1 | /** @file
|
---|
2 | CPU MP Initialize Library common functions.
|
---|
3 |
|
---|
4 | Copyright (c) 2016 - 2022, Intel Corporation. All rights reserved.<BR>
|
---|
5 | Copyright (c) 2020 - 2024, AMD Inc. All rights reserved.<BR>
|
---|
6 |
|
---|
7 | SPDX-License-Identifier: BSD-2-Clause-Patent
|
---|
8 |
|
---|
9 | **/
|
---|
10 |
|
---|
11 | #include "MpLib.h"
|
---|
12 | #include <Library/CcExitLib.h>
|
---|
13 | #include <Register/Amd/Fam17Msr.h>
|
---|
14 | #include <Register/Amd/Ghcb.h>
|
---|
15 | #ifdef VBOX
|
---|
16 | # include <Library/IoLib.h>
|
---|
17 | # include "../../../../DevEFI.h"
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
|
---|
21 | EFI_GUID mMpHandOffGuid = MP_HANDOFF_GUID;
|
---|
22 | EFI_GUID mMpHandOffConfigGuid = MP_HANDOFF_CONFIG_GUID;
|
---|
23 |
|
---|
24 | /**
|
---|
25 | Save the volatile registers required to be restored following INIT IPI.
|
---|
26 |
|
---|
27 | @param[out] VolatileRegisters Returns buffer saved the volatile resisters
|
---|
28 | **/
|
---|
29 | VOID
|
---|
30 | SaveVolatileRegisters (
|
---|
31 | OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
|
---|
32 | );
|
---|
33 |
|
---|
34 | /**
|
---|
35 | Restore the volatile registers following INIT IPI.
|
---|
36 |
|
---|
37 | @param[in] VolatileRegisters Pointer to volatile resisters
|
---|
38 | @param[in] IsRestoreDr TRUE: Restore DRx if supported
|
---|
39 | FALSE: Do not restore DRx
|
---|
40 | **/
|
---|
41 | VOID
|
---|
42 | RestoreVolatileRegisters (
|
---|
43 | IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
|
---|
44 | IN BOOLEAN IsRestoreDr
|
---|
45 | );
|
---|
46 |
|
---|
47 | /**
|
---|
48 | The function will check if BSP Execute Disable is enabled.
|
---|
49 |
|
---|
50 | DxeIpl may have enabled Execute Disable for BSP, APs need to
|
---|
51 | get the status and sync up the settings.
|
---|
52 | If BSP's CR0.Paging is not set, BSP execute Disble feature is
|
---|
53 | not working actually.
|
---|
54 |
|
---|
55 | @retval TRUE BSP Execute Disable is enabled.
|
---|
56 | @retval FALSE BSP Execute Disable is not enabled.
|
---|
57 | **/
|
---|
58 | BOOLEAN
|
---|
59 | IsBspExecuteDisableEnabled (
|
---|
60 | VOID
|
---|
61 | )
|
---|
62 | {
|
---|
63 | UINT32 Eax;
|
---|
64 | CPUID_EXTENDED_CPU_SIG_EDX Edx;
|
---|
65 | MSR_IA32_EFER_REGISTER EferMsr;
|
---|
66 | BOOLEAN Enabled;
|
---|
67 | IA32_CR0 Cr0;
|
---|
68 |
|
---|
69 | Enabled = FALSE;
|
---|
70 | Cr0.UintN = AsmReadCr0 ();
|
---|
71 | if (Cr0.Bits.PG != 0) {
|
---|
72 | //
|
---|
73 | // If CR0 Paging bit is set
|
---|
74 | //
|
---|
75 | AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
|
---|
76 | if (Eax >= CPUID_EXTENDED_CPU_SIG) {
|
---|
77 | AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
|
---|
78 | //
|
---|
79 | // CPUID 0x80000001
|
---|
80 | // Bit 20: Execute Disable Bit available.
|
---|
81 | //
|
---|
82 | if (Edx.Bits.NX != 0) {
|
---|
83 | EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
|
---|
84 | //
|
---|
85 | // MSR 0xC0000080
|
---|
86 | // Bit 11: Execute Disable Bit enable.
|
---|
87 | //
|
---|
88 | if (EferMsr.Bits.NXE != 0) {
|
---|
89 | Enabled = TRUE;
|
---|
90 | }
|
---|
91 | }
|
---|
92 | }
|
---|
93 | }
|
---|
94 |
|
---|
95 | return Enabled;
|
---|
96 | }
|
---|
97 |
|
---|
98 | /**
|
---|
99 | Worker function for SwitchBSP().
|
---|
100 |
|
---|
101 | Worker function for SwitchBSP(), assigned to the AP which is intended
|
---|
102 | to become BSP.
|
---|
103 |
|
---|
104 | @param[in] Buffer Pointer to CPU MP Data
|
---|
105 | **/
|
---|
106 | VOID
|
---|
107 | EFIAPI
|
---|
108 | FutureBSPProc (
|
---|
109 | IN VOID *Buffer
|
---|
110 | )
|
---|
111 | {
|
---|
112 | CPU_MP_DATA *DataInHob;
|
---|
113 |
|
---|
114 | DataInHob = (CPU_MP_DATA *)Buffer;
|
---|
115 | //
|
---|
116 | // Save and restore volatile registers when switch BSP
|
---|
117 | //
|
---|
118 | SaveVolatileRegisters (&DataInHob->APInfo.VolatileRegisters);
|
---|
119 | AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
|
---|
120 | RestoreVolatileRegisters (&DataInHob->APInfo.VolatileRegisters, FALSE);
|
---|
121 | }
|
---|
122 |
|
---|
123 | /**
|
---|
124 | Get the Application Processors state.
|
---|
125 |
|
---|
126 | @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
|
---|
127 |
|
---|
128 | @return The AP status
|
---|
129 | **/
|
---|
130 | CPU_STATE
|
---|
131 | GetApState (
|
---|
132 | IN CPU_AP_DATA *CpuData
|
---|
133 | )
|
---|
134 | {
|
---|
135 | return CpuData->State;
|
---|
136 | }
|
---|
137 |
|
---|
138 | /**
|
---|
139 | Set the Application Processors state.
|
---|
140 |
|
---|
141 | @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
|
---|
142 | @param[in] State The AP status
|
---|
143 | **/
|
---|
144 | VOID
|
---|
145 | SetApState (
|
---|
146 | IN CPU_AP_DATA *CpuData,
|
---|
147 | IN CPU_STATE State
|
---|
148 | )
|
---|
149 | {
|
---|
150 | AcquireSpinLock (&CpuData->ApLock);
|
---|
151 | CpuData->State = State;
|
---|
152 | ReleaseSpinLock (&CpuData->ApLock);
|
---|
153 | }
|
---|
154 |
|
---|
155 | /**
|
---|
156 | Save BSP's local APIC timer setting.
|
---|
157 |
|
---|
158 | @param[in] CpuMpData Pointer to CPU MP Data
|
---|
159 | **/
|
---|
160 | VOID
|
---|
161 | SaveLocalApicTimerSetting (
|
---|
162 | IN CPU_MP_DATA *CpuMpData
|
---|
163 | )
|
---|
164 | {
|
---|
165 | //
|
---|
166 | // Record the current local APIC timer setting of BSP
|
---|
167 | //
|
---|
168 | GetApicTimerState (
|
---|
169 | &CpuMpData->DivideValue,
|
---|
170 | &CpuMpData->PeriodicMode,
|
---|
171 | &CpuMpData->Vector
|
---|
172 | );
|
---|
173 | CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();
|
---|
174 | CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
|
---|
175 | }
|
---|
176 |
|
---|
177 | /**
|
---|
178 | Sync local APIC timer setting from BSP to AP.
|
---|
179 |
|
---|
180 | @param[in] CpuMpData Pointer to CPU MP Data
|
---|
181 | **/
|
---|
182 | VOID
|
---|
183 | SyncLocalApicTimerSetting (
|
---|
184 | IN CPU_MP_DATA *CpuMpData
|
---|
185 | )
|
---|
186 | {
|
---|
187 | //
|
---|
188 | // Sync local APIC timer setting from BSP to AP
|
---|
189 | //
|
---|
190 | InitializeApicTimer (
|
---|
191 | CpuMpData->DivideValue,
|
---|
192 | CpuMpData->CurrentTimerCount,
|
---|
193 | CpuMpData->PeriodicMode,
|
---|
194 | CpuMpData->Vector
|
---|
195 | );
|
---|
196 | //
|
---|
197 | // Disable AP's local APIC timer interrupt
|
---|
198 | //
|
---|
199 | DisableApicTimerInterrupt ();
|
---|
200 | }
|
---|
201 |
|
---|
202 | /**
|
---|
203 | Save the volatile registers required to be restored following INIT IPI.
|
---|
204 |
|
---|
205 | @param[out] VolatileRegisters Returns buffer saved the volatile resisters
|
---|
206 | **/
|
---|
207 | VOID
|
---|
208 | SaveVolatileRegisters (
|
---|
209 | OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
|
---|
210 | )
|
---|
211 | {
|
---|
212 | CPUID_VERSION_INFO_EDX VersionInfoEdx;
|
---|
213 |
|
---|
214 | VolatileRegisters->Cr0 = AsmReadCr0 ();
|
---|
215 | VolatileRegisters->Cr3 = AsmReadCr3 ();
|
---|
216 | VolatileRegisters->Cr4 = AsmReadCr4 ();
|
---|
217 |
|
---|
218 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
|
---|
219 | if (VersionInfoEdx.Bits.DE != 0) {
|
---|
220 | //
|
---|
221 | // If processor supports Debugging Extensions feature
|
---|
222 | // by CPUID.[EAX=01H]:EDX.BIT2
|
---|
223 | //
|
---|
224 | VolatileRegisters->Dr0 = AsmReadDr0 ();
|
---|
225 | VolatileRegisters->Dr1 = AsmReadDr1 ();
|
---|
226 | VolatileRegisters->Dr2 = AsmReadDr2 ();
|
---|
227 | VolatileRegisters->Dr3 = AsmReadDr3 ();
|
---|
228 | VolatileRegisters->Dr6 = AsmReadDr6 ();
|
---|
229 | VolatileRegisters->Dr7 = AsmReadDr7 ();
|
---|
230 | }
|
---|
231 |
|
---|
232 | AsmReadGdtr (&VolatileRegisters->Gdtr);
|
---|
233 | AsmReadIdtr (&VolatileRegisters->Idtr);
|
---|
234 | VolatileRegisters->Tr = AsmReadTr ();
|
---|
235 | }
|
---|
236 |
|
---|
237 | /**
|
---|
238 | Restore the volatile registers following INIT IPI.
|
---|
239 |
|
---|
240 | @param[in] VolatileRegisters Pointer to volatile resisters
|
---|
241 | @param[in] IsRestoreDr TRUE: Restore DRx if supported
|
---|
242 | FALSE: Do not restore DRx
|
---|
243 | **/
|
---|
244 | VOID
|
---|
245 | RestoreVolatileRegisters (
|
---|
246 | IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
|
---|
247 | IN BOOLEAN IsRestoreDr
|
---|
248 | )
|
---|
249 | {
|
---|
250 | CPUID_VERSION_INFO_EDX VersionInfoEdx;
|
---|
251 | IA32_TSS_DESCRIPTOR *Tss;
|
---|
252 |
|
---|
253 | AsmWriteCr3 (VolatileRegisters->Cr3);
|
---|
254 | AsmWriteCr4 (VolatileRegisters->Cr4);
|
---|
255 | AsmWriteCr0 (VolatileRegisters->Cr0);
|
---|
256 |
|
---|
257 | if (IsRestoreDr) {
|
---|
258 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
|
---|
259 | if (VersionInfoEdx.Bits.DE != 0) {
|
---|
260 | //
|
---|
261 | // If processor supports Debugging Extensions feature
|
---|
262 | // by CPUID.[EAX=01H]:EDX.BIT2
|
---|
263 | //
|
---|
264 | AsmWriteDr0 (VolatileRegisters->Dr0);
|
---|
265 | AsmWriteDr1 (VolatileRegisters->Dr1);
|
---|
266 | AsmWriteDr2 (VolatileRegisters->Dr2);
|
---|
267 | AsmWriteDr3 (VolatileRegisters->Dr3);
|
---|
268 | AsmWriteDr6 (VolatileRegisters->Dr6);
|
---|
269 | AsmWriteDr7 (VolatileRegisters->Dr7);
|
---|
270 | }
|
---|
271 | }
|
---|
272 |
|
---|
273 | AsmWriteGdtr (&VolatileRegisters->Gdtr);
|
---|
274 | AsmWriteIdtr (&VolatileRegisters->Idtr);
|
---|
275 | if ((VolatileRegisters->Tr != 0) &&
|
---|
276 | (VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit))
|
---|
277 | {
|
---|
278 | Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +
|
---|
279 | VolatileRegisters->Tr);
|
---|
280 | if (Tss->Bits.P == 1) {
|
---|
281 | Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case
|
---|
282 | AsmWriteTr (VolatileRegisters->Tr);
|
---|
283 | }
|
---|
284 | }
|
---|
285 | }
|
---|
286 |
|
---|
287 | /**
|
---|
288 | Detect whether Mwait-monitor feature is supported.
|
---|
289 |
|
---|
290 | @retval TRUE Mwait-monitor feature is supported.
|
---|
291 | @retval FALSE Mwait-monitor feature is not supported.
|
---|
292 | **/
|
---|
293 | BOOLEAN
|
---|
294 | IsMwaitSupport (
|
---|
295 | VOID
|
---|
296 | )
|
---|
297 | {
|
---|
298 | CPUID_VERSION_INFO_ECX VersionInfoEcx;
|
---|
299 |
|
---|
300 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
|
---|
301 | return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
|
---|
302 | }
|
---|
303 |
|
---|
304 | /**
|
---|
305 | Get AP loop mode.
|
---|
306 |
|
---|
307 | @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
|
---|
308 |
|
---|
309 | @return The AP loop mode.
|
---|
310 | **/
|
---|
311 | UINT8
|
---|
312 | GetApLoopMode (
|
---|
313 | OUT UINT32 *MonitorFilterSize
|
---|
314 | )
|
---|
315 | {
|
---|
316 | UINT8 ApLoopMode;
|
---|
317 | CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
|
---|
318 |
|
---|
319 | ASSERT (MonitorFilterSize != NULL);
|
---|
320 |
|
---|
321 | ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
|
---|
322 | ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
|
---|
323 | if (ApLoopMode == ApInMwaitLoop) {
|
---|
324 | if (!IsMwaitSupport ()) {
|
---|
325 | //
|
---|
326 | // If processor does not support MONITOR/MWAIT feature,
|
---|
327 | // force AP in Hlt-loop mode
|
---|
328 | //
|
---|
329 | ApLoopMode = ApInHltLoop;
|
---|
330 | }
|
---|
331 |
|
---|
332 | if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) &&
|
---|
333 | !ConfidentialComputingGuestHas (CCAttrAmdSevSnp))
|
---|
334 | {
|
---|
335 | //
|
---|
336 | // For SEV-ES (SEV-SNP is also considered SEV-ES), force AP in Hlt-loop
|
---|
337 | // mode in order to use the GHCB protocol for starting APs
|
---|
338 | //
|
---|
339 | ApLoopMode = ApInHltLoop;
|
---|
340 | }
|
---|
341 | }
|
---|
342 |
|
---|
343 | if (ApLoopMode != ApInMwaitLoop) {
|
---|
344 | *MonitorFilterSize = sizeof (UINT32);
|
---|
345 | } else {
|
---|
346 | //
|
---|
347 | // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
|
---|
348 | // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
|
---|
349 | //
|
---|
350 | AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
|
---|
351 | *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
|
---|
352 | }
|
---|
353 |
|
---|
354 | return ApLoopMode;
|
---|
355 | }
|
---|
356 |
|
---|
357 | /**
|
---|
358 | Sort the APIC ID of all processors.
|
---|
359 |
|
---|
360 | This function sorts the APIC ID of all processors so that processor number is
|
---|
361 | assigned in the ascending order of APIC ID which eases MP debugging.
|
---|
362 |
|
---|
363 | @param[in] CpuMpData Pointer to PEI CPU MP Data
|
---|
364 | **/
|
---|
365 | VOID
|
---|
366 | SortApicId (
|
---|
367 | IN CPU_MP_DATA *CpuMpData
|
---|
368 | )
|
---|
369 | {
|
---|
370 | UINTN Index1;
|
---|
371 | UINTN Index2;
|
---|
372 | UINTN Index3;
|
---|
373 | UINT32 ApicId;
|
---|
374 | CPU_INFO_IN_HOB CpuInfo;
|
---|
375 | UINT32 ApCount;
|
---|
376 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
377 | volatile UINT32 *StartupApSignal;
|
---|
378 | VOID *SevEsSaveArea;
|
---|
379 |
|
---|
380 | ApCount = CpuMpData->CpuCount - 1;
|
---|
381 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
382 | if (ApCount != 0) {
|
---|
383 | for (Index1 = 0; Index1 < ApCount; Index1++) {
|
---|
384 | Index3 = Index1;
|
---|
385 | //
|
---|
386 | // Sort key is the hardware default APIC ID
|
---|
387 | //
|
---|
388 | ApicId = CpuInfoInHob[Index1].ApicId;
|
---|
389 | for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
|
---|
390 | if (ApicId > CpuInfoInHob[Index2].ApicId) {
|
---|
391 | Index3 = Index2;
|
---|
392 | ApicId = CpuInfoInHob[Index2].ApicId;
|
---|
393 | }
|
---|
394 | }
|
---|
395 |
|
---|
396 | if (Index3 != Index1) {
|
---|
397 | CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
|
---|
398 | CopyMem (
|
---|
399 | &CpuInfoInHob[Index3],
|
---|
400 | &CpuInfoInHob[Index1],
|
---|
401 | sizeof (CPU_INFO_IN_HOB)
|
---|
402 | );
|
---|
403 | CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));
|
---|
404 |
|
---|
405 | //
|
---|
406 | // Also exchange the StartupApSignal and SevEsSaveArea.
|
---|
407 | //
|
---|
408 | StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;
|
---|
409 | CpuMpData->CpuData[Index3].StartupApSignal =
|
---|
410 | CpuMpData->CpuData[Index1].StartupApSignal;
|
---|
411 | CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
|
---|
412 |
|
---|
413 | SevEsSaveArea = CpuMpData->CpuData[Index3].SevEsSaveArea;
|
---|
414 | CpuMpData->CpuData[Index3].SevEsSaveArea =
|
---|
415 | CpuMpData->CpuData[Index1].SevEsSaveArea;
|
---|
416 | CpuMpData->CpuData[Index1].SevEsSaveArea = SevEsSaveArea;
|
---|
417 | }
|
---|
418 | }
|
---|
419 |
|
---|
420 | //
|
---|
421 | // Get the processor number for the BSP
|
---|
422 | //
|
---|
423 | ApicId = GetInitialApicId ();
|
---|
424 | for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
|
---|
425 | if (CpuInfoInHob[Index1].ApicId == ApicId) {
|
---|
426 | CpuMpData->BspNumber = (UINT32)Index1;
|
---|
427 | break;
|
---|
428 | }
|
---|
429 | }
|
---|
430 | }
|
---|
431 | }
|
---|
432 |
|
---|
433 | /**
|
---|
434 | Enable x2APIC mode on APs.
|
---|
435 |
|
---|
436 | @param[in, out] Buffer Pointer to private data buffer.
|
---|
437 | **/
|
---|
438 | VOID
|
---|
439 | EFIAPI
|
---|
440 | ApFuncEnableX2Apic (
|
---|
441 | IN OUT VOID *Buffer
|
---|
442 | )
|
---|
443 | {
|
---|
444 | SetApicMode (LOCAL_APIC_MODE_X2APIC);
|
---|
445 | }
|
---|
446 |
|
---|
447 | /**
|
---|
448 | Do sync on APs.
|
---|
449 |
|
---|
450 | @param[in, out] Buffer Pointer to private data buffer.
|
---|
451 | **/
|
---|
452 | VOID
|
---|
453 | EFIAPI
|
---|
454 | ApInitializeSync (
|
---|
455 | IN OUT VOID *Buffer
|
---|
456 | )
|
---|
457 | {
|
---|
458 | CPU_MP_DATA *CpuMpData;
|
---|
459 | UINTN ProcessorNumber;
|
---|
460 | EFI_STATUS Status;
|
---|
461 |
|
---|
462 | CpuMpData = (CPU_MP_DATA *)Buffer;
|
---|
463 | Status = GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
---|
464 | ASSERT_EFI_ERROR (Status);
|
---|
465 | //
|
---|
466 | // Load microcode on AP
|
---|
467 | //
|
---|
468 | MicrocodeDetect (CpuMpData, ProcessorNumber);
|
---|
469 | //
|
---|
470 | // Sync BSP's MTRR table to AP
|
---|
471 | //
|
---|
472 | MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
|
---|
473 | }
|
---|
474 |
|
---|
475 | /**
|
---|
476 | Find the current Processor number by APIC ID.
|
---|
477 |
|
---|
478 | @param[in] CpuMpData Pointer to PEI CPU MP Data
|
---|
479 | @param[out] ProcessorNumber Return the pocessor number found
|
---|
480 |
|
---|
481 | @retval EFI_SUCCESS ProcessorNumber is found and returned.
|
---|
482 | @retval EFI_NOT_FOUND ProcessorNumber is not found.
|
---|
483 | **/
|
---|
484 | EFI_STATUS
|
---|
485 | GetProcessorNumber (
|
---|
486 | IN CPU_MP_DATA *CpuMpData,
|
---|
487 | OUT UINTN *ProcessorNumber
|
---|
488 | )
|
---|
489 | {
|
---|
490 | UINTN TotalProcessorNumber;
|
---|
491 | UINTN Index;
|
---|
492 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
493 | UINT32 CurrentApicId;
|
---|
494 |
|
---|
495 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
496 |
|
---|
497 | TotalProcessorNumber = CpuMpData->CpuCount;
|
---|
498 | CurrentApicId = GetApicId ();
|
---|
499 | for (Index = 0; Index < TotalProcessorNumber; Index++) {
|
---|
500 | if (CpuInfoInHob[Index].ApicId == CurrentApicId) {
|
---|
501 | *ProcessorNumber = Index;
|
---|
502 | return EFI_SUCCESS;
|
---|
503 | }
|
---|
504 | }
|
---|
505 |
|
---|
506 | return EFI_NOT_FOUND;
|
---|
507 | }
|
---|
508 |
|
---|
509 | #ifdef VBOX
|
---|
510 | /*
|
---|
511 | * @todo move this function to the library.
|
---|
512 | */
|
---|
513 | UINT32 VBoxGetVmVariable(UINT32 Variable, CHAR8* Buffer, UINT32 Size)
|
---|
514 | {
|
---|
515 | UINT32 VarLen, i;
|
---|
516 |
|
---|
517 | IoWrite32(EFI_INFO_PORT, Variable);
|
---|
518 | VarLen = IoRead32(EFI_INFO_PORT);
|
---|
519 |
|
---|
520 | for (i = 0; i < VarLen && i < Size; i++)
|
---|
521 | Buffer[i] = IoRead8(EFI_INFO_PORT);
|
---|
522 |
|
---|
523 | return VarLen;
|
---|
524 | }
|
---|
525 | #endif
|
---|
526 |
|
---|
527 | /**
|
---|
528 | This function will get CPU count in the system.
|
---|
529 |
|
---|
530 | @param[in] CpuMpData Pointer to PEI CPU MP Data
|
---|
531 |
|
---|
532 | @return CPU count detected
|
---|
533 | **/
|
---|
534 | UINTN
|
---|
535 | CollectProcessorCount (
|
---|
536 | IN CPU_MP_DATA *CpuMpData
|
---|
537 | )
|
---|
538 | {
|
---|
539 | UINTN Index;
|
---|
540 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
541 | BOOLEAN X2Apic;
|
---|
542 | #ifdef VBOX
|
---|
543 | CHAR8 u8ApicMode;
|
---|
544 | #endif
|
---|
545 |
|
---|
546 | //
|
---|
547 | // Send 1st broadcast IPI to APs to wakeup APs
|
---|
548 | //
|
---|
549 | CpuMpData->InitFlag = ApInitConfig;
|
---|
550 | WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);
|
---|
551 | CpuMpData->InitFlag = ApInitDone;
|
---|
552 | //
|
---|
553 | // When InitFlag == ApInitConfig, WakeUpAP () guarantees all APs are checked in.
|
---|
554 | // FinishedCount is the number of check-in APs.
|
---|
555 | //
|
---|
556 | CpuMpData->CpuCount = CpuMpData->FinishedCount + 1;
|
---|
557 | ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
|
---|
558 |
|
---|
559 | //
|
---|
560 | // Enable x2APIC mode if
|
---|
561 | // 1. Number of CPU is greater than 255; or
|
---|
562 | // 2. There are any logical processors reporting an Initial APIC ID of 255 or greater.
|
---|
563 | //
|
---|
564 | X2Apic = FALSE;
|
---|
565 | if (CpuMpData->CpuCount > 255) {
|
---|
566 | //
|
---|
567 | // If there are more than 255 processor found, force to enable X2APIC
|
---|
568 | //
|
---|
569 | X2Apic = TRUE;
|
---|
570 | } else {
|
---|
571 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
572 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
573 | if (CpuInfoInHob[Index].InitialApicId >= 0xFF) {
|
---|
574 | X2Apic = TRUE;
|
---|
575 | break;
|
---|
576 | }
|
---|
577 | }
|
---|
578 | }
|
---|
579 | #ifdef VBOX
|
---|
580 | /* Force x2APIC mode if the VM config forces it. */
|
---|
581 | VBoxGetVmVariable(EFI_INFO_INDEX_APIC_MODE, &u8ApicMode, sizeof(u8ApicMode));
|
---|
582 | if (u8ApicMode == EFI_APIC_MODE_X2APIC)
|
---|
583 | X2Apic = TRUE;
|
---|
584 | #endif
|
---|
585 |
|
---|
586 | if (X2Apic) {
|
---|
587 | DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
|
---|
588 | //
|
---|
589 | // Wakeup all APs to enable x2APIC mode
|
---|
590 | //
|
---|
591 | WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);
|
---|
592 | //
|
---|
593 | // Wait for all known APs finished
|
---|
594 | //
|
---|
595 | while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
|
---|
596 | CpuPause ();
|
---|
597 | }
|
---|
598 |
|
---|
599 | //
|
---|
600 | // Enable x2APIC on BSP
|
---|
601 | //
|
---|
602 | SetApicMode (LOCAL_APIC_MODE_X2APIC);
|
---|
603 | //
|
---|
604 | // Set BSP/Aps state to IDLE
|
---|
605 | //
|
---|
606 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
607 | SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
|
---|
608 | }
|
---|
609 | }
|
---|
610 |
|
---|
611 | DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
|
---|
612 | //
|
---|
613 | // Sort BSP/Aps by CPU APIC ID in ascending order
|
---|
614 | //
|
---|
615 | SortApicId (CpuMpData);
|
---|
616 |
|
---|
617 | DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
|
---|
618 |
|
---|
619 | return CpuMpData->CpuCount;
|
---|
620 | }
|
---|
621 |
|
---|
622 | /**
|
---|
623 | Initialize CPU AP Data when AP is wakeup at the first time.
|
---|
624 |
|
---|
625 | @param[in, out] CpuMpData Pointer to PEI CPU MP Data
|
---|
626 | @param[in] ProcessorNumber The handle number of processor
|
---|
627 | @param[in] BistData Processor BIST data
|
---|
628 | @param[in] ApTopOfStack Top of AP stack
|
---|
629 |
|
---|
630 | **/
|
---|
631 | VOID
|
---|
632 | InitializeApData (
|
---|
633 | IN OUT CPU_MP_DATA *CpuMpData,
|
---|
634 | IN UINTN ProcessorNumber,
|
---|
635 | IN UINT32 BistData,
|
---|
636 | IN UINT64 ApTopOfStack
|
---|
637 | )
|
---|
638 | {
|
---|
639 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
640 | MSR_IA32_PLATFORM_ID_REGISTER PlatformIdMsr;
|
---|
641 | AP_STACK_DATA *ApStackData;
|
---|
642 |
|
---|
643 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
644 | CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
|
---|
645 | CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
|
---|
646 | CpuInfoInHob[ProcessorNumber].Health = BistData;
|
---|
647 | CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;
|
---|
648 |
|
---|
649 | //
|
---|
650 | // AP_STACK_DATA is stored at the top of AP Stack
|
---|
651 | //
|
---|
652 | ApStackData = (AP_STACK_DATA *)((UINTN)ApTopOfStack - sizeof (AP_STACK_DATA));
|
---|
653 | ApStackData->MpData = CpuMpData;
|
---|
654 |
|
---|
655 | CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
|
---|
656 | CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
|
---|
657 |
|
---|
658 | //
|
---|
659 | // NOTE: PlatformId is not relevant on AMD platforms.
|
---|
660 | //
|
---|
661 | if (!StandardSignatureIsAuthenticAMD ()) {
|
---|
662 | PlatformIdMsr.Uint64 = AsmReadMsr64 (MSR_IA32_PLATFORM_ID);
|
---|
663 | CpuMpData->CpuData[ProcessorNumber].PlatformId = (UINT8)PlatformIdMsr.Bits.PlatformId;
|
---|
664 | }
|
---|
665 |
|
---|
666 | AsmCpuid (
|
---|
667 | CPUID_VERSION_INFO,
|
---|
668 | &CpuMpData->CpuData[ProcessorNumber].ProcessorSignature,
|
---|
669 | NULL,
|
---|
670 | NULL,
|
---|
671 | NULL
|
---|
672 | );
|
---|
673 |
|
---|
674 | InitializeSpinLock (&CpuMpData->CpuData[ProcessorNumber].ApLock);
|
---|
675 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
|
---|
676 | }
|
---|
677 |
|
---|
678 | /**
|
---|
679 | This function place APs in Halt loop.
|
---|
680 |
|
---|
681 | @param[in] CpuMpData Pointer to CPU MP Data
|
---|
682 | **/
|
---|
683 | VOID
|
---|
684 | PlaceAPInHltLoop (
|
---|
685 | IN CPU_MP_DATA *CpuMpData
|
---|
686 | )
|
---|
687 | {
|
---|
688 | while (TRUE) {
|
---|
689 | DisableInterrupts ();
|
---|
690 | if (CpuMpData->UseSevEsAPMethod) {
|
---|
691 | SevEsPlaceApHlt (CpuMpData);
|
---|
692 | } else {
|
---|
693 | CpuSleep ();
|
---|
694 | }
|
---|
695 |
|
---|
696 | CpuPause ();
|
---|
697 | }
|
---|
698 | }
|
---|
699 |
|
---|
700 | /**
|
---|
701 | This function place APs in Mwait or Run loop.
|
---|
702 |
|
---|
703 | @param[in] ApLoopMode Ap Loop Mode
|
---|
704 | @param[in] ApStartupSignalBuffer Pointer to Ap Startup Signal Buffer
|
---|
705 | @param[in] ApTargetCState Ap Target CState
|
---|
706 | **/
|
---|
707 | VOID
|
---|
708 | PlaceAPInMwaitLoopOrRunLoop (
|
---|
709 | IN UINT8 ApLoopMode,
|
---|
710 | IN volatile UINT32 *ApStartupSignalBuffer,
|
---|
711 | IN UINT8 ApTargetCState
|
---|
712 | )
|
---|
713 | {
|
---|
714 | while (TRUE) {
|
---|
715 | DisableInterrupts ();
|
---|
716 | if (ApLoopMode == ApInMwaitLoop) {
|
---|
717 | //
|
---|
718 | // Place AP in MWAIT-loop
|
---|
719 | //
|
---|
720 | AsmMonitor ((UINTN)ApStartupSignalBuffer, 0, 0);
|
---|
721 | if ((*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) && (*ApStartupSignalBuffer != MP_HAND_OFF_SIGNAL)) {
|
---|
722 | //
|
---|
723 | // Check AP start-up signal again.
|
---|
724 | // If AP start-up signal is not set, place AP into
|
---|
725 | // the specified C-state
|
---|
726 | //
|
---|
727 | AsmMwait (ApTargetCState << 4, 0);
|
---|
728 | }
|
---|
729 | } else if (ApLoopMode == ApInRunLoop) {
|
---|
730 | //
|
---|
731 | // Place AP in Run-loop
|
---|
732 | //
|
---|
733 | CpuPause ();
|
---|
734 | } else {
|
---|
735 | ASSERT (FALSE);
|
---|
736 | }
|
---|
737 |
|
---|
738 | //
|
---|
739 | // If AP start-up signal is written, AP is waken up
|
---|
740 | // otherwise place AP in loop again
|
---|
741 | //
|
---|
742 | if ((*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) || (*ApStartupSignalBuffer == MP_HAND_OFF_SIGNAL)) {
|
---|
743 | break;
|
---|
744 | }
|
---|
745 | }
|
---|
746 | }
|
---|
747 |
|
---|
748 | /**
|
---|
749 | This function will be called from AP reset code if BSP uses WakeUpAP.
|
---|
750 |
|
---|
751 | @param[in] CpuMpData Pointer to CPU MP Data
|
---|
752 | @param[in] ApIndex Number of current executing AP
|
---|
753 | **/
|
---|
754 | VOID
|
---|
755 | EFIAPI
|
---|
756 | ApWakeupFunction (
|
---|
757 | IN CPU_MP_DATA *CpuMpData,
|
---|
758 | IN UINTN ApIndex
|
---|
759 | )
|
---|
760 | {
|
---|
761 | UINTN ProcessorNumber;
|
---|
762 | EFI_AP_PROCEDURE Procedure;
|
---|
763 | VOID *Parameter;
|
---|
764 | UINT32 BistData;
|
---|
765 | volatile UINT32 *ApStartupSignalBuffer;
|
---|
766 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
767 | UINT64 ApTopOfStack;
|
---|
768 | UINTN CurrentApicMode;
|
---|
769 | AP_STACK_DATA *ApStackData;
|
---|
770 | UINT32 OriginalValue;
|
---|
771 |
|
---|
772 | //
|
---|
773 | // AP's local APIC settings will be lost after received INIT IPI
|
---|
774 | // We need to re-initialize them at here
|
---|
775 | //
|
---|
776 | ProgramVirtualWireMode ();
|
---|
777 | //
|
---|
778 | // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.
|
---|
779 | //
|
---|
780 | DisableLvtInterrupts ();
|
---|
781 | SyncLocalApicTimerSetting (CpuMpData);
|
---|
782 |
|
---|
783 | CurrentApicMode = GetApicMode ();
|
---|
784 | while (TRUE) {
|
---|
785 | if (CpuMpData->InitFlag == ApInitConfig) {
|
---|
786 | ProcessorNumber = ApIndex;
|
---|
787 | //
|
---|
788 | // This is first time AP wakeup, get BIST information from AP stack
|
---|
789 | //
|
---|
790 | ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
|
---|
791 | ApStackData = (AP_STACK_DATA *)((UINTN)ApTopOfStack - sizeof (AP_STACK_DATA));
|
---|
792 | BistData = (UINT32)ApStackData->Bist;
|
---|
793 |
|
---|
794 | //
|
---|
795 | // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,
|
---|
796 | // to initialize AP in InitConfig path.
|
---|
797 | // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.
|
---|
798 | //
|
---|
799 | RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
|
---|
800 | InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
|
---|
801 | ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
|
---|
802 | } else {
|
---|
803 | //
|
---|
804 | // Execute AP function if AP is ready
|
---|
805 | //
|
---|
806 | GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
---|
807 | //
|
---|
808 | // Clear AP start-up signal when AP waken up
|
---|
809 | //
|
---|
810 | ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
|
---|
811 | OriginalValue = InterlockedCompareExchange32 (
|
---|
812 | (UINT32 *)ApStartupSignalBuffer,
|
---|
813 | MP_HAND_OFF_SIGNAL,
|
---|
814 | 0
|
---|
815 | );
|
---|
816 | if (OriginalValue == MP_HAND_OFF_SIGNAL) {
|
---|
817 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateReady);
|
---|
818 | }
|
---|
819 |
|
---|
820 | InterlockedCompareExchange32 (
|
---|
821 | (UINT32 *)ApStartupSignalBuffer,
|
---|
822 | WAKEUP_AP_SIGNAL,
|
---|
823 | 0
|
---|
824 | );
|
---|
825 |
|
---|
826 | if (CpuMpData->InitFlag == ApInitReconfig) {
|
---|
827 | //
|
---|
828 | // ApInitReconfig happens when:
|
---|
829 | // 1. AP is re-enabled after it's disabled, in either PEI or DXE phase.
|
---|
830 | // 2. AP is initialized in DXE phase.
|
---|
831 | // In either case, use the volatile registers value derived from BSP.
|
---|
832 | // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a
|
---|
833 | // different IDT shared by all APs.
|
---|
834 | //
|
---|
835 | RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
|
---|
836 | } else {
|
---|
837 | if (CpuMpData->ApLoopMode == ApInHltLoop) {
|
---|
838 | //
|
---|
839 | // Restore AP's volatile registers saved before AP is halted
|
---|
840 | //
|
---|
841 | RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
|
---|
842 | } else {
|
---|
843 | //
|
---|
844 | // The CPU driver might not flush TLB for APs on spot after updating
|
---|
845 | // page attributes. AP in mwait loop mode needs to take care of it when
|
---|
846 | // woken up.
|
---|
847 | //
|
---|
848 | CpuFlushTlb ();
|
---|
849 | }
|
---|
850 | }
|
---|
851 |
|
---|
852 | if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
|
---|
853 | Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
|
---|
854 | Parameter = (VOID *)CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
|
---|
855 | if (Procedure != NULL) {
|
---|
856 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
|
---|
857 | //
|
---|
858 | // Enable source debugging on AP function
|
---|
859 | //
|
---|
860 | EnableDebugAgent ();
|
---|
861 | //
|
---|
862 | // Invoke AP function here
|
---|
863 | //
|
---|
864 | Procedure (Parameter);
|
---|
865 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
866 | if (CpuMpData->SwitchBspFlag) {
|
---|
867 | //
|
---|
868 | // Re-get the processor number due to BSP/AP maybe exchange in AP function
|
---|
869 | //
|
---|
870 | GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
---|
871 | CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
|
---|
872 | CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
|
---|
873 | ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
|
---|
874 | CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
|
---|
875 | } else {
|
---|
876 | if ((CpuInfoInHob[ProcessorNumber].ApicId != GetApicId ()) ||
|
---|
877 | (CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()))
|
---|
878 | {
|
---|
879 | if (CurrentApicMode != GetApicMode ()) {
|
---|
880 | //
|
---|
881 | // If APIC mode change happened during AP function execution,
|
---|
882 | // we do not support APIC ID value changed.
|
---|
883 | //
|
---|
884 | ASSERT (FALSE);
|
---|
885 | CpuDeadLoop ();
|
---|
886 | } else {
|
---|
887 | //
|
---|
888 | // Re-get the CPU APICID and Initial APICID if they are changed
|
---|
889 | //
|
---|
890 | CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
|
---|
891 | CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
|
---|
892 | }
|
---|
893 | }
|
---|
894 | }
|
---|
895 | }
|
---|
896 |
|
---|
897 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
|
---|
898 | }
|
---|
899 | }
|
---|
900 |
|
---|
901 | if (CpuMpData->ApLoopMode == ApInHltLoop) {
|
---|
902 | //
|
---|
903 | // Save AP volatile registers
|
---|
904 | //
|
---|
905 | SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
|
---|
906 | }
|
---|
907 |
|
---|
908 | //
|
---|
909 | // AP finished executing C code
|
---|
910 | //
|
---|
911 | InterlockedIncrement ((UINT32 *)&CpuMpData->FinishedCount);
|
---|
912 |
|
---|
913 | if (CpuMpData->InitFlag == ApInitConfig) {
|
---|
914 | //
|
---|
915 | // Delay decrementing the APs executing count when SEV-ES is enabled
|
---|
916 | // to allow the APs to issue an AP_RESET_HOLD before the BSP possibly
|
---|
917 | // performs another INIT-SIPI-SIPI sequence.
|
---|
918 | //
|
---|
919 | if (!CpuMpData->UseSevEsAPMethod) {
|
---|
920 | InterlockedDecrement ((UINT32 *)&CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
|
---|
921 | }
|
---|
922 | }
|
---|
923 |
|
---|
924 | //
|
---|
925 | // Place AP is specified loop mode
|
---|
926 | //
|
---|
927 | if (CpuMpData->ApLoopMode == ApInHltLoop) {
|
---|
928 | PlaceAPInHltLoop (CpuMpData);
|
---|
929 | //
|
---|
930 | // Never run here
|
---|
931 | //
|
---|
932 | } else {
|
---|
933 | PlaceAPInMwaitLoopOrRunLoop (CpuMpData->ApLoopMode, ApStartupSignalBuffer, CpuMpData->ApTargetCState);
|
---|
934 | }
|
---|
935 | }
|
---|
936 | }
|
---|
937 |
|
---|
938 | /**
|
---|
939 | This function serves as the entry point for APs when
|
---|
940 | they are awakened by the stores in the memory address
|
---|
941 | indicated by the MP_HANDOFF_INFO structure.
|
---|
942 |
|
---|
943 | @param[in] CpuMpData Pointer to PEI CPU MP Data
|
---|
944 | **/
|
---|
945 | VOID
|
---|
946 | EFIAPI
|
---|
947 | DxeApEntryPoint (
|
---|
948 | CPU_MP_DATA *CpuMpData
|
---|
949 | )
|
---|
950 | {
|
---|
951 | UINTN ProcessorNumber;
|
---|
952 | MSR_IA32_EFER_REGISTER EferMsr;
|
---|
953 |
|
---|
954 | GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
---|
955 | if (CpuMpData->EnableExecuteDisableForSwitchContext) {
|
---|
956 | EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
|
---|
957 | EferMsr.Bits.NXE = 1;
|
---|
958 | AsmWriteMsr64 (MSR_IA32_EFER, EferMsr.Uint64);
|
---|
959 | }
|
---|
960 |
|
---|
961 | RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
|
---|
962 | InterlockedIncrement ((UINT32 *)&CpuMpData->FinishedCount);
|
---|
963 | PlaceAPInMwaitLoopOrRunLoop (
|
---|
964 | CpuMpData->ApLoopMode,
|
---|
965 | CpuMpData->CpuData[ProcessorNumber].StartupApSignal,
|
---|
966 | CpuMpData->ApTargetCState
|
---|
967 | );
|
---|
968 | ApWakeupFunction (CpuMpData, ProcessorNumber);
|
---|
969 | }
|
---|
970 |
|
---|
971 | /**
|
---|
972 | Wait for AP wakeup and write AP start-up signal till AP is waken up.
|
---|
973 |
|
---|
974 | @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
|
---|
975 | **/
|
---|
976 | VOID
|
---|
977 | WaitApWakeup (
|
---|
978 | IN volatile UINT32 *ApStartupSignalBuffer
|
---|
979 | )
|
---|
980 | {
|
---|
981 | //
|
---|
982 | // If AP is waken up, StartupApSignal should be cleared.
|
---|
983 | // Otherwise, write StartupApSignal again till AP waken up.
|
---|
984 | //
|
---|
985 | while (InterlockedCompareExchange32 (
|
---|
986 | (UINT32 *)ApStartupSignalBuffer,
|
---|
987 | WAKEUP_AP_SIGNAL,
|
---|
988 | WAKEUP_AP_SIGNAL
|
---|
989 | ) != 0)
|
---|
990 | {
|
---|
991 | CpuPause ();
|
---|
992 | }
|
---|
993 | }
|
---|
994 |
|
---|
995 | /**
|
---|
996 | Calculate the size of the reset vector.
|
---|
997 |
|
---|
998 | @param[in] AddressMap The pointer to Address Map structure.
|
---|
999 | @param[out] SizeBelow1Mb Return the size of below 1MB memory for AP reset area.
|
---|
1000 | @param[out] SizeAbove1Mb Return the size of abvoe 1MB memory for AP reset area.
|
---|
1001 | **/
|
---|
1002 | STATIC
|
---|
1003 | VOID
|
---|
1004 | GetApResetVectorSize (
|
---|
1005 | IN MP_ASSEMBLY_ADDRESS_MAP *AddressMap,
|
---|
1006 | OUT UINTN *SizeBelow1Mb OPTIONAL,
|
---|
1007 | OUT UINTN *SizeAbove1Mb OPTIONAL
|
---|
1008 | )
|
---|
1009 | {
|
---|
1010 | if (SizeBelow1Mb != NULL) {
|
---|
1011 | *SizeBelow1Mb = AddressMap->ModeTransitionOffset + sizeof (MP_CPU_EXCHANGE_INFO);
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 | if (SizeAbove1Mb != NULL) {
|
---|
1015 | *SizeAbove1Mb = AddressMap->RendezvousFunnelSize - AddressMap->ModeTransitionOffset;
|
---|
1016 | }
|
---|
1017 | }
|
---|
1018 |
|
---|
1019 | /**
|
---|
1020 | This function will fill the exchange info structure.
|
---|
1021 |
|
---|
1022 | @param[in] CpuMpData Pointer to CPU MP Data
|
---|
1023 |
|
---|
1024 | **/
|
---|
1025 | VOID
|
---|
1026 | FillExchangeInfoData (
|
---|
1027 | IN CPU_MP_DATA *CpuMpData
|
---|
1028 | )
|
---|
1029 | {
|
---|
1030 | volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
|
---|
1031 | UINTN Size;
|
---|
1032 | IA32_SEGMENT_DESCRIPTOR *Selector;
|
---|
1033 | IA32_CR4 Cr4;
|
---|
1034 |
|
---|
1035 | ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
|
---|
1036 | ExchangeInfo->StackStart = CpuMpData->Buffer;
|
---|
1037 | ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
|
---|
1038 | ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
|
---|
1039 | ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
|
---|
1040 |
|
---|
1041 | ExchangeInfo->CodeSegment = AsmReadCs ();
|
---|
1042 | ExchangeInfo->DataSegment = AsmReadDs ();
|
---|
1043 |
|
---|
1044 | ExchangeInfo->Cr3 = AsmReadCr3 ();
|
---|
1045 |
|
---|
1046 | ExchangeInfo->CFunction = (UINTN)ApWakeupFunction;
|
---|
1047 | ExchangeInfo->ApIndex = 0;
|
---|
1048 | ExchangeInfo->NumApsExecuting = 0;
|
---|
1049 | ExchangeInfo->InitFlag = (UINTN)CpuMpData->InitFlag;
|
---|
1050 | ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
1051 | ExchangeInfo->CpuMpData = CpuMpData;
|
---|
1052 |
|
---|
1053 | ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
|
---|
1054 |
|
---|
1055 | ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
|
---|
1056 |
|
---|
1057 | //
|
---|
1058 | // We can check either CPUID(7).ECX[bit16] or check CR4.LA57[bit12]
|
---|
1059 | // to determin whether 5-Level Paging is enabled.
|
---|
1060 | // CPUID(7).ECX[bit16] shows CPU's capability, CR4.LA57[bit12] shows
|
---|
1061 | // current system setting.
|
---|
1062 | // Using latter way is simpler because it also eliminates the needs to
|
---|
1063 | // check whether platform wants to enable it.
|
---|
1064 | //
|
---|
1065 | Cr4.UintN = AsmReadCr4 ();
|
---|
1066 | ExchangeInfo->Enable5LevelPaging = (BOOLEAN)(Cr4.Bits.LA57 == 1);
|
---|
1067 | DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging));
|
---|
1068 |
|
---|
1069 | ExchangeInfo->SevEsIsEnabled = CpuMpData->SevEsIsEnabled;
|
---|
1070 | ExchangeInfo->SevSnpIsEnabled = CpuMpData->SevSnpIsEnabled;
|
---|
1071 | ExchangeInfo->GhcbBase = (UINTN)CpuMpData->GhcbBase;
|
---|
1072 |
|
---|
1073 | //
|
---|
1074 | // Populate SEV-ES specific exchange data.
|
---|
1075 | //
|
---|
1076 | if (ExchangeInfo->SevSnpIsEnabled) {
|
---|
1077 | FillExchangeInfoDataSevEs (ExchangeInfo);
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 | //
|
---|
1081 | // Get the BSP's data of GDT and IDT
|
---|
1082 | //
|
---|
1083 | AsmReadGdtr ((IA32_DESCRIPTOR *)&ExchangeInfo->GdtrProfile);
|
---|
1084 | AsmReadIdtr ((IA32_DESCRIPTOR *)&ExchangeInfo->IdtrProfile);
|
---|
1085 |
|
---|
1086 | //
|
---|
1087 | // Find a 32-bit code segment
|
---|
1088 | //
|
---|
1089 | Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;
|
---|
1090 | Size = ExchangeInfo->GdtrProfile.Limit + 1;
|
---|
1091 | while (Size > 0) {
|
---|
1092 | if ((Selector->Bits.L == 0) && (Selector->Bits.Type >= 8)) {
|
---|
1093 | ExchangeInfo->ModeTransitionSegment =
|
---|
1094 | (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);
|
---|
1095 | break;
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 | Selector += 1;
|
---|
1099 | Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);
|
---|
1100 | }
|
---|
1101 |
|
---|
1102 | ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;
|
---|
1103 |
|
---|
1104 | ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +
|
---|
1105 | (UINT32)ExchangeInfo->ModeOffset -
|
---|
1106 | (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;
|
---|
1107 | ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;
|
---|
1108 | }
|
---|
1109 |
|
---|
1110 | /**
|
---|
1111 | Helper function that waits until the finished AP count reaches the specified
|
---|
1112 | limit, or the specified timeout elapses (whichever comes first).
|
---|
1113 |
|
---|
1114 | @param[in] CpuMpData Pointer to CPU MP Data.
|
---|
1115 | @param[in] FinishedApLimit The number of finished APs to wait for.
|
---|
1116 | @param[in] TimeLimit The number of microseconds to wait for.
|
---|
1117 | **/
|
---|
1118 | VOID
|
---|
1119 | TimedWaitForApFinish (
|
---|
1120 | IN CPU_MP_DATA *CpuMpData,
|
---|
1121 | IN UINT32 FinishedApLimit,
|
---|
1122 | IN UINT32 TimeLimit
|
---|
1123 | );
|
---|
1124 |
|
---|
1125 | /**
|
---|
1126 | Get available system memory below 1MB by specified size.
|
---|
1127 |
|
---|
1128 | @param[in] CpuMpData The pointer to CPU MP Data structure.
|
---|
1129 | **/
|
---|
1130 | VOID
|
---|
1131 | BackupAndPrepareWakeupBuffer (
|
---|
1132 | IN CPU_MP_DATA *CpuMpData
|
---|
1133 | )
|
---|
1134 | {
|
---|
1135 | CopyMem (
|
---|
1136 | (VOID *)CpuMpData->BackupBuffer,
|
---|
1137 | (VOID *)CpuMpData->WakeupBuffer,
|
---|
1138 | CpuMpData->BackupBufferSize
|
---|
1139 | );
|
---|
1140 | CopyMem (
|
---|
1141 | (VOID *)CpuMpData->WakeupBuffer,
|
---|
1142 | (VOID *)CpuMpData->AddressMap.RendezvousFunnelAddress,
|
---|
1143 | CpuMpData->BackupBufferSize - sizeof (MP_CPU_EXCHANGE_INFO)
|
---|
1144 | );
|
---|
1145 | }
|
---|
1146 |
|
---|
1147 | /**
|
---|
1148 | Restore wakeup buffer data.
|
---|
1149 |
|
---|
1150 | @param[in] CpuMpData The pointer to CPU MP Data structure.
|
---|
1151 | **/
|
---|
1152 | VOID
|
---|
1153 | RestoreWakeupBuffer (
|
---|
1154 | IN CPU_MP_DATA *CpuMpData
|
---|
1155 | )
|
---|
1156 | {
|
---|
1157 | CopyMem (
|
---|
1158 | (VOID *)CpuMpData->WakeupBuffer,
|
---|
1159 | (VOID *)CpuMpData->BackupBuffer,
|
---|
1160 | CpuMpData->BackupBufferSize
|
---|
1161 | );
|
---|
1162 | }
|
---|
1163 |
|
---|
1164 | /**
|
---|
1165 | Allocate reset vector buffer.
|
---|
1166 |
|
---|
1167 | @param[in, out] CpuMpData The pointer to CPU MP Data structure.
|
---|
1168 | **/
|
---|
1169 | VOID
|
---|
1170 | AllocateResetVectorBelow1Mb (
|
---|
1171 | IN OUT CPU_MP_DATA *CpuMpData
|
---|
1172 | )
|
---|
1173 | {
|
---|
1174 | UINTN ApResetStackSize;
|
---|
1175 |
|
---|
1176 | if (CpuMpData->WakeupBuffer == (UINTN)-1) {
|
---|
1177 | CpuMpData->WakeupBuffer = GetWakeupBuffer (CpuMpData->BackupBufferSize);
|
---|
1178 | CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *)(UINTN)
|
---|
1179 | (CpuMpData->WakeupBuffer + CpuMpData->BackupBufferSize - sizeof (MP_CPU_EXCHANGE_INFO));
|
---|
1180 | DEBUG ((
|
---|
1181 | DEBUG_INFO,
|
---|
1182 | "AP Vector: 16-bit = %p/%x, ExchangeInfo = %p/%x\n",
|
---|
1183 | CpuMpData->WakeupBuffer,
|
---|
1184 | CpuMpData->BackupBufferSize - sizeof (MP_CPU_EXCHANGE_INFO),
|
---|
1185 | CpuMpData->MpCpuExchangeInfo,
|
---|
1186 | sizeof (MP_CPU_EXCHANGE_INFO)
|
---|
1187 | ));
|
---|
1188 | //
|
---|
1189 | // The AP reset stack is only used by SEV-ES guests. Do not allocate it
|
---|
1190 | // if SEV-ES is not enabled. An SEV-SNP guest is also considered
|
---|
1191 | // an SEV-ES guest, but uses a different method of AP startup, eliminating
|
---|
1192 | // the need for the allocation.
|
---|
1193 | //
|
---|
1194 | if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) &&
|
---|
1195 | !ConfidentialComputingGuestHas (CCAttrAmdSevSnp))
|
---|
1196 | {
|
---|
1197 | //
|
---|
1198 | // Stack location is based on ProcessorNumber, so use the total number
|
---|
1199 | // of processors for calculating the total stack area.
|
---|
1200 | //
|
---|
1201 | ApResetStackSize = (AP_RESET_STACK_SIZE *
|
---|
1202 | PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
|
---|
1203 |
|
---|
1204 | //
|
---|
1205 | // Invoke GetWakeupBuffer a second time to allocate the stack area
|
---|
1206 | // below 1MB. The returned buffer will be page aligned and sized and
|
---|
1207 | // below the previously allocated buffer.
|
---|
1208 | //
|
---|
1209 | CpuMpData->SevEsAPResetStackStart = GetWakeupBuffer (ApResetStackSize);
|
---|
1210 |
|
---|
1211 | //
|
---|
1212 | // Check to be sure that the "allocate below" behavior hasn't changed.
|
---|
1213 | // This will also catch a failed allocation, as "-1" is returned on
|
---|
1214 | // failure.
|
---|
1215 | //
|
---|
1216 | if (CpuMpData->SevEsAPResetStackStart >= CpuMpData->WakeupBuffer) {
|
---|
1217 | DEBUG ((
|
---|
1218 | DEBUG_ERROR,
|
---|
1219 | "SEV-ES AP reset stack is not below wakeup buffer\n"
|
---|
1220 | ));
|
---|
1221 |
|
---|
1222 | ASSERT (FALSE);
|
---|
1223 | CpuDeadLoop ();
|
---|
1224 | }
|
---|
1225 | }
|
---|
1226 | }
|
---|
1227 |
|
---|
1228 | BackupAndPrepareWakeupBuffer (CpuMpData);
|
---|
1229 | }
|
---|
1230 |
|
---|
1231 | /**
|
---|
1232 | Free AP reset vector buffer.
|
---|
1233 |
|
---|
1234 | @param[in] CpuMpData The pointer to CPU MP Data structure.
|
---|
1235 | **/
|
---|
1236 | VOID
|
---|
1237 | FreeResetVector (
|
---|
1238 | IN CPU_MP_DATA *CpuMpData
|
---|
1239 | )
|
---|
1240 | {
|
---|
1241 | //
|
---|
1242 | // If SEV-ES is enabled, the reset area is needed for AP parking and
|
---|
1243 | // and AP startup in the OS, so the reset area is reserved. Do not
|
---|
1244 | // perform the restore as this will overwrite memory which has data
|
---|
1245 | // needed by SEV-ES.
|
---|
1246 | //
|
---|
1247 | if (!CpuMpData->UseSevEsAPMethod) {
|
---|
1248 | RestoreWakeupBuffer (CpuMpData);
|
---|
1249 | }
|
---|
1250 | }
|
---|
1251 |
|
---|
1252 | /**
|
---|
1253 | This function will be called by BSP to wakeup AP.
|
---|
1254 |
|
---|
1255 | @param[in] CpuMpData Pointer to CPU MP Data
|
---|
1256 | @param[in] Broadcast TRUE: Send broadcast IPI to all APs
|
---|
1257 | FALSE: Send IPI to AP by ApicId
|
---|
1258 | @param[in] ProcessorNumber The handle number of specified processor
|
---|
1259 | @param[in] Procedure The function to be invoked by AP
|
---|
1260 | @param[in] ProcedureArgument The argument to be passed into AP function
|
---|
1261 | @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.
|
---|
1262 | **/
|
---|
1263 | VOID
|
---|
1264 | WakeUpAP (
|
---|
1265 | IN CPU_MP_DATA *CpuMpData,
|
---|
1266 | IN BOOLEAN Broadcast,
|
---|
1267 | IN UINTN ProcessorNumber,
|
---|
1268 | IN EFI_AP_PROCEDURE Procedure OPTIONAL,
|
---|
1269 | IN VOID *ProcedureArgument OPTIONAL,
|
---|
1270 | IN BOOLEAN WakeUpDisabledAps
|
---|
1271 | )
|
---|
1272 | {
|
---|
1273 | volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
|
---|
1274 | UINTN Index;
|
---|
1275 | CPU_AP_DATA *CpuData;
|
---|
1276 | BOOLEAN ResetVectorRequired;
|
---|
1277 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
1278 |
|
---|
1279 | CpuMpData->FinishedCount = 0;
|
---|
1280 | ResetVectorRequired = FALSE;
|
---|
1281 |
|
---|
1282 | if (CpuMpData->WakeUpByInitSipiSipi ||
|
---|
1283 | (CpuMpData->InitFlag != ApInitDone))
|
---|
1284 | {
|
---|
1285 | ResetVectorRequired = TRUE;
|
---|
1286 | AllocateResetVectorBelow1Mb (CpuMpData);
|
---|
1287 | AllocateSevEsAPMemory (CpuMpData);
|
---|
1288 | FillExchangeInfoData (CpuMpData);
|
---|
1289 | SaveLocalApicTimerSetting (CpuMpData);
|
---|
1290 | }
|
---|
1291 |
|
---|
1292 | if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
|
---|
1293 | //
|
---|
1294 | // Get AP target C-state each time when waking up AP,
|
---|
1295 | // for it maybe updated by platform again
|
---|
1296 | //
|
---|
1297 | CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
|
---|
1298 | }
|
---|
1299 |
|
---|
1300 | ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
|
---|
1301 |
|
---|
1302 | if (Broadcast) {
|
---|
1303 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
1304 | if (Index != CpuMpData->BspNumber) {
|
---|
1305 | CpuData = &CpuMpData->CpuData[Index];
|
---|
1306 | //
|
---|
1307 | // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but
|
---|
1308 | // the AP procedure will be skipped for disabled AP because AP state
|
---|
1309 | // is not CpuStateReady.
|
---|
1310 | //
|
---|
1311 | if ((GetApState (CpuData) == CpuStateDisabled) && !WakeUpDisabledAps) {
|
---|
1312 | continue;
|
---|
1313 | }
|
---|
1314 |
|
---|
1315 | CpuData->ApFunction = (UINTN)Procedure;
|
---|
1316 | CpuData->ApFunctionArgument = (UINTN)ProcedureArgument;
|
---|
1317 | SetApState (CpuData, CpuStateReady);
|
---|
1318 | if (CpuMpData->InitFlag != ApInitConfig) {
|
---|
1319 | *(UINT32 *)CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
|
---|
1320 | }
|
---|
1321 | }
|
---|
1322 | }
|
---|
1323 |
|
---|
1324 | if (ResetVectorRequired) {
|
---|
1325 | //
|
---|
1326 | // For SEV-ES and SEV-SNP, the initial AP boot address will be defined by
|
---|
1327 | // PcdSevEsWorkAreaBase. The Segment/Rip must be the jump address
|
---|
1328 | // from the original INIT-SIPI-SIPI.
|
---|
1329 | //
|
---|
1330 | if (CpuMpData->SevEsIsEnabled) {
|
---|
1331 | SetSevEsJumpTable (ExchangeInfo->BufferStart);
|
---|
1332 | }
|
---|
1333 |
|
---|
1334 | //
|
---|
1335 | // Wakeup all APs
|
---|
1336 | // Must use the INIT-SIPI-SIPI method for initial configuration in
|
---|
1337 | // order to obtain the APIC ID if not an SEV-SNP guest and the
|
---|
1338 | // list of APIC IDs is not available.
|
---|
1339 | //
|
---|
1340 | if (CanUseSevSnpCreateAP (CpuMpData)) {
|
---|
1341 | SevSnpCreateAP (CpuMpData, -1);
|
---|
1342 | } else {
|
---|
1343 | if ((CpuMpData->InitFlag == ApInitConfig) && FixedPcdGetBool (PcdFirstTimeWakeUpAPsBySipi)) {
|
---|
1344 | //
|
---|
1345 | // SIPI can be used for the first time wake up after reset to reduce boot time.
|
---|
1346 | //
|
---|
1347 | SendStartupIpiAllExcludingSelf ((UINT32)ExchangeInfo->BufferStart);
|
---|
1348 | } else {
|
---|
1349 | SendInitSipiSipiAllExcludingSelf ((UINT32)ExchangeInfo->BufferStart);
|
---|
1350 | }
|
---|
1351 | }
|
---|
1352 | }
|
---|
1353 |
|
---|
1354 | if (CpuMpData->InitFlag == ApInitConfig) {
|
---|
1355 | if (PcdGet32 (PcdCpuBootLogicalProcessorNumber) > 0) {
|
---|
1356 | //
|
---|
1357 | // The AP enumeration algorithm below is suitable only when the
|
---|
1358 | // platform can tell us the *exact* boot CPU count in advance.
|
---|
1359 | //
|
---|
1360 | // The wait below finishes only when the detected AP count reaches
|
---|
1361 | // (PcdCpuBootLogicalProcessorNumber - 1), regardless of how long that
|
---|
1362 | // takes. If at least one AP fails to check in (meaning a platform
|
---|
1363 | // hardware bug), the detection hangs forever, by design. If the actual
|
---|
1364 | // boot CPU count in the system is higher than
|
---|
1365 | // PcdCpuBootLogicalProcessorNumber (meaning a platform
|
---|
1366 | // misconfiguration), then some APs may complete initialization after
|
---|
1367 | // the wait finishes, and cause undefined behavior.
|
---|
1368 | //
|
---|
1369 | TimedWaitForApFinish (
|
---|
1370 | CpuMpData,
|
---|
1371 | PcdGet32 (PcdCpuBootLogicalProcessorNumber) - 1,
|
---|
1372 | MAX_UINT32 // approx. 71 minutes
|
---|
1373 | );
|
---|
1374 | } else {
|
---|
1375 | //
|
---|
1376 | // The AP enumeration algorithm below is suitable for two use cases.
|
---|
1377 | //
|
---|
1378 | // (1) The check-in time for an individual AP is bounded, and APs run
|
---|
1379 | // through their initialization routines strongly concurrently. In
|
---|
1380 | // particular, the number of concurrently running APs
|
---|
1381 | // ("NumApsExecuting") is never expected to fall to zero
|
---|
1382 | // *temporarily* -- it is expected to fall to zero only when all
|
---|
1383 | // APs have checked-in.
|
---|
1384 | //
|
---|
1385 | // In this case, the platform is supposed to set
|
---|
1386 | // PcdCpuApInitTimeOutInMicroSeconds to a low-ish value (just long
|
---|
1387 | // enough for one AP to start initialization). The timeout will be
|
---|
1388 | // reached soon, and remaining APs are collected by watching
|
---|
1389 | // NumApsExecuting fall to zero. If NumApsExecuting falls to zero
|
---|
1390 | // mid-process, while some APs have not completed initialization,
|
---|
1391 | // the behavior is undefined.
|
---|
1392 | //
|
---|
1393 | // (2) The check-in time for an individual AP is unbounded, and/or APs
|
---|
1394 | // may complete their initializations widely spread out. In
|
---|
1395 | // particular, some APs may finish initialization before some APs
|
---|
1396 | // even start.
|
---|
1397 | //
|
---|
1398 | // In this case, the platform is supposed to set
|
---|
1399 | // PcdCpuApInitTimeOutInMicroSeconds to a high-ish value. The AP
|
---|
1400 | // enumeration will always take that long (except when the boot CPU
|
---|
1401 | // count happens to be maximal, that is,
|
---|
1402 | // PcdCpuMaxLogicalProcessorNumber). All APs are expected to
|
---|
1403 | // check-in before the timeout, and NumApsExecuting is assumed zero
|
---|
1404 | // at timeout. APs that miss the time-out may cause undefined
|
---|
1405 | // behavior.
|
---|
1406 | //
|
---|
1407 | TimedWaitForApFinish (
|
---|
1408 | CpuMpData,
|
---|
1409 | PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
|
---|
1410 | PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
|
---|
1411 | );
|
---|
1412 |
|
---|
1413 | while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {
|
---|
1414 | CpuPause ();
|
---|
1415 | }
|
---|
1416 | }
|
---|
1417 | } else {
|
---|
1418 | //
|
---|
1419 | // Wait all APs waken up if this is not the 1st broadcast of SIPI
|
---|
1420 | //
|
---|
1421 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
1422 | CpuData = &CpuMpData->CpuData[Index];
|
---|
1423 | if (Index != CpuMpData->BspNumber) {
|
---|
1424 | WaitApWakeup (CpuData->StartupApSignal);
|
---|
1425 | }
|
---|
1426 | }
|
---|
1427 | }
|
---|
1428 | } else {
|
---|
1429 | CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
---|
1430 | CpuData->ApFunction = (UINTN)Procedure;
|
---|
1431 | CpuData->ApFunctionArgument = (UINTN)ProcedureArgument;
|
---|
1432 | SetApState (CpuData, CpuStateReady);
|
---|
1433 | //
|
---|
1434 | // Wakeup specified AP
|
---|
1435 | //
|
---|
1436 | ASSERT (CpuMpData->InitFlag != ApInitConfig);
|
---|
1437 | *(UINT32 *)CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
|
---|
1438 | if (ResetVectorRequired) {
|
---|
1439 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
1440 |
|
---|
1441 | //
|
---|
1442 | // For SEV-ES and SEV-SNP, the initial AP boot address will be defined by
|
---|
1443 | // PcdSevEsWorkAreaBase. The Segment/Rip must be the jump address
|
---|
1444 | // from the original INIT-SIPI-SIPI.
|
---|
1445 | //
|
---|
1446 | if (CpuMpData->SevEsIsEnabled) {
|
---|
1447 | SetSevEsJumpTable (ExchangeInfo->BufferStart);
|
---|
1448 | }
|
---|
1449 |
|
---|
1450 | if (CanUseSevSnpCreateAP (CpuMpData)) {
|
---|
1451 | SevSnpCreateAP (CpuMpData, (INTN)ProcessorNumber);
|
---|
1452 | } else {
|
---|
1453 | SendInitSipiSipi (
|
---|
1454 | CpuInfoInHob[ProcessorNumber].ApicId,
|
---|
1455 | (UINT32)ExchangeInfo->BufferStart
|
---|
1456 | );
|
---|
1457 | }
|
---|
1458 | }
|
---|
1459 |
|
---|
1460 | //
|
---|
1461 | // Wait specified AP waken up
|
---|
1462 | //
|
---|
1463 | WaitApWakeup (CpuData->StartupApSignal);
|
---|
1464 | }
|
---|
1465 |
|
---|
1466 | if (ResetVectorRequired) {
|
---|
1467 | FreeResetVector (CpuMpData);
|
---|
1468 | }
|
---|
1469 |
|
---|
1470 | //
|
---|
1471 | // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with
|
---|
1472 | // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by
|
---|
1473 | // S3SmmInitDone Ppi.
|
---|
1474 | //
|
---|
1475 | CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
|
---|
1476 | }
|
---|
1477 |
|
---|
1478 | /**
|
---|
1479 | Calculate timeout value and return the current performance counter value.
|
---|
1480 |
|
---|
1481 | Calculate the number of performance counter ticks required for a timeout.
|
---|
1482 | If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
|
---|
1483 | as infinity.
|
---|
1484 |
|
---|
1485 | @param[in] TimeoutInMicroseconds Timeout value in microseconds.
|
---|
1486 | @param[out] CurrentTime Returns the current value of the performance counter.
|
---|
1487 |
|
---|
1488 | @return Expected time stamp counter for timeout.
|
---|
1489 | If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
|
---|
1490 | as infinity.
|
---|
1491 |
|
---|
1492 | **/
|
---|
1493 | UINT64
|
---|
1494 | CalculateTimeout (
|
---|
1495 | IN UINTN TimeoutInMicroseconds,
|
---|
1496 | OUT UINT64 *CurrentTime
|
---|
1497 | )
|
---|
1498 | {
|
---|
1499 | UINT64 TimeoutInSeconds;
|
---|
1500 | UINT64 TimestampCounterFreq;
|
---|
1501 |
|
---|
1502 | //
|
---|
1503 | // Read the current value of the performance counter
|
---|
1504 | //
|
---|
1505 | *CurrentTime = GetPerformanceCounter ();
|
---|
1506 |
|
---|
1507 | //
|
---|
1508 | // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
|
---|
1509 | // as infinity.
|
---|
1510 | //
|
---|
1511 | if (TimeoutInMicroseconds == 0) {
|
---|
1512 | return 0;
|
---|
1513 | }
|
---|
1514 |
|
---|
1515 | //
|
---|
1516 | // GetPerformanceCounterProperties () returns the timestamp counter's frequency
|
---|
1517 | // in Hz.
|
---|
1518 | //
|
---|
1519 | TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);
|
---|
1520 |
|
---|
1521 | //
|
---|
1522 | // Check the potential overflow before calculate the number of ticks for the timeout value.
|
---|
1523 | //
|
---|
1524 | if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
|
---|
1525 | //
|
---|
1526 | // Convert microseconds into seconds if direct multiplication overflows
|
---|
1527 | //
|
---|
1528 | TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
|
---|
1529 | //
|
---|
1530 | // Assertion if the final tick count exceeds MAX_UINT64
|
---|
1531 | //
|
---|
1532 | ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
|
---|
1533 | return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
|
---|
1534 | } else {
|
---|
1535 | //
|
---|
1536 | // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
|
---|
1537 | // it by 1,000,000, to get the number of ticks for the timeout value.
|
---|
1538 | //
|
---|
1539 | return DivU64x32 (
|
---|
1540 | MultU64x64 (
|
---|
1541 | TimestampCounterFreq,
|
---|
1542 | TimeoutInMicroseconds
|
---|
1543 | ),
|
---|
1544 | 1000000
|
---|
1545 | );
|
---|
1546 | }
|
---|
1547 | }
|
---|
1548 |
|
---|
1549 | /**
|
---|
1550 | Switch Context for each AP.
|
---|
1551 |
|
---|
1552 | **/
|
---|
1553 | VOID
|
---|
1554 | EFIAPI
|
---|
1555 | SwitchContextPerAp (
|
---|
1556 | VOID
|
---|
1557 | )
|
---|
1558 | {
|
---|
1559 | UINTN ProcessorNumber;
|
---|
1560 | CPU_MP_DATA *CpuMpData;
|
---|
1561 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
1562 |
|
---|
1563 | CpuMpData = GetCpuMpData ();
|
---|
1564 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
1565 | GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
---|
1566 |
|
---|
1567 | SwitchStack (
|
---|
1568 | (SWITCH_STACK_ENTRY_POINT)(UINTN)DxeApEntryPoint,
|
---|
1569 | (VOID *)(UINTN)CpuMpData,
|
---|
1570 | NULL,
|
---|
1571 | (VOID *)((UINTN)CpuInfoInHob[ProcessorNumber].ApTopOfStack)
|
---|
1572 | );
|
---|
1573 | }
|
---|
1574 |
|
---|
1575 | /**
|
---|
1576 | Checks whether timeout expires.
|
---|
1577 |
|
---|
1578 | Check whether the number of elapsed performance counter ticks required for
|
---|
1579 | a timeout condition has been reached.
|
---|
1580 | If Timeout is zero, which means infinity, return value is always FALSE.
|
---|
1581 |
|
---|
1582 | @param[in, out] PreviousTime On input, the value of the performance counter
|
---|
1583 | when it was last read.
|
---|
1584 | On output, the current value of the performance
|
---|
1585 | counter
|
---|
1586 | @param[in] TotalTime The total amount of elapsed time in performance
|
---|
1587 | counter ticks.
|
---|
1588 | @param[in] Timeout The number of performance counter ticks required
|
---|
1589 | to reach a timeout condition.
|
---|
1590 |
|
---|
1591 | @retval TRUE A timeout condition has been reached.
|
---|
1592 | @retval FALSE A timeout condition has not been reached.
|
---|
1593 |
|
---|
1594 | **/
|
---|
1595 | BOOLEAN
|
---|
1596 | CheckTimeout (
|
---|
1597 | IN OUT UINT64 *PreviousTime,
|
---|
1598 | IN UINT64 *TotalTime,
|
---|
1599 | IN UINT64 Timeout
|
---|
1600 | )
|
---|
1601 | {
|
---|
1602 | UINT64 Start;
|
---|
1603 | UINT64 End;
|
---|
1604 | UINT64 CurrentTime;
|
---|
1605 | INT64 Delta;
|
---|
1606 | INT64 Cycle;
|
---|
1607 |
|
---|
1608 | if (Timeout == 0) {
|
---|
1609 | return FALSE;
|
---|
1610 | }
|
---|
1611 |
|
---|
1612 | GetPerformanceCounterProperties (&Start, &End);
|
---|
1613 | Cycle = End - Start;
|
---|
1614 | if (Cycle < 0) {
|
---|
1615 | Cycle = -Cycle;
|
---|
1616 | }
|
---|
1617 |
|
---|
1618 | Cycle++;
|
---|
1619 | CurrentTime = GetPerformanceCounter ();
|
---|
1620 | Delta = (INT64)(CurrentTime - *PreviousTime);
|
---|
1621 | if (Start > End) {
|
---|
1622 | Delta = -Delta;
|
---|
1623 | }
|
---|
1624 |
|
---|
1625 | if (Delta < 0) {
|
---|
1626 | Delta += Cycle;
|
---|
1627 | }
|
---|
1628 |
|
---|
1629 | *TotalTime += Delta;
|
---|
1630 | *PreviousTime = CurrentTime;
|
---|
1631 | if (*TotalTime > Timeout) {
|
---|
1632 | return TRUE;
|
---|
1633 | }
|
---|
1634 |
|
---|
1635 | return FALSE;
|
---|
1636 | }
|
---|
1637 |
|
---|
1638 | /**
|
---|
1639 | Helper function that waits until the finished AP count reaches the specified
|
---|
1640 | limit, or the specified timeout elapses (whichever comes first).
|
---|
1641 |
|
---|
1642 | @param[in] CpuMpData Pointer to CPU MP Data.
|
---|
1643 | @param[in] FinishedApLimit The number of finished APs to wait for.
|
---|
1644 | @param[in] TimeLimit The number of microseconds to wait for.
|
---|
1645 | **/
|
---|
1646 | VOID
|
---|
1647 | TimedWaitForApFinish (
|
---|
1648 | IN CPU_MP_DATA *CpuMpData,
|
---|
1649 | IN UINT32 FinishedApLimit,
|
---|
1650 | IN UINT32 TimeLimit
|
---|
1651 | )
|
---|
1652 | {
|
---|
1653 | //
|
---|
1654 | // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
|
---|
1655 | // "infinity", so check for (TimeLimit == 0) explicitly.
|
---|
1656 | //
|
---|
1657 | if (TimeLimit == 0) {
|
---|
1658 | return;
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 | CpuMpData->TotalTime = 0;
|
---|
1662 | CpuMpData->ExpectedTime = CalculateTimeout (
|
---|
1663 | TimeLimit,
|
---|
1664 | &CpuMpData->CurrentTime
|
---|
1665 | );
|
---|
1666 | while (CpuMpData->FinishedCount < FinishedApLimit &&
|
---|
1667 | !CheckTimeout (
|
---|
1668 | &CpuMpData->CurrentTime,
|
---|
1669 | &CpuMpData->TotalTime,
|
---|
1670 | CpuMpData->ExpectedTime
|
---|
1671 | ))
|
---|
1672 | {
|
---|
1673 | CpuPause ();
|
---|
1674 | }
|
---|
1675 |
|
---|
1676 | if (CpuMpData->FinishedCount >= FinishedApLimit) {
|
---|
1677 | DEBUG ((
|
---|
1678 | DEBUG_VERBOSE,
|
---|
1679 | "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
|
---|
1680 | __func__,
|
---|
1681 | FinishedApLimit,
|
---|
1682 | DivU64x64Remainder (
|
---|
1683 | MultU64x32 (CpuMpData->TotalTime, 1000000),
|
---|
1684 | GetPerformanceCounterProperties (NULL, NULL),
|
---|
1685 | NULL
|
---|
1686 | )
|
---|
1687 | ));
|
---|
1688 | }
|
---|
1689 | }
|
---|
1690 |
|
---|
1691 | /**
|
---|
1692 | Reset an AP to Idle state.
|
---|
1693 |
|
---|
1694 | Any task being executed by the AP will be aborted and the AP
|
---|
1695 | will be waiting for a new task in Wait-For-SIPI state.
|
---|
1696 |
|
---|
1697 | @param[in] ProcessorNumber The handle number of processor.
|
---|
1698 | **/
|
---|
1699 | VOID
|
---|
1700 | ResetProcessorToIdleState (
|
---|
1701 | IN UINTN ProcessorNumber
|
---|
1702 | )
|
---|
1703 | {
|
---|
1704 | CPU_MP_DATA *CpuMpData;
|
---|
1705 |
|
---|
1706 | CpuMpData = GetCpuMpData ();
|
---|
1707 |
|
---|
1708 | CpuMpData->InitFlag = ApInitReconfig;
|
---|
1709 | WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);
|
---|
1710 | while (CpuMpData->FinishedCount < 1) {
|
---|
1711 | CpuPause ();
|
---|
1712 | }
|
---|
1713 |
|
---|
1714 | CpuMpData->InitFlag = ApInitDone;
|
---|
1715 |
|
---|
1716 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
|
---|
1717 | }
|
---|
1718 |
|
---|
1719 | /**
|
---|
1720 | Searches for the next waiting AP.
|
---|
1721 |
|
---|
1722 | Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
|
---|
1723 |
|
---|
1724 | @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.
|
---|
1725 |
|
---|
1726 | @retval EFI_SUCCESS The next waiting AP has been found.
|
---|
1727 | @retval EFI_NOT_FOUND No waiting AP exists.
|
---|
1728 |
|
---|
1729 | **/
|
---|
1730 | EFI_STATUS
|
---|
1731 | GetNextWaitingProcessorNumber (
|
---|
1732 | OUT UINTN *NextProcessorNumber
|
---|
1733 | )
|
---|
1734 | {
|
---|
1735 | UINTN ProcessorNumber;
|
---|
1736 | CPU_MP_DATA *CpuMpData;
|
---|
1737 |
|
---|
1738 | CpuMpData = GetCpuMpData ();
|
---|
1739 |
|
---|
1740 | for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
|
---|
1741 | if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
|
---|
1742 | *NextProcessorNumber = ProcessorNumber;
|
---|
1743 | return EFI_SUCCESS;
|
---|
1744 | }
|
---|
1745 | }
|
---|
1746 |
|
---|
1747 | return EFI_NOT_FOUND;
|
---|
1748 | }
|
---|
1749 |
|
---|
1750 | /** Checks status of specified AP.
|
---|
1751 |
|
---|
1752 | This function checks whether the specified AP has finished the task assigned
|
---|
1753 | by StartupThisAP(), and whether timeout expires.
|
---|
1754 |
|
---|
1755 | @param[in] ProcessorNumber The handle number of processor.
|
---|
1756 |
|
---|
1757 | @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
|
---|
1758 | @retval EFI_TIMEOUT The timeout expires.
|
---|
1759 | @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
|
---|
1760 | **/
|
---|
1761 | EFI_STATUS
|
---|
1762 | CheckThisAP (
|
---|
1763 | IN UINTN ProcessorNumber
|
---|
1764 | )
|
---|
1765 | {
|
---|
1766 | CPU_MP_DATA *CpuMpData;
|
---|
1767 | CPU_AP_DATA *CpuData;
|
---|
1768 |
|
---|
1769 | CpuMpData = GetCpuMpData ();
|
---|
1770 | CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
---|
1771 |
|
---|
1772 | //
|
---|
1773 | // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
|
---|
1774 | // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
|
---|
1775 | // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
|
---|
1776 | //
|
---|
1777 | //
|
---|
1778 | // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
|
---|
1779 | //
|
---|
1780 | if (GetApState (CpuData) == CpuStateFinished) {
|
---|
1781 | if (CpuData->Finished != NULL) {
|
---|
1782 | *(CpuData->Finished) = TRUE;
|
---|
1783 | }
|
---|
1784 |
|
---|
1785 | SetApState (CpuData, CpuStateIdle);
|
---|
1786 | return EFI_SUCCESS;
|
---|
1787 | } else {
|
---|
1788 | //
|
---|
1789 | // If timeout expires for StartupThisAP(), report timeout.
|
---|
1790 | //
|
---|
1791 | if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
|
---|
1792 | if (CpuData->Finished != NULL) {
|
---|
1793 | *(CpuData->Finished) = FALSE;
|
---|
1794 | }
|
---|
1795 |
|
---|
1796 | //
|
---|
1797 | // Reset failed AP to idle state
|
---|
1798 | //
|
---|
1799 | ResetProcessorToIdleState (ProcessorNumber);
|
---|
1800 |
|
---|
1801 | return EFI_TIMEOUT;
|
---|
1802 | }
|
---|
1803 | }
|
---|
1804 |
|
---|
1805 | return EFI_NOT_READY;
|
---|
1806 | }
|
---|
1807 |
|
---|
1808 | /**
|
---|
1809 | Checks status of all APs.
|
---|
1810 |
|
---|
1811 | This function checks whether all APs have finished task assigned by StartupAllAPs(),
|
---|
1812 | and whether timeout expires.
|
---|
1813 |
|
---|
1814 | @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
|
---|
1815 | @retval EFI_TIMEOUT The timeout expires.
|
---|
1816 | @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
|
---|
1817 | **/
|
---|
1818 | EFI_STATUS
|
---|
1819 | CheckAllAPs (
|
---|
1820 | VOID
|
---|
1821 | )
|
---|
1822 | {
|
---|
1823 | UINTN ProcessorNumber;
|
---|
1824 | UINTN NextProcessorNumber;
|
---|
1825 | UINTN ListIndex;
|
---|
1826 | EFI_STATUS Status;
|
---|
1827 | CPU_MP_DATA *CpuMpData;
|
---|
1828 | CPU_AP_DATA *CpuData;
|
---|
1829 |
|
---|
1830 | CpuMpData = GetCpuMpData ();
|
---|
1831 |
|
---|
1832 | NextProcessorNumber = 0;
|
---|
1833 |
|
---|
1834 | //
|
---|
1835 | // Go through all APs that are responsible for the StartupAllAPs().
|
---|
1836 | //
|
---|
1837 | for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
|
---|
1838 | if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
|
---|
1839 | continue;
|
---|
1840 | }
|
---|
1841 |
|
---|
1842 | CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
---|
1843 | //
|
---|
1844 | // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
|
---|
1845 | // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
|
---|
1846 | // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
|
---|
1847 | //
|
---|
1848 | if (GetApState (CpuData) == CpuStateFinished) {
|
---|
1849 | CpuMpData->RunningCount--;
|
---|
1850 | CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
|
---|
1851 | SetApState (CpuData, CpuStateIdle);
|
---|
1852 |
|
---|
1853 | //
|
---|
1854 | // If in Single Thread mode, then search for the next waiting AP for execution.
|
---|
1855 | //
|
---|
1856 | if (CpuMpData->SingleThread) {
|
---|
1857 | Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
|
---|
1858 |
|
---|
1859 | if (!EFI_ERROR (Status)) {
|
---|
1860 | WakeUpAP (
|
---|
1861 | CpuMpData,
|
---|
1862 | FALSE,
|
---|
1863 | (UINT32)NextProcessorNumber,
|
---|
1864 | CpuMpData->Procedure,
|
---|
1865 | CpuMpData->ProcArguments,
|
---|
1866 | TRUE
|
---|
1867 | );
|
---|
1868 | }
|
---|
1869 | }
|
---|
1870 | }
|
---|
1871 | }
|
---|
1872 |
|
---|
1873 | //
|
---|
1874 | // If all APs finish, return EFI_SUCCESS.
|
---|
1875 | //
|
---|
1876 | if (CpuMpData->RunningCount == 0) {
|
---|
1877 | return EFI_SUCCESS;
|
---|
1878 | }
|
---|
1879 |
|
---|
1880 | //
|
---|
1881 | // If timeout expires, report timeout.
|
---|
1882 | //
|
---|
1883 | if (CheckTimeout (
|
---|
1884 | &CpuMpData->CurrentTime,
|
---|
1885 | &CpuMpData->TotalTime,
|
---|
1886 | CpuMpData->ExpectedTime
|
---|
1887 | )
|
---|
1888 | )
|
---|
1889 | {
|
---|
1890 | //
|
---|
1891 | // If FailedCpuList is not NULL, record all failed APs in it.
|
---|
1892 | //
|
---|
1893 | if (CpuMpData->FailedCpuList != NULL) {
|
---|
1894 | *CpuMpData->FailedCpuList =
|
---|
1895 | AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));
|
---|
1896 | ASSERT (*CpuMpData->FailedCpuList != NULL);
|
---|
1897 | }
|
---|
1898 |
|
---|
1899 | ListIndex = 0;
|
---|
1900 |
|
---|
1901 | for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
|
---|
1902 | //
|
---|
1903 | // Check whether this processor is responsible for StartupAllAPs().
|
---|
1904 | //
|
---|
1905 | if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
|
---|
1906 | //
|
---|
1907 | // Reset failed APs to idle state
|
---|
1908 | //
|
---|
1909 | ResetProcessorToIdleState (ProcessorNumber);
|
---|
1910 | CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
|
---|
1911 | if (CpuMpData->FailedCpuList != NULL) {
|
---|
1912 | (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
|
---|
1913 | }
|
---|
1914 | }
|
---|
1915 | }
|
---|
1916 |
|
---|
1917 | if (CpuMpData->FailedCpuList != NULL) {
|
---|
1918 | (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
|
---|
1919 | }
|
---|
1920 |
|
---|
1921 | return EFI_TIMEOUT;
|
---|
1922 | }
|
---|
1923 |
|
---|
1924 | return EFI_NOT_READY;
|
---|
1925 | }
|
---|
1926 |
|
---|
1927 | /**
|
---|
1928 | This function Get BspNumber.
|
---|
1929 |
|
---|
1930 | @param[in] FirstMpHandOff Pointer to first MpHandOff HOB body.
|
---|
1931 | @return BspNumber
|
---|
1932 | **/
|
---|
1933 | UINT32
|
---|
1934 | GetBspNumber (
|
---|
1935 | IN CONST MP_HAND_OFF *FirstMpHandOff
|
---|
1936 | )
|
---|
1937 | {
|
---|
1938 | UINT32 ApicId;
|
---|
1939 | UINT32 Index;
|
---|
1940 | CONST MP_HAND_OFF *MpHandOff;
|
---|
1941 |
|
---|
1942 | //
|
---|
1943 | // Get the processor number for the BSP
|
---|
1944 | //
|
---|
1945 | ApicId = GetInitialApicId ();
|
---|
1946 |
|
---|
1947 | for (MpHandOff = FirstMpHandOff;
|
---|
1948 | MpHandOff != NULL;
|
---|
1949 | MpHandOff = GetNextMpHandOffHob (MpHandOff))
|
---|
1950 | {
|
---|
1951 | for (Index = 0; Index < MpHandOff->CpuCount; Index++) {
|
---|
1952 | if (MpHandOff->Info[Index].ApicId == ApicId) {
|
---|
1953 | return MpHandOff->ProcessorIndex + Index;
|
---|
1954 | }
|
---|
1955 | }
|
---|
1956 | }
|
---|
1957 |
|
---|
1958 | ASSERT_EFI_ERROR (EFI_NOT_FOUND);
|
---|
1959 | return 0;
|
---|
1960 | }
|
---|
1961 |
|
---|
1962 | /**
|
---|
1963 | This function is intended to be invoked by the BSP in order
|
---|
1964 | to wake up the AP. The BSP accomplishes this by triggering a
|
---|
1965 | start-up signal, which in turn causes any APs that are
|
---|
1966 | currently in a loop on the PEI-prepared memory to awaken and
|
---|
1967 | begin running the procedure called SwitchContextPerAp.
|
---|
1968 | This procedure allows the AP to switch to another section of
|
---|
1969 | memory and continue its loop there.
|
---|
1970 |
|
---|
1971 | @param[in] MpHandOffConfig Pointer to MP hand-off config HOB body.
|
---|
1972 | @param[in] FirstMpHandOff Pointer to first MP hand-off HOB body.
|
---|
1973 | **/
|
---|
1974 | VOID
|
---|
1975 | SwitchApContext (
|
---|
1976 | IN CONST MP_HAND_OFF_CONFIG *MpHandOffConfig,
|
---|
1977 | IN CONST MP_HAND_OFF *FirstMpHandOff
|
---|
1978 | )
|
---|
1979 | {
|
---|
1980 | UINTN Index;
|
---|
1981 | UINT32 BspNumber;
|
---|
1982 | CONST MP_HAND_OFF *MpHandOff;
|
---|
1983 |
|
---|
1984 | BspNumber = GetBspNumber (FirstMpHandOff);
|
---|
1985 |
|
---|
1986 | for (MpHandOff = FirstMpHandOff;
|
---|
1987 | MpHandOff != NULL;
|
---|
1988 | MpHandOff = GetNextMpHandOffHob (MpHandOff))
|
---|
1989 | {
|
---|
1990 | for (Index = 0; Index < MpHandOff->CpuCount; Index++) {
|
---|
1991 | if (MpHandOff->ProcessorIndex + Index != BspNumber) {
|
---|
1992 | *(UINTN *)(UINTN)MpHandOff->Info[Index].StartupProcedureAddress = (UINTN)SwitchContextPerAp;
|
---|
1993 | *(UINT32 *)(UINTN)MpHandOff->Info[Index].StartupSignalAddress = MpHandOffConfig->StartupSignalValue;
|
---|
1994 | }
|
---|
1995 | }
|
---|
1996 | }
|
---|
1997 |
|
---|
1998 | //
|
---|
1999 | // Wait all APs waken up if this is not the 1st broadcast of SIPI
|
---|
2000 | //
|
---|
2001 | for (MpHandOff = FirstMpHandOff;
|
---|
2002 | MpHandOff != NULL;
|
---|
2003 | MpHandOff = GetNextMpHandOffHob (MpHandOff))
|
---|
2004 | {
|
---|
2005 | for (Index = 0; Index < MpHandOff->CpuCount; Index++) {
|
---|
2006 | if (MpHandOff->ProcessorIndex + Index != BspNumber) {
|
---|
2007 | WaitApWakeup ((UINT32 *)(UINTN)(MpHandOff->Info[Index].StartupSignalAddress));
|
---|
2008 | }
|
---|
2009 | }
|
---|
2010 | }
|
---|
2011 | }
|
---|
2012 |
|
---|
2013 | /**
|
---|
2014 | Get pointer to MP_HAND_OFF_CONFIG GUIDed HOB body.
|
---|
2015 |
|
---|
2016 | @return The pointer to MP_HAND_OFF_CONFIG structure.
|
---|
2017 | **/
|
---|
2018 | MP_HAND_OFF_CONFIG *
|
---|
2019 | GetMpHandOffConfigHob (
|
---|
2020 | VOID
|
---|
2021 | )
|
---|
2022 | {
|
---|
2023 | EFI_HOB_GUID_TYPE *GuidHob;
|
---|
2024 |
|
---|
2025 | GuidHob = GetFirstGuidHob (&mMpHandOffConfigGuid);
|
---|
2026 | if (GuidHob == NULL) {
|
---|
2027 | return NULL;
|
---|
2028 | }
|
---|
2029 |
|
---|
2030 | return (MP_HAND_OFF_CONFIG *)GET_GUID_HOB_DATA (GuidHob);
|
---|
2031 | }
|
---|
2032 |
|
---|
2033 | /**
|
---|
2034 | Get pointer to next MP_HAND_OFF GUIDed HOB body.
|
---|
2035 |
|
---|
2036 | @param[in] MpHandOff Previous HOB body. Pass NULL to get the first HOB.
|
---|
2037 |
|
---|
2038 | @return The pointer to MP_HAND_OFF structure.
|
---|
2039 | **/
|
---|
2040 | MP_HAND_OFF *
|
---|
2041 | GetNextMpHandOffHob (
|
---|
2042 | IN CONST MP_HAND_OFF *MpHandOff
|
---|
2043 | )
|
---|
2044 | {
|
---|
2045 | EFI_HOB_GUID_TYPE *GuidHob;
|
---|
2046 |
|
---|
2047 | if (MpHandOff == NULL) {
|
---|
2048 | GuidHob = GetFirstGuidHob (&mMpHandOffGuid);
|
---|
2049 | } else {
|
---|
2050 | GuidHob = (VOID *)(((UINT8 *)MpHandOff) - sizeof (EFI_HOB_GUID_TYPE));
|
---|
2051 | GuidHob = GetNextGuidHob (&mMpHandOffGuid, GET_NEXT_HOB (GuidHob));
|
---|
2052 | }
|
---|
2053 |
|
---|
2054 | if (GuidHob == NULL) {
|
---|
2055 | return NULL;
|
---|
2056 | }
|
---|
2057 |
|
---|
2058 | return (MP_HAND_OFF *)GET_GUID_HOB_DATA (GuidHob);
|
---|
2059 | }
|
---|
2060 |
|
---|
2061 | /**
|
---|
2062 | MP Initialize Library initialization.
|
---|
2063 |
|
---|
2064 | This service will allocate AP reset vector and wakeup all APs to do APs
|
---|
2065 | initialization.
|
---|
2066 |
|
---|
2067 | This service must be invoked before all other MP Initialize Library
|
---|
2068 | service are invoked.
|
---|
2069 |
|
---|
2070 | @retval EFI_SUCCESS MP initialization succeeds.
|
---|
2071 | @retval Others MP initialization fails.
|
---|
2072 |
|
---|
2073 | **/
|
---|
2074 | EFI_STATUS
|
---|
2075 | EFIAPI
|
---|
2076 | MpInitLibInitialize (
|
---|
2077 | VOID
|
---|
2078 | )
|
---|
2079 | {
|
---|
2080 | MP_HAND_OFF_CONFIG *MpHandOffConfig;
|
---|
2081 | MP_HAND_OFF *FirstMpHandOff;
|
---|
2082 | MP_HAND_OFF *MpHandOff;
|
---|
2083 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
2084 | UINT32 MaxLogicalProcessorNumber;
|
---|
2085 | UINT32 ApStackSize;
|
---|
2086 | MP_ASSEMBLY_ADDRESS_MAP AddressMap;
|
---|
2087 | CPU_VOLATILE_REGISTERS VolatileRegisters;
|
---|
2088 | UINTN BufferSize;
|
---|
2089 | UINT32 MonitorFilterSize;
|
---|
2090 | VOID *MpBuffer;
|
---|
2091 | UINTN Buffer;
|
---|
2092 | CPU_MP_DATA *CpuMpData;
|
---|
2093 | UINT8 ApLoopMode;
|
---|
2094 | UINT8 *MonitorBuffer;
|
---|
2095 | UINT32 Index, HobIndex;
|
---|
2096 | UINTN ApResetVectorSizeBelow1Mb;
|
---|
2097 | UINTN ApResetVectorSizeAbove1Mb;
|
---|
2098 | UINTN BackupBufferAddr;
|
---|
2099 | UINTN ApIdtBase;
|
---|
2100 |
|
---|
2101 | FirstMpHandOff = GetNextMpHandOffHob (NULL);
|
---|
2102 | if (FirstMpHandOff != NULL) {
|
---|
2103 | MaxLogicalProcessorNumber = 0;
|
---|
2104 | for (MpHandOff = FirstMpHandOff;
|
---|
2105 | MpHandOff != NULL;
|
---|
2106 | MpHandOff = GetNextMpHandOffHob (MpHandOff))
|
---|
2107 | {
|
---|
2108 | DEBUG ((
|
---|
2109 | DEBUG_INFO,
|
---|
2110 | "%a: ProcessorIndex=%u CpuCount=%u\n",
|
---|
2111 | __func__,
|
---|
2112 | MpHandOff->ProcessorIndex,
|
---|
2113 | MpHandOff->CpuCount
|
---|
2114 | ));
|
---|
2115 | ASSERT (MaxLogicalProcessorNumber == MpHandOff->ProcessorIndex);
|
---|
2116 | MaxLogicalProcessorNumber += MpHandOff->CpuCount;
|
---|
2117 | }
|
---|
2118 | } else {
|
---|
2119 | MaxLogicalProcessorNumber = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
|
---|
2120 | }
|
---|
2121 |
|
---|
2122 | ASSERT (MaxLogicalProcessorNumber != 0);
|
---|
2123 |
|
---|
2124 | AsmGetAddressMap (&AddressMap);
|
---|
2125 | GetApResetVectorSize (&AddressMap, &ApResetVectorSizeBelow1Mb, &ApResetVectorSizeAbove1Mb);
|
---|
2126 | ApStackSize = PcdGet32 (PcdCpuApStackSize);
|
---|
2127 | //
|
---|
2128 | // ApStackSize must be power of 2
|
---|
2129 | //
|
---|
2130 | ASSERT ((ApStackSize & (ApStackSize - 1)) == 0);
|
---|
2131 | ApLoopMode = GetApLoopMode (&MonitorFilterSize);
|
---|
2132 |
|
---|
2133 | //
|
---|
2134 | // Save BSP's Control registers for APs.
|
---|
2135 | //
|
---|
2136 | SaveVolatileRegisters (&VolatileRegisters);
|
---|
2137 |
|
---|
2138 | BufferSize = ApStackSize * MaxLogicalProcessorNumber;
|
---|
2139 | //
|
---|
2140 | // Allocate extra ApStackSize to let AP stack align on ApStackSize bounday
|
---|
2141 | //
|
---|
2142 | BufferSize += ApStackSize;
|
---|
2143 | BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
|
---|
2144 | BufferSize += ApResetVectorSizeBelow1Mb;
|
---|
2145 | BufferSize = ALIGN_VALUE (BufferSize, 8);
|
---|
2146 | BufferSize += VolatileRegisters.Idtr.Limit + 1;
|
---|
2147 | BufferSize += sizeof (CPU_MP_DATA);
|
---|
2148 | BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
|
---|
2149 | MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
|
---|
2150 | ASSERT (MpBuffer != NULL);
|
---|
2151 | ZeroMem (MpBuffer, BufferSize);
|
---|
2152 | Buffer = ALIGN_VALUE ((UINTN)MpBuffer, ApStackSize);
|
---|
2153 |
|
---|
2154 | //
|
---|
2155 | // The layout of the Buffer is as below (lower address on top):
|
---|
2156 | //
|
---|
2157 | // +--------------------+ <-- Buffer (Pointer of CpuMpData is stored in the top of each AP's stack.)
|
---|
2158 | // AP Stacks (N) (StackTop = (RSP + ApStackSize) & ~ApStackSize))
|
---|
2159 | // +--------------------+ <-- MonitorBuffer
|
---|
2160 | // AP Monitor Filters (N)
|
---|
2161 | // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)
|
---|
2162 | // Backup Buffer
|
---|
2163 | // +--------------------+
|
---|
2164 | // Padding
|
---|
2165 | // +--------------------+ <-- ApIdtBase (8-byte boundary)
|
---|
2166 | // AP IDT All APs share one separate IDT.
|
---|
2167 | // +--------------------+ <-- CpuMpData
|
---|
2168 | // CPU_MP_DATA
|
---|
2169 | // +--------------------+ <-- CpuMpData->CpuData
|
---|
2170 | // CPU_AP_DATA (N)
|
---|
2171 | // +--------------------+ <-- CpuMpData->CpuInfoInHob
|
---|
2172 | // CPU_INFO_IN_HOB (N)
|
---|
2173 | // +--------------------+
|
---|
2174 | //
|
---|
2175 | MonitorBuffer = (UINT8 *)(Buffer + ApStackSize * MaxLogicalProcessorNumber);
|
---|
2176 | BackupBufferAddr = (UINTN)MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
|
---|
2177 | ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSizeBelow1Mb, 8);
|
---|
2178 | CpuMpData = (CPU_MP_DATA *)(ApIdtBase + VolatileRegisters.Idtr.Limit + 1);
|
---|
2179 | CpuMpData->Buffer = Buffer;
|
---|
2180 | CpuMpData->CpuApStackSize = ApStackSize;
|
---|
2181 | CpuMpData->BackupBuffer = BackupBufferAddr;
|
---|
2182 | CpuMpData->BackupBufferSize = ApResetVectorSizeBelow1Mb;
|
---|
2183 | CpuMpData->WakeupBuffer = (UINTN)-1;
|
---|
2184 | CpuMpData->CpuCount = 1;
|
---|
2185 | CpuMpData->BspNumber = 0;
|
---|
2186 | CpuMpData->WaitEvent = NULL;
|
---|
2187 | CpuMpData->SwitchBspFlag = FALSE;
|
---|
2188 | CpuMpData->CpuData = (CPU_AP_DATA *)(CpuMpData + 1);
|
---|
2189 | CpuMpData->CpuInfoInHob = (UINT64)(UINTN)(CpuMpData->CpuData + MaxLogicalProcessorNumber);
|
---|
2190 | InitializeSpinLock (&CpuMpData->MpLock);
|
---|
2191 | CpuMpData->SevEsIsEnabled = ConfidentialComputingGuestHas (CCAttrAmdSevEs);
|
---|
2192 | CpuMpData->SevSnpIsEnabled = ConfidentialComputingGuestHas (CCAttrAmdSevSnp);
|
---|
2193 | CpuMpData->SevEsAPBuffer = (UINTN)-1;
|
---|
2194 | CpuMpData->GhcbBase = PcdGet64 (PcdGhcbBase);
|
---|
2195 | CpuMpData->UseSevEsAPMethod = CpuMpData->SevEsIsEnabled && !CpuMpData->SevSnpIsEnabled;
|
---|
2196 |
|
---|
2197 | if (CpuMpData->SevSnpIsEnabled) {
|
---|
2198 | ASSERT ((PcdGet64 (PcdGhcbHypervisorFeatures) & GHCB_HV_FEATURES_SNP_AP_CREATE) == GHCB_HV_FEATURES_SNP_AP_CREATE);
|
---|
2199 | }
|
---|
2200 |
|
---|
2201 | //
|
---|
2202 | // Make sure no memory usage outside of the allocated buffer.
|
---|
2203 | // (ApStackSize - (Buffer - (UINTN)MpBuffer)) is the redundant caused by alignment
|
---|
2204 | //
|
---|
2205 | ASSERT (
|
---|
2206 | (CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==
|
---|
2207 | (UINTN)MpBuffer + BufferSize - (ApStackSize - Buffer + (UINTN)MpBuffer)
|
---|
2208 | );
|
---|
2209 |
|
---|
2210 | //
|
---|
2211 | // Duplicate BSP's IDT to APs.
|
---|
2212 | // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1
|
---|
2213 | //
|
---|
2214 | CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);
|
---|
2215 | VolatileRegisters.Idtr.Base = ApIdtBase;
|
---|
2216 | //
|
---|
2217 | // Don't pass BSP's TR to APs to avoid AP init failure.
|
---|
2218 | //
|
---|
2219 | VolatileRegisters.Tr = 0;
|
---|
2220 | CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));
|
---|
2221 | //
|
---|
2222 | // Set BSP basic information
|
---|
2223 | //
|
---|
2224 | InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);
|
---|
2225 | //
|
---|
2226 | // Save assembly code information
|
---|
2227 | //
|
---|
2228 | CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
|
---|
2229 | //
|
---|
2230 | // Finally set AP loop mode
|
---|
2231 | //
|
---|
2232 | CpuMpData->ApLoopMode = ApLoopMode;
|
---|
2233 | DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
|
---|
2234 |
|
---|
2235 | CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
|
---|
2236 |
|
---|
2237 | //
|
---|
2238 | // Set up APs wakeup signal buffer
|
---|
2239 | //
|
---|
2240 | for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
|
---|
2241 | CpuMpData->CpuData[Index].StartupApSignal =
|
---|
2242 | (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
|
---|
2243 | }
|
---|
2244 |
|
---|
2245 | //
|
---|
2246 | // Copy all 32-bit code and 64-bit code into memory with type of
|
---|
2247 | // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
|
---|
2248 | //
|
---|
2249 | CpuMpData->WakeupBufferHigh = AllocateCodeBuffer (ApResetVectorSizeAbove1Mb);
|
---|
2250 | CopyMem (
|
---|
2251 | (VOID *)CpuMpData->WakeupBufferHigh,
|
---|
2252 | CpuMpData->AddressMap.RendezvousFunnelAddress +
|
---|
2253 | CpuMpData->AddressMap.ModeTransitionOffset,
|
---|
2254 | ApResetVectorSizeAbove1Mb
|
---|
2255 | );
|
---|
2256 | DEBUG ((DEBUG_INFO, "AP Vector: non-16-bit = %p/%x\n", CpuMpData->WakeupBufferHigh, ApResetVectorSizeAbove1Mb));
|
---|
2257 |
|
---|
2258 | //
|
---|
2259 | // Enable the local APIC for Virtual Wire Mode.
|
---|
2260 | //
|
---|
2261 | ProgramVirtualWireMode ();
|
---|
2262 |
|
---|
2263 | if (FirstMpHandOff == NULL) {
|
---|
2264 | if (MaxLogicalProcessorNumber > 1) {
|
---|
2265 | //
|
---|
2266 | // Wakeup all APs and calculate the processor count in system
|
---|
2267 | //
|
---|
2268 | CollectProcessorCount (CpuMpData);
|
---|
2269 | }
|
---|
2270 | } else {
|
---|
2271 | //
|
---|
2272 | // APs have been wakeup before, just get the CPU Information
|
---|
2273 | // from HOB
|
---|
2274 | //
|
---|
2275 | if (CpuMpData->UseSevEsAPMethod) {
|
---|
2276 | AmdSevUpdateCpuMpData (CpuMpData);
|
---|
2277 | }
|
---|
2278 |
|
---|
2279 | CpuMpData->CpuCount = MaxLogicalProcessorNumber;
|
---|
2280 | CpuMpData->BspNumber = GetBspNumber (FirstMpHandOff);
|
---|
2281 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
2282 | for (MpHandOff = FirstMpHandOff;
|
---|
2283 | MpHandOff != NULL;
|
---|
2284 | MpHandOff = GetNextMpHandOffHob (MpHandOff))
|
---|
2285 | {
|
---|
2286 | for (HobIndex = 0; HobIndex < MpHandOff->CpuCount; HobIndex++) {
|
---|
2287 | Index = MpHandOff->ProcessorIndex + HobIndex;
|
---|
2288 | InitializeSpinLock (&CpuMpData->CpuData[Index].ApLock);
|
---|
2289 | CpuMpData->CpuData[Index].CpuHealthy = (MpHandOff->Info[HobIndex].Health == 0) ? TRUE : FALSE;
|
---|
2290 | CpuMpData->CpuData[Index].ApFunction = 0;
|
---|
2291 | CpuInfoInHob[Index].InitialApicId = MpHandOff->Info[HobIndex].ApicId;
|
---|
2292 | CpuInfoInHob[Index].ApTopOfStack = CpuMpData->Buffer + (Index + 1) * CpuMpData->CpuApStackSize;
|
---|
2293 | CpuInfoInHob[Index].ApicId = MpHandOff->Info[HobIndex].ApicId;
|
---|
2294 | CpuInfoInHob[Index].Health = MpHandOff->Info[HobIndex].Health;
|
---|
2295 | }
|
---|
2296 | }
|
---|
2297 |
|
---|
2298 | MpHandOffConfig = GetMpHandOffConfigHob ();
|
---|
2299 | if (MpHandOffConfig == NULL) {
|
---|
2300 | DEBUG ((
|
---|
2301 | DEBUG_ERROR,
|
---|
2302 | "%a: at least one MpHandOff HOB, but no MpHandOffConfig HOB\n",
|
---|
2303 | __func__
|
---|
2304 | ));
|
---|
2305 | ASSERT (MpHandOffConfig != NULL);
|
---|
2306 | CpuDeadLoop ();
|
---|
2307 | }
|
---|
2308 |
|
---|
2309 | DEBUG ((
|
---|
2310 | DEBUG_INFO,
|
---|
2311 | "FirstMpHandOff->WaitLoopExecutionMode: %04d, sizeof (VOID *): %04d\n",
|
---|
2312 | MpHandOffConfig->WaitLoopExecutionMode,
|
---|
2313 | sizeof (VOID *)
|
---|
2314 | ));
|
---|
2315 | if (MpHandOffConfig->WaitLoopExecutionMode == sizeof (VOID *)) {
|
---|
2316 | ASSERT (CpuMpData->ApLoopMode != ApInHltLoop);
|
---|
2317 |
|
---|
2318 | CpuMpData->FinishedCount = 0;
|
---|
2319 | CpuMpData->InitFlag = ApInitDone;
|
---|
2320 | CpuMpData->EnableExecuteDisableForSwitchContext = IsBspExecuteDisableEnabled ();
|
---|
2321 | SaveCpuMpData (CpuMpData);
|
---|
2322 | //
|
---|
2323 | // In scenarios where both the PEI and DXE phases run in the same
|
---|
2324 | // execution mode (32bit or 64bit), the BSP triggers
|
---|
2325 | // a start-up signal during the DXE phase to wake up the APs. This causes any
|
---|
2326 | // APs that are currently in a loop on the memory prepared during the PEI
|
---|
2327 | // phase to awaken and run the SwitchContextPerAp procedure. This procedure
|
---|
2328 | // enables the APs to switch to a different memory section and continue their
|
---|
2329 | // looping process there.
|
---|
2330 | //
|
---|
2331 | SwitchApContext (MpHandOffConfig, FirstMpHandOff);
|
---|
2332 | //
|
---|
2333 | // Wait for all APs finished initialization
|
---|
2334 | //
|
---|
2335 | while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
|
---|
2336 | CpuPause ();
|
---|
2337 | }
|
---|
2338 |
|
---|
2339 | //
|
---|
2340 | // Set Apstate as Idle, otherwise Aps cannot be waken-up again.
|
---|
2341 | // If any enabled AP is not idle, return EFI_NOT_READY during waken-up.
|
---|
2342 | //
|
---|
2343 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
2344 | SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
|
---|
2345 | }
|
---|
2346 |
|
---|
2347 | //
|
---|
2348 | // Initialize global data for MP support
|
---|
2349 | //
|
---|
2350 | InitMpGlobalData (CpuMpData);
|
---|
2351 | return EFI_SUCCESS;
|
---|
2352 | }
|
---|
2353 | }
|
---|
2354 |
|
---|
2355 | if (!GetMicrocodePatchInfoFromHob (
|
---|
2356 | &CpuMpData->MicrocodePatchAddress,
|
---|
2357 | &CpuMpData->MicrocodePatchRegionSize
|
---|
2358 | ))
|
---|
2359 | {
|
---|
2360 | //
|
---|
2361 | // The microcode patch information cache HOB does not exist, which means
|
---|
2362 | // the microcode patches data has not been loaded into memory yet
|
---|
2363 | //
|
---|
2364 | ShadowMicrocodeUpdatePatch (CpuMpData);
|
---|
2365 | }
|
---|
2366 |
|
---|
2367 | //
|
---|
2368 | // Detect and apply Microcode on BSP
|
---|
2369 | //
|
---|
2370 | MicrocodeDetect (CpuMpData, CpuMpData->BspNumber);
|
---|
2371 | //
|
---|
2372 | // Store BSP's MTRR setting
|
---|
2373 | //
|
---|
2374 | MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
|
---|
2375 |
|
---|
2376 | //
|
---|
2377 | // Wakeup APs to do some AP initialize sync (Microcode & MTRR)
|
---|
2378 | //
|
---|
2379 | if (CpuMpData->CpuCount > 1) {
|
---|
2380 | if (FirstMpHandOff != NULL) {
|
---|
2381 | //
|
---|
2382 | // Only needs to use this flag for DXE phase to update the wake up
|
---|
2383 | // buffer. Wakeup buffer allocated in PEI phase is no longer valid
|
---|
2384 | // in DXE.
|
---|
2385 | //
|
---|
2386 | CpuMpData->InitFlag = ApInitReconfig;
|
---|
2387 | }
|
---|
2388 |
|
---|
2389 | WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);
|
---|
2390 | //
|
---|
2391 | // Wait for all APs finished initialization
|
---|
2392 | //
|
---|
2393 | while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
|
---|
2394 | CpuPause ();
|
---|
2395 | }
|
---|
2396 |
|
---|
2397 | if (FirstMpHandOff != NULL) {
|
---|
2398 | CpuMpData->InitFlag = ApInitDone;
|
---|
2399 | }
|
---|
2400 |
|
---|
2401 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
2402 | SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
|
---|
2403 | }
|
---|
2404 | }
|
---|
2405 |
|
---|
2406 | //
|
---|
2407 | // Dump the microcode revision for each core.
|
---|
2408 | //
|
---|
2409 | DEBUG_CODE_BEGIN ();
|
---|
2410 | UINT32 ThreadId;
|
---|
2411 | UINT32 ExpectedMicrocodeRevision;
|
---|
2412 |
|
---|
2413 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
2414 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
---|
2415 | GetProcessorLocationByApicId (CpuInfoInHob[Index].InitialApicId, NULL, NULL, &ThreadId);
|
---|
2416 | if (ThreadId == 0) {
|
---|
2417 | //
|
---|
2418 | // MicrocodeDetect() loads microcode in first thread of each core, so,
|
---|
2419 | // CpuMpData->CpuData[Index].MicrocodeEntryAddr is initialized only for first thread of each core.
|
---|
2420 | //
|
---|
2421 | ExpectedMicrocodeRevision = 0;
|
---|
2422 | if (CpuMpData->CpuData[Index].MicrocodeEntryAddr != 0) {
|
---|
2423 | ExpectedMicrocodeRevision = ((CPU_MICROCODE_HEADER *)(UINTN)CpuMpData->CpuData[Index].MicrocodeEntryAddr)->UpdateRevision;
|
---|
2424 | }
|
---|
2425 |
|
---|
2426 | DEBUG ((
|
---|
2427 | DEBUG_INFO,
|
---|
2428 | "CPU[%04d]: Microcode revision = %08x, expected = %08x\n",
|
---|
2429 | Index,
|
---|
2430 | CpuMpData->CpuData[Index].MicrocodeRevision,
|
---|
2431 | ExpectedMicrocodeRevision
|
---|
2432 | ));
|
---|
2433 | }
|
---|
2434 | }
|
---|
2435 |
|
---|
2436 | DEBUG_CODE_END ();
|
---|
2437 | //
|
---|
2438 | // Initialize global data for MP support
|
---|
2439 | //
|
---|
2440 | InitMpGlobalData (CpuMpData);
|
---|
2441 |
|
---|
2442 | return EFI_SUCCESS;
|
---|
2443 | }
|
---|
2444 |
|
---|
2445 | /**
|
---|
2446 | Gets detailed MP-related information on the requested processor at the
|
---|
2447 | instant this call is made. This service may only be called from the BSP.
|
---|
2448 |
|
---|
2449 | @param[in] ProcessorNumber The handle number of processor.
|
---|
2450 | Lower 24 bits contains the actual processor number.
|
---|
2451 | BIT24 indicates if the EXTENDED_PROCESSOR_INFORMATION will be retrived.
|
---|
2452 | @param[out] ProcessorInfoBuffer A pointer to the buffer where information for
|
---|
2453 | the requested processor is deposited.
|
---|
2454 | @param[out] HealthData Return processor health data.
|
---|
2455 |
|
---|
2456 | @retval EFI_SUCCESS Processor information was returned.
|
---|
2457 | @retval EFI_DEVICE_ERROR The calling processor is an AP.
|
---|
2458 | @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
|
---|
2459 | @retval EFI_NOT_FOUND The processor with the handle specified by
|
---|
2460 | ProcessorNumber does not exist in the platform.
|
---|
2461 | @retval EFI_NOT_READY MP Initialize Library is not initialized.
|
---|
2462 |
|
---|
2463 | **/
|
---|
2464 | EFI_STATUS
|
---|
2465 | EFIAPI
|
---|
2466 | MpInitLibGetProcessorInfo (
|
---|
2467 | IN UINTN ProcessorNumber,
|
---|
2468 | OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
|
---|
2469 | OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
|
---|
2470 | )
|
---|
2471 | {
|
---|
2472 | CPU_MP_DATA *CpuMpData;
|
---|
2473 | UINTN CallerNumber;
|
---|
2474 | CPU_INFO_IN_HOB *CpuInfoInHob;
|
---|
2475 | UINTN OriginalProcessorNumber;
|
---|
2476 |
|
---|
2477 | CpuMpData = GetCpuMpData ();
|
---|
2478 | CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
---|
2479 |
|
---|
2480 | //
|
---|
2481 | // Lower 24 bits contains the actual processor number.
|
---|
2482 | //
|
---|
2483 | OriginalProcessorNumber = ProcessorNumber;
|
---|
2484 | ProcessorNumber &= BIT24 - 1;
|
---|
2485 |
|
---|
2486 | //
|
---|
2487 | // Check whether caller processor is BSP
|
---|
2488 | //
|
---|
2489 | MpInitLibWhoAmI (&CallerNumber);
|
---|
2490 | if (CallerNumber != CpuMpData->BspNumber) {
|
---|
2491 | return EFI_DEVICE_ERROR;
|
---|
2492 | }
|
---|
2493 |
|
---|
2494 | if (ProcessorInfoBuffer == NULL) {
|
---|
2495 | return EFI_INVALID_PARAMETER;
|
---|
2496 | }
|
---|
2497 |
|
---|
2498 | if (ProcessorNumber >= CpuMpData->CpuCount) {
|
---|
2499 | return EFI_NOT_FOUND;
|
---|
2500 | }
|
---|
2501 |
|
---|
2502 | ProcessorInfoBuffer->ProcessorId = (UINT64)CpuInfoInHob[ProcessorNumber].ApicId;
|
---|
2503 | ProcessorInfoBuffer->StatusFlag = 0;
|
---|
2504 | if (ProcessorNumber == CpuMpData->BspNumber) {
|
---|
2505 | ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
|
---|
2506 | }
|
---|
2507 |
|
---|
2508 | if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
|
---|
2509 | ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
|
---|
2510 | }
|
---|
2511 |
|
---|
2512 | if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
|
---|
2513 | ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
|
---|
2514 | } else {
|
---|
2515 | ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
|
---|
2516 | }
|
---|
2517 |
|
---|
2518 | //
|
---|
2519 | // Get processor location information
|
---|
2520 | //
|
---|
2521 | GetProcessorLocationByApicId (
|
---|
2522 | CpuInfoInHob[ProcessorNumber].ApicId,
|
---|
2523 | &ProcessorInfoBuffer->Location.Package,
|
---|
2524 | &ProcessorInfoBuffer->Location.Core,
|
---|
2525 | &ProcessorInfoBuffer->Location.Thread
|
---|
2526 | );
|
---|
2527 |
|
---|
2528 | if ((OriginalProcessorNumber & CPU_V2_EXTENDED_TOPOLOGY) != 0) {
|
---|
2529 | GetProcessorLocation2ByApicId (
|
---|
2530 | CpuInfoInHob[ProcessorNumber].ApicId,
|
---|
2531 | &ProcessorInfoBuffer->ExtendedInformation.Location2.Package,
|
---|
2532 | &ProcessorInfoBuffer->ExtendedInformation.Location2.Die,
|
---|
2533 | &ProcessorInfoBuffer->ExtendedInformation.Location2.Tile,
|
---|
2534 | &ProcessorInfoBuffer->ExtendedInformation.Location2.Module,
|
---|
2535 | &ProcessorInfoBuffer->ExtendedInformation.Location2.Core,
|
---|
2536 | &ProcessorInfoBuffer->ExtendedInformation.Location2.Thread
|
---|
2537 | );
|
---|
2538 | }
|
---|
2539 |
|
---|
2540 | if (HealthData != NULL) {
|
---|
2541 | HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
|
---|
2542 | }
|
---|
2543 |
|
---|
2544 | return EFI_SUCCESS;
|
---|
2545 | }
|
---|
2546 |
|
---|
2547 | /**
|
---|
2548 | Worker function to switch the requested AP to be the BSP from that point onward.
|
---|
2549 |
|
---|
2550 | @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
|
---|
2551 | @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
|
---|
2552 | enabled AP. Otherwise, it will be disabled.
|
---|
2553 |
|
---|
2554 | @retval EFI_SUCCESS BSP successfully switched.
|
---|
2555 | @retval others Failed to switch BSP.
|
---|
2556 |
|
---|
2557 | **/
|
---|
2558 | EFI_STATUS
|
---|
2559 | SwitchBSPWorker (
|
---|
2560 | IN UINTN ProcessorNumber,
|
---|
2561 | IN BOOLEAN EnableOldBSP
|
---|
2562 | )
|
---|
2563 | {
|
---|
2564 | CPU_MP_DATA *CpuMpData;
|
---|
2565 | UINTN CallerNumber;
|
---|
2566 | CPU_STATE State;
|
---|
2567 | MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
|
---|
2568 | BOOLEAN OldInterruptState;
|
---|
2569 | BOOLEAN OldTimerInterruptState;
|
---|
2570 |
|
---|
2571 | //
|
---|
2572 | // Save and Disable Local APIC timer interrupt
|
---|
2573 | //
|
---|
2574 | OldTimerInterruptState = GetApicTimerInterruptState ();
|
---|
2575 | DisableApicTimerInterrupt ();
|
---|
2576 | //
|
---|
2577 | // Before send both BSP and AP to a procedure to exchange their roles,
|
---|
2578 | // interrupt must be disabled. This is because during the exchange role
|
---|
2579 | // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
|
---|
2580 | // be corrupted, since interrupt return address will be pushed to stack
|
---|
2581 | // by hardware.
|
---|
2582 | //
|
---|
2583 | OldInterruptState = SaveAndDisableInterrupts ();
|
---|
2584 |
|
---|
2585 | //
|
---|
2586 | // Mask LINT0 & LINT1 for the old BSP
|
---|
2587 | //
|
---|
2588 | DisableLvtInterrupts ();
|
---|
2589 |
|
---|
2590 | CpuMpData = GetCpuMpData ();
|
---|
2591 |
|
---|
2592 | //
|
---|
2593 | // Check whether caller processor is BSP
|
---|
2594 | //
|
---|
2595 | MpInitLibWhoAmI (&CallerNumber);
|
---|
2596 | if (CallerNumber != CpuMpData->BspNumber) {
|
---|
2597 | return EFI_DEVICE_ERROR;
|
---|
2598 | }
|
---|
2599 |
|
---|
2600 | if (ProcessorNumber >= CpuMpData->CpuCount) {
|
---|
2601 | return EFI_NOT_FOUND;
|
---|
2602 | }
|
---|
2603 |
|
---|
2604 | //
|
---|
2605 | // Check whether specified AP is disabled
|
---|
2606 | //
|
---|
2607 | State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
|
---|
2608 | if (State == CpuStateDisabled) {
|
---|
2609 | return EFI_INVALID_PARAMETER;
|
---|
2610 | }
|
---|
2611 |
|
---|
2612 | //
|
---|
2613 | // Check whether ProcessorNumber specifies the current BSP
|
---|
2614 | //
|
---|
2615 | if (ProcessorNumber == CpuMpData->BspNumber) {
|
---|
2616 | return EFI_INVALID_PARAMETER;
|
---|
2617 | }
|
---|
2618 |
|
---|
2619 | //
|
---|
2620 | // Check whether specified AP is busy
|
---|
2621 | //
|
---|
2622 | if (State == CpuStateBusy) {
|
---|
2623 | return EFI_NOT_READY;
|
---|
2624 | }
|
---|
2625 |
|
---|
2626 | CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
|
---|
2627 | CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;
|
---|
2628 | CpuMpData->SwitchBspFlag = TRUE;
|
---|
2629 | CpuMpData->NewBspNumber = ProcessorNumber;
|
---|
2630 |
|
---|
2631 | //
|
---|
2632 | // Clear the BSP bit of MSR_IA32_APIC_BASE
|
---|
2633 | //
|
---|
2634 | ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
|
---|
2635 | ApicBaseMsr.Bits.BSP = 0;
|
---|
2636 | AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
|
---|
2637 |
|
---|
2638 | //
|
---|
2639 | // Need to wakeUp AP (future BSP).
|
---|
2640 | //
|
---|
2641 | WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);
|
---|
2642 |
|
---|
2643 | //
|
---|
2644 | // Save and restore volatile registers when switch BSP
|
---|
2645 | //
|
---|
2646 | SaveVolatileRegisters (&CpuMpData->BSPInfo.VolatileRegisters);
|
---|
2647 | AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
|
---|
2648 | RestoreVolatileRegisters (&CpuMpData->BSPInfo.VolatileRegisters, FALSE);
|
---|
2649 |
|
---|
2650 | //
|
---|
2651 | // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
|
---|
2652 | //
|
---|
2653 | ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
|
---|
2654 | ApicBaseMsr.Bits.BSP = 1;
|
---|
2655 | AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
|
---|
2656 | ProgramVirtualWireMode ();
|
---|
2657 |
|
---|
2658 | //
|
---|
2659 | // Wait for old BSP finished AP task
|
---|
2660 | //
|
---|
2661 | while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {
|
---|
2662 | CpuPause ();
|
---|
2663 | }
|
---|
2664 |
|
---|
2665 | CpuMpData->SwitchBspFlag = FALSE;
|
---|
2666 | //
|
---|
2667 | // Set old BSP enable state
|
---|
2668 | //
|
---|
2669 | if (!EnableOldBSP) {
|
---|
2670 | SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
|
---|
2671 | } else {
|
---|
2672 | SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
|
---|
2673 | }
|
---|
2674 |
|
---|
2675 | //
|
---|
2676 | // Save new BSP number
|
---|
2677 | //
|
---|
2678 | CpuMpData->BspNumber = (UINT32)ProcessorNumber;
|
---|
2679 |
|
---|
2680 | //
|
---|
2681 | // Restore interrupt state.
|
---|
2682 | //
|
---|
2683 | SetInterruptState (OldInterruptState);
|
---|
2684 |
|
---|
2685 | if (OldTimerInterruptState) {
|
---|
2686 | EnableApicTimerInterrupt ();
|
---|
2687 | }
|
---|
2688 |
|
---|
2689 | return EFI_SUCCESS;
|
---|
2690 | }
|
---|
2691 |
|
---|
2692 | /**
|
---|
2693 | Worker function to let the caller enable or disable an AP from this point onward.
|
---|
2694 | This service may only be called from the BSP.
|
---|
2695 |
|
---|
2696 | @param[in] ProcessorNumber The handle number of AP.
|
---|
2697 | @param[in] EnableAP Specifies the new state for the processor for
|
---|
2698 | enabled, FALSE for disabled.
|
---|
2699 | @param[in] HealthFlag If not NULL, a pointer to a value that specifies
|
---|
2700 | the new health status of the AP.
|
---|
2701 |
|
---|
2702 | @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
|
---|
2703 | @retval others Failed to Enable/Disable AP.
|
---|
2704 |
|
---|
2705 | **/
|
---|
2706 | EFI_STATUS
|
---|
2707 | EnableDisableApWorker (
|
---|
2708 | IN UINTN ProcessorNumber,
|
---|
2709 | IN BOOLEAN EnableAP,
|
---|
2710 | IN UINT32 *HealthFlag OPTIONAL
|
---|
2711 | )
|
---|
2712 | {
|
---|
2713 | CPU_MP_DATA *CpuMpData;
|
---|
2714 | UINTN CallerNumber;
|
---|
2715 |
|
---|
2716 | CpuMpData = GetCpuMpData ();
|
---|
2717 |
|
---|
2718 | //
|
---|
2719 | // Check whether caller processor is BSP
|
---|
2720 | //
|
---|
2721 | MpInitLibWhoAmI (&CallerNumber);
|
---|
2722 | if (CallerNumber != CpuMpData->BspNumber) {
|
---|
2723 | return EFI_DEVICE_ERROR;
|
---|
2724 | }
|
---|
2725 |
|
---|
2726 | if (ProcessorNumber == CpuMpData->BspNumber) {
|
---|
2727 | return EFI_INVALID_PARAMETER;
|
---|
2728 | }
|
---|
2729 |
|
---|
2730 | if (ProcessorNumber >= CpuMpData->CpuCount) {
|
---|
2731 | return EFI_NOT_FOUND;
|
---|
2732 | }
|
---|
2733 |
|
---|
2734 | if (!EnableAP) {
|
---|
2735 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
|
---|
2736 | } else {
|
---|
2737 | ResetProcessorToIdleState (ProcessorNumber);
|
---|
2738 | }
|
---|
2739 |
|
---|
2740 | if (HealthFlag != NULL) {
|
---|
2741 | CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
|
---|
2742 | (BOOLEAN)((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
|
---|
2743 | }
|
---|
2744 |
|
---|
2745 | return EFI_SUCCESS;
|
---|
2746 | }
|
---|
2747 |
|
---|
2748 | /**
|
---|
2749 | This return the handle number for the calling processor. This service may be
|
---|
2750 | called from the BSP and APs.
|
---|
2751 |
|
---|
2752 | @param[out] ProcessorNumber Pointer to the handle number of AP.
|
---|
2753 | The range is from 0 to the total number of
|
---|
2754 | logical processors minus 1. The total number of
|
---|
2755 | logical processors can be retrieved by
|
---|
2756 | MpInitLibGetNumberOfProcessors().
|
---|
2757 |
|
---|
2758 | @retval EFI_SUCCESS The current processor handle number was returned
|
---|
2759 | in ProcessorNumber.
|
---|
2760 | @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
|
---|
2761 | @retval EFI_NOT_READY MP Initialize Library is not initialized.
|
---|
2762 |
|
---|
2763 | **/
|
---|
2764 | EFI_STATUS
|
---|
2765 | EFIAPI
|
---|
2766 | MpInitLibWhoAmI (
|
---|
2767 | OUT UINTN *ProcessorNumber
|
---|
2768 | )
|
---|
2769 | {
|
---|
2770 | CPU_MP_DATA *CpuMpData;
|
---|
2771 |
|
---|
2772 | if (ProcessorNumber == NULL) {
|
---|
2773 | return EFI_INVALID_PARAMETER;
|
---|
2774 | }
|
---|
2775 |
|
---|
2776 | CpuMpData = GetCpuMpData ();
|
---|
2777 |
|
---|
2778 | return GetProcessorNumber (CpuMpData, ProcessorNumber);
|
---|
2779 | }
|
---|
2780 |
|
---|
2781 | /**
|
---|
2782 | Retrieves the number of logical processor in the platform and the number of
|
---|
2783 | those logical processors that are enabled on this boot. This service may only
|
---|
2784 | be called from the BSP.
|
---|
2785 |
|
---|
2786 | @param[out] NumberOfProcessors Pointer to the total number of logical
|
---|
2787 | processors in the system, including the BSP
|
---|
2788 | and disabled APs.
|
---|
2789 | @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
|
---|
2790 | processors that exist in system, including
|
---|
2791 | the BSP.
|
---|
2792 |
|
---|
2793 | @retval EFI_SUCCESS The number of logical processors and enabled
|
---|
2794 | logical processors was retrieved.
|
---|
2795 | @retval EFI_DEVICE_ERROR The calling processor is an AP.
|
---|
2796 | @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
|
---|
2797 | is NULL.
|
---|
2798 | @retval EFI_NOT_READY MP Initialize Library is not initialized.
|
---|
2799 |
|
---|
2800 | **/
|
---|
2801 | EFI_STATUS
|
---|
2802 | EFIAPI
|
---|
2803 | MpInitLibGetNumberOfProcessors (
|
---|
2804 | OUT UINTN *NumberOfProcessors OPTIONAL,
|
---|
2805 | OUT UINTN *NumberOfEnabledProcessors OPTIONAL
|
---|
2806 | )
|
---|
2807 | {
|
---|
2808 | CPU_MP_DATA *CpuMpData;
|
---|
2809 | UINTN CallerNumber;
|
---|
2810 | UINTN ProcessorNumber;
|
---|
2811 | UINTN EnabledProcessorNumber;
|
---|
2812 | UINTN Index;
|
---|
2813 |
|
---|
2814 | CpuMpData = GetCpuMpData ();
|
---|
2815 |
|
---|
2816 | if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
|
---|
2817 | return EFI_INVALID_PARAMETER;
|
---|
2818 | }
|
---|
2819 |
|
---|
2820 | //
|
---|
2821 | // Check whether caller processor is BSP
|
---|
2822 | //
|
---|
2823 | MpInitLibWhoAmI (&CallerNumber);
|
---|
2824 | if (CallerNumber != CpuMpData->BspNumber) {
|
---|
2825 | return EFI_DEVICE_ERROR;
|
---|
2826 | }
|
---|
2827 |
|
---|
2828 | ProcessorNumber = CpuMpData->CpuCount;
|
---|
2829 | EnabledProcessorNumber = 0;
|
---|
2830 | for (Index = 0; Index < ProcessorNumber; Index++) {
|
---|
2831 | if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
|
---|
2832 | EnabledProcessorNumber++;
|
---|
2833 | }
|
---|
2834 | }
|
---|
2835 |
|
---|
2836 | if (NumberOfProcessors != NULL) {
|
---|
2837 | *NumberOfProcessors = ProcessorNumber;
|
---|
2838 | }
|
---|
2839 |
|
---|
2840 | if (NumberOfEnabledProcessors != NULL) {
|
---|
2841 | *NumberOfEnabledProcessors = EnabledProcessorNumber;
|
---|
2842 | }
|
---|
2843 |
|
---|
2844 | return EFI_SUCCESS;
|
---|
2845 | }
|
---|
2846 |
|
---|
2847 | /**
|
---|
2848 | Worker function to execute a caller provided function on all enabled APs.
|
---|
2849 |
|
---|
2850 | @param[in] Procedure A pointer to the function to be run on
|
---|
2851 | enabled APs of the system.
|
---|
2852 | @param[in] SingleThread If TRUE, then all the enabled APs execute
|
---|
2853 | the function specified by Procedure one by
|
---|
2854 | one, in ascending order of processor handle
|
---|
2855 | number. If FALSE, then all the enabled APs
|
---|
2856 | execute the function specified by Procedure
|
---|
2857 | simultaneously.
|
---|
2858 | @param[in] ExcludeBsp Whether let BSP also trig this task.
|
---|
2859 | @param[in] WaitEvent The event created by the caller with CreateEvent()
|
---|
2860 | service.
|
---|
2861 | @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
---|
2862 | APs to return from Procedure, either for
|
---|
2863 | blocking or non-blocking mode.
|
---|
2864 | @param[in] ProcedureArgument The parameter passed into Procedure for
|
---|
2865 | all APs.
|
---|
2866 | @param[out] FailedCpuList If all APs finish successfully, then its
|
---|
2867 | content is set to NULL. If not all APs
|
---|
2868 | finish before timeout expires, then its
|
---|
2869 | content is set to address of the buffer
|
---|
2870 | holding handle numbers of the failed APs.
|
---|
2871 |
|
---|
2872 | @retval EFI_SUCCESS In blocking mode, all APs have finished before
|
---|
2873 | the timeout expired.
|
---|
2874 | @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
|
---|
2875 | to all enabled APs.
|
---|
2876 | @retval others Failed to Startup all APs.
|
---|
2877 |
|
---|
2878 | **/
|
---|
2879 | EFI_STATUS
|
---|
2880 | StartupAllCPUsWorker (
|
---|
2881 | IN EFI_AP_PROCEDURE Procedure,
|
---|
2882 | IN BOOLEAN SingleThread,
|
---|
2883 | IN BOOLEAN ExcludeBsp,
|
---|
2884 | IN EFI_EVENT WaitEvent OPTIONAL,
|
---|
2885 | IN UINTN TimeoutInMicroseconds,
|
---|
2886 | IN VOID *ProcedureArgument OPTIONAL,
|
---|
2887 | OUT UINTN **FailedCpuList OPTIONAL
|
---|
2888 | )
|
---|
2889 | {
|
---|
2890 | EFI_STATUS Status;
|
---|
2891 | CPU_MP_DATA *CpuMpData;
|
---|
2892 | UINTN ProcessorCount;
|
---|
2893 | UINTN ProcessorNumber;
|
---|
2894 | UINTN CallerNumber;
|
---|
2895 | CPU_AP_DATA *CpuData;
|
---|
2896 | BOOLEAN HasEnabledAp;
|
---|
2897 | CPU_STATE ApState;
|
---|
2898 |
|
---|
2899 | CpuMpData = GetCpuMpData ();
|
---|
2900 |
|
---|
2901 | if (FailedCpuList != NULL) {
|
---|
2902 | *FailedCpuList = NULL;
|
---|
2903 | }
|
---|
2904 |
|
---|
2905 | if ((CpuMpData->CpuCount == 1) && ExcludeBsp) {
|
---|
2906 | return EFI_NOT_STARTED;
|
---|
2907 | }
|
---|
2908 |
|
---|
2909 | if (Procedure == NULL) {
|
---|
2910 | return EFI_INVALID_PARAMETER;
|
---|
2911 | }
|
---|
2912 |
|
---|
2913 | //
|
---|
2914 | // Check whether caller processor is BSP
|
---|
2915 | //
|
---|
2916 | MpInitLibWhoAmI (&CallerNumber);
|
---|
2917 | if (CallerNumber != CpuMpData->BspNumber) {
|
---|
2918 | return EFI_DEVICE_ERROR;
|
---|
2919 | }
|
---|
2920 |
|
---|
2921 | //
|
---|
2922 | // Update AP state
|
---|
2923 | //
|
---|
2924 | CheckAndUpdateApsStatus ();
|
---|
2925 |
|
---|
2926 | ProcessorCount = CpuMpData->CpuCount;
|
---|
2927 | HasEnabledAp = FALSE;
|
---|
2928 | //
|
---|
2929 | // Check whether all enabled APs are idle.
|
---|
2930 | // If any enabled AP is not idle, return EFI_NOT_READY.
|
---|
2931 | //
|
---|
2932 | for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
|
---|
2933 | CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
---|
2934 | if (ProcessorNumber != CpuMpData->BspNumber) {
|
---|
2935 | ApState = GetApState (CpuData);
|
---|
2936 | if (ApState != CpuStateDisabled) {
|
---|
2937 | HasEnabledAp = TRUE;
|
---|
2938 | if (ApState != CpuStateIdle) {
|
---|
2939 | //
|
---|
2940 | // If any enabled APs are busy, return EFI_NOT_READY.
|
---|
2941 | //
|
---|
2942 | return EFI_NOT_READY;
|
---|
2943 | }
|
---|
2944 | }
|
---|
2945 | }
|
---|
2946 | }
|
---|
2947 |
|
---|
2948 | if (!HasEnabledAp && ExcludeBsp) {
|
---|
2949 | //
|
---|
2950 | // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED.
|
---|
2951 | //
|
---|
2952 | return EFI_NOT_STARTED;
|
---|
2953 | }
|
---|
2954 |
|
---|
2955 | CpuMpData->RunningCount = 0;
|
---|
2956 | for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
|
---|
2957 | CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
---|
2958 | CpuData->Waiting = FALSE;
|
---|
2959 | if (ProcessorNumber != CpuMpData->BspNumber) {
|
---|
2960 | if (CpuData->State == CpuStateIdle) {
|
---|
2961 | //
|
---|
2962 | // Mark this processor as responsible for current calling.
|
---|
2963 | //
|
---|
2964 | CpuData->Waiting = TRUE;
|
---|
2965 | CpuMpData->RunningCount++;
|
---|
2966 | }
|
---|
2967 | }
|
---|
2968 | }
|
---|
2969 |
|
---|
2970 | CpuMpData->Procedure = Procedure;
|
---|
2971 | CpuMpData->ProcArguments = ProcedureArgument;
|
---|
2972 | CpuMpData->SingleThread = SingleThread;
|
---|
2973 | CpuMpData->FinishedCount = 0;
|
---|
2974 | CpuMpData->FailedCpuList = FailedCpuList;
|
---|
2975 | CpuMpData->ExpectedTime = CalculateTimeout (
|
---|
2976 | TimeoutInMicroseconds,
|
---|
2977 | &CpuMpData->CurrentTime
|
---|
2978 | );
|
---|
2979 | CpuMpData->TotalTime = 0;
|
---|
2980 | CpuMpData->WaitEvent = WaitEvent;
|
---|
2981 |
|
---|
2982 | if (!SingleThread) {
|
---|
2983 | WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);
|
---|
2984 | } else {
|
---|
2985 | for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
|
---|
2986 | if (ProcessorNumber == CallerNumber) {
|
---|
2987 | continue;
|
---|
2988 | }
|
---|
2989 |
|
---|
2990 | if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
|
---|
2991 | WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
|
---|
2992 | break;
|
---|
2993 | }
|
---|
2994 | }
|
---|
2995 | }
|
---|
2996 |
|
---|
2997 | if (!ExcludeBsp) {
|
---|
2998 | //
|
---|
2999 | // Start BSP.
|
---|
3000 | //
|
---|
3001 | Procedure (ProcedureArgument);
|
---|
3002 | }
|
---|
3003 |
|
---|
3004 | Status = EFI_SUCCESS;
|
---|
3005 | if (WaitEvent == NULL) {
|
---|
3006 | do {
|
---|
3007 | Status = CheckAllAPs ();
|
---|
3008 | } while (Status == EFI_NOT_READY);
|
---|
3009 | }
|
---|
3010 |
|
---|
3011 | return Status;
|
---|
3012 | }
|
---|
3013 |
|
---|
3014 | /**
|
---|
3015 | Worker function to let the caller get one enabled AP to execute a caller-provided
|
---|
3016 | function.
|
---|
3017 |
|
---|
3018 | @param[in] Procedure A pointer to the function to be run on
|
---|
3019 | enabled APs of the system.
|
---|
3020 | @param[in] ProcessorNumber The handle number of the AP.
|
---|
3021 | @param[in] WaitEvent The event created by the caller with CreateEvent()
|
---|
3022 | service.
|
---|
3023 | @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
---|
3024 | APs to return from Procedure, either for
|
---|
3025 | blocking or non-blocking mode.
|
---|
3026 | @param[in] ProcedureArgument The parameter passed into Procedure for
|
---|
3027 | all APs.
|
---|
3028 | @param[out] Finished If AP returns from Procedure before the
|
---|
3029 | timeout expires, its content is set to TRUE.
|
---|
3030 | Otherwise, the value is set to FALSE.
|
---|
3031 |
|
---|
3032 | @retval EFI_SUCCESS In blocking mode, specified AP finished before
|
---|
3033 | the timeout expires.
|
---|
3034 | @retval others Failed to Startup AP.
|
---|
3035 |
|
---|
3036 | **/
|
---|
3037 | EFI_STATUS
|
---|
3038 | StartupThisAPWorker (
|
---|
3039 | IN EFI_AP_PROCEDURE Procedure,
|
---|
3040 | IN UINTN ProcessorNumber,
|
---|
3041 | IN EFI_EVENT WaitEvent OPTIONAL,
|
---|
3042 | IN UINTN TimeoutInMicroseconds,
|
---|
3043 | IN VOID *ProcedureArgument OPTIONAL,
|
---|
3044 | OUT BOOLEAN *Finished OPTIONAL
|
---|
3045 | )
|
---|
3046 | {
|
---|
3047 | EFI_STATUS Status;
|
---|
3048 | CPU_MP_DATA *CpuMpData;
|
---|
3049 | CPU_AP_DATA *CpuData;
|
---|
3050 | UINTN CallerNumber;
|
---|
3051 |
|
---|
3052 | CpuMpData = GetCpuMpData ();
|
---|
3053 |
|
---|
3054 | if (Finished != NULL) {
|
---|
3055 | *Finished = FALSE;
|
---|
3056 | }
|
---|
3057 |
|
---|
3058 | //
|
---|
3059 | // Check whether caller processor is BSP
|
---|
3060 | //
|
---|
3061 | MpInitLibWhoAmI (&CallerNumber);
|
---|
3062 | if (CallerNumber != CpuMpData->BspNumber) {
|
---|
3063 | return EFI_DEVICE_ERROR;
|
---|
3064 | }
|
---|
3065 |
|
---|
3066 | //
|
---|
3067 | // Check whether processor with the handle specified by ProcessorNumber exists
|
---|
3068 | //
|
---|
3069 | if (ProcessorNumber >= CpuMpData->CpuCount) {
|
---|
3070 | return EFI_NOT_FOUND;
|
---|
3071 | }
|
---|
3072 |
|
---|
3073 | //
|
---|
3074 | // Check whether specified processor is BSP
|
---|
3075 | //
|
---|
3076 | if (ProcessorNumber == CpuMpData->BspNumber) {
|
---|
3077 | return EFI_INVALID_PARAMETER;
|
---|
3078 | }
|
---|
3079 |
|
---|
3080 | //
|
---|
3081 | // Check parameter Procedure
|
---|
3082 | //
|
---|
3083 | if (Procedure == NULL) {
|
---|
3084 | return EFI_INVALID_PARAMETER;
|
---|
3085 | }
|
---|
3086 |
|
---|
3087 | //
|
---|
3088 | // Update AP state
|
---|
3089 | //
|
---|
3090 | CheckAndUpdateApsStatus ();
|
---|
3091 |
|
---|
3092 | //
|
---|
3093 | // Check whether specified AP is disabled
|
---|
3094 | //
|
---|
3095 | if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
|
---|
3096 | return EFI_INVALID_PARAMETER;
|
---|
3097 | }
|
---|
3098 |
|
---|
3099 | //
|
---|
3100 | // If WaitEvent is not NULL, execute in non-blocking mode.
|
---|
3101 | // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
|
---|
3102 | // CheckAPsStatus() will check completion and timeout periodically.
|
---|
3103 | //
|
---|
3104 | CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
---|
3105 | CpuData->WaitEvent = WaitEvent;
|
---|
3106 | CpuData->Finished = Finished;
|
---|
3107 | CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
|
---|
3108 | CpuData->TotalTime = 0;
|
---|
3109 |
|
---|
3110 | WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
|
---|
3111 |
|
---|
3112 | //
|
---|
3113 | // If WaitEvent is NULL, execute in blocking mode.
|
---|
3114 | // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
|
---|
3115 | //
|
---|
3116 | Status = EFI_SUCCESS;
|
---|
3117 | if (WaitEvent == NULL) {
|
---|
3118 | do {
|
---|
3119 | Status = CheckThisAP (ProcessorNumber);
|
---|
3120 | } while (Status == EFI_NOT_READY);
|
---|
3121 | }
|
---|
3122 |
|
---|
3123 | return Status;
|
---|
3124 | }
|
---|
3125 |
|
---|
3126 | /**
|
---|
3127 | Get pointer to CPU MP Data structure from GUIDed HOB.
|
---|
3128 |
|
---|
3129 | @return The pointer to CPU MP Data structure.
|
---|
3130 | **/
|
---|
3131 | CPU_MP_DATA *
|
---|
3132 | GetCpuMpDataFromGuidedHob (
|
---|
3133 | VOID
|
---|
3134 | )
|
---|
3135 | {
|
---|
3136 | EFI_HOB_GUID_TYPE *GuidHob;
|
---|
3137 | VOID *DataInHob;
|
---|
3138 | CPU_MP_DATA *CpuMpData;
|
---|
3139 |
|
---|
3140 | CpuMpData = NULL;
|
---|
3141 | GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
|
---|
3142 | if (GuidHob != NULL) {
|
---|
3143 | DataInHob = GET_GUID_HOB_DATA (GuidHob);
|
---|
3144 | CpuMpData = (CPU_MP_DATA *)(*(UINTN *)DataInHob);
|
---|
3145 | }
|
---|
3146 |
|
---|
3147 | return CpuMpData;
|
---|
3148 | }
|
---|
3149 |
|
---|
3150 | /**
|
---|
3151 | This service executes a caller provided function on all enabled CPUs.
|
---|
3152 |
|
---|
3153 | @param[in] Procedure A pointer to the function to be run on
|
---|
3154 | enabled APs of the system. See type
|
---|
3155 | EFI_AP_PROCEDURE.
|
---|
3156 | @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
---|
3157 | APs to return from Procedure, either for
|
---|
3158 | blocking or non-blocking mode. Zero means
|
---|
3159 | infinity. TimeoutInMicroseconds is ignored
|
---|
3160 | for BSP.
|
---|
3161 | @param[in] ProcedureArgument The parameter passed into Procedure for
|
---|
3162 | all APs.
|
---|
3163 |
|
---|
3164 | @retval EFI_SUCCESS In blocking mode, all CPUs have finished before
|
---|
3165 | the timeout expired.
|
---|
3166 | @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
|
---|
3167 | to all enabled CPUs.
|
---|
3168 | @retval EFI_DEVICE_ERROR Caller processor is AP.
|
---|
3169 | @retval EFI_NOT_READY Any enabled APs are busy.
|
---|
3170 | @retval EFI_NOT_READY MP Initialize Library is not initialized.
|
---|
3171 | @retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
---|
3172 | all enabled APs have finished.
|
---|
3173 | @retval EFI_INVALID_PARAMETER Procedure is NULL.
|
---|
3174 |
|
---|
3175 | **/
|
---|
3176 | EFI_STATUS
|
---|
3177 | EFIAPI
|
---|
3178 | MpInitLibStartupAllCPUs (
|
---|
3179 | IN EFI_AP_PROCEDURE Procedure,
|
---|
3180 | IN UINTN TimeoutInMicroseconds,
|
---|
3181 | IN VOID *ProcedureArgument OPTIONAL
|
---|
3182 | )
|
---|
3183 | {
|
---|
3184 | return StartupAllCPUsWorker (
|
---|
3185 | Procedure,
|
---|
3186 | FALSE,
|
---|
3187 | FALSE,
|
---|
3188 | NULL,
|
---|
3189 | TimeoutInMicroseconds,
|
---|
3190 | ProcedureArgument,
|
---|
3191 | NULL
|
---|
3192 | );
|
---|
3193 | }
|
---|
3194 |
|
---|
3195 | /**
|
---|
3196 | The function check if the specified Attr is set.
|
---|
3197 |
|
---|
3198 | @param[in] CurrentAttr The current attribute.
|
---|
3199 | @param[in] Attr The attribute to check.
|
---|
3200 |
|
---|
3201 | @retval TRUE The specified Attr is set.
|
---|
3202 | @retval FALSE The specified Attr is not set.
|
---|
3203 |
|
---|
3204 | **/
|
---|
3205 | STATIC
|
---|
3206 | BOOLEAN
|
---|
3207 | AmdMemEncryptionAttrCheck (
|
---|
3208 | IN UINT64 CurrentAttr,
|
---|
3209 | IN CONFIDENTIAL_COMPUTING_GUEST_ATTR Attr
|
---|
3210 | )
|
---|
3211 | {
|
---|
3212 | switch (Attr) {
|
---|
3213 | case CCAttrAmdSev:
|
---|
3214 | //
|
---|
3215 | // SEV is automatically enabled if SEV-ES or SEV-SNP is active.
|
---|
3216 | //
|
---|
3217 | return CurrentAttr >= CCAttrAmdSev;
|
---|
3218 | case CCAttrAmdSevEs:
|
---|
3219 | //
|
---|
3220 | // SEV-ES is automatically enabled if SEV-SNP is active.
|
---|
3221 | //
|
---|
3222 | return CurrentAttr >= CCAttrAmdSevEs;
|
---|
3223 | case CCAttrAmdSevSnp:
|
---|
3224 | return CurrentAttr == CCAttrAmdSevSnp;
|
---|
3225 | default:
|
---|
3226 | return FALSE;
|
---|
3227 | }
|
---|
3228 | }
|
---|
3229 |
|
---|
3230 | /**
|
---|
3231 | Check if the specified confidential computing attribute is active.
|
---|
3232 |
|
---|
3233 | @param[in] Attr The attribute to check.
|
---|
3234 |
|
---|
3235 | @retval TRUE The specified Attr is active.
|
---|
3236 | @retval FALSE The specified Attr is not active.
|
---|
3237 |
|
---|
3238 | **/
|
---|
3239 | BOOLEAN
|
---|
3240 | EFIAPI
|
---|
3241 | ConfidentialComputingGuestHas (
|
---|
3242 | IN CONFIDENTIAL_COMPUTING_GUEST_ATTR Attr
|
---|
3243 | )
|
---|
3244 | {
|
---|
3245 | UINT64 CurrentAttr;
|
---|
3246 |
|
---|
3247 | //
|
---|
3248 | // Get the current CC attribute.
|
---|
3249 | //
|
---|
3250 | CurrentAttr = PcdGet64 (PcdConfidentialComputingGuestAttr);
|
---|
3251 |
|
---|
3252 | //
|
---|
3253 | // If attr is for the AMD group then call AMD specific checks.
|
---|
3254 | //
|
---|
3255 | if (((RShiftU64 (CurrentAttr, 8)) & 0xff) == 1) {
|
---|
3256 | return AmdMemEncryptionAttrCheck (CurrentAttr, Attr);
|
---|
3257 | }
|
---|
3258 |
|
---|
3259 | return (CurrentAttr == Attr);
|
---|
3260 | }
|
---|