VirtualBox

source: vbox/trunk/src/VBox/Devices/Network/DevE1000.cpp@ 37608

Last change on this file since 37608 was 37324, checked in by vboxsync, 14 years ago

TM,Devices: Fixed default critical section screwup and adjusted its usage in the devices.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 232.1 KB
Line 
1/* $Id: DevE1000.cpp 37324 2011-06-03 16:28:03Z vboxsync $ */
2/** @file
3 * DevE1000 - Intel 82540EM Ethernet Controller Emulation.
4 *
5 * Implemented in accordance with the specification:
6 *
7 * PCI/PCI-X Family of Gigabit Ethernet Controllers Software Developer's Manual
8 * 82540EP/EM, 82541xx, 82544GC/EI, 82545GM/EM, 82546GB/EB, and 82547xx
9 *
10 * 317453-002 Revision 3.5
11 *
12 * @todo IPv6 checksum offloading support
13 * @todo VLAN checksum offloading support
14 * @todo Flexible Filter / Wakeup (optional?)
15 */
16
17/*
18 * Copyright (C) 2007-2010 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29#define LOG_GROUP LOG_GROUP_DEV_E1000
30
31//#define E1kLogRel(a) LogRel(a)
32#define E1kLogRel(a)
33
34/* Options */
35#define E1K_INIT_RA0
36#define E1K_LSC_ON_SLU
37#define E1K_ITR_ENABLED
38//#define E1K_GLOBAL_MUTEX
39//#define E1K_USE_TX_TIMERS
40//#define E1K_NO_TAD
41//#define E1K_REL_DEBUG
42//#define E1K_INT_STATS
43//#define E1K_REL_STATS
44//#define E1K_USE_SUPLIB_SEMEVENT
45//#define E1K_WITH_MSI
46
47#include <iprt/crc.h>
48#include <iprt/ctype.h>
49#include <iprt/net.h>
50#include <iprt/semaphore.h>
51#include <iprt/string.h>
52#include <iprt/uuid.h>
53#include <VBox/vmm/pdmdev.h>
54#include <VBox/vmm/pdmnetifs.h>
55#include <VBox/vmm/pdmnetinline.h>
56#include <VBox/param.h>
57#include "VBoxDD.h"
58
59#include "DevEEPROM.h"
60#include "DevE1000Phy.h"
61
62/* Little helpers ************************************************************/
63#undef htons
64#undef ntohs
65#undef htonl
66#undef ntohl
67#define htons(x) ((((x) & 0xff00) >> 8) | (((x) & 0x00ff) << 8))
68#define ntohs(x) htons(x)
69#define htonl(x) ASMByteSwapU32(x)
70#define ntohl(x) htonl(x)
71
72#ifndef DEBUG
73# ifdef E1K_REL_STATS
74# undef STAM_COUNTER_INC
75# undef STAM_PROFILE_ADV_START
76# undef STAM_PROFILE_ADV_STOP
77# define STAM_COUNTER_INC STAM_REL_COUNTER_INC
78# define STAM_PROFILE_ADV_START STAM_REL_PROFILE_ADV_START
79# define STAM_PROFILE_ADV_STOP STAM_REL_PROFILE_ADV_STOP
80# endif
81# ifdef E1K_REL_DEBUG
82# define DEBUG
83# define E1kLog(a) LogRel(a)
84# define E1kLog2(a) LogRel(a)
85# define E1kLog3(a) LogRel(a)
86//# define E1kLog3(a) do {} while (0)
87# else
88# define E1kLog(a) do {} while (0)
89# define E1kLog2(a) do {} while (0)
90# define E1kLog3(a) do {} while (0)
91# endif
92#else
93# define E1kLog(a) Log(a)
94# define E1kLog2(a) Log2(a)
95# define E1kLog3(a) Log3(a)
96//# define E1kLog(a) do {} while (0)
97//# define E1kLog2(a) do {} while (0)
98//# define E1kLog3(a) do {} while (0)
99#endif
100
101//#undef DEBUG
102
103#define INSTANCE(pState) pState->szInstance
104#define STATE_TO_DEVINS(pState) (((E1KSTATE *)pState)->CTX_SUFF(pDevIns))
105#define E1K_RELOCATE(p, o) *(RTHCUINTPTR *)&p += o
106
107#define E1K_INC_CNT32(cnt) \
108do { \
109 if (cnt < UINT32_MAX) \
110 cnt++; \
111} while (0)
112
113#define E1K_ADD_CNT64(cntLo, cntHi, val) \
114do { \
115 uint64_t u64Cnt = RT_MAKE_U64(cntLo, cntHi); \
116 uint64_t tmp = u64Cnt; \
117 u64Cnt += val; \
118 if (tmp > u64Cnt ) \
119 u64Cnt = UINT64_MAX; \
120 cntLo = (uint32_t)u64Cnt; \
121 cntHi = (uint32_t)(u64Cnt >> 32); \
122} while (0)
123
124#ifdef E1K_INT_STATS
125# define E1K_INC_ISTAT_CNT(cnt) ++cnt
126#else /* E1K_INT_STATS */
127# define E1K_INC_ISTAT_CNT(cnt)
128#endif /* E1K_INT_STATS */
129
130
131/*****************************************************************************/
132
133typedef uint32_t E1KCHIP;
134#define E1K_CHIP_82540EM 0
135#define E1K_CHIP_82543GC 1
136#define E1K_CHIP_82545EM 2
137
138struct E1kChips
139{
140 uint16_t uPCIVendorId;
141 uint16_t uPCIDeviceId;
142 uint16_t uPCISubsystemVendorId;
143 uint16_t uPCISubsystemId;
144 const char *pcszName;
145} g_Chips[] =
146{
147 /* Vendor Device SSVendor SubSys Name */
148 { 0x8086,
149 /* Temporary code, as MSI-aware driver dislike 0x100E. How to do that right? */
150#ifdef E1K_WITH_MSI
151 0x105E,
152#else
153 0x100E,
154#endif
155 0x8086, 0x001E, "82540EM" }, /* Intel 82540EM-A in Intel PRO/1000 MT Desktop */
156 { 0x8086, 0x1004, 0x8086, 0x1004, "82543GC" }, /* Intel 82543GC in Intel PRO/1000 T Server */
157 { 0x8086, 0x100F, 0x15AD, 0x0750, "82545EM" } /* Intel 82545EM-A in VMWare Network Adapter */
158};
159
160
161/* The size of register area mapped to I/O space */
162#define E1K_IOPORT_SIZE 0x8
163/* The size of memory-mapped register area */
164#define E1K_MM_SIZE 0x20000
165
166#define E1K_MAX_TX_PKT_SIZE 16288
167#define E1K_MAX_RX_PKT_SIZE 16384
168
169/*****************************************************************************/
170
171/** Gets the specfieid bits from the register. */
172#define GET_BITS(reg, bits) ((reg & reg##_##bits##_MASK) >> reg##_##bits##_SHIFT)
173#define GET_BITS_V(val, reg, bits) ((val & reg##_##bits##_MASK) >> reg##_##bits##_SHIFT)
174#define BITS(reg, bits, bitval) (bitval << reg##_##bits##_SHIFT)
175#define SET_BITS(reg, bits, bitval) do { reg = (reg & ~reg##_##bits##_MASK) | (bitval << reg##_##bits##_SHIFT); } while (0)
176#define SET_BITS_V(val, reg, bits, bitval) do { val = (val & ~reg##_##bits##_MASK) | (bitval << reg##_##bits##_SHIFT); } while (0)
177
178#define CTRL_SLU 0x00000040
179#define CTRL_MDIO 0x00100000
180#define CTRL_MDC 0x00200000
181#define CTRL_MDIO_DIR 0x01000000
182#define CTRL_MDC_DIR 0x02000000
183#define CTRL_RESET 0x04000000
184#define CTRL_VME 0x40000000
185
186#define STATUS_LU 0x00000002
187
188#define EECD_EE_WIRES 0x0F
189#define EECD_EE_REQ 0x40
190#define EECD_EE_GNT 0x80
191
192#define EERD_START 0x00000001
193#define EERD_DONE 0x00000010
194#define EERD_DATA_MASK 0xFFFF0000
195#define EERD_DATA_SHIFT 16
196#define EERD_ADDR_MASK 0x0000FF00
197#define EERD_ADDR_SHIFT 8
198
199#define MDIC_DATA_MASK 0x0000FFFF
200#define MDIC_DATA_SHIFT 0
201#define MDIC_REG_MASK 0x001F0000
202#define MDIC_REG_SHIFT 16
203#define MDIC_PHY_MASK 0x03E00000
204#define MDIC_PHY_SHIFT 21
205#define MDIC_OP_WRITE 0x04000000
206#define MDIC_OP_READ 0x08000000
207#define MDIC_READY 0x10000000
208#define MDIC_INT_EN 0x20000000
209#define MDIC_ERROR 0x40000000
210
211#define TCTL_EN 0x00000002
212#define TCTL_PSP 0x00000008
213
214#define RCTL_EN 0x00000002
215#define RCTL_UPE 0x00000008
216#define RCTL_MPE 0x00000010
217#define RCTL_LPE 0x00000020
218#define RCTL_LBM_MASK 0x000000C0
219#define RCTL_LBM_SHIFT 6
220#define RCTL_RDMTS_MASK 0x00000300
221#define RCTL_RDMTS_SHIFT 8
222#define RCTL_LBM_TCVR 3 /**< PHY or external SerDes loopback. */
223#define RCTL_MO_MASK 0x00003000
224#define RCTL_MO_SHIFT 12
225#define RCTL_BAM 0x00008000
226#define RCTL_BSIZE_MASK 0x00030000
227#define RCTL_BSIZE_SHIFT 16
228#define RCTL_VFE 0x00040000
229#define RCTL_BSEX 0x02000000
230#define RCTL_SECRC 0x04000000
231
232#define ICR_TXDW 0x00000001
233#define ICR_TXQE 0x00000002
234#define ICR_LSC 0x00000004
235#define ICR_RXDMT0 0x00000010
236#define ICR_RXT0 0x00000080
237#define ICR_TXD_LOW 0x00008000
238#define RDTR_FPD 0x80000000
239
240#define PBA_st ((PBAST*)(pState->auRegs + PBA_IDX))
241typedef struct
242{
243 unsigned rxa : 7;
244 unsigned rxa_r : 9;
245 unsigned txa : 16;
246} PBAST;
247AssertCompileSize(PBAST, 4);
248
249#define TXDCTL_WTHRESH_MASK 0x003F0000
250#define TXDCTL_WTHRESH_SHIFT 16
251#define TXDCTL_LWTHRESH_MASK 0xFE000000
252#define TXDCTL_LWTHRESH_SHIFT 25
253
254#define RXCSUM_PCSS_MASK 0x000000FF
255#define RXCSUM_PCSS_SHIFT 0
256
257/* Register access macros ****************************************************/
258#define CTRL pState->auRegs[CTRL_IDX]
259#define STATUS pState->auRegs[STATUS_IDX]
260#define EECD pState->auRegs[EECD_IDX]
261#define EERD pState->auRegs[EERD_IDX]
262#define CTRL_EXT pState->auRegs[CTRL_EXT_IDX]
263#define FLA pState->auRegs[FLA_IDX]
264#define MDIC pState->auRegs[MDIC_IDX]
265#define FCAL pState->auRegs[FCAL_IDX]
266#define FCAH pState->auRegs[FCAH_IDX]
267#define FCT pState->auRegs[FCT_IDX]
268#define VET pState->auRegs[VET_IDX]
269#define ICR pState->auRegs[ICR_IDX]
270#define ITR pState->auRegs[ITR_IDX]
271#define ICS pState->auRegs[ICS_IDX]
272#define IMS pState->auRegs[IMS_IDX]
273#define IMC pState->auRegs[IMC_IDX]
274#define RCTL pState->auRegs[RCTL_IDX]
275#define FCTTV pState->auRegs[FCTTV_IDX]
276#define TXCW pState->auRegs[TXCW_IDX]
277#define RXCW pState->auRegs[RXCW_IDX]
278#define TCTL pState->auRegs[TCTL_IDX]
279#define TIPG pState->auRegs[TIPG_IDX]
280#define AIFS pState->auRegs[AIFS_IDX]
281#define LEDCTL pState->auRegs[LEDCTL_IDX]
282#define PBA pState->auRegs[PBA_IDX]
283#define FCRTL pState->auRegs[FCRTL_IDX]
284#define FCRTH pState->auRegs[FCRTH_IDX]
285#define RDFH pState->auRegs[RDFH_IDX]
286#define RDFT pState->auRegs[RDFT_IDX]
287#define RDFHS pState->auRegs[RDFHS_IDX]
288#define RDFTS pState->auRegs[RDFTS_IDX]
289#define RDFPC pState->auRegs[RDFPC_IDX]
290#define RDBAL pState->auRegs[RDBAL_IDX]
291#define RDBAH pState->auRegs[RDBAH_IDX]
292#define RDLEN pState->auRegs[RDLEN_IDX]
293#define RDH pState->auRegs[RDH_IDX]
294#define RDT pState->auRegs[RDT_IDX]
295#define RDTR pState->auRegs[RDTR_IDX]
296#define RXDCTL pState->auRegs[RXDCTL_IDX]
297#define RADV pState->auRegs[RADV_IDX]
298#define RSRPD pState->auRegs[RSRPD_IDX]
299#define TXDMAC pState->auRegs[TXDMAC_IDX]
300#define TDFH pState->auRegs[TDFH_IDX]
301#define TDFT pState->auRegs[TDFT_IDX]
302#define TDFHS pState->auRegs[TDFHS_IDX]
303#define TDFTS pState->auRegs[TDFTS_IDX]
304#define TDFPC pState->auRegs[TDFPC_IDX]
305#define TDBAL pState->auRegs[TDBAL_IDX]
306#define TDBAH pState->auRegs[TDBAH_IDX]
307#define TDLEN pState->auRegs[TDLEN_IDX]
308#define TDH pState->auRegs[TDH_IDX]
309#define TDT pState->auRegs[TDT_IDX]
310#define TIDV pState->auRegs[TIDV_IDX]
311#define TXDCTL pState->auRegs[TXDCTL_IDX]
312#define TADV pState->auRegs[TADV_IDX]
313#define TSPMT pState->auRegs[TSPMT_IDX]
314#define CRCERRS pState->auRegs[CRCERRS_IDX]
315#define ALGNERRC pState->auRegs[ALGNERRC_IDX]
316#define SYMERRS pState->auRegs[SYMERRS_IDX]
317#define RXERRC pState->auRegs[RXERRC_IDX]
318#define MPC pState->auRegs[MPC_IDX]
319#define SCC pState->auRegs[SCC_IDX]
320#define ECOL pState->auRegs[ECOL_IDX]
321#define MCC pState->auRegs[MCC_IDX]
322#define LATECOL pState->auRegs[LATECOL_IDX]
323#define COLC pState->auRegs[COLC_IDX]
324#define DC pState->auRegs[DC_IDX]
325#define TNCRS pState->auRegs[TNCRS_IDX]
326#define SEC pState->auRegs[SEC_IDX]
327#define CEXTERR pState->auRegs[CEXTERR_IDX]
328#define RLEC pState->auRegs[RLEC_IDX]
329#define XONRXC pState->auRegs[XONRXC_IDX]
330#define XONTXC pState->auRegs[XONTXC_IDX]
331#define XOFFRXC pState->auRegs[XOFFRXC_IDX]
332#define XOFFTXC pState->auRegs[XOFFTXC_IDX]
333#define FCRUC pState->auRegs[FCRUC_IDX]
334#define PRC64 pState->auRegs[PRC64_IDX]
335#define PRC127 pState->auRegs[PRC127_IDX]
336#define PRC255 pState->auRegs[PRC255_IDX]
337#define PRC511 pState->auRegs[PRC511_IDX]
338#define PRC1023 pState->auRegs[PRC1023_IDX]
339#define PRC1522 pState->auRegs[PRC1522_IDX]
340#define GPRC pState->auRegs[GPRC_IDX]
341#define BPRC pState->auRegs[BPRC_IDX]
342#define MPRC pState->auRegs[MPRC_IDX]
343#define GPTC pState->auRegs[GPTC_IDX]
344#define GORCL pState->auRegs[GORCL_IDX]
345#define GORCH pState->auRegs[GORCH_IDX]
346#define GOTCL pState->auRegs[GOTCL_IDX]
347#define GOTCH pState->auRegs[GOTCH_IDX]
348#define RNBC pState->auRegs[RNBC_IDX]
349#define RUC pState->auRegs[RUC_IDX]
350#define RFC pState->auRegs[RFC_IDX]
351#define ROC pState->auRegs[ROC_IDX]
352#define RJC pState->auRegs[RJC_IDX]
353#define MGTPRC pState->auRegs[MGTPRC_IDX]
354#define MGTPDC pState->auRegs[MGTPDC_IDX]
355#define MGTPTC pState->auRegs[MGTPTC_IDX]
356#define TORL pState->auRegs[TORL_IDX]
357#define TORH pState->auRegs[TORH_IDX]
358#define TOTL pState->auRegs[TOTL_IDX]
359#define TOTH pState->auRegs[TOTH_IDX]
360#define TPR pState->auRegs[TPR_IDX]
361#define TPT pState->auRegs[TPT_IDX]
362#define PTC64 pState->auRegs[PTC64_IDX]
363#define PTC127 pState->auRegs[PTC127_IDX]
364#define PTC255 pState->auRegs[PTC255_IDX]
365#define PTC511 pState->auRegs[PTC511_IDX]
366#define PTC1023 pState->auRegs[PTC1023_IDX]
367#define PTC1522 pState->auRegs[PTC1522_IDX]
368#define MPTC pState->auRegs[MPTC_IDX]
369#define BPTC pState->auRegs[BPTC_IDX]
370#define TSCTC pState->auRegs[TSCTC_IDX]
371#define TSCTFC pState->auRegs[TSCTFC_IDX]
372#define RXCSUM pState->auRegs[RXCSUM_IDX]
373#define WUC pState->auRegs[WUC_IDX]
374#define WUFC pState->auRegs[WUFC_IDX]
375#define WUS pState->auRegs[WUS_IDX]
376#define MANC pState->auRegs[MANC_IDX]
377#define IPAV pState->auRegs[IPAV_IDX]
378#define WUPL pState->auRegs[WUPL_IDX]
379
380/**
381 * Indices of memory-mapped registers in register table
382 */
383typedef enum
384{
385 CTRL_IDX,
386 STATUS_IDX,
387 EECD_IDX,
388 EERD_IDX,
389 CTRL_EXT_IDX,
390 FLA_IDX,
391 MDIC_IDX,
392 FCAL_IDX,
393 FCAH_IDX,
394 FCT_IDX,
395 VET_IDX,
396 ICR_IDX,
397 ITR_IDX,
398 ICS_IDX,
399 IMS_IDX,
400 IMC_IDX,
401 RCTL_IDX,
402 FCTTV_IDX,
403 TXCW_IDX,
404 RXCW_IDX,
405 TCTL_IDX,
406 TIPG_IDX,
407 AIFS_IDX,
408 LEDCTL_IDX,
409 PBA_IDX,
410 FCRTL_IDX,
411 FCRTH_IDX,
412 RDFH_IDX,
413 RDFT_IDX,
414 RDFHS_IDX,
415 RDFTS_IDX,
416 RDFPC_IDX,
417 RDBAL_IDX,
418 RDBAH_IDX,
419 RDLEN_IDX,
420 RDH_IDX,
421 RDT_IDX,
422 RDTR_IDX,
423 RXDCTL_IDX,
424 RADV_IDX,
425 RSRPD_IDX,
426 TXDMAC_IDX,
427 TDFH_IDX,
428 TDFT_IDX,
429 TDFHS_IDX,
430 TDFTS_IDX,
431 TDFPC_IDX,
432 TDBAL_IDX,
433 TDBAH_IDX,
434 TDLEN_IDX,
435 TDH_IDX,
436 TDT_IDX,
437 TIDV_IDX,
438 TXDCTL_IDX,
439 TADV_IDX,
440 TSPMT_IDX,
441 CRCERRS_IDX,
442 ALGNERRC_IDX,
443 SYMERRS_IDX,
444 RXERRC_IDX,
445 MPC_IDX,
446 SCC_IDX,
447 ECOL_IDX,
448 MCC_IDX,
449 LATECOL_IDX,
450 COLC_IDX,
451 DC_IDX,
452 TNCRS_IDX,
453 SEC_IDX,
454 CEXTERR_IDX,
455 RLEC_IDX,
456 XONRXC_IDX,
457 XONTXC_IDX,
458 XOFFRXC_IDX,
459 XOFFTXC_IDX,
460 FCRUC_IDX,
461 PRC64_IDX,
462 PRC127_IDX,
463 PRC255_IDX,
464 PRC511_IDX,
465 PRC1023_IDX,
466 PRC1522_IDX,
467 GPRC_IDX,
468 BPRC_IDX,
469 MPRC_IDX,
470 GPTC_IDX,
471 GORCL_IDX,
472 GORCH_IDX,
473 GOTCL_IDX,
474 GOTCH_IDX,
475 RNBC_IDX,
476 RUC_IDX,
477 RFC_IDX,
478 ROC_IDX,
479 RJC_IDX,
480 MGTPRC_IDX,
481 MGTPDC_IDX,
482 MGTPTC_IDX,
483 TORL_IDX,
484 TORH_IDX,
485 TOTL_IDX,
486 TOTH_IDX,
487 TPR_IDX,
488 TPT_IDX,
489 PTC64_IDX,
490 PTC127_IDX,
491 PTC255_IDX,
492 PTC511_IDX,
493 PTC1023_IDX,
494 PTC1522_IDX,
495 MPTC_IDX,
496 BPTC_IDX,
497 TSCTC_IDX,
498 TSCTFC_IDX,
499 RXCSUM_IDX,
500 WUC_IDX,
501 WUFC_IDX,
502 WUS_IDX,
503 MANC_IDX,
504 IPAV_IDX,
505 WUPL_IDX,
506 MTA_IDX,
507 RA_IDX,
508 VFTA_IDX,
509 IP4AT_IDX,
510 IP6AT_IDX,
511 WUPM_IDX,
512 FFLT_IDX,
513 FFMT_IDX,
514 FFVT_IDX,
515 PBM_IDX,
516 RA_82542_IDX,
517 MTA_82542_IDX,
518 VFTA_82542_IDX,
519 E1K_NUM_OF_REGS
520} E1kRegIndex;
521
522#define E1K_NUM_OF_32BIT_REGS MTA_IDX
523
524
525/**
526 * Define E1000-specific EEPROM layout.
527 */
528class E1kEEPROM
529{
530 public:
531 EEPROM93C46 eeprom;
532
533#ifdef IN_RING3
534 /**
535 * Initialize EEPROM content.
536 *
537 * @param macAddr MAC address of E1000.
538 */
539 void init(RTMAC &macAddr)
540 {
541 eeprom.init();
542 memcpy(eeprom.m_au16Data, macAddr.au16, sizeof(macAddr.au16));
543 eeprom.m_au16Data[0x04] = 0xFFFF;
544 /*
545 * bit 3 - full support for power management
546 * bit 10 - full duplex
547 */
548 eeprom.m_au16Data[0x0A] = 0x4408;
549 eeprom.m_au16Data[0x0B] = 0x001E;
550 eeprom.m_au16Data[0x0C] = 0x8086;
551 eeprom.m_au16Data[0x0D] = 0x100E;
552 eeprom.m_au16Data[0x0E] = 0x8086;
553 eeprom.m_au16Data[0x0F] = 0x3040;
554 eeprom.m_au16Data[0x21] = 0x7061;
555 eeprom.m_au16Data[0x22] = 0x280C;
556 eeprom.m_au16Data[0x23] = 0x00C8;
557 eeprom.m_au16Data[0x24] = 0x00C8;
558 eeprom.m_au16Data[0x2F] = 0x0602;
559 updateChecksum();
560 };
561
562 /**
563 * Compute the checksum as required by E1000 and store it
564 * in the last word.
565 */
566 void updateChecksum()
567 {
568 uint16_t u16Checksum = 0;
569
570 for (int i = 0; i < eeprom.SIZE-1; i++)
571 u16Checksum += eeprom.m_au16Data[i];
572 eeprom.m_au16Data[eeprom.SIZE-1] = 0xBABA - u16Checksum;
573 };
574
575 /**
576 * First 6 bytes of EEPROM contain MAC address.
577 *
578 * @returns MAC address of E1000.
579 */
580 void getMac(PRTMAC pMac)
581 {
582 memcpy(pMac->au16, eeprom.m_au16Data, sizeof(pMac->au16));
583 };
584
585 uint32_t read()
586 {
587 return eeprom.read();
588 }
589
590 void write(uint32_t u32Wires)
591 {
592 eeprom.write(u32Wires);
593 }
594
595 bool readWord(uint32_t u32Addr, uint16_t *pu16Value)
596 {
597 return eeprom.readWord(u32Addr, pu16Value);
598 }
599
600 int load(PSSMHANDLE pSSM)
601 {
602 return eeprom.load(pSSM);
603 }
604
605 void save(PSSMHANDLE pSSM)
606 {
607 eeprom.save(pSSM);
608 }
609#endif /* IN_RING3 */
610};
611
612
613struct E1kRxDStatus
614{
615 /** @name Descriptor Status field (3.2.3.1)
616 * @{ */
617 unsigned fDD : 1; /**< Descriptor Done. */
618 unsigned fEOP : 1; /**< End of packet. */
619 unsigned fIXSM : 1; /**< Ignore checksum indication. */
620 unsigned fVP : 1; /**< VLAN, matches VET. */
621 unsigned : 1;
622 unsigned fTCPCS : 1; /**< RCP Checksum calculated on the packet. */
623 unsigned fIPCS : 1; /**< IP Checksum calculated on the packet. */
624 unsigned fPIF : 1; /**< Passed in-exact filter */
625 /** @} */
626 /** @name Descriptor Errors field (3.2.3.2)
627 * (Only valid when fEOP and fDD are set.)
628 * @{ */
629 unsigned fCE : 1; /**< CRC or alignment error. */
630 unsigned : 4; /**< Reserved, varies with different models... */
631 unsigned fTCPE : 1; /**< TCP/UDP checksum error. */
632 unsigned fIPE : 1; /**< IP Checksum error. */
633 unsigned fRXE : 1; /**< RX Data error. */
634 /** @} */
635 /** @name Descriptor Special field (3.2.3.3)
636 * @{ */
637 unsigned u12VLAN : 12; /**< VLAN identifier. */
638 unsigned fCFI : 1; /**< Canonical form indicator (VLAN). */
639 unsigned u3PRI : 3; /**< User priority (VLAN). */
640 /** @} */
641};
642typedef struct E1kRxDStatus E1KRXDST;
643
644struct E1kRxDesc_st
645{
646 uint64_t u64BufAddr; /**< Address of data buffer */
647 uint16_t u16Length; /**< Length of data in buffer */
648 uint16_t u16Checksum; /**< Packet checksum */
649 E1KRXDST status;
650};
651typedef struct E1kRxDesc_st E1KRXDESC;
652AssertCompileSize(E1KRXDESC, 16);
653
654#define E1K_DTYP_LEGACY -1
655#define E1K_DTYP_CONTEXT 0
656#define E1K_DTYP_DATA 1
657
658struct E1kTDLegacy
659{
660 uint64_t u64BufAddr; /**< Address of data buffer */
661 struct TDLCmd_st
662 {
663 unsigned u16Length : 16;
664 unsigned u8CSO : 8;
665 /* CMD field : 8 */
666 unsigned fEOP : 1;
667 unsigned fIFCS : 1;
668 unsigned fIC : 1;
669 unsigned fRS : 1;
670 unsigned fRSV : 1;
671 unsigned fDEXT : 1;
672 unsigned fVLE : 1;
673 unsigned fIDE : 1;
674 } cmd;
675 struct TDLDw3_st
676 {
677 /* STA field */
678 unsigned fDD : 1;
679 unsigned fEC : 1;
680 unsigned fLC : 1;
681 unsigned fTURSV : 1;
682 /* RSV field */
683 unsigned u4RSV : 4;
684 /* CSS field */
685 unsigned u8CSS : 8;
686 /* Special field*/
687 unsigned u12VLAN : 12;
688 unsigned fCFI : 1;
689 unsigned u3PRI : 3;
690 } dw3;
691};
692
693/**
694 * TCP/IP Context Transmit Descriptor, section 3.3.6.
695 */
696struct E1kTDContext
697{
698 struct CheckSum_st
699 {
700 /** TSE: Header start. !TSE: Checksum start. */
701 unsigned u8CSS : 8;
702 /** Checksum offset - where to store it. */
703 unsigned u8CSO : 8;
704 /** Checksum ending (inclusive) offset, 0 = end of packet. */
705 unsigned u16CSE : 16;
706 } ip;
707 struct CheckSum_st tu;
708 struct TDCDw2_st
709 {
710 /** TSE: The total number of payload bytes for this context. Sans header. */
711 unsigned u20PAYLEN : 20;
712 /** The descriptor type - E1K_DTYP_CONTEXT (0). */
713 unsigned u4DTYP : 4;
714 /** TUCMD field, 8 bits
715 * @{ */
716 /** TSE: TCP (set) or UDP (clear). */
717 unsigned fTCP : 1;
718 /** TSE: IPv4 (set) or IPv6 (clear) - for finding the payload length field in
719 * the IP header. Does not affect the checksumming.
720 * @remarks 82544GC/EI interprets a cleared field differently. */
721 unsigned fIP : 1;
722 /** TSE: TCP segmentation enable. When clear the context describes */
723 unsigned fTSE : 1;
724 /** Report status (only applies to dw3.fDD for here). */
725 unsigned fRS : 1;
726 /** Reserved, MBZ. */
727 unsigned fRSV1 : 1;
728 /** Descriptor extension, must be set for this descriptor type. */
729 unsigned fDEXT : 1;
730 /** Reserved, MBZ. */
731 unsigned fRSV2 : 1;
732 /** Interrupt delay enable. */
733 unsigned fIDE : 1;
734 /** @} */
735 } dw2;
736 struct TDCDw3_st
737 {
738 /** Descriptor Done. */
739 unsigned fDD : 1;
740 /** Reserved, MBZ. */
741 unsigned u7RSV : 7;
742 /** TSO: The header (prototype) length (Ethernet[, VLAN tag], IP, TCP/UDP. */
743 unsigned u8HDRLEN : 8;
744 /** TSO: Maximum segment size. */
745 unsigned u16MSS : 16;
746 } dw3;
747};
748typedef struct E1kTDContext E1KTXCTX;
749
750/**
751 * TCP/IP Data Transmit Descriptor, section 3.3.7.
752 */
753struct E1kTDData
754{
755 uint64_t u64BufAddr; /**< Address of data buffer */
756 struct TDDCmd_st
757 {
758 /** The total length of data pointed to by this descriptor. */
759 unsigned u20DTALEN : 20;
760 /** The descriptor type - E1K_DTYP_DATA (1). */
761 unsigned u4DTYP : 4;
762 /** @name DCMD field, 8 bits (3.3.7.1).
763 * @{ */
764 /** End of packet. Note TSCTFC update. */
765 unsigned fEOP : 1;
766 /** Insert Ethernet FCS/CRC (requires fEOP to be set). */
767 unsigned fIFCS : 1;
768 /** Use the TSE context when set and the normal when clear. */
769 unsigned fTSE : 1;
770 /** Report status (dw3.STA). */
771 unsigned fRS : 1;
772 /** Reserved. 82544GC/EI defines this report packet set (RPS). */
773 unsigned fRSV : 1;
774 /** Descriptor extension, must be set for this descriptor type. */
775 unsigned fDEXT : 1;
776 /** VLAN enable, requires CTRL.VME, auto enables FCS/CRC.
777 * Insert dw3.SPECIAL after ethernet header. */
778 unsigned fVLE : 1;
779 /** Interrupt delay enable. */
780 unsigned fIDE : 1;
781 /** @} */
782 } cmd;
783 struct TDDDw3_st
784 {
785 /** @name STA field (3.3.7.2)
786 * @{ */
787 unsigned fDD : 1; /**< Descriptor done. */
788 unsigned fEC : 1; /**< Excess collision. */
789 unsigned fLC : 1; /**< Late collision. */
790 /** Reserved, except for the usual oddball (82544GC/EI) where it's called TU. */
791 unsigned fTURSV : 1;
792 /** @} */
793 unsigned u4RSV : 4; /**< Reserved field, MBZ. */
794 /** @name POPTS (Packet Option) field (3.3.7.3)
795 * @{ */
796 unsigned fIXSM : 1; /**< Insert IP checksum. */
797 unsigned fTXSM : 1; /**< Insert TCP/UDP checksum. */
798 unsigned u6RSV : 6; /**< Reserved, MBZ. */
799 /** @} */
800 /** @name SPECIAL field - VLAN tag to be inserted after ethernet header.
801 * Requires fEOP, fVLE and CTRL.VME to be set.
802 * @{ */
803 unsigned u12VLAN : 12; /**< VLAN identifier. */
804 unsigned fCFI : 1; /**< Canonical form indicator (VLAN). */
805 unsigned u3PRI : 3; /**< User priority (VLAN). */
806 /** @} */
807 } dw3;
808};
809typedef struct E1kTDData E1KTXDAT;
810
811union E1kTxDesc
812{
813 struct E1kTDLegacy legacy;
814 struct E1kTDContext context;
815 struct E1kTDData data;
816};
817typedef union E1kTxDesc E1KTXDESC;
818AssertCompileSize(E1KTXDESC, 16);
819
820#define RA_CTL_AS 0x0003
821#define RA_CTL_AV 0x8000
822
823union E1kRecAddr
824{
825 uint32_t au32[32];
826 struct RAArray
827 {
828 uint8_t addr[6];
829 uint16_t ctl;
830 } array[16];
831};
832typedef struct E1kRecAddr::RAArray E1KRAELEM;
833typedef union E1kRecAddr E1KRA;
834AssertCompileSize(E1KRA, 8*16);
835
836#define E1K_IP_RF 0x8000 /* reserved fragment flag */
837#define E1K_IP_DF 0x4000 /* dont fragment flag */
838#define E1K_IP_MF 0x2000 /* more fragments flag */
839#define E1K_IP_OFFMASK 0x1fff /* mask for fragmenting bits */
840
841/** @todo use+extend RTNETIPV4 */
842struct E1kIpHeader
843{
844 /* type of service / version / header length */
845 uint16_t tos_ver_hl;
846 /* total length */
847 uint16_t total_len;
848 /* identification */
849 uint16_t ident;
850 /* fragment offset field */
851 uint16_t offset;
852 /* time to live / protocol*/
853 uint16_t ttl_proto;
854 /* checksum */
855 uint16_t chksum;
856 /* source IP address */
857 uint32_t src;
858 /* destination IP address */
859 uint32_t dest;
860};
861AssertCompileSize(struct E1kIpHeader, 20);
862
863#define E1K_TCP_FIN 0x01U
864#define E1K_TCP_SYN 0x02U
865#define E1K_TCP_RST 0x04U
866#define E1K_TCP_PSH 0x08U
867#define E1K_TCP_ACK 0x10U
868#define E1K_TCP_URG 0x20U
869#define E1K_TCP_ECE 0x40U
870#define E1K_TCP_CWR 0x80U
871
872#define E1K_TCP_FLAGS 0x3fU
873
874/** @todo use+extend RTNETTCP */
875struct E1kTcpHeader
876{
877 uint16_t src;
878 uint16_t dest;
879 uint32_t seqno;
880 uint32_t ackno;
881 uint16_t hdrlen_flags;
882 uint16_t wnd;
883 uint16_t chksum;
884 uint16_t urgp;
885};
886AssertCompileSize(struct E1kTcpHeader, 20);
887
888
889/** The current Saved state version. */
890#define E1K_SAVEDSTATE_VERSION 2
891/** Saved state version for VirtualBox 3.0 and earlier.
892 * This did not include the configuration part nor the E1kEEPROM. */
893#define E1K_SAVEDSTATE_VERSION_VBOX_30 1
894
895/**
896 * Device state structure. Holds the current state of device.
897 *
898 * @implements PDMINETWORKDOWN
899 * @implements PDMINETWORKCONFIG
900 * @implements PDMILEDPORTS
901 */
902struct E1kState_st
903{
904 char szInstance[8]; /**< Instance name, e.g. E1000#1. */
905 PDMIBASE IBase;
906 PDMINETWORKDOWN INetworkDown;
907 PDMINETWORKCONFIG INetworkConfig;
908 PDMILEDPORTS ILeds; /**< LED interface */
909 R3PTRTYPE(PPDMIBASE) pDrvBase; /**< Attached network driver. */
910 R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector;
911
912 PPDMDEVINSR3 pDevInsR3; /**< Device instance - R3. */
913 R3PTRTYPE(PPDMQUEUE) pTxQueueR3; /**< Transmit queue - R3. */
914 R3PTRTYPE(PPDMQUEUE) pCanRxQueueR3; /**< Rx wakeup signaller - R3. */
915 PPDMINETWORKUPR3 pDrvR3; /**< Attached network driver - R3. */
916 PTMTIMERR3 pRIDTimerR3; /**< Receive Interrupt Delay Timer - R3. */
917 PTMTIMERR3 pRADTimerR3; /**< Receive Absolute Delay Timer - R3. */
918 PTMTIMERR3 pTIDTimerR3; /**< Transmit Interrupt Delay Timer - R3. */
919 PTMTIMERR3 pTADTimerR3; /**< Transmit Absolute Delay Timer - R3. */
920 PTMTIMERR3 pIntTimerR3; /**< Late Interrupt Timer - R3. */
921 PTMTIMERR3 pLUTimerR3; /**< Link Up(/Restore) Timer. */
922 /** The scatter / gather buffer used for the current outgoing packet - R3. */
923 R3PTRTYPE(PPDMSCATTERGATHER) pTxSgR3;
924
925 PPDMDEVINSR0 pDevInsR0; /**< Device instance - R0. */
926 R0PTRTYPE(PPDMQUEUE) pTxQueueR0; /**< Transmit queue - R0. */
927 R0PTRTYPE(PPDMQUEUE) pCanRxQueueR0; /**< Rx wakeup signaller - R0. */
928 PPDMINETWORKUPR0 pDrvR0; /**< Attached network driver - R0. */
929 PTMTIMERR0 pRIDTimerR0; /**< Receive Interrupt Delay Timer - R0. */
930 PTMTIMERR0 pRADTimerR0; /**< Receive Absolute Delay Timer - R0. */
931 PTMTIMERR0 pTIDTimerR0; /**< Transmit Interrupt Delay Timer - R0. */
932 PTMTIMERR0 pTADTimerR0; /**< Transmit Absolute Delay Timer - R0. */
933 PTMTIMERR0 pIntTimerR0; /**< Late Interrupt Timer - R0. */
934 PTMTIMERR0 pLUTimerR0; /**< Link Up(/Restore) Timer - R0. */
935 /** The scatter / gather buffer used for the current outgoing packet - R0. */
936 R0PTRTYPE(PPDMSCATTERGATHER) pTxSgR0;
937
938 PPDMDEVINSRC pDevInsRC; /**< Device instance - RC. */
939 RCPTRTYPE(PPDMQUEUE) pTxQueueRC; /**< Transmit queue - RC. */
940 RCPTRTYPE(PPDMQUEUE) pCanRxQueueRC; /**< Rx wakeup signaller - RC. */
941 PPDMINETWORKUPRC pDrvRC; /**< Attached network driver - RC. */
942 PTMTIMERRC pRIDTimerRC; /**< Receive Interrupt Delay Timer - RC. */
943 PTMTIMERRC pRADTimerRC; /**< Receive Absolute Delay Timer - RC. */
944 PTMTIMERRC pTIDTimerRC; /**< Transmit Interrupt Delay Timer - RC. */
945 PTMTIMERRC pTADTimerRC; /**< Transmit Absolute Delay Timer - RC. */
946 PTMTIMERRC pIntTimerRC; /**< Late Interrupt Timer - RC. */
947 PTMTIMERRC pLUTimerRC; /**< Link Up(/Restore) Timer - RC. */
948 /** The scatter / gather buffer used for the current outgoing packet - RC. */
949 RCPTRTYPE(PPDMSCATTERGATHER) pTxSgRC;
950 RTRCPTR RCPtrAlignment;
951
952#if HC_ARCH_BITS == 32
953 uint32_t Alignment1;
954#endif
955 PDMCRITSECT cs; /**< Critical section - what is it protecting? */
956#ifndef E1K_GLOBAL_MUTEX
957 PDMCRITSECT csRx; /**< RX Critical section. */
958// PDMCRITSECT csTx; /**< TX Critical section. */
959#endif
960 /** Base address of memory-mapped registers. */
961 RTGCPHYS addrMMReg;
962 /** MAC address obtained from the configuration. */
963 RTMAC macConfigured;
964 /** Base port of I/O space region. */
965 RTIOPORT addrIOPort;
966 /** EMT: */
967 PCIDEVICE pciDevice;
968 /** EMT: Last time the interrupt was acknowledged. */
969 uint64_t u64AckedAt;
970 /** All: Used for eliminating spurious interrupts. */
971 bool fIntRaised;
972 /** EMT: false if the cable is disconnected by the GUI. */
973 bool fCableConnected;
974 /** EMT: */
975 bool fR0Enabled;
976 /** EMT: */
977 bool fGCEnabled;
978
979 /** All: Device register storage. */
980 uint32_t auRegs[E1K_NUM_OF_32BIT_REGS];
981 /** TX/RX: Status LED. */
982 PDMLED led;
983 /** TX/RX: Number of packet being sent/received to show in debug log. */
984 uint32_t u32PktNo;
985
986 /** EMT: Offset of the register to be read via IO. */
987 uint32_t uSelectedReg;
988 /** EMT: Multicast Table Array. */
989 uint32_t auMTA[128];
990 /** EMT: Receive Address registers. */
991 E1KRA aRecAddr;
992 /** EMT: VLAN filter table array. */
993 uint32_t auVFTA[128];
994 /** EMT: Receive buffer size. */
995 uint16_t u16RxBSize;
996 /** EMT: Locked state -- no state alteration possible. */
997 bool fLocked;
998 /** EMT: */
999 bool fDelayInts;
1000 /** All: */
1001 bool fIntMaskUsed;
1002
1003 /** N/A: */
1004 bool volatile fMaybeOutOfSpace;
1005 /** EMT: Gets signalled when more RX descriptors become available. */
1006 RTSEMEVENT hEventMoreRxDescAvail;
1007
1008 /** TX: Context used for TCP segmentation packets. */
1009 E1KTXCTX contextTSE;
1010 /** TX: Context used for ordinary packets. */
1011 E1KTXCTX contextNormal;
1012 /** GSO context. u8Type is set to PDMNETWORKGSOTYPE_INVALID when not
1013 * applicable to the current TSE mode. */
1014 PDMNETWORKGSO GsoCtx;
1015 /** Scratch space for holding the loopback / fallback scatter / gather
1016 * descriptor. */
1017 union
1018 {
1019 PDMSCATTERGATHER Sg;
1020 uint8_t padding[8 * sizeof(RTUINTPTR)];
1021 } uTxFallback;
1022 /** TX: Transmit packet buffer use for TSE fallback and loopback. */
1023 uint8_t aTxPacketFallback[E1K_MAX_TX_PKT_SIZE];
1024 /** TX: Number of bytes assembled in TX packet buffer. */
1025 uint16_t u16TxPktLen;
1026 /** TX: IP checksum has to be inserted if true. */
1027 bool fIPcsum;
1028 /** TX: TCP/UDP checksum has to be inserted if true. */
1029 bool fTCPcsum;
1030 /** TX TSE fallback: Number of payload bytes remaining in TSE context. */
1031 uint32_t u32PayRemain;
1032 /** TX TSE fallback: Number of header bytes remaining in TSE context. */
1033 uint16_t u16HdrRemain;
1034 /** TX TSE fallback: Flags from template header. */
1035 uint16_t u16SavedFlags;
1036 /** TX TSE fallback: Partial checksum from template header. */
1037 uint32_t u32SavedCsum;
1038 /** ?: Emulated controller type. */
1039 E1KCHIP eChip;
1040 uint32_t alignmentFix;
1041
1042 /** EMT: EEPROM emulation */
1043 E1kEEPROM eeprom;
1044 /** EMT: Physical interface emulation. */
1045 PHY phy;
1046
1047#if 0
1048 /** Alignment padding. */
1049 uint8_t Alignment[HC_ARCH_BITS == 64 ? 8 : 4];
1050#endif
1051
1052 STAMCOUNTER StatReceiveBytes;
1053 STAMCOUNTER StatTransmitBytes;
1054#if defined(VBOX_WITH_STATISTICS) || defined(E1K_REL_STATS)
1055 STAMPROFILEADV StatMMIOReadRZ;
1056 STAMPROFILEADV StatMMIOReadR3;
1057 STAMPROFILEADV StatMMIOWriteRZ;
1058 STAMPROFILEADV StatMMIOWriteR3;
1059 STAMPROFILEADV StatEEPROMRead;
1060 STAMPROFILEADV StatEEPROMWrite;
1061 STAMPROFILEADV StatIOReadRZ;
1062 STAMPROFILEADV StatIOReadR3;
1063 STAMPROFILEADV StatIOWriteRZ;
1064 STAMPROFILEADV StatIOWriteR3;
1065 STAMPROFILEADV StatLateIntTimer;
1066 STAMCOUNTER StatLateInts;
1067 STAMCOUNTER StatIntsRaised;
1068 STAMCOUNTER StatIntsPrevented;
1069 STAMPROFILEADV StatReceive;
1070 STAMPROFILEADV StatReceiveFilter;
1071 STAMPROFILEADV StatReceiveStore;
1072 STAMPROFILEADV StatTransmitRZ;
1073 STAMPROFILEADV StatTransmitR3;
1074 STAMPROFILE StatTransmitSendRZ;
1075 STAMPROFILE StatTransmitSendR3;
1076 STAMPROFILE StatRxOverflow;
1077 STAMCOUNTER StatRxOverflowWakeup;
1078 STAMCOUNTER StatTxDescCtxNormal;
1079 STAMCOUNTER StatTxDescCtxTSE;
1080 STAMCOUNTER StatTxDescLegacy;
1081 STAMCOUNTER StatTxDescData;
1082 STAMCOUNTER StatTxDescTSEData;
1083 STAMCOUNTER StatTxPathFallback;
1084 STAMCOUNTER StatTxPathGSO;
1085 STAMCOUNTER StatTxPathRegular;
1086 STAMCOUNTER StatPHYAccesses;
1087
1088#endif /* VBOX_WITH_STATISTICS || E1K_REL_STATS */
1089
1090#ifdef E1K_INT_STATS
1091 /* Internal stats */
1092 uint32_t uStatInt;
1093 uint32_t uStatIntTry;
1094 int32_t uStatIntLower;
1095 uint32_t uStatIntDly;
1096 int32_t iStatIntLost;
1097 int32_t iStatIntLostOne;
1098 uint32_t uStatDisDly;
1099 uint32_t uStatIntSkip;
1100 uint32_t uStatIntLate;
1101 uint32_t uStatIntMasked;
1102 uint32_t uStatIntEarly;
1103 uint32_t uStatIntRx;
1104 uint32_t uStatIntTx;
1105 uint32_t uStatIntICS;
1106 uint32_t uStatIntRDTR;
1107 uint32_t uStatIntRXDMT0;
1108 uint32_t uStatIntTXQE;
1109 uint32_t uStatTxNoRS;
1110 uint32_t uStatTxIDE;
1111 uint32_t uStatTAD;
1112 uint32_t uStatTID;
1113 uint32_t uStatRAD;
1114 uint32_t uStatRID;
1115 uint32_t uStatRxFrm;
1116 uint32_t uStatTxFrm;
1117 uint32_t uStatDescCtx;
1118 uint32_t uStatDescDat;
1119 uint32_t uStatDescLeg;
1120#endif /* E1K_INT_STATS */
1121};
1122typedef struct E1kState_st E1KSTATE;
1123
1124#ifndef VBOX_DEVICE_STRUCT_TESTCASE
1125
1126/* Forward declarations ******************************************************/
1127RT_C_DECLS_BEGIN
1128PDMBOTHCBDECL(int) e1kMMIORead (PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb);
1129PDMBOTHCBDECL(int) e1kMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb);
1130PDMBOTHCBDECL(int) e1kIOPortIn (PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb);
1131PDMBOTHCBDECL(int) e1kIOPortOut(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb);
1132RT_C_DECLS_END
1133
1134static int e1kXmitPending(E1KSTATE *pState, bool fOnWorkerThread);
1135
1136static int e1kRegReadUnimplemented (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1137static int e1kRegWriteUnimplemented(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1138static int e1kRegReadAutoClear (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1139static int e1kRegReadDefault (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1140static int e1kRegWriteDefault (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1141#if 0 /* unused */
1142static int e1kRegReadCTRL (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1143#endif
1144static int e1kRegWriteCTRL (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1145static int e1kRegReadEECD (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1146static int e1kRegWriteEECD (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1147static int e1kRegWriteEERD (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1148static int e1kRegWriteMDIC (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1149static int e1kRegReadICR (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1150static int e1kRegWriteICR (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1151static int e1kRegWriteICS (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1152static int e1kRegWriteIMS (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1153static int e1kRegWriteIMC (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1154static int e1kRegWriteRCTL (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1155static int e1kRegWritePBA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1156static int e1kRegWriteRDT (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1157static int e1kRegWriteRDTR (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1158static int e1kRegWriteTDT (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1159static int e1kRegReadMTA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1160static int e1kRegWriteMTA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1161static int e1kRegReadRA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1162static int e1kRegWriteRA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1163static int e1kRegReadVFTA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1164static int e1kRegWriteVFTA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1165
1166/**
1167 * Register map table.
1168 *
1169 * Override fn_read and fn_write to get register-specific behavior.
1170 */
1171const static struct E1kRegMap_st
1172{
1173 /** Register offset in the register space. */
1174 uint32_t offset;
1175 /** Size in bytes. Registers of size > 4 are in fact tables. */
1176 uint32_t size;
1177 /** Readable bits. */
1178 uint32_t readable;
1179 /** Writable bits. */
1180 uint32_t writable;
1181 /** Read callback. */
1182 int (*pfnRead)(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1183 /** Write callback. */
1184 int (*pfnWrite)(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1185 /** Abbreviated name. */
1186 const char *abbrev;
1187 /** Full name. */
1188 const char *name;
1189} s_e1kRegMap[E1K_NUM_OF_REGS] =
1190{
1191 /* offset size read mask write mask read callback write callback abbrev full name */
1192 /*------- ------- ---------- ---------- ----------------------- ------------------------ ---------- ------------------------------*/
1193 { 0x00000, 0x00004, 0xDBF31BE9, 0xDBF31BE9, e1kRegReadDefault , e1kRegWriteCTRL , "CTRL" , "Device Control" },
1194 { 0x00008, 0x00004, 0x0000FDFF, 0x00000000, e1kRegReadDefault , e1kRegWriteUnimplemented, "STATUS" , "Device Status" },
1195 { 0x00010, 0x00004, 0x000027F0, 0x00000070, e1kRegReadEECD , e1kRegWriteEECD , "EECD" , "EEPROM/Flash Control/Data" },
1196 { 0x00014, 0x00004, 0xFFFFFF10, 0xFFFFFF00, e1kRegReadDefault , e1kRegWriteEERD , "EERD" , "EEPROM Read" },
1197 { 0x00018, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CTRL_EXT", "Extended Device Control" },
1198 { 0x0001c, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FLA" , "Flash Access (N/A)" },
1199 { 0x00020, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteMDIC , "MDIC" , "MDI Control" },
1200 { 0x00028, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCAL" , "Flow Control Address Low" },
1201 { 0x0002c, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCAH" , "Flow Control Address High" },
1202 { 0x00030, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCT" , "Flow Control Type" },
1203 { 0x00038, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "VET" , "VLAN EtherType" },
1204 { 0x000c0, 0x00004, 0x0001F6DF, 0x0001F6DF, e1kRegReadICR , e1kRegWriteICR , "ICR" , "Interrupt Cause Read" },
1205 { 0x000c4, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "ITR" , "Interrupt Throttling" },
1206 { 0x000c8, 0x00004, 0x00000000, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteICS , "ICS" , "Interrupt Cause Set" },
1207 { 0x000d0, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteIMS , "IMS" , "Interrupt Mask Set/Read" },
1208 { 0x000d8, 0x00004, 0x00000000, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteIMC , "IMC" , "Interrupt Mask Clear" },
1209 { 0x00100, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteRCTL , "RCTL" , "Receive Control" },
1210 { 0x00170, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCTTV" , "Flow Control Transmit Timer Value" },
1211 { 0x00178, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TXCW" , "Transmit Configuration Word (N/A)" },
1212 { 0x00180, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXCW" , "Receive Configuration Word (N/A)" },
1213 { 0x00400, 0x00004, 0x017FFFFA, 0x017FFFFA, e1kRegReadDefault , e1kRegWriteDefault , "TCTL" , "Transmit Control" },
1214 { 0x00410, 0x00004, 0x3FFFFFFF, 0x3FFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TIPG" , "Transmit IPG" },
1215 { 0x00458, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "AIFS" , "Adaptive IFS Throttle - AIT" },
1216 { 0x00e00, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "LEDCTL" , "LED Control" },
1217 { 0x01000, 0x00004, 0xFFFF007F, 0x0000007F, e1kRegReadDefault , e1kRegWritePBA , "PBA" , "Packet Buffer Allocation" },
1218 { 0x02160, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRTL" , "Flow Control Receive Threshold Low" },
1219 { 0x02168, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRTH" , "Flow Control Receive Threshold High" },
1220 { 0x02410, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFH" , "Receive Data FIFO Head" },
1221 { 0x02418, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFT" , "Receive Data FIFO Tail" },
1222 { 0x02420, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFHS" , "Receive Data FIFO Head Saved Register" },
1223 { 0x02428, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFTS" , "Receive Data FIFO Tail Saved Register" },
1224 { 0x02430, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFPC" , "Receive Data FIFO Packet Count" },
1225 { 0x02800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDBAL" , "Receive Descriptor Base Low" },
1226 { 0x02804, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDBAH" , "Receive Descriptor Base High" },
1227 { 0x02808, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDLEN" , "Receive Descriptor Length" },
1228 { 0x02810, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDH" , "Receive Descriptor Head" },
1229 { 0x02818, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteRDT , "RDT" , "Receive Descriptor Tail" },
1230 { 0x02820, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteRDTR , "RDTR" , "Receive Delay Timer" },
1231 { 0x02828, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXDCTL" , "Receive Descriptor Control" },
1232 { 0x0282c, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "RADV" , "Receive Interrupt Absolute Delay Timer" },
1233 { 0x02c00, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RSRPD" , "Receive Small Packet Detect Interrupt" },
1234 { 0x03000, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TXDMAC" , "TX DMA Control (N/A)" },
1235 { 0x03410, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFH" , "Transmit Data FIFO Head" },
1236 { 0x03418, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFT" , "Transmit Data FIFO Tail" },
1237 { 0x03420, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFHS" , "Transmit Data FIFO Head Saved Register" },
1238 { 0x03428, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFTS" , "Transmit Data FIFO Tail Saved Register" },
1239 { 0x03430, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFPC" , "Transmit Data FIFO Packet Count" },
1240 { 0x03800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDBAL" , "Transmit Descriptor Base Low" },
1241 { 0x03804, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDBAH" , "Transmit Descriptor Base High" },
1242 { 0x03808, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDLEN" , "Transmit Descriptor Length" },
1243 { 0x03810, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDH" , "Transmit Descriptor Head" },
1244 { 0x03818, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteTDT , "TDT" , "Transmit Descriptor Tail" },
1245 { 0x03820, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TIDV" , "Transmit Interrupt Delay Value" },
1246 { 0x03828, 0x00004, 0xFF3F3F3F, 0xFF3F3F3F, e1kRegReadDefault , e1kRegWriteDefault , "TXDCTL" , "Transmit Descriptor Control" },
1247 { 0x0382c, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TADV" , "Transmit Absolute Interrupt Delay Timer" },
1248 { 0x03830, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TSPMT" , "TCP Segmentation Pad and Threshold" },
1249 { 0x04000, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CRCERRS" , "CRC Error Count" },
1250 { 0x04004, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "ALGNERRC", "Alignment Error Count" },
1251 { 0x04008, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SYMERRS" , "Symbol Error Count" },
1252 { 0x0400c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXERRC" , "RX Error Count" },
1253 { 0x04010, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MPC" , "Missed Packets Count" },
1254 { 0x04014, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SCC" , "Single Collision Count" },
1255 { 0x04018, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "ECOL" , "Excessive Collisions Count" },
1256 { 0x0401c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MCC" , "Multiple Collision Count" },
1257 { 0x04020, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "LATECOL" , "Late Collisions Count" },
1258 { 0x04028, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "COLC" , "Collision Count" },
1259 { 0x04030, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "DC" , "Defer Count" },
1260 { 0x04034, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TNCRS" , "Transmit - No CRS" },
1261 { 0x04038, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SEC" , "Sequence Error Count" },
1262 { 0x0403c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CEXTERR" , "Carrier Extension Error Count" },
1263 { 0x04040, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RLEC" , "Receive Length Error Count" },
1264 { 0x04048, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XONRXC" , "XON Received Count" },
1265 { 0x0404c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XONTXC" , "XON Transmitted Count" },
1266 { 0x04050, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XOFFRXC" , "XOFF Received Count" },
1267 { 0x04054, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XOFFTXC" , "XOFF Transmitted Count" },
1268 { 0x04058, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRUC" , "FC Received Unsupported Count" },
1269 { 0x0405c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC64" , "Packets Received (64 Bytes) Count" },
1270 { 0x04060, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC127" , "Packets Received (65-127 Bytes) Count" },
1271 { 0x04064, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC255" , "Packets Received (128-255 Bytes) Count" },
1272 { 0x04068, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC511" , "Packets Received (256-511 Bytes) Count" },
1273 { 0x0406c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC1023" , "Packets Received (512-1023 Bytes) Count" },
1274 { 0x04070, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC1522" , "Packets Received (1024-Max Bytes)" },
1275 { 0x04074, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GPRC" , "Good Packets Received Count" },
1276 { 0x04078, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "BPRC" , "Broadcast Packets Received Count" },
1277 { 0x0407c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "MPRC" , "Multicast Packets Received Count" },
1278 { 0x04080, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GPTC" , "Good Packets Transmitted Count" },
1279 { 0x04088, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GORCL" , "Good Octets Received Count (Low)" },
1280 { 0x0408c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GORCH" , "Good Octets Received Count (Hi)" },
1281 { 0x04090, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GOTCL" , "Good Octets Transmitted Count (Low)" },
1282 { 0x04094, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GOTCH" , "Good Octets Transmitted Count (Hi)" },
1283 { 0x040a0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RNBC" , "Receive No Buffers Count" },
1284 { 0x040a4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RUC" , "Receive Undersize Count" },
1285 { 0x040a8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RFC" , "Receive Fragment Count" },
1286 { 0x040ac, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "ROC" , "Receive Oversize Count" },
1287 { 0x040b0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RJC" , "Receive Jabber Count" },
1288 { 0x040b4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPRC" , "Management Packets Received Count" },
1289 { 0x040b8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPDC" , "Management Packets Dropped Count" },
1290 { 0x040bc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPTC" , "Management Pkts Transmitted Count" },
1291 { 0x040c0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TORL" , "Total Octets Received (Lo)" },
1292 { 0x040c4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TORH" , "Total Octets Received (Hi)" },
1293 { 0x040c8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TOTL" , "Total Octets Transmitted (Lo)" },
1294 { 0x040cc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TOTH" , "Total Octets Transmitted (Hi)" },
1295 { 0x040d0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TPR" , "Total Packets Received" },
1296 { 0x040d4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TPT" , "Total Packets Transmitted" },
1297 { 0x040d8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC64" , "Packets Transmitted (64 Bytes) Count" },
1298 { 0x040dc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC127" , "Packets Transmitted (65-127 Bytes) Count" },
1299 { 0x040e0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC255" , "Packets Transmitted (128-255 Bytes) Count" },
1300 { 0x040e4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC511" , "Packets Transmitted (256-511 Bytes) Count" },
1301 { 0x040e8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC1023" , "Packets Transmitted (512-1023 Bytes) Count" },
1302 { 0x040ec, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC1522" , "Packets Transmitted (1024 Bytes or Greater) Count" },
1303 { 0x040f0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "MPTC" , "Multicast Packets Transmitted Count" },
1304 { 0x040f4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "BPTC" , "Broadcast Packets Transmitted Count" },
1305 { 0x040f8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TSCTC" , "TCP Segmentation Context Transmitted Count" },
1306 { 0x040fc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TSCTFC" , "TCP Segmentation Context Tx Fail Count" },
1307 { 0x05000, 0x00004, 0x000007FF, 0x000007FF, e1kRegReadDefault , e1kRegWriteDefault , "RXCSUM" , "Receive Checksum Control" },
1308 { 0x05800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUC" , "Wakeup Control" },
1309 { 0x05808, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUFC" , "Wakeup Filter Control" },
1310 { 0x05810, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUS" , "Wakeup Status" },
1311 { 0x05820, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "MANC" , "Management Control" },
1312 { 0x05838, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IPAV" , "IP Address Valid" },
1313 { 0x05900, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUPL" , "Wakeup Packet Length" },
1314 { 0x05200, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadMTA , e1kRegWriteMTA , "MTA" , "Multicast Table Array (n)" },
1315 { 0x05400, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadRA , e1kRegWriteRA , "RA" , "Receive Address (64-bit) (n)" },
1316 { 0x05600, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadVFTA , e1kRegWriteVFTA , "VFTA" , "VLAN Filter Table Array (n)" },
1317 { 0x05840, 0x0001c, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IP4AT" , "IPv4 Address Table" },
1318 { 0x05880, 0x00010, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IP6AT" , "IPv6 Address Table" },
1319 { 0x05a00, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUPM" , "Wakeup Packet Memory" },
1320 { 0x05f00, 0x0001c, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFLT" , "Flexible Filter Length Table" },
1321 { 0x09000, 0x003fc, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFMT" , "Flexible Filter Mask Table" },
1322 { 0x09800, 0x003fc, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFVT" , "Flexible Filter Value Table" },
1323 { 0x10000, 0x10000, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "PBM" , "Packet Buffer Memory (n)" },
1324 { 0x00040, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadRA , e1kRegWriteRA , "RA" , "Receive Address (64-bit) (n) (82542)" },
1325 { 0x00200, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadMTA , e1kRegWriteMTA , "MTA" , "Multicast Table Array (n) (82542)" },
1326 { 0x00600, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadVFTA , e1kRegWriteVFTA , "VFTA" , "VLAN Filter Table Array (n) (82542)" }
1327};
1328
1329#ifdef DEBUG
1330
1331/**
1332 * Convert U32 value to hex string. Masked bytes are replaced with dots.
1333 *
1334 * @remarks The mask has byte (not bit) granularity (e.g. 000000FF).
1335 *
1336 * @returns The buffer.
1337 *
1338 * @param u32 The word to convert into string.
1339 * @param mask Selects which bytes to convert.
1340 * @param buf Where to put the result.
1341 */
1342static char *e1kU32toHex(uint32_t u32, uint32_t mask, char *buf)
1343{
1344 for (char *ptr = buf + 7; ptr >= buf; --ptr, u32 >>=4, mask >>=4)
1345 {
1346 if (mask & 0xF)
1347 *ptr = (u32 & 0xF) + ((u32 & 0xF) > 9 ? '7' : '0');
1348 else
1349 *ptr = '.';
1350 }
1351 buf[8] = 0;
1352 return buf;
1353}
1354
1355/**
1356 * Returns timer name for debug purposes.
1357 *
1358 * @returns The timer name.
1359 *
1360 * @param pState The device state structure.
1361 * @param pTimer The timer to get the name for.
1362 */
1363DECLINLINE(const char *) e1kGetTimerName(E1KSTATE *pState, PTMTIMER pTimer)
1364{
1365 if (pTimer == pState->CTX_SUFF(pTIDTimer))
1366 return "TID";
1367 if (pTimer == pState->CTX_SUFF(pTADTimer))
1368 return "TAD";
1369 if (pTimer == pState->CTX_SUFF(pRIDTimer))
1370 return "RID";
1371 if (pTimer == pState->CTX_SUFF(pRADTimer))
1372 return "RAD";
1373 if (pTimer == pState->CTX_SUFF(pIntTimer))
1374 return "Int";
1375 return "unknown";
1376}
1377
1378#endif /* DEBUG */
1379
1380/**
1381 * Arm a timer.
1382 *
1383 * @param pState Pointer to the device state structure.
1384 * @param pTimer Pointer to the timer.
1385 * @param uExpireIn Expiration interval in microseconds.
1386 */
1387DECLINLINE(void) e1kArmTimer(E1KSTATE *pState, PTMTIMER pTimer, uint32_t uExpireIn)
1388{
1389 if (pState->fLocked)
1390 return;
1391
1392 E1kLog2(("%s Arming %s timer to fire in %d usec...\n",
1393 INSTANCE(pState), e1kGetTimerName(pState, pTimer), uExpireIn));
1394 TMTimerSet(pTimer, TMTimerFromMicro(pTimer, uExpireIn) +
1395 TMTimerGet(pTimer));
1396}
1397
1398/**
1399 * Cancel a timer.
1400 *
1401 * @param pState Pointer to the device state structure.
1402 * @param pTimer Pointer to the timer.
1403 */
1404DECLINLINE(void) e1kCancelTimer(E1KSTATE *pState, PTMTIMER pTimer)
1405{
1406 E1kLog2(("%s Stopping %s timer...\n",
1407 INSTANCE(pState), e1kGetTimerName(pState, pTimer)));
1408 int rc = TMTimerStop(pTimer);
1409 if (RT_FAILURE(rc))
1410 {
1411 E1kLog2(("%s e1kCancelTimer: TMTimerStop() failed with %Rrc\n",
1412 INSTANCE(pState), rc));
1413 }
1414}
1415
1416#ifdef E1K_GLOBAL_MUTEX
1417
1418DECLINLINE(int) e1kCsEnter(E1KSTATE *pState, int iBusyRc)
1419{
1420 return VINF_SUCCESS;
1421}
1422
1423DECLINLINE(void) e1kCsLeave(E1KSTATE *pState)
1424{
1425}
1426
1427# define e1kCsRxEnter(ps, rc) VINF_SUCCESS
1428# define e1kCsRxLeave(ps) do { } while (0)
1429
1430# define e1kCsTxEnter(ps, rc) VINF_SUCCESS
1431# define e1kCsTxLeave(ps) do { } while (0)
1432
1433
1434DECLINLINE(int) e1kMutexAcquire(E1KSTATE *pState, int iBusyRc, RT_SRC_POS_DECL)
1435{
1436 int rc = PDMCritSectEnter(&pState->cs, iBusyRc);
1437 if (RT_UNLIKELY(rc != VINF_SUCCESS))
1438 {
1439 E1kLog2(("%s ==> FAILED to enter critical section at %s:%d:%s with rc=\n",
1440 INSTANCE(pState), RT_SRC_POS_ARGS, rc));
1441 PDMDevHlpDBGFStop(pState->CTX_SUFF(pDevIns), RT_SRC_POS_ARGS,
1442 "%s Failed to enter critical section, rc=%Rrc\n",
1443 INSTANCE(pState), rc);
1444 }
1445 else
1446 {
1447 //E1kLog2(("%s ==> Mutex acquired at %s:%d:%s\n", INSTANCE(pState), RT_SRC_POS_ARGS));
1448 }
1449 return rc;
1450}
1451
1452DECLINLINE(void) e1kMutexRelease(E1KSTATE *pState)
1453{
1454 //E1kLog2(("%s <== Releasing mutex...\n", INSTANCE(pState)));
1455 PDMCritSectLeave(&pState->cs);
1456}
1457
1458#else /* !E1K_GLOBAL_MUTEX */
1459# define e1kCsEnter(ps, rc) PDMCritSectEnter(&ps->cs, rc)
1460# define e1kCsLeave(ps) PDMCritSectLeave(&ps->cs)
1461
1462# define e1kCsRxEnter(ps, rc) PDMCritSectEnter(&ps->csRx, rc)
1463# define e1kCsRxLeave(ps) PDMCritSectLeave(&ps->csRx)
1464
1465# define e1kCsTxEnter(ps, rc) VINF_SUCCESS
1466# define e1kCsTxLeave(ps) do { } while (0)
1467//# define e1kCsTxEnter(ps, rc) PDMCritSectEnter(&ps->csTx, rc)
1468//# define e1kCsTxLeave(ps) PDMCritSectLeave(&ps->csTx)
1469
1470# if 0
1471DECLINLINE(int) e1kCsEnter(E1KSTATE *pState, PPDMCRITSECT pCs, int iBusyRc, RT_SRC_POS_DECL)
1472{
1473 int rc = PDMCritSectEnter(pCs, iBusyRc);
1474 if (RT_FAILURE(rc))
1475 {
1476 E1kLog2(("%s ==> FAILED to enter critical section at %s:%d:%s with rc=%Rrc\n",
1477 INSTANCE(pState), RT_SRC_POS_ARGS, rc));
1478 PDMDeviceDBGFStop(pState->CTX_SUFF(pDevIns), RT_SRC_POS_ARGS,
1479 "%s Failed to enter critical section, rc=%Rrc\n",
1480 INSTANCE(pState), rc);
1481 }
1482 else
1483 {
1484 //E1kLog2(("%s ==> Entered critical section at %s:%d:%s\n", INSTANCE(pState), RT_SRC_POS_ARGS));
1485 }
1486 return RT_SUCCESS(rc);
1487}
1488
1489DECLINLINE(void) e1kCsLeave(E1KSTATE *pState, PPDMCRITSECT pCs)
1490{
1491 //E1kLog2(("%s <== Leaving critical section\n", INSTANCE(pState)));
1492 PDMCritSectLeave(&pState->cs);
1493}
1494# endif
1495DECLINLINE(int) e1kMutexAcquire(E1KSTATE *pState, int iBusyRc, RT_SRC_POS_DECL)
1496{
1497 return VINF_SUCCESS;
1498}
1499
1500DECLINLINE(void) e1kMutexRelease(E1KSTATE *pState)
1501{
1502}
1503
1504#endif /* !E1K_GLOBAL_MUTEX */
1505#ifdef IN_RING3
1506
1507/**
1508 * Wakeup the RX thread.
1509 */
1510static void e1kWakeupReceive(PPDMDEVINS pDevIns)
1511{
1512 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
1513 if ( pState->fMaybeOutOfSpace
1514 && pState->hEventMoreRxDescAvail != NIL_RTSEMEVENT)
1515 {
1516 STAM_COUNTER_INC(&pState->StatRxOverflowWakeup);
1517 E1kLog(("%s Waking up Out-of-RX-space semaphore\n", INSTANCE(pState)));
1518 RTSemEventSignal(pState->hEventMoreRxDescAvail);
1519 }
1520}
1521
1522/**
1523 * Hardware reset. Revert all registers to initial values.
1524 *
1525 * @param pState The device state structure.
1526 */
1527static void e1kHardReset(E1KSTATE *pState)
1528{
1529 E1kLog(("%s Hard reset triggered\n", INSTANCE(pState)));
1530 memset(pState->auRegs, 0, sizeof(pState->auRegs));
1531 memset(pState->aRecAddr.au32, 0, sizeof(pState->aRecAddr.au32));
1532#ifdef E1K_INIT_RA0
1533 memcpy(pState->aRecAddr.au32, pState->macConfigured.au8,
1534 sizeof(pState->macConfigured.au8));
1535 pState->aRecAddr.array[0].ctl |= RA_CTL_AV;
1536#endif /* E1K_INIT_RA0 */
1537 STATUS = 0x0081; /* SPEED=10b (1000 Mb/s), FD=1b (Full Duplex) */
1538 EECD = 0x0100; /* EE_PRES=1b (EEPROM present) */
1539 CTRL = 0x0a09; /* FRCSPD=1b SPEED=10b LRST=1b FD=1b */
1540 TSPMT = 0x01000400;/* TSMT=0400h TSPBP=0100h */
1541 Assert(GET_BITS(RCTL, BSIZE) == 0);
1542 pState->u16RxBSize = 2048;
1543
1544 /* Reset promiscuous mode */
1545 if (pState->pDrvR3)
1546 pState->pDrvR3->pfnSetPromiscuousMode(pState->pDrvR3, false);
1547}
1548
1549#endif /* IN_RING3 */
1550
1551/**
1552 * Compute Internet checksum.
1553 *
1554 * @remarks Refer to http://www.netfor2.com/checksum.html for short intro.
1555 *
1556 * @param pState The device state structure.
1557 * @param cpPacket The packet.
1558 * @param cb The size of the packet.
1559 * @param cszText A string denoting direction of packet transfer.
1560 *
1561 * @return The 1's complement of the 1's complement sum.
1562 *
1563 * @thread E1000_TX
1564 */
1565static uint16_t e1kCSum16(const void *pvBuf, size_t cb)
1566{
1567 uint32_t csum = 0;
1568 uint16_t *pu16 = (uint16_t *)pvBuf;
1569
1570 while (cb > 1)
1571 {
1572 csum += *pu16++;
1573 cb -= 2;
1574 }
1575 if (cb)
1576 csum += *(uint8_t*)pu16;
1577 while (csum >> 16)
1578 csum = (csum >> 16) + (csum & 0xFFFF);
1579 return ~csum;
1580}
1581
1582/**
1583 * Dump a packet to debug log.
1584 *
1585 * @param pState The device state structure.
1586 * @param cpPacket The packet.
1587 * @param cb The size of the packet.
1588 * @param cszText A string denoting direction of packet transfer.
1589 * @thread E1000_TX
1590 */
1591DECLINLINE(void) e1kPacketDump(E1KSTATE* pState, const uint8_t *cpPacket, size_t cb, const char *cszText)
1592{
1593#ifdef DEBUG
1594 if (RT_LIKELY(e1kCsEnter(pState, VERR_SEM_BUSY) == VINF_SUCCESS))
1595 {
1596 E1kLog(("%s --- %s packet #%d: ---\n",
1597 INSTANCE(pState), cszText, ++pState->u32PktNo));
1598 E1kLog3(("%.*Rhxd\n", cb, cpPacket));
1599 e1kCsLeave(pState);
1600 }
1601#else
1602 if (RT_LIKELY(e1kCsEnter(pState, VERR_SEM_BUSY) == VINF_SUCCESS))
1603 {
1604 E1kLogRel(("E1000: %s packet #%d, seq=%x ack=%x\n", cszText, pState->u32PktNo++, ntohl(*(uint32_t*)(cpPacket+0x26)), ntohl(*(uint32_t*)(cpPacket+0x2A))));
1605 e1kCsLeave(pState);
1606 }
1607#endif
1608}
1609
1610/**
1611 * Determine the type of transmit descriptor.
1612 *
1613 * @returns Descriptor type. See E1K_DTYP_XXX defines.
1614 *
1615 * @param pDesc Pointer to descriptor union.
1616 * @thread E1000_TX
1617 */
1618DECLINLINE(int) e1kGetDescType(E1KTXDESC* pDesc)
1619{
1620 if (pDesc->legacy.cmd.fDEXT)
1621 return pDesc->context.dw2.u4DTYP;
1622 return E1K_DTYP_LEGACY;
1623}
1624
1625/**
1626 * Dump receive descriptor to debug log.
1627 *
1628 * @param pState The device state structure.
1629 * @param pDesc Pointer to the descriptor.
1630 * @thread E1000_RX
1631 */
1632static void e1kPrintRDesc(E1KSTATE* pState, E1KRXDESC* pDesc)
1633{
1634 E1kLog2(("%s <-- Receive Descriptor (%d bytes):\n", INSTANCE(pState), pDesc->u16Length));
1635 E1kLog2((" Address=%16LX Length=%04X Csum=%04X\n",
1636 pDesc->u64BufAddr, pDesc->u16Length, pDesc->u16Checksum));
1637 E1kLog2((" STA: %s %s %s %s %s %s %s ERR: %s %s %s %s SPECIAL: %s VLAN=%03x PRI=%x\n",
1638 pDesc->status.fPIF ? "PIF" : "pif",
1639 pDesc->status.fIPCS ? "IPCS" : "ipcs",
1640 pDesc->status.fTCPCS ? "TCPCS" : "tcpcs",
1641 pDesc->status.fVP ? "VP" : "vp",
1642 pDesc->status.fIXSM ? "IXSM" : "ixsm",
1643 pDesc->status.fEOP ? "EOP" : "eop",
1644 pDesc->status.fDD ? "DD" : "dd",
1645 pDesc->status.fRXE ? "RXE" : "rxe",
1646 pDesc->status.fIPE ? "IPE" : "ipe",
1647 pDesc->status.fTCPE ? "TCPE" : "tcpe",
1648 pDesc->status.fCE ? "CE" : "ce",
1649 pDesc->status.fCFI ? "CFI" :"cfi",
1650 pDesc->status.u12VLAN,
1651 pDesc->status.u3PRI));
1652}
1653
1654/**
1655 * Dump transmit descriptor to debug log.
1656 *
1657 * @param pState The device state structure.
1658 * @param pDesc Pointer to descriptor union.
1659 * @param cszDir A string denoting direction of descriptor transfer
1660 * @thread E1000_TX
1661 */
1662static void e1kPrintTDesc(E1KSTATE* pState, E1KTXDESC* pDesc, const char* cszDir)
1663{
1664 switch (e1kGetDescType(pDesc))
1665 {
1666 case E1K_DTYP_CONTEXT:
1667 E1kLog2(("%s %s Context Transmit Descriptor %s\n",
1668 INSTANCE(pState), cszDir, cszDir));
1669 E1kLog2((" IPCSS=%02X IPCSO=%02X IPCSE=%04X TUCSS=%02X TUCSO=%02X TUCSE=%04X\n",
1670 pDesc->context.ip.u8CSS, pDesc->context.ip.u8CSO, pDesc->context.ip.u16CSE,
1671 pDesc->context.tu.u8CSS, pDesc->context.tu.u8CSO, pDesc->context.tu.u16CSE));
1672 E1kLog2((" TUCMD:%s%s%s %s %s PAYLEN=%04x HDRLEN=%04x MSS=%04x STA: %s\n",
1673 pDesc->context.dw2.fIDE ? " IDE":"",
1674 pDesc->context.dw2.fRS ? " RS" :"",
1675 pDesc->context.dw2.fTSE ? " TSE":"",
1676 pDesc->context.dw2.fIP ? "IPv4":"IPv6",
1677 pDesc->context.dw2.fTCP ? "TCP":"UDP",
1678 pDesc->context.dw2.u20PAYLEN,
1679 pDesc->context.dw3.u8HDRLEN,
1680 pDesc->context.dw3.u16MSS,
1681 pDesc->context.dw3.fDD?"DD":""));
1682 break;
1683 case E1K_DTYP_DATA:
1684 E1kLog2(("%s %s Data Transmit Descriptor (%d bytes) %s\n",
1685 INSTANCE(pState), cszDir, pDesc->data.cmd.u20DTALEN, cszDir));
1686 E1kLog2((" Address=%16LX DTALEN=%05X\n",
1687 pDesc->data.u64BufAddr,
1688 pDesc->data.cmd.u20DTALEN));
1689 E1kLog2((" DCMD:%s%s%s%s%s%s STA:%s%s%s POPTS:%s%s SPECIAL:%s VLAN=%03x PRI=%x\n",
1690 pDesc->data.cmd.fIDE ? " IDE" :"",
1691 pDesc->data.cmd.fVLE ? " VLE" :"",
1692 pDesc->data.cmd.fRS ? " RS" :"",
1693 pDesc->data.cmd.fTSE ? " TSE" :"",
1694 pDesc->data.cmd.fIFCS? " IFCS":"",
1695 pDesc->data.cmd.fEOP ? " EOP" :"",
1696 pDesc->data.dw3.fDD ? " DD" :"",
1697 pDesc->data.dw3.fEC ? " EC" :"",
1698 pDesc->data.dw3.fLC ? " LC" :"",
1699 pDesc->data.dw3.fTXSM? " TXSM":"",
1700 pDesc->data.dw3.fIXSM? " IXSM":"",
1701 pDesc->data.dw3.fCFI ? " CFI" :"",
1702 pDesc->data.dw3.u12VLAN,
1703 pDesc->data.dw3.u3PRI));
1704 break;
1705 case E1K_DTYP_LEGACY:
1706 E1kLog2(("%s %s Legacy Transmit Descriptor (%d bytes) %s\n",
1707 INSTANCE(pState), cszDir, pDesc->legacy.cmd.u16Length, cszDir));
1708 E1kLog2((" Address=%16LX DTALEN=%05X\n",
1709 pDesc->data.u64BufAddr,
1710 pDesc->legacy.cmd.u16Length));
1711 E1kLog2((" CMD:%s%s%s%s%s%s STA:%s%s%s CSO=%02x CSS=%02x SPECIAL:%s VLAN=%03x PRI=%x\n",
1712 pDesc->legacy.cmd.fIDE ? " IDE" :"",
1713 pDesc->legacy.cmd.fVLE ? " VLE" :"",
1714 pDesc->legacy.cmd.fRS ? " RS" :"",
1715 pDesc->legacy.cmd.fIC ? " IC" :"",
1716 pDesc->legacy.cmd.fIFCS? " IFCS":"",
1717 pDesc->legacy.cmd.fEOP ? " EOP" :"",
1718 pDesc->legacy.dw3.fDD ? " DD" :"",
1719 pDesc->legacy.dw3.fEC ? " EC" :"",
1720 pDesc->legacy.dw3.fLC ? " LC" :"",
1721 pDesc->legacy.cmd.u8CSO,
1722 pDesc->legacy.dw3.u8CSS,
1723 pDesc->legacy.dw3.fCFI ? " CFI" :"",
1724 pDesc->legacy.dw3.u12VLAN,
1725 pDesc->legacy.dw3.u3PRI));
1726 break;
1727 default:
1728 E1kLog(("%s %s Invalid Transmit Descriptor %s\n",
1729 INSTANCE(pState), cszDir, cszDir));
1730 break;
1731 }
1732}
1733
1734/**
1735 * Raise interrupt if not masked.
1736 *
1737 * @param pState The device state structure.
1738 */
1739static int e1kRaiseInterrupt(E1KSTATE *pState, int rcBusy, uint32_t u32IntCause = 0)
1740{
1741 int rc = e1kCsEnter(pState, rcBusy);
1742 if (RT_UNLIKELY(rc != VINF_SUCCESS))
1743 return rc;
1744
1745 E1K_INC_ISTAT_CNT(pState->uStatIntTry);
1746 ICR |= u32IntCause;
1747 if (ICR & IMS)
1748 {
1749#if 0
1750 if (pState->fDelayInts)
1751 {
1752 E1K_INC_ISTAT_CNT(pState->uStatIntDly);
1753 pState->iStatIntLostOne = 1;
1754 E1kLog2(("%s e1kRaiseInterrupt: Delayed. ICR=%08x\n",
1755 INSTANCE(pState), ICR));
1756#define E1K_LOST_IRQ_THRSLD 20
1757//#define E1K_LOST_IRQ_THRSLD 200000000
1758 if (pState->iStatIntLost >= E1K_LOST_IRQ_THRSLD)
1759 {
1760 E1kLog2(("%s WARNING! Disabling delayed interrupt logic: delayed=%d, delivered=%d\n",
1761 INSTANCE(pState), pState->uStatIntDly, pState->uStatIntLate));
1762 pState->fIntMaskUsed = false;
1763 pState->uStatDisDly++;
1764 }
1765 }
1766 else
1767#endif
1768 if (pState->fIntRaised)
1769 {
1770 E1K_INC_ISTAT_CNT(pState->uStatIntSkip);
1771 E1kLog2(("%s e1kRaiseInterrupt: Already raised, skipped. ICR&IMS=%08x\n",
1772 INSTANCE(pState), ICR & IMS));
1773 }
1774 else
1775 {
1776#ifdef E1K_ITR_ENABLED
1777 uint64_t tstamp = TMTimerGet(pState->CTX_SUFF(pIntTimer));
1778 /* interrupts/sec = 1 / (256 * 10E-9 * ITR) */
1779 E1kLog2(("%s e1kRaiseInterrupt: tstamp - pState->u64AckedAt = %d, ITR * 256 = %d\n",
1780 INSTANCE(pState), (uint32_t)(tstamp - pState->u64AckedAt), ITR * 256));
1781 if (!!ITR && pState->fIntMaskUsed && tstamp - pState->u64AckedAt < ITR * 256)
1782 {
1783 E1K_INC_ISTAT_CNT(pState->uStatIntEarly);
1784 E1kLog2(("%s e1kRaiseInterrupt: Too early to raise again: %d ns < %d ns.\n",
1785 INSTANCE(pState), (uint32_t)(tstamp - pState->u64AckedAt), ITR * 256));
1786 }
1787 else
1788#endif
1789 {
1790
1791 /* Since we are delivering the interrupt now
1792 * there is no need to do it later -- stop the timer.
1793 */
1794 TMTimerStop(pState->CTX_SUFF(pIntTimer));
1795 E1K_INC_ISTAT_CNT(pState->uStatInt);
1796 STAM_COUNTER_INC(&pState->StatIntsRaised);
1797 /* Got at least one unmasked interrupt cause */
1798 pState->fIntRaised = true;
1799 /* Raise(1) INTA(0) */
1800 //e1kMutexRelease(pState);
1801 E1kLogRel(("E1000: irq RAISED icr&mask=0x%x, icr=0x%x\n", ICR & IMS, ICR));
1802 PDMDevHlpPCISetIrq(pState->CTX_SUFF(pDevIns), 0, 1);
1803 //e1kMutexAcquire(pState, RT_SRC_POS);
1804 E1kLog(("%s e1kRaiseInterrupt: Raised. ICR&IMS=%08x\n",
1805 INSTANCE(pState), ICR & IMS));
1806 }
1807 }
1808 }
1809 else
1810 {
1811 E1K_INC_ISTAT_CNT(pState->uStatIntMasked);
1812 E1kLog2(("%s e1kRaiseInterrupt: Not raising, ICR=%08x, IMS=%08x\n",
1813 INSTANCE(pState), ICR, IMS));
1814 }
1815 e1kCsLeave(pState);
1816 return VINF_SUCCESS;
1817}
1818
1819/**
1820 * Compute the physical address of the descriptor.
1821 *
1822 * @returns the physical address of the descriptor.
1823 *
1824 * @param baseHigh High-order 32 bits of descriptor table address.
1825 * @param baseLow Low-order 32 bits of descriptor table address.
1826 * @param idxDesc The descriptor index in the table.
1827 */
1828DECLINLINE(RTGCPHYS) e1kDescAddr(uint32_t baseHigh, uint32_t baseLow, uint32_t idxDesc)
1829{
1830 AssertCompile(sizeof(E1KRXDESC) == sizeof(E1KTXDESC));
1831 return ((uint64_t)baseHigh << 32) + baseLow + idxDesc * sizeof(E1KRXDESC);
1832}
1833
1834/**
1835 * Advance the head pointer of the receive descriptor queue.
1836 *
1837 * @remarks RDH always points to the next available RX descriptor.
1838 *
1839 * @param pState The device state structure.
1840 */
1841DECLINLINE(void) e1kAdvanceRDH(E1KSTATE *pState)
1842{
1843 //e1kCsEnter(pState, RT_SRC_POS);
1844 if (++RDH * sizeof(E1KRXDESC) >= RDLEN)
1845 RDH = 0;
1846 /*
1847 * Compute current receive queue length and fire RXDMT0 interrupt
1848 * if we are low on receive buffers
1849 */
1850 uint32_t uRQueueLen = RDH>RDT ? RDLEN/sizeof(E1KRXDESC)-RDH+RDT : RDT-RDH;
1851 /*
1852 * The minimum threshold is controlled by RDMTS bits of RCTL:
1853 * 00 = 1/2 of RDLEN
1854 * 01 = 1/4 of RDLEN
1855 * 10 = 1/8 of RDLEN
1856 * 11 = reserved
1857 */
1858 uint32_t uMinRQThreshold = RDLEN / sizeof(E1KRXDESC) / (2 << GET_BITS(RCTL, RDMTS));
1859 if (uRQueueLen <= uMinRQThreshold)
1860 {
1861 E1kLogRel(("E1000: low on RX descriptors, RDH=%x RDT=%x len=%x threshold=%x\n", RDH, RDT, uRQueueLen, uMinRQThreshold));
1862 E1kLog2(("%s Low on RX descriptors, RDH=%x RDT=%x len=%x threshold=%x, raise an interrupt\n",
1863 INSTANCE(pState), RDH, RDT, uRQueueLen, uMinRQThreshold));
1864 E1K_INC_ISTAT_CNT(pState->uStatIntRXDMT0);
1865 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_RXDMT0);
1866 }
1867 E1kLog2(("%s e1kAdvanceRDH: at exit RDH=%x RDT=%x len=%x\n",
1868 INSTANCE(pState), RDH, RDT, uRQueueLen));
1869 //e1kCsLeave(pState);
1870}
1871
1872/**
1873 * Store a fragment of received packet that fits into the next available RX
1874 * buffer.
1875 *
1876 * @remarks Trigger the RXT0 interrupt if it is the last fragment of the packet.
1877 *
1878 * @param pState The device state structure.
1879 * @param pDesc The next available RX descriptor.
1880 * @param pvBuf The fragment.
1881 * @param cb The size of the fragment.
1882 */
1883static DECLCALLBACK(void) e1kStoreRxFragment(E1KSTATE *pState, E1KRXDESC *pDesc, const void *pvBuf, size_t cb)
1884{
1885 STAM_PROFILE_ADV_START(&pState->StatReceiveStore, a);
1886 E1kLog2(("%s e1kStoreRxFragment: store fragment of %04X at %016LX, EOP=%d\n", pState->szInstance, cb, pDesc->u64BufAddr, pDesc->status.fEOP));
1887 PDMDevHlpPhysWrite(pState->CTX_SUFF(pDevIns), pDesc->u64BufAddr, pvBuf, cb);
1888 pDesc->u16Length = (uint16_t)cb; Assert(pDesc->u16Length == cb);
1889 /* Write back the descriptor */
1890 PDMDevHlpPhysWrite(pState->CTX_SUFF(pDevIns), e1kDescAddr(RDBAH, RDBAL, RDH), pDesc, sizeof(E1KRXDESC));
1891 e1kPrintRDesc(pState, pDesc);
1892 E1kLogRel(("E1000: Wrote back RX desc, RDH=%x\n", RDH));
1893 /* Advance head */
1894 e1kAdvanceRDH(pState);
1895 //E1kLog2(("%s e1kStoreRxFragment: EOP=%d RDTR=%08X RADV=%08X\n", INSTANCE(pState), pDesc->fEOP, RDTR, RADV));
1896 if (pDesc->status.fEOP)
1897 {
1898 /* Complete packet has been stored -- it is time to let the guest know. */
1899#ifdef E1K_USE_RX_TIMERS
1900 if (RDTR)
1901 {
1902 /* Arm the timer to fire in RDTR usec (discard .024) */
1903 e1kArmTimer(pState, pState->CTX_SUFF(pRIDTimer), RDTR);
1904 /* If absolute timer delay is enabled and the timer is not running yet, arm it. */
1905 if (RADV != 0 && !TMTimerIsActive(pState->CTX_SUFF(pRADTimer)))
1906 e1kArmTimer(pState, pState->CTX_SUFF(pRADTimer), RADV);
1907 }
1908 else
1909 {
1910#endif
1911 /* 0 delay means immediate interrupt */
1912 E1K_INC_ISTAT_CNT(pState->uStatIntRx);
1913 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_RXT0);
1914#ifdef E1K_USE_RX_TIMERS
1915 }
1916#endif
1917 }
1918 STAM_PROFILE_ADV_STOP(&pState->StatReceiveStore, a);
1919}
1920
1921/**
1922 * Returns true if it is a broadcast packet.
1923 *
1924 * @returns true if destination address indicates broadcast.
1925 * @param pvBuf The ethernet packet.
1926 */
1927DECLINLINE(bool) e1kIsBroadcast(const void *pvBuf)
1928{
1929 static const uint8_t s_abBcastAddr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
1930 return memcmp(pvBuf, s_abBcastAddr, sizeof(s_abBcastAddr)) == 0;
1931}
1932
1933/**
1934 * Returns true if it is a multicast packet.
1935 *
1936 * @remarks returns true for broadcast packets as well.
1937 * @returns true if destination address indicates multicast.
1938 * @param pvBuf The ethernet packet.
1939 */
1940DECLINLINE(bool) e1kIsMulticast(const void *pvBuf)
1941{
1942 return (*(char*)pvBuf) & 1;
1943}
1944
1945/**
1946 * Set IXSM, IPCS and TCPCS flags according to the packet type.
1947 *
1948 * @remarks We emulate checksum offloading for major packets types only.
1949 *
1950 * @returns VBox status code.
1951 * @param pState The device state structure.
1952 * @param pFrame The available data.
1953 * @param cb Number of bytes available in the buffer.
1954 * @param status Bit fields containing status info.
1955 */
1956static int e1kRxChecksumOffload(E1KSTATE* pState, const uint8_t *pFrame, size_t cb, E1KRXDST *pStatus)
1957{
1958 /** @todo
1959 * It is not safe to bypass checksum verification for packets coming
1960 * from real wire. We currently unable to tell where packets are
1961 * coming from so we tell the driver to ignore our checksum flags
1962 * and do verification in software.
1963 */
1964#if 0
1965 uint16_t uEtherType = ntohs(*(uint16_t*)(pFrame + 12));
1966
1967 E1kLog2(("%s e1kRxChecksumOffload: EtherType=%x\n", INSTANCE(pState), uEtherType));
1968
1969 switch (uEtherType)
1970 {
1971 case 0x800: /* IPv4 */
1972 {
1973 pStatus->fIXSM = false;
1974 pStatus->fIPCS = true;
1975 PRTNETIPV4 pIpHdr4 = (PRTNETIPV4)(pFrame + 14);
1976 /* TCP/UDP checksum offloading works with TCP and UDP only */
1977 pStatus->fTCPCS = pIpHdr4->ip_p == 6 || pIpHdr4->ip_p == 17;
1978 break;
1979 }
1980 case 0x86DD: /* IPv6 */
1981 pStatus->fIXSM = false;
1982 pStatus->fIPCS = false;
1983 pStatus->fTCPCS = true;
1984 break;
1985 default: /* ARP, VLAN, etc. */
1986 pStatus->fIXSM = true;
1987 break;
1988 }
1989#else
1990 pStatus->fIXSM = true;
1991#endif
1992 return VINF_SUCCESS;
1993}
1994
1995/**
1996 * Pad and store received packet.
1997 *
1998 * @remarks Make sure that the packet appears to upper layer as one coming
1999 * from real Ethernet: pad it and insert FCS.
2000 *
2001 * @returns VBox status code.
2002 * @param pState The device state structure.
2003 * @param pvBuf The available data.
2004 * @param cb Number of bytes available in the buffer.
2005 * @param status Bit fields containing status info.
2006 */
2007static int e1kHandleRxPacket(E1KSTATE* pState, const void *pvBuf, size_t cb, E1KRXDST status)
2008{
2009#if defined(IN_RING3) /** @todo Remove this extra copying, it's gonna make us run out of kernel / hypervisor stack! */
2010 uint8_t rxPacket[E1K_MAX_RX_PKT_SIZE];
2011 uint8_t *ptr = rxPacket;
2012
2013#ifndef E1K_GLOBAL_MUTEX
2014 int rc = e1kCsRxEnter(pState, VERR_SEM_BUSY);
2015 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2016 return rc;
2017#endif
2018
2019 if (cb > 70) /* unqualified guess */
2020 pState->led.Asserted.s.fReading = pState->led.Actual.s.fReading = 1;
2021
2022 Assert(cb <= E1K_MAX_RX_PKT_SIZE);
2023 memcpy(rxPacket, pvBuf, cb);
2024 /* Pad short packets */
2025 if (cb < 60)
2026 {
2027 memset(rxPacket + cb, 0, 60 - cb);
2028 cb = 60;
2029 }
2030 if (!(RCTL & RCTL_SECRC))
2031 {
2032 /* Add FCS if CRC stripping is not enabled */
2033 *(uint32_t*)(rxPacket + cb) = RTCrc32(rxPacket, cb);
2034 cb += sizeof(uint32_t);
2035 }
2036 /* Compute checksum of complete packet */
2037 uint16_t checksum = e1kCSum16(rxPacket + GET_BITS(RXCSUM, PCSS), cb);
2038 e1kRxChecksumOffload(pState, rxPacket, cb, &status);
2039
2040 /* Update stats */
2041 E1K_INC_CNT32(GPRC);
2042 if (e1kIsBroadcast(pvBuf))
2043 E1K_INC_CNT32(BPRC);
2044 else if (e1kIsMulticast(pvBuf))
2045 E1K_INC_CNT32(MPRC);
2046 /* Update octet receive counter */
2047 E1K_ADD_CNT64(GORCL, GORCH, cb);
2048 STAM_REL_COUNTER_ADD(&pState->StatReceiveBytes, cb);
2049 if (cb == 64)
2050 E1K_INC_CNT32(PRC64);
2051 else if (cb < 128)
2052 E1K_INC_CNT32(PRC127);
2053 else if (cb < 256)
2054 E1K_INC_CNT32(PRC255);
2055 else if (cb < 512)
2056 E1K_INC_CNT32(PRC511);
2057 else if (cb < 1024)
2058 E1K_INC_CNT32(PRC1023);
2059 else
2060 E1K_INC_CNT32(PRC1522);
2061
2062 E1K_INC_ISTAT_CNT(pState->uStatRxFrm);
2063
2064 if (RDH == RDT)
2065 {
2066 E1kLog(("%s Out of receive buffers, dropping the packet",
2067 INSTANCE(pState)));
2068 }
2069 /* Store the packet to receive buffers */
2070 while (RDH != RDT)
2071 {
2072 /* Load the descriptor pointed by head */
2073 E1KRXDESC desc;
2074 PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), e1kDescAddr(RDBAH, RDBAL, RDH),
2075 &desc, sizeof(desc));
2076 if (desc.u64BufAddr)
2077 {
2078 /* Update descriptor */
2079 desc.status = status;
2080 desc.u16Checksum = checksum;
2081 desc.status.fDD = true;
2082
2083 /*
2084 * We need to leave Rx critical section here or we risk deadlocking
2085 * with EMT in e1kRegWriteRDT when the write is to an unallocated
2086 * page or has an access handler associated with it.
2087 * Note that it is safe to leave the critical section here since e1kRegWriteRDT()
2088 * modifies RDT only.
2089 */
2090 if (cb > pState->u16RxBSize)
2091 {
2092 desc.status.fEOP = false;
2093 e1kCsRxLeave(pState);
2094 e1kStoreRxFragment(pState, &desc, ptr, pState->u16RxBSize);
2095 rc = e1kCsRxEnter(pState, VERR_SEM_BUSY);
2096 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2097 return rc;
2098 ptr += pState->u16RxBSize;
2099 cb -= pState->u16RxBSize;
2100 }
2101 else
2102 {
2103 desc.status.fEOP = true;
2104 e1kCsRxLeave(pState);
2105 e1kStoreRxFragment(pState, &desc, ptr, cb);
2106 pState->led.Actual.s.fReading = 0;
2107 return VINF_SUCCESS;
2108 }
2109 /* Note: RDH is advanced by e1kStoreRxFragment! */
2110 }
2111 else
2112 {
2113 desc.status.fDD = true;
2114 PDMDevHlpPhysWrite(pState->CTX_SUFF(pDevIns),
2115 e1kDescAddr(RDBAH, RDBAL, RDH),
2116 &desc, sizeof(desc));
2117 e1kAdvanceRDH(pState);
2118 }
2119 }
2120
2121 if (cb > 0)
2122 E1kLog(("%s Out of receive buffers, dropping %u bytes", INSTANCE(pState), cb));
2123
2124 pState->led.Actual.s.fReading = 0;
2125
2126 e1kCsRxLeave(pState);
2127
2128 return VINF_SUCCESS;
2129#else
2130 return VERR_INTERNAL_ERROR_2;
2131#endif
2132}
2133
2134
2135#if 0 /* unused */
2136/**
2137 * Read handler for Device Status register.
2138 *
2139 * Get the link status from PHY.
2140 *
2141 * @returns VBox status code.
2142 *
2143 * @param pState The device state structure.
2144 * @param offset Register offset in memory-mapped frame.
2145 * @param index Register index in register array.
2146 * @param mask Used to implement partial reads (8 and 16-bit).
2147 */
2148static int e1kRegReadCTRL(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
2149{
2150 E1kLog(("%s e1kRegReadCTRL: mdio dir=%s mdc dir=%s mdc=%d\n",
2151 INSTANCE(pState), (CTRL & CTRL_MDIO_DIR)?"OUT":"IN ",
2152 (CTRL & CTRL_MDC_DIR)?"OUT":"IN ", !!(CTRL & CTRL_MDC)));
2153 if ((CTRL & CTRL_MDIO_DIR) == 0 && (CTRL & CTRL_MDC))
2154 {
2155 /* MDC is high and MDIO pin is used for input, read MDIO pin from PHY */
2156 if (Phy::readMDIO(&pState->phy))
2157 *pu32Value = CTRL | CTRL_MDIO;
2158 else
2159 *pu32Value = CTRL & ~CTRL_MDIO;
2160 E1kLog(("%s e1kRegReadCTRL: Phy::readMDIO(%d)\n",
2161 INSTANCE(pState), !!(*pu32Value & CTRL_MDIO)));
2162 }
2163 else
2164 {
2165 /* MDIO pin is used for output, ignore it */
2166 *pu32Value = CTRL;
2167 }
2168 return VINF_SUCCESS;
2169}
2170#endif /* unused */
2171
2172/**
2173 * Write handler for Device Control register.
2174 *
2175 * Handles reset.
2176 *
2177 * @param pState The device state structure.
2178 * @param offset Register offset in memory-mapped frame.
2179 * @param index Register index in register array.
2180 * @param value The value to store.
2181 * @param mask Used to implement partial writes (8 and 16-bit).
2182 * @thread EMT
2183 */
2184static int e1kRegWriteCTRL(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2185{
2186 int rc = VINF_SUCCESS;
2187
2188 if (value & CTRL_RESET)
2189 { /* RST */
2190#ifndef IN_RING3
2191 return VINF_IOM_HC_IOPORT_WRITE;
2192#else
2193 e1kHardReset(pState);
2194#endif
2195 }
2196 else
2197 {
2198 if ( (value & CTRL_SLU)
2199 && pState->fCableConnected
2200 && !(STATUS & STATUS_LU))
2201 {
2202 /* The driver indicates that we should bring up the link */
2203 /* Do so in 5 seconds. */
2204 e1kArmTimer(pState, pState->CTX_SUFF(pLUTimer), 5000000);
2205 /*
2206 * Change the status (but not PHY status) anyway as Windows expects
2207 * it for 82543GC.
2208 */
2209 STATUS |= STATUS_LU;
2210 }
2211 if (value & CTRL_VME)
2212 {
2213 E1kLog(("%s VLAN Mode is not supported yet!\n", INSTANCE(pState)));
2214 }
2215 E1kLog(("%s e1kRegWriteCTRL: mdio dir=%s mdc dir=%s mdc=%s mdio=%d\n",
2216 INSTANCE(pState), (value & CTRL_MDIO_DIR)?"OUT":"IN ",
2217 (value & CTRL_MDC_DIR)?"OUT":"IN ", (value & CTRL_MDC)?"HIGH":"LOW ", !!(value & CTRL_MDIO)));
2218 if (value & CTRL_MDC)
2219 {
2220 if (value & CTRL_MDIO_DIR)
2221 {
2222 E1kLog(("%s e1kRegWriteCTRL: Phy::writeMDIO(%d)\n", INSTANCE(pState), !!(value & CTRL_MDIO)));
2223 /* MDIO direction pin is set to output and MDC is high, write MDIO pin value to PHY */
2224 Phy::writeMDIO(&pState->phy, !!(value & CTRL_MDIO));
2225 }
2226 else
2227 {
2228 if (Phy::readMDIO(&pState->phy))
2229 value |= CTRL_MDIO;
2230 else
2231 value &= ~CTRL_MDIO;
2232 E1kLog(("%s e1kRegWriteCTRL: Phy::readMDIO(%d)\n",
2233 INSTANCE(pState), !!(value & CTRL_MDIO)));
2234 }
2235 }
2236 rc = e1kRegWriteDefault(pState, offset, index, value);
2237 }
2238
2239 return rc;
2240}
2241
2242/**
2243 * Write handler for EEPROM/Flash Control/Data register.
2244 *
2245 * Handles EEPROM access requests; forwards writes to EEPROM device if access has been granted.
2246 *
2247 * @param pState The device state structure.
2248 * @param offset Register offset in memory-mapped frame.
2249 * @param index Register index in register array.
2250 * @param value The value to store.
2251 * @param mask Used to implement partial writes (8 and 16-bit).
2252 * @thread EMT
2253 */
2254static int e1kRegWriteEECD(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2255{
2256#ifdef IN_RING3
2257 /* So far we are concerned with lower byte only */
2258 if ((EECD & EECD_EE_GNT) || pState->eChip == E1K_CHIP_82543GC)
2259 {
2260 /* Access to EEPROM granted -- forward 4-wire bits to EEPROM device */
2261 /* Note: 82543GC does not need to request EEPROM access */
2262 STAM_PROFILE_ADV_START(&pState->StatEEPROMWrite, a);
2263 pState->eeprom.write(value & EECD_EE_WIRES);
2264 STAM_PROFILE_ADV_STOP(&pState->StatEEPROMWrite, a);
2265 }
2266 if (value & EECD_EE_REQ)
2267 EECD |= EECD_EE_REQ|EECD_EE_GNT;
2268 else
2269 EECD &= ~EECD_EE_GNT;
2270 //e1kRegWriteDefault(pState, offset, index, value );
2271
2272 return VINF_SUCCESS;
2273#else /* !IN_RING3 */
2274 return VINF_IOM_HC_MMIO_WRITE;
2275#endif /* !IN_RING3 */
2276}
2277
2278/**
2279 * Read handler for EEPROM/Flash Control/Data register.
2280 *
2281 * Lower 4 bits come from EEPROM device if EEPROM access has been granted.
2282 *
2283 * @returns VBox status code.
2284 *
2285 * @param pState The device state structure.
2286 * @param offset Register offset in memory-mapped frame.
2287 * @param index Register index in register array.
2288 * @param mask Used to implement partial reads (8 and 16-bit).
2289 * @thread EMT
2290 */
2291static int e1kRegReadEECD(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
2292{
2293#ifdef IN_RING3
2294 uint32_t value;
2295 int rc = e1kRegReadDefault(pState, offset, index, &value);
2296 if (RT_SUCCESS(rc))
2297 {
2298 if ((value & EECD_EE_GNT) || pState->eChip == E1K_CHIP_82543GC)
2299 {
2300 /* Note: 82543GC does not need to request EEPROM access */
2301 /* Access to EEPROM granted -- get 4-wire bits to EEPROM device */
2302 STAM_PROFILE_ADV_START(&pState->StatEEPROMRead, a);
2303 value |= pState->eeprom.read();
2304 STAM_PROFILE_ADV_STOP(&pState->StatEEPROMRead, a);
2305 }
2306 *pu32Value = value;
2307 }
2308
2309 return rc;
2310#else /* !IN_RING3 */
2311 return VINF_IOM_HC_MMIO_READ;
2312#endif /* !IN_RING3 */
2313}
2314
2315/**
2316 * Write handler for EEPROM Read register.
2317 *
2318 * Handles EEPROM word access requests, reads EEPROM and stores the result
2319 * into DATA field.
2320 *
2321 * @param pState The device state structure.
2322 * @param offset Register offset in memory-mapped frame.
2323 * @param index Register index in register array.
2324 * @param value The value to store.
2325 * @param mask Used to implement partial writes (8 and 16-bit).
2326 * @thread EMT
2327 */
2328static int e1kRegWriteEERD(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2329{
2330#ifdef IN_RING3
2331 /* Make use of 'writable' and 'readable' masks. */
2332 e1kRegWriteDefault(pState, offset, index, value);
2333 /* DONE and DATA are set only if read was triggered by START. */
2334 if (value & EERD_START)
2335 {
2336 uint16_t tmp;
2337 STAM_PROFILE_ADV_START(&pState->StatEEPROMRead, a);
2338 if (pState->eeprom.readWord(GET_BITS_V(value, EERD, ADDR), &tmp))
2339 SET_BITS(EERD, DATA, tmp);
2340 EERD |= EERD_DONE;
2341 STAM_PROFILE_ADV_STOP(&pState->StatEEPROMRead, a);
2342 }
2343
2344 return VINF_SUCCESS;
2345#else /* !IN_RING3 */
2346 return VINF_IOM_HC_MMIO_WRITE;
2347#endif /* !IN_RING3 */
2348}
2349
2350
2351/**
2352 * Write handler for MDI Control register.
2353 *
2354 * Handles PHY read/write requests; forwards requests to internal PHY device.
2355 *
2356 * @param pState The device state structure.
2357 * @param offset Register offset in memory-mapped frame.
2358 * @param index Register index in register array.
2359 * @param value The value to store.
2360 * @param mask Used to implement partial writes (8 and 16-bit).
2361 * @thread EMT
2362 */
2363static int e1kRegWriteMDIC(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2364{
2365 if (value & MDIC_INT_EN)
2366 {
2367 E1kLog(("%s ERROR! Interrupt at the end of an MDI cycle is not supported yet.\n",
2368 INSTANCE(pState)));
2369 }
2370 else if (value & MDIC_READY)
2371 {
2372 E1kLog(("%s ERROR! Ready bit is not reset by software during write operation.\n",
2373 INSTANCE(pState)));
2374 }
2375 else if (GET_BITS_V(value, MDIC, PHY) != 1)
2376 {
2377 E1kLog(("%s ERROR! Access to invalid PHY detected, phy=%d.\n",
2378 INSTANCE(pState), GET_BITS_V(value, MDIC, PHY)));
2379 }
2380 else
2381 {
2382 /* Store the value */
2383 e1kRegWriteDefault(pState, offset, index, value);
2384 STAM_COUNTER_INC(&pState->StatPHYAccesses);
2385 /* Forward op to PHY */
2386 if (value & MDIC_OP_READ)
2387 SET_BITS(MDIC, DATA, Phy::readRegister(&pState->phy, GET_BITS_V(value, MDIC, REG)));
2388 else
2389 Phy::writeRegister(&pState->phy, GET_BITS_V(value, MDIC, REG), value & MDIC_DATA_MASK);
2390 /* Let software know that we are done */
2391 MDIC |= MDIC_READY;
2392 }
2393
2394 return VINF_SUCCESS;
2395}
2396
2397/**
2398 * Write handler for Interrupt Cause Read register.
2399 *
2400 * Bits corresponding to 1s in 'value' will be cleared in ICR register.
2401 *
2402 * @param pState The device state structure.
2403 * @param offset Register offset in memory-mapped frame.
2404 * @param index Register index in register array.
2405 * @param value The value to store.
2406 * @param mask Used to implement partial writes (8 and 16-bit).
2407 * @thread EMT
2408 */
2409static int e1kRegWriteICR(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2410{
2411 ICR &= ~value;
2412
2413 return VINF_SUCCESS;
2414}
2415
2416/**
2417 * Read handler for Interrupt Cause Read register.
2418 *
2419 * Reading this register acknowledges all interrupts.
2420 *
2421 * @returns VBox status code.
2422 *
2423 * @param pState The device state structure.
2424 * @param offset Register offset in memory-mapped frame.
2425 * @param index Register index in register array.
2426 * @param mask Not used.
2427 * @thread EMT
2428 */
2429static int e1kRegReadICR(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
2430{
2431 int rc = e1kCsEnter(pState, VINF_IOM_HC_MMIO_READ);
2432 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2433 return rc;
2434
2435 uint32_t value = 0;
2436 rc = e1kRegReadDefault(pState, offset, index, &value);
2437 if (RT_SUCCESS(rc))
2438 {
2439 if (value)
2440 {
2441 /*
2442 * Not clearing ICR causes QNX to hang as it reads ICR in a loop
2443 * with disabled interrupts.
2444 */
2445 //if (IMS)
2446 if (1)
2447 {
2448 /*
2449 * Interrupts were enabled -- we are supposedly at the very
2450 * beginning of interrupt handler
2451 */
2452 E1kLogRel(("E1000: irq lowered, icr=0x%x\n", ICR));
2453 E1kLog(("%s e1kRegReadICR: Lowered IRQ (%08x)\n", INSTANCE(pState), ICR));
2454 /* Clear all pending interrupts */
2455 ICR = 0;
2456 pState->fIntRaised = false;
2457 /* Lower(0) INTA(0) */
2458 //e1kMutexRelease(pState);
2459 PDMDevHlpPCISetIrq(pState->CTX_SUFF(pDevIns), 0, 0);
2460 //e1kMutexAcquire(pState, RT_SRC_POS);
2461
2462 pState->u64AckedAt = TMTimerGet(pState->CTX_SUFF(pIntTimer));
2463 if (pState->fIntMaskUsed)
2464 pState->fDelayInts = true;
2465 }
2466 else
2467 {
2468 /*
2469 * Interrupts are disabled -- in windows guests ICR read is done
2470 * just before re-enabling interrupts
2471 */
2472 E1kLog(("%s e1kRegReadICR: Suppressing auto-clear due to disabled interrupts (%08x)\n", INSTANCE(pState), ICR));
2473 }
2474 }
2475 *pu32Value = value;
2476 }
2477 e1kCsLeave(pState);
2478
2479 return rc;
2480}
2481
2482/**
2483 * Write handler for Interrupt Cause Set register.
2484 *
2485 * Bits corresponding to 1s in 'value' will be set in ICR register.
2486 *
2487 * @param pState The device state structure.
2488 * @param offset Register offset in memory-mapped frame.
2489 * @param index Register index in register array.
2490 * @param value The value to store.
2491 * @param mask Used to implement partial writes (8 and 16-bit).
2492 * @thread EMT
2493 */
2494static int e1kRegWriteICS(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2495{
2496 E1K_INC_ISTAT_CNT(pState->uStatIntICS);
2497 return e1kRaiseInterrupt(pState, VINF_IOM_HC_MMIO_WRITE, value & s_e1kRegMap[ICS_IDX].writable);
2498}
2499
2500/**
2501 * Write handler for Interrupt Mask Set register.
2502 *
2503 * Will trigger pending interrupts.
2504 *
2505 * @param pState The device state structure.
2506 * @param offset Register offset in memory-mapped frame.
2507 * @param index Register index in register array.
2508 * @param value The value to store.
2509 * @param mask Used to implement partial writes (8 and 16-bit).
2510 * @thread EMT
2511 */
2512static int e1kRegWriteIMS(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2513{
2514 IMS |= value;
2515 E1kLogRel(("E1000: irq enabled, RDH=%x RDT=%x TDH=%x TDT=%x\n", RDH, RDT, TDH, TDT));
2516 E1kLog(("%s e1kRegWriteIMS: IRQ enabled\n", INSTANCE(pState)));
2517 /* Mask changes, we need to raise pending interrupts. */
2518 if ((ICR & IMS) && !pState->fLocked)
2519 {
2520 E1kLog2(("%s e1kRegWriteIMS: IRQ pending (%08x), arming late int timer...\n",
2521 INSTANCE(pState), ICR));
2522 //TMTimerSet(pState->CTX_SUFF(pIntTimer), TMTimerFromNano(pState->CTX_SUFF(pIntTimer), ITR * 256) +
2523 // TMTimerGet(pState->CTX_SUFF(pIntTimer)));
2524 e1kRaiseInterrupt(pState, VERR_SEM_BUSY);
2525 }
2526
2527 return VINF_SUCCESS;
2528}
2529
2530/**
2531 * Write handler for Interrupt Mask Clear register.
2532 *
2533 * Bits corresponding to 1s in 'value' will be cleared in IMS register.
2534 *
2535 * @param pState The device state structure.
2536 * @param offset Register offset in memory-mapped frame.
2537 * @param index Register index in register array.
2538 * @param value The value to store.
2539 * @param mask Used to implement partial writes (8 and 16-bit).
2540 * @thread EMT
2541 */
2542static int e1kRegWriteIMC(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2543{
2544 int rc = e1kCsEnter(pState, VINF_IOM_HC_MMIO_WRITE);
2545 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2546 return rc;
2547 if (pState->fIntRaised)
2548 {
2549 /*
2550 * Technically we should reset fIntRaised in ICR read handler, but it will cause
2551 * Windows to freeze since it may receive an interrupt while still in the very beginning
2552 * of interrupt handler.
2553 */
2554 E1K_INC_ISTAT_CNT(pState->uStatIntLower);
2555 STAM_COUNTER_INC(&pState->StatIntsPrevented);
2556 E1kLogRel(("E1000: irq lowered (IMC), icr=0x%x\n", ICR));
2557 /* Lower(0) INTA(0) */
2558 PDMDevHlpPCISetIrq(pState->CTX_SUFF(pDevIns), 0, 0);
2559 pState->fIntRaised = false;
2560 E1kLog(("%s e1kRegWriteIMC: Lowered IRQ: ICR=%08x\n", INSTANCE(pState), ICR));
2561 }
2562 IMS &= ~value;
2563 E1kLog(("%s e1kRegWriteIMC: IRQ disabled\n", INSTANCE(pState)));
2564 e1kCsLeave(pState);
2565
2566 return VINF_SUCCESS;
2567}
2568
2569/**
2570 * Write handler for Receive Control register.
2571 *
2572 * @param pState The device state structure.
2573 * @param offset Register offset in memory-mapped frame.
2574 * @param index Register index in register array.
2575 * @param value The value to store.
2576 * @param mask Used to implement partial writes (8 and 16-bit).
2577 * @thread EMT
2578 */
2579static int e1kRegWriteRCTL(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2580{
2581 /* Update promiscuous mode */
2582 bool fBecomePromiscous = !!(value & (RCTL_UPE | RCTL_MPE));
2583 if (fBecomePromiscous != !!( RCTL & (RCTL_UPE | RCTL_MPE)))
2584 {
2585 /* Promiscuity has changed, pass the knowledge on. */
2586#ifndef IN_RING3
2587 return VINF_IOM_HC_IOPORT_WRITE;
2588#else
2589 if (pState->pDrvR3)
2590 pState->pDrvR3->pfnSetPromiscuousMode(pState->pDrvR3, fBecomePromiscous);
2591#endif
2592 }
2593
2594 /* Adjust receive buffer size */
2595 unsigned cbRxBuf = 2048 >> GET_BITS_V(value, RCTL, BSIZE);
2596 if (value & RCTL_BSEX)
2597 cbRxBuf *= 16;
2598 if (cbRxBuf != pState->u16RxBSize)
2599 E1kLog2(("%s e1kRegWriteRCTL: Setting receive buffer size to %d (old %d)\n",
2600 INSTANCE(pState), cbRxBuf, pState->u16RxBSize));
2601 pState->u16RxBSize = cbRxBuf;
2602
2603 /* Update the register */
2604 e1kRegWriteDefault(pState, offset, index, value);
2605
2606 return VINF_SUCCESS;
2607}
2608
2609/**
2610 * Write handler for Packet Buffer Allocation register.
2611 *
2612 * TXA = 64 - RXA.
2613 *
2614 * @param pState The device state structure.
2615 * @param offset Register offset in memory-mapped frame.
2616 * @param index Register index in register array.
2617 * @param value The value to store.
2618 * @param mask Used to implement partial writes (8 and 16-bit).
2619 * @thread EMT
2620 */
2621static int e1kRegWritePBA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2622{
2623 e1kRegWriteDefault(pState, offset, index, value);
2624 PBA_st->txa = 64 - PBA_st->rxa;
2625
2626 return VINF_SUCCESS;
2627}
2628
2629/**
2630 * Write handler for Receive Descriptor Tail register.
2631 *
2632 * @remarks Write into RDT forces switch to HC and signal to
2633 * e1kNetworkDown_WaitReceiveAvail().
2634 *
2635 * @returns VBox status code.
2636 *
2637 * @param pState The device state structure.
2638 * @param offset Register offset in memory-mapped frame.
2639 * @param index Register index in register array.
2640 * @param value The value to store.
2641 * @param mask Used to implement partial writes (8 and 16-bit).
2642 * @thread EMT
2643 */
2644static int e1kRegWriteRDT(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2645{
2646#ifndef IN_RING3
2647 /* XXX */
2648// return VINF_IOM_HC_MMIO_WRITE;
2649#endif
2650 int rc = e1kCsRxEnter(pState, VINF_IOM_HC_MMIO_WRITE);
2651 if (RT_LIKELY(rc == VINF_SUCCESS))
2652 {
2653 E1kLog(("%s e1kRegWriteRDT\n", INSTANCE(pState)));
2654 rc = e1kRegWriteDefault(pState, offset, index, value);
2655 e1kCsRxLeave(pState);
2656 if (RT_SUCCESS(rc))
2657 {
2658/** @todo bird: Use SUPSem* for this so we can signal it in ring-0 as well
2659 * without requiring any context switches. We should also check the
2660 * wait condition before bothering to queue the item as we're currently
2661 * queuing thousands of items per second here in a normal transmit
2662 * scenario. Expect performance changes when fixing this! */
2663#ifdef IN_RING3
2664 /* Signal that we have more receive descriptors available. */
2665 e1kWakeupReceive(pState->CTX_SUFF(pDevIns));
2666#else
2667 PPDMQUEUEITEMCORE pItem = PDMQueueAlloc(pState->CTX_SUFF(pCanRxQueue));
2668 if (pItem)
2669 PDMQueueInsert(pState->CTX_SUFF(pCanRxQueue), pItem);
2670#endif
2671 }
2672 }
2673 return rc;
2674}
2675
2676/**
2677 * Write handler for Receive Delay Timer register.
2678 *
2679 * @param pState The device state structure.
2680 * @param offset Register offset in memory-mapped frame.
2681 * @param index Register index in register array.
2682 * @param value The value to store.
2683 * @param mask Used to implement partial writes (8 and 16-bit).
2684 * @thread EMT
2685 */
2686static int e1kRegWriteRDTR(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2687{
2688 e1kRegWriteDefault(pState, offset, index, value);
2689 if (value & RDTR_FPD)
2690 {
2691 /* Flush requested, cancel both timers and raise interrupt */
2692#ifdef E1K_USE_RX_TIMERS
2693 e1kCancelTimer(pState, pState->CTX_SUFF(pRIDTimer));
2694 e1kCancelTimer(pState, pState->CTX_SUFF(pRADTimer));
2695#endif
2696 E1K_INC_ISTAT_CNT(pState->uStatIntRDTR);
2697 return e1kRaiseInterrupt(pState, VINF_IOM_HC_MMIO_WRITE, ICR_RXT0);
2698 }
2699
2700 return VINF_SUCCESS;
2701}
2702
2703DECLINLINE(uint32_t) e1kGetTxLen(E1KSTATE* pState)
2704{
2705 /**
2706 * Make sure TDT won't change during computation. EMT may modify TDT at
2707 * any moment.
2708 */
2709 uint32_t tdt = TDT;
2710 return (TDH>tdt ? TDLEN/sizeof(E1KTXDESC) : 0) + tdt - TDH;
2711}
2712
2713#ifdef IN_RING3
2714#ifdef E1K_USE_TX_TIMERS
2715
2716/**
2717 * Transmit Interrupt Delay Timer handler.
2718 *
2719 * @remarks We only get here when the timer expires.
2720 *
2721 * @param pDevIns Pointer to device instance structure.
2722 * @param pTimer Pointer to the timer.
2723 * @param pvUser NULL.
2724 * @thread EMT
2725 */
2726static DECLCALLBACK(void) e1kTxIntDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
2727{
2728 E1KSTATE *pState = (E1KSTATE *)pvUser;
2729
2730 if (RT_LIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2731 {
2732 E1K_INC_ISTAT_CNT(pState->uStatTID);
2733 /* Cancel absolute delay timer as we have already got attention */
2734#ifndef E1K_NO_TAD
2735 e1kCancelTimer(pState, pState->CTX_SUFF(pTADTimer));
2736#endif /* E1K_NO_TAD */
2737 e1kRaiseInterrupt(pState, ICR_TXDW);
2738 e1kMutexRelease(pState);
2739 }
2740}
2741
2742/**
2743 * Transmit Absolute Delay Timer handler.
2744 *
2745 * @remarks We only get here when the timer expires.
2746 *
2747 * @param pDevIns Pointer to device instance structure.
2748 * @param pTimer Pointer to the timer.
2749 * @param pvUser NULL.
2750 * @thread EMT
2751 */
2752static DECLCALLBACK(void) e1kTxAbsDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
2753{
2754 E1KSTATE *pState = (E1KSTATE *)pvUser;
2755
2756 if (RT_LIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2757 {
2758 E1K_INC_ISTAT_CNT(pState->uStatTAD);
2759 /* Cancel interrupt delay timer as we have already got attention */
2760 e1kCancelTimer(pState, pState->CTX_SUFF(pTIDTimer));
2761 e1kRaiseInterrupt(pState, ICR_TXDW);
2762 e1kMutexRelease(pState);
2763 }
2764}
2765
2766#endif /* E1K_USE_TX_TIMERS */
2767#ifdef E1K_USE_RX_TIMERS
2768
2769/**
2770 * Receive Interrupt Delay Timer handler.
2771 *
2772 * @remarks We only get here when the timer expires.
2773 *
2774 * @param pDevIns Pointer to device instance structure.
2775 * @param pTimer Pointer to the timer.
2776 * @param pvUser NULL.
2777 * @thread EMT
2778 */
2779static DECLCALLBACK(void) e1kRxIntDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
2780{
2781 E1KSTATE *pState = (E1KSTATE *)pvUser;
2782
2783 if (RT_LIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2784 {
2785 E1K_INC_ISTAT_CNT(pState->uStatRID);
2786 /* Cancel absolute delay timer as we have already got attention */
2787 e1kCancelTimer(pState, pState->CTX_SUFF(pRADTimer));
2788 e1kRaiseInterrupt(pState, ICR_RXT0);
2789 e1kMutexRelease(pState);
2790 }
2791}
2792
2793/**
2794 * Receive Absolute Delay Timer handler.
2795 *
2796 * @remarks We only get here when the timer expires.
2797 *
2798 * @param pDevIns Pointer to device instance structure.
2799 * @param pTimer Pointer to the timer.
2800 * @param pvUser NULL.
2801 * @thread EMT
2802 */
2803static DECLCALLBACK(void) e1kRxAbsDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
2804{
2805 E1KSTATE *pState = (E1KSTATE *)pvUser;
2806
2807 if (RT_LIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2808 {
2809 E1K_INC_ISTAT_CNT(pState->uStatRAD);
2810 /* Cancel interrupt delay timer as we have already got attention */
2811 e1kCancelTimer(pState, pState->CTX_SUFF(pRIDTimer));
2812 e1kRaiseInterrupt(pState, ICR_RXT0);
2813 e1kMutexRelease(pState);
2814 }
2815}
2816
2817#endif /* E1K_USE_RX_TIMERS */
2818
2819/**
2820 * Late Interrupt Timer handler.
2821 *
2822 * @param pDevIns Pointer to device instance structure.
2823 * @param pTimer Pointer to the timer.
2824 * @param pvUser NULL.
2825 * @thread EMT
2826 */
2827static DECLCALLBACK(void) e1kLateIntTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
2828{
2829 E1KSTATE *pState = (E1KSTATE *)pvUser;
2830
2831 STAM_PROFILE_ADV_START(&pState->StatLateIntTimer, a);
2832 if (RT_LIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2833 {
2834 STAM_COUNTER_INC(&pState->StatLateInts);
2835 E1K_INC_ISTAT_CNT(pState->uStatIntLate);
2836#if 0
2837 if (pState->iStatIntLost > -100)
2838 pState->iStatIntLost--;
2839#endif
2840 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, 0);
2841 e1kMutexRelease(pState);
2842 }
2843 STAM_PROFILE_ADV_STOP(&pState->StatLateIntTimer, a);
2844}
2845
2846/**
2847 * Link Up Timer handler.
2848 *
2849 * @param pDevIns Pointer to device instance structure.
2850 * @param pTimer Pointer to the timer.
2851 * @param pvUser NULL.
2852 * @thread EMT
2853 */
2854static DECLCALLBACK(void) e1kLinkUpTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
2855{
2856 E1KSTATE *pState = (E1KSTATE *)pvUser;
2857
2858 if (RT_LIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2859 {
2860 STATUS |= STATUS_LU;
2861 Phy::setLinkStatus(&pState->phy, true);
2862 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_LSC);
2863 e1kMutexRelease(pState);
2864 }
2865}
2866
2867#endif /* IN_RING3 */
2868
2869/**
2870 * Sets up the GSO context according to the TSE new context descriptor.
2871 *
2872 * @param pGso The GSO context to setup.
2873 * @param pCtx The context descriptor.
2874 */
2875DECLINLINE(void) e1kSetupGsoCtx(PPDMNETWORKGSO pGso, E1KTXCTX const *pCtx)
2876{
2877 pGso->u8Type = PDMNETWORKGSOTYPE_INVALID;
2878
2879 /*
2880 * See if the context descriptor describes something that could be TCP or
2881 * UDP over IPv[46].
2882 */
2883 /* Check the header ordering and spacing: 1. Ethernet, 2. IP, 3. TCP/UDP. */
2884 if (RT_UNLIKELY( pCtx->ip.u8CSS < sizeof(RTNETETHERHDR) ))
2885 {
2886 E1kLog(("e1kSetupGsoCtx: IPCSS=%#x\n", pCtx->ip.u8CSS));
2887 return;
2888 }
2889 if (RT_UNLIKELY( pCtx->tu.u8CSS < (size_t)pCtx->ip.u8CSS + (pCtx->dw2.fIP ? RTNETIPV4_MIN_LEN : RTNETIPV6_MIN_LEN) ))
2890 {
2891 E1kLog(("e1kSetupGsoCtx: TUCSS=%#x\n", pCtx->tu.u8CSS));
2892 return;
2893 }
2894 if (RT_UNLIKELY( pCtx->dw2.fTCP
2895 ? pCtx->dw3.u8HDRLEN < (size_t)pCtx->tu.u8CSS + RTNETTCP_MIN_LEN
2896 : pCtx->dw3.u8HDRLEN != (size_t)pCtx->tu.u8CSS + RTNETUDP_MIN_LEN ))
2897 {
2898 E1kLog(("e1kSetupGsoCtx: HDRLEN=%#x TCP=%d\n", pCtx->dw3.u8HDRLEN, pCtx->dw2.fTCP));
2899 return;
2900 }
2901
2902 /* The end of the TCP/UDP checksum should stop at the end of the packet or at least after the headers. */
2903 if (RT_UNLIKELY( pCtx->tu.u16CSE > 0 && pCtx->tu.u16CSE <= pCtx->dw3.u8HDRLEN ))
2904 {
2905 E1kLog(("e1kSetupGsoCtx: TUCSE=%#x HDRLEN=%#x\n", pCtx->tu.u16CSE, pCtx->dw3.u8HDRLEN));
2906 return;
2907 }
2908
2909 /* IPv4 checksum offset. */
2910 if (RT_UNLIKELY( pCtx->dw2.fIP && (size_t)pCtx->ip.u8CSO - pCtx->ip.u8CSS != RT_UOFFSETOF(RTNETIPV4, ip_sum) ))
2911 {
2912 E1kLog(("e1kSetupGsoCtx: IPCSO=%#x IPCSS=%#x\n", pCtx->ip.u8CSO, pCtx->ip.u8CSS));
2913 return;
2914 }
2915
2916 /* TCP/UDP checksum offsets. */
2917 if (RT_UNLIKELY( (size_t)pCtx->tu.u8CSO - pCtx->tu.u8CSS
2918 != ( pCtx->dw2.fTCP
2919 ? RT_UOFFSETOF(RTNETTCP, th_sum)
2920 : RT_UOFFSETOF(RTNETUDP, uh_sum) ) ))
2921 {
2922 E1kLog(("e1kSetupGsoCtx: TUCSO=%#x TUCSS=%#x TCP=%d\n", pCtx->ip.u8CSO, pCtx->ip.u8CSS, pCtx->dw2.fTCP));
2923 return;
2924 }
2925
2926 /*
2927 * Because of internal networking using a 16-bit size field for GSO context
2928 * plus frame, we have to make sure we don't exceed this.
2929 */
2930 if (RT_UNLIKELY( pCtx->dw3.u8HDRLEN + pCtx->dw2.u20PAYLEN > VBOX_MAX_GSO_SIZE ))
2931 {
2932 E1kLog(("e1kSetupGsoCtx: HDRLEN(=%#x) + PAYLEN(=%#x) = %#x, max is %#x\n",
2933 pCtx->dw3.u8HDRLEN, pCtx->dw2.u20PAYLEN, pCtx->dw3.u8HDRLEN + pCtx->dw2.u20PAYLEN, VBOX_MAX_GSO_SIZE));
2934 return;
2935 }
2936
2937 /*
2938 * We're good for now - we'll do more checks when seeing the data.
2939 * So, figure the type of offloading and setup the context.
2940 */
2941 if (pCtx->dw2.fIP)
2942 {
2943 if (pCtx->dw2.fTCP)
2944 pGso->u8Type = PDMNETWORKGSOTYPE_IPV4_TCP;
2945 else
2946 pGso->u8Type = PDMNETWORKGSOTYPE_IPV4_UDP;
2947 /** @todo Detect IPv4-IPv6 tunneling (need test setup since linux doesn't do
2948 * this yet it seems)... */
2949 }
2950 else
2951 {
2952 if (pCtx->dw2.fTCP)
2953 pGso->u8Type = PDMNETWORKGSOTYPE_IPV6_TCP;
2954 else
2955 pGso->u8Type = PDMNETWORKGSOTYPE_IPV6_UDP;
2956 }
2957 pGso->offHdr1 = pCtx->ip.u8CSS;
2958 pGso->offHdr2 = pCtx->tu.u8CSS;
2959 pGso->cbHdrs = pCtx->dw3.u8HDRLEN;
2960 pGso->cbMaxSeg = pCtx->dw3.u16MSS;
2961 Assert(PDMNetGsoIsValid(pGso, sizeof(*pGso), pGso->cbMaxSeg * 5));
2962 E1kLog2(("e1kSetupGsoCtx: mss=%#x hdr=%#x hdr1=%#x hdr2=%#x %s\n",
2963 pGso->cbMaxSeg, pGso->cbHdrs, pGso->offHdr1, pGso->offHdr2, PDMNetGsoTypeName((PDMNETWORKGSOTYPE)pGso->u8Type) ));
2964}
2965
2966/**
2967 * Checks if we can use GSO processing for the current TSE frame.
2968 *
2969 * @param pGso The GSO context.
2970 * @param pData The first data descriptor of the frame.
2971 * @param pCtx The TSO context descriptor.
2972 */
2973DECLINLINE(bool) e1kCanDoGso(PCPDMNETWORKGSO pGso, E1KTXDAT const *pData, E1KTXCTX const *pCtx)
2974{
2975 if (!pData->cmd.fTSE)
2976 {
2977 E1kLog2(("e1kCanDoGso: !TSE\n"));
2978 return false;
2979 }
2980 if (pData->cmd.fVLE) /** @todo VLAN tagging. */
2981 {
2982 E1kLog(("e1kCanDoGso: VLE\n"));
2983 return false;
2984 }
2985
2986 switch ((PDMNETWORKGSOTYPE)pGso->u8Type)
2987 {
2988 case PDMNETWORKGSOTYPE_IPV4_TCP:
2989 case PDMNETWORKGSOTYPE_IPV4_UDP:
2990 if (!pData->dw3.fIXSM)
2991 {
2992 E1kLog(("e1kCanDoGso: !IXSM (IPv4)\n"));
2993 return false;
2994 }
2995 if (!pData->dw3.fTXSM)
2996 {
2997 E1kLog(("e1kCanDoGso: !TXSM (IPv4)\n"));
2998 return false;
2999 }
3000 /** @todo what more check should we perform here? Ethernet frame type? */
3001 E1kLog2(("e1kCanDoGso: OK, IPv4\n"));
3002 return true;
3003
3004 case PDMNETWORKGSOTYPE_IPV6_TCP:
3005 case PDMNETWORKGSOTYPE_IPV6_UDP:
3006 if (pData->dw3.fIXSM && pCtx->ip.u8CSO)
3007 {
3008 E1kLog(("e1kCanDoGso: IXSM (IPv6)\n"));
3009 return false;
3010 }
3011 if (!pData->dw3.fTXSM)
3012 {
3013 E1kLog(("e1kCanDoGso: TXSM (IPv6)\n"));
3014 return false;
3015 }
3016 /** @todo what more check should we perform here? Ethernet frame type? */
3017 E1kLog2(("e1kCanDoGso: OK, IPv4\n"));
3018 return true;
3019
3020 default:
3021 Assert(pGso->u8Type == PDMNETWORKGSOTYPE_INVALID);
3022 E1kLog2(("e1kCanDoGso: e1kSetupGsoCtx failed\n"));
3023 return false;
3024 }
3025}
3026
3027/**
3028 * Frees the current xmit buffer.
3029 *
3030 * @param pState The device state structure.
3031 */
3032static void e1kXmitFreeBuf(E1KSTATE *pState)
3033{
3034 PPDMSCATTERGATHER pSg = pState->CTX_SUFF(pTxSg);
3035 if (pSg)
3036 {
3037 pState->CTX_SUFF(pTxSg) = NULL;
3038
3039 if (pSg->pvAllocator != pState)
3040 {
3041 PPDMINETWORKUP pDrv = pState->CTX_SUFF(pDrv);
3042 if (pDrv)
3043 pDrv->pfnFreeBuf(pDrv, pSg);
3044 }
3045 else
3046 {
3047 /* loopback */
3048 AssertCompileMemberSize(E1KSTATE, uTxFallback.Sg, 8 * sizeof(size_t));
3049 Assert(pSg->fFlags == (PDMSCATTERGATHER_FLAGS_MAGIC | PDMSCATTERGATHER_FLAGS_OWNER_3));
3050 pSg->fFlags = 0;
3051 pSg->pvAllocator = NULL;
3052 }
3053 }
3054}
3055
3056/**
3057 * Allocates a xmit buffer.
3058 *
3059 * Presently this will always return a buffer. Later on we'll have a
3060 * out-of-buffer mechanism in place where the driver calls us back when buffers
3061 * becomes available.
3062 *
3063 * @returns See PDMINETWORKUP::pfnAllocBuf.
3064 * @param pState The device state structure.
3065 * @param cbMin The minimum frame size.
3066 * @param fExactSize Whether cbMin is exact or if we have to max it
3067 * out to the max MTU size.
3068 * @param fGso Whether this is a GSO frame or not.
3069 */
3070DECLINLINE(int) e1kXmitAllocBuf(E1KSTATE *pState, size_t cbMin, bool fExactSize, bool fGso)
3071{
3072 /* Adjust cbMin if necessary. */
3073 if (!fExactSize)
3074 cbMin = RT_MAX(cbMin, E1K_MAX_TX_PKT_SIZE);
3075
3076 /* Deal with existing buffer (descriptor screw up, reset, etc). */
3077 if (RT_UNLIKELY(pState->CTX_SUFF(pTxSg)))
3078 e1kXmitFreeBuf(pState);
3079 Assert(pState->CTX_SUFF(pTxSg) == NULL);
3080
3081 /*
3082 * Allocate the buffer.
3083 */
3084 PPDMSCATTERGATHER pSg;
3085 if (RT_LIKELY(GET_BITS(RCTL, LBM) != RCTL_LBM_TCVR))
3086 {
3087 PPDMINETWORKUP pDrv = pState->CTX_SUFF(pDrv);
3088 if (RT_UNLIKELY(!pDrv))
3089 return VERR_NET_DOWN;
3090 int rc = pDrv->pfnAllocBuf(pDrv, cbMin, fGso ? &pState->GsoCtx : NULL, &pSg);
3091 if (RT_FAILURE(rc))
3092 return rc;
3093 }
3094 else
3095 {
3096 /* Create a loopback using the fallback buffer and preallocated SG. */
3097 AssertCompileMemberSize(E1KSTATE, uTxFallback.Sg, 8 * sizeof(size_t));
3098 pSg = &pState->uTxFallback.Sg;
3099 pSg->fFlags = PDMSCATTERGATHER_FLAGS_MAGIC | PDMSCATTERGATHER_FLAGS_OWNER_3;
3100 pSg->cbUsed = 0;
3101 pSg->cbAvailable = 0;
3102 pSg->pvAllocator = pState;
3103 pSg->pvUser = NULL; /* No GSO here. */
3104 pSg->cSegs = 1;
3105 pSg->aSegs[0].pvSeg = pState->aTxPacketFallback;
3106 pSg->aSegs[0].cbSeg = sizeof(pState->aTxPacketFallback);
3107 }
3108
3109 pState->CTX_SUFF(pTxSg) = pSg;
3110 return VINF_SUCCESS;
3111}
3112
3113/**
3114 * Checks if it's a GSO buffer or not.
3115 *
3116 * @returns true / false.
3117 * @param pTxSg The scatter / gather buffer.
3118 */
3119DECLINLINE(bool) e1kXmitIsGsoBuf(PDMSCATTERGATHER const *pTxSg)
3120{
3121#if 0
3122 if (!pTxSg)
3123 E1kLog(("e1kXmitIsGsoBuf: pTxSG is NULL\n"));
3124 if (pTxSg && pTxSg->pvUser)
3125 E1kLog(("e1kXmitIsGsoBuf: pvUser is NULL\n"));
3126#endif
3127 return pTxSg && pTxSg->pvUser /* GSO indicator */;
3128}
3129
3130/**
3131 * Load transmit descriptor from guest memory.
3132 *
3133 * @param pState The device state structure.
3134 * @param pDesc Pointer to descriptor union.
3135 * @param addr Physical address in guest context.
3136 * @thread E1000_TX
3137 */
3138DECLINLINE(void) e1kLoadDesc(E1KSTATE* pState, E1KTXDESC* pDesc, RTGCPHYS addr)
3139{
3140 PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), addr, pDesc, sizeof(E1KTXDESC));
3141}
3142
3143/**
3144 * Write back transmit descriptor to guest memory.
3145 *
3146 * @param pState The device state structure.
3147 * @param pDesc Pointer to descriptor union.
3148 * @param addr Physical address in guest context.
3149 * @thread E1000_TX
3150 */
3151DECLINLINE(void) e1kWriteBackDesc(E1KSTATE* pState, E1KTXDESC* pDesc, RTGCPHYS addr)
3152{
3153 /* Only the last half of the descriptor has to be written back. */
3154 e1kPrintTDesc(pState, pDesc, "^^^");
3155 PDMDevHlpPhysWrite(pState->CTX_SUFF(pDevIns), addr, pDesc, sizeof(E1KTXDESC));
3156}
3157
3158/**
3159 * Transmit complete frame.
3160 *
3161 * @remarks We skip the FCS since we're not responsible for sending anything to
3162 * a real ethernet wire.
3163 *
3164 * @param pState The device state structure.
3165 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
3166 * @thread E1000_TX
3167 */
3168static void e1kTransmitFrame(E1KSTATE* pState, bool fOnWorkerThread)
3169{
3170 PPDMSCATTERGATHER pSg = pState->CTX_SUFF(pTxSg);
3171 uint32_t const cbFrame = pSg ? (uint32_t)pSg->cbUsed : 0;
3172 Assert(!pSg || pSg->cSegs == 1);
3173
3174/* E1kLog2(("%s <<< Outgoing packet. Dump follows: >>>\n"
3175 "%.*Rhxd\n"
3176 "%s <<<<<<<<<<<<< End of dump >>>>>>>>>>>>\n",
3177 INSTANCE(pState), cbFrame, pSg->aSegs[0].pvSeg, INSTANCE(pState)));*/
3178
3179 if (cbFrame > 70) /* unqualified guess */
3180 pState->led.Asserted.s.fWriting = pState->led.Actual.s.fWriting = 1;
3181
3182 /* Update the stats */
3183 E1K_INC_CNT32(TPT);
3184 E1K_ADD_CNT64(TOTL, TOTH, cbFrame);
3185 E1K_INC_CNT32(GPTC);
3186 if (pSg && e1kIsBroadcast(pSg->aSegs[0].pvSeg))
3187 E1K_INC_CNT32(BPTC);
3188 else if (pSg && e1kIsMulticast(pSg->aSegs[0].pvSeg))
3189 E1K_INC_CNT32(MPTC);
3190 /* Update octet transmit counter */
3191 E1K_ADD_CNT64(GOTCL, GOTCH, cbFrame);
3192 if (pState->CTX_SUFF(pDrv))
3193 STAM_REL_COUNTER_ADD(&pState->StatTransmitBytes, cbFrame);
3194 if (cbFrame == 64)
3195 E1K_INC_CNT32(PTC64);
3196 else if (cbFrame < 128)
3197 E1K_INC_CNT32(PTC127);
3198 else if (cbFrame < 256)
3199 E1K_INC_CNT32(PTC255);
3200 else if (cbFrame < 512)
3201 E1K_INC_CNT32(PTC511);
3202 else if (cbFrame < 1024)
3203 E1K_INC_CNT32(PTC1023);
3204 else
3205 E1K_INC_CNT32(PTC1522);
3206
3207 E1K_INC_ISTAT_CNT(pState->uStatTxFrm);
3208
3209 /*
3210 * Dump and send the packet.
3211 */
3212 int rc = VERR_NET_DOWN;
3213 if (pSg && pSg->pvAllocator != pState)
3214 {
3215 e1kPacketDump(pState, (uint8_t const *)pSg->aSegs[0].pvSeg, cbFrame, "--> Outgoing");
3216
3217 pState->CTX_SUFF(pTxSg) = NULL;
3218 PPDMINETWORKUP pDrv = pState->CTX_SUFF(pDrv);
3219 if (pDrv)
3220 {
3221 /* Release critical section to avoid deadlock in CanReceive */
3222 //e1kCsLeave(pState);
3223 e1kMutexRelease(pState);
3224 STAM_PROFILE_START(&pState->CTX_SUFF_Z(StatTransmitSend), a);
3225 rc = pDrv->pfnSendBuf(pDrv, pSg, fOnWorkerThread);
3226 STAM_PROFILE_STOP(&pState->CTX_SUFF_Z(StatTransmitSend), a);
3227 e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS);
3228 //e1kCsEnter(pState, RT_SRC_POS);
3229 }
3230 }
3231 else if (pSg)
3232 {
3233 Assert(pSg->aSegs[0].pvSeg == pState->aTxPacketFallback);
3234 e1kPacketDump(pState, (uint8_t const *)pSg->aSegs[0].pvSeg, cbFrame, "--> Loopback");
3235
3236 /** @todo do we actually need to check that we're in loopback mode here? */
3237 if (GET_BITS(RCTL, LBM) == RCTL_LBM_TCVR)
3238 {
3239 E1KRXDST status;
3240 RT_ZERO(status);
3241 status.fPIF = true;
3242 e1kHandleRxPacket(pState, pSg->aSegs[0].pvSeg, cbFrame, status);
3243 rc = VINF_SUCCESS;
3244 }
3245 e1kXmitFreeBuf(pState);
3246 }
3247 else
3248 rc = VERR_NET_DOWN;
3249 if (RT_FAILURE(rc))
3250 {
3251 E1kLogRel(("E1000: ERROR! pfnSend returned %Rrc\n", rc));
3252 /** @todo handle VERR_NET_DOWN and VERR_NET_NO_BUFFER_SPACE. Signal error ? */
3253 }
3254
3255 pState->led.Actual.s.fWriting = 0;
3256}
3257
3258/**
3259 * Compute and write internet checksum (e1kCSum16) at the specified offset.
3260 *
3261 * @param pState The device state structure.
3262 * @param pPkt Pointer to the packet.
3263 * @param u16PktLen Total length of the packet.
3264 * @param cso Offset in packet to write checksum at.
3265 * @param css Offset in packet to start computing
3266 * checksum from.
3267 * @param cse Offset in packet to stop computing
3268 * checksum at.
3269 * @thread E1000_TX
3270 */
3271static void e1kInsertChecksum(E1KSTATE* pState, uint8_t *pPkt, uint16_t u16PktLen, uint8_t cso, uint8_t css, uint16_t cse)
3272{
3273 if (cso > u16PktLen)
3274 {
3275 E1kLog2(("%s cso(%X) is greater than packet length(%X), checksum is not inserted\n",
3276 INSTANCE(pState), cso, u16PktLen));
3277 return;
3278 }
3279
3280 if (cse == 0)
3281 cse = u16PktLen - 1;
3282 uint16_t u16ChkSum = e1kCSum16(pPkt + css, cse - css + 1);
3283 E1kLog2(("%s Inserting csum: %04X at %02X, old value: %04X\n", INSTANCE(pState),
3284 u16ChkSum, cso, *(uint16_t*)(pPkt + cso)));
3285 *(uint16_t*)(pPkt + cso) = u16ChkSum;
3286}
3287
3288/**
3289 * Add a part of descriptor's buffer to transmit frame.
3290 *
3291 * @remarks data.u64BufAddr is used unconditionally for both data
3292 * and legacy descriptors since it is identical to
3293 * legacy.u64BufAddr.
3294 *
3295 * @param pState The device state structure.
3296 * @param pDesc Pointer to the descriptor to transmit.
3297 * @param u16Len Length of buffer to the end of segment.
3298 * @param fSend Force packet sending.
3299 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
3300 * @thread E1000_TX
3301 */
3302static void e1kFallbackAddSegment(E1KSTATE* pState, RTGCPHYS PhysAddr, uint16_t u16Len, bool fSend, bool fOnWorkerThread)
3303{
3304 /* TCP header being transmitted */
3305 struct E1kTcpHeader *pTcpHdr = (struct E1kTcpHeader *)
3306 (pState->aTxPacketFallback + pState->contextTSE.tu.u8CSS);
3307 /* IP header being transmitted */
3308 struct E1kIpHeader *pIpHdr = (struct E1kIpHeader *)
3309 (pState->aTxPacketFallback + pState->contextTSE.ip.u8CSS);
3310
3311 E1kLog3(("%s e1kFallbackAddSegment: Length=%x, remaining payload=%x, header=%x, send=%RTbool\n",
3312 INSTANCE(pState), u16Len, pState->u32PayRemain, pState->u16HdrRemain, fSend));
3313 Assert(pState->u32PayRemain + pState->u16HdrRemain > 0);
3314
3315 PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), PhysAddr,
3316 pState->aTxPacketFallback + pState->u16TxPktLen, u16Len);
3317 E1kLog3(("%s Dump of the segment:\n"
3318 "%.*Rhxd\n"
3319 "%s --- End of dump ---\n",
3320 INSTANCE(pState), u16Len, pState->aTxPacketFallback + pState->u16TxPktLen, INSTANCE(pState)));
3321 pState->u16TxPktLen += u16Len;
3322 E1kLog3(("%s e1kFallbackAddSegment: pState->u16TxPktLen=%x\n",
3323 INSTANCE(pState), pState->u16TxPktLen));
3324 if (pState->u16HdrRemain > 0)
3325 {
3326 /* The header was not complete, check if it is now */
3327 if (u16Len >= pState->u16HdrRemain)
3328 {
3329 /* The rest is payload */
3330 u16Len -= pState->u16HdrRemain;
3331 pState->u16HdrRemain = 0;
3332 /* Save partial checksum and flags */
3333 pState->u32SavedCsum = pTcpHdr->chksum;
3334 pState->u16SavedFlags = pTcpHdr->hdrlen_flags;
3335 /* Clear FIN and PSH flags now and set them only in the last segment */
3336 pTcpHdr->hdrlen_flags &= ~htons(E1K_TCP_FIN | E1K_TCP_PSH);
3337 }
3338 else
3339 {
3340 /* Still not */
3341 pState->u16HdrRemain -= u16Len;
3342 E1kLog3(("%s e1kFallbackAddSegment: Header is still incomplete, 0x%x bytes remain.\n",
3343 INSTANCE(pState), pState->u16HdrRemain));
3344 return;
3345 }
3346 }
3347
3348 pState->u32PayRemain -= u16Len;
3349
3350 if (fSend)
3351 {
3352 /* Leave ethernet header intact */
3353 /* IP Total Length = payload + headers - ethernet header */
3354 pIpHdr->total_len = htons(pState->u16TxPktLen - pState->contextTSE.ip.u8CSS);
3355 E1kLog3(("%s e1kFallbackAddSegment: End of packet, pIpHdr->total_len=%x\n",
3356 INSTANCE(pState), ntohs(pIpHdr->total_len)));
3357 /* Update IP Checksum */
3358 pIpHdr->chksum = 0;
3359 e1kInsertChecksum(pState, pState->aTxPacketFallback, pState->u16TxPktLen,
3360 pState->contextTSE.ip.u8CSO,
3361 pState->contextTSE.ip.u8CSS,
3362 pState->contextTSE.ip.u16CSE);
3363
3364 /* Update TCP flags */
3365 /* Restore original FIN and PSH flags for the last segment */
3366 if (pState->u32PayRemain == 0)
3367 {
3368 pTcpHdr->hdrlen_flags = pState->u16SavedFlags;
3369 E1K_INC_CNT32(TSCTC);
3370 }
3371 /* Add TCP length to partial pseudo header sum */
3372 uint32_t csum = pState->u32SavedCsum
3373 + htons(pState->u16TxPktLen - pState->contextTSE.tu.u8CSS);
3374 while (csum >> 16)
3375 csum = (csum >> 16) + (csum & 0xFFFF);
3376 pTcpHdr->chksum = csum;
3377 /* Compute final checksum */
3378 e1kInsertChecksum(pState, pState->aTxPacketFallback, pState->u16TxPktLen,
3379 pState->contextTSE.tu.u8CSO,
3380 pState->contextTSE.tu.u8CSS,
3381 pState->contextTSE.tu.u16CSE);
3382
3383 /*
3384 * Transmit it. If we've use the SG already, allocate a new one before
3385 * we copy of the data.
3386 */
3387 if (!pState->CTX_SUFF(pTxSg))
3388 e1kXmitAllocBuf(pState, pState->u16TxPktLen, true /*fExactSize*/, false /*fGso*/);
3389 if (pState->CTX_SUFF(pTxSg))
3390 {
3391 Assert(pState->u16TxPktLen <= pState->CTX_SUFF(pTxSg)->cbAvailable);
3392 Assert(pState->CTX_SUFF(pTxSg)->cSegs == 1);
3393 if (pState->CTX_SUFF(pTxSg)->aSegs[0].pvSeg != pState->aTxPacketFallback)
3394 memcpy(pState->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pState->aTxPacketFallback, pState->u16TxPktLen);
3395 pState->CTX_SUFF(pTxSg)->cbUsed = pState->u16TxPktLen;
3396 pState->CTX_SUFF(pTxSg)->aSegs[0].cbSeg = pState->u16TxPktLen;
3397 }
3398 e1kTransmitFrame(pState, fOnWorkerThread);
3399
3400 /* Update Sequence Number */
3401 pTcpHdr->seqno = htonl(ntohl(pTcpHdr->seqno) + pState->u16TxPktLen
3402 - pState->contextTSE.dw3.u8HDRLEN);
3403 /* Increment IP identification */
3404 pIpHdr->ident = htons(ntohs(pIpHdr->ident) + 1);
3405 }
3406}
3407
3408/**
3409 * TCP segmentation offloading fallback: Add descriptor's buffer to transmit
3410 * frame.
3411 *
3412 * We construct the frame in the fallback buffer first and the copy it to the SG
3413 * buffer before passing it down to the network driver code.
3414 *
3415 * @returns true if the frame should be transmitted, false if not.
3416 *
3417 * @param pState The device state structure.
3418 * @param pDesc Pointer to the descriptor to transmit.
3419 * @param cbFragment Length of descriptor's buffer.
3420 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
3421 * @thread E1000_TX
3422 */
3423static bool e1kFallbackAddToFrame(E1KSTATE* pState, E1KTXDESC* pDesc, uint32_t cbFragment, bool fOnWorkerThread)
3424{
3425 PPDMSCATTERGATHER pTxSg = pState->CTX_SUFF(pTxSg);
3426 Assert(e1kGetDescType(pDesc) == E1K_DTYP_DATA);
3427 Assert(pDesc->data.cmd.fTSE);
3428 Assert(!e1kXmitIsGsoBuf(pTxSg));
3429
3430 uint16_t u16MaxPktLen = pState->contextTSE.dw3.u8HDRLEN + pState->contextTSE.dw3.u16MSS;
3431 Assert(u16MaxPktLen != 0);
3432 Assert(u16MaxPktLen < E1K_MAX_TX_PKT_SIZE);
3433
3434 /*
3435 * Carve out segments.
3436 */
3437 do
3438 {
3439 /* Calculate how many bytes we have left in this TCP segment */
3440 uint32_t cb = u16MaxPktLen - pState->u16TxPktLen;
3441 if (cb > cbFragment)
3442 {
3443 /* This descriptor fits completely into current segment */
3444 cb = cbFragment;
3445 e1kFallbackAddSegment(pState, pDesc->data.u64BufAddr, cb, pDesc->data.cmd.fEOP /*fSend*/, fOnWorkerThread);
3446 }
3447 else
3448 {
3449 e1kFallbackAddSegment(pState, pDesc->data.u64BufAddr, cb, true /*fSend*/, fOnWorkerThread);
3450 /*
3451 * Rewind the packet tail pointer to the beginning of payload,
3452 * so we continue writing right beyond the header.
3453 */
3454 pState->u16TxPktLen = pState->contextTSE.dw3.u8HDRLEN;
3455 }
3456
3457 pDesc->data.u64BufAddr += cb;
3458 cbFragment -= cb;
3459 } while (cbFragment > 0);
3460
3461 if (pDesc->data.cmd.fEOP)
3462 {
3463 /* End of packet, next segment will contain header. */
3464 if (pState->u32PayRemain != 0)
3465 E1K_INC_CNT32(TSCTFC);
3466 pState->u16TxPktLen = 0;
3467 e1kXmitFreeBuf(pState);
3468 }
3469
3470 return false;
3471}
3472
3473
3474/**
3475 * Add descriptor's buffer to transmit frame.
3476 *
3477 * This deals with GSO and normal frames, e1kFallbackAddToFrame deals with the
3478 * TSE frames we cannot handle as GSO.
3479 *
3480 * @returns true on success, false on failure.
3481 *
3482 * @param pThis The device state structure.
3483 * @param PhysAddr The physical address of the descriptor buffer.
3484 * @param cbFragment Length of descriptor's buffer.
3485 * @thread E1000_TX
3486 */
3487static bool e1kAddToFrame(E1KSTATE *pThis, RTGCPHYS PhysAddr, uint32_t cbFragment)
3488{
3489 PPDMSCATTERGATHER pTxSg = pThis->CTX_SUFF(pTxSg);
3490 bool const fGso = e1kXmitIsGsoBuf(pTxSg);
3491 uint32_t const cbNewPkt = cbFragment + pThis->u16TxPktLen;
3492
3493 if (RT_UNLIKELY( !fGso && cbNewPkt > E1K_MAX_TX_PKT_SIZE ))
3494 {
3495 E1kLog(("%s Transmit packet is too large: %u > %u(max)\n", INSTANCE(pThis), cbNewPkt, E1K_MAX_TX_PKT_SIZE));
3496 return false;
3497 }
3498 if (RT_UNLIKELY( fGso && cbNewPkt > pTxSg->cbAvailable ))
3499 {
3500 E1kLog(("%s Transmit packet is too large: %u > %u(max)/GSO\n", INSTANCE(pThis), cbNewPkt, pTxSg->cbAvailable));
3501 return false;
3502 }
3503
3504 if (RT_LIKELY(pTxSg))
3505 {
3506 Assert(pTxSg->cSegs == 1);
3507 Assert(pTxSg->cbUsed == pThis->u16TxPktLen);
3508
3509 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), PhysAddr,
3510 (uint8_t *)pTxSg->aSegs[0].pvSeg + pThis->u16TxPktLen, cbFragment);
3511
3512 pTxSg->cbUsed = cbNewPkt;
3513 }
3514 pThis->u16TxPktLen = cbNewPkt;
3515
3516 return true;
3517}
3518
3519
3520/**
3521 * Write the descriptor back to guest memory and notify the guest.
3522 *
3523 * @param pState The device state structure.
3524 * @param pDesc Pointer to the descriptor have been transmitted.
3525 * @param addr Physical address of the descriptor in guest memory.
3526 * @thread E1000_TX
3527 */
3528static void e1kDescReport(E1KSTATE* pState, E1KTXDESC* pDesc, RTGCPHYS addr)
3529{
3530 /*
3531 * We fake descriptor write-back bursting. Descriptors are written back as they are
3532 * processed.
3533 */
3534 /* Let's pretend we process descriptors. Write back with DD set. */
3535 /*
3536 * Prior to r71586 we tried to accomodate the case when write-back bursts
3537 * are enabled without actually implementing bursting by writing back all
3538 * descriptors, even the ones that do not have RS set. This caused kernel
3539 * panics with Linux SMP kernels, as the e1000 driver tried to free up skb
3540 * associated with written back descriptor if it happened to be a context
3541 * descriptor since context descriptors do not have skb associated to them.
3542 * Starting from r71586 we write back only the descriptors with RS set,
3543 * which is a little bit different from what the real hardware does in
3544 * case there is a chain of data descritors where some of them have RS set
3545 * and others do not. It is very uncommon scenario imho.
3546 */
3547 if (pDesc->legacy.cmd.fRS)
3548 {
3549 pDesc->legacy.dw3.fDD = 1; /* Descriptor Done */
3550 e1kWriteBackDesc(pState, pDesc, addr);
3551 if (pDesc->legacy.cmd.fEOP)
3552 {
3553#ifdef E1K_USE_TX_TIMERS
3554 if (pDesc->legacy.cmd.fIDE)
3555 {
3556 E1K_INC_ISTAT_CNT(pState->uStatTxIDE);
3557 //if (pState->fIntRaised)
3558 //{
3559 // /* Interrupt is already pending, no need for timers */
3560 // ICR |= ICR_TXDW;
3561 //}
3562 //else {
3563 /* Arm the timer to fire in TIVD usec (discard .024) */
3564 e1kArmTimer(pState, pState->CTX_SUFF(pTIDTimer), TIDV);
3565# ifndef E1K_NO_TAD
3566 /* If absolute timer delay is enabled and the timer is not running yet, arm it. */
3567 E1kLog2(("%s Checking if TAD timer is running\n",
3568 INSTANCE(pState)));
3569 if (TADV != 0 && !TMTimerIsActive(pState->CTX_SUFF(pTADTimer)))
3570 e1kArmTimer(pState, pState->CTX_SUFF(pTADTimer), TADV);
3571# endif /* E1K_NO_TAD */
3572 }
3573 else
3574 {
3575 E1kLog2(("%s No IDE set, cancel TAD timer and raise interrupt\n",
3576 INSTANCE(pState)));
3577# ifndef E1K_NO_TAD
3578 /* Cancel both timers if armed and fire immediately. */
3579 e1kCancelTimer(pState, pState->CTX_SUFF(pTADTimer));
3580# endif /* E1K_NO_TAD */
3581#endif /* E1K_USE_TX_TIMERS */
3582 E1K_INC_ISTAT_CNT(pState->uStatIntTx);
3583 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_TXDW);
3584#ifdef E1K_USE_TX_TIMERS
3585 }
3586#endif /* E1K_USE_TX_TIMERS */
3587 }
3588 }
3589 else
3590 {
3591 E1K_INC_ISTAT_CNT(pState->uStatTxNoRS);
3592 }
3593}
3594
3595/**
3596 * Process Transmit Descriptor.
3597 *
3598 * E1000 supports three types of transmit descriptors:
3599 * - legacy data descriptors of older format (context-less).
3600 * - data the same as legacy but providing new offloading capabilities.
3601 * - context sets up the context for following data descriptors.
3602 *
3603 * @param pState The device state structure.
3604 * @param pDesc Pointer to descriptor union.
3605 * @param addr Physical address of descriptor in guest memory.
3606 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
3607 * @thread E1000_TX
3608 */
3609static void e1kXmitDesc(E1KSTATE* pState, E1KTXDESC* pDesc, RTGCPHYS addr, bool fOnWorkerThread)
3610{
3611 e1kPrintTDesc(pState, pDesc, "vvv");
3612
3613#ifdef E1K_USE_TX_TIMERS
3614 e1kCancelTimer(pState, pState->CTX_SUFF(pTIDTimer));
3615#endif /* E1K_USE_TX_TIMERS */
3616
3617 switch (e1kGetDescType(pDesc))
3618 {
3619 case E1K_DTYP_CONTEXT:
3620 if (pDesc->context.dw2.fTSE)
3621 {
3622 pState->contextTSE = pDesc->context;
3623 pState->u32PayRemain = pDesc->context.dw2.u20PAYLEN;
3624 pState->u16HdrRemain = pDesc->context.dw3.u8HDRLEN;
3625 e1kSetupGsoCtx(&pState->GsoCtx, &pDesc->context);
3626 STAM_COUNTER_INC(&pState->StatTxDescCtxTSE);
3627 }
3628 else
3629 {
3630 pState->contextNormal = pDesc->context;
3631 STAM_COUNTER_INC(&pState->StatTxDescCtxNormal);
3632 }
3633 E1kLog2(("%s %s context updated: IP CSS=%02X, IP CSO=%02X, IP CSE=%04X"
3634 ", TU CSS=%02X, TU CSO=%02X, TU CSE=%04X\n", INSTANCE(pState),
3635 pDesc->context.dw2.fTSE ? "TSE" : "Normal",
3636 pDesc->context.ip.u8CSS,
3637 pDesc->context.ip.u8CSO,
3638 pDesc->context.ip.u16CSE,
3639 pDesc->context.tu.u8CSS,
3640 pDesc->context.tu.u8CSO,
3641 pDesc->context.tu.u16CSE));
3642 E1K_INC_ISTAT_CNT(pState->uStatDescCtx);
3643 e1kDescReport(pState, pDesc, addr);
3644 break;
3645
3646 case E1K_DTYP_DATA:
3647 {
3648 if (pDesc->data.cmd.u20DTALEN == 0 || pDesc->data.u64BufAddr == 0)
3649 {
3650 E1kLog2(("% Empty data descriptor, skipped.\n", INSTANCE(pState)));
3651 /** @todo Same as legacy when !TSE. See below. */
3652 break;
3653 }
3654 STAM_COUNTER_INC(pDesc->data.cmd.fTSE?
3655 &pState->StatTxDescTSEData:
3656 &pState->StatTxDescData);
3657 STAM_PROFILE_ADV_START(&pState->CTX_SUFF_Z(StatTransmit), a);
3658 E1K_INC_ISTAT_CNT(pState->uStatDescDat);
3659
3660 /*
3661 * First fragment: Allocate new buffer and save the IXSM and TXSM
3662 * packet options as these are only valid in the first fragment.
3663 */
3664 if (pState->u16TxPktLen == 0)
3665 {
3666 pState->fIPcsum = pDesc->data.dw3.fIXSM;
3667 pState->fTCPcsum = pDesc->data.dw3.fTXSM;
3668 E1kLog2(("%s Saving checksum flags:%s%s; \n", INSTANCE(pState),
3669 pState->fIPcsum ? " IP" : "",
3670 pState->fTCPcsum ? " TCP/UDP" : ""));
3671 if (e1kCanDoGso(&pState->GsoCtx, &pDesc->data, &pState->contextTSE))
3672 e1kXmitAllocBuf(pState, pState->contextTSE.dw2.u20PAYLEN + pState->contextTSE.dw3.u8HDRLEN,
3673 true /*fExactSize*/, true /*fGso*/);
3674 else
3675 e1kXmitAllocBuf(pState, pState->contextTSE.dw3.u16MSS + pState->contextTSE.dw3.u8HDRLEN,
3676 pDesc->data.cmd.fTSE /*fExactSize*/, false /*fGso*/);
3677 /** @todo Is there any way to indicating errors other than collisions? Like
3678 * VERR_NET_DOWN. */
3679 }
3680
3681 /*
3682 * Add the descriptor data to the frame. If the frame is complete,
3683 * transmit it and reset the u16TxPktLen field.
3684 */
3685 if (e1kXmitIsGsoBuf(pState->CTX_SUFF(pTxSg)))
3686 {
3687 STAM_COUNTER_INC(&pState->StatTxPathGSO);
3688 bool fRc = e1kAddToFrame(pState, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN);
3689 if (pDesc->data.cmd.fEOP)
3690 {
3691 if ( fRc
3692 && pState->CTX_SUFF(pTxSg)
3693 && pState->CTX_SUFF(pTxSg)->cbUsed == (size_t)pState->contextTSE.dw3.u8HDRLEN + pState->contextTSE.dw2.u20PAYLEN)
3694 {
3695 e1kTransmitFrame(pState, fOnWorkerThread);
3696 E1K_INC_CNT32(TSCTC);
3697 }
3698 else
3699 {
3700 if (fRc)
3701 E1kLog(("%s bad GSO/TSE %p or %u < %u\n" , INSTANCE(pState),
3702 pState->CTX_SUFF(pTxSg), pState->CTX_SUFF(pTxSg) ? pState->CTX_SUFF(pTxSg)->cbUsed : 0,
3703 pState->contextTSE.dw3.u8HDRLEN + pState->contextTSE.dw2.u20PAYLEN));
3704 e1kXmitFreeBuf(pState);
3705 E1K_INC_CNT32(TSCTFC);
3706 }
3707 pState->u16TxPktLen = 0;
3708 }
3709 }
3710 else if (!pDesc->data.cmd.fTSE)
3711 {
3712 STAM_COUNTER_INC(&pState->StatTxPathRegular);
3713 bool fRc = e1kAddToFrame(pState, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN);
3714 if (pDesc->data.cmd.fEOP)
3715 {
3716 if (fRc && pState->CTX_SUFF(pTxSg))
3717 {
3718 Assert(pState->CTX_SUFF(pTxSg)->cSegs == 1);
3719 if (pState->fIPcsum)
3720 e1kInsertChecksum(pState, (uint8_t *)pState->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pState->u16TxPktLen,
3721 pState->contextNormal.ip.u8CSO,
3722 pState->contextNormal.ip.u8CSS,
3723 pState->contextNormal.ip.u16CSE);
3724 if (pState->fTCPcsum)
3725 e1kInsertChecksum(pState, (uint8_t *)pState->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pState->u16TxPktLen,
3726 pState->contextNormal.tu.u8CSO,
3727 pState->contextNormal.tu.u8CSS,
3728 pState->contextNormal.tu.u16CSE);
3729 e1kTransmitFrame(pState, fOnWorkerThread);
3730 }
3731 else
3732 e1kXmitFreeBuf(pState);
3733 pState->u16TxPktLen = 0;
3734 }
3735 }
3736 else
3737 {
3738 STAM_COUNTER_INC(&pState->StatTxPathFallback);
3739 e1kFallbackAddToFrame(pState, pDesc, pDesc->data.cmd.u20DTALEN, fOnWorkerThread);
3740 }
3741
3742 e1kDescReport(pState, pDesc, addr);
3743 STAM_PROFILE_ADV_STOP(&pState->CTX_SUFF_Z(StatTransmit), a);
3744 break;
3745 }
3746
3747 case E1K_DTYP_LEGACY:
3748 if (pDesc->legacy.cmd.u16Length == 0 || pDesc->legacy.u64BufAddr == 0)
3749 {
3750 E1kLog(("%s Empty legacy descriptor, skipped.\n", INSTANCE(pState)));
3751 /** @todo 3.3.3, Length/Buffer Address: RS set -> write DD when processing. */
3752 break;
3753 }
3754 STAM_COUNTER_INC(&pState->StatTxDescLegacy);
3755 STAM_PROFILE_ADV_START(&pState->CTX_SUFF_Z(StatTransmit), a);
3756
3757 /* First fragment: allocate new buffer. */
3758 if (pState->u16TxPktLen == 0)
3759 /** @todo reset status bits? */
3760 e1kXmitAllocBuf(pState, pDesc->legacy.cmd.u16Length, pDesc->legacy.cmd.fEOP, false /*fGso*/);
3761 /** @todo Is there any way to indicating errors other than collisions? Like
3762 * VERR_NET_DOWN. */
3763
3764 /* Add fragment to frame. */
3765 if (e1kAddToFrame(pState, pDesc->data.u64BufAddr, pDesc->legacy.cmd.u16Length))
3766 {
3767 E1K_INC_ISTAT_CNT(pState->uStatDescLeg);
3768
3769 /* Last fragment: Transmit and reset the packet storage counter. */
3770 if (pDesc->legacy.cmd.fEOP)
3771 {
3772 /** @todo Offload processing goes here. */
3773 e1kTransmitFrame(pState, fOnWorkerThread);
3774 pState->u16TxPktLen = 0;
3775 }
3776 }
3777 /* Last fragment + failure: free the buffer and reset the storage counter. */
3778 else if (pDesc->legacy.cmd.fEOP)
3779 {
3780 e1kXmitFreeBuf(pState);
3781 pState->u16TxPktLen = 0;
3782 }
3783
3784 e1kDescReport(pState, pDesc, addr);
3785 STAM_PROFILE_ADV_STOP(&pState->CTX_SUFF_Z(StatTransmit), a);
3786 break;
3787
3788 default:
3789 E1kLog(("%s ERROR Unsupported transmit descriptor type: 0x%04x\n",
3790 INSTANCE(pState), e1kGetDescType(pDesc)));
3791 break;
3792 }
3793}
3794
3795
3796/**
3797 * Transmit pending descriptors.
3798 *
3799 * @returns VBox status code. VERR_TRY_AGAIN is returned if we're busy.
3800 *
3801 * @param pState The E1000 state.
3802 * @param fOnWorkerThread Whether we're on a worker thread or on an EMT.
3803 */
3804static int e1kXmitPending(E1KSTATE *pState, bool fOnWorkerThread)
3805{
3806 int rc;
3807
3808 /*
3809 * Grab the xmit lock of the driver as well as the E1K device state.
3810 */
3811 PPDMINETWORKUP pDrv = pState->CTX_SUFF(pDrv);
3812 if (pDrv)
3813 {
3814 rc = pDrv->pfnBeginXmit(pDrv, fOnWorkerThread);
3815 if (RT_FAILURE(rc))
3816 return rc;
3817 }
3818 rc = e1kMutexAcquire(pState, VERR_TRY_AGAIN, RT_SRC_POS);
3819 if (RT_SUCCESS(rc))
3820 {
3821 /*
3822 * Process all pending descriptors.
3823 * Note! Do not process descriptors in locked state
3824 */
3825 while (TDH != TDT && !pState->fLocked)
3826 {
3827 E1KTXDESC desc;
3828 E1kLog3(("%s About to process new TX descriptor at %08x%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n",
3829 INSTANCE(pState), TDBAH, TDBAL + TDH * sizeof(desc), TDLEN, TDH, TDT));
3830
3831 e1kLoadDesc(pState, &desc, ((uint64_t)TDBAH << 32) + TDBAL + TDH * sizeof(desc));
3832 e1kXmitDesc(pState, &desc, ((uint64_t)TDBAH << 32) + TDBAL + TDH * sizeof(desc), fOnWorkerThread);
3833 if (++TDH * sizeof(desc) >= TDLEN)
3834 TDH = 0;
3835
3836 if (e1kGetTxLen(pState) <= GET_BITS(TXDCTL, LWTHRESH)*8)
3837 {
3838 E1kLog2(("%s Low on transmit descriptors, raise ICR.TXD_LOW, len=%x thresh=%x\n",
3839 INSTANCE(pState), e1kGetTxLen(pState), GET_BITS(TXDCTL, LWTHRESH)*8));
3840 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_TXD_LOW);
3841 }
3842
3843 STAM_PROFILE_ADV_STOP(&pState->CTX_SUFF_Z(StatTransmit), a);
3844 }
3845
3846 /// @todo: uncomment: pState->uStatIntTXQE++;
3847 /// @todo: uncomment: e1kRaiseInterrupt(pState, ICR_TXQE);
3848
3849 /*
3850 * Release the locks.
3851 */
3852 e1kMutexRelease(pState);
3853 }
3854 if (pDrv)
3855 pDrv->pfnEndXmit(pDrv);
3856 return rc;
3857}
3858
3859#ifdef IN_RING3
3860
3861/**
3862 * @interface_method_impl{PDMINETWORKDOWN,pfnXmitPending}
3863 */
3864static DECLCALLBACK(void) e1kNetworkDown_XmitPending(PPDMINETWORKDOWN pInterface)
3865{
3866 E1KSTATE *pState = RT_FROM_MEMBER(pInterface, E1KSTATE, INetworkDown);
3867 e1kXmitPending(pState, true /*fOnWorkerThread*/);
3868}
3869
3870/**
3871 * Callback for consuming from transmit queue. It gets called in R3 whenever
3872 * we enqueue something in R0/GC.
3873 *
3874 * @returns true
3875 * @param pDevIns Pointer to device instance structure.
3876 * @param pItem Pointer to the element being dequeued (not used).
3877 * @thread ???
3878 */
3879static DECLCALLBACK(bool) e1kTxQueueConsumer(PPDMDEVINS pDevIns, PPDMQUEUEITEMCORE pItem)
3880{
3881 NOREF(pItem);
3882 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
3883 E1kLog2(("%s e1kTxQueueConsumer:\n", INSTANCE(pState)));
3884
3885 int rc = e1kXmitPending(pState, false /*fOnWorkerThread*/);
3886 AssertMsg(RT_SUCCESS(rc) || rc == VERR_TRY_AGAIN, ("%Rrc\n", rc));
3887
3888 return true;
3889}
3890
3891/**
3892 * Handler for the wakeup signaller queue.
3893 */
3894static DECLCALLBACK(bool) e1kCanRxQueueConsumer(PPDMDEVINS pDevIns, PPDMQUEUEITEMCORE pItem)
3895{
3896 e1kWakeupReceive(pDevIns);
3897 return true;
3898}
3899
3900#endif /* IN_RING3 */
3901
3902/**
3903 * Write handler for Transmit Descriptor Tail register.
3904 *
3905 * @param pState The device state structure.
3906 * @param offset Register offset in memory-mapped frame.
3907 * @param index Register index in register array.
3908 * @param value The value to store.
3909 * @param mask Used to implement partial writes (8 and 16-bit).
3910 * @thread EMT
3911 */
3912static int e1kRegWriteTDT(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
3913{
3914 int rc = e1kCsTxEnter(pState, VINF_IOM_HC_MMIO_WRITE);
3915 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3916 return rc;
3917 rc = e1kRegWriteDefault(pState, offset, index, value);
3918
3919 /* All descriptors starting with head and not including tail belong to us. */
3920 /* Process them. */
3921 E1kLog2(("%s e1kRegWriteTDT: TDBAL=%08x, TDBAH=%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n",
3922 INSTANCE(pState), TDBAL, TDBAH, TDLEN, TDH, TDT));
3923
3924 /* Ignore TDT writes when the link is down. */
3925 if (TDH != TDT && (STATUS & STATUS_LU))
3926 {
3927 E1kLogRel(("E1000: TDT write: %d descriptors to process\n", e1kGetTxLen(pState)));
3928 E1kLog(("%s e1kRegWriteTDT: %d descriptors to process, waking up E1000_TX thread\n",
3929 INSTANCE(pState), e1kGetTxLen(pState)));
3930 e1kCsTxLeave(pState);
3931
3932 /* Transmit pending packets if possible, defer it if we cannot do it
3933 in the current context. */
3934# ifndef IN_RING3
3935 if (!pState->CTX_SUFF(pDrv))
3936 {
3937 PPDMQUEUEITEMCORE pItem = PDMQueueAlloc(pState->CTX_SUFF(pTxQueue));
3938 if (RT_UNLIKELY(pItem))
3939 PDMQueueInsert(pState->CTX_SUFF(pTxQueue), pItem);
3940 }
3941 else
3942# endif
3943 {
3944 rc = e1kXmitPending(pState, false /*fOnWorkerThread*/);
3945 if (rc == VERR_TRY_AGAIN)
3946 rc = VINF_SUCCESS;
3947 AssertRC(rc);
3948 }
3949 }
3950 else
3951 e1kCsTxLeave(pState);
3952
3953 return rc;
3954}
3955
3956/**
3957 * Write handler for Multicast Table Array registers.
3958 *
3959 * @param pState The device state structure.
3960 * @param offset Register offset in memory-mapped frame.
3961 * @param index Register index in register array.
3962 * @param value The value to store.
3963 * @thread EMT
3964 */
3965static int e1kRegWriteMTA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
3966{
3967 AssertReturn(offset - s_e1kRegMap[index].offset < sizeof(pState->auMTA), VERR_DEV_IO_ERROR);
3968 pState->auMTA[(offset - s_e1kRegMap[index].offset)/sizeof(pState->auMTA[0])] = value;
3969
3970 return VINF_SUCCESS;
3971}
3972
3973/**
3974 * Read handler for Multicast Table Array registers.
3975 *
3976 * @returns VBox status code.
3977 *
3978 * @param pState The device state structure.
3979 * @param offset Register offset in memory-mapped frame.
3980 * @param index Register index in register array.
3981 * @thread EMT
3982 */
3983static int e1kRegReadMTA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
3984{
3985 AssertReturn(offset - s_e1kRegMap[index].offset< sizeof(pState->auMTA), VERR_DEV_IO_ERROR);
3986 *pu32Value = pState->auMTA[(offset - s_e1kRegMap[index].offset)/sizeof(pState->auMTA[0])];
3987
3988 return VINF_SUCCESS;
3989}
3990
3991/**
3992 * Write handler for Receive Address registers.
3993 *
3994 * @param pState The device state structure.
3995 * @param offset Register offset in memory-mapped frame.
3996 * @param index Register index in register array.
3997 * @param value The value to store.
3998 * @thread EMT
3999 */
4000static int e1kRegWriteRA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
4001{
4002 AssertReturn(offset - s_e1kRegMap[index].offset < sizeof(pState->aRecAddr.au32), VERR_DEV_IO_ERROR);
4003 pState->aRecAddr.au32[(offset - s_e1kRegMap[index].offset)/sizeof(pState->aRecAddr.au32[0])] = value;
4004
4005 return VINF_SUCCESS;
4006}
4007
4008/**
4009 * Read handler for Receive Address registers.
4010 *
4011 * @returns VBox status code.
4012 *
4013 * @param pState The device state structure.
4014 * @param offset Register offset in memory-mapped frame.
4015 * @param index Register index in register array.
4016 * @thread EMT
4017 */
4018static int e1kRegReadRA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
4019{
4020 AssertReturn(offset - s_e1kRegMap[index].offset< sizeof(pState->aRecAddr.au32), VERR_DEV_IO_ERROR);
4021 *pu32Value = pState->aRecAddr.au32[(offset - s_e1kRegMap[index].offset)/sizeof(pState->aRecAddr.au32[0])];
4022
4023 return VINF_SUCCESS;
4024}
4025
4026/**
4027 * Write handler for VLAN Filter Table Array registers.
4028 *
4029 * @param pState The device state structure.
4030 * @param offset Register offset in memory-mapped frame.
4031 * @param index Register index in register array.
4032 * @param value The value to store.
4033 * @thread EMT
4034 */
4035static int e1kRegWriteVFTA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
4036{
4037 AssertReturn(offset - s_e1kRegMap[index].offset < sizeof(pState->auVFTA), VINF_SUCCESS);
4038 pState->auVFTA[(offset - s_e1kRegMap[index].offset)/sizeof(pState->auVFTA[0])] = value;
4039
4040 return VINF_SUCCESS;
4041}
4042
4043/**
4044 * Read handler for VLAN Filter Table Array registers.
4045 *
4046 * @returns VBox status code.
4047 *
4048 * @param pState The device state structure.
4049 * @param offset Register offset in memory-mapped frame.
4050 * @param index Register index in register array.
4051 * @thread EMT
4052 */
4053static int e1kRegReadVFTA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
4054{
4055 AssertReturn(offset - s_e1kRegMap[index].offset< sizeof(pState->auVFTA), VERR_DEV_IO_ERROR);
4056 *pu32Value = pState->auVFTA[(offset - s_e1kRegMap[index].offset)/sizeof(pState->auVFTA[0])];
4057
4058 return VINF_SUCCESS;
4059}
4060
4061/**
4062 * Read handler for unimplemented registers.
4063 *
4064 * Merely reports reads from unimplemented registers.
4065 *
4066 * @returns VBox status code.
4067 *
4068 * @param pState The device state structure.
4069 * @param offset Register offset in memory-mapped frame.
4070 * @param index Register index in register array.
4071 * @thread EMT
4072 */
4073
4074static int e1kRegReadUnimplemented(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
4075{
4076 E1kLog(("%s At %08X read (00000000) attempt from unimplemented register %s (%s)\n",
4077 INSTANCE(pState), offset, s_e1kRegMap[index].abbrev, s_e1kRegMap[index].name));
4078 *pu32Value = 0;
4079
4080 return VINF_SUCCESS;
4081}
4082
4083/**
4084 * Default register read handler with automatic clear operation.
4085 *
4086 * Retrieves the value of register from register array in device state structure.
4087 * Then resets all bits.
4088 *
4089 * @remarks The 'mask' parameter is simply ignored as masking and shifting is
4090 * done in the caller.
4091 *
4092 * @returns VBox status code.
4093 *
4094 * @param pState The device state structure.
4095 * @param offset Register offset in memory-mapped frame.
4096 * @param index Register index in register array.
4097 * @thread EMT
4098 */
4099
4100static int e1kRegReadAutoClear(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
4101{
4102 AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR);
4103 int rc = e1kRegReadDefault(pState, offset, index, pu32Value);
4104 pState->auRegs[index] = 0;
4105
4106 return rc;
4107}
4108
4109/**
4110 * Default register read handler.
4111 *
4112 * Retrieves the value of register from register array in device state structure.
4113 * Bits corresponding to 0s in 'readable' mask will always read as 0s.
4114 *
4115 * @remarks The 'mask' parameter is simply ignored as masking and shifting is
4116 * done in the caller.
4117 *
4118 * @returns VBox status code.
4119 *
4120 * @param pState The device state structure.
4121 * @param offset Register offset in memory-mapped frame.
4122 * @param index Register index in register array.
4123 * @thread EMT
4124 */
4125
4126static int e1kRegReadDefault(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
4127{
4128 AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR);
4129 *pu32Value = pState->auRegs[index] & s_e1kRegMap[index].readable;
4130
4131 return VINF_SUCCESS;
4132}
4133
4134/**
4135 * Write handler for unimplemented registers.
4136 *
4137 * Merely reports writes to unimplemented registers.
4138 *
4139 * @param pState The device state structure.
4140 * @param offset Register offset in memory-mapped frame.
4141 * @param index Register index in register array.
4142 * @param value The value to store.
4143 * @thread EMT
4144 */
4145
4146 static int e1kRegWriteUnimplemented(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
4147{
4148 E1kLog(("%s At %08X write attempt (%08X) to unimplemented register %s (%s)\n",
4149 INSTANCE(pState), offset, value, s_e1kRegMap[index].abbrev, s_e1kRegMap[index].name));
4150
4151 return VINF_SUCCESS;
4152}
4153
4154/**
4155 * Default register write handler.
4156 *
4157 * Stores the value to the register array in device state structure. Only bits
4158 * corresponding to 1s both in 'writable' and 'mask' will be stored.
4159 *
4160 * @returns VBox status code.
4161 *
4162 * @param pState The device state structure.
4163 * @param offset Register offset in memory-mapped frame.
4164 * @param index Register index in register array.
4165 * @param value The value to store.
4166 * @param mask Used to implement partial writes (8 and 16-bit).
4167 * @thread EMT
4168 */
4169
4170static int e1kRegWriteDefault(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
4171{
4172 AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR);
4173 pState->auRegs[index] = (value & s_e1kRegMap[index].writable) |
4174 (pState->auRegs[index] & ~s_e1kRegMap[index].writable);
4175
4176 return VINF_SUCCESS;
4177}
4178
4179/**
4180 * Search register table for matching register.
4181 *
4182 * @returns Index in the register table or -1 if not found.
4183 *
4184 * @param pState The device state structure.
4185 * @param uOffset Register offset in memory-mapped region.
4186 * @thread EMT
4187 */
4188static int e1kRegLookup(E1KSTATE *pState, uint32_t uOffset)
4189{
4190 int index;
4191
4192 for (index = 0; index < E1K_NUM_OF_REGS; index++)
4193 {
4194 if (s_e1kRegMap[index].offset <= uOffset && uOffset < s_e1kRegMap[index].offset + s_e1kRegMap[index].size)
4195 {
4196 return index;
4197 }
4198 }
4199
4200 return -1;
4201}
4202
4203/**
4204 * Handle register read operation.
4205 *
4206 * Looks up and calls appropriate handler.
4207 *
4208 * @returns VBox status code.
4209 *
4210 * @param pState The device state structure.
4211 * @param uOffset Register offset in memory-mapped frame.
4212 * @param pv Where to store the result.
4213 * @param cb Number of bytes to read.
4214 * @thread EMT
4215 */
4216static int e1kRegRead(E1KSTATE *pState, uint32_t uOffset, void *pv, uint32_t cb)
4217{
4218 uint32_t u32 = 0;
4219 uint32_t mask = 0;
4220 uint32_t shift;
4221 int rc = VINF_SUCCESS;
4222 int index = e1kRegLookup(pState, uOffset);
4223 const char *szInst = INSTANCE(pState);
4224#ifdef DEBUG
4225 char buf[9];
4226#endif
4227
4228 /*
4229 * From the spec:
4230 * For registers that should be accessed as 32-bit double words, partial writes (less than a 32-bit
4231 * double word) is ignored. Partial reads return all 32 bits of data regardless of the byte enables.
4232 */
4233
4234 /*
4235 * To be able to write bytes and short word we convert them
4236 * to properly shifted 32-bit words and masks. The idea is
4237 * to keep register-specific handlers simple. Most accesses
4238 * will be 32-bit anyway.
4239 */
4240 switch (cb)
4241 {
4242 case 1: mask = 0x000000FF; break;
4243 case 2: mask = 0x0000FFFF; break;
4244 case 4: mask = 0xFFFFFFFF; break;
4245 default:
4246 return PDMDevHlpDBGFStop(pState->CTX_SUFF(pDevIns), RT_SRC_POS,
4247 "%s e1kRegRead: unsupported op size: offset=%#10x cb=%#10x\n",
4248 szInst, uOffset, cb);
4249 }
4250 if (index != -1)
4251 {
4252 if (s_e1kRegMap[index].readable)
4253 {
4254 /* Make the mask correspond to the bits we are about to read. */
4255 shift = (uOffset - s_e1kRegMap[index].offset) % sizeof(uint32_t) * 8;
4256 mask <<= shift;
4257 if (!mask)
4258 return PDMDevHlpDBGFStop(pState->CTX_SUFF(pDevIns), RT_SRC_POS,
4259 "%s e1kRegRead: Zero mask: offset=%#10x cb=%#10x\n",
4260 szInst, uOffset, cb);
4261 /*
4262 * Read it. Pass the mask so the handler knows what has to be read.
4263 * Mask out irrelevant bits.
4264 */
4265#ifdef E1K_GLOBAL_MUTEX
4266 rc = e1kMutexAcquire(pState, VINF_IOM_HC_MMIO_READ, RT_SRC_POS);
4267#else
4268 //rc = e1kCsEnter(pState, VERR_SEM_BUSY, RT_SRC_POS);
4269#endif
4270 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4271 return rc;
4272 //pState->fDelayInts = false;
4273 //pState->iStatIntLost += pState->iStatIntLostOne;
4274 //pState->iStatIntLostOne = 0;
4275 rc = s_e1kRegMap[index].pfnRead(pState, uOffset & 0xFFFFFFFC, index, &u32) & mask;
4276 //e1kCsLeave(pState);
4277 e1kMutexRelease(pState);
4278 E1kLog2(("%s At %08X read %s from %s (%s)\n",
4279 szInst, uOffset, e1kU32toHex(u32, mask, buf), s_e1kRegMap[index].abbrev, s_e1kRegMap[index].name));
4280 /* Shift back the result. */
4281 u32 >>= shift;
4282 }
4283 else
4284 {
4285 E1kLog(("%s At %08X read (%s) attempt from write-only register %s (%s)\n",
4286 szInst, uOffset, e1kU32toHex(u32, mask, buf), s_e1kRegMap[index].abbrev, s_e1kRegMap[index].name));
4287 }
4288 }
4289 else
4290 {
4291 E1kLog(("%s At %08X read (%s) attempt from non-existing register\n",
4292 szInst, uOffset, e1kU32toHex(u32, mask, buf)));
4293 }
4294
4295 memcpy(pv, &u32, cb);
4296 return rc;
4297}
4298
4299/**
4300 * Handle register write operation.
4301 *
4302 * Looks up and calls appropriate handler.
4303 *
4304 * @returns VBox status code.
4305 *
4306 * @param pState The device state structure.
4307 * @param uOffset Register offset in memory-mapped frame.
4308 * @param pv Where to fetch the value.
4309 * @param cb Number of bytes to write.
4310 * @thread EMT
4311 */
4312static int e1kRegWrite(E1KSTATE *pState, uint32_t uOffset, void *pv, unsigned cb)
4313{
4314 int rc = VINF_SUCCESS;
4315 int index = e1kRegLookup(pState, uOffset);
4316 uint32_t u32;
4317
4318 /*
4319 * From the spec:
4320 * For registers that should be accessed as 32-bit double words, partial writes (less than a 32-bit
4321 * double word) is ignored. Partial reads return all 32 bits of data regardless of the byte enables.
4322 */
4323
4324 if (cb != 4)
4325 {
4326 E1kLog(("%s e1kRegWrite: Spec violation: unsupported op size: offset=%#10x cb=%#10x, ignored.\n",
4327 INSTANCE(pState), uOffset, cb));
4328 return VINF_SUCCESS;
4329 }
4330 if (uOffset & 3)
4331 {
4332 E1kLog(("%s e1kRegWrite: Spec violation: misaligned offset: %#10x cb=%#10x, ignored.\n",
4333 INSTANCE(pState), uOffset, cb));
4334 return VINF_SUCCESS;
4335 }
4336 u32 = *(uint32_t*)pv;
4337 if (index != -1)
4338 {
4339 if (s_e1kRegMap[index].writable)
4340 {
4341 /*
4342 * Write it. Pass the mask so the handler knows what has to be written.
4343 * Mask out irrelevant bits.
4344 */
4345 E1kLog2(("%s At %08X write %08X to %s (%s)\n",
4346 INSTANCE(pState), uOffset, u32, s_e1kRegMap[index].abbrev, s_e1kRegMap[index].name));
4347#ifdef E1K_GLOBAL_MUTEX
4348 rc = e1kMutexAcquire(pState, VINF_IOM_HC_MMIO_WRITE, RT_SRC_POS);
4349#else
4350 //rc = e1kCsEnter(pState, VERR_SEM_BUSY, RT_SRC_POS);
4351#endif
4352 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4353 return rc;
4354 //pState->fDelayInts = false;
4355 //pState->iStatIntLost += pState->iStatIntLostOne;
4356 //pState->iStatIntLostOne = 0;
4357 rc = s_e1kRegMap[index].pfnWrite(pState, uOffset, index, u32);
4358 //e1kCsLeave(pState);
4359 e1kMutexRelease(pState);
4360 }
4361 else
4362 {
4363 E1kLog(("%s At %08X write attempt (%08X) to read-only register %s (%s)\n",
4364 INSTANCE(pState), uOffset, u32, s_e1kRegMap[index].abbrev, s_e1kRegMap[index].name));
4365 }
4366 }
4367 else
4368 {
4369 E1kLog(("%s At %08X write attempt (%08X) to non-existing register\n",
4370 INSTANCE(pState), uOffset, u32));
4371 }
4372 return rc;
4373}
4374
4375/**
4376 * I/O handler for memory-mapped read operations.
4377 *
4378 * @returns VBox status code.
4379 *
4380 * @param pDevIns The device instance.
4381 * @param pvUser User argument.
4382 * @param GCPhysAddr Physical address (in GC) where the read starts.
4383 * @param pv Where to store the result.
4384 * @param cb Number of bytes read.
4385 * @thread EMT
4386 */
4387PDMBOTHCBDECL(int) e1kMMIORead(PPDMDEVINS pDevIns, void *pvUser,
4388 RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
4389{
4390 NOREF(pvUser);
4391 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
4392 uint32_t uOffset = GCPhysAddr - pState->addrMMReg;
4393 STAM_PROFILE_ADV_START(&pState->CTX_SUFF_Z(StatMMIORead), a);
4394
4395 Assert(uOffset < E1K_MM_SIZE);
4396
4397 int rc = e1kRegRead(pState, uOffset, pv, cb);
4398 STAM_PROFILE_ADV_STOP(&pState->CTX_SUFF_Z(StatMMIORead), a);
4399 return rc;
4400}
4401
4402/**
4403 * Memory mapped I/O Handler for write operations.
4404 *
4405 * @returns VBox status code.
4406 *
4407 * @param pDevIns The device instance.
4408 * @param pvUser User argument.
4409 * @param GCPhysAddr Physical address (in GC) where the read starts.
4410 * @param pv Where to fetch the value.
4411 * @param cb Number of bytes to write.
4412 * @thread EMT
4413 */
4414PDMBOTHCBDECL(int) e1kMMIOWrite(PPDMDEVINS pDevIns, void *pvUser,
4415 RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
4416{
4417 NOREF(pvUser);
4418 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
4419 uint32_t uOffset = GCPhysAddr - pState->addrMMReg;
4420 int rc;
4421 STAM_PROFILE_ADV_START(&pState->CTX_SUFF_Z(StatMMIOWrite), a);
4422
4423 Assert(uOffset < E1K_MM_SIZE);
4424 if (cb != 4)
4425 {
4426 E1kLog(("%s e1kMMIOWrite: invalid op size: offset=%#10x cb=%#10x", pDevIns, uOffset, cb));
4427 rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "e1kMMIOWrite: invalid op size: offset=%#10x cb=%#10x\n", uOffset, cb);
4428 }
4429 else
4430 rc = e1kRegWrite(pState, uOffset, pv, cb);
4431
4432 STAM_PROFILE_ADV_STOP(&pState->CTX_SUFF_Z(StatMMIOWrite), a);
4433 return rc;
4434}
4435
4436/**
4437 * Port I/O Handler for IN operations.
4438 *
4439 * @returns VBox status code.
4440 *
4441 * @param pDevIns The device instance.
4442 * @param pvUser Pointer to the device state structure.
4443 * @param port Port number used for the IN operation.
4444 * @param pu32 Where to store the result.
4445 * @param cb Number of bytes read.
4446 * @thread EMT
4447 */
4448PDMBOTHCBDECL(int) e1kIOPortIn(PPDMDEVINS pDevIns, void *pvUser,
4449 RTIOPORT port, uint32_t *pu32, unsigned cb)
4450{
4451 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
4452 int rc = VINF_SUCCESS;
4453 const char *szInst = INSTANCE(pState);
4454 STAM_PROFILE_ADV_START(&pState->CTX_SUFF_Z(StatIORead), a);
4455
4456 port -= pState->addrIOPort;
4457 if (cb != 4)
4458 {
4459 E1kLog(("%s e1kIOPortIn: invalid op size: port=%RTiop cb=%08x", szInst, port, cb));
4460 rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "%s e1kIOPortIn: invalid op size: port=%RTiop cb=%08x\n", szInst, port, cb);
4461 }
4462 else
4463 switch (port)
4464 {
4465 case 0x00: /* IOADDR */
4466 *pu32 = pState->uSelectedReg;
4467 E1kLog2(("%s e1kIOPortIn: IOADDR(0), selecting register %#010x, val=%#010x\n", szInst, pState->uSelectedReg, *pu32));
4468 break;
4469 case 0x04: /* IODATA */
4470 rc = e1kRegRead(pState, pState->uSelectedReg, pu32, cb);
4471 /** @todo wrong return code triggers assertions in the debug build; fix please */
4472 if (rc == VINF_IOM_HC_MMIO_READ)
4473 rc = VINF_IOM_HC_IOPORT_READ;
4474
4475 E1kLog2(("%s e1kIOPortIn: IODATA(4), reading from selected register %#010x, val=%#010x\n", szInst, pState->uSelectedReg, *pu32));
4476 break;
4477 default:
4478 E1kLog(("%s e1kIOPortIn: invalid port %#010x\n", szInst, port));
4479 //*pRC = VERR_IOM_IOPORT_UNUSED;
4480 }
4481
4482 STAM_PROFILE_ADV_STOP(&pState->CTX_SUFF_Z(StatIORead), a);
4483 return rc;
4484}
4485
4486
4487/**
4488 * Port I/O Handler for OUT operations.
4489 *
4490 * @returns VBox status code.
4491 *
4492 * @param pDevIns The device instance.
4493 * @param pvUser User argument.
4494 * @param Port Port number used for the IN operation.
4495 * @param u32 The value to output.
4496 * @param cb The value size in bytes.
4497 * @thread EMT
4498 */
4499PDMBOTHCBDECL(int) e1kIOPortOut(PPDMDEVINS pDevIns, void *pvUser,
4500 RTIOPORT port, uint32_t u32, unsigned cb)
4501{
4502 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
4503 int rc = VINF_SUCCESS;
4504 const char *szInst = INSTANCE(pState);
4505 STAM_PROFILE_ADV_START(&pState->CTX_SUFF_Z(StatIOWrite), a);
4506
4507 E1kLog2(("%s e1kIOPortOut: port=%RTiop value=%08x\n", szInst, port, u32));
4508 if (cb != 4)
4509 {
4510 E1kLog(("%s e1kIOPortOut: invalid op size: port=%RTiop cb=%08x\n", szInst, port, cb));
4511 rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "%s e1kIOPortOut: invalid op size: port=%RTiop cb=%08x\n", szInst, port, cb);
4512 }
4513 else
4514 {
4515 port -= pState->addrIOPort;
4516 switch (port)
4517 {
4518 case 0x00: /* IOADDR */
4519 pState->uSelectedReg = u32;
4520 E1kLog2(("%s e1kIOPortOut: IOADDR(0), selected register %08x\n", szInst, pState->uSelectedReg));
4521 break;
4522 case 0x04: /* IODATA */
4523 E1kLog2(("%s e1kIOPortOut: IODATA(4), writing to selected register %#010x, value=%#010x\n", szInst, pState->uSelectedReg, u32));
4524 rc = e1kRegWrite(pState, pState->uSelectedReg, &u32, cb);
4525 /** @todo wrong return code triggers assertions in the debug build; fix please */
4526 if (rc == VINF_IOM_HC_MMIO_WRITE)
4527 rc = VINF_IOM_HC_IOPORT_WRITE;
4528 break;
4529 default:
4530 E1kLog(("%s e1kIOPortOut: invalid port %#010x\n", szInst, port));
4531 /** @todo Do we need to return an error here?
4532 * bird: VINF_SUCCESS is fine for unhandled cases of an OUT handler. (If you're curious
4533 * about the guest code and a bit adventuresome, try rc = PDMDeviceDBGFStop(...);) */
4534 rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "e1kIOPortOut: invalid port %#010x\n", port);
4535 }
4536 }
4537
4538 STAM_PROFILE_ADV_STOP(&pState->CTX_SUFF_Z(StatIOWrite), a);
4539 return rc;
4540}
4541
4542#ifdef IN_RING3
4543/**
4544 * Dump complete device state to log.
4545 *
4546 * @param pState Pointer to device state.
4547 */
4548static void e1kDumpState(E1KSTATE *pState)
4549{
4550 for (int i = 0; i<E1K_NUM_OF_32BIT_REGS; ++i)
4551 {
4552 E1kLog2(("%s %8.8s = %08x\n", INSTANCE(pState),
4553 s_e1kRegMap[i].abbrev, pState->auRegs[i]));
4554 }
4555#ifdef E1K_INT_STATS
4556 LogRel(("%s Interrupt attempts: %d\n", INSTANCE(pState), pState->uStatIntTry));
4557 LogRel(("%s Interrupts raised : %d\n", INSTANCE(pState), pState->uStatInt));
4558 LogRel(("%s Interrupts lowered: %d\n", INSTANCE(pState), pState->uStatIntLower));
4559 LogRel(("%s Interrupts delayed: %d\n", INSTANCE(pState), pState->uStatIntDly));
4560 LogRel(("%s Disabled delayed: %d\n", INSTANCE(pState), pState->uStatDisDly));
4561 LogRel(("%s Interrupts skipped: %d\n", INSTANCE(pState), pState->uStatIntSkip));
4562 LogRel(("%s Masked interrupts : %d\n", INSTANCE(pState), pState->uStatIntMasked));
4563 LogRel(("%s Early interrupts : %d\n", INSTANCE(pState), pState->uStatIntEarly));
4564 LogRel(("%s Late interrupts : %d\n", INSTANCE(pState), pState->uStatIntLate));
4565 LogRel(("%s Lost interrupts : %d\n", INSTANCE(pState), pState->iStatIntLost));
4566 LogRel(("%s Interrupts by RX : %d\n", INSTANCE(pState), pState->uStatIntRx));
4567 LogRel(("%s Interrupts by TX : %d\n", INSTANCE(pState), pState->uStatIntTx));
4568 LogRel(("%s Interrupts by ICS : %d\n", INSTANCE(pState), pState->uStatIntICS));
4569 LogRel(("%s Interrupts by RDTR: %d\n", INSTANCE(pState), pState->uStatIntRDTR));
4570 LogRel(("%s Interrupts by RDMT: %d\n", INSTANCE(pState), pState->uStatIntRXDMT0));
4571 LogRel(("%s Interrupts by TXQE: %d\n", INSTANCE(pState), pState->uStatIntTXQE));
4572 LogRel(("%s TX int delay asked: %d\n", INSTANCE(pState), pState->uStatTxIDE));
4573 LogRel(("%s TX no report asked: %d\n", INSTANCE(pState), pState->uStatTxNoRS));
4574 LogRel(("%s TX abs timer expd : %d\n", INSTANCE(pState), pState->uStatTAD));
4575 LogRel(("%s TX int timer expd : %d\n", INSTANCE(pState), pState->uStatTID));
4576 LogRel(("%s RX abs timer expd : %d\n", INSTANCE(pState), pState->uStatRAD));
4577 LogRel(("%s RX int timer expd : %d\n", INSTANCE(pState), pState->uStatRID));
4578 LogRel(("%s TX CTX descriptors: %d\n", INSTANCE(pState), pState->uStatDescCtx));
4579 LogRel(("%s TX DAT descriptors: %d\n", INSTANCE(pState), pState->uStatDescDat));
4580 LogRel(("%s TX LEG descriptors: %d\n", INSTANCE(pState), pState->uStatDescLeg));
4581 LogRel(("%s Received frames : %d\n", INSTANCE(pState), pState->uStatRxFrm));
4582 LogRel(("%s Transmitted frames: %d\n", INSTANCE(pState), pState->uStatTxFrm));
4583#endif /* E1K_INT_STATS */
4584}
4585
4586/**
4587 * Map PCI I/O region.
4588 *
4589 * @return VBox status code.
4590 * @param pPciDev Pointer to PCI device. Use pPciDev->pDevIns to get the device instance.
4591 * @param iRegion The region number.
4592 * @param GCPhysAddress Physical address of the region. If iType is PCI_ADDRESS_SPACE_IO, this is an
4593 * I/O port, else it's a physical address.
4594 * This address is *NOT* relative to pci_mem_base like earlier!
4595 * @param cb Region size.
4596 * @param enmType One of the PCI_ADDRESS_SPACE_* values.
4597 * @thread EMT
4598 */
4599static DECLCALLBACK(int) e1kMap(PPCIDEVICE pPciDev, int iRegion,
4600 RTGCPHYS GCPhysAddress, uint32_t cb, PCIADDRESSSPACE enmType)
4601{
4602 int rc;
4603 E1KSTATE *pState = PDMINS_2_DATA(pPciDev->pDevIns, E1KSTATE*);
4604
4605 switch (enmType)
4606 {
4607 case PCI_ADDRESS_SPACE_IO:
4608 pState->addrIOPort = (RTIOPORT)GCPhysAddress;
4609 rc = PDMDevHlpIOPortRegister(pPciDev->pDevIns, pState->addrIOPort, cb, 0,
4610 e1kIOPortOut, e1kIOPortIn, NULL, NULL, "E1000");
4611 if (RT_FAILURE(rc))
4612 break;
4613 if (pState->fR0Enabled)
4614 {
4615 rc = PDMDevHlpIOPortRegisterR0(pPciDev->pDevIns, pState->addrIOPort, cb, 0,
4616 "e1kIOPortOut", "e1kIOPortIn", NULL, NULL, "E1000");
4617 if (RT_FAILURE(rc))
4618 break;
4619 }
4620 if (pState->fGCEnabled)
4621 {
4622 rc = PDMDevHlpIOPortRegisterRC(pPciDev->pDevIns, pState->addrIOPort, cb, 0,
4623 "e1kIOPortOut", "e1kIOPortIn", NULL, NULL, "E1000");
4624 }
4625 break;
4626 case PCI_ADDRESS_SPACE_MEM:
4627 pState->addrMMReg = GCPhysAddress;
4628 rc = PDMDevHlpMMIORegister(pPciDev->pDevIns, GCPhysAddress, cb, 0,
4629 e1kMMIOWrite, e1kMMIORead, NULL, "E1000");
4630 if (pState->fR0Enabled)
4631 {
4632 rc = PDMDevHlpMMIORegisterR0(pPciDev->pDevIns, GCPhysAddress, cb, 0,
4633 "e1kMMIOWrite", "e1kMMIORead", NULL);
4634 if (RT_FAILURE(rc))
4635 break;
4636 }
4637 if (pState->fGCEnabled)
4638 {
4639 rc = PDMDevHlpMMIORegisterRC(pPciDev->pDevIns, GCPhysAddress, cb, 0,
4640 "e1kMMIOWrite", "e1kMMIORead", NULL);
4641 }
4642 break;
4643 default:
4644 /* We should never get here */
4645 AssertMsgFailed(("Invalid PCI address space param in map callback"));
4646 rc = VERR_INTERNAL_ERROR;
4647 break;
4648 }
4649 return rc;
4650}
4651
4652/**
4653 * Check if the device can receive data now.
4654 * This must be called before the pfnRecieve() method is called.
4655 *
4656 * @returns Number of bytes the device can receive.
4657 * @param pInterface Pointer to the interface structure containing the called function pointer.
4658 * @thread EMT
4659 */
4660static int e1kCanReceive(E1KSTATE *pState)
4661{
4662 size_t cb;
4663
4664 if (RT_UNLIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) != VINF_SUCCESS))
4665 return VERR_NET_NO_BUFFER_SPACE;
4666 if (RT_UNLIKELY(e1kCsRxEnter(pState, VERR_SEM_BUSY) != VINF_SUCCESS))
4667 return VERR_NET_NO_BUFFER_SPACE;
4668
4669 if (RT_UNLIKELY(RDLEN == sizeof(E1KRXDESC)))
4670 {
4671 E1KRXDESC desc;
4672 PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), e1kDescAddr(RDBAH, RDBAL, RDH),
4673 &desc, sizeof(desc));
4674 if (desc.status.fDD)
4675 cb = 0;
4676 else
4677 cb = pState->u16RxBSize;
4678 }
4679 else if (RDH < RDT)
4680 cb = (RDT - RDH) * pState->u16RxBSize;
4681 else if (RDH > RDT)
4682 cb = (RDLEN/sizeof(E1KRXDESC) - RDH + RDT) * pState->u16RxBSize;
4683 else
4684 {
4685 cb = 0;
4686 E1kLogRel(("E1000: OUT of RX descriptors!\n"));
4687 }
4688 E1kLog2(("%s e1kCanReceive: at exit RDH=%d RDT=%d RDLEN=%d u16RxBSize=%d cb=%lu\n",
4689 INSTANCE(pState), RDH, RDT, RDLEN, pState->u16RxBSize, cb));
4690
4691 e1kCsRxLeave(pState);
4692 e1kMutexRelease(pState);
4693 return cb > 0 ? VINF_SUCCESS : VERR_NET_NO_BUFFER_SPACE;
4694}
4695
4696/**
4697 * @interface_method_impl{PDMINETWORKDOWN,pfnWaitReceiveAvail}
4698 */
4699static DECLCALLBACK(int) e1kNetworkDown_WaitReceiveAvail(PPDMINETWORKDOWN pInterface, RTMSINTERVAL cMillies)
4700{
4701 E1KSTATE *pState = RT_FROM_MEMBER(pInterface, E1KSTATE, INetworkDown);
4702 int rc = e1kCanReceive(pState);
4703
4704 if (RT_SUCCESS(rc))
4705 return VINF_SUCCESS;
4706 if (RT_UNLIKELY(cMillies == 0))
4707 return VERR_NET_NO_BUFFER_SPACE;
4708
4709 rc = VERR_INTERRUPTED;
4710 ASMAtomicXchgBool(&pState->fMaybeOutOfSpace, true);
4711 STAM_PROFILE_START(&pState->StatRxOverflow, a);
4712 VMSTATE enmVMState;
4713 while (RT_LIKELY( (enmVMState = PDMDevHlpVMState(pState->CTX_SUFF(pDevIns))) == VMSTATE_RUNNING
4714 || enmVMState == VMSTATE_RUNNING_LS))
4715 {
4716 int rc2 = e1kCanReceive(pState);
4717 if (RT_SUCCESS(rc2))
4718 {
4719 rc = VINF_SUCCESS;
4720 break;
4721 }
4722 E1kLogRel(("E1000 e1kNetworkDown_WaitReceiveAvail: waiting cMillies=%u...\n",
4723 cMillies));
4724 E1kLog(("%s e1kNetworkDown_WaitReceiveAvail: waiting cMillies=%u...\n",
4725 INSTANCE(pState), cMillies));
4726 RTSemEventWait(pState->hEventMoreRxDescAvail, cMillies);
4727 }
4728 STAM_PROFILE_STOP(&pState->StatRxOverflow, a);
4729 ASMAtomicXchgBool(&pState->fMaybeOutOfSpace, false);
4730
4731 return rc;
4732}
4733
4734
4735/**
4736 * Matches the packet addresses against Receive Address table. Looks for
4737 * exact matches only.
4738 *
4739 * @returns true if address matches.
4740 * @param pState Pointer to the state structure.
4741 * @param pvBuf The ethernet packet.
4742 * @param cb Number of bytes available in the packet.
4743 * @thread EMT
4744 */
4745static bool e1kPerfectMatch(E1KSTATE *pState, const void *pvBuf)
4746{
4747 for (unsigned i = 0; i < RT_ELEMENTS(pState->aRecAddr.array); i++)
4748 {
4749 E1KRAELEM* ra = pState->aRecAddr.array + i;
4750
4751 /* Valid address? */
4752 if (ra->ctl & RA_CTL_AV)
4753 {
4754 Assert((ra->ctl & RA_CTL_AS) < 2);
4755 //unsigned char *pAddr = (unsigned char*)pvBuf + sizeof(ra->addr)*(ra->ctl & RA_CTL_AS);
4756 //E1kLog3(("%s Matching %02x:%02x:%02x:%02x:%02x:%02x against %02x:%02x:%02x:%02x:%02x:%02x...\n",
4757 // INSTANCE(pState), pAddr[0], pAddr[1], pAddr[2], pAddr[3], pAddr[4], pAddr[5],
4758 // ra->addr[0], ra->addr[1], ra->addr[2], ra->addr[3], ra->addr[4], ra->addr[5]));
4759 /*
4760 * Address Select:
4761 * 00b = Destination address
4762 * 01b = Source address
4763 * 10b = Reserved
4764 * 11b = Reserved
4765 * Since ethernet header is (DA, SA, len) we can use address
4766 * select as index.
4767 */
4768 if (memcmp((char*)pvBuf + sizeof(ra->addr)*(ra->ctl & RA_CTL_AS),
4769 ra->addr, sizeof(ra->addr)) == 0)
4770 return true;
4771 }
4772 }
4773
4774 return false;
4775}
4776
4777/**
4778 * Matches the packet addresses against Multicast Table Array.
4779 *
4780 * @remarks This is imperfect match since it matches not exact address but
4781 * a subset of addresses.
4782 *
4783 * @returns true if address matches.
4784 * @param pState Pointer to the state structure.
4785 * @param pvBuf The ethernet packet.
4786 * @param cb Number of bytes available in the packet.
4787 * @thread EMT
4788 */
4789static bool e1kImperfectMatch(E1KSTATE *pState, const void *pvBuf)
4790{
4791 /* Get bits 32..47 of destination address */
4792 uint16_t u16Bit = ((uint16_t*)pvBuf)[2];
4793
4794 unsigned offset = GET_BITS(RCTL, MO);
4795 /*
4796 * offset means:
4797 * 00b = bits 36..47
4798 * 01b = bits 35..46
4799 * 10b = bits 34..45
4800 * 11b = bits 32..43
4801 */
4802 if (offset < 3)
4803 u16Bit = u16Bit >> (4 - offset);
4804 return ASMBitTest(pState->auMTA, u16Bit & 0xFFF);
4805}
4806
4807/**
4808 * Determines if the packet is to be delivered to upper layer. The following
4809 * filters supported:
4810 * - Exact Unicast/Multicast
4811 * - Promiscuous Unicast/Multicast
4812 * - Multicast
4813 * - VLAN
4814 *
4815 * @returns true if packet is intended for this node.
4816 * @param pState Pointer to the state structure.
4817 * @param pvBuf The ethernet packet.
4818 * @param cb Number of bytes available in the packet.
4819 * @param pStatus Bit field to store status bits.
4820 * @thread EMT
4821 */
4822static bool e1kAddressFilter(E1KSTATE *pState, const void *pvBuf, size_t cb, E1KRXDST *pStatus)
4823{
4824 Assert(cb > 14);
4825 /* Assume that we fail to pass exact filter. */
4826 pStatus->fPIF = false;
4827 pStatus->fVP = false;
4828 /* Discard oversized packets */
4829 if (cb > E1K_MAX_RX_PKT_SIZE)
4830 {
4831 E1kLog(("%s ERROR: Incoming packet is too big, cb=%d > max=%d\n",
4832 INSTANCE(pState), cb, E1K_MAX_RX_PKT_SIZE));
4833 E1K_INC_CNT32(ROC);
4834 return false;
4835 }
4836 else if (!(RCTL & RCTL_LPE) && cb > 1522)
4837 {
4838 /* When long packet reception is disabled packets over 1522 are discarded */
4839 E1kLog(("%s Discarding incoming packet (LPE=0), cb=%d\n",
4840 INSTANCE(pState), cb));
4841 E1K_INC_CNT32(ROC);
4842 return false;
4843 }
4844
4845 /* Broadcast filtering */
4846 if (e1kIsBroadcast(pvBuf) && (RCTL & RCTL_BAM))
4847 return true;
4848 E1kLog2(("%s Packet filter: not a broadcast\n", INSTANCE(pState)));
4849 if (e1kIsMulticast(pvBuf))
4850 {
4851 /* Is multicast promiscuous enabled? */
4852 if (RCTL & RCTL_MPE)
4853 return true;
4854 E1kLog2(("%s Packet filter: no promiscuous multicast\n", INSTANCE(pState)));
4855 /* Try perfect matches first */
4856 if (e1kPerfectMatch(pState, pvBuf))
4857 {
4858 pStatus->fPIF = true;
4859 return true;
4860 }
4861 E1kLog2(("%s Packet filter: no perfect match\n", INSTANCE(pState)));
4862 if (e1kImperfectMatch(pState, pvBuf))
4863 return true;
4864 E1kLog2(("%s Packet filter: no imperfect match\n", INSTANCE(pState)));
4865 }
4866 else {
4867 /* Is unicast promiscuous enabled? */
4868 if (RCTL & RCTL_UPE)
4869 return true;
4870 E1kLog2(("%s Packet filter: no promiscuous unicast\n", INSTANCE(pState)));
4871 if (e1kPerfectMatch(pState, pvBuf))
4872 {
4873 pStatus->fPIF = true;
4874 return true;
4875 }
4876 E1kLog2(("%s Packet filter: no perfect match\n", INSTANCE(pState)));
4877 }
4878 /* Is VLAN filtering enabled? */
4879 if (RCTL & RCTL_VFE)
4880 {
4881 uint16_t *u16Ptr = (uint16_t*)pvBuf;
4882 /* Compare TPID with VLAN Ether Type */
4883 if (u16Ptr[6] == VET)
4884 {
4885 pStatus->fVP = true;
4886 /* It is 802.1q packet indeed, let's filter by VID */
4887 if (ASMBitTest(pState->auVFTA, RT_BE2H_U16(u16Ptr[7]) & 0xFFF))
4888 return true;
4889 E1kLog2(("%s Packet filter: no VLAN match\n", INSTANCE(pState)));
4890 }
4891 }
4892 E1kLog2(("%s Packet filter: packet discarded\n", INSTANCE(pState)));
4893 return false;
4894}
4895
4896/**
4897 * @interface_method_impl{PDMINETWORKDOWN,pfnReceive}
4898 */
4899static DECLCALLBACK(int) e1kNetworkDown_Receive(PPDMINETWORKDOWN pInterface, const void *pvBuf, size_t cb)
4900{
4901 E1KSTATE *pState = RT_FROM_MEMBER(pInterface, E1KSTATE, INetworkDown);
4902 int rc = VINF_SUCCESS;
4903
4904 /*
4905 * Drop packets if the VM is not running yet/anymore.
4906 */
4907 VMSTATE enmVMState = PDMDevHlpVMState(STATE_TO_DEVINS(pState));
4908 if ( enmVMState != VMSTATE_RUNNING
4909 && enmVMState != VMSTATE_RUNNING_LS)
4910 {
4911 E1kLog(("%s Dropping incoming packet as VM is not running.\n", INSTANCE(pState)));
4912 return VINF_SUCCESS;
4913 }
4914
4915 /* Discard incoming packets in locked state */
4916 if (!(RCTL & RCTL_EN) || pState->fLocked || !(STATUS & STATUS_LU))
4917 {
4918 E1kLog(("%s Dropping incoming packet as receive operation is disabled.\n", INSTANCE(pState)));
4919 return VINF_SUCCESS;
4920 }
4921
4922 STAM_PROFILE_ADV_START(&pState->StatReceive, a);
4923 rc = e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS);
4924 if (RT_LIKELY(rc == VINF_SUCCESS))
4925 {
4926 //if (!e1kCsEnter(pState, RT_SRC_POS))
4927 // return VERR_PERMISSION_DENIED;
4928
4929 e1kPacketDump(pState, (const uint8_t*)pvBuf, cb, "<-- Incoming");
4930
4931 /* Update stats */
4932 if (RT_LIKELY(e1kCsEnter(pState, VERR_SEM_BUSY) == VINF_SUCCESS))
4933 {
4934 E1K_INC_CNT32(TPR);
4935 E1K_ADD_CNT64(TORL, TORH, cb < 64? 64 : cb);
4936 e1kCsLeave(pState);
4937 }
4938 STAM_PROFILE_ADV_START(&pState->StatReceiveFilter, a);
4939 E1KRXDST status;
4940 RT_ZERO(status);
4941 bool fPassed = e1kAddressFilter(pState, pvBuf, cb, &status);
4942 STAM_PROFILE_ADV_STOP(&pState->StatReceiveFilter, a);
4943 if (fPassed)
4944 {
4945 rc = e1kHandleRxPacket(pState, pvBuf, cb, status);
4946 }
4947 //e1kCsLeave(pState);
4948 e1kMutexRelease(pState);
4949 }
4950 STAM_PROFILE_ADV_STOP(&pState->StatReceive, a);
4951
4952 return rc;
4953}
4954
4955/**
4956 * Gets the pointer to the status LED of a unit.
4957 *
4958 * @returns VBox status code.
4959 * @param pInterface Pointer to the interface structure.
4960 * @param iLUN The unit which status LED we desire.
4961 * @param ppLed Where to store the LED pointer.
4962 * @thread EMT
4963 */
4964static DECLCALLBACK(int) e1kQueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed)
4965{
4966 E1KSTATE *pState = RT_FROM_MEMBER(pInterface, E1KSTATE, ILeds);
4967 int rc = VERR_PDM_LUN_NOT_FOUND;
4968
4969 if (iLUN == 0)
4970 {
4971 *ppLed = &pState->led;
4972 rc = VINF_SUCCESS;
4973 }
4974 return rc;
4975}
4976
4977/**
4978 * Gets the current Media Access Control (MAC) address.
4979 *
4980 * @returns VBox status code.
4981 * @param pInterface Pointer to the interface structure containing the called function pointer.
4982 * @param pMac Where to store the MAC address.
4983 * @thread EMT
4984 */
4985static DECLCALLBACK(int) e1kGetMac(PPDMINETWORKCONFIG pInterface, PRTMAC pMac)
4986{
4987 E1KSTATE *pState = RT_FROM_MEMBER(pInterface, E1KSTATE, INetworkConfig);
4988 pState->eeprom.getMac(pMac);
4989 return VINF_SUCCESS;
4990}
4991
4992
4993/**
4994 * Gets the new link state.
4995 *
4996 * @returns The current link state.
4997 * @param pInterface Pointer to the interface structure containing the called function pointer.
4998 * @thread EMT
4999 */
5000static DECLCALLBACK(PDMNETWORKLINKSTATE) e1kGetLinkState(PPDMINETWORKCONFIG pInterface)
5001{
5002 E1KSTATE *pState = RT_FROM_MEMBER(pInterface, E1KSTATE, INetworkConfig);
5003 if (STATUS & STATUS_LU)
5004 return PDMNETWORKLINKSTATE_UP;
5005 return PDMNETWORKLINKSTATE_DOWN;
5006}
5007
5008
5009/**
5010 * Sets the new link state.
5011 *
5012 * @returns VBox status code.
5013 * @param pInterface Pointer to the interface structure containing the called function pointer.
5014 * @param enmState The new link state
5015 * @thread EMT
5016 */
5017static DECLCALLBACK(int) e1kSetLinkState(PPDMINETWORKCONFIG pInterface, PDMNETWORKLINKSTATE enmState)
5018{
5019 E1KSTATE *pState = RT_FROM_MEMBER(pInterface, E1KSTATE, INetworkConfig);
5020 bool fOldUp = !!(STATUS & STATUS_LU);
5021 bool fNewUp = enmState == PDMNETWORKLINKSTATE_UP;
5022
5023 if ( fNewUp != fOldUp
5024 || (!fNewUp && pState->fCableConnected)) /* old state was connected but STATUS not
5025 * yet written by guest */
5026 {
5027 if (fNewUp)
5028 {
5029 E1kLog(("%s Link will be up in approximately 5 secs\n", INSTANCE(pState)));
5030 pState->fCableConnected = true;
5031 STATUS &= ~STATUS_LU;
5032 Phy::setLinkStatus(&pState->phy, false);
5033 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_LSC);
5034 /* Restore the link back in 5 second. */
5035 e1kArmTimer(pState, pState->pLUTimerR3, 5000000);
5036 }
5037 else
5038 {
5039 E1kLog(("%s Link is down\n", INSTANCE(pState)));
5040 pState->fCableConnected = false;
5041 STATUS &= ~STATUS_LU;
5042 Phy::setLinkStatus(&pState->phy, false);
5043 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_LSC);
5044 }
5045 if (pState->pDrvR3)
5046 pState->pDrvR3->pfnNotifyLinkChanged(pState->pDrvR3, enmState);
5047 }
5048 return VINF_SUCCESS;
5049}
5050
5051/**
5052 * @interface_method_impl{PDMIBASE,pfnQueryInterface}
5053 */
5054static DECLCALLBACK(void *) e1kQueryInterface(struct PDMIBASE *pInterface, const char *pszIID)
5055{
5056 E1KSTATE *pThis = RT_FROM_MEMBER(pInterface, E1KSTATE, IBase);
5057 Assert(&pThis->IBase == pInterface);
5058
5059 PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase);
5060 PDMIBASE_RETURN_INTERFACE(pszIID, PDMINETWORKDOWN, &pThis->INetworkDown);
5061 PDMIBASE_RETURN_INTERFACE(pszIID, PDMINETWORKCONFIG, &pThis->INetworkConfig);
5062 PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThis->ILeds);
5063 return NULL;
5064}
5065
5066/**
5067 * Saves the configuration.
5068 *
5069 * @param pState The E1K state.
5070 * @param pSSM The handle to the saved state.
5071 */
5072static void e1kSaveConfig(E1KSTATE *pState, PSSMHANDLE pSSM)
5073{
5074 SSMR3PutMem(pSSM, &pState->macConfigured, sizeof(pState->macConfigured));
5075 SSMR3PutU32(pSSM, pState->eChip);
5076}
5077
5078/**
5079 * Live save - save basic configuration.
5080 *
5081 * @returns VBox status code.
5082 * @param pDevIns The device instance.
5083 * @param pSSM The handle to the saved state.
5084 * @param uPass
5085 */
5086static DECLCALLBACK(int) e1kLiveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uPass)
5087{
5088 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5089 e1kSaveConfig(pState, pSSM);
5090 return VINF_SSM_DONT_CALL_AGAIN;
5091}
5092
5093/**
5094 * Prepares for state saving.
5095 *
5096 * @returns VBox status code.
5097 * @param pDevIns The device instance.
5098 * @param pSSM The handle to the saved state.
5099 */
5100static DECLCALLBACK(int) e1kSavePrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
5101{
5102 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5103
5104 int rc = e1kCsEnter(pState, VERR_SEM_BUSY);
5105 if (RT_UNLIKELY(rc != VINF_SUCCESS))
5106 return rc;
5107 e1kCsLeave(pState);
5108 return VINF_SUCCESS;
5109#if 0
5110 int rc = e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS);
5111 if (RT_UNLIKELY(rc != VINF_SUCCESS))
5112 return rc;
5113 /* 1) Prevent all threads from modifying the state and memory */
5114 //pState->fLocked = true;
5115 /* 2) Cancel all timers */
5116#ifdef E1K_USE_TX_TIMERS
5117 e1kCancelTimer(pState, pState->CTX_SUFF(pTIDTimer));
5118#ifndef E1K_NO_TAD
5119 e1kCancelTimer(pState, pState->CTX_SUFF(pTADTimer));
5120#endif /* E1K_NO_TAD */
5121#endif /* E1K_USE_TX_TIMERS */
5122#ifdef E1K_USE_RX_TIMERS
5123 e1kCancelTimer(pState, pState->CTX_SUFF(pRIDTimer));
5124 e1kCancelTimer(pState, pState->CTX_SUFF(pRADTimer));
5125#endif /* E1K_USE_RX_TIMERS */
5126 e1kCancelTimer(pState, pState->CTX_SUFF(pIntTimer));
5127 /* 3) Did I forget anything? */
5128 E1kLog(("%s Locked\n", INSTANCE(pState)));
5129 e1kMutexRelease(pState);
5130 return VINF_SUCCESS;
5131#endif
5132}
5133
5134
5135/**
5136 * Saves the state of device.
5137 *
5138 * @returns VBox status code.
5139 * @param pDevIns The device instance.
5140 * @param pSSM The handle to the saved state.
5141 */
5142static DECLCALLBACK(int) e1kSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
5143{
5144 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5145
5146 e1kSaveConfig(pState, pSSM);
5147 pState->eeprom.save(pSSM);
5148 e1kDumpState(pState);
5149 SSMR3PutMem(pSSM, pState->auRegs, sizeof(pState->auRegs));
5150 SSMR3PutBool(pSSM, pState->fIntRaised);
5151 Phy::saveState(pSSM, &pState->phy);
5152 SSMR3PutU32(pSSM, pState->uSelectedReg);
5153 SSMR3PutMem(pSSM, pState->auMTA, sizeof(pState->auMTA));
5154 SSMR3PutMem(pSSM, &pState->aRecAddr, sizeof(pState->aRecAddr));
5155 SSMR3PutMem(pSSM, pState->auVFTA, sizeof(pState->auVFTA));
5156 SSMR3PutU64(pSSM, pState->u64AckedAt);
5157 SSMR3PutU16(pSSM, pState->u16RxBSize);
5158 //SSMR3PutBool(pSSM, pState->fDelayInts);
5159 //SSMR3PutBool(pSSM, pState->fIntMaskUsed);
5160 SSMR3PutU16(pSSM, pState->u16TxPktLen);
5161/** @todo State wrt to the TSE buffer is incomplete, so little point in
5162 * saving this actually. */
5163 SSMR3PutMem(pSSM, pState->aTxPacketFallback, pState->u16TxPktLen);
5164 SSMR3PutBool(pSSM, pState->fIPcsum);
5165 SSMR3PutBool(pSSM, pState->fTCPcsum);
5166 SSMR3PutMem(pSSM, &pState->contextTSE, sizeof(pState->contextTSE));
5167 SSMR3PutMem(pSSM, &pState->contextNormal, sizeof(pState->contextNormal));
5168/**@todo GSO requires some more state here. */
5169 E1kLog(("%s State has been saved\n", INSTANCE(pState)));
5170 return VINF_SUCCESS;
5171}
5172
5173#if 0
5174/**
5175 * Cleanup after saving.
5176 *
5177 * @returns VBox status code.
5178 * @param pDevIns The device instance.
5179 * @param pSSM The handle to the saved state.
5180 */
5181static DECLCALLBACK(int) e1kSaveDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
5182{
5183 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5184
5185 int rc = e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS);
5186 if (RT_UNLIKELY(rc != VINF_SUCCESS))
5187 return rc;
5188 /* If VM is being powered off unlocking will result in assertions in PGM */
5189 if (PDMDevHlpGetVM(pDevIns)->enmVMState == VMSTATE_RUNNING)
5190 pState->fLocked = false;
5191 else
5192 E1kLog(("%s VM is not running -- remain locked\n", INSTANCE(pState)));
5193 E1kLog(("%s Unlocked\n", INSTANCE(pState)));
5194 e1kMutexRelease(pState);
5195 return VINF_SUCCESS;
5196}
5197#endif
5198
5199/**
5200 * Sync with .
5201 *
5202 * @returns VBox status code.
5203 * @param pDevIns The device instance.
5204 * @param pSSM The handle to the saved state.
5205 */
5206static DECLCALLBACK(int) e1kLoadPrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
5207{
5208 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5209
5210 int rc = e1kCsEnter(pState, VERR_SEM_BUSY);
5211 if (RT_UNLIKELY(rc != VINF_SUCCESS))
5212 return rc;
5213 e1kCsLeave(pState);
5214 return VINF_SUCCESS;
5215}
5216
5217/**
5218 * Restore previously saved state of device.
5219 *
5220 * @returns VBox status code.
5221 * @param pDevIns The device instance.
5222 * @param pSSM The handle to the saved state.
5223 * @param uVersion The data unit version number.
5224 * @param uPass The data pass.
5225 */
5226static DECLCALLBACK(int) e1kLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
5227{
5228 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5229 int rc;
5230
5231 if ( uVersion != E1K_SAVEDSTATE_VERSION
5232 && uVersion != E1K_SAVEDSTATE_VERSION_VBOX_30)
5233 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
5234
5235 if ( uVersion > E1K_SAVEDSTATE_VERSION_VBOX_30
5236 || uPass != SSM_PASS_FINAL)
5237 {
5238 /* config checks */
5239 RTMAC macConfigured;
5240 rc = SSMR3GetMem(pSSM, &macConfigured, sizeof(macConfigured));
5241 AssertRCReturn(rc, rc);
5242 if ( memcmp(&macConfigured, &pState->macConfigured, sizeof(macConfigured))
5243 && (uPass == 0 || !PDMDevHlpVMTeleportedAndNotFullyResumedYet(pDevIns)) )
5244 LogRel(("%s: The mac address differs: config=%RTmac saved=%RTmac\n", INSTANCE(pState), &pState->macConfigured, &macConfigured));
5245
5246 E1KCHIP eChip;
5247 rc = SSMR3GetU32(pSSM, &eChip);
5248 AssertRCReturn(rc, rc);
5249 if (eChip != pState->eChip)
5250 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("The chip type differs: config=%u saved=%u"), pState->eChip, eChip);
5251 }
5252
5253 if (uPass == SSM_PASS_FINAL)
5254 {
5255 if (uVersion > E1K_SAVEDSTATE_VERSION_VBOX_30)
5256 {
5257 rc = pState->eeprom.load(pSSM);
5258 AssertRCReturn(rc, rc);
5259 }
5260 /* the state */
5261 SSMR3GetMem(pSSM, &pState->auRegs, sizeof(pState->auRegs));
5262 SSMR3GetBool(pSSM, &pState->fIntRaised);
5263 /** @todo: PHY could be made a separate device with its own versioning */
5264 Phy::loadState(pSSM, &pState->phy);
5265 SSMR3GetU32(pSSM, &pState->uSelectedReg);
5266 SSMR3GetMem(pSSM, &pState->auMTA, sizeof(pState->auMTA));
5267 SSMR3GetMem(pSSM, &pState->aRecAddr, sizeof(pState->aRecAddr));
5268 SSMR3GetMem(pSSM, &pState->auVFTA, sizeof(pState->auVFTA));
5269 SSMR3GetU64(pSSM, &pState->u64AckedAt);
5270 SSMR3GetU16(pSSM, &pState->u16RxBSize);
5271 //SSMR3GetBool(pSSM, pState->fDelayInts);
5272 //SSMR3GetBool(pSSM, pState->fIntMaskUsed);
5273 SSMR3GetU16(pSSM, &pState->u16TxPktLen);
5274 SSMR3GetMem(pSSM, &pState->aTxPacketFallback[0], pState->u16TxPktLen);
5275 SSMR3GetBool(pSSM, &pState->fIPcsum);
5276 SSMR3GetBool(pSSM, &pState->fTCPcsum);
5277 SSMR3GetMem(pSSM, &pState->contextTSE, sizeof(pState->contextTSE));
5278 rc = SSMR3GetMem(pSSM, &pState->contextNormal, sizeof(pState->contextNormal));
5279 AssertRCReturn(rc, rc);
5280
5281 /* derived state */
5282 e1kSetupGsoCtx(&pState->GsoCtx, &pState->contextTSE);
5283
5284 E1kLog(("%s State has been restored\n", INSTANCE(pState)));
5285 e1kDumpState(pState);
5286 }
5287 return VINF_SUCCESS;
5288}
5289
5290/**
5291 * Link status adjustments after loading.
5292 *
5293 * @returns VBox status code.
5294 * @param pDevIns The device instance.
5295 * @param pSSM The handle to the saved state.
5296 */
5297static DECLCALLBACK(int) e1kLoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
5298{
5299 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5300
5301 int rc = e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS);
5302 if (RT_UNLIKELY(rc != VINF_SUCCESS))
5303 return rc;
5304
5305 /* Update promiscuous mode */
5306 if (pState->pDrvR3)
5307 pState->pDrvR3->pfnSetPromiscuousMode(pState->pDrvR3,
5308 !!(RCTL & (RCTL_UPE | RCTL_MPE)));
5309
5310 /*
5311 * Force the link down here, since PDMNETWORKLINKSTATE_DOWN_RESUME is never
5312 * passed to us. We go through all this stuff if the link was up and we
5313 * wasn't teleported.
5314 */
5315 if ( (STATUS & STATUS_LU)
5316 && !PDMDevHlpVMTeleportedAndNotFullyResumedYet(pDevIns))
5317 {
5318 E1kLog(("%s Link is down temporarily\n", INSTANCE(pState)));
5319 STATUS &= ~STATUS_LU;
5320 Phy::setLinkStatus(&pState->phy, false);
5321 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_LSC);
5322 /* Restore the link back in five seconds. */
5323 e1kArmTimer(pState, pState->pLUTimerR3, 5000000);
5324 }
5325 e1kMutexRelease(pState);
5326 return VINF_SUCCESS;
5327}
5328
5329
5330/* -=-=-=-=- PDMDEVREG -=-=-=-=- */
5331
5332/**
5333 * Detach notification.
5334 *
5335 * One port on the network card has been disconnected from the network.
5336 *
5337 * @param pDevIns The device instance.
5338 * @param iLUN The logical unit which is being detached.
5339 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
5340 */
5341static DECLCALLBACK(void) e1kDetach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags)
5342{
5343 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5344 Log(("%s e1kDetach:\n", INSTANCE(pState)));
5345
5346 AssertLogRelReturnVoid(iLUN == 0);
5347
5348 PDMCritSectEnter(&pState->cs, VERR_SEM_BUSY);
5349
5350 /** @todo: r=pritesh still need to check if i missed
5351 * to clean something in this function
5352 */
5353
5354 /*
5355 * Zero some important members.
5356 */
5357 pState->pDrvBase = NULL;
5358 pState->pDrvR3 = NULL;
5359 pState->pDrvR0 = NIL_RTR0PTR;
5360 pState->pDrvRC = NIL_RTRCPTR;
5361
5362 PDMCritSectLeave(&pState->cs);
5363}
5364
5365/**
5366 * Attach the Network attachment.
5367 *
5368 * One port on the network card has been connected to a network.
5369 *
5370 * @returns VBox status code.
5371 * @param pDevIns The device instance.
5372 * @param iLUN The logical unit which is being attached.
5373 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
5374 *
5375 * @remarks This code path is not used during construction.
5376 */
5377static DECLCALLBACK(int) e1kAttach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags)
5378{
5379 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5380 LogFlow(("%s e1kAttach:\n", INSTANCE(pState)));
5381
5382 AssertLogRelReturn(iLUN == 0, VERR_PDM_NO_SUCH_LUN);
5383
5384 PDMCritSectEnter(&pState->cs, VERR_SEM_BUSY);
5385
5386 /*
5387 * Attach the driver.
5388 */
5389 int rc = PDMDevHlpDriverAttach(pDevIns, 0, &pState->IBase, &pState->pDrvBase, "Network Port");
5390 if (RT_SUCCESS(rc))
5391 {
5392 if (rc == VINF_NAT_DNS)
5393 {
5394#ifdef RT_OS_LINUX
5395 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "NoDNSforNAT",
5396 N_("A Domain Name Server (DNS) for NAT networking could not be determined. Please check your /etc/resolv.conf for <tt>nameserver</tt> entries. Either add one manually (<i>man resolv.conf</i>) or ensure that your host is correctly connected to an ISP. If you ignore this warning the guest will not be able to perform nameserver lookups and it will probably observe delays if trying so"));
5397#else
5398 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "NoDNSforNAT",
5399 N_("A Domain Name Server (DNS) for NAT networking could not be determined. Ensure that your host is correctly connected to an ISP. If you ignore this warning the guest will not be able to perform nameserver lookups and it will probably observe delays if trying so"));
5400#endif
5401 }
5402 pState->pDrvR3 = PDMIBASE_QUERY_INTERFACE(pState->pDrvBase, PDMINETWORKUP);
5403 AssertMsgStmt(pState->pDrvR3, ("Failed to obtain the PDMINETWORKUP interface!\n"),
5404 rc = VERR_PDM_MISSING_INTERFACE_BELOW);
5405 if (RT_SUCCESS(rc))
5406 {
5407 PPDMIBASER0 pBaseR0 = PDMIBASE_QUERY_INTERFACE(pState->pDrvBase, PDMIBASER0);
5408 pState->pDrvR0 = pBaseR0 ? pBaseR0->pfnQueryInterface(pBaseR0, PDMINETWORKUP_IID) : NIL_RTR0PTR;
5409
5410 PPDMIBASERC pBaseRC = PDMIBASE_QUERY_INTERFACE(pState->pDrvBase, PDMIBASERC);
5411 pState->pDrvRC = pBaseRC ? pBaseRC->pfnQueryInterface(pBaseRC, PDMINETWORKUP_IID) : NIL_RTR0PTR;
5412 }
5413 }
5414 else if ( rc == VERR_PDM_NO_ATTACHED_DRIVER
5415 || rc == VERR_PDM_CFG_MISSING_DRIVER_NAME)
5416 {
5417 /* This should never happen because this function is not called
5418 * if there is no driver to attach! */
5419 Log(("%s No attached driver!\n", INSTANCE(pState)));
5420 }
5421
5422 /*
5423 * Temporary set the link down if it was up so that the guest
5424 * will know that we have change the configuration of the
5425 * network card
5426 */
5427 if ((STATUS & STATUS_LU) && RT_SUCCESS(rc))
5428 {
5429 STATUS &= ~STATUS_LU;
5430 Phy::setLinkStatus(&pState->phy, false);
5431 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_LSC);
5432 /* Restore the link back in 5 second. */
5433 e1kArmTimer(pState, pState->pLUTimerR3, 5000000);
5434 }
5435
5436 PDMCritSectLeave(&pState->cs);
5437 return rc;
5438
5439}
5440
5441/**
5442 * @copydoc FNPDMDEVPOWEROFF
5443 */
5444static DECLCALLBACK(void) e1kPowerOff(PPDMDEVINS pDevIns)
5445{
5446 /* Poke thread waiting for buffer space. */
5447 e1kWakeupReceive(pDevIns);
5448}
5449
5450/**
5451 * @copydoc FNPDMDEVRESET
5452 */
5453static DECLCALLBACK(void) e1kReset(PPDMDEVINS pDevIns)
5454{
5455 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5456 e1kCancelTimer(pState, pState->CTX_SUFF(pIntTimer));
5457 e1kCancelTimer(pState, pState->CTX_SUFF(pLUTimer));
5458 e1kXmitFreeBuf(pState);
5459 pState->u16TxPktLen = 0;
5460 pState->fIPcsum = false;
5461 pState->fTCPcsum = false;
5462 pState->fIntMaskUsed = false;
5463 pState->fDelayInts = false;
5464 pState->fLocked = false;
5465 pState->u64AckedAt = 0;
5466 e1kHardReset(pState);
5467}
5468
5469/**
5470 * @copydoc FNPDMDEVSUSPEND
5471 */
5472static DECLCALLBACK(void) e1kSuspend(PPDMDEVINS pDevIns)
5473{
5474 /* Poke thread waiting for buffer space. */
5475 e1kWakeupReceive(pDevIns);
5476}
5477
5478/**
5479 * Device relocation callback.
5480 *
5481 * When this callback is called the device instance data, and if the
5482 * device have a GC component, is being relocated, or/and the selectors
5483 * have been changed. The device must use the chance to perform the
5484 * necessary pointer relocations and data updates.
5485 *
5486 * Before the GC code is executed the first time, this function will be
5487 * called with a 0 delta so GC pointer calculations can be one in one place.
5488 *
5489 * @param pDevIns Pointer to the device instance.
5490 * @param offDelta The relocation delta relative to the old location.
5491 *
5492 * @remark A relocation CANNOT fail.
5493 */
5494static DECLCALLBACK(void) e1kRelocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
5495{
5496 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5497 pState->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
5498 pState->pTxQueueRC = PDMQueueRCPtr(pState->pTxQueueR3);
5499 pState->pCanRxQueueRC = PDMQueueRCPtr(pState->pCanRxQueueR3);
5500#ifdef E1K_USE_RX_TIMERS
5501 pState->pRIDTimerRC = TMTimerRCPtr(pState->pRIDTimerR3);
5502 pState->pRADTimerRC = TMTimerRCPtr(pState->pRADTimerR3);
5503#endif /* E1K_USE_RX_TIMERS */
5504#ifdef E1K_USE_TX_TIMERS
5505 pState->pTIDTimerRC = TMTimerRCPtr(pState->pTIDTimerR3);
5506# ifndef E1K_NO_TAD
5507 pState->pTADTimerRC = TMTimerRCPtr(pState->pTADTimerR3);
5508# endif /* E1K_NO_TAD */
5509#endif /* E1K_USE_TX_TIMERS */
5510 pState->pIntTimerRC = TMTimerRCPtr(pState->pIntTimerR3);
5511 pState->pLUTimerRC = TMTimerRCPtr(pState->pLUTimerR3);
5512}
5513
5514/**
5515 * Destruct a device instance.
5516 *
5517 * We need to free non-VM resources only.
5518 *
5519 * @returns VBox status.
5520 * @param pDevIns The device instance data.
5521 * @thread EMT
5522 */
5523static DECLCALLBACK(int) e1kDestruct(PPDMDEVINS pDevIns)
5524{
5525 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5526 PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns);
5527
5528 e1kDumpState(pState);
5529 E1kLog(("%s Destroying instance\n", INSTANCE(pState)));
5530 if (PDMCritSectIsInitialized(&pState->cs))
5531 {
5532 if (pState->hEventMoreRxDescAvail != NIL_RTSEMEVENT)
5533 {
5534 RTSemEventSignal(pState->hEventMoreRxDescAvail);
5535 RTSemEventDestroy(pState->hEventMoreRxDescAvail);
5536 pState->hEventMoreRxDescAvail = NIL_RTSEMEVENT;
5537 }
5538#ifndef E1K_GLOBAL_MUTEX
5539 PDMR3CritSectDelete(&pState->csRx);
5540 //PDMR3CritSectDelete(&pState->csTx);
5541#endif
5542 PDMR3CritSectDelete(&pState->cs);
5543 }
5544 return VINF_SUCCESS;
5545}
5546
5547/**
5548 * Sets 8-bit register in PCI configuration space.
5549 * @param refPciDev The PCI device.
5550 * @param uOffset The register offset.
5551 * @param u16Value The value to store in the register.
5552 * @thread EMT
5553 */
5554DECLINLINE(void) e1kPCICfgSetU8(PCIDEVICE& refPciDev, uint32_t uOffset, uint8_t u8Value)
5555{
5556 Assert(uOffset < sizeof(refPciDev.config));
5557 refPciDev.config[uOffset] = u8Value;
5558}
5559
5560/**
5561 * Sets 16-bit register in PCI configuration space.
5562 * @param refPciDev The PCI device.
5563 * @param uOffset The register offset.
5564 * @param u16Value The value to store in the register.
5565 * @thread EMT
5566 */
5567DECLINLINE(void) e1kPCICfgSetU16(PCIDEVICE& refPciDev, uint32_t uOffset, uint16_t u16Value)
5568{
5569 Assert(uOffset+sizeof(u16Value) <= sizeof(refPciDev.config));
5570 *(uint16_t*)&refPciDev.config[uOffset] = u16Value;
5571}
5572
5573/**
5574 * Sets 32-bit register in PCI configuration space.
5575 * @param refPciDev The PCI device.
5576 * @param uOffset The register offset.
5577 * @param u32Value The value to store in the register.
5578 * @thread EMT
5579 */
5580DECLINLINE(void) e1kPCICfgSetU32(PCIDEVICE& refPciDev, uint32_t uOffset, uint32_t u32Value)
5581{
5582 Assert(uOffset+sizeof(u32Value) <= sizeof(refPciDev.config));
5583 *(uint32_t*)&refPciDev.config[uOffset] = u32Value;
5584}
5585
5586/**
5587 * Set PCI configuration space registers.
5588 *
5589 * @param pci Reference to PCI device structure.
5590 * @thread EMT
5591 */
5592static DECLCALLBACK(void) e1kConfigurePCI(PCIDEVICE& pci, E1KCHIP eChip)
5593{
5594 Assert(eChip < RT_ELEMENTS(g_Chips));
5595 /* Configure PCI Device, assume 32-bit mode ******************************/
5596 PCIDevSetVendorId(&pci, g_Chips[eChip].uPCIVendorId);
5597 PCIDevSetDeviceId(&pci, g_Chips[eChip].uPCIDeviceId);
5598 e1kPCICfgSetU16(pci, VBOX_PCI_SUBSYSTEM_VENDOR_ID, g_Chips[eChip].uPCISubsystemVendorId);
5599 e1kPCICfgSetU16(pci, VBOX_PCI_SUBSYSTEM_ID, g_Chips[eChip].uPCISubsystemId);
5600
5601 e1kPCICfgSetU16(pci, VBOX_PCI_COMMAND, 0x0000);
5602 /* DEVSEL Timing (medium device), 66 MHz Capable, New capabilities */
5603 e1kPCICfgSetU16(pci, VBOX_PCI_STATUS,
5604 VBOX_PCI_STATUS_DEVSEL_MEDIUM | VBOX_PCI_STATUS_CAP_LIST | VBOX_PCI_STATUS_66MHZ);
5605 /* Stepping A2 */
5606 e1kPCICfgSetU8( pci, VBOX_PCI_REVISION_ID, 0x02);
5607 /* Ethernet adapter */
5608 e1kPCICfgSetU8( pci, VBOX_PCI_CLASS_PROG, 0x00);
5609 e1kPCICfgSetU16(pci, VBOX_PCI_CLASS_DEVICE, 0x0200);
5610 /* normal single function Ethernet controller */
5611 e1kPCICfgSetU8( pci, VBOX_PCI_HEADER_TYPE, 0x00);
5612 /* Memory Register Base Address */
5613 e1kPCICfgSetU32(pci, VBOX_PCI_BASE_ADDRESS_0, 0x00000000);
5614 /* Memory Flash Base Address */
5615 e1kPCICfgSetU32(pci, VBOX_PCI_BASE_ADDRESS_1, 0x00000000);
5616 /* IO Register Base Address */
5617 e1kPCICfgSetU32(pci, VBOX_PCI_BASE_ADDRESS_2, 0x00000001);
5618 /* Expansion ROM Base Address */
5619 e1kPCICfgSetU32(pci, VBOX_PCI_ROM_ADDRESS, 0x00000000);
5620 /* Capabilities Pointer */
5621 e1kPCICfgSetU8( pci, VBOX_PCI_CAPABILITY_LIST, 0xDC);
5622 /* Interrupt Pin: INTA# */
5623 e1kPCICfgSetU8( pci, VBOX_PCI_INTERRUPT_PIN, 0x01);
5624 /* Max_Lat/Min_Gnt: very high priority and time slice */
5625 e1kPCICfgSetU8( pci, VBOX_PCI_MIN_GNT, 0xFF);
5626 e1kPCICfgSetU8( pci, VBOX_PCI_MAX_LAT, 0x00);
5627
5628 /* PCI Power Management Registers ****************************************/
5629 /* Capability ID: PCI Power Management Registers */
5630 e1kPCICfgSetU8( pci, 0xDC, VBOX_PCI_CAP_ID_PM);
5631 /* Next Item Pointer: PCI-X */
5632 e1kPCICfgSetU8( pci, 0xDC + 1, 0xE4);
5633 /* Power Management Capabilities: PM disabled, DSI */
5634 e1kPCICfgSetU16(pci, 0xDC + 2,
5635 0x0002 | VBOX_PCI_PM_CAP_DSI);
5636 /* Power Management Control / Status Register: PM disabled */
5637 e1kPCICfgSetU16(pci, 0xDC + 4, 0x0000);
5638 /* PMCSR_BSE Bridge Support Extensions: Not supported */
5639 e1kPCICfgSetU8( pci, 0xDC + 6, 0x00);
5640 /* Data Register: PM disabled, always 0 */
5641 e1kPCICfgSetU8( pci, 0xDC + 7, 0x00);
5642
5643 /* PCI-X Configuration Registers *****************************************/
5644 /* Capability ID: PCI-X Configuration Registers */
5645 e1kPCICfgSetU8( pci, 0xE4, VBOX_PCI_CAP_ID_PCIX);
5646#ifdef E1K_WITH_MSI
5647 e1kPCICfgSetU8( pci, 0xE4 + 1, 0x80);
5648#else
5649 /* Next Item Pointer: None (Message Signalled Interrupts are disabled) */
5650 e1kPCICfgSetU8( pci, 0xE4 + 1, 0x00);
5651#endif
5652 /* PCI-X Command: Enable Relaxed Ordering */
5653 e1kPCICfgSetU16(pci, 0xE4 + 2, VBOX_PCI_X_CMD_ERO);
5654 /* PCI-X Status: 32-bit, 66MHz*/
5655 /// @todo: is this value really correct? fff8 doesn't look like actual PCI address
5656 e1kPCICfgSetU32(pci, 0xE4 + 4, 0x0040FFF8);
5657}
5658
5659/**
5660 * @interface_method_impl{PDMDEVREG,pfnConstruct}
5661 */
5662static DECLCALLBACK(int) e1kConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
5663{
5664 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
5665 int rc;
5666 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
5667
5668 /* Init handles and log related stuff. */
5669 RTStrPrintf(pState->szInstance, sizeof(pState->szInstance), "E1000#%d", iInstance);
5670 E1kLog(("%s Constructing new instance sizeof(E1KRXDESC)=%d\n", INSTANCE(pState), sizeof(E1KRXDESC)));
5671 pState->hEventMoreRxDescAvail = NIL_RTSEMEVENT;
5672
5673 /*
5674 * Validate configuration.
5675 */
5676 if (!CFGMR3AreValuesValid(pCfg, "MAC\0" "CableConnected\0" "AdapterType\0" "LineSpeed\0"))
5677 return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES,
5678 N_("Invalid configuration for E1000 device"));
5679
5680 /** @todo: LineSpeed unused! */
5681
5682 /* Get config params */
5683 rc = CFGMR3QueryBytes(pCfg, "MAC", pState->macConfigured.au8,
5684 sizeof(pState->macConfigured.au8));
5685 if (RT_FAILURE(rc))
5686 return PDMDEV_SET_ERROR(pDevIns, rc,
5687 N_("Configuration error: Failed to get MAC address"));
5688 rc = CFGMR3QueryBool(pCfg, "CableConnected", &pState->fCableConnected);
5689 if (RT_FAILURE(rc))
5690 return PDMDEV_SET_ERROR(pDevIns, rc,
5691 N_("Configuration error: Failed to get the value of 'CableConnected'"));
5692 rc = CFGMR3QueryU32(pCfg, "AdapterType", (uint32_t*)&pState->eChip);
5693 if (RT_FAILURE(rc))
5694 return PDMDEV_SET_ERROR(pDevIns, rc,
5695 N_("Configuration error: Failed to get the value of 'AdapterType'"));
5696 Assert(pState->eChip <= E1K_CHIP_82545EM);
5697
5698 E1kLog(("%s Chip=%s\n", INSTANCE(pState), g_Chips[pState->eChip].pcszName));
5699
5700 /* Initialize state structure */
5701 pState->fR0Enabled = true;
5702 pState->fGCEnabled = true;
5703 pState->pDevInsR3 = pDevIns;
5704 pState->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
5705 pState->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
5706 pState->u16TxPktLen = 0;
5707 pState->fIPcsum = false;
5708 pState->fTCPcsum = false;
5709 pState->fIntMaskUsed = false;
5710 pState->fDelayInts = false;
5711 pState->fLocked = false;
5712 pState->u64AckedAt = 0;
5713 pState->led.u32Magic = PDMLED_MAGIC;
5714 pState->u32PktNo = 1;
5715
5716#ifdef E1K_INT_STATS
5717 pState->uStatInt = 0;
5718 pState->uStatIntTry = 0;
5719 pState->uStatIntLower = 0;
5720 pState->uStatIntDly = 0;
5721 pState->uStatDisDly = 0;
5722 pState->iStatIntLost = 0;
5723 pState->iStatIntLostOne = 0;
5724 pState->uStatIntLate = 0;
5725 pState->uStatIntMasked = 0;
5726 pState->uStatIntEarly = 0;
5727 pState->uStatIntRx = 0;
5728 pState->uStatIntTx = 0;
5729 pState->uStatIntICS = 0;
5730 pState->uStatIntRDTR = 0;
5731 pState->uStatIntRXDMT0 = 0;
5732 pState->uStatIntTXQE = 0;
5733 pState->uStatTxNoRS = 0;
5734 pState->uStatTxIDE = 0;
5735 pState->uStatTAD = 0;
5736 pState->uStatTID = 0;
5737 pState->uStatRAD = 0;
5738 pState->uStatRID = 0;
5739 pState->uStatRxFrm = 0;
5740 pState->uStatTxFrm = 0;
5741 pState->uStatDescCtx = 0;
5742 pState->uStatDescDat = 0;
5743 pState->uStatDescLeg = 0;
5744#endif /* E1K_INT_STATS */
5745
5746 /* Interfaces */
5747 pState->IBase.pfnQueryInterface = e1kQueryInterface;
5748
5749 pState->INetworkDown.pfnWaitReceiveAvail = e1kNetworkDown_WaitReceiveAvail;
5750 pState->INetworkDown.pfnReceive = e1kNetworkDown_Receive;
5751 pState->INetworkDown.pfnXmitPending = e1kNetworkDown_XmitPending;
5752
5753 pState->ILeds.pfnQueryStatusLed = e1kQueryStatusLed;
5754
5755 pState->INetworkConfig.pfnGetMac = e1kGetMac;
5756 pState->INetworkConfig.pfnGetLinkState = e1kGetLinkState;
5757 pState->INetworkConfig.pfnSetLinkState = e1kSetLinkState;
5758
5759 /* Initialize the EEPROM */
5760 pState->eeprom.init(pState->macConfigured);
5761
5762 /* Initialize internal PHY */
5763 Phy::init(&pState->phy, iInstance,
5764 pState->eChip == E1K_CHIP_82543GC?
5765 PHY_EPID_M881000 : PHY_EPID_M881011);
5766 Phy::setLinkStatus(&pState->phy, pState->fCableConnected);
5767
5768 rc = PDMDevHlpSSMRegisterEx(pDevIns, E1K_SAVEDSTATE_VERSION, sizeof(E1KSTATE), NULL,
5769 NULL, e1kLiveExec, NULL,
5770 e1kSavePrep, e1kSaveExec, NULL,
5771 e1kLoadPrep, e1kLoadExec, e1kLoadDone);
5772 if (RT_FAILURE(rc))
5773 return rc;
5774
5775 /* Initialize critical section */
5776 rc = PDMDevHlpCritSectInit(pDevIns, &pState->cs, RT_SRC_POS, "%s", pState->szInstance);
5777 if (RT_FAILURE(rc))
5778 return rc;
5779#ifndef E1K_GLOBAL_MUTEX
5780 rc = PDMDevHlpCritSectInit(pDevIns, &pState->csRx, RT_SRC_POS, "%sRX", pState->szInstance);
5781 if (RT_FAILURE(rc))
5782 return rc;
5783#endif
5784
5785 /* Set PCI config registers */
5786 e1kConfigurePCI(pState->pciDevice, pState->eChip);
5787 /* Register PCI device */
5788 rc = PDMDevHlpPCIRegister(pDevIns, &pState->pciDevice);
5789 if (RT_FAILURE(rc))
5790 return rc;
5791
5792#ifdef E1K_WITH_MSI
5793 PDMMSIREG aMsiReg;
5794 aMsiReg.cVectors = 1;
5795 aMsiReg.iCapOffset = 0x80;
5796 aMsiReg.iNextOffset = 0x0;
5797 aMsiReg.iMsiFlags = 0;
5798 rc = PDMDevHlpPCIRegisterMsi(pDevIns, &aMsiReg);
5799 AssertRC(rc);
5800 if (RT_FAILURE (rc))
5801 return rc;
5802#endif
5803
5804
5805 /* Map our registers to memory space (region 0, see e1kConfigurePCI)*/
5806 rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, E1K_MM_SIZE,
5807 PCI_ADDRESS_SPACE_MEM, e1kMap);
5808 if (RT_FAILURE(rc))
5809 return rc;
5810 /* Map our registers to IO space (region 2, see e1kConfigurePCI) */
5811 rc = PDMDevHlpPCIIORegionRegister(pDevIns, 2, E1K_IOPORT_SIZE,
5812 PCI_ADDRESS_SPACE_IO, e1kMap);
5813 if (RT_FAILURE(rc))
5814 return rc;
5815
5816 /* Create transmit queue */
5817 rc = PDMDevHlpQueueCreate(pDevIns, sizeof(PDMQUEUEITEMCORE), 1, 0,
5818 e1kTxQueueConsumer, true, "E1000-Xmit", &pState->pTxQueueR3);
5819 if (RT_FAILURE(rc))
5820 return rc;
5821 pState->pTxQueueR0 = PDMQueueR0Ptr(pState->pTxQueueR3);
5822 pState->pTxQueueRC = PDMQueueRCPtr(pState->pTxQueueR3);
5823
5824 /* Create the RX notifier signaller. */
5825 rc = PDMDevHlpQueueCreate(pDevIns, sizeof(PDMQUEUEITEMCORE), 1, 0,
5826 e1kCanRxQueueConsumer, true, "E1000-Rcv", &pState->pCanRxQueueR3);
5827 if (RT_FAILURE(rc))
5828 return rc;
5829 pState->pCanRxQueueR0 = PDMQueueR0Ptr(pState->pCanRxQueueR3);
5830 pState->pCanRxQueueRC = PDMQueueRCPtr(pState->pCanRxQueueR3);
5831
5832#ifdef E1K_USE_TX_TIMERS
5833 /* Create Transmit Interrupt Delay Timer */
5834 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kTxIntDelayTimer, pState,
5835 TMTIMER_FLAGS_NO_CRIT_SECT,
5836 "E1000 Transmit Interrupt Delay Timer", &pState->pTIDTimerR3);
5837 if (RT_FAILURE(rc))
5838 return rc;
5839 pState->pTIDTimerR0 = TMTimerR0Ptr(pState->pTIDTimerR3);
5840 pState->pTIDTimerRC = TMTimerRCPtr(pState->pTIDTimerR3);
5841
5842# ifndef E1K_NO_TAD
5843 /* Create Transmit Absolute Delay Timer */
5844 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kTxAbsDelayTimer, pState,
5845 TMTIMER_FLAGS_NO_CRIT_SECT,
5846 "E1000 Transmit Absolute Delay Timer", &pState->pTADTimerR3);
5847 if (RT_FAILURE(rc))
5848 return rc;
5849 pState->pTADTimerR0 = TMTimerR0Ptr(pState->pTADTimerR3);
5850 pState->pTADTimerRC = TMTimerRCPtr(pState->pTADTimerR3);
5851# endif /* E1K_NO_TAD */
5852#endif /* E1K_USE_TX_TIMERS */
5853
5854#ifdef E1K_USE_RX_TIMERS
5855 /* Create Receive Interrupt Delay Timer */
5856 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kRxIntDelayTimer, pState,
5857 TMTIMER_FLAGS_NO_CRIT_SECT,
5858 "E1000 Receive Interrupt Delay Timer", &pState->pRIDTimerR3);
5859 if (RT_FAILURE(rc))
5860 return rc;
5861 pState->pRIDTimerR0 = TMTimerR0Ptr(pState->pRIDTimerR3);
5862 pState->pRIDTimerRC = TMTimerRCPtr(pState->pRIDTimerR3);
5863
5864 /* Create Receive Absolute Delay Timer */
5865 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kRxAbsDelayTimer, pState,
5866 TMTIMER_FLAGS_NO_CRIT_SECT,
5867 "E1000 Receive Absolute Delay Timer", &pState->pRADTimerR3);
5868 if (RT_FAILURE(rc))
5869 return rc;
5870 pState->pRADTimerR0 = TMTimerR0Ptr(pState->pRADTimerR3);
5871 pState->pRADTimerRC = TMTimerRCPtr(pState->pRADTimerR3);
5872#endif /* E1K_USE_RX_TIMERS */
5873
5874 /* Create Late Interrupt Timer */
5875 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kLateIntTimer, pState,
5876 TMTIMER_FLAGS_NO_CRIT_SECT,
5877 "E1000 Late Interrupt Timer", &pState->pIntTimerR3);
5878 if (RT_FAILURE(rc))
5879 return rc;
5880 pState->pIntTimerR0 = TMTimerR0Ptr(pState->pIntTimerR3);
5881 pState->pIntTimerRC = TMTimerRCPtr(pState->pIntTimerR3);
5882
5883 /* Create Link Up Timer */
5884 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kLinkUpTimer, pState,
5885 TMTIMER_FLAGS_NO_CRIT_SECT,
5886 "E1000 Link Up Timer", &pState->pLUTimerR3);
5887 if (RT_FAILURE(rc))
5888 return rc;
5889 pState->pLUTimerR0 = TMTimerR0Ptr(pState->pLUTimerR3);
5890 pState->pLUTimerRC = TMTimerRCPtr(pState->pLUTimerR3);
5891
5892 /* Status driver */
5893 PPDMIBASE pBase;
5894 rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pState->IBase, &pBase, "Status Port");
5895 if (RT_FAILURE(rc))
5896 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach the status LUN"));
5897 pState->pLedsConnector = PDMIBASE_QUERY_INTERFACE(pBase, PDMILEDCONNECTORS);
5898
5899 rc = PDMDevHlpDriverAttach(pDevIns, 0, &pState->IBase, &pState->pDrvBase, "Network Port");
5900 if (RT_SUCCESS(rc))
5901 {
5902 if (rc == VINF_NAT_DNS)
5903 {
5904 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "NoDNSforNAT",
5905 N_("A Domain Name Server (DNS) for NAT networking could not be determined. Ensure that your host is correctly connected to an ISP. If you ignore this warning the guest will not be able to perform nameserver lookups and it will probably observe delays if trying so"));
5906 }
5907 pState->pDrvR3 = PDMIBASE_QUERY_INTERFACE(pState->pDrvBase, PDMINETWORKUP);
5908 AssertMsgReturn(pState->pDrvR3, ("Failed to obtain the PDMINETWORKUP interface!\n"),
5909 VERR_PDM_MISSING_INTERFACE_BELOW);
5910
5911 pState->pDrvR0 = PDMIBASER0_QUERY_INTERFACE(PDMIBASE_QUERY_INTERFACE(pState->pDrvBase, PDMIBASER0), PDMINETWORKUP);
5912 pState->pDrvRC = PDMIBASERC_QUERY_INTERFACE(PDMIBASE_QUERY_INTERFACE(pState->pDrvBase, PDMIBASERC), PDMINETWORKUP);
5913 }
5914 else if ( rc == VERR_PDM_NO_ATTACHED_DRIVER
5915 || rc == VERR_PDM_CFG_MISSING_DRIVER_NAME)
5916 {
5917 /* No error! */
5918 E1kLog(("%s This adapter is not attached to any network!\n", INSTANCE(pState)));
5919 }
5920 else
5921 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach the network LUN"));
5922
5923 rc = RTSemEventCreate(&pState->hEventMoreRxDescAvail);
5924 if (RT_FAILURE(rc))
5925 return rc;
5926
5927 e1kHardReset(pState);
5928
5929#if defined(VBOX_WITH_STATISTICS) || defined(E1K_REL_STATS)
5930 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatMMIOReadRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling MMIO reads in RZ", "/Devices/E1k%d/MMIO/ReadRZ", iInstance);
5931 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatMMIOReadR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling MMIO reads in R3", "/Devices/E1k%d/MMIO/ReadR3", iInstance);
5932 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatMMIOWriteRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling MMIO writes in RZ", "/Devices/E1k%d/MMIO/WriteRZ", iInstance);
5933 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatMMIOWriteR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling MMIO writes in R3", "/Devices/E1k%d/MMIO/WriteR3", iInstance);
5934 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatEEPROMRead, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling EEPROM reads", "/Devices/E1k%d/EEPROM/Read", iInstance);
5935 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatEEPROMWrite, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling EEPROM writes", "/Devices/E1k%d/EEPROM/Write", iInstance);
5936 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOReadRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in RZ", "/Devices/E1k%d/IO/ReadRZ", iInstance);
5937 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOReadR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in R3", "/Devices/E1k%d/IO/ReadR3", iInstance);
5938 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOWriteRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in RZ", "/Devices/E1k%d/IO/WriteRZ", iInstance);
5939 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOWriteR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in R3", "/Devices/E1k%d/IO/WriteR3", iInstance);
5940 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatLateIntTimer, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling late int timer", "/Devices/E1k%d/LateInt/Timer", iInstance);
5941 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatLateInts, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of late interrupts", "/Devices/E1k%d/LateInt/Occured", iInstance);
5942 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIntsRaised, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of raised interrupts", "/Devices/E1k%d/Interrupts/Raised", iInstance);
5943 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIntsPrevented, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of prevented interrupts", "/Devices/E1k%d/Interrupts/Prevented", iInstance);
5944 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatReceive, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling receive", "/Devices/E1k%d/Receive/Total", iInstance);
5945 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatReceiveFilter, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling receive filtering", "/Devices/E1k%d/Receive/Filter", iInstance);
5946 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatReceiveStore, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling receive storing", "/Devices/E1k%d/Receive/Store", iInstance);
5947 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatRxOverflow, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_OCCURENCE, "Profiling RX overflows", "/Devices/E1k%d/RxOverflow", iInstance);
5948 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatRxOverflowWakeup, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Nr of RX overflow wakeups", "/Devices/E1k%d/RxOverflowWakeup", iInstance);
5949#endif /* VBOX_WITH_STATISTICS || E1K_REL_STATS */
5950 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatReceiveBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data received", "/Devices/E1k%d/ReceiveBytes", iInstance);
5951#if defined(VBOX_WITH_STATISTICS) || defined(E1K_REL_STATS)
5952 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTransmitRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling transmits in RZ", "/Devices/E1k%d/Transmit/TotalRZ", iInstance);
5953 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTransmitR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling transmits in R3", "/Devices/E1k%d/Transmit/TotalR3", iInstance);
5954#endif /* VBOX_WITH_STATISTICS || E1K_REL_STATS */
5955 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTransmitBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data transmitted", "/Devices/E1k%d/TransmitBytes", iInstance);
5956#if defined(VBOX_WITH_STATISTICS) || defined(E1K_REL_STATS)
5957 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTransmitSendRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling send transmit in RZ", "/Devices/E1k%d/Transmit/SendRZ", iInstance);
5958 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTransmitSendR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling send transmit in R3", "/Devices/E1k%d/Transmit/SendR3", iInstance);
5959
5960 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTxDescCtxNormal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of normal context descriptors","/Devices/E1k%d/TxDesc/ContexNormal", iInstance);
5961 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTxDescCtxTSE, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSE context descriptors", "/Devices/E1k%d/TxDesc/ContextTSE", iInstance);
5962 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTxDescData, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TX data descriptors", "/Devices/E1k%d/TxDesc/Data", iInstance);
5963 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTxDescLegacy, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TX legacy descriptors", "/Devices/E1k%d/TxDesc/Legacy", iInstance);
5964 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTxDescTSEData, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TX TSE data descriptors", "/Devices/E1k%d/TxDesc/TSEData", iInstance);
5965 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTxPathFallback, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Fallback TSE descriptor path", "/Devices/E1k%d/TxPath/Fallback", iInstance);
5966 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTxPathGSO, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "GSO TSE descriptor path", "/Devices/E1k%d/TxPath/GSO", iInstance);
5967 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTxPathRegular, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Regular descriptor path", "/Devices/E1k%d/TxPath/Normal", iInstance);
5968 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatPHYAccesses, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of PHY accesses", "/Devices/E1k%d/PHYAccesses", iInstance);
5969#endif /* VBOX_WITH_STATISTICS || E1K_REL_STATS */
5970
5971 return VINF_SUCCESS;
5972}
5973
5974/**
5975 * The device registration structure.
5976 */
5977const PDMDEVREG g_DeviceE1000 =
5978{
5979 /* Structure version. PDM_DEVREG_VERSION defines the current version. */
5980 PDM_DEVREG_VERSION,
5981 /* Device name. */
5982 "e1000",
5983 /* Name of guest context module (no path).
5984 * Only evalutated if PDM_DEVREG_FLAGS_RC is set. */
5985 "VBoxDDGC.gc",
5986 /* Name of ring-0 module (no path).
5987 * Only evalutated if PDM_DEVREG_FLAGS_RC is set. */
5988 "VBoxDDR0.r0",
5989 /* The description of the device. The UTF-8 string pointed to shall, like this structure,
5990 * remain unchanged from registration till VM destruction. */
5991 "Intel PRO/1000 MT Desktop Ethernet.\n",
5992
5993 /* Flags, combination of the PDM_DEVREG_FLAGS_* \#defines. */
5994 PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0,
5995 /* Device class(es), combination of the PDM_DEVREG_CLASS_* \#defines. */
5996 PDM_DEVREG_CLASS_NETWORK,
5997 /* Maximum number of instances (per VM). */
5998 8,
5999 /* Size of the instance data. */
6000 sizeof(E1KSTATE),
6001
6002 /* Construct instance - required. */
6003 e1kConstruct,
6004 /* Destruct instance - optional. */
6005 e1kDestruct,
6006 /* Relocation command - optional. */
6007 e1kRelocate,
6008 /* I/O Control interface - optional. */
6009 NULL,
6010 /* Power on notification - optional. */
6011 NULL,
6012 /* Reset notification - optional. */
6013 e1kReset,
6014 /* Suspend notification - optional. */
6015 e1kSuspend,
6016 /* Resume notification - optional. */
6017 NULL,
6018 /* Attach command - optional. */
6019 e1kAttach,
6020 /* Detach notification - optional. */
6021 e1kDetach,
6022 /* Query a LUN base interface - optional. */
6023 NULL,
6024 /* Init complete notification - optional. */
6025 NULL,
6026 /* Power off notification - optional. */
6027 e1kPowerOff,
6028 /* pfnSoftReset */
6029 NULL,
6030 /* u32VersionEnd */
6031 PDM_DEVREG_VERSION
6032};
6033
6034#endif /* IN_RING3 */
6035#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette