 0 ||
|
---|
46 | InterlockedCompareExchange32 (
|
---|
47 | (UINT32*)Sem,
|
---|
48 | Value,
|
---|
49 | Value - 1
|
---|
50 | ) != Value);
|
---|
51 | return Value - 1;
|
---|
52 | }
|
---|
53 |
|
---|
54 |
|
---|
55 | /**
|
---|
56 | Performs an atomic compare exchange operation to release semaphore.
|
---|
57 | The compare exchange operation must be performed using
|
---|
58 | MP safe mechanisms.
|
---|
59 |
|
---|
60 | @param Sem IN: 32-bit unsigned integer
|
---|
61 | OUT: original integer + 1
|
---|
62 | @return Original integer + 1
|
---|
63 |
|
---|
64 | **/
|
---|
65 | UINT32
|
---|
66 | ReleaseSemaphore (
|
---|
67 | IN OUT volatile UINT32 *Sem
|
---|
68 | )
|
---|
69 | {
|
---|
70 | UINT32 Value;
|
---|
71 |
|
---|
72 | do {
|
---|
73 | Value = *Sem;
|
---|
74 | } while (Value + 1 != 0 &&
|
---|
75 | InterlockedCompareExchange32 (
|
---|
76 | (UINT32*)Sem,
|
---|
77 | Value,
|
---|
78 | Value + 1
|
---|
79 | ) != Value);
|
---|
80 | return Value + 1;
|
---|
81 | }
|
---|
82 |
|
---|
83 | /**
|
---|
84 | Performs an atomic compare exchange operation to lock semaphore.
|
---|
85 | The compare exchange operation must be performed using
|
---|
86 | MP safe mechanisms.
|
---|
87 |
|
---|
88 | @param Sem IN: 32-bit unsigned integer
|
---|
89 | OUT: -1
|
---|
90 | @return Original integer
|
---|
91 |
|
---|
92 | **/
|
---|
93 | UINT32
|
---|
94 | LockdownSemaphore (
|
---|
95 | IN OUT volatile UINT32 *Sem
|
---|
96 | )
|
---|
97 | {
|
---|
98 | UINT32 Value;
|
---|
99 |
|
---|
100 | do {
|
---|
101 | Value = *Sem;
|
---|
102 | } while (InterlockedCompareExchange32 (
|
---|
103 | (UINT32*)Sem,
|
---|
104 | Value, (UINT32)-1
|
---|
105 | ) != Value);
|
---|
106 | return Value;
|
---|
107 | }
|
---|
108 |
|
---|
109 | /**
|
---|
110 | Wait all APs to performs an atomic compare exchange operation to release semaphore.
|
---|
111 |
|
---|
112 | @param NumberOfAPs AP number
|
---|
113 |
|
---|
114 | **/
|
---|
115 | VOID
|
---|
116 | WaitForAllAPs (
|
---|
117 | IN UINTN NumberOfAPs
|
---|
118 | )
|
---|
119 | {
|
---|
120 | UINTN BspIndex;
|
---|
121 |
|
---|
122 | BspIndex = mSmmMpSyncData->BspIndex;
|
---|
123 | while (NumberOfAPs-- > 0) {
|
---|
124 | WaitForSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | /**
|
---|
129 | Performs an atomic compare exchange operation to release semaphore
|
---|
130 | for each AP.
|
---|
131 |
|
---|
132 | **/
|
---|
133 | VOID
|
---|
134 | ReleaseAllAPs (
|
---|
135 | VOID
|
---|
136 | )
|
---|
137 | {
|
---|
138 | UINTN Index;
|
---|
139 |
|
---|
140 | for (Index = mMaxNumberOfCpus; Index-- > 0;) {
|
---|
141 | if (IsPresentAp (Index)) {
|
---|
142 | ReleaseSemaphore (mSmmMpSyncData->CpuData[Index].Run);
|
---|
143 | }
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|
147 | /**
|
---|
148 | Checks if all CPUs (with certain exceptions) have checked in for this SMI run
|
---|
149 |
|
---|
150 | @param Exceptions CPU Arrival exception flags.
|
---|
151 |
|
---|
152 | @retval TRUE if all CPUs the have checked in.
|
---|
153 | @retval FALSE if at least one Normal AP hasn't checked in.
|
---|
154 |
|
---|
155 | **/
|
---|
156 | BOOLEAN
|
---|
157 | AllCpusInSmmWithExceptions (
|
---|
158 | SMM_CPU_ARRIVAL_EXCEPTIONS Exceptions
|
---|
159 | )
|
---|
160 | {
|
---|
161 | UINTN Index;
|
---|
162 | SMM_CPU_DATA_BLOCK *CpuData;
|
---|
163 | EFI_PROCESSOR_INFORMATION *ProcessorInfo;
|
---|
164 |
|
---|
165 | ASSERT (*mSmmMpSyncData->Counter <= mNumberOfCpus);
|
---|
166 |
|
---|
167 | if (*mSmmMpSyncData->Counter == mNumberOfCpus) {
|
---|
168 | return TRUE;
|
---|
169 | }
|
---|
170 |
|
---|
171 | CpuData = mSmmMpSyncData->CpuData;
|
---|
172 | ProcessorInfo = gSmmCpuPrivate->ProcessorInfo;
|
---|
173 | for (Index = mMaxNumberOfCpus; Index-- > 0;) {
|
---|
174 | if (!(*(CpuData[Index].Present)) && ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID) {
|
---|
175 | if (((Exceptions & ARRIVAL_EXCEPTION_DELAYED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmDelayed) != 0) {
|
---|
176 | continue;
|
---|
177 | }
|
---|
178 | if (((Exceptions & ARRIVAL_EXCEPTION_BLOCKED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmBlocked) != 0) {
|
---|
179 | continue;
|
---|
180 | }
|
---|
181 | if (((Exceptions & ARRIVAL_EXCEPTION_SMI_DISABLED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmEnable) != 0) {
|
---|
182 | continue;
|
---|
183 | }
|
---|
184 | return FALSE;
|
---|
185 | }
|
---|
186 | }
|
---|
187 |
|
---|
188 |
|
---|
189 | return TRUE;
|
---|
190 | }
|
---|
191 |
|
---|
192 | /**
|
---|
193 | Has OS enabled Lmce in the MSR_IA32_MCG_EXT_CTL
|
---|
194 |
|
---|
195 | @retval TRUE Os enable lmce.
|
---|
196 | @retval FALSE Os not enable lmce.
|
---|
197 |
|
---|
198 | **/
|
---|
199 | BOOLEAN
|
---|
200 | IsLmceOsEnabled (
|
---|
201 | VOID
|
---|
202 | )
|
---|
203 | {
|
---|
204 | MSR_IA32_MCG_CAP_REGISTER McgCap;
|
---|
205 | MSR_IA32_FEATURE_CONTROL_REGISTER FeatureCtrl;
|
---|
206 | MSR_IA32_MCG_EXT_CTL_REGISTER McgExtCtrl;
|
---|
207 |
|
---|
208 | McgCap.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_CAP);
|
---|
209 | if (McgCap.Bits.MCG_LMCE_P == 0) {
|
---|
210 | return FALSE;
|
---|
211 | }
|
---|
212 |
|
---|
213 | FeatureCtrl.Uint64 = AsmReadMsr64 (MSR_IA32_FEATURE_CONTROL);
|
---|
214 | if (FeatureCtrl.Bits.LmceOn == 0) {
|
---|
215 | return FALSE;
|
---|
216 | }
|
---|
217 |
|
---|
218 | McgExtCtrl.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_EXT_CTL);
|
---|
219 | return (BOOLEAN) (McgExtCtrl.Bits.LMCE_EN == 1);
|
---|
220 | }
|
---|
221 |
|
---|
222 | /**
|
---|
223 | Return if Local machine check exception signaled.
|
---|
224 |
|
---|
225 | Indicates (when set) that a local machine check exception was generated. This indicates that the current machine-check event was
|
---|
226 | delivered to only the logical processor.
|
---|
227 |
|
---|
228 | @retval TRUE LMCE was signaled.
|
---|
229 | @retval FALSE LMCE was not signaled.
|
---|
230 |
|
---|
231 | **/
|
---|
232 | BOOLEAN
|
---|
233 | IsLmceSignaled (
|
---|
234 | VOID
|
---|
235 | )
|
---|
236 | {
|
---|
237 | MSR_IA32_MCG_STATUS_REGISTER McgStatus;
|
---|
238 |
|
---|
239 | McgStatus.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_STATUS);
|
---|
240 | return (BOOLEAN) (McgStatus.Bits.LMCE_S == 1);
|
---|
241 | }
|
---|
242 |
|
---|
243 | /**
|
---|
244 | Given timeout constraint, wait for all APs to arrive, and insure when this function returns, no AP will execute normal mode code before
|
---|
245 | entering SMM, except SMI disabled APs.
|
---|
246 |
|
---|
247 | **/
|
---|
248 | VOID
|
---|
249 | SmmWaitForApArrival (
|
---|
250 | VOID
|
---|
251 | )
|
---|
252 | {
|
---|
253 | UINT64 Timer;
|
---|
254 | UINTN Index;
|
---|
255 | BOOLEAN LmceEn;
|
---|
256 | BOOLEAN LmceSignal;
|
---|
257 |
|
---|
258 | ASSERT (*mSmmMpSyncData->Counter <= mNumberOfCpus);
|
---|
259 |
|
---|
260 | LmceEn = FALSE;
|
---|
261 | LmceSignal = FALSE;
|
---|
262 | if (mMachineCheckSupported) {
|
---|
263 | LmceEn = IsLmceOsEnabled ();
|
---|
264 | LmceSignal = IsLmceSignaled();
|
---|
265 | }
|
---|
266 |
|
---|
267 | //
|
---|
268 | // Platform implementor should choose a timeout value appropriately:
|
---|
269 | // - The timeout value should balance the SMM time constrains and the likelihood that delayed CPUs are excluded in the SMM run. Note
|
---|
270 | // the SMI Handlers must ALWAYS take into account the cases that not all APs are available in an SMI run.
|
---|
271 | // - The timeout value must, in the case of 2nd timeout, be at least long enough to give time for all APs to receive the SMI IPI
|
---|
272 | // and either enter SMM or buffer the SMI, to insure there is no CPU running normal mode code when SMI handling starts. This will
|
---|
273 | // be TRUE even if a blocked CPU is brought out of the blocked state by a normal mode CPU (before the normal mode CPU received the
|
---|
274 | // SMI IPI), because with a buffered SMI, and CPU will enter SMM immediately after it is brought out of the blocked state.
|
---|
275 | // - The timeout value must be longer than longest possible IO operation in the system
|
---|
276 | //
|
---|
277 |
|
---|
278 | //
|
---|
279 | // Sync with APs 1st timeout
|
---|
280 | //
|
---|
281 | for (Timer = StartSyncTimer ();
|
---|
282 | !IsSyncTimerTimeout (Timer) && !(LmceEn && LmceSignal) &&
|
---|
283 | !AllCpusInSmmWithExceptions (ARRIVAL_EXCEPTION_BLOCKED | ARRIVAL_EXCEPTION_SMI_DISABLED );
|
---|
284 | ) {
|
---|
285 | CpuPause ();
|
---|
286 | }
|
---|
287 |
|
---|
288 | //
|
---|
289 | // Not all APs have arrived, so we need 2nd round of timeout. IPIs should be sent to ALL none present APs,
|
---|
290 | // because:
|
---|
291 | // a) Delayed AP may have just come out of the delayed state. Blocked AP may have just been brought out of blocked state by some AP running
|
---|
292 | // normal mode code. These APs need to be guaranteed to have an SMI pending to insure that once they are out of delayed / blocked state, they
|
---|
293 | // enter SMI immediately without executing instructions in normal mode. Note traditional flow requires there are no APs doing normal mode
|
---|
294 | // work while SMI handling is on-going.
|
---|
295 | // b) As a consequence of SMI IPI sending, (spurious) SMI may occur after this SMM run.
|
---|
296 | // c) ** NOTE **: Use SMI disabling feature VERY CAREFULLY (if at all) for traditional flow, because a processor in SMI-disabled state
|
---|
297 | // will execute normal mode code, which breaks the traditional SMI handlers' assumption that no APs are doing normal
|
---|
298 | // mode work while SMI handling is on-going.
|
---|
299 | // d) We don't add code to check SMI disabling status to skip sending IPI to SMI disabled APs, because:
|
---|
300 | // - In traditional flow, SMI disabling is discouraged.
|
---|
301 | // - In relaxed flow, CheckApArrival() will check SMI disabling status before calling this function.
|
---|
302 | // In both cases, adding SMI-disabling checking code increases overhead.
|
---|
303 | //
|
---|
304 | if (*mSmmMpSyncData->Counter < mNumberOfCpus) {
|
---|
305 | //
|
---|
306 | // Send SMI IPIs to bring outside processors in
|
---|
307 | //
|
---|
308 | for (Index = mMaxNumberOfCpus; Index-- > 0;) {
|
---|
309 | if (!(*(mSmmMpSyncData->CpuData[Index].Present)) && gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID) {
|
---|
310 | SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
|
---|
311 | }
|
---|
312 | }
|
---|
313 |
|
---|
314 | //
|
---|
315 | // Sync with APs 2nd timeout.
|
---|
316 | //
|
---|
317 | for (Timer = StartSyncTimer ();
|
---|
318 | !IsSyncTimerTimeout (Timer) &&
|
---|
319 | !AllCpusInSmmWithExceptions (ARRIVAL_EXCEPTION_BLOCKED | ARRIVAL_EXCEPTION_SMI_DISABLED );
|
---|
320 | ) {
|
---|
321 | CpuPause ();
|
---|
322 | }
|
---|
323 | }
|
---|
324 |
|
---|
325 | return;
|
---|
326 | }
|
---|
327 |
|
---|
328 |
|
---|
329 | /**
|
---|
330 | Replace OS MTRR's with SMI MTRR's.
|
---|
331 |
|
---|
332 | @param CpuIndex Processor Index
|
---|
333 |
|
---|
334 | **/
|
---|
335 | VOID
|
---|
336 | ReplaceOSMtrrs (
|
---|
337 | IN UINTN CpuIndex
|
---|
338 | )
|
---|
339 | {
|
---|
340 | SmmCpuFeaturesDisableSmrr ();
|
---|
341 |
|
---|
342 | //
|
---|
343 | // Replace all MTRRs registers
|
---|
344 | //
|
---|
345 | MtrrSetAllMtrrs (&gSmiMtrrs);
|
---|
346 | }
|
---|
347 |
|
---|
348 | /**
|
---|
349 | Wheck whether task has been finished by all APs.
|
---|
350 |
|
---|
351 | @param BlockMode Whether did it in block mode or non-block mode.
|
---|
352 |
|
---|
353 | @retval TRUE Task has been finished by all APs.
|
---|
354 | @retval FALSE Task not has been finished by all APs.
|
---|
355 |
|
---|
356 | **/
|
---|
357 | BOOLEAN
|
---|
358 | WaitForAllAPsNotBusy (
|
---|
359 | IN BOOLEAN BlockMode
|
---|
360 | )
|
---|
361 | {
|
---|
362 | UINTN Index;
|
---|
363 |
|
---|
364 | for (Index = mMaxNumberOfCpus; Index-- > 0;) {
|
---|
365 | //
|
---|
366 | // Ignore BSP and APs which not call in SMM.
|
---|
367 | //
|
---|
368 | if (!IsPresentAp(Index)) {
|
---|
369 | continue;
|
---|
370 | }
|
---|
371 |
|
---|
372 | if (BlockMode) {
|
---|
373 | AcquireSpinLock(mSmmMpSyncData->CpuData[Index].Busy);
|
---|
374 | ReleaseSpinLock(mSmmMpSyncData->CpuData[Index].Busy);
|
---|
375 | } else {
|
---|
376 | if (AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[Index].Busy)) {
|
---|
377 | ReleaseSpinLock(mSmmMpSyncData->CpuData[Index].Busy);
|
---|
378 | } else {
|
---|
379 | return FALSE;
|
---|
380 | }
|
---|
381 | }
|
---|
382 | }
|
---|
383 |
|
---|
384 | return TRUE;
|
---|
385 | }
|
---|
386 |
|
---|
387 | /**
|
---|
388 | Check whether it is an present AP.
|
---|
389 |
|
---|
390 | @param CpuIndex The AP index which calls this function.
|
---|
391 |
|
---|
392 | @retval TRUE It's a present AP.
|
---|
393 | @retval TRUE This is not an AP or it is not present.
|
---|
394 |
|
---|
395 | **/
|
---|
396 | BOOLEAN
|
---|
397 | IsPresentAp (
|
---|
398 | IN UINTN CpuIndex
|
---|
399 | )
|
---|
400 | {
|
---|
401 | return ((CpuIndex != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) &&
|
---|
402 | *(mSmmMpSyncData->CpuData[CpuIndex].Present));
|
---|
403 | }
|
---|
404 |
|
---|
405 | /**
|
---|
406 | Check whether execute in single AP or all APs.
|
---|
407 |
|
---|
408 | Compare two Tokens used by different APs to know whether in StartAllAps call.
|
---|
409 |
|
---|
410 | Whether is an valid AP base on AP's Present flag.
|
---|
411 |
|
---|
412 | @retval TRUE IN StartAllAps call.
|
---|
413 | @retval FALSE Not in StartAllAps call.
|
---|
414 |
|
---|
415 | **/
|
---|
416 | BOOLEAN
|
---|
417 | InStartAllApsCall (
|
---|
418 | VOID
|
---|
419 | )
|
---|
420 | {
|
---|
421 | UINTN ApIndex;
|
---|
422 | UINTN ApIndex2;
|
---|
423 |
|
---|
424 | for (ApIndex = mMaxNumberOfCpus; ApIndex-- > 0;) {
|
---|
425 | if (IsPresentAp (ApIndex) && (mSmmMpSyncData->CpuData[ApIndex].Token != NULL)) {
|
---|
426 | for (ApIndex2 = ApIndex; ApIndex2-- > 0;) {
|
---|
427 | if (IsPresentAp (ApIndex2) && (mSmmMpSyncData->CpuData[ApIndex2].Token != NULL)) {
|
---|
428 | return mSmmMpSyncData->CpuData[ApIndex2].Token == mSmmMpSyncData->CpuData[ApIndex].Token;
|
---|
429 | }
|
---|
430 | }
|
---|
431 | }
|
---|
432 | }
|
---|
433 |
|
---|
434 | return FALSE;
|
---|
435 | }
|
---|
436 |
|
---|
437 | /**
|
---|
438 | Clean up the status flags used during executing the procedure.
|
---|
439 |
|
---|
440 | @param CpuIndex The AP index which calls this function.
|
---|
441 |
|
---|
442 | **/
|
---|
443 | VOID
|
---|
444 | ReleaseToken (
|
---|
445 | IN UINTN CpuIndex
|
---|
446 | )
|
---|
447 | {
|
---|
448 | UINTN Index;
|
---|
449 | BOOLEAN Released;
|
---|
450 |
|
---|
451 | if (InStartAllApsCall ()) {
|
---|
452 | //
|
---|
453 | // In Start All APs mode, make sure all APs have finished task.
|
---|
454 | //
|
---|
455 | if (WaitForAllAPsNotBusy (FALSE)) {
|
---|
456 | //
|
---|
457 | // Clean the flags update in the function call.
|
---|
458 | //
|
---|
459 | Released = FALSE;
|
---|
460 | for (Index = mMaxNumberOfCpus; Index-- > 0;) {
|
---|
461 | //
|
---|
462 | // Only In SMM APs need to be clean up.
|
---|
463 | //
|
---|
464 | if (mSmmMpSyncData->CpuData[Index].Present && mSmmMpSyncData->CpuData[Index].Token != NULL) {
|
---|
465 | if (!Released) {
|
---|
466 | ReleaseSpinLock (mSmmMpSyncData->CpuData[Index].Token);
|
---|
467 | Released = TRUE;
|
---|
468 | }
|
---|
469 | mSmmMpSyncData->CpuData[Index].Token = NULL;
|
---|
470 | }
|
---|
471 | }
|
---|
472 | }
|
---|
473 | } else {
|
---|
474 | //
|
---|
475 | // In single AP mode.
|
---|
476 | //
|
---|
477 | if (mSmmMpSyncData->CpuData[CpuIndex].Token != NULL) {
|
---|
478 | ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Token);
|
---|
479 | mSmmMpSyncData->CpuData[CpuIndex].Token = NULL;
|
---|
480 | }
|
---|
481 | }
|
---|
482 | }
|
---|
483 |
|
---|
484 | /**
|
---|
485 | Free the tokens in the maintained list.
|
---|
486 |
|
---|
487 | **/
|
---|
488 | VOID
|
---|
489 | FreeTokens (
|
---|
490 | VOID
|
---|
491 | )
|
---|
492 | {
|
---|
493 | LIST_ENTRY *Link;
|
---|
494 | PROCEDURE_TOKEN *ProcToken;
|
---|
495 |
|
---|
496 | while (!IsListEmpty (&gSmmCpuPrivate->TokenList)) {
|
---|
497 | Link = GetFirstNode (&gSmmCpuPrivate->TokenList);
|
---|
498 | ProcToken = PROCEDURE_TOKEN_FROM_LINK (Link);
|
---|
499 |
|
---|
500 | RemoveEntryList (&ProcToken->Link);
|
---|
501 |
|
---|
502 | FreePool ((VOID *)ProcToken->ProcedureToken);
|
---|
503 | FreePool (ProcToken);
|
---|
504 | }
|
---|
505 | }
|
---|
506 |
|
---|
507 | /**
|
---|
508 | SMI handler for BSP.
|
---|
509 |
|
---|
510 | @param CpuIndex BSP processor Index
|
---|
511 | @param SyncMode SMM MP sync mode
|
---|
512 |
|
---|
513 | **/
|
---|
514 | VOID
|
---|
515 | BSPHandler (
|
---|
516 | IN UINTN CpuIndex,
|
---|
517 | IN SMM_CPU_SYNC_MODE SyncMode
|
---|
518 | )
|
---|
519 | {
|
---|
520 | UINTN Index;
|
---|
521 | MTRR_SETTINGS Mtrrs;
|
---|
522 | UINTN ApCount;
|
---|
523 | BOOLEAN ClearTopLevelSmiResult;
|
---|
524 | UINTN PresentCount;
|
---|
525 |
|
---|
526 | ASSERT (CpuIndex == mSmmMpSyncData->BspIndex);
|
---|
527 | ApCount = 0;
|
---|
528 |
|
---|
529 | //
|
---|
530 | // Flag BSP's presence
|
---|
531 | //
|
---|
532 | *mSmmMpSyncData->InsideSmm = TRUE;
|
---|
533 |
|
---|
534 | //
|
---|
535 | // Initialize Debug Agent to start source level debug in BSP handler
|
---|
536 | //
|
---|
537 | InitializeDebugAgent (DEBUG_AGENT_INIT_ENTER_SMI, NULL, NULL);
|
---|
538 |
|
---|
539 | //
|
---|
540 | // Mark this processor's presence
|
---|
541 | //
|
---|
542 | *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE;
|
---|
543 |
|
---|
544 | //
|
---|
545 | // Clear platform top level SMI status bit before calling SMI handlers. If
|
---|
546 | // we cleared it after SMI handlers are run, we would miss the SMI that
|
---|
547 | // occurs after SMI handlers are done and before SMI status bit is cleared.
|
---|
548 | //
|
---|
549 | ClearTopLevelSmiResult = ClearTopLevelSmiStatus();
|
---|
550 | ASSERT (ClearTopLevelSmiResult == TRUE);
|
---|
551 |
|
---|
552 | //
|
---|
553 | // Set running processor index
|
---|
554 | //
|
---|
555 | gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu = CpuIndex;
|
---|
556 |
|
---|
557 | //
|
---|
558 | // If Traditional Sync Mode or need to configure MTRRs: gather all available APs.
|
---|
559 | //
|
---|
560 | if (SyncMode == SmmCpuSyncModeTradition || SmmCpuFeaturesNeedConfigureMtrrs()) {
|
---|
561 |
|
---|
562 | //
|
---|
563 | // Wait for APs to arrive
|
---|
564 | //
|
---|
565 | SmmWaitForApArrival();
|
---|
566 |
|
---|
567 | //
|
---|
568 | // Lock the counter down and retrieve the number of APs
|
---|
569 | //
|
---|
570 | *mSmmMpSyncData->AllCpusInSync = TRUE;
|
---|
571 | ApCount = LockdownSemaphore (mSmmMpSyncData->Counter) - 1;
|
---|
572 |
|
---|
573 | //
|
---|
574 | // Wait for all APs to get ready for programming MTRRs
|
---|
575 | //
|
---|
576 | WaitForAllAPs (ApCount);
|
---|
577 |
|
---|
578 | if (SmmCpuFeaturesNeedConfigureMtrrs()) {
|
---|
579 | //
|
---|
580 | // Signal all APs it's time for backup MTRRs
|
---|
581 | //
|
---|
582 | ReleaseAllAPs ();
|
---|
583 |
|
---|
584 | //
|
---|
585 | // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at
|
---|
586 | // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set
|
---|
587 | // to a large enough value to avoid this situation.
|
---|
588 | // Note: For HT capable CPUs, threads within a core share the same set of MTRRs.
|
---|
589 | // We do the backup first and then set MTRR to avoid race condition for threads
|
---|
590 | // in the same core.
|
---|
591 | //
|
---|
592 | MtrrGetAllMtrrs(&Mtrrs);
|
---|
593 |
|
---|
594 | //
|
---|
595 | // Wait for all APs to complete their MTRR saving
|
---|
596 | //
|
---|
597 | WaitForAllAPs (ApCount);
|
---|
598 |
|
---|
599 | //
|
---|
600 | // Let all processors program SMM MTRRs together
|
---|
601 | //
|
---|
602 | ReleaseAllAPs ();
|
---|
603 |
|
---|
604 | //
|
---|
605 | // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at
|
---|
606 | // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set
|
---|
607 | // to a large enough value to avoid this situation.
|
---|
608 | //
|
---|
609 | ReplaceOSMtrrs (CpuIndex);
|
---|
610 |
|
---|
611 | //
|
---|
612 | // Wait for all APs to complete their MTRR programming
|
---|
613 | //
|
---|
614 | WaitForAllAPs (ApCount);
|
---|
615 | }
|
---|
616 | }
|
---|
617 |
|
---|
618 | //
|
---|
619 | // The BUSY lock is initialized to Acquired state
|
---|
620 | //
|
---|
621 | AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
|
---|
622 |
|
---|
623 | //
|
---|
624 | // Perform the pre tasks
|
---|
625 | //
|
---|
626 | PerformPreTasks ();
|
---|
627 |
|
---|
628 | //
|
---|
629 | // Invoke SMM Foundation EntryPoint with the processor information context.
|
---|
630 | //
|
---|
631 | gSmmCpuPrivate->SmmCoreEntry (&gSmmCpuPrivate->SmmCoreEntryContext);
|
---|
632 |
|
---|
633 | //
|
---|
634 | // Make sure all APs have completed their pending none-block tasks
|
---|
635 | //
|
---|
636 | WaitForAllAPsNotBusy (TRUE);
|
---|
637 |
|
---|
638 | //
|
---|
639 | // Perform the remaining tasks
|
---|
640 | //
|
---|
641 | PerformRemainingTasks ();
|
---|
642 |
|
---|
643 | //
|
---|
644 | // If Relaxed-AP Sync Mode: gather all available APs after BSP SMM handlers are done, and
|
---|
645 | // make those APs to exit SMI synchronously. APs which arrive later will be excluded and
|
---|
646 | // will run through freely.
|
---|
647 | //
|
---|
648 | if (SyncMode != SmmCpuSyncModeTradition && !SmmCpuFeaturesNeedConfigureMtrrs()) {
|
---|
649 |
|
---|
650 | //
|
---|
651 | // Lock the counter down and retrieve the number of APs
|
---|
652 | //
|
---|
653 | *mSmmMpSyncData->AllCpusInSync = TRUE;
|
---|
654 | ApCount = LockdownSemaphore (mSmmMpSyncData->Counter) - 1;
|
---|
655 | //
|
---|
656 | // Make sure all APs have their Present flag set
|
---|
657 | //
|
---|
658 | while (TRUE) {
|
---|
659 | PresentCount = 0;
|
---|
660 | for (Index = mMaxNumberOfCpus; Index-- > 0;) {
|
---|
661 | if (*(mSmmMpSyncData->CpuData[Index].Present)) {
|
---|
662 | PresentCount ++;
|
---|
663 | }
|
---|
664 | }
|
---|
665 | if (PresentCount > ApCount) {
|
---|
666 | break;
|
---|
667 | }
|
---|
668 | }
|
---|
669 | }
|
---|
670 |
|
---|
671 | //
|
---|
672 | // Notify all APs to exit
|
---|
673 | //
|
---|
674 | *mSmmMpSyncData->InsideSmm = FALSE;
|
---|
675 | ReleaseAllAPs ();
|
---|
676 |
|
---|
677 | //
|
---|
678 | // Wait for all APs to complete their pending tasks
|
---|
679 | //
|
---|
680 | WaitForAllAPs (ApCount);
|
---|
681 |
|
---|
682 | if (SmmCpuFeaturesNeedConfigureMtrrs()) {
|
---|
683 | //
|
---|
684 | // Signal APs to restore MTRRs
|
---|
685 | //
|
---|
686 | ReleaseAllAPs ();
|
---|
687 |
|
---|
688 | //
|
---|
689 | // Restore OS MTRRs
|
---|
690 | //
|
---|
691 | SmmCpuFeaturesReenableSmrr ();
|
---|
692 | MtrrSetAllMtrrs(&Mtrrs);
|
---|
693 |
|
---|
694 | //
|
---|
695 | // Wait for all APs to complete MTRR programming
|
---|
696 | //
|
---|
697 | WaitForAllAPs (ApCount);
|
---|
698 | }
|
---|
699 |
|
---|
700 | //
|
---|
701 | // Stop source level debug in BSP handler, the code below will not be
|
---|
702 | // debugged.
|
---|
703 | //
|
---|
704 | InitializeDebugAgent (DEBUG_AGENT_INIT_EXIT_SMI, NULL, NULL);
|
---|
705 |
|
---|
706 | //
|
---|
707 | // Signal APs to Reset states/semaphore for this processor
|
---|
708 | //
|
---|
709 | ReleaseAllAPs ();
|
---|
710 |
|
---|
711 | //
|
---|
712 | // Perform pending operations for hot-plug
|
---|
713 | //
|
---|
714 | SmmCpuUpdate ();
|
---|
715 |
|
---|
716 | //
|
---|
717 | // Clear the Present flag of BSP
|
---|
718 | //
|
---|
719 | *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;
|
---|
720 |
|
---|
721 | //
|
---|
722 | // Gather APs to exit SMM synchronously. Note the Present flag is cleared by now but
|
---|
723 | // WaitForAllAps does not depend on the Present flag.
|
---|
724 | //
|
---|
725 | WaitForAllAPs (ApCount);
|
---|
726 |
|
---|
727 | //
|
---|
728 | // Clean the tokens buffer.
|
---|
729 | //
|
---|
730 | FreeTokens ();
|
---|
731 |
|
---|
732 | //
|
---|
733 | // Reset BspIndex to -1, meaning BSP has not been elected.
|
---|
734 | //
|
---|
735 | if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
|
---|
736 | mSmmMpSyncData->BspIndex = (UINT32)-1;
|
---|
737 | }
|
---|
738 |
|
---|
739 | //
|
---|
740 | // Allow APs to check in from this point on
|
---|
741 | //
|
---|
742 | *mSmmMpSyncData->Counter = 0;
|
---|
743 | *mSmmMpSyncData->AllCpusInSync = FALSE;
|
---|
744 | }
|
---|
745 |
|
---|
746 | /**
|
---|
747 | SMI handler for AP.
|
---|
748 |
|
---|
749 | @param CpuIndex AP processor Index.
|
---|
750 | @param ValidSmi Indicates that current SMI is a valid SMI or not.
|
---|
751 | @param SyncMode SMM MP sync mode.
|
---|
752 |
|
---|
753 | **/
|
---|
754 | VOID
|
---|
755 | APHandler (
|
---|
756 | IN UINTN CpuIndex,
|
---|
757 | IN BOOLEAN ValidSmi,
|
---|
758 | IN SMM_CPU_SYNC_MODE SyncMode
|
---|
759 | )
|
---|
760 | {
|
---|
761 | UINT64 Timer;
|
---|
762 | UINTN BspIndex;
|
---|
763 | MTRR_SETTINGS Mtrrs;
|
---|
764 | EFI_STATUS ProcedureStatus;
|
---|
765 |
|
---|
766 | //
|
---|
767 | // Timeout BSP
|
---|
768 | //
|
---|
769 | for (Timer = StartSyncTimer ();
|
---|
770 | !IsSyncTimerTimeout (Timer) &&
|
---|
771 | !(*mSmmMpSyncData->InsideSmm);
|
---|
772 | ) {
|
---|
773 | CpuPause ();
|
---|
774 | }
|
---|
775 |
|
---|
776 | if (!(*mSmmMpSyncData->InsideSmm)) {
|
---|
777 | //
|
---|
778 | // BSP timeout in the first round
|
---|
779 | //
|
---|
780 | if (mSmmMpSyncData->BspIndex != -1) {
|
---|
781 | //
|
---|
782 | // BSP Index is known
|
---|
783 | //
|
---|
784 | BspIndex = mSmmMpSyncData->BspIndex;
|
---|
785 | ASSERT (CpuIndex != BspIndex);
|
---|
786 |
|
---|
787 | //
|
---|
788 | // Send SMI IPI to bring BSP in
|
---|
789 | //
|
---|
790 | SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[BspIndex].ProcessorId);
|
---|
791 |
|
---|
792 | //
|
---|
793 | // Now clock BSP for the 2nd time
|
---|
794 | //
|
---|
795 | for (Timer = StartSyncTimer ();
|
---|
796 | !IsSyncTimerTimeout (Timer) &&
|
---|
797 | !(*mSmmMpSyncData->InsideSmm);
|
---|
798 | ) {
|
---|
799 | CpuPause ();
|
---|
800 | }
|
---|
801 |
|
---|
802 | if (!(*mSmmMpSyncData->InsideSmm)) {
|
---|
803 | //
|
---|
804 | // Give up since BSP is unable to enter SMM
|
---|
805 | // and signal the completion of this AP
|
---|
806 | WaitForSemaphore (mSmmMpSyncData->Counter);
|
---|
807 | return;
|
---|
808 | }
|
---|
809 | } else {
|
---|
810 | //
|
---|
811 | // Don't know BSP index. Give up without sending IPI to BSP.
|
---|
812 | //
|
---|
813 | WaitForSemaphore (mSmmMpSyncData->Counter);
|
---|
814 | return;
|
---|
815 | }
|
---|
816 | }
|
---|
817 |
|
---|
818 | //
|
---|
819 | // BSP is available
|
---|
820 | //
|
---|
821 | BspIndex = mSmmMpSyncData->BspIndex;
|
---|
822 | ASSERT (CpuIndex != BspIndex);
|
---|
823 |
|
---|
824 | //
|
---|
825 | // Mark this processor's presence
|
---|
826 | //
|
---|
827 | *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE;
|
---|
828 |
|
---|
829 | if (SyncMode == SmmCpuSyncModeTradition || SmmCpuFeaturesNeedConfigureMtrrs()) {
|
---|
830 | //
|
---|
831 | // Notify BSP of arrival at this point
|
---|
832 | //
|
---|
833 | ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
|
---|
834 | }
|
---|
835 |
|
---|
836 | if (SmmCpuFeaturesNeedConfigureMtrrs()) {
|
---|
837 | //
|
---|
838 | // Wait for the signal from BSP to backup MTRRs
|
---|
839 | //
|
---|
840 | WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);
|
---|
841 |
|
---|
842 | //
|
---|
843 | // Backup OS MTRRs
|
---|
844 | //
|
---|
845 | MtrrGetAllMtrrs(&Mtrrs);
|
---|
846 |
|
---|
847 | //
|
---|
848 | // Signal BSP the completion of this AP
|
---|
849 | //
|
---|
850 | ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
|
---|
851 |
|
---|
852 | //
|
---|
853 | // Wait for BSP's signal to program MTRRs
|
---|
854 | //
|
---|
855 | WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);
|
---|
856 |
|
---|
857 | //
|
---|
858 | // Replace OS MTRRs with SMI MTRRs
|
---|
859 | //
|
---|
860 | ReplaceOSMtrrs (CpuIndex);
|
---|
861 |
|
---|
862 | //
|
---|
863 | // Signal BSP the completion of this AP
|
---|
864 | //
|
---|
865 | ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
|
---|
866 | }
|
---|
867 |
|
---|
868 | while (TRUE) {
|
---|
869 | //
|
---|
870 | // Wait for something to happen
|
---|
871 | //
|
---|
872 | WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);
|
---|
873 |
|
---|
874 | //
|
---|
875 | // Check if BSP wants to exit SMM
|
---|
876 | //
|
---|
877 | if (!(*mSmmMpSyncData->InsideSmm)) {
|
---|
878 | break;
|
---|
879 | }
|
---|
880 |
|
---|
881 | //
|
---|
882 | // BUSY should be acquired by SmmStartupThisAp()
|
---|
883 | //
|
---|
884 | ASSERT (
|
---|
885 | !AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy)
|
---|
886 | );
|
---|
887 |
|
---|
888 | //
|
---|
889 | // Invoke the scheduled procedure
|
---|
890 | //
|
---|
891 | ProcedureStatus = (*mSmmMpSyncData->CpuData[CpuIndex].Procedure) (
|
---|
892 | (VOID*)mSmmMpSyncData->CpuData[CpuIndex].Parameter
|
---|
893 | );
|
---|
894 | if (mSmmMpSyncData->CpuData[CpuIndex].Status != NULL) {
|
---|
895 | *mSmmMpSyncData->CpuData[CpuIndex].Status = ProcedureStatus;
|
---|
896 | }
|
---|
897 |
|
---|
898 | //
|
---|
899 | // Release BUSY
|
---|
900 | //
|
---|
901 | ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
|
---|
902 |
|
---|
903 | ReleaseToken (CpuIndex);
|
---|
904 | }
|
---|
905 |
|
---|
906 | if (SmmCpuFeaturesNeedConfigureMtrrs()) {
|
---|
907 | //
|
---|
908 | // Notify BSP the readiness of this AP to program MTRRs
|
---|
909 | //
|
---|
910 | ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
|
---|
911 |
|
---|
912 | //
|
---|
913 | // Wait for the signal from BSP to program MTRRs
|
---|
914 | //
|
---|
915 | WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);
|
---|
916 |
|
---|
917 | //
|
---|
918 | // Restore OS MTRRs
|
---|
919 | //
|
---|
920 | SmmCpuFeaturesReenableSmrr ();
|
---|
921 | MtrrSetAllMtrrs(&Mtrrs);
|
---|
922 | }
|
---|
923 |
|
---|
924 | //
|
---|
925 | // Notify BSP the readiness of this AP to Reset states/semaphore for this processor
|
---|
926 | //
|
---|
927 | ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
|
---|
928 |
|
---|
929 | //
|
---|
930 | // Wait for the signal from BSP to Reset states/semaphore for this processor
|
---|
931 | //
|
---|
932 | WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);
|
---|
933 |
|
---|
934 | //
|
---|
935 | // Reset states/semaphore for this processor
|
---|
936 | //
|
---|
937 | *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;
|
---|
938 |
|
---|
939 | //
|
---|
940 | // Notify BSP the readiness of this AP to exit SMM
|
---|
941 | //
|
---|
942 | ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
|
---|
943 |
|
---|
944 | }
|
---|
945 |
|
---|
946 | /**
|
---|
947 | Create 4G PageTable in SMRAM.
|
---|
948 |
|
---|
949 | @param[in] Is32BitPageTable Whether the page table is 32-bit PAE
|
---|
950 | @return PageTable Address
|
---|
951 |
|
---|
952 | **/
|
---|
953 | UINT32
|
---|
954 | Gen4GPageTable (
|
---|
955 | IN BOOLEAN Is32BitPageTable
|
---|
956 | )
|
---|
957 | {
|
---|
958 | VOID *PageTable;
|
---|
959 | UINTN Index;
|
---|
960 | UINT64 *Pte;
|
---|
961 | UINTN PagesNeeded;
|
---|
962 | UINTN Low2MBoundary;
|
---|
963 | UINTN High2MBoundary;
|
---|
964 | UINTN Pages;
|
---|
965 | UINTN GuardPage;
|
---|
966 | UINT64 *Pdpte;
|
---|
967 | UINTN PageIndex;
|
---|
968 | UINTN PageAddress;
|
---|
969 |
|
---|
970 | Low2MBoundary = 0;
|
---|
971 | High2MBoundary = 0;
|
---|
972 | PagesNeeded = 0;
|
---|
973 | if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
|
---|
974 | //
|
---|
975 | // Add one more page for known good stack, then find the lower 2MB aligned address.
|
---|
976 | //
|
---|
977 | Low2MBoundary = (mSmmStackArrayBase + EFI_PAGE_SIZE) & ~(SIZE_2MB-1);
|
---|
978 | //
|
---|
979 | // Add two more pages for known good stack and stack guard page,
|
---|
980 | // then find the lower 2MB aligned address.
|
---|
981 | //
|
---|
982 | High2MBoundary = (mSmmStackArrayEnd - mSmmStackSize + EFI_PAGE_SIZE * 2) & ~(SIZE_2MB-1);
|
---|
983 | PagesNeeded = ((High2MBoundary - Low2MBoundary) / SIZE_2MB) + 1;
|
---|
984 | }
|
---|
985 | //
|
---|
986 | // Allocate the page table
|
---|
987 | //
|
---|
988 | PageTable = AllocatePageTableMemory (5 + PagesNeeded);
|
---|
989 | ASSERT (PageTable != NULL);
|
---|
990 |
|
---|
991 | PageTable = (VOID *)((UINTN)PageTable);
|
---|
992 | Pte = (UINT64*)PageTable;
|
---|
993 |
|
---|
994 | //
|
---|
995 | // Zero out all page table entries first
|
---|
996 | //
|
---|
997 | ZeroMem (Pte, EFI_PAGES_TO_SIZE (1));
|
---|
998 |
|
---|
999 | //
|
---|
1000 | // Set Page Directory Pointers
|
---|
1001 | //
|
---|
1002 | for (Index = 0; Index < 4; Index++) {
|
---|
1003 | Pte[Index] = ((UINTN)PageTable + EFI_PAGE_SIZE * (Index + 1)) | mAddressEncMask |
|
---|
1004 | (Is32BitPageTable ? IA32_PAE_PDPTE_ATTRIBUTE_BITS : PAGE_ATTRIBUTE_BITS);
|
---|
1005 | }
|
---|
1006 | Pte += EFI_PAGE_SIZE / sizeof (*Pte);
|
---|
1007 |
|
---|
1008 | //
|
---|
1009 | // Fill in Page Directory Entries
|
---|
1010 | //
|
---|
1011 | for (Index = 0; Index < EFI_PAGE_SIZE * 4 / sizeof (*Pte); Index++) {
|
---|
1012 | Pte[Index] = (Index << 21) | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;
|
---|
1013 | }
|
---|
1014 |
|
---|
1015 | Pdpte = (UINT64*)PageTable;
|
---|
1016 | if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
|
---|
1017 | Pages = (UINTN)PageTable + EFI_PAGES_TO_SIZE (5);
|
---|
1018 | GuardPage = mSmmStackArrayBase + EFI_PAGE_SIZE;
|
---|
1019 | for (PageIndex = Low2MBoundary; PageIndex <= High2MBoundary; PageIndex += SIZE_2MB) {
|
---|
1020 | Pte = (UINT64*)(UINTN)(Pdpte[BitFieldRead32 ((UINT32)PageIndex, 30, 31)] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));
|
---|
1021 | Pte[BitFieldRead32 ((UINT32)PageIndex, 21, 29)] = (UINT64)Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
|
---|
1022 | //
|
---|
1023 | // Fill in Page Table Entries
|
---|
1024 | //
|
---|
1025 | Pte = (UINT64*)Pages;
|
---|
1026 | PageAddress = PageIndex;
|
---|
1027 | for (Index = 0; Index < EFI_PAGE_SIZE / sizeof (*Pte); Index++) {
|
---|
1028 | if (PageAddress == GuardPage) {
|
---|
1029 | //
|
---|
1030 | // Mark the guard page as non-present
|
---|
1031 | //
|
---|
1032 | Pte[Index] = PageAddress | mAddressEncMask;
|
---|
1033 | GuardPage += mSmmStackSize;
|
---|
1034 | if (GuardPage > mSmmStackArrayEnd) {
|
---|
1035 | GuardPage = 0;
|
---|
1036 | }
|
---|
1037 | } else {
|
---|
1038 | Pte[Index] = PageAddress | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
|
---|
1039 | }
|
---|
1040 | PageAddress+= EFI_PAGE_SIZE;
|
---|
1041 | }
|
---|
1042 | Pages += EFI_PAGE_SIZE;
|
---|
1043 | }
|
---|
1044 | }
|
---|
1045 |
|
---|
1046 | if ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT1) != 0) {
|
---|
1047 | Pte = (UINT64*)(UINTN)(Pdpte[0] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));
|
---|
1048 | if ((Pte[0] & IA32_PG_PS) == 0) {
|
---|
1049 | // 4K-page entries are already mapped. Just hide the first one anyway.
|
---|
1050 | Pte = (UINT64*)(UINTN)(Pte[0] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));
|
---|
1051 | Pte[0] &= ~(UINT64)IA32_PG_P; // Hide page 0
|
---|
1052 | } else {
|
---|
1053 | // Create 4K-page entries
|
---|
1054 | Pages = (UINTN)AllocatePageTableMemory (1);
|
---|
1055 | ASSERT (Pages != 0);
|
---|
1056 |
|
---|
1057 | Pte[0] = (UINT64)(Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS);
|
---|
1058 |
|
---|
1059 | Pte = (UINT64*)Pages;
|
---|
1060 | PageAddress = 0;
|
---|
1061 | Pte[0] = PageAddress | mAddressEncMask; // Hide page 0 but present left
|
---|
1062 | for (Index = 1; Index < EFI_PAGE_SIZE / sizeof (*Pte); Index++) {
|
---|
1063 | PageAddress += EFI_PAGE_SIZE;
|
---|
1064 | Pte[Index] = PageAddress | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
|
---|
1065 | }
|
---|
1066 | }
|
---|
1067 | }
|
---|
1068 |
|
---|
1069 | return (UINT32)(UINTN)PageTable;
|
---|
1070 | }
|
---|
1071 |
|
---|
1072 | /**
|
---|
1073 | Checks whether the input token is the current used token.
|
---|
1074 |
|
---|
1075 | @param[in] Token This parameter describes the token that was passed into DispatchProcedure or
|
---|
1076 | BroadcastProcedure.
|
---|
1077 |
|
---|
1078 | @retval TRUE The input token is the current used token.
|
---|
1079 | @retval FALSE The input token is not the current used token.
|
---|
1080 | **/
|
---|
1081 | BOOLEAN
|
---|
1082 | IsTokenInUse (
|
---|
1083 | IN SPIN_LOCK *Token
|
---|
1084 | )
|
---|
1085 | {
|
---|
1086 | LIST_ENTRY *Link;
|
---|
1087 | PROCEDURE_TOKEN *ProcToken;
|
---|
1088 |
|
---|
1089 | if (Token == NULL) {
|
---|
1090 | return FALSE;
|
---|
1091 | }
|
---|
1092 |
|
---|
1093 | Link = GetFirstNode (&gSmmCpuPrivate->TokenList);
|
---|
1094 | while (!IsNull (&gSmmCpuPrivate->TokenList, Link)) {
|
---|
1095 | ProcToken = PROCEDURE_TOKEN_FROM_LINK (Link);
|
---|
1096 |
|
---|
1097 | if (ProcToken->ProcedureToken == Token) {
|
---|
1098 | return TRUE;
|
---|
1099 | }
|
---|
1100 |
|
---|
1101 | Link = GetNextNode (&gSmmCpuPrivate->TokenList, Link);
|
---|
1102 | }
|
---|
1103 |
|
---|
1104 | return FALSE;
|
---|
1105 | }
|
---|
1106 |
|
---|
1107 | /**
|
---|
1108 | create token and save it to the maintain list.
|
---|
1109 |
|
---|
1110 | @retval return the spin lock used as token.
|
---|
1111 |
|
---|
1112 | **/
|
---|
1113 | SPIN_LOCK *
|
---|
1114 | CreateToken (
|
---|
1115 | VOID
|
---|
1116 | )
|
---|
1117 | {
|
---|
1118 | PROCEDURE_TOKEN *ProcToken;
|
---|
1119 | SPIN_LOCK *CpuToken;
|
---|
1120 | UINTN SpinLockSize;
|
---|
1121 |
|
---|
1122 | SpinLockSize = GetSpinLockProperties ();
|
---|
1123 | CpuToken = AllocatePool (SpinLockSize);
|
---|
1124 | ASSERT (CpuToken != NULL);
|
---|
1125 | InitializeSpinLock (CpuToken);
|
---|
1126 | AcquireSpinLock (CpuToken);
|
---|
1127 |
|
---|
1128 | ProcToken = AllocatePool (sizeof (PROCEDURE_TOKEN));
|
---|
1129 | ASSERT (ProcToken != NULL);
|
---|
1130 | ProcToken->Signature = PROCEDURE_TOKEN_SIGNATURE;
|
---|
1131 | ProcToken->ProcedureToken = CpuToken;
|
---|
1132 |
|
---|
1133 | InsertTailList (&gSmmCpuPrivate->TokenList, &ProcToken->Link);
|
---|
1134 |
|
---|
1135 | return CpuToken;
|
---|
1136 | }
|
---|
1137 |
|
---|
1138 | /**
|
---|
1139 | Checks status of specified AP.
|
---|
1140 |
|
---|
1141 | This function checks whether the specified AP has finished the task assigned
|
---|
1142 | by StartupThisAP(), and whether timeout expires.
|
---|
1143 |
|
---|
1144 | @param[in] Token This parameter describes the token that was passed into DispatchProcedure or
|
---|
1145 | BroadcastProcedure.
|
---|
1146 |
|
---|
1147 | @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
|
---|
1148 | @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
|
---|
1149 | **/
|
---|
1150 | EFI_STATUS
|
---|
1151 | IsApReady (
|
---|
1152 | IN SPIN_LOCK *Token
|
---|
1153 | )
|
---|
1154 | {
|
---|
1155 | if (AcquireSpinLockOrFail (Token)) {
|
---|
1156 | ReleaseSpinLock (Token);
|
---|
1157 | return EFI_SUCCESS;
|
---|
1158 | }
|
---|
1159 |
|
---|
1160 | return EFI_NOT_READY;
|
---|
1161 | }
|
---|
1162 |
|
---|
1163 | /**
|
---|
1164 | Schedule a procedure to run on the specified CPU.
|
---|
1165 |
|
---|
1166 | @param[in] Procedure The address of the procedure to run
|
---|
1167 | @param[in] CpuIndex Target CPU Index
|
---|
1168 | @param[in,out] ProcArguments The parameter to pass to the procedure
|
---|
1169 | @param[in] Token This is an optional parameter that allows the caller to execute the
|
---|
1170 | procedure in a blocking or non-blocking fashion. If it is NULL the
|
---|
1171 | call is blocking, and the call will not return until the AP has
|
---|
1172 | completed the procedure. If the token is not NULL, the call will
|
---|
1173 | return immediately. The caller can check whether the procedure has
|
---|
1174 | completed with CheckOnProcedure or WaitForProcedure.
|
---|
1175 | @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for the APs to finish
|
---|
1176 | execution of Procedure, either for blocking or non-blocking mode.
|
---|
1177 | Zero means infinity. If the timeout expires before all APs return
|
---|
1178 | from Procedure, then Procedure on the failed APs is terminated. If
|
---|
1179 | the timeout expires in blocking mode, the call returns EFI_TIMEOUT.
|
---|
1180 | If the timeout expires in non-blocking mode, the timeout determined
|
---|
1181 | can be through CheckOnProcedure or WaitForProcedure.
|
---|
1182 | Note that timeout support is optional. Whether an implementation
|
---|
1183 | supports this feature can be determined via the Attributes data
|
---|
1184 | member.
|
---|
1185 | @param[in,out] CpuStatus This optional pointer may be used to get the status code returned
|
---|
1186 | by Procedure when it completes execution on the target AP, or with
|
---|
1187 | EFI_TIMEOUT if the Procedure fails to complete within the optional
|
---|
1188 | timeout. The implementation will update this variable with
|
---|
1189 | EFI_NOT_READY prior to starting Procedure on the target AP.
|
---|
1190 |
|
---|
1191 | @retval EFI_INVALID_PARAMETER CpuNumber not valid
|
---|
1192 | @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP
|
---|
1193 | @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM
|
---|
1194 | @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy
|
---|
1195 | @retval EFI_SUCCESS The procedure has been successfully scheduled
|
---|
1196 |
|
---|
1197 | **/
|
---|
1198 | EFI_STATUS
|
---|
1199 | InternalSmmStartupThisAp (
|
---|
1200 | IN EFI_AP_PROCEDURE2 Procedure,
|
---|
1201 | IN UINTN CpuIndex,
|
---|
1202 | IN OUT VOID *ProcArguments OPTIONAL,
|
---|
1203 | IN MM_COMPLETION *Token,
|
---|
1204 | IN UINTN TimeoutInMicroseconds,
|
---|
1205 | IN OUT EFI_STATUS *CpuStatus
|
---|
1206 | )
|
---|
1207 | {
|
---|
1208 | if (CpuIndex >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus) {
|
---|
1209 | DEBUG((DEBUG_ERROR, "CpuIndex(%d) >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus(%d)\n", CpuIndex, gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus));
|
---|
1210 | return EFI_INVALID_PARAMETER;
|
---|
1211 | }
|
---|
1212 | if (CpuIndex == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {
|
---|
1213 | DEBUG((DEBUG_ERROR, "CpuIndex(%d) == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu\n", CpuIndex));
|
---|
1214 | return EFI_INVALID_PARAMETER;
|
---|
1215 | }
|
---|
1216 | if (gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId == INVALID_APIC_ID) {
|
---|
1217 | return EFI_INVALID_PARAMETER;
|
---|
1218 | }
|
---|
1219 | if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) {
|
---|
1220 | if (mSmmMpSyncData->EffectiveSyncMode == SmmCpuSyncModeTradition) {
|
---|
1221 | DEBUG((DEBUG_ERROR, "!mSmmMpSyncData->CpuData[%d].Present\n", CpuIndex));
|
---|
1222 | }
|
---|
1223 | return EFI_INVALID_PARAMETER;
|
---|
1224 | }
|
---|
1225 | if (gSmmCpuPrivate->Operation[CpuIndex] == SmmCpuRemove) {
|
---|
1226 | if (!FeaturePcdGet (PcdCpuHotPlugSupport)) {
|
---|
1227 | DEBUG((DEBUG_ERROR, "gSmmCpuPrivate->Operation[%d] == SmmCpuRemove\n", CpuIndex));
|
---|
1228 | }
|
---|
1229 | return EFI_INVALID_PARAMETER;
|
---|
1230 | }
|
---|
1231 | if ((TimeoutInMicroseconds != 0) && ((mSmmMp.Attributes & EFI_MM_MP_TIMEOUT_SUPPORTED) == 0)) {
|
---|
1232 | return EFI_INVALID_PARAMETER;
|
---|
1233 | }
|
---|
1234 | if (Procedure == NULL) {
|
---|
1235 | return EFI_INVALID_PARAMETER;
|
---|
1236 | }
|
---|
1237 |
|
---|
1238 | if (Token == NULL) {
|
---|
1239 | AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
|
---|
1240 | } else {
|
---|
1241 | if (!AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy)) {
|
---|
1242 | DEBUG((DEBUG_ERROR, "Can't acquire mSmmMpSyncData->CpuData[%d].Busy\n", CpuIndex));
|
---|
1243 | return EFI_NOT_READY;
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 | *Token = (MM_COMPLETION) CreateToken ();
|
---|
1247 | }
|
---|
1248 |
|
---|
1249 | mSmmMpSyncData->CpuData[CpuIndex].Procedure = Procedure;
|
---|
1250 | mSmmMpSyncData->CpuData[CpuIndex].Parameter = ProcArguments;
|
---|
1251 | if (Token != NULL) {
|
---|
1252 | mSmmMpSyncData->CpuData[CpuIndex].Token = (SPIN_LOCK *)(*Token);
|
---|
1253 | }
|
---|
1254 | mSmmMpSyncData->CpuData[CpuIndex].Status = CpuStatus;
|
---|
1255 | if (mSmmMpSyncData->CpuData[CpuIndex].Status != NULL) {
|
---|
1256 | *mSmmMpSyncData->CpuData[CpuIndex].Status = EFI_NOT_READY;
|
---|
1257 | }
|
---|
1258 |
|
---|
1259 | ReleaseSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);
|
---|
1260 |
|
---|
1261 | if (Token == NULL) {
|
---|
1262 | AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
|
---|
1263 | ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
|
---|
1264 | }
|
---|
1265 |
|
---|
1266 | return EFI_SUCCESS;
|
---|
1267 | }
|
---|
1268 |
|
---|
1269 | /**
|
---|
1270 | Worker function to execute a caller provided function on all enabled APs.
|
---|
1271 |
|
---|
1272 | @param[in] Procedure A pointer to the function to be run on
|
---|
1273 | enabled APs of the system.
|
---|
1274 | @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
---|
1275 | APs to return from Procedure, either for
|
---|
1276 | blocking or non-blocking mode.
|
---|
1277 | @param[in,out] ProcedureArguments The parameter passed into Procedure for
|
---|
1278 | all APs.
|
---|
1279 | @param[in,out] Token This is an optional parameter that allows the caller to execute the
|
---|
1280 | procedure in a blocking or non-blocking fashion. If it is NULL the
|
---|
1281 | call is blocking, and the call will not return until the AP has
|
---|
1282 | completed the procedure. If the token is not NULL, the call will
|
---|
1283 | return immediately. The caller can check whether the procedure has
|
---|
1284 | completed with CheckOnProcedure or WaitForProcedure.
|
---|
1285 | @param[in,out] CPUStatus This optional pointer may be used to get the status code returned
|
---|
1286 | by Procedure when it completes execution on the target AP, or with
|
---|
1287 | EFI_TIMEOUT if the Procedure fails to complete within the optional
|
---|
1288 | timeout. The implementation will update this variable with
|
---|
1289 | EFI_NOT_READY prior to starting Procedure on the target AP.
|
---|
1290 |
|
---|
1291 |
|
---|
1292 | @retval EFI_SUCCESS In blocking mode, all APs have finished before
|
---|
1293 | the timeout expired.
|
---|
1294 | @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
|
---|
1295 | to all enabled APs.
|
---|
1296 | @retval others Failed to Startup all APs.
|
---|
1297 |
|
---|
1298 | **/
|
---|
1299 | EFI_STATUS
|
---|
1300 | InternalSmmStartupAllAPs (
|
---|
1301 | IN EFI_AP_PROCEDURE2 Procedure,
|
---|
1302 | IN UINTN TimeoutInMicroseconds,
|
---|
1303 | IN OUT VOID *ProcedureArguments OPTIONAL,
|
---|
1304 | IN OUT MM_COMPLETION *Token,
|
---|
1305 | IN OUT EFI_STATUS *CPUStatus
|
---|
1306 | )
|
---|
1307 | {
|
---|
1308 | UINTN Index;
|
---|
1309 | UINTN CpuCount;
|
---|
1310 |
|
---|
1311 | if ((TimeoutInMicroseconds != 0) && ((mSmmMp.Attributes & EFI_MM_MP_TIMEOUT_SUPPORTED) == 0)) {
|
---|
1312 | return EFI_INVALID_PARAMETER;
|
---|
1313 | }
|
---|
1314 | if (Procedure == NULL) {
|
---|
1315 | return EFI_INVALID_PARAMETER;
|
---|
1316 | }
|
---|
1317 |
|
---|
1318 | CpuCount = 0;
|
---|
1319 | for (Index = mMaxNumberOfCpus; Index-- > 0;) {
|
---|
1320 | if (IsPresentAp (Index)) {
|
---|
1321 | CpuCount ++;
|
---|
1322 |
|
---|
1323 | if (gSmmCpuPrivate->Operation[Index] == SmmCpuRemove) {
|
---|
1324 | return EFI_INVALID_PARAMETER;
|
---|
1325 | }
|
---|
1326 |
|
---|
1327 | if (!AcquireSpinLockOrFail(mSmmMpSyncData->CpuData[Index].Busy)) {
|
---|
1328 | return EFI_NOT_READY;
|
---|
1329 | }
|
---|
1330 | ReleaseSpinLock (mSmmMpSyncData->CpuData[Index].Busy);
|
---|
1331 | }
|
---|
1332 | }
|
---|
1333 | if (CpuCount == 0) {
|
---|
1334 | return EFI_NOT_STARTED;
|
---|
1335 | }
|
---|
1336 |
|
---|
1337 | if (Token != NULL) {
|
---|
1338 | *Token = (MM_COMPLETION) CreateToken ();
|
---|
1339 | }
|
---|
1340 |
|
---|
1341 | //
|
---|
1342 | // Make sure all BUSY should be acquired.
|
---|
1343 | //
|
---|
1344 | // Because former code already check mSmmMpSyncData->CpuData[***].Busy for each AP.
|
---|
1345 | // Here code always use AcquireSpinLock instead of AcquireSpinLockOrFail for not
|
---|
1346 | // block mode.
|
---|
1347 | //
|
---|
1348 | for (Index = mMaxNumberOfCpus; Index-- > 0;) {
|
---|
1349 | if (IsPresentAp (Index)) {
|
---|
1350 | AcquireSpinLock (mSmmMpSyncData->CpuData[Index].Busy);
|
---|
1351 | }
|
---|
1352 | }
|
---|
1353 |
|
---|
1354 | for (Index = mMaxNumberOfCpus; Index-- > 0;) {
|
---|
1355 | if (IsPresentAp (Index)) {
|
---|
1356 | mSmmMpSyncData->CpuData[Index].Procedure = (EFI_AP_PROCEDURE2) Procedure;
|
---|
1357 | mSmmMpSyncData->CpuData[Index].Parameter = ProcedureArguments;
|
---|
1358 | if (Token != NULL) {
|
---|
1359 | mSmmMpSyncData->CpuData[Index].Token = (SPIN_LOCK *)(*Token);
|
---|
1360 | }
|
---|
1361 | if (CPUStatus != NULL) {
|
---|
1362 | mSmmMpSyncData->CpuData[Index].Status = &CPUStatus[Index];
|
---|
1363 | if (mSmmMpSyncData->CpuData[Index].Status != NULL) {
|
---|
1364 | *mSmmMpSyncData->CpuData[Index].Status = EFI_NOT_READY;
|
---|
1365 | }
|
---|
1366 | }
|
---|
1367 | } else {
|
---|
1368 | //
|
---|
1369 | // PI spec requirement:
|
---|
1370 | // For every excluded processor, the array entry must contain a value of EFI_NOT_STARTED.
|
---|
1371 | //
|
---|
1372 | if (CPUStatus != NULL) {
|
---|
1373 | CPUStatus[Index] = EFI_NOT_STARTED;
|
---|
1374 | }
|
---|
1375 | }
|
---|
1376 | }
|
---|
1377 |
|
---|
1378 | ReleaseAllAPs ();
|
---|
1379 |
|
---|
1380 | if (Token == NULL) {
|
---|
1381 | //
|
---|
1382 | // Make sure all APs have completed their tasks.
|
---|
1383 | //
|
---|
1384 | WaitForAllAPsNotBusy (TRUE);
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 | return EFI_SUCCESS;
|
---|
1388 | }
|
---|
1389 |
|
---|
1390 | /**
|
---|
1391 | ISO C99 6.5.2.2 "Function calls", paragraph 9:
|
---|
1392 | If the function is defined with a type that is not compatible with
|
---|
1393 | the type (of the expression) pointed to by the expression that
|
---|
1394 | denotes the called function, the behavior is undefined.
|
---|
1395 |
|
---|
1396 | So add below wrapper function to convert between EFI_AP_PROCEDURE
|
---|
1397 | and EFI_AP_PROCEDURE2.
|
---|
1398 |
|
---|
1399 | Wrapper for Procedures.
|
---|
1400 |
|
---|
1401 | @param[in] Buffer Pointer to PROCEDURE_WRAPPER buffer.
|
---|
1402 |
|
---|
1403 | **/
|
---|
1404 | EFI_STATUS
|
---|
1405 | EFIAPI
|
---|
1406 | ProcedureWrapper (
|
---|
1407 | IN VOID *Buffer
|
---|
1408 | )
|
---|
1409 | {
|
---|
1410 | PROCEDURE_WRAPPER *Wrapper;
|
---|
1411 |
|
---|
1412 | Wrapper = Buffer;
|
---|
1413 | Wrapper->Procedure (Wrapper->ProcedureArgument);
|
---|
1414 |
|
---|
1415 | return EFI_SUCCESS;
|
---|
1416 | }
|
---|
1417 |
|
---|
1418 | /**
|
---|
1419 | Schedule a procedure to run on the specified CPU in blocking mode.
|
---|
1420 |
|
---|
1421 | @param[in] Procedure The address of the procedure to run
|
---|
1422 | @param[in] CpuIndex Target CPU Index
|
---|
1423 | @param[in, out] ProcArguments The parameter to pass to the procedure
|
---|
1424 |
|
---|
1425 | @retval EFI_INVALID_PARAMETER CpuNumber not valid
|
---|
1426 | @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP
|
---|
1427 | @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM
|
---|
1428 | @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy
|
---|
1429 | @retval EFI_SUCCESS The procedure has been successfully scheduled
|
---|
1430 |
|
---|
1431 | **/
|
---|
1432 | EFI_STATUS
|
---|
1433 | EFIAPI
|
---|
1434 | SmmBlockingStartupThisAp (
|
---|
1435 | IN EFI_AP_PROCEDURE Procedure,
|
---|
1436 | IN UINTN CpuIndex,
|
---|
1437 | IN OUT VOID *ProcArguments OPTIONAL
|
---|
1438 | )
|
---|
1439 | {
|
---|
1440 | PROCEDURE_WRAPPER Wrapper;
|
---|
1441 |
|
---|
1442 | Wrapper.Procedure = Procedure;
|
---|
1443 | Wrapper.ProcedureArgument = ProcArguments;
|
---|
1444 |
|
---|
1445 | //
|
---|
1446 | // Use wrapper function to convert EFI_AP_PROCEDURE to EFI_AP_PROCEDURE2.
|
---|
1447 | //
|
---|
1448 | return InternalSmmStartupThisAp (ProcedureWrapper, CpuIndex, &Wrapper, NULL, 0, NULL);
|
---|
1449 | }
|
---|
1450 |
|
---|
1451 | /**
|
---|
1452 | Schedule a procedure to run on the specified CPU.
|
---|
1453 |
|
---|
1454 | @param Procedure The address of the procedure to run
|
---|
1455 | @param CpuIndex Target CPU Index
|
---|
1456 | @param ProcArguments The parameter to pass to the procedure
|
---|
1457 |
|
---|
1458 | @retval EFI_INVALID_PARAMETER CpuNumber not valid
|
---|
1459 | @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP
|
---|
1460 | @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM
|
---|
1461 | @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy
|
---|
1462 | @retval EFI_SUCCESS The procedure has been successfully scheduled
|
---|
1463 |
|
---|
1464 | **/
|
---|
1465 | EFI_STATUS
|
---|
1466 | EFIAPI
|
---|
1467 | SmmStartupThisAp (
|
---|
1468 | IN EFI_AP_PROCEDURE Procedure,
|
---|
1469 | IN UINTN CpuIndex,
|
---|
1470 | IN OUT VOID *ProcArguments OPTIONAL
|
---|
1471 | )
|
---|
1472 | {
|
---|
1473 | MM_COMPLETION Token;
|
---|
1474 |
|
---|
1475 | gSmmCpuPrivate->ApWrapperFunc[CpuIndex].Procedure = Procedure;
|
---|
1476 | gSmmCpuPrivate->ApWrapperFunc[CpuIndex].ProcedureArgument = ProcArguments;
|
---|
1477 |
|
---|
1478 | //
|
---|
1479 | // Use wrapper function to convert EFI_AP_PROCEDURE to EFI_AP_PROCEDURE2.
|
---|
1480 | //
|
---|
1481 | return InternalSmmStartupThisAp (
|
---|
1482 | ProcedureWrapper,
|
---|
1483 | CpuIndex,
|
---|
1484 | &gSmmCpuPrivate->ApWrapperFunc[CpuIndex],
|
---|
1485 | FeaturePcdGet (PcdCpuSmmBlockStartupThisAp) ? NULL : &Token,
|
---|
1486 | 0,
|
---|
1487 | NULL
|
---|
1488 | );
|
---|
1489 | }
|
---|
1490 |
|
---|
1491 | /**
|
---|
1492 | This function sets DR6 & DR7 according to SMM save state, before running SMM C code.
|
---|
1493 | They are useful when you want to enable hardware breakpoints in SMM without entry SMM mode.
|
---|
1494 |
|
---|
1495 | NOTE: It might not be appreciated in runtime since it might
|
---|
1496 | conflict with OS debugging facilities. Turn them off in RELEASE.
|
---|
1497 |
|
---|
1498 | @param CpuIndex CPU Index
|
---|
1499 |
|
---|
1500 | **/
|
---|
1501 | VOID
|
---|
1502 | EFIAPI
|
---|
1503 | CpuSmmDebugEntry (
|
---|
1504 | IN UINTN CpuIndex
|
---|
1505 | )
|
---|
1506 | {
|
---|
1507 | SMRAM_SAVE_STATE_MAP *CpuSaveState;
|
---|
1508 |
|
---|
1509 | if (FeaturePcdGet (PcdCpuSmmDebug)) {
|
---|
1510 | ASSERT(CpuIndex < mMaxNumberOfCpus);
|
---|
1511 | CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex];
|
---|
1512 | if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) {
|
---|
1513 | AsmWriteDr6 (CpuSaveState->x86._DR6);
|
---|
1514 | AsmWriteDr7 (CpuSaveState->x86._DR7);
|
---|
1515 | } else {
|
---|
1516 | AsmWriteDr6 ((UINTN)CpuSaveState->x64._DR6);
|
---|
1517 | AsmWriteDr7 ((UINTN)CpuSaveState->x64._DR7);
|
---|
1518 | }
|
---|
1519 | }
|
---|
1520 | }
|
---|
1521 |
|
---|
1522 | /**
|
---|
1523 | This function restores DR6 & DR7 to SMM save state.
|
---|
1524 |
|
---|
1525 | NOTE: It might not be appreciated in runtime since it might
|
---|
1526 | conflict with OS debugging facilities. Turn them off in RELEASE.
|
---|
1527 |
|
---|
1528 | @param CpuIndex CPU Index
|
---|
1529 |
|
---|
1530 | **/
|
---|
1531 | VOID
|
---|
1532 | EFIAPI
|
---|
1533 | CpuSmmDebugExit (
|
---|
1534 | IN UINTN CpuIndex
|
---|
1535 | )
|
---|
1536 | {
|
---|
1537 | SMRAM_SAVE_STATE_MAP *CpuSaveState;
|
---|
1538 |
|
---|
1539 | if (FeaturePcdGet (PcdCpuSmmDebug)) {
|
---|
1540 | ASSERT(CpuIndex < mMaxNumberOfCpus);
|
---|
1541 | CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex];
|
---|
1542 | if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) {
|
---|
1543 | CpuSaveState->x86._DR7 = (UINT32)AsmReadDr7 ();
|
---|
1544 | CpuSaveState->x86._DR6 = (UINT32)AsmReadDr6 ();
|
---|
1545 | } else {
|
---|
1546 | CpuSaveState->x64._DR7 = AsmReadDr7 ();
|
---|
1547 | CpuSaveState->x64._DR6 = AsmReadDr6 ();
|
---|
1548 | }
|
---|
1549 | }
|
---|
1550 | }
|
---|
1551 |
|
---|
1552 | /**
|
---|
1553 | C function for SMI entry, each processor comes here upon SMI trigger.
|
---|
1554 |
|
---|
1555 | @param CpuIndex CPU Index
|
---|
1556 |
|
---|
1557 | **/
|
---|
1558 | VOID
|
---|
1559 | EFIAPI
|
---|
1560 | SmiRendezvous (
|
---|
1561 | IN UINTN CpuIndex
|
---|
1562 | )
|
---|
1563 | {
|
---|
1564 | EFI_STATUS Status;
|
---|
1565 | BOOLEAN ValidSmi;
|
---|
1566 | BOOLEAN IsBsp;
|
---|
1567 | BOOLEAN BspInProgress;
|
---|
1568 | UINTN Index;
|
---|
1569 | UINTN Cr2;
|
---|
1570 |
|
---|
1571 | ASSERT(CpuIndex < mMaxNumberOfCpus);
|
---|
1572 |
|
---|
1573 | //
|
---|
1574 | // Save Cr2 because Page Fault exception in SMM may override its value,
|
---|
1575 | // when using on-demand paging for above 4G memory.
|
---|
1576 | //
|
---|
1577 | Cr2 = 0;
|
---|
1578 | SaveCr2 (&Cr2);
|
---|
1579 |
|
---|
1580 | //
|
---|
1581 | // Call the user register Startup function first.
|
---|
1582 | //
|
---|
1583 | if (mSmmMpSyncData->StartupProcedure != NULL) {
|
---|
1584 | mSmmMpSyncData->StartupProcedure (mSmmMpSyncData->StartupProcArgs);
|
---|
1585 | }
|
---|
1586 |
|
---|
1587 | //
|
---|
1588 | // Perform CPU specific entry hooks
|
---|
1589 | //
|
---|
1590 | SmmCpuFeaturesRendezvousEntry (CpuIndex);
|
---|
1591 |
|
---|
1592 | //
|
---|
1593 | // Determine if this is a valid SMI
|
---|
1594 | //
|
---|
1595 | ValidSmi = PlatformValidSmi();
|
---|
1596 |
|
---|
1597 | //
|
---|
1598 | // Determine if BSP has been already in progress. Note this must be checked after
|
---|
1599 | // ValidSmi because BSP may clear a valid SMI source after checking in.
|
---|
1600 | //
|
---|
1601 | BspInProgress = *mSmmMpSyncData->InsideSmm;
|
---|
1602 |
|
---|
1603 | if (!BspInProgress && !ValidSmi) {
|
---|
1604 | //
|
---|
1605 | // If we reach here, it means when we sampled the ValidSmi flag, SMI status had not
|
---|
1606 | // been cleared by BSP in a new SMI run (so we have a truly invalid SMI), or SMI
|
---|
1607 | // status had been cleared by BSP and an existing SMI run has almost ended. (Note
|
---|
1608 | // we sampled ValidSmi flag BEFORE judging BSP-in-progress status.) In both cases, there
|
---|
1609 | // is nothing we need to do.
|
---|
1610 | //
|
---|
1611 | goto Exit;
|
---|
1612 | } else {
|
---|
1613 | //
|
---|
1614 | // Signal presence of this processor
|
---|
1615 | //
|
---|
1616 | if (ReleaseSemaphore (mSmmMpSyncData->Counter) == 0) {
|
---|
1617 | //
|
---|
1618 | // BSP has already ended the synchronization, so QUIT!!!
|
---|
1619 | //
|
---|
1620 |
|
---|
1621 | //
|
---|
1622 | // Wait for BSP's signal to finish SMI
|
---|
1623 | //
|
---|
1624 | while (*mSmmMpSyncData->AllCpusInSync) {
|
---|
1625 | CpuPause ();
|
---|
1626 | }
|
---|
1627 | goto Exit;
|
---|
1628 | } else {
|
---|
1629 |
|
---|
1630 | //
|
---|
1631 | // The BUSY lock is initialized to Released state.
|
---|
1632 | // This needs to be done early enough to be ready for BSP's SmmStartupThisAp() call.
|
---|
1633 | // E.g., with Relaxed AP flow, SmmStartupThisAp() may be called immediately
|
---|
1634 | // after AP's present flag is detected.
|
---|
1635 | //
|
---|
1636 | InitializeSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
|
---|
1637 | }
|
---|
1638 |
|
---|
1639 | if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
|
---|
1640 | ActivateSmmProfile (CpuIndex);
|
---|
1641 | }
|
---|
1642 |
|
---|
1643 | if (BspInProgress) {
|
---|
1644 | //
|
---|
1645 | // BSP has been elected. Follow AP path, regardless of ValidSmi flag
|
---|
1646 | // as BSP may have cleared the SMI status
|
---|
1647 | //
|
---|
1648 | APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);
|
---|
1649 | } else {
|
---|
1650 | //
|
---|
1651 | // We have a valid SMI
|
---|
1652 | //
|
---|
1653 |
|
---|
1654 | //
|
---|
1655 | // Elect BSP
|
---|
1656 | //
|
---|
1657 | IsBsp = FALSE;
|
---|
1658 | if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
|
---|
1659 | if (!mSmmMpSyncData->SwitchBsp || mSmmMpSyncData->CandidateBsp[CpuIndex]) {
|
---|
1660 | //
|
---|
1661 | // Call platform hook to do BSP election
|
---|
1662 | //
|
---|
1663 | Status = PlatformSmmBspElection (&IsBsp);
|
---|
1664 | if (EFI_SUCCESS == Status) {
|
---|
1665 | //
|
---|
1666 | // Platform hook determines successfully
|
---|
1667 | //
|
---|
1668 | if (IsBsp) {
|
---|
1669 | mSmmMpSyncData->BspIndex = (UINT32)CpuIndex;
|
---|
1670 | }
|
---|
1671 | } else {
|
---|
1672 | //
|
---|
1673 | // Platform hook fails to determine, use default BSP election method
|
---|
1674 | //
|
---|
1675 | InterlockedCompareExchange32 (
|
---|
1676 | (UINT32*)&mSmmMpSyncData->BspIndex,
|
---|
1677 | (UINT32)-1,
|
---|
1678 | (UINT32)CpuIndex
|
---|
1679 | );
|
---|
1680 | }
|
---|
1681 | }
|
---|
1682 | }
|
---|
1683 |
|
---|
1684 | //
|
---|
1685 | // "mSmmMpSyncData->BspIndex == CpuIndex" means this is the BSP
|
---|
1686 | //
|
---|
1687 | if (mSmmMpSyncData->BspIndex == CpuIndex) {
|
---|
1688 |
|
---|
1689 | //
|
---|
1690 | // Clear last request for SwitchBsp.
|
---|
1691 | //
|
---|
1692 | if (mSmmMpSyncData->SwitchBsp) {
|
---|
1693 | mSmmMpSyncData->SwitchBsp = FALSE;
|
---|
1694 | for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
|
---|
1695 | mSmmMpSyncData->CandidateBsp[Index] = FALSE;
|
---|
1696 | }
|
---|
1697 | }
|
---|
1698 |
|
---|
1699 | if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
|
---|
1700 | SmmProfileRecordSmiNum ();
|
---|
1701 | }
|
---|
1702 |
|
---|
1703 | //
|
---|
1704 | // BSP Handler is always called with a ValidSmi == TRUE
|
---|
1705 | //
|
---|
1706 | BSPHandler (CpuIndex, mSmmMpSyncData->EffectiveSyncMode);
|
---|
1707 | } else {
|
---|
1708 | APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);
|
---|
1709 | }
|
---|
1710 | }
|
---|
1711 |
|
---|
1712 | ASSERT (*mSmmMpSyncData->CpuData[CpuIndex].Run == 0);
|
---|
1713 |
|
---|
1714 | //
|
---|
1715 | // Wait for BSP's signal to exit SMI
|
---|
1716 | //
|
---|
1717 | while (*mSmmMpSyncData->AllCpusInSync) {
|
---|
1718 | CpuPause ();
|
---|
1719 | }
|
---|
1720 | }
|
---|
1721 |
|
---|
1722 | Exit:
|
---|
1723 | SmmCpuFeaturesRendezvousExit (CpuIndex);
|
---|
1724 |
|
---|
1725 | //
|
---|
1726 | // Restore Cr2
|
---|
1727 | //
|
---|
1728 | RestoreCr2 (Cr2);
|
---|
1729 | }
|
---|
1730 |
|
---|
1731 | /**
|
---|
1732 | Allocate buffer for SpinLock and Wrapper function buffer.
|
---|
1733 |
|
---|
1734 | **/
|
---|
1735 | VOID
|
---|
1736 | InitializeDataForMmMp (
|
---|
1737 | VOID
|
---|
1738 | )
|
---|
1739 | {
|
---|
1740 | gSmmCpuPrivate->ApWrapperFunc = AllocatePool (sizeof (PROCEDURE_WRAPPER) * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus);
|
---|
1741 | ASSERT (gSmmCpuPrivate->ApWrapperFunc != NULL);
|
---|
1742 |
|
---|
1743 | InitializeListHead (&gSmmCpuPrivate->TokenList);
|
---|
1744 | }
|
---|
1745 |
|
---|
1746 | /**
|
---|
1747 | Allocate buffer for all semaphores and spin locks.
|
---|
1748 |
|
---|
1749 | **/
|
---|
1750 | VOID
|
---|
1751 | InitializeSmmCpuSemaphores (
|
---|
1752 | VOID
|
---|
1753 | )
|
---|
1754 | {
|
---|
1755 | UINTN ProcessorCount;
|
---|
1756 | UINTN TotalSize;
|
---|
1757 | UINTN GlobalSemaphoresSize;
|
---|
1758 | UINTN CpuSemaphoresSize;
|
---|
1759 | UINTN SemaphoreSize;
|
---|
1760 | UINTN Pages;
|
---|
1761 | UINTN *SemaphoreBlock;
|
---|
1762 | UINTN SemaphoreAddr;
|
---|
1763 |
|
---|
1764 | SemaphoreSize = GetSpinLockProperties ();
|
---|
1765 | ProcessorCount = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
|
---|
1766 | GlobalSemaphoresSize = (sizeof (SMM_CPU_SEMAPHORE_GLOBAL) / sizeof (VOID *)) * SemaphoreSize;
|
---|
1767 | CpuSemaphoresSize = (sizeof (SMM_CPU_SEMAPHORE_CPU) / sizeof (VOID *)) * ProcessorCount * SemaphoreSize;
|
---|
1768 | TotalSize = GlobalSemaphoresSize + CpuSemaphoresSize;
|
---|
1769 | DEBUG((EFI_D_INFO, "One Semaphore Size = 0x%x\n", SemaphoreSize));
|
---|
1770 | DEBUG((EFI_D_INFO, "Total Semaphores Size = 0x%x\n", TotalSize));
|
---|
1771 | Pages = EFI_SIZE_TO_PAGES (TotalSize);
|
---|
1772 | SemaphoreBlock = AllocatePages (Pages);
|
---|
1773 | ASSERT (SemaphoreBlock != NULL);
|
---|
1774 | ZeroMem (SemaphoreBlock, TotalSize);
|
---|
1775 |
|
---|
1776 | SemaphoreAddr = (UINTN)SemaphoreBlock;
|
---|
1777 | mSmmCpuSemaphores.SemaphoreGlobal.Counter = (UINT32 *)SemaphoreAddr;
|
---|
1778 | SemaphoreAddr += SemaphoreSize;
|
---|
1779 | mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm = (BOOLEAN *)SemaphoreAddr;
|
---|
1780 | SemaphoreAddr += SemaphoreSize;
|
---|
1781 | mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync = (BOOLEAN *)SemaphoreAddr;
|
---|
1782 | SemaphoreAddr += SemaphoreSize;
|
---|
1783 | mSmmCpuSemaphores.SemaphoreGlobal.PFLock = (SPIN_LOCK *)SemaphoreAddr;
|
---|
1784 | SemaphoreAddr += SemaphoreSize;
|
---|
1785 | mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock
|
---|
1786 | = (SPIN_LOCK *)SemaphoreAddr;
|
---|
1787 | SemaphoreAddr += SemaphoreSize;
|
---|
1788 |
|
---|
1789 | SemaphoreAddr = (UINTN)SemaphoreBlock + GlobalSemaphoresSize;
|
---|
1790 | mSmmCpuSemaphores.SemaphoreCpu.Busy = (SPIN_LOCK *)SemaphoreAddr;
|
---|
1791 | SemaphoreAddr += ProcessorCount * SemaphoreSize;
|
---|
1792 | mSmmCpuSemaphores.SemaphoreCpu.Run = (UINT32 *)SemaphoreAddr;
|
---|
1793 | SemaphoreAddr += ProcessorCount * SemaphoreSize;
|
---|
1794 | mSmmCpuSemaphores.SemaphoreCpu.Present = (BOOLEAN *)SemaphoreAddr;
|
---|
1795 |
|
---|
1796 | mPFLock = mSmmCpuSemaphores.SemaphoreGlobal.PFLock;
|
---|
1797 | mConfigSmmCodeAccessCheckLock = mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock;
|
---|
1798 |
|
---|
1799 | mSemaphoreSize = SemaphoreSize;
|
---|
1800 | }
|
---|
1801 |
|
---|
1802 | /**
|
---|
1803 | Initialize un-cacheable data.
|
---|
1804 |
|
---|
1805 | **/
|
---|
1806 | VOID
|
---|
1807 | EFIAPI
|
---|
1808 | InitializeMpSyncData (
|
---|
1809 | VOID
|
---|
1810 | )
|
---|
1811 | {
|
---|
1812 | UINTN CpuIndex;
|
---|
1813 |
|
---|
1814 | if (mSmmMpSyncData != NULL) {
|
---|
1815 | //
|
---|
1816 | // mSmmMpSyncDataSize includes one structure of SMM_DISPATCHER_MP_SYNC_DATA, one
|
---|
1817 | // CpuData array of SMM_CPU_DATA_BLOCK and one CandidateBsp array of BOOLEAN.
|
---|
1818 | //
|
---|
1819 | ZeroMem (mSmmMpSyncData, mSmmMpSyncDataSize);
|
---|
1820 | mSmmMpSyncData->CpuData = (SMM_CPU_DATA_BLOCK *)((UINT8 *)mSmmMpSyncData + sizeof (SMM_DISPATCHER_MP_SYNC_DATA));
|
---|
1821 | mSmmMpSyncData->CandidateBsp = (BOOLEAN *)(mSmmMpSyncData->CpuData + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus);
|
---|
1822 | if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
|
---|
1823 | //
|
---|
1824 | // Enable BSP election by setting BspIndex to -1
|
---|
1825 | //
|
---|
1826 | mSmmMpSyncData->BspIndex = (UINT32)-1;
|
---|
1827 | }
|
---|
1828 | mSmmMpSyncData->EffectiveSyncMode = mCpuSmmSyncMode;
|
---|
1829 |
|
---|
1830 | mSmmMpSyncData->Counter = mSmmCpuSemaphores.SemaphoreGlobal.Counter;
|
---|
1831 | mSmmMpSyncData->InsideSmm = mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm;
|
---|
1832 | mSmmMpSyncData->AllCpusInSync = mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync;
|
---|
1833 | ASSERT (mSmmMpSyncData->Counter != NULL && mSmmMpSyncData->InsideSmm != NULL &&
|
---|
1834 | mSmmMpSyncData->AllCpusInSync != NULL);
|
---|
1835 | *mSmmMpSyncData->Counter = 0;
|
---|
1836 | *mSmmMpSyncData->InsideSmm = FALSE;
|
---|
1837 | *mSmmMpSyncData->AllCpusInSync = FALSE;
|
---|
1838 |
|
---|
1839 | for (CpuIndex = 0; CpuIndex < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; CpuIndex ++) {
|
---|
1840 | mSmmMpSyncData->CpuData[CpuIndex].Busy =
|
---|
1841 | (SPIN_LOCK *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Busy + mSemaphoreSize * CpuIndex);
|
---|
1842 | mSmmMpSyncData->CpuData[CpuIndex].Run =
|
---|
1843 | (UINT32 *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Run + mSemaphoreSize * CpuIndex);
|
---|
1844 | mSmmMpSyncData->CpuData[CpuIndex].Present =
|
---|
1845 | (BOOLEAN *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Present + mSemaphoreSize * CpuIndex);
|
---|
1846 | *(mSmmMpSyncData->CpuData[CpuIndex].Busy) = 0;
|
---|
1847 | *(mSmmMpSyncData->CpuData[CpuIndex].Run) = 0;
|
---|
1848 | *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;
|
---|
1849 | }
|
---|
1850 | }
|
---|
1851 | }
|
---|
1852 |
|
---|
1853 | /**
|
---|
1854 | Initialize global data for MP synchronization.
|
---|
1855 |
|
---|
1856 | @param Stacks Base address of SMI stack buffer for all processors.
|
---|
1857 | @param StackSize Stack size for each processor in SMM.
|
---|
1858 | @param ShadowStackSize Shadow Stack size for each processor in SMM.
|
---|
1859 |
|
---|
1860 | **/
|
---|
1861 | UINT32
|
---|
1862 | InitializeMpServiceData (
|
---|
1863 | IN VOID *Stacks,
|
---|
1864 | IN UINTN StackSize,
|
---|
1865 | IN UINTN ShadowStackSize
|
---|
1866 | )
|
---|
1867 | {
|
---|
1868 | UINT32 Cr3;
|
---|
1869 | UINTN Index;
|
---|
1870 | UINT8 *GdtTssTables;
|
---|
1871 | UINTN GdtTableStepSize;
|
---|
1872 | CPUID_VERSION_INFO_EDX RegEdx;
|
---|
1873 |
|
---|
1874 | //
|
---|
1875 | // Determine if this CPU supports machine check
|
---|
1876 | //
|
---|
1877 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx.Uint32);
|
---|
1878 | mMachineCheckSupported = (BOOLEAN)(RegEdx.Bits.MCA == 1);
|
---|
1879 |
|
---|
1880 | //
|
---|
1881 | // Allocate memory for all locks and semaphores
|
---|
1882 | //
|
---|
1883 | InitializeSmmCpuSemaphores ();
|
---|
1884 |
|
---|
1885 | //
|
---|
1886 | // Initialize mSmmMpSyncData
|
---|
1887 | //
|
---|
1888 | mSmmMpSyncDataSize = sizeof (SMM_DISPATCHER_MP_SYNC_DATA) +
|
---|
1889 | (sizeof (SMM_CPU_DATA_BLOCK) + sizeof (BOOLEAN)) * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
|
---|
1890 | mSmmMpSyncData = (SMM_DISPATCHER_MP_SYNC_DATA*) AllocatePages (EFI_SIZE_TO_PAGES (mSmmMpSyncDataSize));
|
---|
1891 | ASSERT (mSmmMpSyncData != NULL);
|
---|
1892 | mCpuSmmSyncMode = (SMM_CPU_SYNC_MODE)PcdGet8 (PcdCpuSmmSyncMode);
|
---|
1893 | InitializeMpSyncData ();
|
---|
1894 |
|
---|
1895 | //
|
---|
1896 | // Initialize physical address mask
|
---|
1897 | // NOTE: Physical memory above virtual address limit is not supported !!!
|
---|
1898 | //
|
---|
1899 | AsmCpuid (0x80000008, (UINT32*)&Index, NULL, NULL, NULL);
|
---|
1900 | gPhyMask = LShiftU64 (1, (UINT8)Index) - 1;
|
---|
1901 | gPhyMask &= (1ull << 48) - EFI_PAGE_SIZE;
|
---|
1902 |
|
---|
1903 | //
|
---|
1904 | // Create page tables
|
---|
1905 | //
|
---|
1906 | Cr3 = SmmInitPageTable ();
|
---|
1907 |
|
---|
1908 | GdtTssTables = InitGdt (Cr3, &GdtTableStepSize);
|
---|
1909 |
|
---|
1910 | //
|
---|
1911 | // Install SMI handler for each CPU
|
---|
1912 | //
|
---|
1913 | for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
|
---|
1914 | InstallSmiHandler (
|
---|
1915 | Index,
|
---|
1916 | (UINT32)mCpuHotPlugData.SmBase[Index],
|
---|
1917 | (VOID*)((UINTN)Stacks + (StackSize + ShadowStackSize) * Index),
|
---|
1918 | StackSize,
|
---|
1919 | (UINTN)(GdtTssTables + GdtTableStepSize * Index),
|
---|
1920 | gcSmiGdtr.Limit + 1,
|
---|
1921 | gcSmiIdtr.Base,
|
---|
1922 | gcSmiIdtr.Limit + 1,
|
---|
1923 | Cr3
|
---|
1924 | );
|
---|
1925 | }
|
---|
1926 |
|
---|
1927 | //
|
---|
1928 | // Record current MTRR settings
|
---|
1929 | //
|
---|
1930 | ZeroMem (&gSmiMtrrs, sizeof (gSmiMtrrs));
|
---|
1931 | MtrrGetAllMtrrs (&gSmiMtrrs);
|
---|
1932 |
|
---|
1933 | return Cr3;
|
---|
1934 | }
|
---|
1935 |
|
---|
1936 | /**
|
---|
1937 |
|
---|
1938 | Register the SMM Foundation entry point.
|
---|
1939 |
|
---|
1940 | @param This Pointer to EFI_SMM_CONFIGURATION_PROTOCOL instance
|
---|
1941 | @param SmmEntryPoint SMM Foundation EntryPoint
|
---|
1942 |
|
---|
1943 | @retval EFI_SUCCESS Successfully to register SMM foundation entry point
|
---|
1944 |
|
---|
1945 | **/
|
---|
1946 | EFI_STATUS
|
---|
1947 | EFIAPI
|
---|
1948 | RegisterSmmEntry (
|
---|
1949 | IN CONST EFI_SMM_CONFIGURATION_PROTOCOL *This,
|
---|
1950 | IN EFI_SMM_ENTRY_POINT SmmEntryPoint
|
---|
1951 | )
|
---|
1952 | {
|
---|
1953 | //
|
---|
1954 | // Record SMM Foundation EntryPoint, later invoke it on SMI entry vector.
|
---|
1955 | //
|
---|
1956 | gSmmCpuPrivate->SmmCoreEntry = SmmEntryPoint;
|
---|
1957 | return EFI_SUCCESS;
|
---|
1958 | }
|
---|
1959 |
|
---|
1960 | /**
|
---|
1961 |
|
---|
1962 | Register the SMM Foundation entry point.
|
---|
1963 |
|
---|
1964 | @param[in] Procedure A pointer to the code stream to be run on the designated target AP
|
---|
1965 | of the system. Type EFI_AP_PROCEDURE is defined below in Volume 2
|
---|
1966 | with the related definitions of
|
---|
1967 | EFI_MP_SERVICES_PROTOCOL.StartupAllAPs.
|
---|
1968 | If caller may pass a value of NULL to deregister any existing
|
---|
1969 | startup procedure.
|
---|
1970 | @param[in,out] ProcedureArguments Allows the caller to pass a list of parameters to the code that is
|
---|
1971 | run by the AP. It is an optional common mailbox between APs and
|
---|
1972 | the caller to share information
|
---|
1973 |
|
---|
1974 | @retval EFI_SUCCESS The Procedure has been set successfully.
|
---|
1975 | @retval EFI_INVALID_PARAMETER The Procedure is NULL but ProcedureArguments not NULL.
|
---|
1976 |
|
---|
1977 | **/
|
---|
1978 | EFI_STATUS
|
---|
1979 | RegisterStartupProcedure (
|
---|
1980 | IN EFI_AP_PROCEDURE Procedure,
|
---|
1981 | IN OUT VOID *ProcedureArguments OPTIONAL
|
---|
1982 | )
|
---|
1983 | {
|
---|
1984 | if (Procedure == NULL && ProcedureArguments != NULL) {
|
---|
1985 | return EFI_INVALID_PARAMETER;
|
---|
1986 | }
|
---|
1987 | if (mSmmMpSyncData == NULL) {
|
---|
1988 | return EFI_NOT_READY;
|
---|
1989 | }
|
---|
1990 |
|
---|
1991 | mSmmMpSyncData->StartupProcedure = Procedure;
|
---|
1992 | mSmmMpSyncData->StartupProcArgs = ProcedureArguments;
|
---|
1993 |
|
---|
1994 | return EFI_SUCCESS;
|
---|
1995 | }
|
---|