1 | /* $NetBSD: softfloat-specialize,v 1.8 2013/01/10 08:16:10 matt Exp $ */
|
---|
2 |
|
---|
3 | /* This is a derivative work. */
|
---|
4 |
|
---|
5 | /*
|
---|
6 | ===============================================================================
|
---|
7 |
|
---|
8 | This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
---|
9 | Arithmetic Package, Release 2a.
|
---|
10 |
|
---|
11 | Written by John R. Hauser. This work was made possible in part by the
|
---|
12 | International Computer Science Institute, located at Suite 600, 1947 Center
|
---|
13 | Street, Berkeley, California 94704. Funding was partially provided by the
|
---|
14 | National Science Foundation under grant MIP-9311980. The original version
|
---|
15 | of this code was written as part of a project to build a fixed-point vector
|
---|
16 | processor in collaboration with the University of California at Berkeley,
|
---|
17 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
---|
18 | is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
---|
19 | arithmetic/SoftFloat.html'.
|
---|
20 |
|
---|
21 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
---|
22 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
---|
23 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
---|
24 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
---|
25 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
---|
26 |
|
---|
27 | Derivative works are acceptable, even for commercial purposes, so long as
|
---|
28 | (1) they include prominent notice that the work is derivative, and (2) they
|
---|
29 | include prominent notice akin to these four paragraphs for those parts of
|
---|
30 | this code that are retained.
|
---|
31 |
|
---|
32 | ===============================================================================
|
---|
33 | */
|
---|
34 |
|
---|
35 | #include <signal.h>
|
---|
36 | #include <string.h>
|
---|
37 | #include <unistd.h>
|
---|
38 |
|
---|
39 | /*
|
---|
40 | -------------------------------------------------------------------------------
|
---|
41 | Underflow tininess-detection mode, statically initialized to default value.
|
---|
42 | (The declaration in `softfloat.h' must match the `int8' type here.)
|
---|
43 | -------------------------------------------------------------------------------
|
---|
44 | */
|
---|
45 | #ifdef SOFTFLOAT_FOR_GCC
|
---|
46 | static
|
---|
47 | #endif
|
---|
48 | int8 float_detect_tininess = float_tininess_after_rounding;
|
---|
49 |
|
---|
50 | /*
|
---|
51 | -------------------------------------------------------------------------------
|
---|
52 | Raises the exceptions specified by `flags'. Floating-point traps can be
|
---|
53 | defined here if desired. It is currently not possible for such a trap to
|
---|
54 | substitute a result value. If traps are not implemented, this routine
|
---|
55 | should be simply `float_exception_flags |= flags;'.
|
---|
56 | -------------------------------------------------------------------------------
|
---|
57 | */
|
---|
58 | #ifdef SOFTFLOAT_FOR_GCC
|
---|
59 | #ifndef set_float_exception_mask
|
---|
60 | #define float_exception_mask _softfloat_float_exception_mask
|
---|
61 | #endif
|
---|
62 | #endif
|
---|
63 | #ifndef set_float_exception_mask
|
---|
64 | fp_except float_exception_mask = 0;
|
---|
65 | #endif
|
---|
66 | void
|
---|
67 | float_raise( fp_except flags )
|
---|
68 | {
|
---|
69 |
|
---|
70 | #if 0 // Don't raise exceptions
|
---|
71 | siginfo_t info;
|
---|
72 | fp_except mask = float_exception_mask;
|
---|
73 |
|
---|
74 | #ifdef set_float_exception_mask
|
---|
75 | flags |= set_float_exception_flags(flags, 0);
|
---|
76 | #else
|
---|
77 | float_exception_flags |= flags;
|
---|
78 | flags = float_exception_flags;
|
---|
79 | #endif
|
---|
80 |
|
---|
81 | flags &= mask;
|
---|
82 | if ( flags ) {
|
---|
83 | memset(&info, 0, sizeof info);
|
---|
84 | info.si_signo = SIGFPE;
|
---|
85 | info.si_pid = getpid();
|
---|
86 | info.si_uid = geteuid();
|
---|
87 | if (flags & float_flag_underflow)
|
---|
88 | info.si_code = FPE_FLTUND;
|
---|
89 | else if (flags & float_flag_overflow)
|
---|
90 | info.si_code = FPE_FLTOVF;
|
---|
91 | else if (flags & float_flag_divbyzero)
|
---|
92 | info.si_code = FPE_FLTDIV;
|
---|
93 | else if (flags & float_flag_invalid)
|
---|
94 | info.si_code = FPE_FLTINV;
|
---|
95 | else if (flags & float_flag_inexact)
|
---|
96 | info.si_code = FPE_FLTRES;
|
---|
97 | sigqueueinfo(getpid(), &info);
|
---|
98 | }
|
---|
99 | #else // Don't raise exceptions
|
---|
100 | float_exception_flags |= flags;
|
---|
101 | #endif // Don't raise exceptions
|
---|
102 | }
|
---|
103 | #undef float_exception_mask
|
---|
104 |
|
---|
105 | /*
|
---|
106 | -------------------------------------------------------------------------------
|
---|
107 | Internal canonical NaN format.
|
---|
108 | -------------------------------------------------------------------------------
|
---|
109 | */
|
---|
110 | typedef struct {
|
---|
111 | flag sign;
|
---|
112 | bits64 high, low;
|
---|
113 | } commonNaNT;
|
---|
114 |
|
---|
115 | /*
|
---|
116 | -------------------------------------------------------------------------------
|
---|
117 | The pattern for a default generated single-precision NaN.
|
---|
118 | -------------------------------------------------------------------------------
|
---|
119 | */
|
---|
120 | #define float32_default_nan 0xFFFFFFFF
|
---|
121 |
|
---|
122 | /*
|
---|
123 | -------------------------------------------------------------------------------
|
---|
124 | Returns 1 if the single-precision floating-point value `a' is a NaN;
|
---|
125 | otherwise returns 0.
|
---|
126 | -------------------------------------------------------------------------------
|
---|
127 | */
|
---|
128 | #ifdef SOFTFLOAT_FOR_GCC
|
---|
129 | static
|
---|
130 | #endif
|
---|
131 | flag float32_is_nan( float32 a )
|
---|
132 | {
|
---|
133 |
|
---|
134 | return ( (bits32)0xFF000000 < (bits32) ( a<<1 ) );
|
---|
135 |
|
---|
136 | }
|
---|
137 |
|
---|
138 | /*
|
---|
139 | -------------------------------------------------------------------------------
|
---|
140 | Returns 1 if the single-precision floating-point value `a' is a signaling
|
---|
141 | NaN; otherwise returns 0.
|
---|
142 | -------------------------------------------------------------------------------
|
---|
143 | */
|
---|
144 | #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
|
---|
145 | !defined(SOFTFLOAT_M68K_FOR_GCC)
|
---|
146 | static
|
---|
147 | #endif
|
---|
148 | flag float32_is_signaling_nan( float32 a )
|
---|
149 | {
|
---|
150 |
|
---|
151 | return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
---|
152 |
|
---|
153 | }
|
---|
154 |
|
---|
155 | /*
|
---|
156 | -------------------------------------------------------------------------------
|
---|
157 | Returns the result of converting the single-precision floating-point NaN
|
---|
158 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
---|
159 | exception is raised.
|
---|
160 | -------------------------------------------------------------------------------
|
---|
161 | */
|
---|
162 | static commonNaNT float32ToCommonNaN( float32 a )
|
---|
163 | {
|
---|
164 | commonNaNT z;
|
---|
165 |
|
---|
166 | if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
---|
167 | z.sign = a>>31;
|
---|
168 | z.low = 0;
|
---|
169 | z.high = ( (bits64) a )<<41;
|
---|
170 | return z;
|
---|
171 |
|
---|
172 | }
|
---|
173 |
|
---|
174 | /*
|
---|
175 | -------------------------------------------------------------------------------
|
---|
176 | Returns the result of converting the canonical NaN `a' to the single-
|
---|
177 | precision floating-point format.
|
---|
178 | -------------------------------------------------------------------------------
|
---|
179 | */
|
---|
180 | static float32 commonNaNToFloat32( commonNaNT a )
|
---|
181 | {
|
---|
182 |
|
---|
183 | return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | (bits32)( a.high>>41 );
|
---|
184 |
|
---|
185 | }
|
---|
186 |
|
---|
187 | /*
|
---|
188 | -------------------------------------------------------------------------------
|
---|
189 | Takes two single-precision floating-point values `a' and `b', one of which
|
---|
190 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
---|
191 | signaling NaN, the invalid exception is raised.
|
---|
192 | -------------------------------------------------------------------------------
|
---|
193 | */
|
---|
194 | static float32 propagateFloat32NaN( float32 a, float32 b )
|
---|
195 | {
|
---|
196 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
---|
197 |
|
---|
198 | aIsNaN = float32_is_nan( a );
|
---|
199 | aIsSignalingNaN = float32_is_signaling_nan( a );
|
---|
200 | bIsNaN = float32_is_nan( b );
|
---|
201 | bIsSignalingNaN = float32_is_signaling_nan( b );
|
---|
202 | a |= 0x00400000;
|
---|
203 | b |= 0x00400000;
|
---|
204 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
---|
205 | if ( aIsNaN ) {
|
---|
206 | return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
---|
207 | }
|
---|
208 | else {
|
---|
209 | return b;
|
---|
210 | }
|
---|
211 |
|
---|
212 | }
|
---|
213 |
|
---|
214 | /*
|
---|
215 | -------------------------------------------------------------------------------
|
---|
216 | The pattern for a default generated double-precision NaN.
|
---|
217 | -------------------------------------------------------------------------------
|
---|
218 | */
|
---|
219 | #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
|
---|
220 |
|
---|
221 | /*
|
---|
222 | -------------------------------------------------------------------------------
|
---|
223 | Returns 1 if the double-precision floating-point value `a' is a NaN;
|
---|
224 | otherwise returns 0.
|
---|
225 | -------------------------------------------------------------------------------
|
---|
226 | */
|
---|
227 | #ifdef SOFTFLOAT_FOR_GCC
|
---|
228 | static
|
---|
229 | #endif
|
---|
230 | flag float64_is_nan( float64 a )
|
---|
231 | {
|
---|
232 |
|
---|
233 | return ( (bits64)LIT64( 0xFFE0000000000000 ) <
|
---|
234 | (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
|
---|
235 |
|
---|
236 | }
|
---|
237 |
|
---|
238 | /*
|
---|
239 | -------------------------------------------------------------------------------
|
---|
240 | Returns 1 if the double-precision floating-point value `a' is a signaling
|
---|
241 | NaN; otherwise returns 0.
|
---|
242 | -------------------------------------------------------------------------------
|
---|
243 | */
|
---|
244 | #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
|
---|
245 | !defined(SOFTFLOATM68K_FOR_GCC)
|
---|
246 | static
|
---|
247 | #endif
|
---|
248 | flag float64_is_signaling_nan( float64 a )
|
---|
249 | {
|
---|
250 |
|
---|
251 | return
|
---|
252 | ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
|
---|
253 | && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
|
---|
254 |
|
---|
255 | }
|
---|
256 |
|
---|
257 | /*
|
---|
258 | -------------------------------------------------------------------------------
|
---|
259 | Returns the result of converting the double-precision floating-point NaN
|
---|
260 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
---|
261 | exception is raised.
|
---|
262 | -------------------------------------------------------------------------------
|
---|
263 | */
|
---|
264 | static commonNaNT float64ToCommonNaN( float64 a )
|
---|
265 | {
|
---|
266 | commonNaNT z;
|
---|
267 |
|
---|
268 | if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
---|
269 | z.sign = (flag)(FLOAT64_DEMANGLE(a)>>63);
|
---|
270 | z.low = 0;
|
---|
271 | z.high = FLOAT64_DEMANGLE(a)<<12;
|
---|
272 | return z;
|
---|
273 |
|
---|
274 | }
|
---|
275 |
|
---|
276 | /*
|
---|
277 | -------------------------------------------------------------------------------
|
---|
278 | Returns the result of converting the canonical NaN `a' to the double-
|
---|
279 | precision floating-point format.
|
---|
280 | -------------------------------------------------------------------------------
|
---|
281 | */
|
---|
282 | static float64 commonNaNToFloat64( commonNaNT a )
|
---|
283 | {
|
---|
284 |
|
---|
285 | return FLOAT64_MANGLE(
|
---|
286 | ( ( (bits64) a.sign )<<63 )
|
---|
287 | | LIT64( 0x7FF8000000000000 )
|
---|
288 | | ( a.high>>12 ) );
|
---|
289 |
|
---|
290 | }
|
---|
291 |
|
---|
292 | /*
|
---|
293 | -------------------------------------------------------------------------------
|
---|
294 | Takes two double-precision floating-point values `a' and `b', one of which
|
---|
295 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
---|
296 | signaling NaN, the invalid exception is raised.
|
---|
297 | -------------------------------------------------------------------------------
|
---|
298 | */
|
---|
299 | static float64 propagateFloat64NaN( float64 a, float64 b )
|
---|
300 | {
|
---|
301 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
---|
302 |
|
---|
303 | aIsNaN = float64_is_nan( a );
|
---|
304 | aIsSignalingNaN = float64_is_signaling_nan( a );
|
---|
305 | bIsNaN = float64_is_nan( b );
|
---|
306 | bIsSignalingNaN = float64_is_signaling_nan( b );
|
---|
307 | a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
|
---|
308 | b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
|
---|
309 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
---|
310 | if ( aIsNaN ) {
|
---|
311 | return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
---|
312 | }
|
---|
313 | else {
|
---|
314 | return b;
|
---|
315 | }
|
---|
316 |
|
---|
317 | }
|
---|
318 |
|
---|
319 | #ifdef FLOATX80
|
---|
320 |
|
---|
321 | /*
|
---|
322 | -------------------------------------------------------------------------------
|
---|
323 | The pattern for a default generated extended double-precision NaN. The
|
---|
324 | `high' and `low' values hold the most- and least-significant bits,
|
---|
325 | respectively.
|
---|
326 | -------------------------------------------------------------------------------
|
---|
327 | */
|
---|
328 | #define floatx80_default_nan_high 0xFFFF
|
---|
329 | #define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
---|
330 |
|
---|
331 | /*
|
---|
332 | -------------------------------------------------------------------------------
|
---|
333 | Returns 1 if the extended double-precision floating-point value `a' is a
|
---|
334 | NaN; otherwise returns 0.
|
---|
335 | -------------------------------------------------------------------------------
|
---|
336 | */
|
---|
337 | flag floatx80_is_nan( floatx80 a )
|
---|
338 | {
|
---|
339 |
|
---|
340 | return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
---|
341 |
|
---|
342 | }
|
---|
343 |
|
---|
344 | /*
|
---|
345 | -------------------------------------------------------------------------------
|
---|
346 | Returns 1 if the extended double-precision floating-point value `a' is a
|
---|
347 | signaling NaN; otherwise returns 0.
|
---|
348 | -------------------------------------------------------------------------------
|
---|
349 | */
|
---|
350 | flag floatx80_is_signaling_nan( floatx80 a )
|
---|
351 | {
|
---|
352 | bits64 aLow;
|
---|
353 |
|
---|
354 | aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
---|
355 | return
|
---|
356 | ( ( a.high & 0x7FFF ) == 0x7FFF )
|
---|
357 | && (bits64) ( aLow<<1 )
|
---|
358 | && ( a.low == aLow );
|
---|
359 |
|
---|
360 | }
|
---|
361 |
|
---|
362 | /*
|
---|
363 | -------------------------------------------------------------------------------
|
---|
364 | Returns the result of converting the extended double-precision floating-
|
---|
365 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
---|
366 | invalid exception is raised.
|
---|
367 | -------------------------------------------------------------------------------
|
---|
368 | */
|
---|
369 | static commonNaNT floatx80ToCommonNaN( floatx80 a )
|
---|
370 | {
|
---|
371 | commonNaNT z;
|
---|
372 |
|
---|
373 | if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
---|
374 | z.sign = a.high>>15;
|
---|
375 | z.low = 0;
|
---|
376 | z.high = a.low<<1;
|
---|
377 | return z;
|
---|
378 |
|
---|
379 | }
|
---|
380 |
|
---|
381 | /*
|
---|
382 | -------------------------------------------------------------------------------
|
---|
383 | Returns the result of converting the canonical NaN `a' to the extended
|
---|
384 | double-precision floating-point format.
|
---|
385 | -------------------------------------------------------------------------------
|
---|
386 | */
|
---|
387 | static floatx80 commonNaNToFloatx80( commonNaNT a )
|
---|
388 | {
|
---|
389 | floatx80 z;
|
---|
390 |
|
---|
391 | z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
|
---|
392 | z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
---|
393 | return z;
|
---|
394 |
|
---|
395 | }
|
---|
396 |
|
---|
397 | /*
|
---|
398 | -------------------------------------------------------------------------------
|
---|
399 | Takes two extended double-precision floating-point values `a' and `b', one
|
---|
400 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
---|
401 | `b' is a signaling NaN, the invalid exception is raised.
|
---|
402 | -------------------------------------------------------------------------------
|
---|
403 | */
|
---|
404 | static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
|
---|
405 | {
|
---|
406 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
---|
407 |
|
---|
408 | aIsNaN = floatx80_is_nan( a );
|
---|
409 | aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
---|
410 | bIsNaN = floatx80_is_nan( b );
|
---|
411 | bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
---|
412 | a.low |= LIT64( 0xC000000000000000 );
|
---|
413 | b.low |= LIT64( 0xC000000000000000 );
|
---|
414 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
---|
415 | if ( aIsNaN ) {
|
---|
416 | return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
---|
417 | }
|
---|
418 | else {
|
---|
419 | return b;
|
---|
420 | }
|
---|
421 |
|
---|
422 | }
|
---|
423 |
|
---|
424 | #endif
|
---|
425 |
|
---|
426 | #ifdef FLOAT128
|
---|
427 |
|
---|
428 | /*
|
---|
429 | -------------------------------------------------------------------------------
|
---|
430 | The pattern for a default generated quadruple-precision NaN. The `high' and
|
---|
431 | `low' values hold the most- and least-significant bits, respectively.
|
---|
432 | -------------------------------------------------------------------------------
|
---|
433 | */
|
---|
434 | #define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
|
---|
435 | #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
---|
436 |
|
---|
437 | /*
|
---|
438 | -------------------------------------------------------------------------------
|
---|
439 | Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
|
---|
440 | otherwise returns 0.
|
---|
441 | -------------------------------------------------------------------------------
|
---|
442 | */
|
---|
443 | flag float128_is_nan( float128 a )
|
---|
444 | {
|
---|
445 |
|
---|
446 | return
|
---|
447 | ( (bits64)LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
|
---|
448 | && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
---|
449 |
|
---|
450 | }
|
---|
451 |
|
---|
452 | /*
|
---|
453 | -------------------------------------------------------------------------------
|
---|
454 | Returns 1 if the quadruple-precision floating-point value `a' is a
|
---|
455 | signaling NaN; otherwise returns 0.
|
---|
456 | -------------------------------------------------------------------------------
|
---|
457 | */
|
---|
458 | flag float128_is_signaling_nan( float128 a )
|
---|
459 | {
|
---|
460 |
|
---|
461 | return
|
---|
462 | ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
---|
463 | && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
---|
464 |
|
---|
465 | }
|
---|
466 |
|
---|
467 | /*
|
---|
468 | -------------------------------------------------------------------------------
|
---|
469 | Returns the result of converting the quadruple-precision floating-point NaN
|
---|
470 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
---|
471 | exception is raised.
|
---|
472 | -------------------------------------------------------------------------------
|
---|
473 | */
|
---|
474 | static commonNaNT float128ToCommonNaN( float128 a )
|
---|
475 | {
|
---|
476 | commonNaNT z;
|
---|
477 |
|
---|
478 | if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
---|
479 | z.sign = (flag)(a.high>>63);
|
---|
480 | shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
|
---|
481 | return z;
|
---|
482 |
|
---|
483 | }
|
---|
484 |
|
---|
485 | /*
|
---|
486 | -------------------------------------------------------------------------------
|
---|
487 | Returns the result of converting the canonical NaN `a' to the quadruple-
|
---|
488 | precision floating-point format.
|
---|
489 | -------------------------------------------------------------------------------
|
---|
490 | */
|
---|
491 | static float128 commonNaNToFloat128( commonNaNT a )
|
---|
492 | {
|
---|
493 | float128 z;
|
---|
494 |
|
---|
495 | shift128Right( a.high, a.low, 16, &z.high, &z.low );
|
---|
496 | z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
|
---|
497 | return z;
|
---|
498 |
|
---|
499 | }
|
---|
500 |
|
---|
501 | /*
|
---|
502 | -------------------------------------------------------------------------------
|
---|
503 | Takes two quadruple-precision floating-point values `a' and `b', one of
|
---|
504 | which is a NaN, and returns the appropriate NaN result. If either `a' or
|
---|
505 | `b' is a signaling NaN, the invalid exception is raised.
|
---|
506 | -------------------------------------------------------------------------------
|
---|
507 | */
|
---|
508 | static float128 propagateFloat128NaN( float128 a, float128 b )
|
---|
509 | {
|
---|
510 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
---|
511 |
|
---|
512 | aIsNaN = float128_is_nan( a );
|
---|
513 | aIsSignalingNaN = float128_is_signaling_nan( a );
|
---|
514 | bIsNaN = float128_is_nan( b );
|
---|
515 | bIsSignalingNaN = float128_is_signaling_nan( b );
|
---|
516 | a.high |= LIT64( 0x0000800000000000 );
|
---|
517 | b.high |= LIT64( 0x0000800000000000 );
|
---|
518 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
---|
519 | if ( aIsNaN ) {
|
---|
520 | return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
---|
521 | }
|
---|
522 | else {
|
---|
523 | return b;
|
---|
524 | }
|
---|
525 |
|
---|
526 | }
|
---|
527 |
|
---|
528 | #endif
|
---|
529 |
|
---|