1 | /** @file
|
---|
2 | CPU MP Initialize Library common functions.
|
---|
3 |
|
---|
4 | Copyright (c) 2016 - 2022, Intel Corporation. All rights reserved.<BR>
|
---|
5 | Copyright (c) 2020, AMD Inc. All rights reserved.<BR>
|
---|
6 |
|
---|
7 | SPDX-License-Identifier: BSD-2-Clause-Patent
|
---|
8 |
|
---|
9 | **/
|
---|
10 |
|
---|
11 | #include "MpLib.h"
|
---|
12 | #include <Library/CcExitLib.h>
|
---|
13 | #include <Register/Amd/Fam17Msr.h>
|
---|
14 | #include <Register/Amd/Ghcb.h>
|
---|
15 | #ifdef VBOX
|
---|
16 | # include <Library/IoLib.h>
|
---|
17 | # include "../../../../DevEFI.h"
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
|
---|
21 | EFI_GUID mMpHandOffGuid = MP_HANDOFF_GUID;
|
---|
22 |
|
---|
23 | /**
|
---|
24 | Save the volatile registers required to be restored following INIT IPI.
|
---|
25 |
|
---|
26 | @param[out] VolatileRegisters Returns buffer saved the volatile resisters
|
---|
27 | **/
|
---|
28 | VOID
|
---|
29 | SaveVolatileRegisters (
|
---|
30 | OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
|
---|
31 | );
|
---|
32 |
|
---|
33 | /**
|
---|
34 | Restore the volatile registers following INIT IPI.
|
---|
35 |
|
---|
36 | @param[in] VolatileRegisters Pointer to volatile resisters
|
---|
37 | @param[in] IsRestoreDr TRUE: Restore DRx if supported
|
---|
38 | FALSE: Do not restore DRx
|
---|
39 | **/
|
---|
40 | VOID
|
---|
41 | RestoreVolatileRegisters (
|
---|
42 | IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
|
---|
43 | IN BOOLEAN IsRestoreDr
|
---|
44 | );
|
---|
45 |
|
---|
46 | /**
|
---|
47 | The function will check if BSP Execute Disable is enabled.
|
---|
48 |
|
---|
49 | DxeIpl may have enabled Execute Disable for BSP, APs need to
|
---|
50 | get the status and sync up the settings.
|
---|
51 | If BSP's CR0.Paging is not set, BSP execute Disble feature is
|
---|
52 | not working actually.
|
---|
53 |
|
---|
54 | @retval TRUE BSP Execute Disable is enabled.
|
---|
55 | @retval FALSE BSP Execute Disable is not enabled.
|
---|
56 | **/
|
---|
57 | BOOLEAN
|
---|
58 | IsBspExecuteDisableEnabled (
|
---|
59 | VOID
|
---|
60 | )
|
---|
61 | {
|
---|
62 | UINT32 Eax;
|
---|
63 | CPUID_EXTENDED_CPU_SIG_EDX Edx;
|
---|
64 | MSR_IA32_EFER_REGISTER EferMsr;
|
---|
65 | BOOLEAN Enabled;
|
---|
66 | IA32_CR0 Cr0;
|
---|
67 |
|
---|
68 | Enabled = FALSE;
|
---|
69 | Cr0.UintN = AsmReadCr0 ();
|
---|
70 | if (Cr0.Bits.PG != 0) {
|
---|
71 | //
|
---|
72 | // If CR0 Paging bit is set
|
---|
73 | //
|
---|
74 | AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
|
---|
75 | if (Eax >= CPUID_EXTENDED_CPU_SIG) {
|
---|
76 | AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
|
---|
77 | //
|
---|
78 | // CPUID 0x80000001
|
---|
79 | // Bit 20: Execute Disable Bit available.
|
---|
80 | //
|
---|
81 | if (Edx.Bits.NX != 0) {
|
---|
82 | EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
|
---|
83 | //
|
---|
84 | // MSR 0xC0000080
|
---|
85 | // Bit 11: Execute Disable Bit enable.
|
---|
86 | //
|
---|
87 | if (EferMsr.Bits.NXE != 0) {
|
---|
88 | Enabled = TRUE;
|
---|
89 | }
|
---|
90 | }
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 | return Enabled;
|
---|
95 | }
|
---|
96 |
|
---|
97 | /**
|
---|
98 | Worker function for SwitchBSP().
|
---|
99 |
|
---|
100 | Worker function for SwitchBSP(), assigned to the AP which is intended
|
---|
101 | to become BSP.
|
---|
102 |
|
---|
103 | @param[in] Buffer Pointer to CPU MP Data
|
---|
104 | **/
|
---|
105 | VOID
|
---|
106 | EFIAPI
|
---|
107 | FutureBSPProc (
|
---|
108 | IN VOID *Buffer
|
---|
109 | )
|
---|
110 | {
|
---|
111 | CPU_MP_DATA *DataInHob;
|
---|
112 |
|
---|
113 | DataInHob = (CPU_MP_DATA *)Buffer;
|
---|
114 | //
|
---|
115 | // Save and restore volatile registers when switch BSP
|
---|
116 | //
|
---|
117 | SaveVolatileRegisters (&DataInHob->APInfo.VolatileRegisters);
|
---|
118 | AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
|
---|
119 | RestoreVolatileRegisters (&DataInHob->APInfo.VolatileRegisters, FALSE);
|
---|
120 | }
|
---|
121 |
|
---|
122 | /**
|
---|
123 | Get the Application Processors state.
|
---|
124 |
|
---|
125 | @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
|
---|
126 |
|
---|
127 | @return The AP status
|
---|
128 | **/
|
---|
129 | CPU_STATE
|
---|
130 | GetApState (
|
---|
131 | IN CPU_AP_DATA *CpuData
|
---|
132 | )
|
---|
133 | {
|
---|
134 | return CpuData->State;
|
---|
135 | }
|
---|
136 |
|
---|
137 | /**
|
---|
138 | Set the Application Processors state.
|
---|
139 |
|
---|
140 | @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
|
---|
141 | @param[in] State The AP status
|
---|
142 | **/
|
---|
143 | VOID
|
---|
144 | SetApState (
|
---|
145 | IN CPU_AP_DATA *CpuData,
|
---|
146 | IN CPU_STATE State
|
---|
147 | )
|
---|
148 | {
|
---|
149 | AcquireSpinLock (&CpuData->ApLock);
|
---|
150 | CpuData->State = State;
|
---|
151 | ReleaseSpinLock (&CpuData->ApLock);
|
---|
152 | }
|
---|
153 |
|
---|
154 | /**
|
---|
155 | Save BSP's local APIC timer setting.
|
---|
156 |
|
---|
157 | @param[in] CpuMpData Pointer to CPU MP Data
|
---|
158 | **/
|
---|
159 | VOID
|
---|
160 | SaveLocalApicTimerSetting (
|
---|
161 | IN CPU_MP_DATA *CpuMpData
|
---|
162 | )
|
---|
163 | {
|
---|
164 | //
|
---|
165 | // Record the current local APIC timer setting of BSP
|
---|
166 | //
|
---|
167 | GetApicTimerState (
|
---|
168 | &CpuMpData->DivideValue,
|
---|
169 | &CpuMpData->PeriodicMode,
|
---|
170 | &CpuMpData->Vector
|
---|
171 | );
|
---|
172 | CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();
|
---|
173 | CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
|
---|
174 | }
|
---|
175 |
|
---|
176 | /**
|
---|
177 | Sync local APIC timer setting from BSP to AP.
|
---|
178 |
|
---|
179 | @param[in] CpuMpData Pointer to CPU MP Data
|
---|
180 | **/
|
---|
181 | VOID
|
---|
182 | SyncLocalApicTimerSetting (
|
---|
183 | IN CPU_MP_DATA *CpuMpData
|
---|
184 | )
|
---|
185 | {
|
---|
186 | //
|
---|
187 | // Sync local APIC timer setting from BSP to AP
|
---|
188 | //
|
---|
189 | InitializeApicTimer (
|
---|
190 | CpuMpData->DivideValue,
|
---|
191 | CpuMpData->CurrentTimerCount,
|
---|
192 | CpuMpData->PeriodicMode,
|
---|
193 | CpuMpData->Vector
|
---|
194 | );
|
---|
195 | //
|
---|
196 | // Disable AP's local APIC timer interrupt
|
---|
197 | //
|
---|
198 | DisableApicTimerInterrupt ();
|
---|
199 | }
|
---|
200 |
|
---|
201 | /**
|
---|
202 | Save the volatile registers required to be restored following INIT IPI.
|
---|
203 |
|
---|
204 | @param[out] VolatileRegisters Returns buffer saved the volatile resisters
|
---|
205 | **/
|
---|
206 | VOID
|
---|
207 | SaveVolatileRegisters (
|
---|
208 | OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
|
---|
209 | )
|
---|
210 | {
|
---|
211 | CPUID_VERSION_INFO_EDX VersionInfoEdx;
|
---|
212 |
|
---|
213 | VolatileRegisters->Cr0 = AsmReadCr0 ();
|
---|
214 | VolatileRegisters->Cr3 = AsmReadCr3 ();
|
---|
215 | VolatileRegisters->Cr4 = AsmReadCr4 ();
|
---|
216 |
|
---|
217 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
|
---|
218 | if (VersionInfoEdx.Bits.DE != 0) {
|
---|
219 | //
|
---|
220 | // If processor supports Debugging Extensions feature
|
---|
221 | // by CPUID.[EAX=01H]:EDX.BIT2
|
---|
222 | //
|
---|
223 | VolatileRegisters->Dr0 = AsmReadDr0 ();
|
---|
224 | VolatileRegisters->Dr1 = AsmReadDr1 ();
|
---|
225 | VolatileRegisters->Dr2 = AsmReadDr2 ();
|
---|
226 | VolatileRegisters->Dr3 = AsmReadDr3 ();
|
---|
227 | VolatileRegisters->Dr6 = AsmReadDr6 ();
|
---|
228 | VolatileRegisters->Dr7 = AsmReadDr7 ();
|
---|
229 | }
|
---|
230 |
|
---|
231 | AsmReadGdtr (&VolatileRegisters->Gdtr);
|
---|
232 | AsmReadIdtr (&VolatileRegisters->Idtr);
|
---|
233 | VolatileRegisters->Tr = AsmReadTr ();
|
---|
234 | }
|
---|
235 |
|
---|
236 | /**
|
---|
237 | Restore the volatile registers following INIT IPI.
|
---|
238 |
|
---|
239 | @param[in] VolatileRegisters Pointer to volatile resisters
|
---|
240 | @param[in] IsRestoreDr TRUE: Restore DRx if supported
|
---|
241 | FALSE: Do not restore DRx
|
---|
242 | **/
|
---|
243 | VOID
|
---|
244 | RestoreVolatileRegisters (
|
---|
245 | IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
|
---|
246 | IN BOOLEAN IsRestoreDr
|
---|
247 | )
|
---|
248 | {
|
---|
249 | CPUID_VERSION_INFO_EDX VersionInfoEdx;
|
---|
250 | IA32_TSS_DESCRIPTOR *Tss;
|
---|
251 |
|
---|
252 | AsmWriteCr3 (VolatileRegisters->Cr3);
|
---|
253 | AsmWriteCr4 (VolatileRegisters->Cr4);
|
---|
254 | AsmWriteCr0 (VolatileRegisters->Cr0);
|
---|
255 |
|
---|
256 | if (IsRestoreDr) {
|
---|
257 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
|
---|
258 | if (VersionInfoEdx.Bits.DE != 0) {
|
---|
259 | //
|
---|
260 | // If processor supports Debugging Extensions feature
|
---|
261 | // by CPUID.[EAX=01H]:EDX.BIT2
|
---|
262 | //
|
---|
263 | AsmWriteDr0 (VolatileRegisters->Dr0);
|
---|
264 | AsmWriteDr1 (VolatileRegisters->Dr1);
|
---|
265 | AsmWriteDr2 (VolatileRegisters->Dr2);
|
---|
266 | AsmWriteDr3 (VolatileRegisters->Dr3);
|
---|
267 | AsmWriteDr6 (VolatileRegisters->Dr6);
|
---|
268 | AsmWriteDr7 (VolatileRegisters->Dr7);
|
---|
269 | }
|
---|
270 | }
|
---|
271 |
|
---|
272 | AsmWriteGdtr (&VolatileRegisters->Gdtr);
|
---|
273 | AsmWriteIdtr (&VolatileRegisters->Idtr);
|
---|
274 | if ((VolatileRegisters->Tr != 0) &&
|
---|
275 | (VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit))
|
---|
276 | {
|
---|
277 | Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +
|
---|
278 | VolatileRegisters->Tr);
|
---|
279 | if (Tss->Bits.P == 1) {
|
---|
280 | Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case
|
---|
281 | AsmWriteTr (VolatileRegisters->Tr);
|
---|
282 | }
|
---|
283 | }
|
---|
284 | }
|
---|
285 |
|
---|
286 | /**
|
---|
287 | Detect whether Mwait-monitor feature is supported.
|
---|
288 |
|
---|
289 | @retval TRUE Mwait-monitor feature is supported.
|
---|
290 | @retval FALSE Mwait-monitor feature is not supported.
|
---|
291 | **/
|
---|
292 | BOOLEAN
|
---|
293 | IsMwaitSupport (
|
---|
294 | VOID
|
---|
295 | )
|
---|
296 | {
|
---|
297 | CPUID_VERSION_INFO_ECX VersionInfoEcx;
|
---|
298 |
|
---|
299 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
|
---|
300 | return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
|
---|
301 | }
|
---|
302 |
|
---|
303 | /**
|
---|
304 | Get AP loop mode.
|
---|
305 |
|
---|
306 | @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
|
---|
307 |
|
---|
308 | @return The AP loop mode.
|
---|
309 | **/
|
---|
310 | UINT8
|
---|
311 | GetApLoopMode (
|
---|
312 | OUT UINT32 *MonitorFilterSize
|
---|
313 | )
|
---|
314 | {
|
---|
315 | UINT8 ApLoopMode;
|
---|
316 | CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
|
---|
317 |
|
---|
318 | ASSERT (MonitorFilterSize != NULL);
|
---|
319 |
|
---|
320 | ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
|
---|
321 | ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
|
---|
322 | if (ApLoopMode == ApInMwaitLoop) {
|
---|
323 | if (!IsMwaitSupport ()) {
|
---|
324 | //
|
---|
325 | // If processor does not support MONITOR/MWAIT feature,
|
---|
326 | // force AP in Hlt-loop mode
|
---|
327 | //
|
---|
328 | ApLoopMode = ApInHltLoop;
|
---|
329 | }
|
---|
330 |
|
---|
331 | if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) &&
|
---|
332 | !ConfidentialComputingGuestHas (CCAttrAmdSevSnp))
|
---|
333 | {
|
---|
334 | //
|
---|
335 | // For SEV-ES (SEV-SNP is also considered SEV-ES), force AP in Hlt-loop
|
---|
336 | // mode in order to use the GHCB protocol for starting APs
|
---|
337 | //
|
---|
338 | ApLoopMode = ApInHltLoop;
|
---|
339 | }
|
---|
340 | }
|
---|
341 |
|
---|
342 | if (ApLoopMode != ApInMwaitLoop) {
|
---|
343 | *MonitorFilterSize = sizeof (UINT32);
|
---|
344 | } else {
|
---|
345 | //
|
---|
346 | // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
|
---|
347 | // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
|
---|
348 | //
|
---|
349 | AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
|
---|
350 | *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
|
---|
351 | }
|
---|
352 |
|
---|
353 | return ApLoopMode;
|
---|
354 | }
|
---|
355 |
|
---|
356 | /**
|
---|
357 | Sort the APIC ID of all processors.
|
---|
358 |
|
---|
359 | This function sorts the APIC ID of all processors so that processor number is
|
---|
360 | assigned in the ascending order of APIC ID which eases MP debugging.
|
---|
361 |
|
---|
362 | @param[in] CpuMpData Pointer to PEI CPU MP Data
|
---|
363 | **/
|
---|
364 | VOID
|
---|
365 | SortApicId (
|
---|
366 | IN CPU_MP_DATA *CpuMpData
|
---|
367 | )
|
---|
368 | {
|
---|
369 | UINTN Index1;
|
---|
370 | UINTN Index2;
|
---|
371 | UINTN Index3;
|
---|
372 | UINT32 ApicId;
|
---|
373 | CPU_INFO_IN_HOB CpuInfo;
|
---|
374 | UINT32 ApCount;
|
---|
375 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
376 | volatile UINT32 *StartupApSignal;
|
---|
377 |
|
---|
378 | ApCount = CpuMpData->CpuCount - 1;
|
---|
379 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
380 | if (ApCount != 0) {
|
---|
381 | for (Index1 = 0; Index1 < ApCount; Index1++) {
|
---|
382 | Index3 = Index1;
|
---|
383 | //
|
---|
384 | // Sort key is the hardware default APIC ID
|
---|
385 | //
|
---|
386 | ApicId = CpuInfoInHob[Index1].ApicId;
|
---|
387 | for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
|
---|
388 | if (ApicId > CpuInfoInHob[Index2].ApicId) {
|
---|
389 | Index3 = Index2;
|
---|
390 | ApicId = CpuInfoInHob[Index2].ApicId;
|
---|
391 | }
|
---|
392 | }
|
---|
393 |
|
---|
394 | if (Index3 != Index1) {
|
---|
395 | CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
|
---|
396 | CopyMem (
|
---|
397 | &CpuInfoInHob[Index3],
|
---|
398 | &CpuInfoInHob[Index1],
|
---|
399 | sizeof (CPU_INFO_IN_HOB)
|
---|
400 | );
|
---|
401 | CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));
|
---|
402 |
|
---|
403 | //
|
---|
404 | // Also exchange the StartupApSignal.
|
---|
405 | //
|
---|
406 | StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;
|
---|
407 | CpuMpData->CpuData[Index3].StartupApSignal =
|
---|
408 | CpuMpData->CpuData[Index1].StartupApSignal;
|
---|
409 | CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
|
---|
410 | }
|
---|
411 | }
|
---|
412 |
|
---|
413 | //
|
---|
414 | // Get the processor number for the BSP
|
---|
415 | //
|
---|
416 | ApicId = GetInitialApicId ();
|
---|
417 | for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
|
---|
418 | if (CpuInfoInHob[Index1].ApicId == ApicId) {
|
---|
419 | CpuMpData->BspNumber = (UINT32)Index1;
|
---|
420 | break;
|
---|
421 | }
|
---|
422 | }
|
---|
423 | }
|
---|
424 | }
|
---|
425 |
|
---|
426 | /**
|
---|
427 | Enable x2APIC mode on APs.
|
---|
428 |
|
---|
429 | @param[in, out] Buffer Pointer to private data buffer.
|
---|
430 | **/
|
---|
431 | VOID
|
---|
432 | EFIAPI
|
---|
433 | ApFuncEnableX2Apic (
|
---|
434 | IN OUT VOID *Buffer
|
---|
435 | )
|
---|
436 | {
|
---|
437 | SetApicMode (LOCAL_APIC_MODE_X2APIC);
|
---|
438 | }
|
---|
439 |
|
---|
440 | /**
|
---|
441 | Do sync on APs.
|
---|
442 |
|
---|
443 | @param[in, out] Buffer Pointer to private data buffer.
|
---|
444 | **/
|
---|
445 | VOID
|
---|
446 | EFIAPI
|
---|
447 | ApInitializeSync (
|
---|
448 | IN OUT VOID *Buffer
|
---|
449 | )
|
---|
450 | {
|
---|
451 | CPU_MP_DATA *CpuMpData;
|
---|
452 | UINTN ProcessorNumber;
|
---|
453 | EFI_STATUS Status;
|
---|
454 |
|
---|
455 | CpuMpData = (CPU_MP_DATA *)Buffer;
|
---|
456 | Status = GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
---|
457 | ASSERT_EFI_ERROR (Status);
|
---|
458 | //
|
---|
459 | // Load microcode on AP
|
---|
460 | //
|
---|
461 | MicrocodeDetect (CpuMpData, ProcessorNumber);
|
---|
462 | //
|
---|
463 | // Sync BSP's MTRR table to AP
|
---|
464 | //
|
---|
465 | MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
|
---|
466 | }
|
---|
467 |
|
---|
468 | /**
|
---|
469 | Find the current Processor number by APIC ID.
|
---|
470 |
|
---|
471 | @param[in] CpuMpData Pointer to PEI CPU MP Data
|
---|
472 | @param[out] ProcessorNumber Return the pocessor number found
|
---|
473 |
|
---|
474 | @retval EFI_SUCCESS ProcessorNumber is found and returned.
|
---|
475 | @retval EFI_NOT_FOUND ProcessorNumber is not found.
|
---|
476 | **/
|
---|
477 | EFI_STATUS
|
---|
478 | GetProcessorNumber (
|
---|
479 | IN CPU_MP_DATA *CpuMpData,
|
---|
480 | OUT UINTN *ProcessorNumber
|
---|
481 | )
|
---|
482 | {
|
---|
483 | UINTN TotalProcessorNumber;
|
---|
484 | UINTN Index;
|
---|
485 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
486 | UINT32 CurrentApicId;
|
---|
487 |
|
---|
488 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
489 |
|
---|
490 | TotalProcessorNumber = CpuMpData->CpuCount;
|
---|
491 | CurrentApicId = GetApicId ();
|
---|
492 | for (Index = 0; Index < TotalProcessorNumber; Index++) {
|
---|
493 | if (CpuInfoInHob[Index].ApicId == CurrentApicId) {
|
---|
494 | *ProcessorNumber = Index;
|
---|
495 | return EFI_SUCCESS;
|
---|
496 | }
|
---|
497 | }
|
---|
498 |
|
---|
499 | return EFI_NOT_FOUND;
|
---|
500 | }
|
---|
501 |
|
---|
502 | #ifdef VBOX
|
---|
503 | /*
|
---|
504 | * @todo move this function to the library.
|
---|
505 | */
|
---|
506 | UINT32 VBoxGetVmVariable(UINT32 Variable, CHAR8* Buffer, UINT32 Size)
|
---|
507 | {
|
---|
508 | UINT32 VarLen, i;
|
---|
509 |
|
---|
510 | IoWrite32(EFI_INFO_PORT, Variable);
|
---|
511 | VarLen = IoRead32(EFI_INFO_PORT);
|
---|
512 |
|
---|
513 | for (i = 0; i < VarLen && i < Size; i++)
|
---|
514 | Buffer[i] = IoRead8(EFI_INFO_PORT);
|
---|
515 |
|
---|
516 | return VarLen;
|
---|
517 | }
|
---|
518 | #endif
|
---|
519 |
|
---|
520 | /**
|
---|
521 | This function will get CPU count in the system.
|
---|
522 |
|
---|
523 | @param[in] CpuMpData Pointer to PEI CPU MP Data
|
---|
524 |
|
---|
525 | @return CPU count detected
|
---|
526 | **/
|
---|
527 | UINTN
|
---|
528 | CollectProcessorCount (
|
---|
529 | IN CPU_MP_DATA *CpuMpData
|
---|
530 | )
|
---|
531 | {
|
---|
532 | UINTN Index;
|
---|
533 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
534 | BOOLEAN X2Apic;
|
---|
535 | #ifdef VBOX
|
---|
536 | CHAR8 u8ApicMode;
|
---|
537 | #endif
|
---|
538 |
|
---|
539 | //
|
---|
540 | // Send 1st broadcast IPI to APs to wakeup APs
|
---|
541 | //
|
---|
542 | CpuMpData->InitFlag = ApInitConfig;
|
---|
543 | WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);
|
---|
544 | CpuMpData->InitFlag = ApInitDone;
|
---|
545 | //
|
---|
546 | // When InitFlag == ApInitConfig, WakeUpAP () guarantees all APs are checked in.
|
---|
547 | // FinishedCount is the number of check-in APs.
|
---|
548 | //
|
---|
549 | CpuMpData->CpuCount = CpuMpData->FinishedCount + 1;
|
---|
550 | ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
|
---|
551 |
|
---|
552 | //
|
---|
553 | // Enable x2APIC mode if
|
---|
554 | // 1. Number of CPU is greater than 255; or
|
---|
555 | // 2. There are any logical processors reporting an Initial APIC ID of 255 or greater.
|
---|
556 | //
|
---|
557 | X2Apic = FALSE;
|
---|
558 | if (CpuMpData->CpuCount > 255) {
|
---|
559 | //
|
---|
560 | // If there are more than 255 processor found, force to enable X2APIC
|
---|
561 | //
|
---|
562 | X2Apic = TRUE;
|
---|
563 | } else {
|
---|
564 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
565 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
566 | if (CpuInfoInHob[Index].InitialApicId >= 0xFF) {
|
---|
567 | X2Apic = TRUE;
|
---|
568 | break;
|
---|
569 | }
|
---|
570 | }
|
---|
571 | }
|
---|
572 | #ifdef VBOX
|
---|
573 | /* Force x2APIC mode if the VM config forces it. */
|
---|
574 | VBoxGetVmVariable(EFI_INFO_INDEX_APIC_MODE, &u8ApicMode, sizeof(u8ApicMode));
|
---|
575 | if (u8ApicMode == EFI_APIC_MODE_X2APIC)
|
---|
576 | X2Apic = TRUE;
|
---|
577 | #endif
|
---|
578 |
|
---|
579 | if (X2Apic) {
|
---|
580 | DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
|
---|
581 | //
|
---|
582 | // Wakeup all APs to enable x2APIC mode
|
---|
583 | //
|
---|
584 | WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);
|
---|
585 | //
|
---|
586 | // Wait for all known APs finished
|
---|
587 | //
|
---|
588 | while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
|
---|
589 | CpuPause ();
|
---|
590 | }
|
---|
591 |
|
---|
592 | //
|
---|
593 | // Enable x2APIC on BSP
|
---|
594 | //
|
---|
595 | SetApicMode (LOCAL_APIC_MODE_X2APIC);
|
---|
596 | //
|
---|
597 | // Set BSP/Aps state to IDLE
|
---|
598 | //
|
---|
599 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
600 | SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
|
---|
601 | }
|
---|
602 | }
|
---|
603 |
|
---|
604 | DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
|
---|
605 | //
|
---|
606 | // Sort BSP/Aps by CPU APIC ID in ascending order
|
---|
607 | //
|
---|
608 | SortApicId (CpuMpData);
|
---|
609 |
|
---|
610 | DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
|
---|
611 |
|
---|
612 | return CpuMpData->CpuCount;
|
---|
613 | }
|
---|
614 |
|
---|
615 | /**
|
---|
616 | Initialize CPU AP Data when AP is wakeup at the first time.
|
---|
617 |
|
---|
618 | @param[in, out] CpuMpData Pointer to PEI CPU MP Data
|
---|
619 | @param[in] ProcessorNumber The handle number of processor
|
---|
620 | @param[in] BistData Processor BIST data
|
---|
621 | @param[in] ApTopOfStack Top of AP stack
|
---|
622 |
|
---|
623 | **/
|
---|
624 | VOID
|
---|
625 | InitializeApData (
|
---|
626 | IN OUT CPU_MP_DATA *CpuMpData,
|
---|
627 | IN UINTN ProcessorNumber,
|
---|
628 | IN UINT32 BistData,
|
---|
629 | IN UINT64 ApTopOfStack
|
---|
630 | )
|
---|
631 | {
|
---|
632 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
633 | MSR_IA32_PLATFORM_ID_REGISTER PlatformIdMsr;
|
---|
634 | AP_STACK_DATA *ApStackData;
|
---|
635 |
|
---|
636 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
637 | CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
|
---|
638 | CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
|
---|
639 | CpuInfoInHob[ProcessorNumber].Health = BistData;
|
---|
640 | CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;
|
---|
641 |
|
---|
642 | //
|
---|
643 | // AP_STACK_DATA is stored at the top of AP Stack
|
---|
644 | //
|
---|
645 | ApStackData = (AP_STACK_DATA *)((UINTN)ApTopOfStack - sizeof (AP_STACK_DATA));
|
---|
646 | ApStackData->MpData = CpuMpData;
|
---|
647 |
|
---|
648 | CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
|
---|
649 | CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
|
---|
650 |
|
---|
651 | //
|
---|
652 | // NOTE: PlatformId is not relevant on AMD platforms.
|
---|
653 | //
|
---|
654 | if (!StandardSignatureIsAuthenticAMD ()) {
|
---|
655 | PlatformIdMsr.Uint64 = AsmReadMsr64 (MSR_IA32_PLATFORM_ID);
|
---|
656 | CpuMpData->CpuData[ProcessorNumber].PlatformId = (UINT8)PlatformIdMsr.Bits.PlatformId;
|
---|
657 | }
|
---|
658 |
|
---|
659 | AsmCpuid (
|
---|
660 | CPUID_VERSION_INFO,
|
---|
661 | &CpuMpData->CpuData[ProcessorNumber].ProcessorSignature,
|
---|
662 | NULL,
|
---|
663 | NULL,
|
---|
664 | NULL
|
---|
665 | );
|
---|
666 |
|
---|
667 | InitializeSpinLock (&CpuMpData->CpuData[ProcessorNumber].ApLock);
|
---|
668 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
|
---|
669 | }
|
---|
670 |
|
---|
671 | /**
|
---|
672 | This function place APs in Halt loop.
|
---|
673 |
|
---|
674 | @param[in] CpuMpData Pointer to CPU MP Data
|
---|
675 | **/
|
---|
676 | VOID
|
---|
677 | PlaceAPInHltLoop (
|
---|
678 | IN CPU_MP_DATA *CpuMpData
|
---|
679 | )
|
---|
680 | {
|
---|
681 | while (TRUE) {
|
---|
682 | DisableInterrupts ();
|
---|
683 | if (CpuMpData->UseSevEsAPMethod) {
|
---|
684 | SevEsPlaceApHlt (CpuMpData);
|
---|
685 | } else {
|
---|
686 | CpuSleep ();
|
---|
687 | }
|
---|
688 |
|
---|
689 | CpuPause ();
|
---|
690 | }
|
---|
691 | }
|
---|
692 |
|
---|
693 | /**
|
---|
694 | This function place APs in Mwait or Run loop.
|
---|
695 |
|
---|
696 | @param[in] ApLoopMode Ap Loop Mode
|
---|
697 | @param[in] ApStartupSignalBuffer Pointer to Ap Startup Signal Buffer
|
---|
698 | @param[in] ApTargetCState Ap Target CState
|
---|
699 | **/
|
---|
700 | VOID
|
---|
701 | PlaceAPInMwaitLoopOrRunLoop (
|
---|
702 | IN UINT8 ApLoopMode,
|
---|
703 | IN volatile UINT32 *ApStartupSignalBuffer,
|
---|
704 | IN UINT8 ApTargetCState
|
---|
705 | )
|
---|
706 | {
|
---|
707 | while (TRUE) {
|
---|
708 | DisableInterrupts ();
|
---|
709 | if (ApLoopMode == ApInMwaitLoop) {
|
---|
710 | //
|
---|
711 | // Place AP in MWAIT-loop
|
---|
712 | //
|
---|
713 | AsmMonitor ((UINTN)ApStartupSignalBuffer, 0, 0);
|
---|
714 | if ((*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) && (*ApStartupSignalBuffer != MP_HAND_OFF_SIGNAL)) {
|
---|
715 | //
|
---|
716 | // Check AP start-up signal again.
|
---|
717 | // If AP start-up signal is not set, place AP into
|
---|
718 | // the specified C-state
|
---|
719 | //
|
---|
720 | AsmMwait (ApTargetCState << 4, 0);
|
---|
721 | }
|
---|
722 | } else if (ApLoopMode == ApInRunLoop) {
|
---|
723 | //
|
---|
724 | // Place AP in Run-loop
|
---|
725 | //
|
---|
726 | CpuPause ();
|
---|
727 | } else {
|
---|
728 | ASSERT (FALSE);
|
---|
729 | }
|
---|
730 |
|
---|
731 | //
|
---|
732 | // If AP start-up signal is written, AP is waken up
|
---|
733 | // otherwise place AP in loop again
|
---|
734 | //
|
---|
735 | if ((*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) || (*ApStartupSignalBuffer == MP_HAND_OFF_SIGNAL)) {
|
---|
736 | break;
|
---|
737 | }
|
---|
738 | }
|
---|
739 | }
|
---|
740 |
|
---|
741 | /**
|
---|
742 | This function will be called from AP reset code if BSP uses WakeUpAP.
|
---|
743 |
|
---|
744 | @param[in] CpuMpData Pointer to CPU MP Data
|
---|
745 | @param[in] ApIndex Number of current executing AP
|
---|
746 | **/
|
---|
747 | VOID
|
---|
748 | EFIAPI
|
---|
749 | ApWakeupFunction (
|
---|
750 | IN CPU_MP_DATA *CpuMpData,
|
---|
751 | IN UINTN ApIndex
|
---|
752 | )
|
---|
753 | {
|
---|
754 | UINTN ProcessorNumber;
|
---|
755 | EFI_AP_PROCEDURE Procedure;
|
---|
756 | VOID *Parameter;
|
---|
757 | UINT32 BistData;
|
---|
758 | volatile UINT32 *ApStartupSignalBuffer;
|
---|
759 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
760 | UINT64 ApTopOfStack;
|
---|
761 | UINTN CurrentApicMode;
|
---|
762 | AP_STACK_DATA *ApStackData;
|
---|
763 | UINT32 OriginalValue;
|
---|
764 |
|
---|
765 | //
|
---|
766 | // AP's local APIC settings will be lost after received INIT IPI
|
---|
767 | // We need to re-initialize them at here
|
---|
768 | //
|
---|
769 | ProgramVirtualWireMode ();
|
---|
770 | //
|
---|
771 | // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.
|
---|
772 | //
|
---|
773 | DisableLvtInterrupts ();
|
---|
774 | SyncLocalApicTimerSetting (CpuMpData);
|
---|
775 |
|
---|
776 | CurrentApicMode = GetApicMode ();
|
---|
777 | while (TRUE) {
|
---|
778 | if (CpuMpData->InitFlag == ApInitConfig) {
|
---|
779 | ProcessorNumber = ApIndex;
|
---|
780 | //
|
---|
781 | // This is first time AP wakeup, get BIST information from AP stack
|
---|
782 | //
|
---|
783 | ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
|
---|
784 | ApStackData = (AP_STACK_DATA *)((UINTN)ApTopOfStack - sizeof (AP_STACK_DATA));
|
---|
785 | BistData = (UINT32)ApStackData->Bist;
|
---|
786 |
|
---|
787 | //
|
---|
788 | // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,
|
---|
789 | // to initialize AP in InitConfig path.
|
---|
790 | // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.
|
---|
791 | //
|
---|
792 | RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
|
---|
793 | InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
|
---|
794 | ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
|
---|
795 | } else {
|
---|
796 | //
|
---|
797 | // Execute AP function if AP is ready
|
---|
798 | //
|
---|
799 | GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
---|
800 | //
|
---|
801 | // Clear AP start-up signal when AP waken up
|
---|
802 | //
|
---|
803 | ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
|
---|
804 | OriginalValue = InterlockedCompareExchange32 (
|
---|
805 | (UINT32 *)ApStartupSignalBuffer,
|
---|
806 | MP_HAND_OFF_SIGNAL,
|
---|
807 | 0
|
---|
808 | );
|
---|
809 | if (OriginalValue == MP_HAND_OFF_SIGNAL) {
|
---|
810 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateReady);
|
---|
811 | }
|
---|
812 |
|
---|
813 | InterlockedCompareExchange32 (
|
---|
814 | (UINT32 *)ApStartupSignalBuffer,
|
---|
815 | WAKEUP_AP_SIGNAL,
|
---|
816 | 0
|
---|
817 | );
|
---|
818 |
|
---|
819 | if (CpuMpData->InitFlag == ApInitReconfig) {
|
---|
820 | //
|
---|
821 | // ApInitReconfig happens when:
|
---|
822 | // 1. AP is re-enabled after it's disabled, in either PEI or DXE phase.
|
---|
823 | // 2. AP is initialized in DXE phase.
|
---|
824 | // In either case, use the volatile registers value derived from BSP.
|
---|
825 | // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a
|
---|
826 | // different IDT shared by all APs.
|
---|
827 | //
|
---|
828 | RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
|
---|
829 | } else {
|
---|
830 | if (CpuMpData->ApLoopMode == ApInHltLoop) {
|
---|
831 | //
|
---|
832 | // Restore AP's volatile registers saved before AP is halted
|
---|
833 | //
|
---|
834 | RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
|
---|
835 | } else {
|
---|
836 | //
|
---|
837 | // The CPU driver might not flush TLB for APs on spot after updating
|
---|
838 | // page attributes. AP in mwait loop mode needs to take care of it when
|
---|
839 | // woken up.
|
---|
840 | //
|
---|
841 | CpuFlushTlb ();
|
---|
842 | }
|
---|
843 | }
|
---|
844 |
|
---|
845 | if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
|
---|
846 | Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
|
---|
847 | Parameter = (VOID *)CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
|
---|
848 | if (Procedure != NULL) {
|
---|
849 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
|
---|
850 | //
|
---|
851 | // Enable source debugging on AP function
|
---|
852 | //
|
---|
853 | EnableDebugAgent ();
|
---|
854 | //
|
---|
855 | // Invoke AP function here
|
---|
856 | //
|
---|
857 | Procedure (Parameter);
|
---|
858 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
859 | if (CpuMpData->SwitchBspFlag) {
|
---|
860 | //
|
---|
861 | // Re-get the processor number due to BSP/AP maybe exchange in AP function
|
---|
862 | //
|
---|
863 | GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
---|
864 | CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
|
---|
865 | CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
|
---|
866 | ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
|
---|
867 | CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
|
---|
868 | } else {
|
---|
869 | if ((CpuInfoInHob[ProcessorNumber].ApicId != GetApicId ()) ||
|
---|
870 | (CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()))
|
---|
871 | {
|
---|
872 | if (CurrentApicMode != GetApicMode ()) {
|
---|
873 | //
|
---|
874 | // If APIC mode change happened during AP function execution,
|
---|
875 | // we do not support APIC ID value changed.
|
---|
876 | //
|
---|
877 | ASSERT (FALSE);
|
---|
878 | CpuDeadLoop ();
|
---|
879 | } else {
|
---|
880 | //
|
---|
881 | // Re-get the CPU APICID and Initial APICID if they are changed
|
---|
882 | //
|
---|
883 | CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
|
---|
884 | CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
|
---|
885 | }
|
---|
886 | }
|
---|
887 | }
|
---|
888 | }
|
---|
889 |
|
---|
890 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
|
---|
891 | }
|
---|
892 | }
|
---|
893 |
|
---|
894 | if (CpuMpData->ApLoopMode == ApInHltLoop) {
|
---|
895 | //
|
---|
896 | // Save AP volatile registers
|
---|
897 | //
|
---|
898 | SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
|
---|
899 | }
|
---|
900 |
|
---|
901 | //
|
---|
902 | // AP finished executing C code
|
---|
903 | //
|
---|
904 | InterlockedIncrement ((UINT32 *)&CpuMpData->FinishedCount);
|
---|
905 |
|
---|
906 | if (CpuMpData->InitFlag == ApInitConfig) {
|
---|
907 | //
|
---|
908 | // Delay decrementing the APs executing count when SEV-ES is enabled
|
---|
909 | // to allow the APs to issue an AP_RESET_HOLD before the BSP possibly
|
---|
910 | // performs another INIT-SIPI-SIPI sequence.
|
---|
911 | //
|
---|
912 | if (!CpuMpData->UseSevEsAPMethod) {
|
---|
913 | InterlockedDecrement ((UINT32 *)&CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
|
---|
914 | }
|
---|
915 | }
|
---|
916 |
|
---|
917 | //
|
---|
918 | // Place AP is specified loop mode
|
---|
919 | //
|
---|
920 | if (CpuMpData->ApLoopMode == ApInHltLoop) {
|
---|
921 | PlaceAPInHltLoop (CpuMpData);
|
---|
922 | //
|
---|
923 | // Never run here
|
---|
924 | //
|
---|
925 | } else {
|
---|
926 | PlaceAPInMwaitLoopOrRunLoop (CpuMpData->ApLoopMode, ApStartupSignalBuffer, CpuMpData->ApTargetCState);
|
---|
927 | }
|
---|
928 | }
|
---|
929 | }
|
---|
930 |
|
---|
931 | /**
|
---|
932 | This function serves as the entry point for APs when
|
---|
933 | they are awakened by the stores in the memory address
|
---|
934 | indicated by the MP_HANDOFF_INFO structure.
|
---|
935 |
|
---|
936 | @param[in] CpuMpData Pointer to PEI CPU MP Data
|
---|
937 | **/
|
---|
938 | VOID
|
---|
939 | EFIAPI
|
---|
940 | DxeApEntryPoint (
|
---|
941 | CPU_MP_DATA *CpuMpData
|
---|
942 | )
|
---|
943 | {
|
---|
944 | UINTN ProcessorNumber;
|
---|
945 |
|
---|
946 | GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
---|
947 | InterlockedIncrement ((UINT32 *)&CpuMpData->FinishedCount);
|
---|
948 | RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
|
---|
949 | PlaceAPInMwaitLoopOrRunLoop (
|
---|
950 | CpuMpData->ApLoopMode,
|
---|
951 | CpuMpData->CpuData[ProcessorNumber].StartupApSignal,
|
---|
952 | CpuMpData->ApTargetCState
|
---|
953 | );
|
---|
954 | ApWakeupFunction (CpuMpData, ProcessorNumber);
|
---|
955 | }
|
---|
956 |
|
---|
957 | /**
|
---|
958 | Wait for AP wakeup and write AP start-up signal till AP is waken up.
|
---|
959 |
|
---|
960 | @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
|
---|
961 | **/
|
---|
962 | VOID
|
---|
963 | WaitApWakeup (
|
---|
964 | IN volatile UINT32 *ApStartupSignalBuffer
|
---|
965 | )
|
---|
966 | {
|
---|
967 | //
|
---|
968 | // If AP is waken up, StartupApSignal should be cleared.
|
---|
969 | // Otherwise, write StartupApSignal again till AP waken up.
|
---|
970 | //
|
---|
971 | while (InterlockedCompareExchange32 (
|
---|
972 | (UINT32 *)ApStartupSignalBuffer,
|
---|
973 | WAKEUP_AP_SIGNAL,
|
---|
974 | WAKEUP_AP_SIGNAL
|
---|
975 | ) != 0)
|
---|
976 | {
|
---|
977 | CpuPause ();
|
---|
978 | }
|
---|
979 | }
|
---|
980 |
|
---|
981 | /**
|
---|
982 | Calculate the size of the reset vector.
|
---|
983 |
|
---|
984 | @param[in] AddressMap The pointer to Address Map structure.
|
---|
985 | @param[out] SizeBelow1Mb Return the size of below 1MB memory for AP reset area.
|
---|
986 | @param[out] SizeAbove1Mb Return the size of abvoe 1MB memory for AP reset area.
|
---|
987 | **/
|
---|
988 | STATIC
|
---|
989 | VOID
|
---|
990 | GetApResetVectorSize (
|
---|
991 | IN MP_ASSEMBLY_ADDRESS_MAP *AddressMap,
|
---|
992 | OUT UINTN *SizeBelow1Mb OPTIONAL,
|
---|
993 | OUT UINTN *SizeAbove1Mb OPTIONAL
|
---|
994 | )
|
---|
995 | {
|
---|
996 | if (SizeBelow1Mb != NULL) {
|
---|
997 | *SizeBelow1Mb = AddressMap->ModeTransitionOffset + sizeof (MP_CPU_EXCHANGE_INFO);
|
---|
998 | }
|
---|
999 |
|
---|
1000 | if (SizeAbove1Mb != NULL) {
|
---|
1001 | *SizeAbove1Mb = AddressMap->RendezvousFunnelSize - AddressMap->ModeTransitionOffset;
|
---|
1002 | }
|
---|
1003 | }
|
---|
1004 |
|
---|
1005 | /**
|
---|
1006 | This function will fill the exchange info structure.
|
---|
1007 |
|
---|
1008 | @param[in] CpuMpData Pointer to CPU MP Data
|
---|
1009 |
|
---|
1010 | **/
|
---|
1011 | VOID
|
---|
1012 | FillExchangeInfoData (
|
---|
1013 | IN CPU_MP_DATA *CpuMpData
|
---|
1014 | )
|
---|
1015 | {
|
---|
1016 | volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
|
---|
1017 | UINTN Size;
|
---|
1018 | IA32_SEGMENT_DESCRIPTOR *Selector;
|
---|
1019 | IA32_CR4 Cr4;
|
---|
1020 |
|
---|
1021 | ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
|
---|
1022 | ExchangeInfo->StackStart = CpuMpData->Buffer;
|
---|
1023 | ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
|
---|
1024 | ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
|
---|
1025 | ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
|
---|
1026 |
|
---|
1027 | ExchangeInfo->CodeSegment = AsmReadCs ();
|
---|
1028 | ExchangeInfo->DataSegment = AsmReadDs ();
|
---|
1029 |
|
---|
1030 | ExchangeInfo->Cr3 = AsmReadCr3 ();
|
---|
1031 |
|
---|
1032 | ExchangeInfo->CFunction = (UINTN)ApWakeupFunction;
|
---|
1033 | ExchangeInfo->ApIndex = 0;
|
---|
1034 | ExchangeInfo->NumApsExecuting = 0;
|
---|
1035 | ExchangeInfo->InitFlag = (UINTN)CpuMpData->InitFlag;
|
---|
1036 | ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
1037 | ExchangeInfo->CpuMpData = CpuMpData;
|
---|
1038 |
|
---|
1039 | ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
|
---|
1040 |
|
---|
1041 | ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
|
---|
1042 |
|
---|
1043 | //
|
---|
1044 | // We can check either CPUID(7).ECX[bit16] or check CR4.LA57[bit12]
|
---|
1045 | // to determin whether 5-Level Paging is enabled.
|
---|
1046 | // CPUID(7).ECX[bit16] shows CPU's capability, CR4.LA57[bit12] shows
|
---|
1047 | // current system setting.
|
---|
1048 | // Using latter way is simpler because it also eliminates the needs to
|
---|
1049 | // check whether platform wants to enable it.
|
---|
1050 | //
|
---|
1051 | Cr4.UintN = AsmReadCr4 ();
|
---|
1052 | ExchangeInfo->Enable5LevelPaging = (BOOLEAN)(Cr4.Bits.LA57 == 1);
|
---|
1053 | DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging));
|
---|
1054 |
|
---|
1055 | ExchangeInfo->SevEsIsEnabled = CpuMpData->SevEsIsEnabled;
|
---|
1056 | ExchangeInfo->SevSnpIsEnabled = CpuMpData->SevSnpIsEnabled;
|
---|
1057 | ExchangeInfo->GhcbBase = (UINTN)CpuMpData->GhcbBase;
|
---|
1058 |
|
---|
1059 | //
|
---|
1060 | // Populate SEV-ES specific exchange data.
|
---|
1061 | //
|
---|
1062 | if (ExchangeInfo->SevSnpIsEnabled) {
|
---|
1063 | FillExchangeInfoDataSevEs (ExchangeInfo);
|
---|
1064 | }
|
---|
1065 |
|
---|
1066 | //
|
---|
1067 | // Get the BSP's data of GDT and IDT
|
---|
1068 | //
|
---|
1069 | AsmReadGdtr ((IA32_DESCRIPTOR *)&ExchangeInfo->GdtrProfile);
|
---|
1070 | AsmReadIdtr ((IA32_DESCRIPTOR *)&ExchangeInfo->IdtrProfile);
|
---|
1071 |
|
---|
1072 | //
|
---|
1073 | // Find a 32-bit code segment
|
---|
1074 | //
|
---|
1075 | Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;
|
---|
1076 | Size = ExchangeInfo->GdtrProfile.Limit + 1;
|
---|
1077 | while (Size > 0) {
|
---|
1078 | if ((Selector->Bits.L == 0) && (Selector->Bits.Type >= 8)) {
|
---|
1079 | ExchangeInfo->ModeTransitionSegment =
|
---|
1080 | (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);
|
---|
1081 | break;
|
---|
1082 | }
|
---|
1083 |
|
---|
1084 | Selector += 1;
|
---|
1085 | Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);
|
---|
1086 | }
|
---|
1087 |
|
---|
1088 | ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;
|
---|
1089 |
|
---|
1090 | ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +
|
---|
1091 | (UINT32)ExchangeInfo->ModeOffset -
|
---|
1092 | (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;
|
---|
1093 | ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;
|
---|
1094 | }
|
---|
1095 |
|
---|
1096 | /**
|
---|
1097 | Helper function that waits until the finished AP count reaches the specified
|
---|
1098 | limit, or the specified timeout elapses (whichever comes first).
|
---|
1099 |
|
---|
1100 | @param[in] CpuMpData Pointer to CPU MP Data.
|
---|
1101 | @param[in] FinishedApLimit The number of finished APs to wait for.
|
---|
1102 | @param[in] TimeLimit The number of microseconds to wait for.
|
---|
1103 | **/
|
---|
1104 | VOID
|
---|
1105 | TimedWaitForApFinish (
|
---|
1106 | IN CPU_MP_DATA *CpuMpData,
|
---|
1107 | IN UINT32 FinishedApLimit,
|
---|
1108 | IN UINT32 TimeLimit
|
---|
1109 | );
|
---|
1110 |
|
---|
1111 | /**
|
---|
1112 | Get available system memory below 1MB by specified size.
|
---|
1113 |
|
---|
1114 | @param[in] CpuMpData The pointer to CPU MP Data structure.
|
---|
1115 | **/
|
---|
1116 | VOID
|
---|
1117 | BackupAndPrepareWakeupBuffer (
|
---|
1118 | IN CPU_MP_DATA *CpuMpData
|
---|
1119 | )
|
---|
1120 | {
|
---|
1121 | CopyMem (
|
---|
1122 | (VOID *)CpuMpData->BackupBuffer,
|
---|
1123 | (VOID *)CpuMpData->WakeupBuffer,
|
---|
1124 | CpuMpData->BackupBufferSize
|
---|
1125 | );
|
---|
1126 | CopyMem (
|
---|
1127 | (VOID *)CpuMpData->WakeupBuffer,
|
---|
1128 | (VOID *)CpuMpData->AddressMap.RendezvousFunnelAddress,
|
---|
1129 | CpuMpData->BackupBufferSize - sizeof (MP_CPU_EXCHANGE_INFO)
|
---|
1130 | );
|
---|
1131 | }
|
---|
1132 |
|
---|
1133 | /**
|
---|
1134 | Restore wakeup buffer data.
|
---|
1135 |
|
---|
1136 | @param[in] CpuMpData The pointer to CPU MP Data structure.
|
---|
1137 | **/
|
---|
1138 | VOID
|
---|
1139 | RestoreWakeupBuffer (
|
---|
1140 | IN CPU_MP_DATA *CpuMpData
|
---|
1141 | )
|
---|
1142 | {
|
---|
1143 | CopyMem (
|
---|
1144 | (VOID *)CpuMpData->WakeupBuffer,
|
---|
1145 | (VOID *)CpuMpData->BackupBuffer,
|
---|
1146 | CpuMpData->BackupBufferSize
|
---|
1147 | );
|
---|
1148 | }
|
---|
1149 |
|
---|
1150 | /**
|
---|
1151 | Allocate reset vector buffer.
|
---|
1152 |
|
---|
1153 | @param[in, out] CpuMpData The pointer to CPU MP Data structure.
|
---|
1154 | **/
|
---|
1155 | VOID
|
---|
1156 | AllocateResetVectorBelow1Mb (
|
---|
1157 | IN OUT CPU_MP_DATA *CpuMpData
|
---|
1158 | )
|
---|
1159 | {
|
---|
1160 | UINTN ApResetStackSize;
|
---|
1161 |
|
---|
1162 | if (CpuMpData->WakeupBuffer == (UINTN)-1) {
|
---|
1163 | CpuMpData->WakeupBuffer = GetWakeupBuffer (CpuMpData->BackupBufferSize);
|
---|
1164 | CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *)(UINTN)
|
---|
1165 | (CpuMpData->WakeupBuffer + CpuMpData->BackupBufferSize - sizeof (MP_CPU_EXCHANGE_INFO));
|
---|
1166 | DEBUG ((
|
---|
1167 | DEBUG_INFO,
|
---|
1168 | "AP Vector: 16-bit = %p/%x, ExchangeInfo = %p/%x\n",
|
---|
1169 | CpuMpData->WakeupBuffer,
|
---|
1170 | CpuMpData->BackupBufferSize - sizeof (MP_CPU_EXCHANGE_INFO),
|
---|
1171 | CpuMpData->MpCpuExchangeInfo,
|
---|
1172 | sizeof (MP_CPU_EXCHANGE_INFO)
|
---|
1173 | ));
|
---|
1174 | //
|
---|
1175 | // The AP reset stack is only used by SEV-ES guests. Do not allocate it
|
---|
1176 | // if SEV-ES is not enabled. An SEV-SNP guest is also considered
|
---|
1177 | // an SEV-ES guest, but uses a different method of AP startup, eliminating
|
---|
1178 | // the need for the allocation.
|
---|
1179 | //
|
---|
1180 | if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) &&
|
---|
1181 | !ConfidentialComputingGuestHas (CCAttrAmdSevSnp))
|
---|
1182 | {
|
---|
1183 | //
|
---|
1184 | // Stack location is based on ProcessorNumber, so use the total number
|
---|
1185 | // of processors for calculating the total stack area.
|
---|
1186 | //
|
---|
1187 | ApResetStackSize = (AP_RESET_STACK_SIZE *
|
---|
1188 | PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
|
---|
1189 |
|
---|
1190 | //
|
---|
1191 | // Invoke GetWakeupBuffer a second time to allocate the stack area
|
---|
1192 | // below 1MB. The returned buffer will be page aligned and sized and
|
---|
1193 | // below the previously allocated buffer.
|
---|
1194 | //
|
---|
1195 | CpuMpData->SevEsAPResetStackStart = GetWakeupBuffer (ApResetStackSize);
|
---|
1196 |
|
---|
1197 | //
|
---|
1198 | // Check to be sure that the "allocate below" behavior hasn't changed.
|
---|
1199 | // This will also catch a failed allocation, as "-1" is returned on
|
---|
1200 | // failure.
|
---|
1201 | //
|
---|
1202 | if (CpuMpData->SevEsAPResetStackStart >= CpuMpData->WakeupBuffer) {
|
---|
1203 | DEBUG ((
|
---|
1204 | DEBUG_ERROR,
|
---|
1205 | "SEV-ES AP reset stack is not below wakeup buffer\n"
|
---|
1206 | ));
|
---|
1207 |
|
---|
1208 | ASSERT (FALSE);
|
---|
1209 | CpuDeadLoop ();
|
---|
1210 | }
|
---|
1211 | }
|
---|
1212 | }
|
---|
1213 |
|
---|
1214 | BackupAndPrepareWakeupBuffer (CpuMpData);
|
---|
1215 | }
|
---|
1216 |
|
---|
1217 | /**
|
---|
1218 | Free AP reset vector buffer.
|
---|
1219 |
|
---|
1220 | @param[in] CpuMpData The pointer to CPU MP Data structure.
|
---|
1221 | **/
|
---|
1222 | VOID
|
---|
1223 | FreeResetVector (
|
---|
1224 | IN CPU_MP_DATA *CpuMpData
|
---|
1225 | )
|
---|
1226 | {
|
---|
1227 | //
|
---|
1228 | // If SEV-ES is enabled, the reset area is needed for AP parking and
|
---|
1229 | // and AP startup in the OS, so the reset area is reserved. Do not
|
---|
1230 | // perform the restore as this will overwrite memory which has data
|
---|
1231 | // needed by SEV-ES.
|
---|
1232 | //
|
---|
1233 | if (!CpuMpData->UseSevEsAPMethod) {
|
---|
1234 | RestoreWakeupBuffer (CpuMpData);
|
---|
1235 | }
|
---|
1236 | }
|
---|
1237 |
|
---|
1238 | /**
|
---|
1239 | This function will be called by BSP to wakeup AP.
|
---|
1240 |
|
---|
1241 | @param[in] CpuMpData Pointer to CPU MP Data
|
---|
1242 | @param[in] Broadcast TRUE: Send broadcast IPI to all APs
|
---|
1243 | FALSE: Send IPI to AP by ApicId
|
---|
1244 | @param[in] ProcessorNumber The handle number of specified processor
|
---|
1245 | @param[in] Procedure The function to be invoked by AP
|
---|
1246 | @param[in] ProcedureArgument The argument to be passed into AP function
|
---|
1247 | @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.
|
---|
1248 | **/
|
---|
1249 | VOID
|
---|
1250 | WakeUpAP (
|
---|
1251 | IN CPU_MP_DATA *CpuMpData,
|
---|
1252 | IN BOOLEAN Broadcast,
|
---|
1253 | IN UINTN ProcessorNumber,
|
---|
1254 | IN EFI_AP_PROCEDURE Procedure OPTIONAL,
|
---|
1255 | IN VOID *ProcedureArgument OPTIONAL,
|
---|
1256 | IN BOOLEAN WakeUpDisabledAps
|
---|
1257 | )
|
---|
1258 | {
|
---|
1259 | volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
|
---|
1260 | UINTN Index;
|
---|
1261 | CPU_AP_DATA *CpuData;
|
---|
1262 | BOOLEAN ResetVectorRequired;
|
---|
1263 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
1264 |
|
---|
1265 | CpuMpData->FinishedCount = 0;
|
---|
1266 | ResetVectorRequired = FALSE;
|
---|
1267 |
|
---|
1268 | if (CpuMpData->WakeUpByInitSipiSipi ||
|
---|
1269 | (CpuMpData->InitFlag != ApInitDone))
|
---|
1270 | {
|
---|
1271 | ResetVectorRequired = TRUE;
|
---|
1272 | AllocateResetVectorBelow1Mb (CpuMpData);
|
---|
1273 | AllocateSevEsAPMemory (CpuMpData);
|
---|
1274 | FillExchangeInfoData (CpuMpData);
|
---|
1275 | SaveLocalApicTimerSetting (CpuMpData);
|
---|
1276 | }
|
---|
1277 |
|
---|
1278 | if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
|
---|
1279 | //
|
---|
1280 | // Get AP target C-state each time when waking up AP,
|
---|
1281 | // for it maybe updated by platform again
|
---|
1282 | //
|
---|
1283 | CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
|
---|
1284 | }
|
---|
1285 |
|
---|
1286 | ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
|
---|
1287 |
|
---|
1288 | if (Broadcast) {
|
---|
1289 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
1290 | if (Index != CpuMpData->BspNumber) {
|
---|
1291 | CpuData = &CpuMpData->CpuData[Index];
|
---|
1292 | //
|
---|
1293 | // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but
|
---|
1294 | // the AP procedure will be skipped for disabled AP because AP state
|
---|
1295 | // is not CpuStateReady.
|
---|
1296 | //
|
---|
1297 | if ((GetApState (CpuData) == CpuStateDisabled) && !WakeUpDisabledAps) {
|
---|
1298 | continue;
|
---|
1299 | }
|
---|
1300 |
|
---|
1301 | CpuData->ApFunction = (UINTN)Procedure;
|
---|
1302 | CpuData->ApFunctionArgument = (UINTN)ProcedureArgument;
|
---|
1303 | SetApState (CpuData, CpuStateReady);
|
---|
1304 | if (CpuMpData->InitFlag != ApInitConfig) {
|
---|
1305 | *(UINT32 *)CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
|
---|
1306 | }
|
---|
1307 | }
|
---|
1308 | }
|
---|
1309 |
|
---|
1310 | if (ResetVectorRequired) {
|
---|
1311 | //
|
---|
1312 | // For SEV-ES and SEV-SNP, the initial AP boot address will be defined by
|
---|
1313 | // PcdSevEsWorkAreaBase. The Segment/Rip must be the jump address
|
---|
1314 | // from the original INIT-SIPI-SIPI.
|
---|
1315 | //
|
---|
1316 | if (CpuMpData->SevEsIsEnabled) {
|
---|
1317 | SetSevEsJumpTable (ExchangeInfo->BufferStart);
|
---|
1318 | }
|
---|
1319 |
|
---|
1320 | //
|
---|
1321 | // Wakeup all APs
|
---|
1322 | // Must use the INIT-SIPI-SIPI method for initial configuration in
|
---|
1323 | // order to obtain the APIC ID.
|
---|
1324 | //
|
---|
1325 | if (CpuMpData->SevSnpIsEnabled && (CpuMpData->InitFlag != ApInitConfig)) {
|
---|
1326 | SevSnpCreateAP (CpuMpData, -1);
|
---|
1327 | } else {
|
---|
1328 | if ((CpuMpData->InitFlag == ApInitConfig) && FixedPcdGetBool (PcdFirstTimeWakeUpAPsBySipi)) {
|
---|
1329 | //
|
---|
1330 | // SIPI can be used for the first time wake up after reset to reduce boot time.
|
---|
1331 | //
|
---|
1332 | SendStartupIpiAllExcludingSelf ((UINT32)ExchangeInfo->BufferStart);
|
---|
1333 | } else {
|
---|
1334 | SendInitSipiSipiAllExcludingSelf ((UINT32)ExchangeInfo->BufferStart);
|
---|
1335 | }
|
---|
1336 | }
|
---|
1337 | }
|
---|
1338 |
|
---|
1339 | if (CpuMpData->InitFlag == ApInitConfig) {
|
---|
1340 | if (PcdGet32 (PcdCpuBootLogicalProcessorNumber) > 0) {
|
---|
1341 | //
|
---|
1342 | // The AP enumeration algorithm below is suitable only when the
|
---|
1343 | // platform can tell us the *exact* boot CPU count in advance.
|
---|
1344 | //
|
---|
1345 | // The wait below finishes only when the detected AP count reaches
|
---|
1346 | // (PcdCpuBootLogicalProcessorNumber - 1), regardless of how long that
|
---|
1347 | // takes. If at least one AP fails to check in (meaning a platform
|
---|
1348 | // hardware bug), the detection hangs forever, by design. If the actual
|
---|
1349 | // boot CPU count in the system is higher than
|
---|
1350 | // PcdCpuBootLogicalProcessorNumber (meaning a platform
|
---|
1351 | // misconfiguration), then some APs may complete initialization after
|
---|
1352 | // the wait finishes, and cause undefined behavior.
|
---|
1353 | //
|
---|
1354 | TimedWaitForApFinish (
|
---|
1355 | CpuMpData,
|
---|
1356 | PcdGet32 (PcdCpuBootLogicalProcessorNumber) - 1,
|
---|
1357 | MAX_UINT32 // approx. 71 minutes
|
---|
1358 | );
|
---|
1359 | } else {
|
---|
1360 | //
|
---|
1361 | // The AP enumeration algorithm below is suitable for two use cases.
|
---|
1362 | //
|
---|
1363 | // (1) The check-in time for an individual AP is bounded, and APs run
|
---|
1364 | // through their initialization routines strongly concurrently. In
|
---|
1365 | // particular, the number of concurrently running APs
|
---|
1366 | // ("NumApsExecuting") is never expected to fall to zero
|
---|
1367 | // *temporarily* -- it is expected to fall to zero only when all
|
---|
1368 | // APs have checked-in.
|
---|
1369 | //
|
---|
1370 | // In this case, the platform is supposed to set
|
---|
1371 | // PcdCpuApInitTimeOutInMicroSeconds to a low-ish value (just long
|
---|
1372 | // enough for one AP to start initialization). The timeout will be
|
---|
1373 | // reached soon, and remaining APs are collected by watching
|
---|
1374 | // NumApsExecuting fall to zero. If NumApsExecuting falls to zero
|
---|
1375 | // mid-process, while some APs have not completed initialization,
|
---|
1376 | // the behavior is undefined.
|
---|
1377 | //
|
---|
1378 | // (2) The check-in time for an individual AP is unbounded, and/or APs
|
---|
1379 | // may complete their initializations widely spread out. In
|
---|
1380 | // particular, some APs may finish initialization before some APs
|
---|
1381 | // even start.
|
---|
1382 | //
|
---|
1383 | // In this case, the platform is supposed to set
|
---|
1384 | // PcdCpuApInitTimeOutInMicroSeconds to a high-ish value. The AP
|
---|
1385 | // enumeration will always take that long (except when the boot CPU
|
---|
1386 | // count happens to be maximal, that is,
|
---|
1387 | // PcdCpuMaxLogicalProcessorNumber). All APs are expected to
|
---|
1388 | // check-in before the timeout, and NumApsExecuting is assumed zero
|
---|
1389 | // at timeout. APs that miss the time-out may cause undefined
|
---|
1390 | // behavior.
|
---|
1391 | //
|
---|
1392 | TimedWaitForApFinish (
|
---|
1393 | CpuMpData,
|
---|
1394 | PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
|
---|
1395 | PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
|
---|
1396 | );
|
---|
1397 |
|
---|
1398 | while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {
|
---|
1399 | CpuPause ();
|
---|
1400 | }
|
---|
1401 | }
|
---|
1402 | } else {
|
---|
1403 | //
|
---|
1404 | // Wait all APs waken up if this is not the 1st broadcast of SIPI
|
---|
1405 | //
|
---|
1406 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
1407 | CpuData = &CpuMpData->CpuData[Index];
|
---|
1408 | if (Index != CpuMpData->BspNumber) {
|
---|
1409 | WaitApWakeup (CpuData->StartupApSignal);
|
---|
1410 | }
|
---|
1411 | }
|
---|
1412 | }
|
---|
1413 | } else {
|
---|
1414 | CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
---|
1415 | CpuData->ApFunction = (UINTN)Procedure;
|
---|
1416 | CpuData->ApFunctionArgument = (UINTN)ProcedureArgument;
|
---|
1417 | SetApState (CpuData, CpuStateReady);
|
---|
1418 | //
|
---|
1419 | // Wakeup specified AP
|
---|
1420 | //
|
---|
1421 | ASSERT (CpuMpData->InitFlag != ApInitConfig);
|
---|
1422 | *(UINT32 *)CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
|
---|
1423 | if (ResetVectorRequired) {
|
---|
1424 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
1425 |
|
---|
1426 | //
|
---|
1427 | // For SEV-ES and SEV-SNP, the initial AP boot address will be defined by
|
---|
1428 | // PcdSevEsWorkAreaBase. The Segment/Rip must be the jump address
|
---|
1429 | // from the original INIT-SIPI-SIPI.
|
---|
1430 | //
|
---|
1431 | if (CpuMpData->SevEsIsEnabled) {
|
---|
1432 | SetSevEsJumpTable (ExchangeInfo->BufferStart);
|
---|
1433 | }
|
---|
1434 |
|
---|
1435 | if (CpuMpData->SevSnpIsEnabled && (CpuMpData->InitFlag != ApInitConfig)) {
|
---|
1436 | SevSnpCreateAP (CpuMpData, (INTN)ProcessorNumber);
|
---|
1437 | } else {
|
---|
1438 | SendInitSipiSipi (
|
---|
1439 | CpuInfoInHob[ProcessorNumber].ApicId,
|
---|
1440 | (UINT32)ExchangeInfo->BufferStart
|
---|
1441 | );
|
---|
1442 | }
|
---|
1443 | }
|
---|
1444 |
|
---|
1445 | //
|
---|
1446 | // Wait specified AP waken up
|
---|
1447 | //
|
---|
1448 | WaitApWakeup (CpuData->StartupApSignal);
|
---|
1449 | }
|
---|
1450 |
|
---|
1451 | if (ResetVectorRequired) {
|
---|
1452 | FreeResetVector (CpuMpData);
|
---|
1453 | }
|
---|
1454 |
|
---|
1455 | //
|
---|
1456 | // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with
|
---|
1457 | // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by
|
---|
1458 | // S3SmmInitDone Ppi.
|
---|
1459 | //
|
---|
1460 | CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
|
---|
1461 | }
|
---|
1462 |
|
---|
1463 | /**
|
---|
1464 | Calculate timeout value and return the current performance counter value.
|
---|
1465 |
|
---|
1466 | Calculate the number of performance counter ticks required for a timeout.
|
---|
1467 | If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
|
---|
1468 | as infinity.
|
---|
1469 |
|
---|
1470 | @param[in] TimeoutInMicroseconds Timeout value in microseconds.
|
---|
1471 | @param[out] CurrentTime Returns the current value of the performance counter.
|
---|
1472 |
|
---|
1473 | @return Expected time stamp counter for timeout.
|
---|
1474 | If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
|
---|
1475 | as infinity.
|
---|
1476 |
|
---|
1477 | **/
|
---|
1478 | UINT64
|
---|
1479 | CalculateTimeout (
|
---|
1480 | IN UINTN TimeoutInMicroseconds,
|
---|
1481 | OUT UINT64 *CurrentTime
|
---|
1482 | )
|
---|
1483 | {
|
---|
1484 | UINT64 TimeoutInSeconds;
|
---|
1485 | UINT64 TimestampCounterFreq;
|
---|
1486 |
|
---|
1487 | //
|
---|
1488 | // Read the current value of the performance counter
|
---|
1489 | //
|
---|
1490 | *CurrentTime = GetPerformanceCounter ();
|
---|
1491 |
|
---|
1492 | //
|
---|
1493 | // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
|
---|
1494 | // as infinity.
|
---|
1495 | //
|
---|
1496 | if (TimeoutInMicroseconds == 0) {
|
---|
1497 | return 0;
|
---|
1498 | }
|
---|
1499 |
|
---|
1500 | //
|
---|
1501 | // GetPerformanceCounterProperties () returns the timestamp counter's frequency
|
---|
1502 | // in Hz.
|
---|
1503 | //
|
---|
1504 | TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);
|
---|
1505 |
|
---|
1506 | //
|
---|
1507 | // Check the potential overflow before calculate the number of ticks for the timeout value.
|
---|
1508 | //
|
---|
1509 | if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
|
---|
1510 | //
|
---|
1511 | // Convert microseconds into seconds if direct multiplication overflows
|
---|
1512 | //
|
---|
1513 | TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
|
---|
1514 | //
|
---|
1515 | // Assertion if the final tick count exceeds MAX_UINT64
|
---|
1516 | //
|
---|
1517 | ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
|
---|
1518 | return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
|
---|
1519 | } else {
|
---|
1520 | //
|
---|
1521 | // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
|
---|
1522 | // it by 1,000,000, to get the number of ticks for the timeout value.
|
---|
1523 | //
|
---|
1524 | return DivU64x32 (
|
---|
1525 | MultU64x64 (
|
---|
1526 | TimestampCounterFreq,
|
---|
1527 | TimeoutInMicroseconds
|
---|
1528 | ),
|
---|
1529 | 1000000
|
---|
1530 | );
|
---|
1531 | }
|
---|
1532 | }
|
---|
1533 |
|
---|
1534 | /**
|
---|
1535 | Switch Context for each AP.
|
---|
1536 |
|
---|
1537 | **/
|
---|
1538 | VOID
|
---|
1539 | EFIAPI
|
---|
1540 | SwitchContextPerAp (
|
---|
1541 | VOID
|
---|
1542 | )
|
---|
1543 | {
|
---|
1544 | UINTN ProcessorNumber;
|
---|
1545 | CPU_MP_DATA *CpuMpData;
|
---|
1546 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
1547 |
|
---|
1548 | CpuMpData = GetCpuMpData ();
|
---|
1549 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
1550 | GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
---|
1551 |
|
---|
1552 | SwitchStack (
|
---|
1553 | (SWITCH_STACK_ENTRY_POINT)(UINTN)DxeApEntryPoint,
|
---|
1554 | (VOID *)(UINTN)CpuMpData,
|
---|
1555 | NULL,
|
---|
1556 | (VOID *)((UINTN)CpuInfoInHob[ProcessorNumber].ApTopOfStack)
|
---|
1557 | );
|
---|
1558 | }
|
---|
1559 |
|
---|
1560 | /**
|
---|
1561 | Checks whether timeout expires.
|
---|
1562 |
|
---|
1563 | Check whether the number of elapsed performance counter ticks required for
|
---|
1564 | a timeout condition has been reached.
|
---|
1565 | If Timeout is zero, which means infinity, return value is always FALSE.
|
---|
1566 |
|
---|
1567 | @param[in, out] PreviousTime On input, the value of the performance counter
|
---|
1568 | when it was last read.
|
---|
1569 | On output, the current value of the performance
|
---|
1570 | counter
|
---|
1571 | @param[in] TotalTime The total amount of elapsed time in performance
|
---|
1572 | counter ticks.
|
---|
1573 | @param[in] Timeout The number of performance counter ticks required
|
---|
1574 | to reach a timeout condition.
|
---|
1575 |
|
---|
1576 | @retval TRUE A timeout condition has been reached.
|
---|
1577 | @retval FALSE A timeout condition has not been reached.
|
---|
1578 |
|
---|
1579 | **/
|
---|
1580 | BOOLEAN
|
---|
1581 | CheckTimeout (
|
---|
1582 | IN OUT UINT64 *PreviousTime,
|
---|
1583 | IN UINT64 *TotalTime,
|
---|
1584 | IN UINT64 Timeout
|
---|
1585 | )
|
---|
1586 | {
|
---|
1587 | UINT64 Start;
|
---|
1588 | UINT64 End;
|
---|
1589 | UINT64 CurrentTime;
|
---|
1590 | INT64 Delta;
|
---|
1591 | INT64 Cycle;
|
---|
1592 |
|
---|
1593 | if (Timeout == 0) {
|
---|
1594 | return FALSE;
|
---|
1595 | }
|
---|
1596 |
|
---|
1597 | GetPerformanceCounterProperties (&Start, &End);
|
---|
1598 | Cycle = End - Start;
|
---|
1599 | if (Cycle < 0) {
|
---|
1600 | Cycle = -Cycle;
|
---|
1601 | }
|
---|
1602 |
|
---|
1603 | Cycle++;
|
---|
1604 | CurrentTime = GetPerformanceCounter ();
|
---|
1605 | Delta = (INT64)(CurrentTime - *PreviousTime);
|
---|
1606 | if (Start > End) {
|
---|
1607 | Delta = -Delta;
|
---|
1608 | }
|
---|
1609 |
|
---|
1610 | if (Delta < 0) {
|
---|
1611 | Delta += Cycle;
|
---|
1612 | }
|
---|
1613 |
|
---|
1614 | *TotalTime += Delta;
|
---|
1615 | *PreviousTime = CurrentTime;
|
---|
1616 | if (*TotalTime > Timeout) {
|
---|
1617 | return TRUE;
|
---|
1618 | }
|
---|
1619 |
|
---|
1620 | return FALSE;
|
---|
1621 | }
|
---|
1622 |
|
---|
1623 | /**
|
---|
1624 | Helper function that waits until the finished AP count reaches the specified
|
---|
1625 | limit, or the specified timeout elapses (whichever comes first).
|
---|
1626 |
|
---|
1627 | @param[in] CpuMpData Pointer to CPU MP Data.
|
---|
1628 | @param[in] FinishedApLimit The number of finished APs to wait for.
|
---|
1629 | @param[in] TimeLimit The number of microseconds to wait for.
|
---|
1630 | **/
|
---|
1631 | VOID
|
---|
1632 | TimedWaitForApFinish (
|
---|
1633 | IN CPU_MP_DATA *CpuMpData,
|
---|
1634 | IN UINT32 FinishedApLimit,
|
---|
1635 | IN UINT32 TimeLimit
|
---|
1636 | )
|
---|
1637 | {
|
---|
1638 | //
|
---|
1639 | // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
|
---|
1640 | // "infinity", so check for (TimeLimit == 0) explicitly.
|
---|
1641 | //
|
---|
1642 | if (TimeLimit == 0) {
|
---|
1643 | return;
|
---|
1644 | }
|
---|
1645 |
|
---|
1646 | CpuMpData->TotalTime = 0;
|
---|
1647 | CpuMpData->ExpectedTime = CalculateTimeout (
|
---|
1648 | TimeLimit,
|
---|
1649 | &CpuMpData->CurrentTime
|
---|
1650 | );
|
---|
1651 | while (CpuMpData->FinishedCount < FinishedApLimit &&
|
---|
1652 | !CheckTimeout (
|
---|
1653 | &CpuMpData->CurrentTime,
|
---|
1654 | &CpuMpData->TotalTime,
|
---|
1655 | CpuMpData->ExpectedTime
|
---|
1656 | ))
|
---|
1657 | {
|
---|
1658 | CpuPause ();
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 | if (CpuMpData->FinishedCount >= FinishedApLimit) {
|
---|
1662 | DEBUG ((
|
---|
1663 | DEBUG_VERBOSE,
|
---|
1664 | "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
|
---|
1665 | __func__,
|
---|
1666 | FinishedApLimit,
|
---|
1667 | DivU64x64Remainder (
|
---|
1668 | MultU64x32 (CpuMpData->TotalTime, 1000000),
|
---|
1669 | GetPerformanceCounterProperties (NULL, NULL),
|
---|
1670 | NULL
|
---|
1671 | )
|
---|
1672 | ));
|
---|
1673 | }
|
---|
1674 | }
|
---|
1675 |
|
---|
1676 | /**
|
---|
1677 | Reset an AP to Idle state.
|
---|
1678 |
|
---|
1679 | Any task being executed by the AP will be aborted and the AP
|
---|
1680 | will be waiting for a new task in Wait-For-SIPI state.
|
---|
1681 |
|
---|
1682 | @param[in] ProcessorNumber The handle number of processor.
|
---|
1683 | **/
|
---|
1684 | VOID
|
---|
1685 | ResetProcessorToIdleState (
|
---|
1686 | IN UINTN ProcessorNumber
|
---|
1687 | )
|
---|
1688 | {
|
---|
1689 | CPU_MP_DATA *CpuMpData;
|
---|
1690 |
|
---|
1691 | CpuMpData = GetCpuMpData ();
|
---|
1692 |
|
---|
1693 | CpuMpData->InitFlag = ApInitReconfig;
|
---|
1694 | WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);
|
---|
1695 | while (CpuMpData->FinishedCount < 1) {
|
---|
1696 | CpuPause ();
|
---|
1697 | }
|
---|
1698 |
|
---|
1699 | CpuMpData->InitFlag = ApInitDone;
|
---|
1700 |
|
---|
1701 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
|
---|
1702 | }
|
---|
1703 |
|
---|
1704 | /**
|
---|
1705 | Searches for the next waiting AP.
|
---|
1706 |
|
---|
1707 | Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
|
---|
1708 |
|
---|
1709 | @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.
|
---|
1710 |
|
---|
1711 | @retval EFI_SUCCESS The next waiting AP has been found.
|
---|
1712 | @retval EFI_NOT_FOUND No waiting AP exists.
|
---|
1713 |
|
---|
1714 | **/
|
---|
1715 | EFI_STATUS
|
---|
1716 | GetNextWaitingProcessorNumber (
|
---|
1717 | OUT UINTN *NextProcessorNumber
|
---|
1718 | )
|
---|
1719 | {
|
---|
1720 | UINTN ProcessorNumber;
|
---|
1721 | CPU_MP_DATA *CpuMpData;
|
---|
1722 |
|
---|
1723 | CpuMpData = GetCpuMpData ();
|
---|
1724 |
|
---|
1725 | for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
|
---|
1726 | if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
|
---|
1727 | *NextProcessorNumber = ProcessorNumber;
|
---|
1728 | return EFI_SUCCESS;
|
---|
1729 | }
|
---|
1730 | }
|
---|
1731 |
|
---|
1732 | return EFI_NOT_FOUND;
|
---|
1733 | }
|
---|
1734 |
|
---|
1735 | /** Checks status of specified AP.
|
---|
1736 |
|
---|
1737 | This function checks whether the specified AP has finished the task assigned
|
---|
1738 | by StartupThisAP(), and whether timeout expires.
|
---|
1739 |
|
---|
1740 | @param[in] ProcessorNumber The handle number of processor.
|
---|
1741 |
|
---|
1742 | @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
|
---|
1743 | @retval EFI_TIMEOUT The timeout expires.
|
---|
1744 | @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
|
---|
1745 | **/
|
---|
1746 | EFI_STATUS
|
---|
1747 | CheckThisAP (
|
---|
1748 | IN UINTN ProcessorNumber
|
---|
1749 | )
|
---|
1750 | {
|
---|
1751 | CPU_MP_DATA *CpuMpData;
|
---|
1752 | CPU_AP_DATA *CpuData;
|
---|
1753 |
|
---|
1754 | CpuMpData = GetCpuMpData ();
|
---|
1755 | CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
---|
1756 |
|
---|
1757 | //
|
---|
1758 | // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
|
---|
1759 | // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
|
---|
1760 | // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
|
---|
1761 | //
|
---|
1762 | //
|
---|
1763 | // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
|
---|
1764 | //
|
---|
1765 | if (GetApState (CpuData) == CpuStateFinished) {
|
---|
1766 | if (CpuData->Finished != NULL) {
|
---|
1767 | *(CpuData->Finished) = TRUE;
|
---|
1768 | }
|
---|
1769 |
|
---|
1770 | SetApState (CpuData, CpuStateIdle);
|
---|
1771 | return EFI_SUCCESS;
|
---|
1772 | } else {
|
---|
1773 | //
|
---|
1774 | // If timeout expires for StartupThisAP(), report timeout.
|
---|
1775 | //
|
---|
1776 | if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
|
---|
1777 | if (CpuData->Finished != NULL) {
|
---|
1778 | *(CpuData->Finished) = FALSE;
|
---|
1779 | }
|
---|
1780 |
|
---|
1781 | //
|
---|
1782 | // Reset failed AP to idle state
|
---|
1783 | //
|
---|
1784 | ResetProcessorToIdleState (ProcessorNumber);
|
---|
1785 |
|
---|
1786 | return EFI_TIMEOUT;
|
---|
1787 | }
|
---|
1788 | }
|
---|
1789 |
|
---|
1790 | return EFI_NOT_READY;
|
---|
1791 | }
|
---|
1792 |
|
---|
1793 | /**
|
---|
1794 | Checks status of all APs.
|
---|
1795 |
|
---|
1796 | This function checks whether all APs have finished task assigned by StartupAllAPs(),
|
---|
1797 | and whether timeout expires.
|
---|
1798 |
|
---|
1799 | @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
|
---|
1800 | @retval EFI_TIMEOUT The timeout expires.
|
---|
1801 | @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
|
---|
1802 | **/
|
---|
1803 | EFI_STATUS
|
---|
1804 | CheckAllAPs (
|
---|
1805 | VOID
|
---|
1806 | )
|
---|
1807 | {
|
---|
1808 | UINTN ProcessorNumber;
|
---|
1809 | UINTN NextProcessorNumber;
|
---|
1810 | UINTN ListIndex;
|
---|
1811 | EFI_STATUS Status;
|
---|
1812 | CPU_MP_DATA *CpuMpData;
|
---|
1813 | CPU_AP_DATA *CpuData;
|
---|
1814 |
|
---|
1815 | CpuMpData = GetCpuMpData ();
|
---|
1816 |
|
---|
1817 | NextProcessorNumber = 0;
|
---|
1818 |
|
---|
1819 | //
|
---|
1820 | // Go through all APs that are responsible for the StartupAllAPs().
|
---|
1821 | //
|
---|
1822 | for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
|
---|
1823 | if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
|
---|
1824 | continue;
|
---|
1825 | }
|
---|
1826 |
|
---|
1827 | CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
---|
1828 | //
|
---|
1829 | // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
|
---|
1830 | // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
|
---|
1831 | // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
|
---|
1832 | //
|
---|
1833 | if (GetApState (CpuData) == CpuStateFinished) {
|
---|
1834 | CpuMpData->RunningCount--;
|
---|
1835 | CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
|
---|
1836 | SetApState (CpuData, CpuStateIdle);
|
---|
1837 |
|
---|
1838 | //
|
---|
1839 | // If in Single Thread mode, then search for the next waiting AP for execution.
|
---|
1840 | //
|
---|
1841 | if (CpuMpData->SingleThread) {
|
---|
1842 | Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
|
---|
1843 |
|
---|
1844 | if (!EFI_ERROR (Status)) {
|
---|
1845 | WakeUpAP (
|
---|
1846 | CpuMpData,
|
---|
1847 | FALSE,
|
---|
1848 | (UINT32)NextProcessorNumber,
|
---|
1849 | CpuMpData->Procedure,
|
---|
1850 | CpuMpData->ProcArguments,
|
---|
1851 | TRUE
|
---|
1852 | );
|
---|
1853 | }
|
---|
1854 | }
|
---|
1855 | }
|
---|
1856 | }
|
---|
1857 |
|
---|
1858 | //
|
---|
1859 | // If all APs finish, return EFI_SUCCESS.
|
---|
1860 | //
|
---|
1861 | if (CpuMpData->RunningCount == 0) {
|
---|
1862 | return EFI_SUCCESS;
|
---|
1863 | }
|
---|
1864 |
|
---|
1865 | //
|
---|
1866 | // If timeout expires, report timeout.
|
---|
1867 | //
|
---|
1868 | if (CheckTimeout (
|
---|
1869 | &CpuMpData->CurrentTime,
|
---|
1870 | &CpuMpData->TotalTime,
|
---|
1871 | CpuMpData->ExpectedTime
|
---|
1872 | )
|
---|
1873 | )
|
---|
1874 | {
|
---|
1875 | //
|
---|
1876 | // If FailedCpuList is not NULL, record all failed APs in it.
|
---|
1877 | //
|
---|
1878 | if (CpuMpData->FailedCpuList != NULL) {
|
---|
1879 | *CpuMpData->FailedCpuList =
|
---|
1880 | AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));
|
---|
1881 | ASSERT (*CpuMpData->FailedCpuList != NULL);
|
---|
1882 | }
|
---|
1883 |
|
---|
1884 | ListIndex = 0;
|
---|
1885 |
|
---|
1886 | for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
|
---|
1887 | //
|
---|
1888 | // Check whether this processor is responsible for StartupAllAPs().
|
---|
1889 | //
|
---|
1890 | if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
|
---|
1891 | //
|
---|
1892 | // Reset failed APs to idle state
|
---|
1893 | //
|
---|
1894 | ResetProcessorToIdleState (ProcessorNumber);
|
---|
1895 | CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
|
---|
1896 | if (CpuMpData->FailedCpuList != NULL) {
|
---|
1897 | (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
|
---|
1898 | }
|
---|
1899 | }
|
---|
1900 | }
|
---|
1901 |
|
---|
1902 | if (CpuMpData->FailedCpuList != NULL) {
|
---|
1903 | (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
|
---|
1904 | }
|
---|
1905 |
|
---|
1906 | return EFI_TIMEOUT;
|
---|
1907 | }
|
---|
1908 |
|
---|
1909 | return EFI_NOT_READY;
|
---|
1910 | }
|
---|
1911 |
|
---|
1912 | /**
|
---|
1913 | This function Get BspNumber.
|
---|
1914 |
|
---|
1915 | @param[in] MpHandOff Pointer to MpHandOff
|
---|
1916 | @return BspNumber
|
---|
1917 | **/
|
---|
1918 | UINT32
|
---|
1919 | GetBspNumber (
|
---|
1920 | IN CONST MP_HAND_OFF *MpHandOff
|
---|
1921 | )
|
---|
1922 | {
|
---|
1923 | UINT32 ApicId;
|
---|
1924 | UINT32 BspNumber;
|
---|
1925 | UINT32 Index;
|
---|
1926 |
|
---|
1927 | //
|
---|
1928 | // Get the processor number for the BSP
|
---|
1929 | //
|
---|
1930 | BspNumber = MAX_UINT32;
|
---|
1931 | ApicId = GetInitialApicId ();
|
---|
1932 | for (Index = 0; Index < MpHandOff->CpuCount; Index++) {
|
---|
1933 | if (MpHandOff->Info[Index].ApicId == ApicId) {
|
---|
1934 | BspNumber = Index;
|
---|
1935 | }
|
---|
1936 | }
|
---|
1937 |
|
---|
1938 | ASSERT (BspNumber != MAX_UINT32);
|
---|
1939 |
|
---|
1940 | return BspNumber;
|
---|
1941 | }
|
---|
1942 |
|
---|
1943 | /**
|
---|
1944 | This function is intended to be invoked by the BSP in order
|
---|
1945 | to wake up the AP. The BSP accomplishes this by triggering a
|
---|
1946 | start-up signal, which in turn causes any APs that are
|
---|
1947 | currently in a loop on the PEI-prepared memory to awaken and
|
---|
1948 | begin running the procedure called SwitchContextPerAp.
|
---|
1949 | This procedure allows the AP to switch to another section of
|
---|
1950 | memory and continue its loop there.
|
---|
1951 |
|
---|
1952 | @param[in] MpHandOff Pointer to MP hand-off data structure.
|
---|
1953 | **/
|
---|
1954 | VOID
|
---|
1955 | SwitchApContext (
|
---|
1956 | IN MP_HAND_OFF *MpHandOff
|
---|
1957 | )
|
---|
1958 | {
|
---|
1959 | UINTN Index;
|
---|
1960 | UINT32 BspNumber;
|
---|
1961 |
|
---|
1962 | BspNumber = GetBspNumber (MpHandOff);
|
---|
1963 |
|
---|
1964 | for (Index = 0; Index < MpHandOff->CpuCount; Index++) {
|
---|
1965 | if (Index != BspNumber) {
|
---|
1966 | *(UINTN *)(UINTN)MpHandOff->Info[Index].StartupProcedureAddress = (UINTN)SwitchContextPerAp;
|
---|
1967 | *(UINT32 *)(UINTN)MpHandOff->Info[Index].StartupSignalAddress = MpHandOff->StartupSignalValue;
|
---|
1968 | }
|
---|
1969 | }
|
---|
1970 |
|
---|
1971 | //
|
---|
1972 | // Wait all APs waken up if this is not the 1st broadcast of SIPI
|
---|
1973 | //
|
---|
1974 | for (Index = 0; Index < MpHandOff->CpuCount; Index++) {
|
---|
1975 | if (Index != BspNumber) {
|
---|
1976 | WaitApWakeup ((UINT32 *)(UINTN)(MpHandOff->Info[Index].StartupSignalAddress));
|
---|
1977 | }
|
---|
1978 | }
|
---|
1979 | }
|
---|
1980 |
|
---|
1981 | /**
|
---|
1982 | Get pointer to MP_HAND_OFF GUIDed HOB.
|
---|
1983 |
|
---|
1984 | @return The pointer to MP_HAND_OFF structure.
|
---|
1985 | **/
|
---|
1986 | MP_HAND_OFF *
|
---|
1987 | GetMpHandOffHob (
|
---|
1988 | VOID
|
---|
1989 | )
|
---|
1990 | {
|
---|
1991 | EFI_HOB_GUID_TYPE *GuidHob;
|
---|
1992 | MP_HAND_OFF *MpHandOff;
|
---|
1993 |
|
---|
1994 | MpHandOff = NULL;
|
---|
1995 | GuidHob = GetFirstGuidHob (&mMpHandOffGuid);
|
---|
1996 | if (GuidHob != NULL) {
|
---|
1997 | MpHandOff = (MP_HAND_OFF *)GET_GUID_HOB_DATA (GuidHob);
|
---|
1998 | }
|
---|
1999 |
|
---|
2000 | return MpHandOff;
|
---|
2001 | }
|
---|
2002 |
|
---|
2003 | /**
|
---|
2004 | MP Initialize Library initialization.
|
---|
2005 |
|
---|
2006 | This service will allocate AP reset vector and wakeup all APs to do APs
|
---|
2007 | initialization.
|
---|
2008 |
|
---|
2009 | This service must be invoked before all other MP Initialize Library
|
---|
2010 | service are invoked.
|
---|
2011 |
|
---|
2012 | @retval EFI_SUCCESS MP initialization succeeds.
|
---|
2013 | @retval Others MP initialization fails.
|
---|
2014 |
|
---|
2015 | **/
|
---|
2016 | EFI_STATUS
|
---|
2017 | EFIAPI
|
---|
2018 | MpInitLibInitialize (
|
---|
2019 | VOID
|
---|
2020 | )
|
---|
2021 | {
|
---|
2022 | MP_HAND_OFF *MpHandOff;
|
---|
2023 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
2024 | UINT32 MaxLogicalProcessorNumber;
|
---|
2025 | UINT32 ApStackSize;
|
---|
2026 | MP_ASSEMBLY_ADDRESS_MAP AddressMap;
|
---|
2027 | CPU_VOLATILE_REGISTERS VolatileRegisters;
|
---|
2028 | UINTN BufferSize;
|
---|
2029 | UINT32 MonitorFilterSize;
|
---|
2030 | VOID *MpBuffer;
|
---|
2031 | UINTN Buffer;
|
---|
2032 | CPU_MP_DATA *CpuMpData;
|
---|
2033 | UINT8 ApLoopMode;
|
---|
2034 | UINT8 *MonitorBuffer;
|
---|
2035 | UINTN Index;
|
---|
2036 | UINTN ApResetVectorSizeBelow1Mb;
|
---|
2037 | UINTN ApResetVectorSizeAbove1Mb;
|
---|
2038 | UINTN BackupBufferAddr;
|
---|
2039 | UINTN ApIdtBase;
|
---|
2040 |
|
---|
2041 | MpHandOff = GetMpHandOffHob ();
|
---|
2042 | if (MpHandOff == NULL) {
|
---|
2043 | MaxLogicalProcessorNumber = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
|
---|
2044 | } else {
|
---|
2045 | MaxLogicalProcessorNumber = MpHandOff->CpuCount;
|
---|
2046 | }
|
---|
2047 |
|
---|
2048 | ASSERT (MaxLogicalProcessorNumber != 0);
|
---|
2049 |
|
---|
2050 | AsmGetAddressMap (&AddressMap);
|
---|
2051 | GetApResetVectorSize (&AddressMap, &ApResetVectorSizeBelow1Mb, &ApResetVectorSizeAbove1Mb);
|
---|
2052 | ApStackSize = PcdGet32 (PcdCpuApStackSize);
|
---|
2053 | //
|
---|
2054 | // ApStackSize must be power of 2
|
---|
2055 | //
|
---|
2056 | ASSERT ((ApStackSize & (ApStackSize - 1)) == 0);
|
---|
2057 | ApLoopMode = GetApLoopMode (&MonitorFilterSize);
|
---|
2058 |
|
---|
2059 | //
|
---|
2060 | // Save BSP's Control registers for APs.
|
---|
2061 | //
|
---|
2062 | SaveVolatileRegisters (&VolatileRegisters);
|
---|
2063 |
|
---|
2064 | BufferSize = ApStackSize * MaxLogicalProcessorNumber;
|
---|
2065 | //
|
---|
2066 | // Allocate extra ApStackSize to let AP stack align on ApStackSize bounday
|
---|
2067 | //
|
---|
2068 | BufferSize += ApStackSize;
|
---|
2069 | BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
|
---|
2070 | BufferSize += ApResetVectorSizeBelow1Mb;
|
---|
2071 | BufferSize = ALIGN_VALUE (BufferSize, 8);
|
---|
2072 | BufferSize += VolatileRegisters.Idtr.Limit + 1;
|
---|
2073 | BufferSize += sizeof (CPU_MP_DATA);
|
---|
2074 | BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
|
---|
2075 | MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
|
---|
2076 | ASSERT (MpBuffer != NULL);
|
---|
2077 | ZeroMem (MpBuffer, BufferSize);
|
---|
2078 | Buffer = ALIGN_VALUE ((UINTN)MpBuffer, ApStackSize);
|
---|
2079 |
|
---|
2080 | //
|
---|
2081 | // The layout of the Buffer is as below (lower address on top):
|
---|
2082 | //
|
---|
2083 | // +--------------------+ <-- Buffer (Pointer of CpuMpData is stored in the top of each AP's stack.)
|
---|
2084 | // AP Stacks (N) (StackTop = (RSP + ApStackSize) & ~ApStackSize))
|
---|
2085 | // +--------------------+ <-- MonitorBuffer
|
---|
2086 | // AP Monitor Filters (N)
|
---|
2087 | // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)
|
---|
2088 | // Backup Buffer
|
---|
2089 | // +--------------------+
|
---|
2090 | // Padding
|
---|
2091 | // +--------------------+ <-- ApIdtBase (8-byte boundary)
|
---|
2092 | // AP IDT All APs share one separate IDT.
|
---|
2093 | // +--------------------+ <-- CpuMpData
|
---|
2094 | // CPU_MP_DATA
|
---|
2095 | // +--------------------+ <-- CpuMpData->CpuData
|
---|
2096 | // CPU_AP_DATA (N)
|
---|
2097 | // +--------------------+ <-- CpuMpData->CpuInfoInHob
|
---|
2098 | // CPU_INFO_IN_HOB (N)
|
---|
2099 | // +--------------------+
|
---|
2100 | //
|
---|
2101 | MonitorBuffer = (UINT8 *)(Buffer + ApStackSize * MaxLogicalProcessorNumber);
|
---|
2102 | BackupBufferAddr = (UINTN)MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
|
---|
2103 | ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSizeBelow1Mb, 8);
|
---|
2104 | CpuMpData = (CPU_MP_DATA *)(ApIdtBase + VolatileRegisters.Idtr.Limit + 1);
|
---|
2105 | CpuMpData->Buffer = Buffer;
|
---|
2106 | CpuMpData->CpuApStackSize = ApStackSize;
|
---|
2107 | CpuMpData->BackupBuffer = BackupBufferAddr;
|
---|
2108 | CpuMpData->BackupBufferSize = ApResetVectorSizeBelow1Mb;
|
---|
2109 | CpuMpData->WakeupBuffer = (UINTN)-1;
|
---|
2110 | CpuMpData->CpuCount = 1;
|
---|
2111 | CpuMpData->BspNumber = 0;
|
---|
2112 | CpuMpData->WaitEvent = NULL;
|
---|
2113 | CpuMpData->SwitchBspFlag = FALSE;
|
---|
2114 | CpuMpData->CpuData = (CPU_AP_DATA *)(CpuMpData + 1);
|
---|
2115 | CpuMpData->CpuInfoInHob = (UINT64)(UINTN)(CpuMpData->CpuData + MaxLogicalProcessorNumber);
|
---|
2116 | InitializeSpinLock (&CpuMpData->MpLock);
|
---|
2117 | CpuMpData->SevEsIsEnabled = ConfidentialComputingGuestHas (CCAttrAmdSevEs);
|
---|
2118 | CpuMpData->SevSnpIsEnabled = ConfidentialComputingGuestHas (CCAttrAmdSevSnp);
|
---|
2119 | CpuMpData->SevEsAPBuffer = (UINTN)-1;
|
---|
2120 | CpuMpData->GhcbBase = PcdGet64 (PcdGhcbBase);
|
---|
2121 | CpuMpData->UseSevEsAPMethod = CpuMpData->SevEsIsEnabled && !CpuMpData->SevSnpIsEnabled;
|
---|
2122 |
|
---|
2123 | if (CpuMpData->SevSnpIsEnabled) {
|
---|
2124 | ASSERT ((PcdGet64 (PcdGhcbHypervisorFeatures) & GHCB_HV_FEATURES_SNP_AP_CREATE) == GHCB_HV_FEATURES_SNP_AP_CREATE);
|
---|
2125 | }
|
---|
2126 |
|
---|
2127 | //
|
---|
2128 | // Make sure no memory usage outside of the allocated buffer.
|
---|
2129 | // (ApStackSize - (Buffer - (UINTN)MpBuffer)) is the redundant caused by alignment
|
---|
2130 | //
|
---|
2131 | ASSERT (
|
---|
2132 | (CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==
|
---|
2133 | (UINTN)MpBuffer + BufferSize - (ApStackSize - Buffer + (UINTN)MpBuffer)
|
---|
2134 | );
|
---|
2135 |
|
---|
2136 | //
|
---|
2137 | // Duplicate BSP's IDT to APs.
|
---|
2138 | // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1
|
---|
2139 | //
|
---|
2140 | CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);
|
---|
2141 | VolatileRegisters.Idtr.Base = ApIdtBase;
|
---|
2142 | //
|
---|
2143 | // Don't pass BSP's TR to APs to avoid AP init failure.
|
---|
2144 | //
|
---|
2145 | VolatileRegisters.Tr = 0;
|
---|
2146 | CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));
|
---|
2147 | //
|
---|
2148 | // Set BSP basic information
|
---|
2149 | //
|
---|
2150 | InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);
|
---|
2151 | //
|
---|
2152 | // Save assembly code information
|
---|
2153 | //
|
---|
2154 | CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
|
---|
2155 | //
|
---|
2156 | // Finally set AP loop mode
|
---|
2157 | //
|
---|
2158 | CpuMpData->ApLoopMode = ApLoopMode;
|
---|
2159 | DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
|
---|
2160 |
|
---|
2161 | CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
|
---|
2162 |
|
---|
2163 | //
|
---|
2164 | // Set up APs wakeup signal buffer
|
---|
2165 | //
|
---|
2166 | for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
|
---|
2167 | CpuMpData->CpuData[Index].StartupApSignal =
|
---|
2168 | (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
|
---|
2169 | }
|
---|
2170 |
|
---|
2171 | //
|
---|
2172 | // Copy all 32-bit code and 64-bit code into memory with type of
|
---|
2173 | // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
|
---|
2174 | //
|
---|
2175 | CpuMpData->WakeupBufferHigh = AllocateCodeBuffer (ApResetVectorSizeAbove1Mb);
|
---|
2176 | CopyMem (
|
---|
2177 | (VOID *)CpuMpData->WakeupBufferHigh,
|
---|
2178 | CpuMpData->AddressMap.RendezvousFunnelAddress +
|
---|
2179 | CpuMpData->AddressMap.ModeTransitionOffset,
|
---|
2180 | ApResetVectorSizeAbove1Mb
|
---|
2181 | );
|
---|
2182 | DEBUG ((DEBUG_INFO, "AP Vector: non-16-bit = %p/%x\n", CpuMpData->WakeupBufferHigh, ApResetVectorSizeAbove1Mb));
|
---|
2183 |
|
---|
2184 | //
|
---|
2185 | // Enable the local APIC for Virtual Wire Mode.
|
---|
2186 | //
|
---|
2187 | ProgramVirtualWireMode ();
|
---|
2188 |
|
---|
2189 | if (MpHandOff == NULL) {
|
---|
2190 | if (MaxLogicalProcessorNumber > 1) {
|
---|
2191 | //
|
---|
2192 | // Wakeup all APs and calculate the processor count in system
|
---|
2193 | //
|
---|
2194 | CollectProcessorCount (CpuMpData);
|
---|
2195 | }
|
---|
2196 | } else {
|
---|
2197 | //
|
---|
2198 | // APs have been wakeup before, just get the CPU Information
|
---|
2199 | // from HOB
|
---|
2200 | //
|
---|
2201 | if (CpuMpData->UseSevEsAPMethod) {
|
---|
2202 | AmdSevUpdateCpuMpData (CpuMpData);
|
---|
2203 | }
|
---|
2204 |
|
---|
2205 | CpuMpData->CpuCount = MpHandOff->CpuCount;
|
---|
2206 | CpuMpData->BspNumber = GetBspNumber (MpHandOff);
|
---|
2207 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
2208 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
2209 | InitializeSpinLock (&CpuMpData->CpuData[Index].ApLock);
|
---|
2210 | CpuMpData->CpuData[Index].CpuHealthy = (MpHandOff->Info[Index].Health == 0) ? TRUE : FALSE;
|
---|
2211 | CpuMpData->CpuData[Index].ApFunction = 0;
|
---|
2212 | CpuInfoInHob[Index].InitialApicId = MpHandOff->Info[Index].ApicId;
|
---|
2213 | CpuInfoInHob[Index].ApTopOfStack = CpuMpData->Buffer + (Index + 1) * CpuMpData->CpuApStackSize;
|
---|
2214 | CpuInfoInHob[Index].ApicId = MpHandOff->Info[Index].ApicId;
|
---|
2215 | CpuInfoInHob[Index].Health = MpHandOff->Info[Index].Health;
|
---|
2216 | }
|
---|
2217 |
|
---|
2218 | DEBUG ((DEBUG_INFO, "MpHandOff->WaitLoopExecutionMode: %04d, sizeof (VOID *): %04d\n", MpHandOff->WaitLoopExecutionMode, sizeof (VOID *)));
|
---|
2219 | if (MpHandOff->WaitLoopExecutionMode == sizeof (VOID *)) {
|
---|
2220 | ASSERT (CpuMpData->ApLoopMode != ApInHltLoop);
|
---|
2221 |
|
---|
2222 | CpuMpData->FinishedCount = 0;
|
---|
2223 | CpuMpData->InitFlag = ApInitDone;
|
---|
2224 | SaveCpuMpData (CpuMpData);
|
---|
2225 | //
|
---|
2226 | // In scenarios where both the PEI and DXE phases run in the same
|
---|
2227 | // execution mode (32bit or 64bit), the BSP triggers
|
---|
2228 | // a start-up signal during the DXE phase to wake up the APs. This causes any
|
---|
2229 | // APs that are currently in a loop on the memory prepared during the PEI
|
---|
2230 | // phase to awaken and run the SwitchContextPerAp procedure. This procedure
|
---|
2231 | // enables the APs to switch to a different memory section and continue their
|
---|
2232 | // looping process there.
|
---|
2233 | //
|
---|
2234 | SwitchApContext (MpHandOff);
|
---|
2235 | ASSERT (CpuMpData->FinishedCount == (CpuMpData->CpuCount - 1));
|
---|
2236 |
|
---|
2237 | //
|
---|
2238 | // Set Apstate as Idle, otherwise Aps cannot be waken-up again.
|
---|
2239 | // If any enabled AP is not idle, return EFI_NOT_READY during waken-up.
|
---|
2240 | //
|
---|
2241 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
2242 | SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
|
---|
2243 | }
|
---|
2244 |
|
---|
2245 | //
|
---|
2246 | // Initialize global data for MP support
|
---|
2247 | //
|
---|
2248 | InitMpGlobalData (CpuMpData);
|
---|
2249 | return EFI_SUCCESS;
|
---|
2250 | }
|
---|
2251 | }
|
---|
2252 |
|
---|
2253 | if (!GetMicrocodePatchInfoFromHob (
|
---|
2254 | &CpuMpData->MicrocodePatchAddress,
|
---|
2255 | &CpuMpData->MicrocodePatchRegionSize
|
---|
2256 | ))
|
---|
2257 | {
|
---|
2258 | //
|
---|
2259 | // The microcode patch information cache HOB does not exist, which means
|
---|
2260 | // the microcode patches data has not been loaded into memory yet
|
---|
2261 | //
|
---|
2262 | ShadowMicrocodeUpdatePatch (CpuMpData);
|
---|
2263 | }
|
---|
2264 |
|
---|
2265 | //
|
---|
2266 | // Detect and apply Microcode on BSP
|
---|
2267 | //
|
---|
2268 | MicrocodeDetect (CpuMpData, CpuMpData->BspNumber);
|
---|
2269 | //
|
---|
2270 | // Store BSP's MTRR setting
|
---|
2271 | //
|
---|
2272 | MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
|
---|
2273 |
|
---|
2274 | //
|
---|
2275 | // Wakeup APs to do some AP initialize sync (Microcode & MTRR)
|
---|
2276 | //
|
---|
2277 | if (CpuMpData->CpuCount > 1) {
|
---|
2278 | if (MpHandOff != NULL) {
|
---|
2279 | //
|
---|
2280 | // Only needs to use this flag for DXE phase to update the wake up
|
---|
2281 | // buffer. Wakeup buffer allocated in PEI phase is no longer valid
|
---|
2282 | // in DXE.
|
---|
2283 | //
|
---|
2284 | CpuMpData->InitFlag = ApInitReconfig;
|
---|
2285 | }
|
---|
2286 |
|
---|
2287 | WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);
|
---|
2288 | //
|
---|
2289 | // Wait for all APs finished initialization
|
---|
2290 | //
|
---|
2291 | while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
|
---|
2292 | CpuPause ();
|
---|
2293 | }
|
---|
2294 |
|
---|
2295 | if (MpHandOff != NULL) {
|
---|
2296 | CpuMpData->InitFlag = ApInitDone;
|
---|
2297 | }
|
---|
2298 |
|
---|
2299 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
2300 | SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
|
---|
2301 | }
|
---|
2302 | }
|
---|
2303 |
|
---|
2304 | //
|
---|
2305 | // Dump the microcode revision for each core.
|
---|
2306 | //
|
---|
2307 | DEBUG_CODE_BEGIN ();
|
---|
2308 | UINT32 ThreadId;
|
---|
2309 | UINT32 ExpectedMicrocodeRevision;
|
---|
2310 |
|
---|
2311 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
2312 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
2313 | GetProcessorLocationByApicId (CpuInfoInHob[Index].InitialApicId, NULL, NULL, &ThreadId);
|
---|
2314 | if (ThreadId == 0) {
|
---|
2315 | //
|
---|
2316 | // MicrocodeDetect() loads microcode in first thread of each core, so,
|
---|
2317 | // CpuMpData->CpuData[Index].MicrocodeEntryAddr is initialized only for first thread of each core.
|
---|
2318 | //
|
---|
2319 | ExpectedMicrocodeRevision = 0;
|
---|
2320 | if (CpuMpData->CpuData[Index].MicrocodeEntryAddr != 0) {
|
---|
2321 | ExpectedMicrocodeRevision = ((CPU_MICROCODE_HEADER *)(UINTN)CpuMpData->CpuData[Index].MicrocodeEntryAddr)->UpdateRevision;
|
---|
2322 | }
|
---|
2323 |
|
---|
2324 | DEBUG ((
|
---|
2325 | DEBUG_INFO,
|
---|
2326 | "CPU[%04d]: Microcode revision = %08x, expected = %08x\n",
|
---|
2327 | Index,
|
---|
2328 | CpuMpData->CpuData[Index].MicrocodeRevision,
|
---|
2329 | ExpectedMicrocodeRevision
|
---|
2330 | ));
|
---|
2331 | }
|
---|
2332 | }
|
---|
2333 |
|
---|
2334 | DEBUG_CODE_END ();
|
---|
2335 | //
|
---|
2336 | // Initialize global data for MP support
|
---|
2337 | //
|
---|
2338 | InitMpGlobalData (CpuMpData);
|
---|
2339 |
|
---|
2340 | return EFI_SUCCESS;
|
---|
2341 | }
|
---|
2342 |
|
---|
2343 | /**
|
---|
2344 | Gets detailed MP-related information on the requested processor at the
|
---|
2345 | instant this call is made. This service may only be called from the BSP.
|
---|
2346 |
|
---|
2347 | @param[in] ProcessorNumber The handle number of processor.
|
---|
2348 | @param[out] ProcessorInfoBuffer A pointer to the buffer where information for
|
---|
2349 | the requested processor is deposited.
|
---|
2350 | @param[out] HealthData Return processor health data.
|
---|
2351 |
|
---|
2352 | @retval EFI_SUCCESS Processor information was returned.
|
---|
2353 | @retval EFI_DEVICE_ERROR The calling processor is an AP.
|
---|
2354 | @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
|
---|
2355 | @retval EFI_NOT_FOUND The processor with the handle specified by
|
---|
2356 | ProcessorNumber does not exist in the platform.
|
---|
2357 | @retval EFI_NOT_READY MP Initialize Library is not initialized.
|
---|
2358 |
|
---|
2359 | **/
|
---|
2360 | EFI_STATUS
|
---|
2361 | EFIAPI
|
---|
2362 | MpInitLibGetProcessorInfo (
|
---|
2363 | IN UINTN ProcessorNumber,
|
---|
2364 | OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
|
---|
2365 | OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
|
---|
2366 | )
|
---|
2367 | {
|
---|
2368 | CPU_MP_DATA *CpuMpData;
|
---|
2369 | UINTN CallerNumber;
|
---|
2370 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
2371 | UINTN OriginalProcessorNumber;
|
---|
2372 |
|
---|
2373 | CpuMpData = GetCpuMpData ();
|
---|
2374 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
2375 |
|
---|
2376 | //
|
---|
2377 | // Lower 24 bits contains the actual processor number.
|
---|
2378 | //
|
---|
2379 | OriginalProcessorNumber = ProcessorNumber;
|
---|
2380 | ProcessorNumber &= BIT24 - 1;
|
---|
2381 |
|
---|
2382 | //
|
---|
2383 | // Check whether caller processor is BSP
|
---|
2384 | //
|
---|
2385 | MpInitLibWhoAmI (&CallerNumber);
|
---|
2386 | if (CallerNumber != CpuMpData->BspNumber) {
|
---|
2387 | return EFI_DEVICE_ERROR;
|
---|
2388 | }
|
---|
2389 |
|
---|
2390 | if (ProcessorInfoBuffer == NULL) {
|
---|
2391 | return EFI_INVALID_PARAMETER;
|
---|
2392 | }
|
---|
2393 |
|
---|
2394 | if (ProcessorNumber >= CpuMpData->CpuCount) {
|
---|
2395 | return EFI_NOT_FOUND;
|
---|
2396 | }
|
---|
2397 |
|
---|
2398 | ProcessorInfoBuffer->ProcessorId = (UINT64)CpuInfoInHob[ProcessorNumber].ApicId;
|
---|
2399 | ProcessorInfoBuffer->StatusFlag = 0;
|
---|
2400 | if (ProcessorNumber == CpuMpData->BspNumber) {
|
---|
2401 | ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
|
---|
2402 | }
|
---|
2403 |
|
---|
2404 | if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
|
---|
2405 | ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
|
---|
2406 | }
|
---|
2407 |
|
---|
2408 | if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
|
---|
2409 | ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
|
---|
2410 | } else {
|
---|
2411 | ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
|
---|
2412 | }
|
---|
2413 |
|
---|
2414 | //
|
---|
2415 | // Get processor location information
|
---|
2416 | //
|
---|
2417 | GetProcessorLocationByApicId (
|
---|
2418 | CpuInfoInHob[ProcessorNumber].ApicId,
|
---|
2419 | &ProcessorInfoBuffer->Location.Package,
|
---|
2420 | &ProcessorInfoBuffer->Location.Core,
|
---|
2421 | &ProcessorInfoBuffer->Location.Thread
|
---|
2422 | );
|
---|
2423 |
|
---|
2424 | if ((OriginalProcessorNumber & CPU_V2_EXTENDED_TOPOLOGY) != 0) {
|
---|
2425 | GetProcessorLocation2ByApicId (
|
---|
2426 | CpuInfoInHob[ProcessorNumber].ApicId,
|
---|
2427 | &ProcessorInfoBuffer->ExtendedInformation.Location2.Package,
|
---|
2428 | &ProcessorInfoBuffer->ExtendedInformation.Location2.Die,
|
---|
2429 | &ProcessorInfoBuffer->ExtendedInformation.Location2.Tile,
|
---|
2430 | &ProcessorInfoBuffer->ExtendedInformation.Location2.Module,
|
---|
2431 | &ProcessorInfoBuffer->ExtendedInformation.Location2.Core,
|
---|
2432 | &ProcessorInfoBuffer->ExtendedInformation.Location2.Thread
|
---|
2433 | );
|
---|
2434 | }
|
---|
2435 |
|
---|
2436 | if (HealthData != NULL) {
|
---|
2437 | HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
|
---|
2438 | }
|
---|
2439 |
|
---|
2440 | return EFI_SUCCESS;
|
---|
2441 | }
|
---|
2442 |
|
---|
2443 | /**
|
---|
2444 | Worker function to switch the requested AP to be the BSP from that point onward.
|
---|
2445 |
|
---|
2446 | @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
|
---|
2447 | @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
|
---|
2448 | enabled AP. Otherwise, it will be disabled.
|
---|
2449 |
|
---|
2450 | @retval EFI_SUCCESS BSP successfully switched.
|
---|
2451 | @retval others Failed to switch BSP.
|
---|
2452 |
|
---|
2453 | **/
|
---|
2454 | EFI_STATUS
|
---|
2455 | SwitchBSPWorker (
|
---|
2456 | IN UINTN ProcessorNumber,
|
---|
2457 | IN BOOLEAN EnableOldBSP
|
---|
2458 | )
|
---|
2459 | {
|
---|
2460 | CPU_MP_DATA *CpuMpData;
|
---|
2461 | UINTN CallerNumber;
|
---|
2462 | CPU_STATE State;
|
---|
2463 | MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
|
---|
2464 | BOOLEAN OldInterruptState;
|
---|
2465 | BOOLEAN OldTimerInterruptState;
|
---|
2466 |
|
---|
2467 | //
|
---|
2468 | // Save and Disable Local APIC timer interrupt
|
---|
2469 | //
|
---|
2470 | OldTimerInterruptState = GetApicTimerInterruptState ();
|
---|
2471 | DisableApicTimerInterrupt ();
|
---|
2472 | //
|
---|
2473 | // Before send both BSP and AP to a procedure to exchange their roles,
|
---|
2474 | // interrupt must be disabled. This is because during the exchange role
|
---|
2475 | // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
|
---|
2476 | // be corrupted, since interrupt return address will be pushed to stack
|
---|
2477 | // by hardware.
|
---|
2478 | //
|
---|
2479 | OldInterruptState = SaveAndDisableInterrupts ();
|
---|
2480 |
|
---|
2481 | //
|
---|
2482 | // Mask LINT0 & LINT1 for the old BSP
|
---|
2483 | //
|
---|
2484 | DisableLvtInterrupts ();
|
---|
2485 |
|
---|
2486 | CpuMpData = GetCpuMpData ();
|
---|
2487 |
|
---|
2488 | //
|
---|
2489 | // Check whether caller processor is BSP
|
---|
2490 | //
|
---|
2491 | MpInitLibWhoAmI (&CallerNumber);
|
---|
2492 | if (CallerNumber != CpuMpData->BspNumber) {
|
---|
2493 | return EFI_DEVICE_ERROR;
|
---|
2494 | }
|
---|
2495 |
|
---|
2496 | if (ProcessorNumber >= CpuMpData->CpuCount) {
|
---|
2497 | return EFI_NOT_FOUND;
|
---|
2498 | }
|
---|
2499 |
|
---|
2500 | //
|
---|
2501 | // Check whether specified AP is disabled
|
---|
2502 | //
|
---|
2503 | State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
|
---|
2504 | if (State == CpuStateDisabled) {
|
---|
2505 | return EFI_INVALID_PARAMETER;
|
---|
2506 | }
|
---|
2507 |
|
---|
2508 | //
|
---|
2509 | // Check whether ProcessorNumber specifies the current BSP
|
---|
2510 | //
|
---|
2511 | if (ProcessorNumber == CpuMpData->BspNumber) {
|
---|
2512 | return EFI_INVALID_PARAMETER;
|
---|
2513 | }
|
---|
2514 |
|
---|
2515 | //
|
---|
2516 | // Check whether specified AP is busy
|
---|
2517 | //
|
---|
2518 | if (State == CpuStateBusy) {
|
---|
2519 | return EFI_NOT_READY;
|
---|
2520 | }
|
---|
2521 |
|
---|
2522 | CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
|
---|
2523 | CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;
|
---|
2524 | CpuMpData->SwitchBspFlag = TRUE;
|
---|
2525 | CpuMpData->NewBspNumber = ProcessorNumber;
|
---|
2526 |
|
---|
2527 | //
|
---|
2528 | // Clear the BSP bit of MSR_IA32_APIC_BASE
|
---|
2529 | //
|
---|
2530 | ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
|
---|
2531 | ApicBaseMsr.Bits.BSP = 0;
|
---|
2532 | AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
|
---|
2533 |
|
---|
2534 | //
|
---|
2535 | // Need to wakeUp AP (future BSP).
|
---|
2536 | //
|
---|
2537 | WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);
|
---|
2538 |
|
---|
2539 | //
|
---|
2540 | // Save and restore volatile registers when switch BSP
|
---|
2541 | //
|
---|
2542 | SaveVolatileRegisters (&CpuMpData->BSPInfo.VolatileRegisters);
|
---|
2543 | AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
|
---|
2544 | RestoreVolatileRegisters (&CpuMpData->BSPInfo.VolatileRegisters, FALSE);
|
---|
2545 |
|
---|
2546 | //
|
---|
2547 | // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
|
---|
2548 | //
|
---|
2549 | ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
|
---|
2550 | ApicBaseMsr.Bits.BSP = 1;
|
---|
2551 | AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
|
---|
2552 | ProgramVirtualWireMode ();
|
---|
2553 |
|
---|
2554 | //
|
---|
2555 | // Wait for old BSP finished AP task
|
---|
2556 | //
|
---|
2557 | while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {
|
---|
2558 | CpuPause ();
|
---|
2559 | }
|
---|
2560 |
|
---|
2561 | CpuMpData->SwitchBspFlag = FALSE;
|
---|
2562 | //
|
---|
2563 | // Set old BSP enable state
|
---|
2564 | //
|
---|
2565 | if (!EnableOldBSP) {
|
---|
2566 | SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
|
---|
2567 | } else {
|
---|
2568 | SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
|
---|
2569 | }
|
---|
2570 |
|
---|
2571 | //
|
---|
2572 | // Save new BSP number
|
---|
2573 | //
|
---|
2574 | CpuMpData->BspNumber = (UINT32)ProcessorNumber;
|
---|
2575 |
|
---|
2576 | //
|
---|
2577 | // Restore interrupt state.
|
---|
2578 | //
|
---|
2579 | SetInterruptState (OldInterruptState);
|
---|
2580 |
|
---|
2581 | if (OldTimerInterruptState) {
|
---|
2582 | EnableApicTimerInterrupt ();
|
---|
2583 | }
|
---|
2584 |
|
---|
2585 | return EFI_SUCCESS;
|
---|
2586 | }
|
---|
2587 |
|
---|
2588 | /**
|
---|
2589 | Worker function to let the caller enable or disable an AP from this point onward.
|
---|
2590 | This service may only be called from the BSP.
|
---|
2591 |
|
---|
2592 | @param[in] ProcessorNumber The handle number of AP.
|
---|
2593 | @param[in] EnableAP Specifies the new state for the processor for
|
---|
2594 | enabled, FALSE for disabled.
|
---|
2595 | @param[in] HealthFlag If not NULL, a pointer to a value that specifies
|
---|
2596 | the new health status of the AP.
|
---|
2597 |
|
---|
2598 | @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
|
---|
2599 | @retval others Failed to Enable/Disable AP.
|
---|
2600 |
|
---|
2601 | **/
|
---|
2602 | EFI_STATUS
|
---|
2603 | EnableDisableApWorker (
|
---|
2604 | IN UINTN ProcessorNumber,
|
---|
2605 | IN BOOLEAN EnableAP,
|
---|
2606 | IN UINT32 *HealthFlag OPTIONAL
|
---|
2607 | )
|
---|
2608 | {
|
---|
2609 | CPU_MP_DATA *CpuMpData;
|
---|
2610 | UINTN CallerNumber;
|
---|
2611 |
|
---|
2612 | CpuMpData = GetCpuMpData ();
|
---|
2613 |
|
---|
2614 | //
|
---|
2615 | // Check whether caller processor is BSP
|
---|
2616 | //
|
---|
2617 | MpInitLibWhoAmI (&CallerNumber);
|
---|
2618 | if (CallerNumber != CpuMpData->BspNumber) {
|
---|
2619 | return EFI_DEVICE_ERROR;
|
---|
2620 | }
|
---|
2621 |
|
---|
2622 | if (ProcessorNumber == CpuMpData->BspNumber) {
|
---|
2623 | return EFI_INVALID_PARAMETER;
|
---|
2624 | }
|
---|
2625 |
|
---|
2626 | if (ProcessorNumber >= CpuMpData->CpuCount) {
|
---|
2627 | return EFI_NOT_FOUND;
|
---|
2628 | }
|
---|
2629 |
|
---|
2630 | if (!EnableAP) {
|
---|
2631 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
|
---|
2632 | } else {
|
---|
2633 | ResetProcessorToIdleState (ProcessorNumber);
|
---|
2634 | }
|
---|
2635 |
|
---|
2636 | if (HealthFlag != NULL) {
|
---|
2637 | CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
|
---|
2638 | (BOOLEAN)((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
|
---|
2639 | }
|
---|
2640 |
|
---|
2641 | return EFI_SUCCESS;
|
---|
2642 | }
|
---|
2643 |
|
---|
2644 | /**
|
---|
2645 | This return the handle number for the calling processor. This service may be
|
---|
2646 | called from the BSP and APs.
|
---|
2647 |
|
---|
2648 | @param[out] ProcessorNumber Pointer to the handle number of AP.
|
---|
2649 | The range is from 0 to the total number of
|
---|
2650 | logical processors minus 1. The total number of
|
---|
2651 | logical processors can be retrieved by
|
---|
2652 | MpInitLibGetNumberOfProcessors().
|
---|
2653 |
|
---|
2654 | @retval EFI_SUCCESS The current processor handle number was returned
|
---|
2655 | in ProcessorNumber.
|
---|
2656 | @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
|
---|
2657 | @retval EFI_NOT_READY MP Initialize Library is not initialized.
|
---|
2658 |
|
---|
2659 | **/
|
---|
2660 | EFI_STATUS
|
---|
2661 | EFIAPI
|
---|
2662 | MpInitLibWhoAmI (
|
---|
2663 | OUT UINTN *ProcessorNumber
|
---|
2664 | )
|
---|
2665 | {
|
---|
2666 | CPU_MP_DATA *CpuMpData;
|
---|
2667 |
|
---|
2668 | if (ProcessorNumber == NULL) {
|
---|
2669 | return EFI_INVALID_PARAMETER;
|
---|
2670 | }
|
---|
2671 |
|
---|
2672 | CpuMpData = GetCpuMpData ();
|
---|
2673 |
|
---|
2674 | return GetProcessorNumber (CpuMpData, ProcessorNumber);
|
---|
2675 | }
|
---|
2676 |
|
---|
2677 | /**
|
---|
2678 | Retrieves the number of logical processor in the platform and the number of
|
---|
2679 | those logical processors that are enabled on this boot. This service may only
|
---|
2680 | be called from the BSP.
|
---|
2681 |
|
---|
2682 | @param[out] NumberOfProcessors Pointer to the total number of logical
|
---|
2683 | processors in the system, including the BSP
|
---|
2684 | and disabled APs.
|
---|
2685 | @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
|
---|
2686 | processors that exist in system, including
|
---|
2687 | the BSP.
|
---|
2688 |
|
---|
2689 | @retval EFI_SUCCESS The number of logical processors and enabled
|
---|
2690 | logical processors was retrieved.
|
---|
2691 | @retval EFI_DEVICE_ERROR The calling processor is an AP.
|
---|
2692 | @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
|
---|
2693 | is NULL.
|
---|
2694 | @retval EFI_NOT_READY MP Initialize Library is not initialized.
|
---|
2695 |
|
---|
2696 | **/
|
---|
2697 | EFI_STATUS
|
---|
2698 | EFIAPI
|
---|
2699 | MpInitLibGetNumberOfProcessors (
|
---|
2700 | OUT UINTN *NumberOfProcessors OPTIONAL,
|
---|
2701 | OUT UINTN *NumberOfEnabledProcessors OPTIONAL
|
---|
2702 | )
|
---|
2703 | {
|
---|
2704 | CPU_MP_DATA *CpuMpData;
|
---|
2705 | UINTN CallerNumber;
|
---|
2706 | UINTN ProcessorNumber;
|
---|
2707 | UINTN EnabledProcessorNumber;
|
---|
2708 | UINTN Index;
|
---|
2709 |
|
---|
2710 | CpuMpData = GetCpuMpData ();
|
---|
2711 |
|
---|
2712 | if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
|
---|
2713 | return EFI_INVALID_PARAMETER;
|
---|
2714 | }
|
---|
2715 |
|
---|
2716 | //
|
---|
2717 | // Check whether caller processor is BSP
|
---|
2718 | //
|
---|
2719 | MpInitLibWhoAmI (&CallerNumber);
|
---|
2720 | if (CallerNumber != CpuMpData->BspNumber) {
|
---|
2721 | return EFI_DEVICE_ERROR;
|
---|
2722 | }
|
---|
2723 |
|
---|
2724 | ProcessorNumber = CpuMpData->CpuCount;
|
---|
2725 | EnabledProcessorNumber = 0;
|
---|
2726 | for (Index = 0; Index < ProcessorNumber; Index++) {
|
---|
2727 | if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
|
---|
2728 | EnabledProcessorNumber++;
|
---|
2729 | }
|
---|
2730 | }
|
---|
2731 |
|
---|
2732 | if (NumberOfProcessors != NULL) {
|
---|
2733 | *NumberOfProcessors = ProcessorNumber;
|
---|
2734 | }
|
---|
2735 |
|
---|
2736 | if (NumberOfEnabledProcessors != NULL) {
|
---|
2737 | *NumberOfEnabledProcessors = EnabledProcessorNumber;
|
---|
2738 | }
|
---|
2739 |
|
---|
2740 | return EFI_SUCCESS;
|
---|
2741 | }
|
---|
2742 |
|
---|
2743 | /**
|
---|
2744 | Worker function to execute a caller provided function on all enabled APs.
|
---|
2745 |
|
---|
2746 | @param[in] Procedure A pointer to the function to be run on
|
---|
2747 | enabled APs of the system.
|
---|
2748 | @param[in] SingleThread If TRUE, then all the enabled APs execute
|
---|
2749 | the function specified by Procedure one by
|
---|
2750 | one, in ascending order of processor handle
|
---|
2751 | number. If FALSE, then all the enabled APs
|
---|
2752 | execute the function specified by Procedure
|
---|
2753 | simultaneously.
|
---|
2754 | @param[in] ExcludeBsp Whether let BSP also trig this task.
|
---|
2755 | @param[in] WaitEvent The event created by the caller with CreateEvent()
|
---|
2756 | service.
|
---|
2757 | @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
---|
2758 | APs to return from Procedure, either for
|
---|
2759 | blocking or non-blocking mode.
|
---|
2760 | @param[in] ProcedureArgument The parameter passed into Procedure for
|
---|
2761 | all APs.
|
---|
2762 | @param[out] FailedCpuList If all APs finish successfully, then its
|
---|
2763 | content is set to NULL. If not all APs
|
---|
2764 | finish before timeout expires, then its
|
---|
2765 | content is set to address of the buffer
|
---|
2766 | holding handle numbers of the failed APs.
|
---|
2767 |
|
---|
2768 | @retval EFI_SUCCESS In blocking mode, all APs have finished before
|
---|
2769 | the timeout expired.
|
---|
2770 | @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
|
---|
2771 | to all enabled APs.
|
---|
2772 | @retval others Failed to Startup all APs.
|
---|
2773 |
|
---|
2774 | **/
|
---|
2775 | EFI_STATUS
|
---|
2776 | StartupAllCPUsWorker (
|
---|
2777 | IN EFI_AP_PROCEDURE Procedure,
|
---|
2778 | IN BOOLEAN SingleThread,
|
---|
2779 | IN BOOLEAN ExcludeBsp,
|
---|
2780 | IN EFI_EVENT WaitEvent OPTIONAL,
|
---|
2781 | IN UINTN TimeoutInMicroseconds,
|
---|
2782 | IN VOID *ProcedureArgument OPTIONAL,
|
---|
2783 | OUT UINTN **FailedCpuList OPTIONAL
|
---|
2784 | )
|
---|
2785 | {
|
---|
2786 | EFI_STATUS Status;
|
---|
2787 | CPU_MP_DATA *CpuMpData;
|
---|
2788 | UINTN ProcessorCount;
|
---|
2789 | UINTN ProcessorNumber;
|
---|
2790 | UINTN CallerNumber;
|
---|
2791 | CPU_AP_DATA *CpuData;
|
---|
2792 | BOOLEAN HasEnabledAp;
|
---|
2793 | CPU_STATE ApState;
|
---|
2794 |
|
---|
2795 | CpuMpData = GetCpuMpData ();
|
---|
2796 |
|
---|
2797 | if (FailedCpuList != NULL) {
|
---|
2798 | *FailedCpuList = NULL;
|
---|
2799 | }
|
---|
2800 |
|
---|
2801 | if ((CpuMpData->CpuCount == 1) && ExcludeBsp) {
|
---|
2802 | return EFI_NOT_STARTED;
|
---|
2803 | }
|
---|
2804 |
|
---|
2805 | if (Procedure == NULL) {
|
---|
2806 | return EFI_INVALID_PARAMETER;
|
---|
2807 | }
|
---|
2808 |
|
---|
2809 | //
|
---|
2810 | // Check whether caller processor is BSP
|
---|
2811 | //
|
---|
2812 | MpInitLibWhoAmI (&CallerNumber);
|
---|
2813 | if (CallerNumber != CpuMpData->BspNumber) {
|
---|
2814 | return EFI_DEVICE_ERROR;
|
---|
2815 | }
|
---|
2816 |
|
---|
2817 | //
|
---|
2818 | // Update AP state
|
---|
2819 | //
|
---|
2820 | CheckAndUpdateApsStatus ();
|
---|
2821 |
|
---|
2822 | ProcessorCount = CpuMpData->CpuCount;
|
---|
2823 | HasEnabledAp = FALSE;
|
---|
2824 | //
|
---|
2825 | // Check whether all enabled APs are idle.
|
---|
2826 | // If any enabled AP is not idle, return EFI_NOT_READY.
|
---|
2827 | //
|
---|
2828 | for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
|
---|
2829 | CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
---|
2830 | if (ProcessorNumber != CpuMpData->BspNumber) {
|
---|
2831 | ApState = GetApState (CpuData);
|
---|
2832 | if (ApState != CpuStateDisabled) {
|
---|
2833 | HasEnabledAp = TRUE;
|
---|
2834 | if (ApState != CpuStateIdle) {
|
---|
2835 | //
|
---|
2836 | // If any enabled APs are busy, return EFI_NOT_READY.
|
---|
2837 | //
|
---|
2838 | return EFI_NOT_READY;
|
---|
2839 | }
|
---|
2840 | }
|
---|
2841 | }
|
---|
2842 | }
|
---|
2843 |
|
---|
2844 | if (!HasEnabledAp && ExcludeBsp) {
|
---|
2845 | //
|
---|
2846 | // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED.
|
---|
2847 | //
|
---|
2848 | return EFI_NOT_STARTED;
|
---|
2849 | }
|
---|
2850 |
|
---|
2851 | CpuMpData->RunningCount = 0;
|
---|
2852 | for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
|
---|
2853 | CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
---|
2854 | CpuData->Waiting = FALSE;
|
---|
2855 | if (ProcessorNumber != CpuMpData->BspNumber) {
|
---|
2856 | if (CpuData->State == CpuStateIdle) {
|
---|
2857 | //
|
---|
2858 | // Mark this processor as responsible for current calling.
|
---|
2859 | //
|
---|
2860 | CpuData->Waiting = TRUE;
|
---|
2861 | CpuMpData->RunningCount++;
|
---|
2862 | }
|
---|
2863 | }
|
---|
2864 | }
|
---|
2865 |
|
---|
2866 | CpuMpData->Procedure = Procedure;
|
---|
2867 | CpuMpData->ProcArguments = ProcedureArgument;
|
---|
2868 | CpuMpData->SingleThread = SingleThread;
|
---|
2869 | CpuMpData->FinishedCount = 0;
|
---|
2870 | CpuMpData->FailedCpuList = FailedCpuList;
|
---|
2871 | CpuMpData->ExpectedTime = CalculateTimeout (
|
---|
2872 | TimeoutInMicroseconds,
|
---|
2873 | &CpuMpData->CurrentTime
|
---|
2874 | );
|
---|
2875 | CpuMpData->TotalTime = 0;
|
---|
2876 | CpuMpData->WaitEvent = WaitEvent;
|
---|
2877 |
|
---|
2878 | if (!SingleThread) {
|
---|
2879 | WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);
|
---|
2880 | } else {
|
---|
2881 | for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
|
---|
2882 | if (ProcessorNumber == CallerNumber) {
|
---|
2883 | continue;
|
---|
2884 | }
|
---|
2885 |
|
---|
2886 | if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
|
---|
2887 | WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
|
---|
2888 | break;
|
---|
2889 | }
|
---|
2890 | }
|
---|
2891 | }
|
---|
2892 |
|
---|
2893 | if (!ExcludeBsp) {
|
---|
2894 | //
|
---|
2895 | // Start BSP.
|
---|
2896 | //
|
---|
2897 | Procedure (ProcedureArgument);
|
---|
2898 | }
|
---|
2899 |
|
---|
2900 | Status = EFI_SUCCESS;
|
---|
2901 | if (WaitEvent == NULL) {
|
---|
2902 | do {
|
---|
2903 | Status = CheckAllAPs ();
|
---|
2904 | } while (Status == EFI_NOT_READY);
|
---|
2905 | }
|
---|
2906 |
|
---|
2907 | return Status;
|
---|
2908 | }
|
---|
2909 |
|
---|
2910 | /**
|
---|
2911 | Worker function to let the caller get one enabled AP to execute a caller-provided
|
---|
2912 | function.
|
---|
2913 |
|
---|
2914 | @param[in] Procedure A pointer to the function to be run on
|
---|
2915 | enabled APs of the system.
|
---|
2916 | @param[in] ProcessorNumber The handle number of the AP.
|
---|
2917 | @param[in] WaitEvent The event created by the caller with CreateEvent()
|
---|
2918 | service.
|
---|
2919 | @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
---|
2920 | APs to return from Procedure, either for
|
---|
2921 | blocking or non-blocking mode.
|
---|
2922 | @param[in] ProcedureArgument The parameter passed into Procedure for
|
---|
2923 | all APs.
|
---|
2924 | @param[out] Finished If AP returns from Procedure before the
|
---|
2925 | timeout expires, its content is set to TRUE.
|
---|
2926 | Otherwise, the value is set to FALSE.
|
---|
2927 |
|
---|
2928 | @retval EFI_SUCCESS In blocking mode, specified AP finished before
|
---|
2929 | the timeout expires.
|
---|
2930 | @retval others Failed to Startup AP.
|
---|
2931 |
|
---|
2932 | **/
|
---|
2933 | EFI_STATUS
|
---|
2934 | StartupThisAPWorker (
|
---|
2935 | IN EFI_AP_PROCEDURE Procedure,
|
---|
2936 | IN UINTN ProcessorNumber,
|
---|
2937 | IN EFI_EVENT WaitEvent OPTIONAL,
|
---|
2938 | IN UINTN TimeoutInMicroseconds,
|
---|
2939 | IN VOID *ProcedureArgument OPTIONAL,
|
---|
2940 | OUT BOOLEAN *Finished OPTIONAL
|
---|
2941 | )
|
---|
2942 | {
|
---|
2943 | EFI_STATUS Status;
|
---|
2944 | CPU_MP_DATA *CpuMpData;
|
---|
2945 | CPU_AP_DATA *CpuData;
|
---|
2946 | UINTN CallerNumber;
|
---|
2947 |
|
---|
2948 | CpuMpData = GetCpuMpData ();
|
---|
2949 |
|
---|
2950 | if (Finished != NULL) {
|
---|
2951 | *Finished = FALSE;
|
---|
2952 | }
|
---|
2953 |
|
---|
2954 | //
|
---|
2955 | // Check whether caller processor is BSP
|
---|
2956 | //
|
---|
2957 | MpInitLibWhoAmI (&CallerNumber);
|
---|
2958 | if (CallerNumber != CpuMpData->BspNumber) {
|
---|
2959 | return EFI_DEVICE_ERROR;
|
---|
2960 | }
|
---|
2961 |
|
---|
2962 | //
|
---|
2963 | // Check whether processor with the handle specified by ProcessorNumber exists
|
---|
2964 | //
|
---|
2965 | if (ProcessorNumber >= CpuMpData->CpuCount) {
|
---|
2966 | return EFI_NOT_FOUND;
|
---|
2967 | }
|
---|
2968 |
|
---|
2969 | //
|
---|
2970 | // Check whether specified processor is BSP
|
---|
2971 | //
|
---|
2972 | if (ProcessorNumber == CpuMpData->BspNumber) {
|
---|
2973 | return EFI_INVALID_PARAMETER;
|
---|
2974 | }
|
---|
2975 |
|
---|
2976 | //
|
---|
2977 | // Check parameter Procedure
|
---|
2978 | //
|
---|
2979 | if (Procedure == NULL) {
|
---|
2980 | return EFI_INVALID_PARAMETER;
|
---|
2981 | }
|
---|
2982 |
|
---|
2983 | //
|
---|
2984 | // Update AP state
|
---|
2985 | //
|
---|
2986 | CheckAndUpdateApsStatus ();
|
---|
2987 |
|
---|
2988 | //
|
---|
2989 | // Check whether specified AP is disabled
|
---|
2990 | //
|
---|
2991 | if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
|
---|
2992 | return EFI_INVALID_PARAMETER;
|
---|
2993 | }
|
---|
2994 |
|
---|
2995 | //
|
---|
2996 | // If WaitEvent is not NULL, execute in non-blocking mode.
|
---|
2997 | // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
|
---|
2998 | // CheckAPsStatus() will check completion and timeout periodically.
|
---|
2999 | //
|
---|
3000 | CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
---|
3001 | CpuData->WaitEvent = WaitEvent;
|
---|
3002 | CpuData->Finished = Finished;
|
---|
3003 | CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
|
---|
3004 | CpuData->TotalTime = 0;
|
---|
3005 |
|
---|
3006 | WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
|
---|
3007 |
|
---|
3008 | //
|
---|
3009 | // If WaitEvent is NULL, execute in blocking mode.
|
---|
3010 | // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
|
---|
3011 | //
|
---|
3012 | Status = EFI_SUCCESS;
|
---|
3013 | if (WaitEvent == NULL) {
|
---|
3014 | do {
|
---|
3015 | Status = CheckThisAP (ProcessorNumber);
|
---|
3016 | } while (Status == EFI_NOT_READY);
|
---|
3017 | }
|
---|
3018 |
|
---|
3019 | return Status;
|
---|
3020 | }
|
---|
3021 |
|
---|
3022 | /**
|
---|
3023 | Get pointer to CPU MP Data structure from GUIDed HOB.
|
---|
3024 |
|
---|
3025 | @return The pointer to CPU MP Data structure.
|
---|
3026 | **/
|
---|
3027 | CPU_MP_DATA *
|
---|
3028 | GetCpuMpDataFromGuidedHob (
|
---|
3029 | VOID
|
---|
3030 | )
|
---|
3031 | {
|
---|
3032 | EFI_HOB_GUID_TYPE *GuidHob;
|
---|
3033 | VOID *DataInHob;
|
---|
3034 | CPU_MP_DATA *CpuMpData;
|
---|
3035 |
|
---|
3036 | CpuMpData = NULL;
|
---|
3037 | GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
|
---|
3038 | if (GuidHob != NULL) {
|
---|
3039 | DataInHob = GET_GUID_HOB_DATA (GuidHob);
|
---|
3040 | CpuMpData = (CPU_MP_DATA *)(*(UINTN *)DataInHob);
|
---|
3041 | }
|
---|
3042 |
|
---|
3043 | return CpuMpData;
|
---|
3044 | }
|
---|
3045 |
|
---|
3046 | /**
|
---|
3047 | This service executes a caller provided function on all enabled CPUs.
|
---|
3048 |
|
---|
3049 | @param[in] Procedure A pointer to the function to be run on
|
---|
3050 | enabled APs of the system. See type
|
---|
3051 | EFI_AP_PROCEDURE.
|
---|
3052 | @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
---|
3053 | APs to return from Procedure, either for
|
---|
3054 | blocking or non-blocking mode. Zero means
|
---|
3055 | infinity. TimeoutInMicroseconds is ignored
|
---|
3056 | for BSP.
|
---|
3057 | @param[in] ProcedureArgument The parameter passed into Procedure for
|
---|
3058 | all APs.
|
---|
3059 |
|
---|
3060 | @retval EFI_SUCCESS In blocking mode, all CPUs have finished before
|
---|
3061 | the timeout expired.
|
---|
3062 | @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
|
---|
3063 | to all enabled CPUs.
|
---|
3064 | @retval EFI_DEVICE_ERROR Caller processor is AP.
|
---|
3065 | @retval EFI_NOT_READY Any enabled APs are busy.
|
---|
3066 | @retval EFI_NOT_READY MP Initialize Library is not initialized.
|
---|
3067 | @retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
---|
3068 | all enabled APs have finished.
|
---|
3069 | @retval EFI_INVALID_PARAMETER Procedure is NULL.
|
---|
3070 |
|
---|
3071 | **/
|
---|
3072 | EFI_STATUS
|
---|
3073 | EFIAPI
|
---|
3074 | MpInitLibStartupAllCPUs (
|
---|
3075 | IN EFI_AP_PROCEDURE Procedure,
|
---|
3076 | IN UINTN TimeoutInMicroseconds,
|
---|
3077 | IN VOID *ProcedureArgument OPTIONAL
|
---|
3078 | )
|
---|
3079 | {
|
---|
3080 | return StartupAllCPUsWorker (
|
---|
3081 | Procedure,
|
---|
3082 | FALSE,
|
---|
3083 | FALSE,
|
---|
3084 | NULL,
|
---|
3085 | TimeoutInMicroseconds,
|
---|
3086 | ProcedureArgument,
|
---|
3087 | NULL
|
---|
3088 | );
|
---|
3089 | }
|
---|
3090 |
|
---|
3091 | /**
|
---|
3092 | The function check if the specified Attr is set.
|
---|
3093 |
|
---|
3094 | @param[in] CurrentAttr The current attribute.
|
---|
3095 | @param[in] Attr The attribute to check.
|
---|
3096 |
|
---|
3097 | @retval TRUE The specified Attr is set.
|
---|
3098 | @retval FALSE The specified Attr is not set.
|
---|
3099 |
|
---|
3100 | **/
|
---|
3101 | STATIC
|
---|
3102 | BOOLEAN
|
---|
3103 | AmdMemEncryptionAttrCheck (
|
---|
3104 | IN UINT64 CurrentAttr,
|
---|
3105 | IN CONFIDENTIAL_COMPUTING_GUEST_ATTR Attr
|
---|
3106 | )
|
---|
3107 | {
|
---|
3108 | switch (Attr) {
|
---|
3109 | case CCAttrAmdSev:
|
---|
3110 | //
|
---|
3111 | // SEV is automatically enabled if SEV-ES or SEV-SNP is active.
|
---|
3112 | //
|
---|
3113 | return CurrentAttr >= CCAttrAmdSev;
|
---|
3114 | case CCAttrAmdSevEs:
|
---|
3115 | //
|
---|
3116 | // SEV-ES is automatically enabled if SEV-SNP is active.
|
---|
3117 | //
|
---|
3118 | return CurrentAttr >= CCAttrAmdSevEs;
|
---|
3119 | case CCAttrAmdSevSnp:
|
---|
3120 | return CurrentAttr == CCAttrAmdSevSnp;
|
---|
3121 | default:
|
---|
3122 | return FALSE;
|
---|
3123 | }
|
---|
3124 | }
|
---|
3125 |
|
---|
3126 | /**
|
---|
3127 | Check if the specified confidential computing attribute is active.
|
---|
3128 |
|
---|
3129 | @param[in] Attr The attribute to check.
|
---|
3130 |
|
---|
3131 | @retval TRUE The specified Attr is active.
|
---|
3132 | @retval FALSE The specified Attr is not active.
|
---|
3133 |
|
---|
3134 | **/
|
---|
3135 | BOOLEAN
|
---|
3136 | EFIAPI
|
---|
3137 | ConfidentialComputingGuestHas (
|
---|
3138 | IN CONFIDENTIAL_COMPUTING_GUEST_ATTR Attr
|
---|
3139 | )
|
---|
3140 | {
|
---|
3141 | UINT64 CurrentAttr;
|
---|
3142 |
|
---|
3143 | //
|
---|
3144 | // Get the current CC attribute.
|
---|
3145 | //
|
---|
3146 | CurrentAttr = PcdGet64 (PcdConfidentialComputingGuestAttr);
|
---|
3147 |
|
---|
3148 | //
|
---|
3149 | // If attr is for the AMD group then call AMD specific checks.
|
---|
3150 | //
|
---|
3151 | if (((RShiftU64 (CurrentAttr, 8)) & 0xff) == 1) {
|
---|
3152 | return AmdMemEncryptionAttrCheck (CurrentAttr, Attr);
|
---|
3153 | }
|
---|
3154 |
|
---|
3155 | return (CurrentAttr == Attr);
|
---|
3156 | }
|
---|