VirtualBox

source: vbox/trunk/src/VBox/Devices/Network/DevE1000.cpp@ 18761

Last change on this file since 18761 was 18645, checked in by vboxsync, 16 years ago

VMSetRuntimeError[V] refactoring: fFatal -> fFlags, may return informational status codes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 194.1 KB
Line 
1/* $Id: DevE1000.cpp 18645 2009-04-02 15:38:31Z vboxsync $ */
2/** @file
3 * DevE1000 - Intel 82540EM Ethernet Controller Emulation.
4 *
5 * Implemented in accordance with the specification:
6 *
7 * PCI/PCI-X Family of Gigabit Ethernet Controllers Software Developer's Manual
8 * 82540EP/EM, 82541xx, 82544GC/EI, 82545GM/EM, 82546GB/EB, and 82547xx
9 *
10 * 317453-002 Revision 3.5
11 *
12 * @todo IPv6 checksum offloading support
13 * @todo VLAN checksum offloading support
14 * @todo Flexible Filter / Wakeup (optional?)
15 */
16
17/*
18 * Copyright (C) 2007 Sun Microsystems, Inc.
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 *
28 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
29 * Clara, CA 95054 USA or visit http://www.sun.com if you need
30 * additional information or have any questions.
31 */
32
33
34#define LOG_GROUP LOG_GROUP_DEV_E1000
35
36//#define E1kLogRel(a) LogRel(a)
37#define E1kLogRel(a)
38
39/* Options */
40#define E1K_ITR_ENABLED
41//#define E1K_GLOBAL_MUTEX
42//#define E1K_USE_TX_TIMERS
43//#define E1K_NO_TAD
44//#define E1K_REL_DEBUG
45//#define E1K_INT_STATS
46//#define E1K_REL_STATS
47
48#include <iprt/crc32.h>
49#include <iprt/ctype.h>
50#include <iprt/semaphore.h>
51#include <iprt/string.h>
52#include <VBox/pdmdev.h>
53#include <VBox/tm.h>
54#include <VBox/vm.h>
55#include "../Builtins.h"
56
57#include "DevEEPROM.h"
58#include "DevE1000Phy.h"
59
60/* Little helpers ************************************************************/
61#undef htons
62#undef ntohs
63#undef htonl
64#undef ntohl
65#define htons(x) ((((x) & 0xff00) >> 8) | (((x) & 0x00ff) << 8))
66#define ntohs(x) htons(x)
67#define htonl(x) ASMByteSwapU32(x)
68#define ntohl(x) htonl(x)
69
70#ifndef DEBUG
71# ifdef E1K_REL_STATS
72# undef STAM_COUNTER_INC
73# undef STAM_PROFILE_ADV_START
74# undef STAM_PROFILE_ADV_STOP
75# define STAM_COUNTER_INC STAM_REL_COUNTER_INC
76# define STAM_PROFILE_ADV_START STAM_REL_PROFILE_ADV_START
77# define STAM_PROFILE_ADV_STOP STAM_REL_PROFILE_ADV_STOP
78# endif
79# ifdef E1K_REL_DEBUG
80# define DEBUG
81# define E1kLog(a) LogRel(a)
82# define E1kLog2(a) LogRel(a)
83# define E1kLog3(a) LogRel(a)
84//# define E1kLog3(a)
85# else
86# define E1kLog(a)
87# define E1kLog2(a)
88# define E1kLog3(a)
89# endif
90#else
91# define E1kLog(a) Log(a)
92# define E1kLog2(a) Log2(a)
93# define E1kLog3(a) Log3(a)
94//# define E1kLog(a)
95//# define E1kLog2(a)
96//# define E1kLog3(a)
97#endif
98
99//#undef DEBUG
100
101#define INSTANCE(pState) pState->szInstance
102#define IFACE_TO_STATE(pIface, ifaceName) ((E1KSTATE *)((char*)pIface - RT_OFFSETOF(E1KSTATE, ifaceName)))
103#define E1K_RELOCATE(p, o) *(RTHCUINTPTR *)&p += o
104
105#define E1K_INC_CNT32(cnt) \
106do { \
107 if (cnt < UINT32_MAX) \
108 cnt++; \
109} while (0)
110
111#define E1K_ADD_CNT64(cntLo, cntHi, val) \
112do { \
113 uint64_t u64Cnt = RT_MAKE_U64(cntLo, cntHi); \
114 uint64_t tmp = u64Cnt; \
115 u64Cnt += val; \
116 if (tmp > u64Cnt ) \
117 u64Cnt = UINT64_MAX; \
118 cntLo = (uint32_t)u64Cnt; \
119 cntHi = (uint32_t)(u64Cnt >> 32); \
120} while (0)
121
122#ifdef E1K_INT_STATS
123# define E1K_INC_ISTAT_CNT(cnt) ++cnt
124#else /* E1K_INT_STATS */
125# define E1K_INC_ISTAT_CNT(cnt)
126#endif /* E1K_INT_STATS */
127
128
129/*****************************************************************************/
130
131typedef uint32_t E1KCHIP;
132#define E1K_CHIP_82540EM 0
133#define E1K_CHIP_82543GC 1
134#define E1K_CHIP_82545EM 2
135
136struct E1kChips
137{
138 uint16_t uPCIVendorId;
139 uint16_t uPCIDeviceId;
140 uint16_t uPCISubsystemVendorId;
141 uint16_t uPCISubsystemId;
142 const char *pcszName;
143} g_Chips[] =
144{
145 /* Vendor Device SSVendor SubSys Name */
146 { 0x8086, 0x100E, 0x8086, 0x001E, "82540EM" }, /* Intel 82540EM-A in Intel PRO/1000 MT Desktop */
147 { 0x8086, 0x1004, 0x8086, 0x1004, "82543GC" }, /* Intel 82543GC in Intel PRO/1000 T Server */
148 { 0x8086, 0x100F, 0x15AD, 0x0750, "82545EM" } /* Intel 82545EM-A in VMWare Network Adapter */
149};
150
151
152/* The size of register area mapped to I/O space */
153#define E1K_IOPORT_SIZE 0x8
154/* The size of memory-mapped register area */
155#define E1K_MM_SIZE 0x20000
156
157#define E1K_MAX_TX_PKT_SIZE 16288
158#define E1K_MAX_RX_PKT_SIZE 16384
159
160/*****************************************************************************/
161
162#define GET_BITS(reg, bits) ((reg & reg##_##bits##_MASK) >> reg##_##bits##_SHIFT)
163#define GET_BITS_V(val, reg, bits) ((val & reg##_##bits##_MASK) >> reg##_##bits##_SHIFT)
164#define BITS(reg, bits, bitval) (bitval << reg##_##bits##_SHIFT)
165#define SET_BITS(reg, bits, bitval) do { reg = (reg & ~reg##_##bits##_MASK) | (bitval << reg##_##bits##_SHIFT); } while (0)
166#define SET_BITS_V(val, reg, bits, bitval) do { val = (val & ~reg##_##bits##_MASK) | (bitval << reg##_##bits##_SHIFT); } while (0)
167
168#define CTRL_SLU 0x00000040
169#define CTRL_MDIO 0x00100000
170#define CTRL_MDC 0x00200000
171#define CTRL_MDIO_DIR 0x01000000
172#define CTRL_MDC_DIR 0x02000000
173#define CTRL_RESET 0x04000000
174#define CTRL_VME 0x40000000
175
176#define STATUS_LU 0x00000002
177
178#define EECD_EE_WIRES 0x0F
179#define EECD_EE_REQ 0x40
180#define EECD_EE_GNT 0x80
181
182#define MDIC_DATA_MASK 0x0000FFFF
183#define MDIC_DATA_SHIFT 0
184#define MDIC_REG_MASK 0x001F0000
185#define MDIC_REG_SHIFT 16
186#define MDIC_PHY_MASK 0x03E00000
187#define MDIC_PHY_SHIFT 21
188#define MDIC_OP_WRITE 0x04000000
189#define MDIC_OP_READ 0x08000000
190#define MDIC_READY 0x10000000
191#define MDIC_INT_EN 0x20000000
192#define MDIC_ERROR 0x40000000
193
194#define TCTL_EN 0x00000002
195#define TCTL_PSP 0x00000008
196
197#define RCTL_EN 0x00000002
198#define RCTL_UPE 0x00000008
199#define RCTL_MPE 0x00000010
200#define RCTL_LPE 0x00000020
201#define RCTL_LBM_MASK 0x000000C0
202#define RCTL_LBM_SHIFT 6
203#define RCTL_RDMTS_MASK 0x00000300
204#define RCTL_RDMTS_SHIFT 8
205#define RCTL_LBM_TCVR 3
206#define RCTL_MO_MASK 0x00003000
207#define RCTL_MO_SHIFT 12
208#define RCTL_BAM 0x00008000
209#define RCTL_BSIZE_MASK 0x00030000
210#define RCTL_BSIZE_SHIFT 16
211#define RCTL_VFE 0x00040000
212#define RCTL_BSEX 0x02000000
213#define RCTL_SECRC 0x04000000
214
215#define ICR_TXDW 0x00000001
216#define ICR_TXQE 0x00000002
217#define ICR_LSC 0x00000004
218#define ICR_RXDMT0 0x00000010
219#define ICR_RXT0 0x00000080
220#define ICR_TXD_LOW 0x00008000
221#define RDTR_FPD 0x80000000
222
223#define PBA_st ((PBAST*)(pState->auRegs + PBA_IDX))
224typedef struct
225{
226 unsigned rxa : 7;
227 unsigned rxa_r : 9;
228 unsigned txa : 16;
229} PBAST;
230AssertCompileSize(PBAST, 4);
231
232#define TXDCTL_WTHRESH_MASK 0x003F0000
233#define TXDCTL_WTHRESH_SHIFT 16
234#define TXDCTL_LWTHRESH_MASK 0xFE000000
235#define TXDCTL_LWTHRESH_SHIFT 25
236
237#define RXCSUM_PCSS_MASK 0x000000FF
238#define RXCSUM_PCSS_SHIFT 0
239
240/* Register access macros ****************************************************/
241#define CTRL pState->auRegs[CTRL_IDX]
242#define STATUS pState->auRegs[STATUS_IDX]
243#define EECD pState->auRegs[EECD_IDX]
244#define EERD pState->auRegs[EERD_IDX]
245#define CTRL_EXT pState->auRegs[CTRL_EXT_IDX]
246#define FLA pState->auRegs[FLA_IDX]
247#define MDIC pState->auRegs[MDIC_IDX]
248#define FCAL pState->auRegs[FCAL_IDX]
249#define FCAH pState->auRegs[FCAH_IDX]
250#define FCT pState->auRegs[FCT_IDX]
251#define VET pState->auRegs[VET_IDX]
252#define ICR pState->auRegs[ICR_IDX]
253#define ITR pState->auRegs[ITR_IDX]
254#define ICS pState->auRegs[ICS_IDX]
255#define IMS pState->auRegs[IMS_IDX]
256#define IMC pState->auRegs[IMC_IDX]
257#define RCTL pState->auRegs[RCTL_IDX]
258#define FCTTV pState->auRegs[FCTTV_IDX]
259#define TXCW pState->auRegs[TXCW_IDX]
260#define RXCW pState->auRegs[RXCW_IDX]
261#define TCTL pState->auRegs[TCTL_IDX]
262#define TIPG pState->auRegs[TIPG_IDX]
263#define AIFS pState->auRegs[AIFS_IDX]
264#define LEDCTL pState->auRegs[LEDCTL_IDX]
265#define PBA pState->auRegs[PBA_IDX]
266#define FCRTL pState->auRegs[FCRTL_IDX]
267#define FCRTH pState->auRegs[FCRTH_IDX]
268#define RDFH pState->auRegs[RDFH_IDX]
269#define RDFT pState->auRegs[RDFT_IDX]
270#define RDFHS pState->auRegs[RDFHS_IDX]
271#define RDFTS pState->auRegs[RDFTS_IDX]
272#define RDFPC pState->auRegs[RDFPC_IDX]
273#define RDBAL pState->auRegs[RDBAL_IDX]
274#define RDBAH pState->auRegs[RDBAH_IDX]
275#define RDLEN pState->auRegs[RDLEN_IDX]
276#define RDH pState->auRegs[RDH_IDX]
277#define RDT pState->auRegs[RDT_IDX]
278#define RDTR pState->auRegs[RDTR_IDX]
279#define RXDCTL pState->auRegs[RXDCTL_IDX]
280#define RADV pState->auRegs[RADV_IDX]
281#define RSRPD pState->auRegs[RSRPD_IDX]
282#define TXDMAC pState->auRegs[TXDMAC_IDX]
283#define TDFH pState->auRegs[TDFH_IDX]
284#define TDFT pState->auRegs[TDFT_IDX]
285#define TDFHS pState->auRegs[TDFHS_IDX]
286#define TDFTS pState->auRegs[TDFTS_IDX]
287#define TDFPC pState->auRegs[TDFPC_IDX]
288#define TDBAL pState->auRegs[TDBAL_IDX]
289#define TDBAH pState->auRegs[TDBAH_IDX]
290#define TDLEN pState->auRegs[TDLEN_IDX]
291#define TDH pState->auRegs[TDH_IDX]
292#define TDT pState->auRegs[TDT_IDX]
293#define TIDV pState->auRegs[TIDV_IDX]
294#define TXDCTL pState->auRegs[TXDCTL_IDX]
295#define TADV pState->auRegs[TADV_IDX]
296#define TSPMT pState->auRegs[TSPMT_IDX]
297#define CRCERRS pState->auRegs[CRCERRS_IDX]
298#define ALGNERRC pState->auRegs[ALGNERRC_IDX]
299#define SYMERRS pState->auRegs[SYMERRS_IDX]
300#define RXERRC pState->auRegs[RXERRC_IDX]
301#define MPC pState->auRegs[MPC_IDX]
302#define SCC pState->auRegs[SCC_IDX]
303#define ECOL pState->auRegs[ECOL_IDX]
304#define MCC pState->auRegs[MCC_IDX]
305#define LATECOL pState->auRegs[LATECOL_IDX]
306#define COLC pState->auRegs[COLC_IDX]
307#define DC pState->auRegs[DC_IDX]
308#define TNCRS pState->auRegs[TNCRS_IDX]
309#define SEC pState->auRegs[SEC_IDX]
310#define CEXTERR pState->auRegs[CEXTERR_IDX]
311#define RLEC pState->auRegs[RLEC_IDX]
312#define XONRXC pState->auRegs[XONRXC_IDX]
313#define XONTXC pState->auRegs[XONTXC_IDX]
314#define XOFFRXC pState->auRegs[XOFFRXC_IDX]
315#define XOFFTXC pState->auRegs[XOFFTXC_IDX]
316#define FCRUC pState->auRegs[FCRUC_IDX]
317#define PRC64 pState->auRegs[PRC64_IDX]
318#define PRC127 pState->auRegs[PRC127_IDX]
319#define PRC255 pState->auRegs[PRC255_IDX]
320#define PRC511 pState->auRegs[PRC511_IDX]
321#define PRC1023 pState->auRegs[PRC1023_IDX]
322#define PRC1522 pState->auRegs[PRC1522_IDX]
323#define GPRC pState->auRegs[GPRC_IDX]
324#define BPRC pState->auRegs[BPRC_IDX]
325#define MPRC pState->auRegs[MPRC_IDX]
326#define GPTC pState->auRegs[GPTC_IDX]
327#define GORCL pState->auRegs[GORCL_IDX]
328#define GORCH pState->auRegs[GORCH_IDX]
329#define GOTCL pState->auRegs[GOTCL_IDX]
330#define GOTCH pState->auRegs[GOTCH_IDX]
331#define RNBC pState->auRegs[RNBC_IDX]
332#define RUC pState->auRegs[RUC_IDX]
333#define RFC pState->auRegs[RFC_IDX]
334#define ROC pState->auRegs[ROC_IDX]
335#define RJC pState->auRegs[RJC_IDX]
336#define MGTPRC pState->auRegs[MGTPRC_IDX]
337#define MGTPDC pState->auRegs[MGTPDC_IDX]
338#define MGTPTC pState->auRegs[MGTPTC_IDX]
339#define TORL pState->auRegs[TORL_IDX]
340#define TORH pState->auRegs[TORH_IDX]
341#define TOTL pState->auRegs[TOTL_IDX]
342#define TOTH pState->auRegs[TOTH_IDX]
343#define TPR pState->auRegs[TPR_IDX]
344#define TPT pState->auRegs[TPT_IDX]
345#define PTC64 pState->auRegs[PTC64_IDX]
346#define PTC127 pState->auRegs[PTC127_IDX]
347#define PTC255 pState->auRegs[PTC255_IDX]
348#define PTC511 pState->auRegs[PTC511_IDX]
349#define PTC1023 pState->auRegs[PTC1023_IDX]
350#define PTC1522 pState->auRegs[PTC1522_IDX]
351#define MPTC pState->auRegs[MPTC_IDX]
352#define BPTC pState->auRegs[BPTC_IDX]
353#define TSCTC pState->auRegs[TSCTC_IDX]
354#define TSCTFC pState->auRegs[TSCTFC_IDX]
355#define RXCSUM pState->auRegs[RXCSUM_IDX]
356#define WUC pState->auRegs[WUC_IDX]
357#define WUFC pState->auRegs[WUFC_IDX]
358#define WUS pState->auRegs[WUS_IDX]
359#define MANC pState->auRegs[MANC_IDX]
360#define IPAV pState->auRegs[IPAV_IDX]
361#define WUPL pState->auRegs[WUPL_IDX]
362
363/**
364 * Indices of memory-mapped registers in register table
365 */
366typedef enum
367{
368 CTRL_IDX,
369 STATUS_IDX,
370 EECD_IDX,
371 EERD_IDX,
372 CTRL_EXT_IDX,
373 FLA_IDX,
374 MDIC_IDX,
375 FCAL_IDX,
376 FCAH_IDX,
377 FCT_IDX,
378 VET_IDX,
379 ICR_IDX,
380 ITR_IDX,
381 ICS_IDX,
382 IMS_IDX,
383 IMC_IDX,
384 RCTL_IDX,
385 FCTTV_IDX,
386 TXCW_IDX,
387 RXCW_IDX,
388 TCTL_IDX,
389 TIPG_IDX,
390 AIFS_IDX,
391 LEDCTL_IDX,
392 PBA_IDX,
393 FCRTL_IDX,
394 FCRTH_IDX,
395 RDFH_IDX,
396 RDFT_IDX,
397 RDFHS_IDX,
398 RDFTS_IDX,
399 RDFPC_IDX,
400 RDBAL_IDX,
401 RDBAH_IDX,
402 RDLEN_IDX,
403 RDH_IDX,
404 RDT_IDX,
405 RDTR_IDX,
406 RXDCTL_IDX,
407 RADV_IDX,
408 RSRPD_IDX,
409 TXDMAC_IDX,
410 TDFH_IDX,
411 TDFT_IDX,
412 TDFHS_IDX,
413 TDFTS_IDX,
414 TDFPC_IDX,
415 TDBAL_IDX,
416 TDBAH_IDX,
417 TDLEN_IDX,
418 TDH_IDX,
419 TDT_IDX,
420 TIDV_IDX,
421 TXDCTL_IDX,
422 TADV_IDX,
423 TSPMT_IDX,
424 CRCERRS_IDX,
425 ALGNERRC_IDX,
426 SYMERRS_IDX,
427 RXERRC_IDX,
428 MPC_IDX,
429 SCC_IDX,
430 ECOL_IDX,
431 MCC_IDX,
432 LATECOL_IDX,
433 COLC_IDX,
434 DC_IDX,
435 TNCRS_IDX,
436 SEC_IDX,
437 CEXTERR_IDX,
438 RLEC_IDX,
439 XONRXC_IDX,
440 XONTXC_IDX,
441 XOFFRXC_IDX,
442 XOFFTXC_IDX,
443 FCRUC_IDX,
444 PRC64_IDX,
445 PRC127_IDX,
446 PRC255_IDX,
447 PRC511_IDX,
448 PRC1023_IDX,
449 PRC1522_IDX,
450 GPRC_IDX,
451 BPRC_IDX,
452 MPRC_IDX,
453 GPTC_IDX,
454 GORCL_IDX,
455 GORCH_IDX,
456 GOTCL_IDX,
457 GOTCH_IDX,
458 RNBC_IDX,
459 RUC_IDX,
460 RFC_IDX,
461 ROC_IDX,
462 RJC_IDX,
463 MGTPRC_IDX,
464 MGTPDC_IDX,
465 MGTPTC_IDX,
466 TORL_IDX,
467 TORH_IDX,
468 TOTL_IDX,
469 TOTH_IDX,
470 TPR_IDX,
471 TPT_IDX,
472 PTC64_IDX,
473 PTC127_IDX,
474 PTC255_IDX,
475 PTC511_IDX,
476 PTC1023_IDX,
477 PTC1522_IDX,
478 MPTC_IDX,
479 BPTC_IDX,
480 TSCTC_IDX,
481 TSCTFC_IDX,
482 RXCSUM_IDX,
483 WUC_IDX,
484 WUFC_IDX,
485 WUS_IDX,
486 MANC_IDX,
487 IPAV_IDX,
488 WUPL_IDX,
489 MTA_IDX,
490 RA_IDX,
491 VFTA_IDX,
492 IP4AT_IDX,
493 IP6AT_IDX,
494 WUPM_IDX,
495 FFLT_IDX,
496 FFMT_IDX,
497 FFVT_IDX,
498 PBM_IDX,
499 RA_82542_IDX,
500 MTA_82542_IDX,
501 VFTA_82542_IDX,
502 E1K_NUM_OF_REGS
503} E1kRegIndex;
504
505#define E1K_NUM_OF_32BIT_REGS MTA_IDX
506
507
508/**
509 * Define E1000-specific EEPROM layout.
510 */
511class E1kEEPROM
512{
513 public:
514 EEPROM93C46 eeprom;
515
516#ifdef IN_RING3
517 /**
518 * Initialize EEPROM content.
519 *
520 * @param macAddr MAC address of E1000.
521 */
522 void init(RTMAC &macAddr)
523 {
524 eeprom.init();
525 memcpy(eeprom.m_au16Data, macAddr.au16, sizeof(macAddr.au16));
526 eeprom.m_au16Data[0x04] = 0xFFFF;
527 /*
528 * bit 3 - full support for power management
529 * bit 10 - full duplex
530 */
531 eeprom.m_au16Data[0x0A] = 0x4408;
532 eeprom.m_au16Data[0x0B] = 0x001E;
533 eeprom.m_au16Data[0x0C] = 0x8086;
534 eeprom.m_au16Data[0x0D] = 0x100E;
535 eeprom.m_au16Data[0x0E] = 0x8086;
536 eeprom.m_au16Data[0x0F] = 0x3040;
537 eeprom.m_au16Data[0x21] = 0x7061;
538 eeprom.m_au16Data[0x22] = 0x280C;
539 eeprom.m_au16Data[0x23] = 0x00C8;
540 eeprom.m_au16Data[0x24] = 0x00C8;
541 eeprom.m_au16Data[0x2F] = 0x0602;
542 updateChecksum();
543 };
544
545 /**
546 * Compute the checksum as required by E1000 and store it
547 * in the last word.
548 */
549 void updateChecksum()
550 {
551 uint16_t u16Checksum = 0;
552
553 for (int i = 0; i < eeprom.SIZE-1; i++)
554 u16Checksum += eeprom.m_au16Data[i];
555 eeprom.m_au16Data[eeprom.SIZE-1] = 0xBABA - u16Checksum;
556 };
557
558 /**
559 * First 6 bytes of EEPROM contain MAC address.
560 *
561 * @returns MAC address of E1000.
562 */
563 void getMac(PRTMAC pMac)
564 {
565 memcpy(pMac->au16, eeprom.m_au16Data, sizeof(pMac->au16));
566 };
567
568 uint32_t read()
569 {
570 return eeprom.read();
571 }
572
573 void write(uint32_t u32Wires)
574 {
575 eeprom.write(u32Wires);
576 }
577#endif /* IN_RING3 */
578};
579
580struct E1kRxDStatus
581{
582 /* Descriptor Status field */
583 unsigned fDD : 1;
584 unsigned fEOP : 1;
585 unsigned fIXSM : 1;
586 unsigned fVP : 1;
587 unsigned : 1;
588 unsigned fTCPCS : 1;
589 unsigned fIPCS : 1;
590 unsigned fPIF : 1;
591 /* Descriptor Errors field */
592 unsigned fCE : 1;
593 unsigned : 4;
594 unsigned fTCPE : 1;
595 unsigned fIPE : 1;
596 unsigned fRXE : 1;
597 /* Descriptor Special field */
598 unsigned u12VLAN : 12;
599 unsigned fCFI : 1;
600 unsigned u3PRI : 3;
601};
602typedef struct E1kRxDStatus E1KRXDST;
603
604struct E1kRxDesc_st
605{
606 uint64_t u64BufAddr; /**< Address of data buffer */
607 uint16_t u16Length; /**< Length of data in buffer */
608 uint16_t u16Checksum; /**< Packet checksum */
609 E1KRXDST status;
610};
611typedef struct E1kRxDesc_st E1KRXDESC;
612AssertCompileSize(E1KRXDESC, 16);
613
614#define E1K_DTYP_LEGACY -1
615#define E1K_DTYP_CONTEXT 0
616#define E1K_DTYP_DATA 1
617
618struct E1kTDLegacy
619{
620 uint64_t u64BufAddr; /**< Address of data buffer */
621 struct TDLCmd_st
622 {
623 unsigned u16Length : 16;
624 unsigned u8CSO : 8;
625 /* CMD field : 8 */
626 unsigned fEOP : 1;
627 unsigned fIFCS : 1;
628 unsigned fIC : 1;
629 unsigned fRS : 1;
630 unsigned fRSV : 1;
631 unsigned fDEXT : 1;
632 unsigned fVLE : 1;
633 unsigned fIDE : 1;
634 } cmd;
635 struct TDLDw3_st
636 {
637 /* STA field */
638 unsigned fDD : 1;
639 unsigned fEC : 1;
640 unsigned fLC : 1;
641 unsigned fTURSV : 1;
642 /* RSV field */
643 unsigned u4RSV : 4;
644 /* CSS field */
645 unsigned u8CSS : 8;
646 /* Special field*/
647 unsigned u12VLAN : 12;
648 unsigned fCFI : 1;
649 unsigned u3PRI : 3;
650 } dw3;
651};
652
653struct E1kTDContext
654{
655 struct CheckSum_st
656 {
657 unsigned u8CSS : 8;
658 unsigned u8CSO : 8;
659 unsigned u16CSE : 16;
660 } ip;
661 struct CheckSum_st tu;
662 struct TDCDw2_st
663 {
664 unsigned u20PAYLEN : 20;
665 unsigned u4DTYP : 4;
666 /* CMD field : 8 */
667 unsigned fTCP : 1;
668 unsigned fIP : 1;
669 unsigned fTSE : 1;
670 unsigned fRS : 1;
671 unsigned fRSV1 : 1;
672 unsigned fDEXT : 1;
673 unsigned fRSV2 : 1;
674 unsigned fIDE : 1;
675 } dw2;
676 struct TDCDw3_st
677 {
678 unsigned fDD : 1;
679 unsigned u7RSV : 7;
680 unsigned u8HDRLEN : 8;
681 unsigned u16MSS : 16;
682 } dw3;
683};
684typedef struct E1kTDContext E1KTXCTX;
685
686struct E1kTDData
687{
688 uint64_t u64BufAddr; /**< Address of data buffer */
689 struct TDDCmd_st
690 {
691 unsigned u20DTALEN : 20;
692 unsigned u4DTYP : 4;
693 /* DCMD field : 8 */
694 unsigned fEOP : 1;
695 unsigned fIFCS : 1;
696 unsigned fTSE : 1;
697 unsigned fRS : 1;
698 unsigned fRSV : 1;
699 unsigned fDEXT : 1;
700 unsigned fVLE : 1;
701 unsigned fIDE : 1;
702 } cmd;
703 struct TDDDw3_st
704 {
705 /* STA field */
706 unsigned fDD : 1;
707 unsigned fEC : 1;
708 unsigned fLC : 1;
709 unsigned fTURSV : 1;
710 /* RSV field */
711 unsigned u4RSV : 4;
712 /* POPTS field */
713 unsigned fIXSM : 1;
714 unsigned fTXSM : 1;
715 unsigned u6RSV : 6;
716 /* Special field*/
717 unsigned u12VLAN : 12;
718 unsigned fCFI : 1;
719 unsigned u3PRI : 3;
720 } dw3;
721};
722typedef struct E1kTDData E1KTXDAT;
723
724union E1kTxDesc
725{
726 struct E1kTDLegacy legacy;
727 struct E1kTDContext context;
728 struct E1kTDData data;
729};
730typedef union E1kTxDesc E1KTXDESC;
731AssertCompileSize(E1KTXDESC, 16);
732
733#define RA_CTL_AS 0x0003
734#define RA_CTL_AV 0x8000
735
736union E1kRecAddr
737{
738 uint32_t au32[32];
739 struct RAArray
740 {
741 uint8_t addr[6];
742 uint16_t ctl;
743 } array[16];
744};
745typedef struct E1kRecAddr::RAArray E1KRAELEM;
746typedef union E1kRecAddr E1KRA;
747AssertCompileSize(E1KRA, 8*16);
748
749#define E1K_IP_RF 0x8000 /* reserved fragment flag */
750#define E1K_IP_DF 0x4000 /* dont fragment flag */
751#define E1K_IP_MF 0x2000 /* more fragments flag */
752#define E1K_IP_OFFMASK 0x1fff /* mask for fragmenting bits */
753
754/** @todo use+extend RTNETIPV4 */
755struct E1kIpHeader
756{
757 /* type of service / version / header length */
758 uint16_t tos_ver_hl;
759 /* total length */
760 uint16_t total_len;
761 /* identification */
762 uint16_t ident;
763 /* fragment offset field */
764 uint16_t offset;
765 /* time to live / protocol*/
766 uint16_t ttl_proto;
767 /* checksum */
768 uint16_t chksum;
769 /* source IP address */
770 uint32_t src;
771 /* destination IP address */
772 uint32_t dest;
773};
774AssertCompileSize(struct E1kIpHeader, 20);
775
776#define E1K_TCP_FIN 0x01U
777#define E1K_TCP_SYN 0x02U
778#define E1K_TCP_RST 0x04U
779#define E1K_TCP_PSH 0x08U
780#define E1K_TCP_ACK 0x10U
781#define E1K_TCP_URG 0x20U
782#define E1K_TCP_ECE 0x40U
783#define E1K_TCP_CWR 0x80U
784
785#define E1K_TCP_FLAGS 0x3fU
786
787/** @todo use+extend RTNETTCP */
788struct E1kTcpHeader
789{
790 uint16_t src;
791 uint16_t dest;
792 uint32_t seqno;
793 uint32_t ackno;
794 uint16_t hdrlen_flags;
795 uint16_t wnd;
796 uint16_t chksum;
797 uint16_t urgp;
798};
799AssertCompileSize(struct E1kTcpHeader, 20);
800
801
802#define E1K_SAVEDSTATE_VERSION 1
803
804/**
805 * Device state structure. Holds the current state of device.
806 */
807struct E1kState_st
808{
809 char szInstance[8]; /**< Instance name, e.g. E1000#1. */
810 PDMIBASE IBase;
811 PDMINETWORKPORT INetworkPort;
812 PDMINETWORKCONFIG INetworkConfig;
813 PDMILEDPORTS ILeds; /**< LED interface */
814 R3PTRTYPE(PPDMIBASE) pDrvBase; /**< Attached network driver. */
815 R3PTRTYPE(PPDMINETWORKCONNECTOR) pDrv; /**< Connector of attached network driver. */
816 R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector;
817
818 PPDMDEVINSR3 pDevInsR3; /**< Device instance - R3. */
819 R3PTRTYPE(PPDMQUEUE) pTxQueueR3; /**< Transmit queue - R3. */
820 R3PTRTYPE(PPDMQUEUE) pCanRxQueueR3; /**< Rx wakeup signaller - R3. */
821 PTMTIMERR3 pRIDTimerR3; /**< Receive Interrupt Delay Timer - R3. */
822 PTMTIMERR3 pRADTimerR3; /**< Receive Absolute Delay Timer - R3. */
823 PTMTIMERR3 pTIDTimerR3; /**< Tranmsit Interrupt Delay Timer - R3. */
824 PTMTIMERR3 pTADTimerR3; /**< Tranmsit Absolute Delay Timer - R3. */
825 PTMTIMERR3 pIntTimerR3; /**< Late Interrupt Timer - R3. */
826
827 PPDMDEVINSR0 pDevInsR0; /**< Device instance - R0. */
828 R0PTRTYPE(PPDMQUEUE) pTxQueueR0; /**< Transmit queue - R0. */
829 R0PTRTYPE(PPDMQUEUE) pCanRxQueueR0; /**< Rx wakeup signaller - R0. */
830 PTMTIMERR0 pRIDTimerR0; /**< Receive Interrupt Delay Timer - R0. */
831 PTMTIMERR0 pRADTimerR0; /**< Receive Absolute Delay Timer - R0. */
832 PTMTIMERR0 pTIDTimerR0; /**< Tranmsit Interrupt Delay Timer - R0. */
833 PTMTIMERR0 pTADTimerR0; /**< Tranmsit Absolute Delay Timer - R0. */
834 PTMTIMERR0 pIntTimerR0; /**< Late Interrupt Timer - R0. */
835
836 PPDMDEVINSRC pDevInsRC; /**< Device instance - RC. */
837 RCPTRTYPE(PPDMQUEUE) pTxQueueRC; /**< Transmit queue - RC. */
838 RCPTRTYPE(PPDMQUEUE) pCanRxQueueRC; /**< Rx wakeup signaller - RC. */
839 PTMTIMERRC pRIDTimerRC; /**< Receive Interrupt Delay Timer - RC. */
840 PTMTIMERRC pRADTimerRC; /**< Receive Absolute Delay Timer - RC. */
841 PTMTIMERRC pTIDTimerRC; /**< Tranmsit Interrupt Delay Timer - RC. */
842 PTMTIMERRC pTADTimerRC; /**< Tranmsit Absolute Delay Timer - RC. */
843 PTMTIMERRC pIntTimerRC; /**< Late Interrupt Timer - RC. */
844
845 PTMTIMERR3 pLUTimer; /**< Link Up(/Restore) Timer. */
846 PPDMTHREAD pTxThread; /**< Transmit thread. */
847 PDMCRITSECT cs; /**< Critical section - what is it protecting? */
848#ifndef E1K_GLOBAL_MUTEX
849 PDMCRITSECT csRx; /**< RX Critical section. */
850// PDMCRITSECT csTx; /**< TX Critical section. */
851#endif
852 /** Transmit thread blocker. */
853 RTSEMEVENT hTxSem;
854 /** Base address of memory-mapped registers. */
855 RTGCPHYS addrMMReg;
856 /** MAC address obtained from the configuration. */
857 RTMAC macAddress;
858 /** Base port of I/O space region. */
859 RTIOPORT addrIOPort;
860 /** EMT: */
861 PCIDEVICE pciDevice;
862 /** EMT: Last time the interrupt was acknowledged. */
863 uint64_t u64AckedAt;
864 /** All: Used for eliminating spurious interrupts. */
865 bool fIntRaised;
866 /** EMT: */
867 bool fCableConnected;
868 /** EMT: */
869 bool fR0Enabled;
870 /** EMT: */
871 bool fGCEnabled;
872
873 /* All: Device register storage. */
874 uint32_t auRegs[E1K_NUM_OF_32BIT_REGS];
875 /** TX/RX: Status LED. */
876 PDMLED led;
877 /** TX/RX: Number of packet being sent/received to show in debug log. */
878 uint32_t u32PktNo;
879
880 /** EMT: Offset of the register to be read via IO. */
881 uint32_t uSelectedReg;
882 /** EMT: Multicast Table Array. */
883 uint32_t auMTA[128];
884 /** EMT: Receive Address registers. */
885 E1KRA aRecAddr;
886 /** EMT: VLAN filter table array. */
887 uint32_t auVFTA[128];
888 /** EMT: Receive buffer size. */
889 uint16_t u16RxBSize;
890 /** EMT: Locked state -- no state alteration possible. */
891 bool fLocked;
892 /** EMT: */
893 bool fDelayInts;
894 /** All: */
895 bool fIntMaskUsed;
896
897 /** N/A: */
898 bool volatile fMaybeOutOfSpace;
899 /** EMT: Gets signalled when more RX descriptors become available. */
900 RTSEMEVENT hEventMoreRxDescAvail;
901
902 /** TX: Context used for TCP segmentation packets. */
903 E1KTXCTX contextTSE;
904 /** TX: Context used for ordinary packets. */
905 E1KTXCTX contextNormal;
906 /** TX: Transmit packet buffer. */
907 uint8_t aTxPacket[E1K_MAX_TX_PKT_SIZE];
908 /** TX: Number of bytes assembled in TX packet buffer. */
909 uint16_t u16TxPktLen;
910 /** TX: IP checksum has to be inserted if true. */
911 bool fIPcsum;
912 /** TX: TCP/UDP checksum has to be inserted if true. */
913 bool fTCPcsum;
914 /** TX: Number of payload bytes remaining in TSE context. */
915 uint32_t u32PayRemain;
916 /** TX: Number of header bytes remaining in TSE context. */
917 uint16_t u16HdrRemain;
918 /** TX: Flags from template header. */
919 uint16_t u16SavedFlags;
920 /** TX: Partial checksum from template header. */
921 uint32_t u32SavedCsum;
922 /** ?: Emulated controller type. */
923 E1KCHIP eChip;
924 uint32_t alignmentFix;
925
926 /** EMT: EEPROM emulation */
927 E1kEEPROM eeprom;
928 /** EMT: Physical interface emulation. */
929 PHY phy;
930
931 STAMCOUNTER StatReceiveBytes;
932 STAMCOUNTER StatTransmitBytes;
933#if defined(VBOX_WITH_STATISTICS) || defined(E1K_REL_STATS)
934 STAMPROFILEADV StatMMIOReadGC;
935 STAMPROFILEADV StatMMIOReadHC;
936 STAMPROFILEADV StatMMIOWriteGC;
937 STAMPROFILEADV StatMMIOWriteHC;
938 STAMPROFILEADV StatEEPROMRead;
939 STAMPROFILEADV StatEEPROMWrite;
940 STAMPROFILEADV StatIOReadGC;
941 STAMPROFILEADV StatIOReadHC;
942 STAMPROFILEADV StatIOWriteGC;
943 STAMPROFILEADV StatIOWriteHC;
944 STAMPROFILEADV StatLateIntTimer;
945 STAMCOUNTER StatLateInts;
946 STAMCOUNTER StatIntsRaised;
947 STAMCOUNTER StatIntsPrevented;
948 STAMPROFILEADV StatReceive;
949 STAMPROFILEADV StatReceiveFilter;
950 STAMPROFILEADV StatReceiveStore;
951 STAMPROFILEADV StatTransmit;
952 STAMPROFILEADV StatTransmitSend;
953 STAMPROFILE StatRxOverflow;
954 STAMCOUNTER StatRxOverflowWakeup;
955 STAMCOUNTER StatTxDescLegacy;
956 STAMCOUNTER StatTxDescData;
957 STAMCOUNTER StatTxDescTSEData;
958 STAMCOUNTER StatPHYAccesses;
959
960#endif /* VBOX_WITH_STATISTICS || E1K_REL_STATS */
961
962#ifdef E1K_INT_STATS
963 /* Internal stats */
964 uint32_t uStatInt;
965 uint32_t uStatIntTry;
966 int32_t uStatIntLower;
967 uint32_t uStatIntDly;
968 int32_t iStatIntLost;
969 int32_t iStatIntLostOne;
970 uint32_t uStatDisDly;
971 uint32_t uStatIntSkip;
972 uint32_t uStatIntLate;
973 uint32_t uStatIntMasked;
974 uint32_t uStatIntEarly;
975 uint32_t uStatIntRx;
976 uint32_t uStatIntTx;
977 uint32_t uStatIntICS;
978 uint32_t uStatIntRDTR;
979 uint32_t uStatIntRXDMT0;
980 uint32_t uStatIntTXQE;
981 uint32_t uStatTxNoRS;
982 uint32_t uStatTxIDE;
983 uint32_t uStatTAD;
984 uint32_t uStatTID;
985 uint32_t uStatRAD;
986 uint32_t uStatRID;
987 uint32_t uStatRxFrm;
988 uint32_t uStatTxFrm;
989 uint32_t uStatDescCtx;
990 uint32_t uStatDescDat;
991 uint32_t uStatDescLeg;
992#endif /* E1K_INT_STATS */
993};
994typedef struct E1kState_st E1KSTATE;
995
996#ifndef VBOX_DEVICE_STRUCT_TESTCASE
997
998/* Forward declarations ******************************************************/
999__BEGIN_DECLS
1000PDMBOTHCBDECL(int) e1kMMIORead (PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb);
1001PDMBOTHCBDECL(int) e1kMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb);
1002PDMBOTHCBDECL(int) e1kIOPortIn (PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb);
1003PDMBOTHCBDECL(int) e1kIOPortOut(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb);
1004__END_DECLS
1005
1006static int e1kRegReadUnimplemented (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1007static int e1kRegWriteUnimplemented(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1008static int e1kRegReadAutoClear (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1009static int e1kRegReadDefault (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1010static int e1kRegWriteDefault (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1011#if 0 /* unused */
1012static int e1kRegReadCTRL (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1013#endif
1014static int e1kRegWriteCTRL (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1015static int e1kRegReadEECD (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1016static int e1kRegWriteEECD (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1017static int e1kRegWriteMDIC (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1018static int e1kRegReadICR (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1019static int e1kRegWriteICR (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1020static int e1kRegWriteICS (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1021static int e1kRegWriteIMS (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1022static int e1kRegWriteIMC (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1023static int e1kRegWriteRCTL (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1024static int e1kRegWritePBA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1025static int e1kRegWriteRDT (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1026static int e1kRegWriteRDTR (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1027static int e1kRegWriteTDT (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1028static int e1kRegReadMTA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1029static int e1kRegWriteMTA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1030static int e1kRegReadRA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1031static int e1kRegWriteRA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1032static int e1kRegReadVFTA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1033static int e1kRegWriteVFTA (E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1034
1035/**
1036 * Register map table.
1037 *
1038 * Override fn_read and fn_write to get register-specific behavior.
1039 */
1040const static struct E1kRegMap_st
1041{
1042 /** Register offset in the register space. */
1043 uint32_t offset;
1044 /** Size in bytes. Registers of size > 4 are in fact tables. */
1045 uint32_t size;
1046 /** Readable bits. */
1047 uint32_t readable;
1048 /** Writable bits. */
1049 uint32_t writable;
1050 /** Read callback. */
1051 int (*pfnRead)(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1052 /** Write callback. */
1053 int (*pfnWrite)(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
1054 /** Abbreviated name. */
1055 const char *abbrev;
1056 /** Full name. */
1057 const char *name;
1058} s_e1kRegMap[E1K_NUM_OF_REGS] =
1059{
1060 /* offset size read mask write mask read callback write callback abbrev full name */
1061 /*------- ------- ---------- ---------- ----------------------- ------------------------ ---------- ------------------------------*/
1062 { 0x00000, 0x00004, 0xDBF31BE9, 0xDBF31BE9, e1kRegReadDefault , e1kRegWriteCTRL , "CTRL" , "Device Control" },
1063 { 0x00008, 0x00004, 0x0000FDFF, 0x00000000, e1kRegReadDefault , e1kRegWriteUnimplemented, "STATUS" , "Device Status" },
1064 { 0x00010, 0x00004, 0x000027F0, 0x00000070, e1kRegReadEECD , e1kRegWriteEECD , "EECD" , "EEPROM/Flash Control/Data" },
1065 { 0x00014, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "EERD" , "EEPROM Read" },
1066 { 0x00018, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CTRL_EXT", "Extended Device Control" },
1067 { 0x0001c, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FLA" , "Flash Access (N/A)" },
1068 { 0x00020, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteMDIC , "MDIC" , "MDI Control" },
1069 { 0x00028, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCAL" , "Flow Control Address Low" },
1070 { 0x0002c, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCAH" , "Flow Control Address High" },
1071 { 0x00030, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCT" , "Flow Control Type" },
1072 { 0x00038, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "VET" , "VLAN EtherType" },
1073 { 0x000c0, 0x00004, 0x0001F6DF, 0x0001F6DF, e1kRegReadICR , e1kRegWriteICR , "ICR" , "Interrupt Cause Read" },
1074 { 0x000c4, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "ITR" , "Interrupt Throttling" },
1075 { 0x000c8, 0x00004, 0x00000000, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteICS , "ICS" , "Interrupt Cause Set" },
1076 { 0x000d0, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteIMS , "IMS" , "Interrupt Mask Set/Read" },
1077 { 0x000d8, 0x00004, 0x00000000, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteIMC , "IMC" , "Interrupt Mask Clear" },
1078 { 0x00100, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteRCTL , "RCTL" , "Receive Control" },
1079 { 0x00170, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCTTV" , "Flow Control Transmit Timer Value" },
1080 { 0x00178, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TXCW" , "Transmit Configuration Word (N/A)" },
1081 { 0x00180, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXCW" , "Receive Configuration Word (N/A)" },
1082 { 0x00400, 0x00004, 0x017FFFFA, 0x017FFFFA, e1kRegReadDefault , e1kRegWriteDefault , "TCTL" , "Transmit Control" },
1083 { 0x00410, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TIPG" , "Transmit IPG" },
1084 { 0x00458, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "AIFS" , "Adaptive IFS Throttle - AIT" },
1085 { 0x00e00, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "LEDCTL" , "LED Control" },
1086 { 0x01000, 0x00004, 0xFFFF007F, 0x0000007F, e1kRegReadDefault , e1kRegWritePBA , "PBA" , "Packet Buffer Allocation" },
1087 { 0x02160, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRTL" , "Flow Control Receive Threshold Low" },
1088 { 0x02168, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRTH" , "Flow Control Receive Threshold High" },
1089 { 0x02410, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFH" , "Receive Data FIFO Head" },
1090 { 0x02418, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFT" , "Receive Data FIFO Tail" },
1091 { 0x02420, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFHS" , "Receive Data FIFO Head Saved Register" },
1092 { 0x02428, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFTS" , "Receive Data FIFO Tail Saved Register" },
1093 { 0x02430, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFPC" , "Receive Data FIFO Packet Count" },
1094 { 0x02800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDBAL" , "Receive Descriptor Base Low" },
1095 { 0x02804, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDBAH" , "Receive Descriptor Base High" },
1096 { 0x02808, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDLEN" , "Receive Descriptor Length" },
1097 { 0x02810, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDH" , "Receive Descriptor Head" },
1098 { 0x02818, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteRDT , "RDT" , "Receive Descriptor Tail" },
1099 { 0x02820, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteRDTR , "RDTR" , "Receive Delay Timer" },
1100 { 0x02828, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXDCTL" , "Receive Descriptor Control" },
1101 { 0x0282c, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "RADV" , "Receive Interrupt Absolute Delay Timer" },
1102 { 0x02c00, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RSRPD" , "Receive Small Packet Detect Interrupt" },
1103 { 0x03000, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TXDMAC" , "TX DMA Control (N/A)" },
1104 { 0x03410, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFH" , "Transmit Data FIFO Head" },
1105 { 0x03418, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFT" , "Transmit Data FIFO Tail" },
1106 { 0x03420, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFHS" , "Transmit Data FIFO Head Saved Register" },
1107 { 0x03428, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFTS" , "Transmit Data FIFO Tail Saved Register" },
1108 { 0x03430, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFPC" , "Transmit Data FIFO Packet Count" },
1109 { 0x03800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDBAL" , "Transmit Descriptor Base Low" },
1110 { 0x03804, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDBAH" , "Transmit Descriptor Base High" },
1111 { 0x03808, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDLEN" , "Transmit Descriptor Length" },
1112 { 0x03810, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDH" , "Transmit Descriptor Head" },
1113 { 0x03818, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteTDT , "TDT" , "Transmit Descriptor Tail" },
1114 { 0x03820, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TIDV" , "Transmit Interrupt Delay Value" },
1115 { 0x03828, 0x00004, 0xFF3F3F3F, 0xFF3F3F3F, e1kRegReadDefault , e1kRegWriteDefault , "TXDCTL" , "Transmit Descriptor Control" },
1116 { 0x0382c, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TADV" , "Transmit Absolute Interrupt Delay Timer" },
1117 { 0x03830, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TSPMT" , "TCP Segmentation Pad and Threshold" },
1118 { 0x04000, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CRCERRS" , "CRC Error Count" },
1119 { 0x04004, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "ALGNERRC", "Alignment Error Count" },
1120 { 0x04008, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SYMERRS" , "Symbol Error Count" },
1121 { 0x0400c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXERRC" , "RX Error Count" },
1122 { 0x04010, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MPC" , "Missed Packets Count" },
1123 { 0x04014, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SCC" , "Single Collision Count" },
1124 { 0x04018, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "ECOL" , "Excessive Collisions Count" },
1125 { 0x0401c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MCC" , "Multiple Collision Count" },
1126 { 0x04020, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "LATECOL" , "Late Collisions Count" },
1127 { 0x04028, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "COLC" , "Collision Count" },
1128 { 0x04030, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "DC" , "Defer Count" },
1129 { 0x04034, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TNCRS" , "Transmit - No CRS" },
1130 { 0x04038, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SEC" , "Sequence Error Count" },
1131 { 0x0403c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CEXTERR" , "Carrier Extension Error Count" },
1132 { 0x04040, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RLEC" , "Receive Length Error Count" },
1133 { 0x04048, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XONRXC" , "XON Received Count" },
1134 { 0x0404c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XONTXC" , "XON Transmitted Count" },
1135 { 0x04050, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XOFFRXC" , "XOFF Received Count" },
1136 { 0x04054, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XOFFTXC" , "XOFF Transmitted Count" },
1137 { 0x04058, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRUC" , "FC Received Unsupported Count" },
1138 { 0x0405c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC64" , "Packets Received (64 Bytes) Count" },
1139 { 0x04060, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC127" , "Packets Received (65-127 Bytes) Count" },
1140 { 0x04064, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC255" , "Packets Received (128-255 Bytes) Count" },
1141 { 0x04068, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC511" , "Packets Received (256-511 Bytes) Count" },
1142 { 0x0406c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC1023" , "Packets Received (512-1023 Bytes) Count" },
1143 { 0x04070, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC1522" , "Packets Received (1024-Max Bytes)" },
1144 { 0x04074, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GPRC" , "Good Packets Received Count" },
1145 { 0x04078, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "BPRC" , "Broadcast Packets Received Count" },
1146 { 0x0407c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "MPRC" , "Multicast Packets Received Count" },
1147 { 0x04080, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GPTC" , "Good Packets Transmitted Count" },
1148 { 0x04088, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GORCL" , "Good Octets Received Count (Low)" },
1149 { 0x0408c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GORCH" , "Good Octets Received Count (Hi)" },
1150 { 0x04090, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GOTCL" , "Good Octets Transmitted Count (Low)" },
1151 { 0x04094, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GOTCH" , "Good Octets Transmitted Count (Hi)" },
1152 { 0x040a0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RNBC" , "Receive No Buffers Count" },
1153 { 0x040a4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RUC" , "Receive Undersize Count" },
1154 { 0x040a8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RFC" , "Receive Fragment Count" },
1155 { 0x040ac, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "ROC" , "Receive Oversize Count" },
1156 { 0x040b0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RJC" , "Receive Jabber Count" },
1157 { 0x040b4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPRC" , "Management Packets Received Count" },
1158 { 0x040b8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPDC" , "Management Packets Dropped Count" },
1159 { 0x040bc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPTC" , "Management Pkts Transmitted Count" },
1160 { 0x040c0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TORL" , "Total Octets Received (Lo)" },
1161 { 0x040c4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TORH" , "Total Octets Received (Hi)" },
1162 { 0x040c8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TOTL" , "Total Octets Transmitted (Lo)" },
1163 { 0x040cc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TOTH" , "Total Octets Transmitted (Hi)" },
1164 { 0x040d0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TPR" , "Total Packets Received" },
1165 { 0x040d4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TPT" , "Total Packets Transmitted" },
1166 { 0x040d8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC64" , "Packets Transmitted (64 Bytes) Count" },
1167 { 0x040dc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC127" , "Packets Transmitted (65-127 Bytes) Count" },
1168 { 0x040e0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC255" , "Packets Transmitted (128-255 Bytes) Count" },
1169 { 0x040e4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC511" , "Packets Transmitted (256-511 Bytes) Count" },
1170 { 0x040e8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC1023" , "Packets Transmitted (512-1023 Bytes) Count" },
1171 { 0x040ec, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC1522" , "Packets Transmitted (1024 Bytes or Greater) Count" },
1172 { 0x040f0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "MPTC" , "Multicast Packets Transmitted Count" },
1173 { 0x040f4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "BPTC" , "Broadcast Packets Transmitted Count" },
1174 { 0x040f8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TSCTC" , "TCP Segmentation Context Transmitted Count" },
1175 { 0x040fc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TSCTFC" , "TCP Segmentation Context Tx Fail Count" },
1176 { 0x05000, 0x00004, 0x000007FF, 0x000007FF, e1kRegReadDefault , e1kRegWriteDefault , "RXCSUM" , "Receive Checksum Control" },
1177 { 0x05800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUC" , "Wakeup Control" },
1178 { 0x05808, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUFC" , "Wakeup Filter Control" },
1179 { 0x05810, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUS" , "Wakeup Status" },
1180 { 0x05820, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "MANC" , "Management Control" },
1181 { 0x05838, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IPAV" , "IP Address Valid" },
1182 { 0x05900, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUPL" , "Wakeup Packet Length" },
1183 { 0x05200, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadMTA , e1kRegWriteMTA , "MTA" , "Multicast Table Array (n)" },
1184 { 0x05400, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadRA , e1kRegWriteRA , "RA" , "Receive Address (64-bit) (n)" },
1185 { 0x05600, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadVFTA , e1kRegWriteVFTA , "VFTA" , "VLAN Filter Table Array (n)" },
1186 { 0x05840, 0x0001c, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IP4AT" , "IPv4 Address Table" },
1187 { 0x05880, 0x00010, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IP6AT" , "IPv6 Address Table" },
1188 { 0x05a00, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUPM" , "Wakeup Packet Memory" },
1189 { 0x05f00, 0x0001c, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFLT" , "Flexible Filter Length Table" },
1190 { 0x09000, 0x003fc, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFMT" , "Flexible Filter Mask Table" },
1191 { 0x09800, 0x003fc, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFVT" , "Flexible Filter Value Table" },
1192 { 0x10000, 0x10000, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "PBM" , "Packet Buffer Memory (n)" },
1193 { 0x00040, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadRA , e1kRegWriteRA , "RA" , "Receive Address (64-bit) (n) (82542)" },
1194 { 0x00200, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadMTA , e1kRegWriteMTA , "MTA" , "Multicast Table Array (n) (82542)" },
1195 { 0x00600, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadVFTA , e1kRegWriteVFTA , "VFTA" , "VLAN Filter Table Array (n) (82542)" }
1196};
1197
1198#ifdef DEBUG
1199/**
1200 * Convert U32 value to hex string. Masked bytes are replaced with dots.
1201 *
1202 * @remarks The mask has byte (not bit) granularity (e.g. 000000FF).
1203 *
1204 * @returns The buffer.
1205 *
1206 * @param u32 The word to convert into string.
1207 * @param mask Selects which bytes to convert.
1208 * @param buf Where to put the result.
1209 */
1210static char *e1kU32toHex(uint32_t u32, uint32_t mask, char *buf)
1211{
1212 for (char *ptr = buf + 7; ptr >= buf; --ptr, u32 >>=4, mask >>=4)
1213 {
1214 if (mask & 0xF)
1215 *ptr = (u32 & 0xF) + ((u32 & 0xF) > 9 ? '7' : '0');
1216 else
1217 *ptr = '.';
1218 }
1219 buf[8] = 0;
1220 return buf;
1221}
1222
1223/**
1224 * Returns timer name for debug purposes.
1225 *
1226 * @returns The timer name.
1227 *
1228 * @param pState The device state structure.
1229 * @param pTimer The timer to get the name for.
1230 */
1231DECLINLINE(const char *) e1kGetTimerName(E1KSTATE *pState, PTMTIMER pTimer)
1232{
1233 if (pTimer == pState->CTX_SUFF(pTIDTimer))
1234 return "TID";
1235 if (pTimer == pState->CTX_SUFF(pTADTimer))
1236 return "TAD";
1237 if (pTimer == pState->CTX_SUFF(pRIDTimer))
1238 return "RID";
1239 if (pTimer == pState->CTX_SUFF(pRADTimer))
1240 return "RAD";
1241 if (pTimer == pState->CTX_SUFF(pIntTimer))
1242 return "Int";
1243 return "unknown";
1244}
1245#endif /* DEBUG */
1246
1247/**
1248 * Arm a timer.
1249 *
1250 * @param pState Pointer to the device state structure.
1251 * @param pTimer Pointer to the timer.
1252 * @param uExpireIn Expiration interval in microseconds.
1253 */
1254DECLINLINE(void) e1kArmTimer(E1KSTATE *pState, PTMTIMER pTimer, uint32_t uExpireIn)
1255{
1256 if (pState->fLocked)
1257 return;
1258
1259 E1kLog2(("%s Arming %s timer to fire in %d usec...\n",
1260 INSTANCE(pState), e1kGetTimerName(pState, pTimer), uExpireIn));
1261 TMTimerSet(pTimer, TMTimerFromMicro(pTimer, uExpireIn) +
1262 TMTimerGet(pTimer));
1263}
1264
1265/**
1266 * Cancel a timer.
1267 *
1268 * @param pState Pointer to the device state structure.
1269 * @param pTimer Pointer to the timer.
1270 */
1271DECLINLINE(void) e1kCancelTimer(E1KSTATE *pState, PTMTIMER pTimer)
1272{
1273 E1kLog2(("%s Stopping %s timer...\n",
1274 INSTANCE(pState), e1kGetTimerName(pState, pTimer)));
1275 int rc = TMTimerStop(pTimer);
1276 if (RT_FAILURE(rc))
1277 {
1278 E1kLog2(("%s e1kCancelTimer: TMTimerStop() failed with %Rrc\n",
1279 INSTANCE(pState), rc));
1280 }
1281}
1282
1283#ifdef E1K_GLOBAL_MUTEX
1284DECLINLINE(int) e1kCsEnter(E1KSTATE *pState, int iBusyRc)
1285{
1286 return VINF_SUCCESS;
1287}
1288
1289DECLINLINE(void) e1kCsLeave(E1KSTATE *pState)
1290{
1291}
1292
1293#define e1kCsRxEnter(ps, rc) VINF_SUCCESS
1294#define e1kCsRxLeave(ps)
1295
1296#define e1kCsTxEnter(ps, rc) VINF_SUCCESS
1297#define e1kCsTxLeave(ps)
1298
1299
1300DECLINLINE(int) e1kMutexAcquire(E1KSTATE *pState, int iBusyRc, RT_SRC_POS_DECL)
1301{
1302 int rc = PDMCritSectEnter(&pState->cs, iBusyRc);
1303 if (RT_UNLIKELY(rc != VINF_SUCCESS))
1304 {
1305 E1kLog2(("%s ==> FAILED to enter critical section at %s:%d:%s with rc=\n",
1306 INSTANCE(pState), RT_SRC_POS_ARGS, rc));
1307 PDMDeviceDBGFStop(pState->CTX_SUFF(pDevIns), RT_SRC_POS_ARGS,
1308 "%s Failed to enter critical section, rc=%Rrc\n",
1309 INSTANCE(pState), rc);
1310 }
1311 else
1312 {
1313 //E1kLog2(("%s ==> Mutex acquired at %s:%d:%s\n", INSTANCE(pState), RT_SRC_POS_ARGS));
1314 }
1315 return rc;
1316}
1317
1318DECLINLINE(void) e1kMutexRelease(E1KSTATE *pState)
1319{
1320 //E1kLog2(("%s <== Releasing mutex...\n", INSTANCE(pState)));
1321 PDMCritSectLeave(&pState->cs);
1322}
1323
1324#else /* !E1K_GLOBAL_MUTEX */
1325#define e1kCsEnter(ps, rc) PDMCritSectEnter(&ps->cs, rc)
1326#define e1kCsLeave(ps) PDMCritSectLeave(&ps->cs)
1327
1328#define e1kCsRxEnter(ps, rc) PDMCritSectEnter(&ps->csRx, rc)
1329#define e1kCsRxLeave(ps) PDMCritSectLeave(&ps->csRx)
1330
1331#define e1kCsTxEnter(ps, rc) VINF_SUCCESS
1332#define e1kCsTxLeave(ps)
1333//#define e1kCsTxEnter(ps, rc) PDMCritSectEnter(&ps->csTx, rc)
1334//#define e1kCsTxLeave(ps) PDMCritSectLeave(&ps->csTx)
1335
1336#if 0
1337DECLINLINE(int) e1kCsEnter(E1KSTATE *pState, PPDMCRITSECT pCs, int iBusyRc, RT_SRC_POS_DECL)
1338{
1339 int rc = PDMCritSectEnter(pCs, iBusyRc);
1340 if (RT_FAILURE(rc))
1341 {
1342 E1kLog2(("%s ==> FAILED to enter critical section at %s:%d:%s with rc=%Rrc\n",
1343 INSTANCE(pState), RT_SRC_POS_ARGS, rc));
1344 PDMDeviceDBGFStop(pState->CTX_SUFF(pDevIns), RT_SRC_POS_ARGS,
1345 "%s Failed to enter critical section, rc=%Rrc\n",
1346 INSTANCE(pState), rc);
1347 }
1348 else
1349 {
1350 //E1kLog2(("%s ==> Entered critical section at %s:%d:%s\n", INSTANCE(pState), RT_SRC_POS_ARGS));
1351 }
1352 return RT_SUCCESS(rc);
1353}
1354
1355DECLINLINE(void) e1kCsLeave(E1KSTATE *pState, PPDMCRITSECT pCs)
1356{
1357 //E1kLog2(("%s <== Leaving critical section\n", INSTANCE(pState)));
1358 PDMCritSectLeave(&pState->cs);
1359}
1360#endif
1361DECLINLINE(int) e1kMutexAcquire(E1KSTATE *pState, int iBusyRc, RT_SRC_POS_DECL)
1362{
1363 return VINF_SUCCESS;
1364}
1365
1366DECLINLINE(void) e1kMutexRelease(E1KSTATE *pState)
1367{
1368}
1369#endif /* !E1K_GLOBAL_MUTEX */
1370
1371#ifdef IN_RING3
1372/**
1373 * Wakeup the RX thread.
1374 */
1375static void e1kWakeupReceive(PPDMDEVINS pDevIns)
1376{
1377 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
1378 if ( pState->fMaybeOutOfSpace
1379 && pState->hEventMoreRxDescAvail != NIL_RTSEMEVENT)
1380 {
1381 STAM_COUNTER_INC(&pState->StatRxOverflowWakeup);
1382 E1kLog(("%s Waking up Out-of-RX-space semaphore\n", INSTANCE(pState)));
1383 RTSemEventSignal(pState->hEventMoreRxDescAvail);
1384 }
1385}
1386
1387/**
1388 * Compute Internet checksum.
1389 *
1390 * @remarks Refer to http://www.netfor2.com/checksum.html for short intro.
1391 *
1392 * @param pState The device state structure.
1393 * @param cpPacket The packet.
1394 * @param cb The size of the packet.
1395 * @param cszText A string denoting direction of packet transfer.
1396 *
1397 * @return The 1's complement of the 1's complement sum.
1398 *
1399 * @thread E1000_TX
1400 */
1401static DECLCALLBACK(uint16_t) e1kCSum16(const void *pvBuf, size_t cb)
1402{
1403 uint32_t csum = 0;
1404 uint16_t *pu16 = (uint16_t *)pvBuf;
1405
1406 while (cb > 1)
1407 {
1408 csum += *pu16++;
1409 cb -= 2;
1410 }
1411 if (cb)
1412 csum += *(uint8_t*)pu16;
1413 while (csum >> 16)
1414 csum = (csum >> 16) + (csum & 0xFFFF);
1415 return ~csum;
1416}
1417
1418/**
1419 * Dump a packet to debug log.
1420 *
1421 * @param pState The device state structure.
1422 * @param cpPacket The packet.
1423 * @param cb The size of the packet.
1424 * @param cszText A string denoting direction of packet transfer.
1425 * @thread E1000_TX
1426 */
1427DECLINLINE(void) e1kPacketDump(E1KSTATE* pState, const uint8_t *cpPacket, size_t cb, const char *cszText)
1428{
1429#ifdef DEBUG
1430 if (RT_LIKELY(e1kCsEnter(pState, VERR_SEM_BUSY)) == VINF_SUCCESS)
1431 {
1432 E1kLog(("%s --- %s packet #%d: ---\n",
1433 INSTANCE(pState), cszText, ++pState->u32PktNo));
1434 E1kLog3(("%.*Rhxd\n", cb, cpPacket));
1435 e1kCsLeave(pState);
1436 }
1437#else
1438 if (RT_LIKELY(e1kCsEnter(pState, VERR_SEM_BUSY)) == VINF_SUCCESS)
1439 {
1440 E1kLogRel(("E1000: %s packet #%d, seq=%x ack=%x\n", cszText, pState->u32PktNo++, ntohl(*(uint32_t*)(cpPacket+0x26)), ntohl(*(uint32_t*)(cpPacket+0x2A))));
1441 e1kCsLeave(pState);
1442 }
1443#endif
1444}
1445
1446/**
1447 * Determine the type of transmit descriptor.
1448 *
1449 * @returns Descriptor type. See E1K_DTYPE_XXX defines.
1450 *
1451 * @param pDesc Pointer to descriptor union.
1452 * @thread E1000_TX
1453 */
1454DECLINLINE(int) e1kGetDescType(E1KTXDESC* pDesc)
1455{
1456 if (pDesc->legacy.cmd.fDEXT)
1457 return pDesc->context.dw2.u4DTYP;
1458 return E1K_DTYP_LEGACY;
1459}
1460
1461/**
1462 * Dump receive descriptor to debug log.
1463 *
1464 * @param pState The device state structure.
1465 * @param pDesc Pointer to the descriptor.
1466 * @thread E1000_RX
1467 */
1468static void e1kPrintRDesc(E1KSTATE* pState, E1KRXDESC* pDesc)
1469{
1470 E1kLog2(("%s <-- Receive Descriptor (%d bytes):\n", INSTANCE(pState), pDesc->u16Length));
1471 E1kLog2((" Address=%16LX Length=%04X Csum=%04X\n",
1472 pDesc->u64BufAddr, pDesc->u16Length, pDesc->u16Checksum));
1473 E1kLog2((" STA: %s %s %s %s %s %s %s ERR: %s %s %s %s SPECIAL: %s VLAN=%03x PRI=%x\n",
1474 pDesc->status.fPIF ? "PIF" : "pif",
1475 pDesc->status.fIPCS ? "IPCS" : "ipcs",
1476 pDesc->status.fTCPCS ? "TCPCS" : "tcpcs",
1477 pDesc->status.fVP ? "VP" : "vp",
1478 pDesc->status.fIXSM ? "IXSM" : "ixsm",
1479 pDesc->status.fEOP ? "EOP" : "eop",
1480 pDesc->status.fDD ? "DD" : "dd",
1481 pDesc->status.fRXE ? "RXE" : "rxe",
1482 pDesc->status.fIPE ? "IPE" : "ipe",
1483 pDesc->status.fTCPE ? "TCPE" : "tcpe",
1484 pDesc->status.fCE ? "CE" : "ce",
1485 pDesc->status.fCFI ? "CFI" :"cfi",
1486 pDesc->status.u12VLAN,
1487 pDesc->status.u3PRI));
1488}
1489
1490/**
1491 * Dump transmit descriptor to debug log.
1492 *
1493 * @param pState The device state structure.
1494 * @param pDesc Pointer to descriptor union.
1495 * @param cszDir A string denoting direction of descriptor transfer
1496 * @thread E1000_TX
1497 */
1498static void e1kPrintTDesc(E1KSTATE* pState, E1KTXDESC* pDesc, const char* cszDir)
1499{
1500 switch (e1kGetDescType(pDesc))
1501 {
1502 case E1K_DTYP_CONTEXT:
1503 E1kLog2(("%s %s Context Transmit Descriptor %s\n",
1504 INSTANCE(pState), cszDir, cszDir));
1505 E1kLog2((" IPCSS=%02X IPCSO=%02X IPCSE=%04X TUCSS=%02X TUCSO=%02X TUCSE=%04X\n",
1506 pDesc->context.ip.u8CSS, pDesc->context.ip.u8CSO, pDesc->context.ip.u16CSE,
1507 pDesc->context.tu.u8CSS, pDesc->context.tu.u8CSO, pDesc->context.tu.u16CSE));
1508 E1kLog2((" TUCMD:%s%s%s %s %s PAYLEN=%04x HDRLEN=%04x MSS=%04x STA: %s\n",
1509 pDesc->context.dw2.fIDE ? " IDE":"",
1510 pDesc->context.dw2.fRS ? " RS" :"",
1511 pDesc->context.dw2.fTSE ? " TSE":"",
1512 pDesc->context.dw2.fIP ? "IPv4":"IPv6",
1513 pDesc->context.dw2.fTCP ? "TCP":"UDP",
1514 pDesc->context.dw2.u20PAYLEN,
1515 pDesc->context.dw3.u8HDRLEN,
1516 pDesc->context.dw3.u16MSS,
1517 pDesc->context.dw3.fDD?"DD":""));
1518 break;
1519 case E1K_DTYP_DATA:
1520 E1kLog2(("%s %s Data Transmit Descriptor (%d bytes) %s\n",
1521 INSTANCE(pState), cszDir, pDesc->data.cmd.u20DTALEN, cszDir));
1522 E1kLog2((" Address=%16LX DTALEN=%05X\n",
1523 pDesc->data.u64BufAddr,
1524 pDesc->data.cmd.u20DTALEN));
1525 E1kLog2((" DCMD:%s%s%s%s%s%s STA:%s%s%s POPTS:%s%s SPECIAL:%s VLAN=%03x PRI=%x\n",
1526 pDesc->data.cmd.fIDE ? " IDE" :"",
1527 pDesc->data.cmd.fVLE ? " VLE" :"",
1528 pDesc->data.cmd.fRS ? " RS" :"",
1529 pDesc->data.cmd.fTSE ? " TSE" :"",
1530 pDesc->data.cmd.fIFCS? " IFCS":"",
1531 pDesc->data.cmd.fEOP ? " EOP" :"",
1532 pDesc->data.dw3.fDD ? " DD" :"",
1533 pDesc->data.dw3.fEC ? " EC" :"",
1534 pDesc->data.dw3.fLC ? " LC" :"",
1535 pDesc->data.dw3.fTXSM? " TXSM":"",
1536 pDesc->data.dw3.fIXSM? " IXSM":"",
1537 pDesc->data.dw3.fCFI ? " CFI" :"",
1538 pDesc->data.dw3.u12VLAN,
1539 pDesc->data.dw3.u3PRI));
1540 break;
1541 case E1K_DTYP_LEGACY:
1542 E1kLog2(("%s %s Legacy Transmit Descriptor (%d bytes) %s\n",
1543 INSTANCE(pState), cszDir, pDesc->legacy.cmd.u16Length, cszDir));
1544 E1kLog2((" Address=%16LX DTALEN=%05X\n",
1545 pDesc->data.u64BufAddr,
1546 pDesc->legacy.cmd.u16Length));
1547 E1kLog2((" CMD:%s%s%s%s%s%s STA:%s%s%s CSO=%02x CSS=%02x SPECIAL:%s VLAN=%03x PRI=%x\n",
1548 pDesc->legacy.cmd.fIDE ? " IDE" :"",
1549 pDesc->legacy.cmd.fVLE ? " VLE" :"",
1550 pDesc->legacy.cmd.fRS ? " RS" :"",
1551 pDesc->legacy.cmd.fIC ? " IC" :"",
1552 pDesc->legacy.cmd.fIFCS? " IFCS":"",
1553 pDesc->legacy.cmd.fEOP ? " EOP" :"",
1554 pDesc->legacy.dw3.fDD ? " DD" :"",
1555 pDesc->legacy.dw3.fEC ? " EC" :"",
1556 pDesc->legacy.dw3.fLC ? " LC" :"",
1557 pDesc->legacy.cmd.u8CSO,
1558 pDesc->legacy.dw3.u8CSS,
1559 pDesc->legacy.dw3.fCFI ? " CFI" :"",
1560 pDesc->legacy.dw3.u12VLAN,
1561 pDesc->legacy.dw3.u3PRI));
1562 break;
1563 default:
1564 E1kLog(("%s %s Invalid Transmit Descriptor %s\n",
1565 INSTANCE(pState), cszDir, cszDir));
1566 break;
1567 }
1568}
1569#endif /* IN_RING3 */
1570
1571/**
1572 * Hardware reset. Revert all registers to initial values.
1573 *
1574 * @param pState The device state structure.
1575 */
1576PDMBOTHCBDECL(void) e1kHardReset(E1KSTATE *pState)
1577{
1578 E1kLog(("%s Hard reset triggered\n", INSTANCE(pState)));
1579 memset(pState->auRegs, 0, sizeof(pState->auRegs));
1580 memset(pState->aRecAddr.au32, 0, sizeof(pState->aRecAddr.au32));
1581 STATUS = 0x0081; /* SPEED=10b (1000 Mb/s), FD=1b (Full Duplex) */
1582 EECD = 0x0100; /* EE_PRES=1b (EEPROM present) */
1583 CTRL = 0x0a09; /* FRCSPD=1b SPEED=10b LRST=1b FD=1b */
1584}
1585
1586/**
1587 * Raise interrupt if not masked.
1588 *
1589 * @param pState The device state structure.
1590 */
1591PDMBOTHCBDECL(int) e1kRaiseInterrupt(E1KSTATE *pState, int rcBusy, uint32_t u32IntCause = 0)
1592{
1593 int rc = e1kCsEnter(pState, rcBusy);
1594 if (RT_UNLIKELY(rc != VINF_SUCCESS))
1595 return rc;
1596
1597 E1K_INC_ISTAT_CNT(pState->uStatIntTry);
1598 ICR |= u32IntCause;
1599 if (ICR & IMS)
1600 {
1601#if 0
1602 if (pState->fDelayInts)
1603 {
1604 E1K_INC_ISTAT_CNT(pState->uStatIntDly);
1605 pState->iStatIntLostOne = 1;
1606 E1kLog2(("%s e1kRaiseInterrupt: Delayed. ICR=%08x\n",
1607 INSTANCE(pState), ICR));
1608#define E1K_LOST_IRQ_THRSLD 20
1609//#define E1K_LOST_IRQ_THRSLD 200000000
1610 if (pState->iStatIntLost >= E1K_LOST_IRQ_THRSLD)
1611 {
1612 E1kLog2(("%s WARNING! Disabling delayed interrupt logic: delayed=%d, delivered=%d\n",
1613 INSTANCE(pState), pState->uStatIntDly, pState->uStatIntLate));
1614 pState->fIntMaskUsed = false;
1615 pState->uStatDisDly++;
1616 }
1617 }
1618 else
1619#endif
1620 if (pState->fIntRaised)
1621 {
1622 E1K_INC_ISTAT_CNT(pState->uStatIntSkip);
1623 E1kLog2(("%s e1kRaiseInterrupt: Already raised, skipped. ICR&IMS=%08x\n",
1624 INSTANCE(pState), ICR & IMS));
1625 }
1626 else
1627 {
1628#ifdef E1K_ITR_ENABLED
1629 uint64_t tstamp = TMTimerGet(pState->CTX_SUFF(pIntTimer));
1630 /* interrupts/sec = 1 / (256 * 10E-9 * ITR) */
1631 E1kLog2(("%s e1kRaiseInterrupt: tstamp - pState->u64AckedAt = %d, ITR * 256 = %d\n",
1632 INSTANCE(pState), (uint32_t)(tstamp - pState->u64AckedAt), ITR * 256));
1633 if (!!ITR && pState->fIntMaskUsed && tstamp - pState->u64AckedAt < ITR * 256)
1634 {
1635 E1K_INC_ISTAT_CNT(pState->uStatIntEarly);
1636 E1kLog2(("%s e1kRaiseInterrupt: Too early to raise again: %d ns < %d ns.\n",
1637 INSTANCE(pState), (uint32_t)(tstamp - pState->u64AckedAt), ITR * 256));
1638 }
1639 else
1640#endif
1641 {
1642
1643 /* Since we are delivering the interrupt now
1644 * there is no need to do it later -- stop the timer.
1645 */
1646 TMTimerStop(pState->CTX_SUFF(pIntTimer));
1647 E1K_INC_ISTAT_CNT(pState->uStatInt);
1648 STAM_COUNTER_INC(&pState->StatIntsRaised);
1649 /* Got at least one unmasked interrupt cause */
1650 pState->fIntRaised = true;
1651 /* Raise(1) INTA(0) */
1652 //PDMDevHlpPCISetIrqNoWait(pState->CTXSUFF(pInst), 0, 1);
1653 //e1kMutexRelease(pState);
1654 E1kLogRel(("E1000: irq RAISED icr&mask=0x%x, icr=0x%x\n", ICR & IMS, ICR));
1655 PDMDevHlpPCISetIrq(pState->CTX_SUFF(pDevIns), 0, 1);
1656 //e1kMutexAcquire(pState, RT_SRC_POS);
1657 E1kLog(("%s e1kRaiseInterrupt: Raised. ICR&IMS=%08x\n",
1658 INSTANCE(pState), ICR & IMS));
1659 }
1660 }
1661 }
1662 else
1663 {
1664 E1K_INC_ISTAT_CNT(pState->uStatIntMasked);
1665 E1kLog2(("%s e1kRaiseInterrupt: Not raising, ICR=%08x, IMS=%08x\n",
1666 INSTANCE(pState), ICR, IMS));
1667 }
1668 e1kCsLeave(pState);
1669 return VINF_SUCCESS;
1670}
1671
1672#ifdef IN_RING3
1673/**
1674 * Compute the physical address of the descriptor.
1675 *
1676 * @returns the physical address of the descriptor.
1677 *
1678 * @param baseHigh High-order 32 bits of descriptor table address.
1679 * @param baseLow Low-order 32 bits of descriptor table address.
1680 * @param idxDesc The descriptor index in the table.
1681 */
1682DECLINLINE(RTGCPHYS) e1kDescAddr(uint32_t baseHigh, uint32_t baseLow, uint32_t idxDesc)
1683{
1684 AssertCompile(sizeof(E1KRXDESC) == sizeof(E1KTXDESC));
1685 return ((uint64_t)baseHigh << 32) + baseLow + idxDesc * sizeof(E1KRXDESC);
1686}
1687
1688/**
1689 * Advance the head pointer of the receive descriptor queue.
1690 *
1691 * @remarks RDH always points to the next available RX descriptor.
1692 *
1693 * @param pState The device state structure.
1694 */
1695DECLINLINE(void) e1kAdvanceRDH(E1KSTATE *pState)
1696{
1697 //e1kCsEnter(pState, RT_SRC_POS);
1698 if (++RDH * sizeof(E1KRXDESC) >= RDLEN)
1699 RDH = 0;
1700 /*
1701 * Compute current recieve queue length and fire RXDMT0 interrupt
1702 * if we are low on recieve buffers
1703 */
1704 uint32_t uRQueueLen = RDH>RDT ? RDLEN/sizeof(E1KRXDESC)-RDH+RDT : RDT-RDH;
1705 /*
1706 * The minimum threshold is controlled by RDMTS bits of RCTL:
1707 * 00 = 1/2 of RDLEN
1708 * 01 = 1/4 of RDLEN
1709 * 10 = 1/8 of RDLEN
1710 * 11 = reserved
1711 */
1712 uint32_t uMinRQThreshold = RDLEN / sizeof(E1KRXDESC) / (2 << GET_BITS(RCTL, RDMTS));
1713 if (uRQueueLen <= uMinRQThreshold)
1714 {
1715 E1kLogRel(("E1000: low on RX descriptors, RDH=%x RDT=%x len=%x threshold=%x\n", RDH, RDT, uRQueueLen, uMinRQThreshold));
1716 E1kLog2(("%s Low on RX descriptors, RDH=%x RDT=%x len=%x threshold=%x, raise an interrupt\n",
1717 INSTANCE(pState), RDH, RDT, uRQueueLen, uMinRQThreshold));
1718 E1K_INC_ISTAT_CNT(pState->uStatIntRXDMT0);
1719 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_RXDMT0);
1720 }
1721 //e1kCsLeave(pState);
1722}
1723
1724/**
1725 * Store a fragment of received packet that fits into the next available RX
1726 * buffer.
1727 *
1728 * @remarks Trigger the RXT0 interrupt if it is the last fragment of the packet.
1729 *
1730 * @param pState The device state structure.
1731 * @param pDesc The next available RX descriptor.
1732 * @param pvBuf The fragment.
1733 * @param cb The size of the fragment.
1734 */
1735static DECLCALLBACK(void) e1kStoreRxFragment(E1KSTATE *pState, E1KRXDESC *pDesc, const void *pvBuf, size_t cb)
1736{
1737 STAM_PROFILE_ADV_START(&pState->StatReceiveStore, a);
1738 E1kLog2(("%s e1kStoreRxFragment: store fragment of %04X at %016LX, EOP=%d\n", pState->szInstance, cb, pDesc->u64BufAddr, pDesc->status.fEOP));
1739 PDMDevHlpPhysWrite(pState->CTX_SUFF(pDevIns), pDesc->u64BufAddr, pvBuf, cb);
1740 pDesc->u16Length = (uint16_t)cb; Assert(pDesc->u16Length == cb);
1741 /* Write back the descriptor */
1742 PDMDevHlpPhysWrite(pState->CTX_SUFF(pDevIns), e1kDescAddr(RDBAH, RDBAL, RDH), pDesc, sizeof(E1KRXDESC));
1743 e1kPrintRDesc(pState, pDesc);
1744 E1kLogRel(("E1000: Wrote back RX desc, RDH=%x\n", RDH));
1745 /* Advance head */
1746 e1kAdvanceRDH(pState);
1747 //E1kLog2(("%s e1kStoreRxFragment: EOP=%d RDTR=%08X RADV=%08X\n", INSTANCE(pState), pDesc->fEOP, RDTR, RADV));
1748 if (pDesc->status.fEOP)
1749 {
1750 /* Complete packet has been stored -- it is time to let the guest know. */
1751#ifdef E1K_USE_RX_TIMERS
1752 if (RDTR)
1753 {
1754 /* Arm the timer to fire in RDTR usec (discard .024) */
1755 e1kArmTimer(pState, pState->CTX_SUFF(pRIDTimer), RDTR);
1756 /* If absolute timer delay is enabled and the timer is not running yet, arm it. */
1757 if (RADV != 0 && !TMTimerIsActive(pState->CTX_SUFF(pRADTimer)))
1758 e1kArmTimer(pState, pState->CTX_SUFF(pRADTimer), RADV);
1759 }
1760 else
1761 {
1762#endif
1763 /* 0 delay means immediate interrupt */
1764 E1K_INC_ISTAT_CNT(pState->uStatIntRx);
1765 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_RXT0);
1766#ifdef E1K_USE_RX_TIMERS
1767 }
1768#endif
1769 }
1770 STAM_PROFILE_ADV_STOP(&pState->StatReceiveStore, a);
1771}
1772
1773/**
1774 * Returns true if it is a broadcast packet.
1775 *
1776 * @returns true if destination address indicates broadcast.
1777 * @param pvBuf The ethernet packet.
1778 */
1779DECLINLINE(bool) e1kIsBroadcast(const void *pvBuf)
1780{
1781 static const uint8_t s_abBcastAddr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
1782 return memcmp(pvBuf, s_abBcastAddr, sizeof(s_abBcastAddr)) == 0;
1783}
1784
1785/**
1786 * Returns true if it is a multicast packet.
1787 *
1788 * @remarks returns true for broadcast packets as well.
1789 * @returns true if destination address indicates multicast.
1790 * @param pvBuf The ethernet packet.
1791 */
1792DECLINLINE(bool) e1kIsMulticast(const void *pvBuf)
1793{
1794 return (*(char*)pvBuf) & 1;
1795}
1796
1797/**
1798 * Pad and store received packet.
1799 *
1800 * @remarks Make sure that the packet appears to upper layer as one coming
1801 * from real Ethernet: pad it and insert FCS.
1802 *
1803 * @returns VBox status code.
1804 * @param pState The device state structure.
1805 * @param pvBuf The available data.
1806 * @param cb Number of bytes available in the buffer.
1807 * @param status Bit fields containing status info.
1808 */
1809static int e1kHandleRxPacket(E1KSTATE* pState, const void *pvBuf, size_t cb, E1KRXDST status)
1810{
1811 E1KRXDESC desc;
1812 uint8_t rxPacket[E1K_MAX_RX_PKT_SIZE];
1813 uint8_t *ptr = rxPacket;
1814
1815#ifndef E1K_GLOBAL_MUTEX
1816 int rc = e1kCsRxEnter(pState, VERR_SEM_BUSY);
1817 if (RT_UNLIKELY(rc != VINF_SUCCESS))
1818 return rc;
1819#endif
1820
1821#ifdef E1K_LEDS_WITH_MUTEX
1822 if (RT_LIKELY(e1kCsEnter(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
1823 {
1824#endif /* E1K_LEDS_WITH_MUTEX */
1825 pState->led.Asserted.s.fReading = 1;
1826 pState->led.Actual.s.fReading = 1;
1827#ifdef E1K_LEDS_WITH_MUTEX
1828 e1kCsLeave(pState);
1829 }
1830#endif /* E1K_LEDS_WITH_MUTEX */
1831
1832 Assert(cb <= E1K_MAX_RX_PKT_SIZE);
1833 memcpy(rxPacket, pvBuf, cb);
1834 /* Pad short packets */
1835 if (cb < 60)
1836 cb = 60;
1837 if (!(RCTL & RCTL_SECRC))
1838 {
1839 /* Add FCS if CRC stripping is not enabled */
1840 *(uint32_t*)(rxPacket + cb) = RTCrc32(rxPacket, cb);
1841 cb += sizeof(uint32_t);
1842 }
1843 /* Compute checksum of complete packet */
1844 uint16_t checksum = e1kCSum16(rxPacket + GET_BITS(RXCSUM, PCSS), cb);
1845
1846 /* Update stats */
1847 E1K_INC_CNT32(GPRC);
1848 if (e1kIsBroadcast(pvBuf))
1849 E1K_INC_CNT32(BPRC);
1850 else if (e1kIsMulticast(pvBuf))
1851 E1K_INC_CNT32(MPRC);
1852 /* Update octet receive counter */
1853 E1K_ADD_CNT64(GORCL, GORCH, cb);
1854 STAM_REL_COUNTER_ADD(&pState->StatReceiveBytes, cb);
1855 if (cb == 64)
1856 E1K_INC_CNT32(PRC64);
1857 else if (cb < 128)
1858 E1K_INC_CNT32(PRC127);
1859 else if (cb < 256)
1860 E1K_INC_CNT32(PRC255);
1861 else if (cb < 512)
1862 E1K_INC_CNT32(PRC511);
1863 else if (cb < 1024)
1864 E1K_INC_CNT32(PRC1023);
1865 else
1866 E1K_INC_CNT32(PRC1522);
1867
1868 E1K_INC_ISTAT_CNT(pState->uStatRxFrm);
1869
1870 if (RDH == RDT)
1871 {
1872 E1kLog(("%s Out of recieve buffers, dropping the packet",
1873 INSTANCE(pState)));
1874 }
1875 /* Store the packet to receive buffers */
1876 while (RDH != RDT)
1877 {
1878 /* Load the desciptor pointed by head */
1879 PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), e1kDescAddr(RDBAH, RDBAL, RDH),
1880 &desc, sizeof(desc));
1881 if (desc.u64BufAddr)
1882 {
1883 /* Update descriptor */
1884 desc.status = status;
1885 desc.u16Checksum = checksum;
1886 desc.status.fDD = true;
1887 //desc.fIXSM = true;
1888 desc.status.fIPCS = true;
1889 desc.status.fTCPCS = true;
1890 //desc.status.fIPE = false;
1891 //desc.status.fTCPE = false;
1892 if(cb > pState->u16RxBSize)
1893 {
1894 desc.status.fEOP = false;
1895 e1kStoreRxFragment(pState, &desc, ptr, pState->u16RxBSize);
1896 ptr += pState->u16RxBSize;
1897 cb -= pState->u16RxBSize;
1898 }
1899 else
1900 {
1901 desc.status.fEOP = true;
1902 e1kStoreRxFragment(pState, &desc, ptr, cb);
1903 break;
1904 }
1905 /* Note: RDH is advanced by e1kStoreRxFragment! */
1906 }
1907 else
1908 {
1909 desc.status.fDD = true;
1910 PDMDevHlpPhysWrite(pState->CTX_SUFF(pDevIns),
1911 e1kDescAddr(RDBAH, RDBAL, RDH),
1912 &desc, sizeof(desc));
1913 e1kAdvanceRDH(pState);
1914 }
1915 }
1916#ifdef E1K_LEDS_WITH_MUTEX
1917 if (RT_LIKELY(e1kCsEnter(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
1918 {
1919#endif /* E1K_LEDS_WITH_MUTEX */
1920 pState->led.Actual.s.fReading = 0;
1921#ifdef E1K_LEDS_WITH_MUTEX
1922 e1kCsLeave(pState);
1923 }
1924#endif /* E1K_LEDS_WITH_MUTEX */
1925
1926#ifndef E1K_GLOBAL_MUTEX
1927 PDMCritSectLeave(&pState->csRx);
1928#endif
1929
1930 return VINF_SUCCESS;
1931}
1932
1933#endif /* IN_RING3 */
1934
1935#if 0 /* unused */
1936/**
1937 * Read handler for Device Status register.
1938 *
1939 * Get the link status from PHY.
1940 *
1941 * @returns VBox status code.
1942 *
1943 * @param pState The device state structure.
1944 * @param offset Register offset in memory-mapped frame.
1945 * @param index Register index in register array.
1946 * @param mask Used to implement partial reads (8 and 16-bit).
1947 */
1948static int e1kRegReadCTRL(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
1949{
1950 E1kLog(("%s e1kRegReadCTRL: mdio dir=%s mdc dir=%s mdc=%d\n",
1951 INSTANCE(pState), (CTRL & CTRL_MDIO_DIR)?"OUT":"IN ",
1952 (CTRL & CTRL_MDC_DIR)?"OUT":"IN ", !!(CTRL & CTRL_MDC)));
1953 if ((CTRL & CTRL_MDIO_DIR) == 0 && (CTRL & CTRL_MDC))
1954 {
1955 /* MDC is high and MDIO pin is used for input, read MDIO pin from PHY */
1956 if (Phy::readMDIO(&pState->phy))
1957 *pu32Value = CTRL | CTRL_MDIO;
1958 else
1959 *pu32Value = CTRL & ~CTRL_MDIO;
1960 E1kLog(("%s e1kRegReadCTRL: Phy::readMDIO(%d)\n",
1961 INSTANCE(pState), !!(*pu32Value & CTRL_MDIO)));
1962 }
1963 else
1964 {
1965 /* MDIO pin is used for output, ignore it */
1966 *pu32Value = CTRL;
1967 }
1968 return VINF_SUCCESS;
1969}
1970#endif /* unused */
1971
1972/**
1973 * Write handler for Device Control register.
1974 *
1975 * Handles reset.
1976 *
1977 * @param pState The device state structure.
1978 * @param offset Register offset in memory-mapped frame.
1979 * @param index Register index in register array.
1980 * @param value The value to store.
1981 * @param mask Used to implement partial writes (8 and 16-bit).
1982 * @thread EMT
1983 */
1984static int e1kRegWriteCTRL(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
1985{
1986 int rc = VINF_SUCCESS;
1987
1988 if (value & CTRL_RESET)
1989 { /* RST */
1990 e1kHardReset(pState);
1991 }
1992 else
1993 {
1994 if (value & CTRL_SLU)
1995 {
1996 /* The driver indicates that we should bring up the link */
1997 STATUS |= STATUS_LU;
1998 }
1999 if (value & CTRL_VME)
2000 {
2001 E1kLog(("%s VLAN Mode is not supported yet!\n", INSTANCE(pState)));
2002 }
2003 E1kLog(("%s e1kRegWriteCTRL: mdio dir=%s mdc dir=%s mdc=%s mdio=%d\n",
2004 INSTANCE(pState), (value & CTRL_MDIO_DIR)?"OUT":"IN ",
2005 (value & CTRL_MDC_DIR)?"OUT":"IN ", (value & CTRL_MDC)?"HIGH":"LOW ", !!(value & CTRL_MDIO)));
2006 if (value & CTRL_MDC)
2007 {
2008 if (value & CTRL_MDIO_DIR)
2009 {
2010 E1kLog(("%s e1kRegWriteCTRL: Phy::writeMDIO(%d)\n", INSTANCE(pState), !!(value & CTRL_MDIO)));
2011 /* MDIO direction pin is set to output and MDC is high, write MDIO pin value to PHY */
2012 Phy::writeMDIO(&pState->phy, !!(value & CTRL_MDIO));
2013 }
2014 else
2015 {
2016 if (Phy::readMDIO(&pState->phy))
2017 value |= CTRL_MDIO;
2018 else
2019 value &= ~CTRL_MDIO;
2020 E1kLog(("%s e1kRegWriteCTRL: Phy::readMDIO(%d)\n",
2021 INSTANCE(pState), !!(value & CTRL_MDIO)));
2022 }
2023 }
2024 rc = e1kRegWriteDefault(pState, offset, index, value);
2025 }
2026
2027 return rc;
2028}
2029
2030/**
2031 * Write handler for EEPROM/Flash Control/Data register.
2032 *
2033 * Handles EEPROM access requests; forwards writes to EEPROM device if access has been granted.
2034 *
2035 * @param pState The device state structure.
2036 * @param offset Register offset in memory-mapped frame.
2037 * @param index Register index in register array.
2038 * @param value The value to store.
2039 * @param mask Used to implement partial writes (8 and 16-bit).
2040 * @thread EMT
2041 */
2042static int e1kRegWriteEECD(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2043{
2044#ifdef IN_RING3
2045 /* So far we are conserned with lower byte only */
2046 if ((EECD & EECD_EE_GNT) || pState->eChip == E1K_CHIP_82543GC)
2047 {
2048 /* Access to EEPROM granted -- forward 4-wire bits to EEPROM device */
2049 /* Note: 82543GC does not need to request EEPROM access */
2050 STAM_PROFILE_ADV_START(&pState->StatEEPROMWrite, a);
2051 pState->eeprom.write(value & EECD_EE_WIRES);
2052 STAM_PROFILE_ADV_STOP(&pState->StatEEPROMWrite, a);
2053 }
2054 if (value & EECD_EE_REQ)
2055 EECD |= EECD_EE_REQ|EECD_EE_GNT;
2056 else
2057 EECD &= ~EECD_EE_GNT;
2058 //e1kRegWriteDefault(pState, offset, index, value );
2059
2060 return VINF_SUCCESS;
2061#else /* !IN_RING3 */
2062 return VINF_IOM_HC_MMIO_WRITE;
2063#endif /* !IN_RING3 */
2064}
2065
2066/**
2067 * Read handler for EEPROM/Flash Control/Data register.
2068 *
2069 * Lower 4 bits come from EEPROM device if EEPROM access has been granted.
2070 *
2071 * @returns VBox status code.
2072 *
2073 * @param pState The device state structure.
2074 * @param offset Register offset in memory-mapped frame.
2075 * @param index Register index in register array.
2076 * @param mask Used to implement partial reads (8 and 16-bit).
2077 * @thread EMT
2078 */
2079static int e1kRegReadEECD(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
2080{
2081#ifdef IN_RING3
2082 uint32_t value;
2083 int rc = e1kRegReadDefault(pState, offset, index, &value);
2084 if (RT_SUCCESS(rc))
2085 {
2086 if ((value & EECD_EE_GNT) || pState->eChip == E1K_CHIP_82543GC)
2087 {
2088 /* Note: 82543GC does not need to request EEPROM access */
2089 /* Access to EEPROM granted -- get 4-wire bits to EEPROM device */
2090 STAM_PROFILE_ADV_START(&pState->StatEEPROMRead, a);
2091 value |= pState->eeprom.read();
2092 STAM_PROFILE_ADV_STOP(&pState->StatEEPROMRead, a);
2093 }
2094 *pu32Value = value;
2095 }
2096
2097 return rc;
2098#else /* !IN_RING3 */
2099 return VINF_IOM_HC_MMIO_READ;
2100#endif /* !IN_RING3 */
2101}
2102
2103/**
2104 * Write handler for MDI Control register.
2105 *
2106 * Handles PHY read/write requests; forwards requests to internal PHY device.
2107 *
2108 * @param pState The device state structure.
2109 * @param offset Register offset in memory-mapped frame.
2110 * @param index Register index in register array.
2111 * @param value The value to store.
2112 * @param mask Used to implement partial writes (8 and 16-bit).
2113 * @thread EMT
2114 */
2115static int e1kRegWriteMDIC(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2116{
2117 if (value & MDIC_INT_EN)
2118 {
2119 E1kLog(("%s ERROR! Interrupt at the end of an MDI cycle is not supported yet.\n",
2120 INSTANCE(pState)));
2121 }
2122 else if (value & MDIC_READY)
2123 {
2124 E1kLog(("%s ERROR! Ready bit is not reset by software during write operation.\n",
2125 INSTANCE(pState)));
2126 }
2127 else if (GET_BITS_V(value, MDIC, PHY) != 1)
2128 {
2129 E1kLog(("%s ERROR! Access to invalid PHY detected, phy=%d.\n",
2130 INSTANCE(pState), GET_BITS_V(value, MDIC, PHY)));
2131 }
2132 else
2133 {
2134 /* Store the value */
2135 e1kRegWriteDefault(pState, offset, index, value);
2136 STAM_COUNTER_INC(&pState->StatPHYAccesses);
2137 /* Forward op to PHY */
2138 if (value & MDIC_OP_READ)
2139 SET_BITS(MDIC, DATA, Phy::readRegister(&pState->phy, GET_BITS_V(value, MDIC, REG)));
2140 else
2141 Phy::writeRegister(&pState->phy, GET_BITS_V(value, MDIC, REG), value & MDIC_DATA_MASK);
2142 /* Let software know that we are done */
2143 MDIC |= MDIC_READY;
2144 }
2145
2146 return VINF_SUCCESS;
2147}
2148
2149/**
2150 * Write handler for Interrupt Cause Read register.
2151 *
2152 * Bits corresponding to 1s in 'value' will be cleared in ICR register.
2153 *
2154 * @param pState The device state structure.
2155 * @param offset Register offset in memory-mapped frame.
2156 * @param index Register index in register array.
2157 * @param value The value to store.
2158 * @param mask Used to implement partial writes (8 and 16-bit).
2159 * @thread EMT
2160 */
2161static int e1kRegWriteICR(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2162{
2163 ICR &= ~value;
2164
2165 return VINF_SUCCESS;
2166}
2167
2168/**
2169 * Read handler for Interrupt Cause Read register.
2170 *
2171 * Reading this register acknowledges all interrupts.
2172 *
2173 * @returns VBox status code.
2174 *
2175 * @param pState The device state structure.
2176 * @param offset Register offset in memory-mapped frame.
2177 * @param index Register index in register array.
2178 * @param mask Not used.
2179 * @thread EMT
2180 */
2181static int e1kRegReadICR(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
2182{
2183 int rc = e1kCsEnter(pState, VINF_IOM_HC_MMIO_READ);
2184 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2185 return rc;
2186
2187 uint32_t value = 0;
2188 rc = e1kRegReadDefault(pState, offset, index, &value);
2189 if (RT_SUCCESS(rc))
2190 {
2191 if (value)
2192 {
2193 if (IMS)
2194 {
2195 /*
2196 * Interrupts were enabled -- we are supposedly at the very
2197 * beginning of interrupt handler
2198 */
2199 E1kLogRel(("E1000: irq lowered, icr=0x%x\n", ICR));
2200 E1kLog(("%s e1kRegReadICR: Lowered IRQ (%08x)\n", INSTANCE(pState), ICR));
2201 /* Clear all pending interrupts */
2202 ICR = 0;
2203 pState->fIntRaised = false;
2204 /* Lower(0) INTA(0) */
2205 //PDMDevHlpPCISetIrqNoWait(pState->CTX_SUFF(pDevIns), 0, 0);
2206 //e1kMutexRelease(pState);
2207 PDMDevHlpPCISetIrq(pState->CTX_SUFF(pDevIns), 0, 0);
2208 //e1kMutexAcquire(pState, RT_SRC_POS);
2209
2210 pState->u64AckedAt = TMTimerGet(pState->CTX_SUFF(pIntTimer));
2211 if (pState->fIntMaskUsed)
2212 pState->fDelayInts = true;
2213 }
2214 else
2215 {
2216 /*
2217 * Interrupts are disabled -- in windows guests ICR read is done
2218 * just before re-enabling interrupts
2219 */
2220 E1kLog(("%s e1kRegReadICR: Suppressing auto-clear due to disabled interrupts (%08x)\n", INSTANCE(pState), ICR));
2221 }
2222 }
2223 *pu32Value = value;
2224 }
2225 e1kCsLeave(pState);
2226
2227 return rc;
2228}
2229
2230/**
2231 * Write handler for Interrupt Cause Set register.
2232 *
2233 * Bits corresponding to 1s in 'value' will be set in ICR register.
2234 *
2235 * @param pState The device state structure.
2236 * @param offset Register offset in memory-mapped frame.
2237 * @param index Register index in register array.
2238 * @param value The value to store.
2239 * @param mask Used to implement partial writes (8 and 16-bit).
2240 * @thread EMT
2241 */
2242static int e1kRegWriteICS(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2243{
2244 E1K_INC_ISTAT_CNT(pState->uStatIntICS);
2245 return e1kRaiseInterrupt(pState, VINF_IOM_HC_MMIO_WRITE, value & s_e1kRegMap[ICS_IDX].writable);
2246}
2247
2248/**
2249 * Write handler for Interrupt Mask Set register.
2250 *
2251 * Will trigger pending interrupts.
2252 *
2253 * @param pState The device state structure.
2254 * @param offset Register offset in memory-mapped frame.
2255 * @param index Register index in register array.
2256 * @param value The value to store.
2257 * @param mask Used to implement partial writes (8 and 16-bit).
2258 * @thread EMT
2259 */
2260static int e1kRegWriteIMS(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2261{
2262 IMS |= value;
2263 E1kLogRel(("E1000: irq enabled, RDH=%x RDT=%x TDH=%x TDT=%x\n", RDH, RDT, TDH, TDT));
2264 E1kLog(("%s e1kRegWriteIMS: IRQ enabled\n", INSTANCE(pState)));
2265 /* Mask changes, we need to raise pending interrupts. */
2266 if ((ICR & IMS) && !pState->fLocked)
2267 {
2268 E1kLog2(("%s e1kRegWriteIMS: IRQ pending (%08x), arming late int timer...\n",
2269 INSTANCE(pState), ICR));
2270 //TMTimerSet(pState->CTX_SUFF(pIntTimer), TMTimerFromNano(pState->CTX_SUFF(pIntTimer), ITR * 256) +
2271 // TMTimerGet(pState->CTX_SUFF(pIntTimer)));
2272 e1kRaiseInterrupt(pState, VERR_SEM_BUSY);
2273 }
2274
2275 return VINF_SUCCESS;
2276}
2277
2278/**
2279 * Write handler for Interrupt Mask Clear register.
2280 *
2281 * Bits corresponding to 1s in 'value' will be cleared in IMS register.
2282 *
2283 * @param pState The device state structure.
2284 * @param offset Register offset in memory-mapped frame.
2285 * @param index Register index in register array.
2286 * @param value The value to store.
2287 * @param mask Used to implement partial writes (8 and 16-bit).
2288 * @thread EMT
2289 */
2290static int e1kRegWriteIMC(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2291{
2292 int rc = e1kCsEnter(pState, VINF_IOM_HC_MMIO_WRITE);
2293 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2294 return rc;
2295 if (pState->fIntRaised)
2296 {
2297 /*
2298 * Technically we should reset fIntRaised in ICR read handler, but it will cause
2299 * Windows to freeze since it may receive an interrupt while still in the very beginning
2300 * of interrupt handler.
2301 */
2302 E1K_INC_ISTAT_CNT(pState->uStatIntLower);
2303 STAM_COUNTER_INC(&pState->StatIntsPrevented);
2304 E1kLogRel(("E1000: irq lowered (IMC), icr=0x%x\n", ICR));
2305 /* Lower(0) INTA(0) */
2306 PDMDevHlpPCISetIrq(pState->CTX_SUFF(pDevIns), 0, 0);
2307 pState->fIntRaised = false;
2308 E1kLog(("%s e1kRegWriteIMC: Lowered IRQ: ICR=%08x\n", INSTANCE(pState), ICR));
2309 }
2310 IMS &= ~value;
2311 E1kLog(("%s e1kRegWriteIMC: IRQ disabled\n", INSTANCE(pState)));
2312 e1kCsLeave(pState);
2313
2314 return VINF_SUCCESS;
2315}
2316
2317/**
2318 * Write handler for Receive Control register.
2319 *
2320 * @param pState The device state structure.
2321 * @param offset Register offset in memory-mapped frame.
2322 * @param index Register index in register array.
2323 * @param value The value to store.
2324 * @param mask Used to implement partial writes (8 and 16-bit).
2325 * @thread EMT
2326 */
2327static int e1kRegWriteRCTL(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2328{
2329 e1kRegWriteDefault(pState, offset, index, value);
2330 pState->u16RxBSize = 2048 >> GET_BITS(RCTL, BSIZE);
2331 if (RCTL & RCTL_BSEX)
2332 pState->u16RxBSize *= 16;
2333 E1kLog2(("%s e1kRegWriteRCTL: Setting receive buffer size to %d\n",
2334 INSTANCE(pState), pState->u16RxBSize));
2335
2336 return VINF_SUCCESS;
2337}
2338
2339/**
2340 * Write handler for Packet Buffer Allocation register.
2341 *
2342 * TXA = 64 - RXA.
2343 *
2344 * @param pState The device state structure.
2345 * @param offset Register offset in memory-mapped frame.
2346 * @param index Register index in register array.
2347 * @param value The value to store.
2348 * @param mask Used to implement partial writes (8 and 16-bit).
2349 * @thread EMT
2350 */
2351static int e1kRegWritePBA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2352{
2353 e1kRegWriteDefault(pState, offset, index, value);
2354 PBA_st->txa = 64 - PBA_st->rxa;
2355
2356 return VINF_SUCCESS;
2357}
2358
2359/**
2360 * Write handler for Receive Descriptor Tail register.
2361 *
2362 * @remarks Write into RDT forces switch to HC and signal to
2363 * e1kWaitReceiveAvail().
2364 *
2365 * @returns VBox status code.
2366 *
2367 * @param pState The device state structure.
2368 * @param offset Register offset in memory-mapped frame.
2369 * @param index Register index in register array.
2370 * @param value The value to store.
2371 * @param mask Used to implement partial writes (8 and 16-bit).
2372 * @thread EMT
2373 */
2374static int e1kRegWriteRDT(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2375{
2376#ifndef IN_RING3
2377 /* XXX */
2378// return VINF_IOM_HC_MMIO_WRITE;
2379#endif
2380 int rc = e1kCsRxEnter(pState, VINF_IOM_HC_MMIO_WRITE);
2381 if (RT_LIKELY(rc == VINF_SUCCESS))
2382 {
2383 E1kLog(("%s e1kRegWriteRDT\n", INSTANCE(pState)));
2384 rc = e1kRegWriteDefault(pState, offset, index, value);
2385 e1kCsRxLeave(pState);
2386 if (RT_SUCCESS(rc))
2387 {
2388#ifdef IN_RING3
2389 /* Signal that we have more receive descriptors avalable. */
2390 e1kWakeupReceive(pState->CTX_SUFF(pDevIns));
2391#else
2392 PPDMQUEUEITEMCORE pItem = PDMQueueAlloc(pState->CTX_SUFF(pCanRxQueue));
2393 if (pItem)
2394 PDMQueueInsert(pState->CTX_SUFF(pCanRxQueue), pItem);
2395#endif
2396 }
2397 }
2398 return rc;
2399}
2400
2401/**
2402 * Write handler for Receive Delay Timer register.
2403 *
2404 * @param pState The device state structure.
2405 * @param offset Register offset in memory-mapped frame.
2406 * @param index Register index in register array.
2407 * @param value The value to store.
2408 * @param mask Used to implement partial writes (8 and 16-bit).
2409 * @thread EMT
2410 */
2411static int e1kRegWriteRDTR(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
2412{
2413 e1kRegWriteDefault(pState, offset, index, value);
2414 if (value & RDTR_FPD)
2415 {
2416 /* Flush requested, cancel both timers and raise interrupt */
2417#ifdef E1K_USE_RX_TIMERS
2418 e1kCancelTimer(pState, pState->CTX_SUFF(pRIDTimer));
2419 e1kCancelTimer(pState, pState->CTX_SUFF(pRADTimer));
2420#endif
2421 E1K_INC_ISTAT_CNT(pState->uStatIntRDTR);
2422 return e1kRaiseInterrupt(pState, VINF_IOM_HC_MMIO_WRITE, ICR_RXT0);
2423 }
2424
2425 return VINF_SUCCESS;
2426}
2427
2428DECLINLINE(uint32_t) e1kGetTxLen(E1KSTATE* pState)
2429{
2430 /**
2431 * Make sure TDT won't change during computation. EMT may modify TDT at
2432 * any moment.
2433 */
2434 uint32_t tdt = TDT;
2435 return (TDH>tdt ? TDLEN/sizeof(E1KTXDESC) : 0) + tdt - TDH;
2436}
2437
2438#ifdef IN_RING3
2439#ifdef E1K_USE_TX_TIMERS
2440/**
2441 * Transmit Interrupt Delay Timer handler.
2442 *
2443 * @remarks We only get here when the timer expires.
2444 *
2445 * @param pDevIns Pointer to device instance structure.
2446 * @param pTimer Pointer to the timer.
2447 * @thread EMT
2448 */
2449static DECLCALLBACK(void) e1kTxIntDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer)
2450{
2451 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
2452
2453 if (RT_LIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2454 {
2455 E1K_INC_ISTAT_CNT(pState->uStatTID);
2456 /* Cancel absolute delay timer as we have already got attention */
2457#ifndef E1K_NO_TAD
2458 e1kCancelTimer(pState, pState->CTX_SUFF(pTADTimer));
2459#endif /* E1K_NO_TAD */
2460 e1kRaiseInterrupt(pState, ICR_TXDW);
2461 e1kMutexRelease(pState);
2462 }
2463}
2464
2465/**
2466 * Transmit Absolute Delay Timer handler.
2467 *
2468 * @remarks We only get here when the timer expires.
2469 *
2470 * @param pDevIns Pointer to device instance structure.
2471 * @param pTimer Pointer to the timer.
2472 * @thread EMT
2473 */
2474static DECLCALLBACK(void) e1kTxAbsDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer)
2475{
2476 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
2477
2478 if (RT_LIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2479 {
2480 E1K_INC_ISTAT_CNT(pState->uStatTAD);
2481 /* Cancel interrupt delay timer as we have already got attention */
2482 e1kCancelTimer(pState, pState->CTX_SUFF(pTIDTimer));
2483 e1kRaiseInterrupt(pState, ICR_TXDW);
2484 e1kMutexRelease(pState);
2485 }
2486}
2487#endif /* E1K_USE_TX_TIMERS */
2488
2489#ifdef E1K_USE_RX_TIMERS
2490/**
2491 * Receive Interrupt Delay Timer handler.
2492 *
2493 * @remarks We only get here when the timer expires.
2494 *
2495 * @param pDevIns Pointer to device instance structure.
2496 * @param pTimer Pointer to the timer.
2497 * @thread EMT
2498 */
2499static DECLCALLBACK(void) e1kRxIntDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer)
2500{
2501 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
2502
2503 if (RT_LIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2504 {
2505 E1K_INC_ISTAT_CNT(pState->uStatRID);
2506 /* Cancel absolute delay timer as we have already got attention */
2507 e1kCancelTimer(pState, pState->CTX_SUFF(pRADTimer));
2508 e1kRaiseInterrupt(pState, ICR_RXT0);
2509 e1kMutexRelease(pState);
2510 }
2511}
2512
2513/**
2514 * Receive Absolute Delay Timer handler.
2515 *
2516 * @remarks We only get here when the timer expires.
2517 *
2518 * @param pDevIns Pointer to device instance structure.
2519 * @param pTimer Pointer to the timer.
2520 * @thread EMT
2521 */
2522static DECLCALLBACK(void) e1kRxAbsDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer)
2523{
2524 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
2525
2526 if (RT_LIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2527 {
2528 E1K_INC_ISTAT_CNT(pState->uStatRAD);
2529 /* Cancel interrupt delay timer as we have already got attention */
2530 e1kCancelTimer(pState, pState->CTX_SUFF(pRIDTimer));
2531 e1kRaiseInterrupt(pState, ICR_RXT0);
2532 e1kMutexRelease(pState);
2533 }
2534}
2535#endif /* E1K_USE_RX_TIMERS */
2536
2537/**
2538 * Late Interrupt Timer handler.
2539 *
2540 * @param pDevIns Pointer to device instance structure.
2541 * @param pTimer Pointer to the timer.
2542 * @thread EMT
2543 */
2544static DECLCALLBACK(void) e1kLateIntTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer)
2545{
2546 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
2547
2548 STAM_PROFILE_ADV_START(&pState->StatLateIntTimer, a);
2549 if (RT_LIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2550 {
2551 STAM_COUNTER_INC(&pState->StatLateInts);
2552 E1K_INC_ISTAT_CNT(pState->uStatIntLate);
2553#if 0
2554 if (pState->iStatIntLost > -100)
2555 pState->iStatIntLost--;
2556#endif
2557 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, 0);
2558 e1kMutexRelease(pState);
2559 }
2560 STAM_PROFILE_ADV_STOP(&pState->StatLateIntTimer, a);
2561}
2562
2563/**
2564 * Link Up Timer handler.
2565 *
2566 * @param pDevIns Pointer to device instance structure.
2567 * @param pTimer Pointer to the timer.
2568 * @thread EMT
2569 */
2570static DECLCALLBACK(void) e1kLinkUpTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer)
2571{
2572 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
2573
2574 if (RT_LIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2575 {
2576 STATUS |= STATUS_LU;
2577 Phy::setLinkStatus(&pState->phy, true);
2578 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_LSC);
2579 e1kMutexRelease(pState);
2580 }
2581}
2582
2583
2584
2585
2586/**
2587 * Load transmit descriptor from guest memory.
2588 *
2589 * @param pState The device state structure.
2590 * @param pDesc Pointer to descriptor union.
2591 * @param addr Physical address in guest context.
2592 * @thread E1000_TX
2593 */
2594DECLINLINE(void) e1kLoadDesc(E1KSTATE* pState, E1KTXDESC* pDesc, RTGCPHYS addr)
2595{
2596 PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), addr, pDesc, sizeof(E1KTXDESC));
2597}
2598
2599/**
2600 * Write back transmit descriptor to guest memory.
2601 *
2602 * @param pState The device state structure.
2603 * @param pDesc Pointer to descriptor union.
2604 * @param addr Physical address in guest context.
2605 * @thread E1000_TX
2606 */
2607DECLINLINE(void) e1kWriteBackDesc(E1KSTATE* pState, E1KTXDESC* pDesc, RTGCPHYS addr)
2608{
2609 /* Only the last half of the descriptor has to be written back. */
2610 e1kPrintTDesc(pState, pDesc, "^^^");
2611 PDMDevHlpPhysWrite(pState->CTX_SUFF(pDevIns), addr, pDesc, sizeof(E1KTXDESC));
2612}
2613
2614/**
2615 * Transmit complete frame.
2616 *
2617 * @remarks Since we do not have real Ethernet medium between us and NAT (or
2618 * another connector) there is no need for padding and FCS.
2619 *
2620 * @param pState The device state structure.
2621 * @param pFrame Pointer to the frame buffer.
2622 * @param u16FrameLen Length of the frame.
2623 * @thread E1000_TX
2624 */
2625static void e1kTransmitFrame(E1KSTATE* pState, uint8_t *pFrame, uint16_t u16FrameLen)
2626{
2627/* E1kLog2(("%s <<< Outgoing packet. Dump follows: >>>\n"
2628 "%.*Rhxd\n"
2629 "%s <<<<<<<<<<<<< End of dump >>>>>>>>>>>>\n",
2630 INSTANCE(pState), u16FrameLen, pFrame, INSTANCE(pState)));*/
2631#ifdef E1K_LEDS_WITH_MUTEX
2632 if (RT_LIKELY(e1kCsEnter(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2633 {
2634#endif /* E1K_LEDS_WITH_MUTEX */
2635 pState->led.Asserted.s.fWriting = 1;
2636 pState->led.Actual.s.fWriting = 1;
2637#ifdef E1K_LEDS_WITH_MUTEX
2638 e1kCsLeave(pState);
2639 }
2640#endif /* E1K_LEDS_WITH_MUTEX */
2641 /* Update the stats */
2642 E1K_INC_CNT32(TPT);
2643 E1K_ADD_CNT64(TOTL, TOTH, u16FrameLen);
2644 E1K_INC_CNT32(GPTC);
2645 if (e1kIsBroadcast(pFrame))
2646 E1K_INC_CNT32(BPTC);
2647 else if (e1kIsMulticast(pFrame))
2648 E1K_INC_CNT32(MPTC);
2649 /* Update octet transmit counter */
2650 E1K_ADD_CNT64(GOTCL, GOTCH, u16FrameLen);
2651 if (pState->pDrv)
2652 {
2653 STAM_REL_COUNTER_ADD(&pState->StatTransmitBytes, u16FrameLen);
2654 }
2655 if (u16FrameLen == 64)
2656 E1K_INC_CNT32(PTC64);
2657 else if (u16FrameLen < 128)
2658 E1K_INC_CNT32(PTC127);
2659 else if (u16FrameLen < 256)
2660 E1K_INC_CNT32(PTC255);
2661 else if (u16FrameLen < 512)
2662 E1K_INC_CNT32(PTC511);
2663 else if (u16FrameLen < 1024)
2664 E1K_INC_CNT32(PTC1023);
2665 else
2666 E1K_INC_CNT32(PTC1522);
2667
2668 E1K_INC_ISTAT_CNT(pState->uStatTxFrm);
2669
2670 e1kPacketDump(pState, pFrame, u16FrameLen, "--> Outgoing");
2671
2672
2673 if (GET_BITS(RCTL, LBM) == RCTL_LBM_TCVR)
2674 {
2675 E1KRXDST status;
2676 status.fPIF = true;
2677 /* Loopback mode */
2678 e1kHandleRxPacket(pState, pFrame, u16FrameLen, status);
2679 }
2680 else if (pState->pDrv)
2681 {
2682 /* Release critical section to avoid deadlock in CanReceive */
2683 //e1kCsLeave(pState);
2684 e1kMutexRelease(pState);
2685 STAM_PROFILE_ADV_START(&pState->StatTransmitSend, a);
2686 int rc = pState->pDrv->pfnSend(pState->pDrv, pFrame, u16FrameLen);
2687 STAM_PROFILE_ADV_STOP(&pState->StatTransmitSend, a);
2688 if (rc != VINF_SUCCESS)
2689 {
2690 E1kLogRel(("E1000: ERROR! pfnSend returned %Rrc\n", rc));
2691 }
2692 e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS);
2693 //e1kCsEnter(pState, RT_SRC_POS);
2694 }
2695#ifdef E1K_LEDS_WITH_MUTEX
2696 if (RT_LIKELY(e1kCsEnter(pState, VERR_SEM_BUSY, RT_SRC_POS) == VINF_SUCCESS))
2697 {
2698#endif /* E1K_LEDS_WITH_MUTEX */
2699 pState->led.Actual.s.fWriting = 0;
2700#ifdef E1K_LEDS_WITH_MUTEX
2701 e1kCsLeave(pState);
2702 }
2703#endif /* E1K_LEDS_WITH_MUTEX */
2704}
2705
2706/**
2707 * Compute and write checksum at the specified offset.
2708 *
2709 * @param pState The device state structure.
2710 * @param pPkt Pointer to the packet.
2711 * @param u16PktLen Total length of the packet.
2712 * @param cso Offset in packet to write checksum at.
2713 * @param css Offset in packet to start computing
2714 * checksum from.
2715 * @param cse Offset in packet to stop computing
2716 * checksum at.
2717 * @thread E1000_TX
2718 */
2719static void e1kInsertChecksum(E1KSTATE* pState, uint8_t *pPkt, uint16_t u16PktLen, uint8_t cso, uint8_t css, uint16_t cse)
2720{
2721 if (cso > u16PktLen)
2722 {
2723 E1kLog2(("%s cso(%X) is greater than packet length(%X), checksum is not inserted\n",
2724 INSTANCE(pState), cso, u16PktLen));
2725 return;
2726 }
2727
2728 if (cse == 0)
2729 cse = u16PktLen - 1;
2730 E1kLog2(("%s Inserting csum: %04X at %02X, old value: %04X\n", INSTANCE(pState),
2731 e1kCSum16(pPkt + css, cse - css + 1), cso,
2732 *(uint16_t*)(pPkt + cso)));
2733 *(uint16_t*)(pPkt + cso) = e1kCSum16(pPkt + css, cse - css + 1);
2734}
2735
2736/**
2737 * Add a part of descriptor's buffer to transmit frame.
2738 *
2739 * @remarks data.u64BufAddr is used uncoditionally for both data
2740 * and legacy descriptors since it is identical to
2741 * legacy.u64BufAddr.
2742 *
2743 * @param pState The device state structure.
2744 * @param pDesc Pointer to the descriptor to transmit.
2745 * @param u16Len Length of buffer to the end of segment.
2746 * @param fSend Force packet sending.
2747 * @thread E1000_TX
2748 */
2749static void e1kAddSegment(E1KSTATE* pState, E1KTXDESC* pDesc, uint16_t u16Len, bool fSend)
2750{
2751 /* TCP header being transmitted */
2752 struct E1kTcpHeader *pTcpHdr = (struct E1kTcpHeader *)
2753 (pState->aTxPacket + pState->contextTSE.tu.u8CSS);
2754 /* IP header being transmitted */
2755 struct E1kIpHeader *pIpHdr = (struct E1kIpHeader *)
2756 (pState->aTxPacket + pState->contextTSE.ip.u8CSS);
2757
2758 E1kLog3(("%s e1kAddSegment: Length=%x, remaining payload=%x, header=%x, send=%s\n",
2759 INSTANCE(pState), u16Len, pState->u32PayRemain, pState->u16HdrRemain,
2760 fSend ? "true" : "false"));
2761 Assert(pState->u32PayRemain + pState->u16HdrRemain > 0);
2762
2763 PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), pDesc->data.u64BufAddr,
2764 pState->aTxPacket + pState->u16TxPktLen, u16Len);
2765 E1kLog3(("%s Dump of the segment:\n"
2766 "%.*Rhxd\n"
2767 "%s --- End of dump ---\n",
2768 INSTANCE(pState), u16Len, pState->aTxPacket + pState->u16TxPktLen, INSTANCE(pState)));
2769 pState->u16TxPktLen += u16Len;
2770 E1kLog3(("%s e1kAddSegment: pState->u16TxPktLen=%x\n",
2771 INSTANCE(pState), pState->u16TxPktLen));
2772 if (pState->u16HdrRemain > 0)
2773 {
2774 /* The header was not complete, check if it is now */
2775 if (u16Len >= pState->u16HdrRemain)
2776 {
2777 /* The rest is payload */
2778 u16Len -= pState->u16HdrRemain;
2779 pState->u16HdrRemain = 0;
2780 /* Save partial checksum and flags */
2781 pState->u32SavedCsum = pTcpHdr->chksum;
2782 pState->u16SavedFlags = pTcpHdr->hdrlen_flags;
2783 /* Clear FIN and PSH flags now and set them only in the last segment */
2784 pTcpHdr->hdrlen_flags &= ~htons(E1K_TCP_FIN | E1K_TCP_PSH);
2785 }
2786 else
2787 {
2788 /* Still not */
2789 pState->u16HdrRemain -= u16Len;
2790 E1kLog3(("%s e1kAddSegment: Header is still incomplete, 0x%x bytes remain.\n",
2791 INSTANCE(pState), pState->u16HdrRemain));
2792 return;
2793 }
2794 }
2795
2796 pState->u32PayRemain -= u16Len;
2797
2798 if (fSend)
2799 {
2800 /* Leave ethernet header intact */
2801 /* IP Total Length = payload + headers - ethernet header */
2802 pIpHdr->total_len = htons(pState->u16TxPktLen - pState->contextTSE.ip.u8CSS);
2803 E1kLog3(("%s e1kAddSegment: End of packet, pIpHdr->total_len=%x\n",
2804 INSTANCE(pState), ntohs(pIpHdr->total_len)));
2805 /* Update IP Checksum */
2806 pIpHdr->chksum = 0;
2807 e1kInsertChecksum(pState, pState->aTxPacket, pState->u16TxPktLen,
2808 pState->contextTSE.ip.u8CSO,
2809 pState->contextTSE.ip.u8CSS,
2810 pState->contextTSE.ip.u16CSE);
2811
2812 /* Update TCP flags */
2813 /* Restore original FIN and PSH flags for the last segment */
2814 if (pState->u32PayRemain == 0)
2815 {
2816 pTcpHdr->hdrlen_flags = pState->u16SavedFlags;
2817 E1K_INC_CNT32(TSCTC);
2818 }
2819 /* Add TCP length to partial pseudo header sum */
2820 uint32_t csum = pState->u32SavedCsum
2821 + htons(pState->u16TxPktLen - pState->contextTSE.tu.u8CSS);
2822 while (csum >> 16)
2823 csum = (csum >> 16) + (csum & 0xFFFF);
2824 pTcpHdr->chksum = csum;
2825 /* Compute final checksum */
2826 e1kInsertChecksum(pState, pState->aTxPacket, pState->u16TxPktLen,
2827 pState->contextTSE.tu.u8CSO,
2828 pState->contextTSE.tu.u8CSS,
2829 pState->contextTSE.tu.u16CSE);
2830 e1kTransmitFrame(pState, pState->aTxPacket, pState->u16TxPktLen);
2831 /* Update Sequence Number */
2832 pTcpHdr->seqno = htonl(ntohl(pTcpHdr->seqno) + pState->u16TxPktLen
2833 - pState->contextTSE.dw3.u8HDRLEN);
2834 /* Increment IP identification */
2835 pIpHdr->ident = htons(ntohs(pIpHdr->ident) + 1);
2836 }
2837}
2838
2839/**
2840 * Add descriptor's buffer to transmit frame.
2841 *
2842 * @remarks data.u64BufAddr is used uncoditionally for both data
2843 * and legacy descriptors since it is identical to
2844 * legacy.u64BufAddr.
2845 *
2846 * @param pState The device state structure.
2847 * @param pDesc Pointer to the descriptor to transmit.
2848 * @param u16PartLen Length of descriptor's buffer.
2849 * @thread E1000_TX
2850 */
2851static bool e1kAddToFrame(E1KSTATE* pState, E1KTXDESC* pDesc, uint32_t u32PartLen)
2852{
2853 if (e1kGetDescType(pDesc) == E1K_DTYP_DATA && pDesc->data.cmd.fTSE)
2854 {
2855 uint16_t u16MaxPktLen = pState->contextTSE.dw3.u8HDRLEN + pState->contextTSE.dw3.u16MSS;
2856 Assert(u16MaxPktLen != 0);
2857 Assert(u16MaxPktLen < E1K_MAX_TX_PKT_SIZE);
2858
2859 do {
2860 /* Calculate how many bytes have left in this TCP segment */
2861 uint32_t uLen = u16MaxPktLen - pState->u16TxPktLen;
2862 if (uLen > u32PartLen)
2863 {
2864 /* This descriptor fits completely into current segment */
2865 uLen = u32PartLen;
2866 e1kAddSegment(pState, pDesc, uLen, pDesc->data.cmd.fEOP);
2867 }
2868 else
2869 {
2870 e1kAddSegment(pState, pDesc, uLen, true);
2871 /*
2872 * Rewind the packet tail pointer to the beginning of payload,
2873 * so we continue writing right beyond the header.
2874 */
2875 pState->u16TxPktLen = pState->contextTSE.dw3.u8HDRLEN;
2876 }
2877 pDesc->data.u64BufAddr += uLen;
2878 u32PartLen -= uLen;
2879 } while (u32PartLen > 0);
2880 if (pDesc->data.cmd.fEOP)
2881 {
2882 /* End of packet, next segment will contain header. */
2883 pState->u16TxPktLen = 0;
2884 }
2885 return false;
2886 }
2887 else
2888 {
2889 if (u32PartLen + pState->u16TxPktLen > E1K_MAX_TX_PKT_SIZE)
2890 {
2891 E1kLog(("%s Transmit packet is too large: %d > %d(max)\n",
2892 INSTANCE(pState), u32PartLen + pState->u16TxPktLen, E1K_MAX_TX_PKT_SIZE));
2893 return false;
2894 }
2895 else
2896 {
2897 PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), pDesc->data.u64BufAddr, pState->aTxPacket + pState->u16TxPktLen, u32PartLen);
2898 pState->u16TxPktLen += u32PartLen;
2899 }
2900 }
2901
2902 return true;
2903}
2904
2905
2906/**
2907 * Write the descriptor back to guest memory and notify the guest.
2908 *
2909 * @param pState The device state structure.
2910 * @param pDesc Pointer to the descriptor have been transmited.
2911 * @param addr Physical address of the descriptor in guest memory.
2912 * @thread E1000_TX
2913 */
2914static void e1kDescReport(E1KSTATE* pState, E1KTXDESC* pDesc, RTGCPHYS addr)
2915{
2916 /*
2917 * We fake descriptor write-back bursting. Descriptors are written back as they are
2918 * processed.
2919 */
2920 /* Let's pretend we process descriptors. Write back with DD set. */
2921 if (pDesc->legacy.cmd.fRS || (GET_BITS(TXDCTL, WTHRESH) > 0))
2922 {
2923 pDesc->legacy.dw3.fDD = 1; /* Descriptor Done */
2924 e1kWriteBackDesc(pState, pDesc, addr);
2925 if (pDesc->legacy.cmd.fEOP)
2926 {
2927#ifdef E1K_USE_TX_TIMERS
2928 if (pDesc->legacy.cmd.fIDE)
2929 {
2930 E1K_INC_ISTAT_CNT(pState->uStatTxIDE);
2931 //if (pState->fIntRaised)
2932 //{
2933 // /* Interrupt is already pending, no need for timers */
2934 // ICR |= ICR_TXDW;
2935 //}
2936 //else {
2937 /* Arm the timer to fire in TIVD usec (discard .024) */
2938 e1kArmTimer(pState, pState->CTX_SUFF(pTIDTimer), TIDV);
2939#ifndef E1K_NO_TAD
2940 /* If absolute timer delay is enabled and the timer is not running yet, arm it. */
2941 E1kLog2(("%s Checking if TAD timer is running\n",
2942 INSTANCE(pState)));
2943 if (TADV != 0 && !TMTimerIsActive(pState->CTX_SUFF(pTADTimer)))
2944 e1kArmTimer(pState, pState->CTX_SUFF(pTADTimer), TADV);
2945#endif /* E1K_NO_TAD */
2946 }
2947 else
2948 {
2949 E1kLog2(("%s No IDE set, cancel TAD timer and raise interrupt\n",
2950 INSTANCE(pState)));
2951#ifndef E1K_NO_TAD
2952 /* Cancel both timers if armed and fire immediately. */
2953 e1kCancelTimer(pState, pState->CTX_SUFF(pTADTimer));
2954#endif /* E1K_NO_TAD */
2955#endif /* E1K_USE_TX_TIMERS */
2956 E1K_INC_ISTAT_CNT(pState->uStatIntTx);
2957 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_TXDW);
2958#ifdef E1K_USE_TX_TIMERS
2959 }
2960#endif /* E1K_USE_TX_TIMERS */
2961 }
2962 }
2963 else
2964 {
2965 E1K_INC_ISTAT_CNT(pState->uStatTxNoRS);
2966 }
2967}
2968
2969/**
2970 * Process Transmit Descriptor.
2971 *
2972 * E1000 supports three types of transmit descriptors:
2973 * - legacy data descriptors of older format (context-less).
2974 * - data the same as legacy but providing new offloading capabilities.
2975 * - context sets up the context for following data descriptors.
2976 *
2977 * @param pState The device state structure.
2978 * @param pDesc Pointer to descriptor union.
2979 * @param addr Physical address of descriptor in guest memory.
2980 * @thread E1000_TX
2981 */
2982static void e1kXmitDesc(E1KSTATE* pState, E1KTXDESC* pDesc, RTGCPHYS addr)
2983{
2984 e1kPrintTDesc(pState, pDesc, "vvv");
2985
2986#ifdef E1K_USE_TX_TIMERS
2987 e1kCancelTimer(pState, pState->CTX_SUFF(pTIDTimer));
2988#endif /* E1K_USE_TX_TIMERS */
2989
2990 switch (e1kGetDescType(pDesc))
2991 {
2992 case E1K_DTYP_CONTEXT:
2993 if (pDesc->context.dw2.fTSE)
2994 {
2995 pState->contextTSE = pDesc->context;
2996 pState->u32PayRemain = pDesc->context.dw2.u20PAYLEN;
2997 pState->u16HdrRemain = pDesc->context.dw3.u8HDRLEN;
2998 }
2999 else
3000 pState->contextNormal = pDesc->context;
3001 E1kLog2(("%s %s context updated: IP CSS=%02X, IP CSO=%02X, IP CSE=%04X"
3002 ", TU CSS=%02X, TU CSO=%02X, TU CSE=%04X\n", INSTANCE(pState),
3003 pDesc->context.dw2.fTSE ? "TSE" : "Normal",
3004 pDesc->context.ip.u8CSS,
3005 pDesc->context.ip.u8CSO,
3006 pDesc->context.ip.u16CSE,
3007 pDesc->context.tu.u8CSS,
3008 pDesc->context.tu.u8CSO,
3009 pDesc->context.tu.u16CSE));
3010 E1K_INC_ISTAT_CNT(pState->uStatDescCtx);
3011 e1kDescReport(pState, pDesc, addr);
3012 break;
3013 case E1K_DTYP_DATA:
3014 if (pDesc->data.cmd.u20DTALEN == 0 || pDesc->data.u64BufAddr == 0)
3015 {
3016 E1kLog2(("% Empty descriptor, skipped.\n", INSTANCE(pState)));
3017 break;
3018 }
3019 STAM_COUNTER_INC(pDesc->data.cmd.fTSE?
3020 &pState->StatTxDescTSEData:
3021 &pState->StatTxDescData);
3022 STAM_PROFILE_ADV_START(&pState->StatTransmit, a);
3023 /* IXSM and TXSM options are valid in the first fragment only */
3024 if (pState->u16TxPktLen == 0)
3025 {
3026 pState->fIPcsum = pDesc->data.dw3.fIXSM;
3027 pState->fTCPcsum = pDesc->data.dw3.fTXSM;
3028 E1kLog2(("%s Saving checksum flags:%s%s\n", INSTANCE(pState),
3029 pState->fIPcsum ? " IP" : "",
3030 pState->fTCPcsum ? " TCP/UDP" : ""));
3031 }
3032 E1K_INC_ISTAT_CNT(pState->uStatDescDat);
3033 if (e1kAddToFrame(pState, pDesc, pDesc->data.cmd.u20DTALEN) && pDesc->data.cmd.fEOP)
3034 {
3035 if (!pDesc->data.cmd.fTSE)
3036 {
3037 /*
3038 * We only insert checksums here if this packet was not segmented,
3039 * otherwise it has already been taken care of by e1kAddSegment().
3040 */
3041 if (pState->fIPcsum)
3042 e1kInsertChecksum(pState, pState->aTxPacket, pState->u16TxPktLen,
3043 pState->contextNormal.ip.u8CSO,
3044 pState->contextNormal.ip.u8CSS,
3045 pState->contextNormal.ip.u16CSE);
3046 if (pState->fTCPcsum)
3047 e1kInsertChecksum(pState, pState->aTxPacket, pState->u16TxPktLen,
3048 pState->contextNormal.tu.u8CSO,
3049 pState->contextNormal.tu.u8CSS,
3050 pState->contextNormal.tu.u16CSE);
3051 }
3052 e1kTransmitFrame(pState, pState->aTxPacket, pState->u16TxPktLen);
3053 /* Reset transmit packet storage. */
3054 pState->u16TxPktLen = 0;
3055 }
3056 e1kDescReport(pState, pDesc, addr);
3057 STAM_PROFILE_ADV_STOP(&pState->StatTransmit, a);
3058 break;
3059 case E1K_DTYP_LEGACY:
3060 if (pDesc->legacy.cmd.u16Length == 0 || pDesc->legacy.u64BufAddr == 0)
3061 {
3062 E1kLog(("%s Empty descriptor, skipped.\n", INSTANCE(pState)));
3063 break;
3064 }
3065 STAM_COUNTER_INC(&pState->StatTxDescLegacy);
3066 STAM_PROFILE_ADV_START(&pState->StatTransmit, a);
3067 if (e1kAddToFrame(pState, pDesc, pDesc->legacy.cmd.u16Length))
3068 {
3069 E1K_INC_ISTAT_CNT(pState->uStatDescLeg);
3070 /** @todo Offload processing goes here. */
3071 if (pDesc->legacy.cmd.fEOP)
3072 {
3073 e1kTransmitFrame(pState, pState->aTxPacket, pState->u16TxPktLen);
3074 /* Reset transmit packet storage. */
3075 pState->u16TxPktLen = 0;
3076 }
3077 }
3078 e1kDescReport(pState, pDesc, addr);
3079 STAM_PROFILE_ADV_STOP(&pState->StatTransmit, a);
3080 break;
3081 default:
3082 E1kLog(("%s ERROR Unsupported transmit descriptor type: 0x%04x\n",
3083 INSTANCE(pState), e1kGetDescType(pDesc)));
3084 break;
3085 }
3086}
3087
3088/**
3089 * Wake up callback for transmission thread.
3090 *
3091 * @returns VBox status code. Returning failure will naturally terminate the thread.
3092 * @param pDevIns The pcnet device instance.
3093 * @param pThread The thread.
3094 */
3095static DECLCALLBACK(int) e1kTxThreadWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
3096{
3097 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
3098 int rc = RTSemEventSignal(pState->hTxSem);
3099 AssertRC(rc);
3100 return VINF_SUCCESS;
3101}
3102
3103/**
3104 * I/O thread for packet transmission.
3105 *
3106 * @returns VBox status code. Returning failure will naturally terminate the thread.
3107 * @param pDevIns Pointer to device instance structure.
3108 * @param pThread The thread.
3109 * @thread E1000_TX
3110 */
3111static DECLCALLBACK(int) e1kTxThread(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
3112{
3113 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
3114
3115 while (pThread->enmState == PDMTHREADSTATE_RUNNING)
3116 {
3117 int rc = RTSemEventWait(pState->hTxSem, RT_INDEFINITE_WAIT);
3118 AssertRCReturn(rc, rc);
3119 if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING))
3120 break;
3121
3122 if (pThread->enmState == PDMTHREADSTATE_RUNNING)
3123 {
3124 E1KTXDESC desc;
3125 rc = e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS);
3126 AssertRCReturn(rc, rc);
3127 /* Do not process descriptors in locked state */
3128 while (TDH != TDT && !pState->fLocked)
3129 {
3130 E1kLog3(("%s About to process new TX descriptor at %08x%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n",
3131 INSTANCE(pState), TDBAH, TDBAL + TDH * sizeof(desc), TDLEN, TDH, TDT));
3132 //if (!e1kCsEnter(pState, RT_SRC_POS))
3133 // return VERR_PERMISSION_DENIED;
3134 e1kLoadDesc(pState, &desc, ((uint64_t)TDBAH << 32) + TDBAL + TDH * sizeof(desc));
3135 e1kXmitDesc(pState, &desc, ((uint64_t)TDBAH << 32) + TDBAL + TDH * sizeof(desc));
3136 if (++TDH * sizeof(desc) >= TDLEN)
3137 TDH = 0;
3138 if (e1kGetTxLen(pState) <= GET_BITS(TXDCTL, LWTHRESH)*8)
3139 {
3140 E1kLog2(("%s Low on transmit descriptors, raise ICR.TXD_LOW, len=%x thresh=%x\n",
3141 INSTANCE(pState), e1kGetTxLen(pState), GET_BITS(TXDCTL, LWTHRESH)*8));
3142 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_TXD_LOW);
3143 }
3144 STAM_PROFILE_ADV_STOP(&pState->StatTransmit, a);
3145 //e1kCsLeave(pState);
3146 }
3147 /// @todo: uncomment: pState->uStatIntTXQE++;
3148 /// @todo: uncomment: e1kRaiseInterrupt(pState, ICR_TXQE);
3149 e1kMutexRelease(pState);
3150 }
3151 }
3152 return VINF_SUCCESS;
3153}
3154
3155/**
3156 * Callback for consuming from transmit queue. It gets called in R3 whenever
3157 * we enqueue something in R0/GC.
3158 *
3159 * @returns true
3160 * @param pDevIns Pointer to device instance structure.
3161 * @param pItem Pointer to the element being dequeued (not used).
3162 * @thread ???
3163 */
3164static DECLCALLBACK(bool) e1kTxQueueConsumer(PPDMDEVINS pDevIns, PPDMQUEUEITEMCORE pItem)
3165{
3166 NOREF(pItem);
3167 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
3168 E1kLog2(("%s e1kTxQueueConsumer: Waking up TX thread...\n", INSTANCE(pState)));
3169 int rc = RTSemEventSignal(pState->hTxSem);
3170 AssertRC(rc);
3171 return true;
3172}
3173
3174/**
3175 * Handler for the wakeup signaller queue.
3176 */
3177static DECLCALLBACK(bool) e1kCanRxQueueConsumer(PPDMDEVINS pDevIns, PPDMQUEUEITEMCORE pItem)
3178{
3179 e1kWakeupReceive(pDevIns);
3180 return true;
3181}
3182
3183#endif /* IN_RING3 */
3184
3185/**
3186 * Write handler for Transmit Descriptor Tail register.
3187 *
3188 * @param pState The device state structure.
3189 * @param offset Register offset in memory-mapped frame.
3190 * @param index Register index in register array.
3191 * @param value The value to store.
3192 * @param mask Used to implement partial writes (8 and 16-bit).
3193 * @thread EMT
3194 */
3195static int e1kRegWriteTDT(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
3196{
3197#ifndef IN_RING3
3198// return VINF_IOM_HC_MMIO_WRITE;
3199#endif
3200 int rc = e1kCsTxEnter(pState, VINF_IOM_HC_MMIO_WRITE);
3201 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3202 return rc;
3203 rc = e1kRegWriteDefault(pState, offset, index, value);
3204 /* All descriptors starting with head and not including tail belong to us. */
3205 /* Process them. */
3206 E1kLog2(("%s e1kRegWriteTDT: TDBAL=%08x, TDBAH=%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n",
3207 INSTANCE(pState), TDBAL, TDBAH, TDLEN, TDH, TDT));
3208 /* Ignore TDT writes when the link is down. */
3209 if (TDH != TDT && (STATUS & STATUS_LU))
3210 {
3211 E1kLogRel(("E1000: TDT write: %d descriptors to process\n", e1kGetTxLen(pState)));
3212 E1kLog(("%s e1kRegWriteTDT: %d descriptors to process, waking up E1000_TX thread\n",
3213 INSTANCE(pState), e1kGetTxLen(pState)));
3214#ifdef IN_RING3
3215 rc = RTSemEventSignal(pState->hTxSem);
3216 AssertRC(rc);
3217#else
3218 PPDMQUEUEITEMCORE pItem = PDMQueueAlloc(pState->CTX_SUFF(pTxQueue));
3219 if (RT_UNLIKELY(pItem))
3220 PDMQueueInsert(pState->CTX_SUFF(pTxQueue), pItem);
3221#endif /* !IN_RING3 */
3222
3223 }
3224 e1kCsTxLeave(pState);
3225
3226 return rc;
3227}
3228
3229/**
3230 * Write handler for Multicast Table Array registers.
3231 *
3232 * @param pState The device state structure.
3233 * @param offset Register offset in memory-mapped frame.
3234 * @param index Register index in register array.
3235 * @param value The value to store.
3236 * @thread EMT
3237 */
3238static int e1kRegWriteMTA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
3239{
3240 AssertReturn(offset - s_e1kRegMap[index].offset < sizeof(pState->auMTA), VERR_DEV_IO_ERROR);
3241 pState->auMTA[(offset - s_e1kRegMap[index].offset)/sizeof(pState->auMTA[0])] = value;
3242
3243 return VINF_SUCCESS;
3244}
3245
3246/**
3247 * Read handler for Multicast Table Array registers.
3248 *
3249 * @returns VBox status code.
3250 *
3251 * @param pState The device state structure.
3252 * @param offset Register offset in memory-mapped frame.
3253 * @param index Register index in register array.
3254 * @thread EMT
3255 */
3256static int e1kRegReadMTA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
3257{
3258 AssertReturn(offset - s_e1kRegMap[index].offset< sizeof(pState->auMTA), VERR_DEV_IO_ERROR);
3259 *pu32Value = pState->auMTA[(offset - s_e1kRegMap[index].offset)/sizeof(pState->auMTA[0])];
3260
3261 return VINF_SUCCESS;
3262}
3263
3264/**
3265 * Write handler for Receive Address registers.
3266 *
3267 * @param pState The device state structure.
3268 * @param offset Register offset in memory-mapped frame.
3269 * @param index Register index in register array.
3270 * @param value The value to store.
3271 * @thread EMT
3272 */
3273static int e1kRegWriteRA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
3274{
3275 AssertReturn(offset - s_e1kRegMap[index].offset < sizeof(pState->aRecAddr.au32), VERR_DEV_IO_ERROR);
3276 pState->aRecAddr.au32[(offset - s_e1kRegMap[index].offset)/sizeof(pState->aRecAddr.au32[0])] = value;
3277
3278 return VINF_SUCCESS;
3279}
3280
3281/**
3282 * Read handler for Receive Address registers.
3283 *
3284 * @returns VBox status code.
3285 *
3286 * @param pState The device state structure.
3287 * @param offset Register offset in memory-mapped frame.
3288 * @param index Register index in register array.
3289 * @thread EMT
3290 */
3291static int e1kRegReadRA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
3292{
3293 AssertReturn(offset - s_e1kRegMap[index].offset< sizeof(pState->aRecAddr.au32), VERR_DEV_IO_ERROR);
3294 *pu32Value = pState->aRecAddr.au32[(offset - s_e1kRegMap[index].offset)/sizeof(pState->aRecAddr.au32[0])];
3295
3296 return VINF_SUCCESS;
3297}
3298
3299/**
3300 * Write handler for VLAN Filter Table Array registers.
3301 *
3302 * @param pState The device state structure.
3303 * @param offset Register offset in memory-mapped frame.
3304 * @param index Register index in register array.
3305 * @param value The value to store.
3306 * @thread EMT
3307 */
3308static int e1kRegWriteVFTA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
3309{
3310 AssertReturn(offset - s_e1kRegMap[index].offset < sizeof(pState->auVFTA), VINF_SUCCESS);
3311 pState->auVFTA[(offset - s_e1kRegMap[index].offset)/sizeof(pState->auVFTA[0])] = value;
3312
3313 return VINF_SUCCESS;
3314}
3315
3316/**
3317 * Read handler for VLAN Filter Table Array registers.
3318 *
3319 * @returns VBox status code.
3320 *
3321 * @param pState The device state structure.
3322 * @param offset Register offset in memory-mapped frame.
3323 * @param index Register index in register array.
3324 * @thread EMT
3325 */
3326static int e1kRegReadVFTA(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
3327{
3328 AssertReturn(offset - s_e1kRegMap[index].offset< sizeof(pState->auVFTA), VERR_DEV_IO_ERROR);
3329 *pu32Value = pState->auVFTA[(offset - s_e1kRegMap[index].offset)/sizeof(pState->auVFTA[0])];
3330
3331 return VINF_SUCCESS;
3332}
3333
3334/**
3335 * Read handler for unimplemented registers.
3336 *
3337 * Merely reports reads from unimplemented registers.
3338 *
3339 * @returns VBox status code.
3340 *
3341 * @param pState The device state structure.
3342 * @param offset Register offset in memory-mapped frame.
3343 * @param index Register index in register array.
3344 * @thread EMT
3345 */
3346
3347static int e1kRegReadUnimplemented(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
3348{
3349 E1kLog(("%s At %08X read (00000000) attempt from unimplemented register %s (%s)\n",
3350 INSTANCE(pState), offset, s_e1kRegMap[index].abbrev, s_e1kRegMap[index].name));
3351 *pu32Value = 0;
3352
3353 return VINF_SUCCESS;
3354}
3355
3356/**
3357 * Default register read handler with automatic clear operation.
3358 *
3359 * Retrieves the value of register from register array in device state structure.
3360 * Then resets all bits.
3361 *
3362 * @remarks The 'mask' parameter is simply ignored as masking and shifting is
3363 * done in the caller.
3364 *
3365 * @returns VBox status code.
3366 *
3367 * @param pState The device state structure.
3368 * @param offset Register offset in memory-mapped frame.
3369 * @param index Register index in register array.
3370 * @thread EMT
3371 */
3372
3373static int e1kRegReadAutoClear(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
3374{
3375 AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR);
3376 int rc = e1kRegReadDefault(pState, offset, index, pu32Value);
3377 pState->auRegs[index] = 0;
3378
3379 return rc;
3380}
3381
3382/**
3383 * Default register read handler.
3384 *
3385 * Retrieves the value of register from register array in device state structure.
3386 * Bits corresponding to 0s in 'readable' mask will always read as 0s.
3387 *
3388 * @remarks The 'mask' parameter is simply ignored as masking and shifting is
3389 * done in the caller.
3390 *
3391 * @returns VBox status code.
3392 *
3393 * @param pState The device state structure.
3394 * @param offset Register offset in memory-mapped frame.
3395 * @param index Register index in register array.
3396 * @thread EMT
3397 */
3398
3399static int e1kRegReadDefault(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
3400{
3401 AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR);
3402 *pu32Value = pState->auRegs[index] & s_e1kRegMap[index].readable;
3403
3404 return VINF_SUCCESS;
3405}
3406
3407/**
3408 * Write handler for unimplemented registers.
3409 *
3410 * Merely reports writes to unimplemented registers.
3411 *
3412 * @param pState The device state structure.
3413 * @param offset Register offset in memory-mapped frame.
3414 * @param index Register index in register array.
3415 * @param value The value to store.
3416 * @thread EMT
3417 */
3418
3419static int e1kRegWriteUnimplemented(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
3420{
3421 E1kLog(("%s At %08X write attempt (%08X) to unimplemented register %s (%s)\n",
3422 INSTANCE(pState), offset, value, s_e1kRegMap[index].abbrev, s_e1kRegMap[index].name));
3423
3424 return VINF_SUCCESS;
3425}
3426
3427/**
3428 * Default register write handler.
3429 *
3430 * Stores the value to the register array in device state structure. Only bits
3431 * corresponding to 1s both in 'writable' and 'mask' will be stored.
3432 *
3433 * @returns VBox status code.
3434 *
3435 * @param pState The device state structure.
3436 * @param offset Register offset in memory-mapped frame.
3437 * @param index Register index in register array.
3438 * @param value The value to store.
3439 * @param mask Used to implement partial writes (8 and 16-bit).
3440 * @thread EMT
3441 */
3442
3443static int e1kRegWriteDefault(E1KSTATE* pState, uint32_t offset, uint32_t index, uint32_t value)
3444{
3445 AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR);
3446 pState->auRegs[index] = (value & s_e1kRegMap[index].writable) |
3447 (pState->auRegs[index] & ~s_e1kRegMap[index].writable);
3448
3449 return VINF_SUCCESS;
3450}
3451
3452/**
3453 * Search register table for matching register.
3454 *
3455 * @returns Index in the register table or -1 if not found.
3456 *
3457 * @param pState The device state structure.
3458 * @param uOffset Register offset in memory-mapped region.
3459 * @thread EMT
3460 */
3461static int e1kRegLookup(E1KSTATE *pState, uint32_t uOffset)
3462{
3463 int index;
3464
3465 for (index = 0; index < E1K_NUM_OF_REGS; index++)
3466 {
3467 if (s_e1kRegMap[index].offset <= uOffset && uOffset < s_e1kRegMap[index].offset + s_e1kRegMap[index].size)
3468 {
3469 return index;
3470 }
3471 }
3472
3473 return -1;
3474}
3475
3476/**
3477 * Handle register read operation.
3478 *
3479 * Looks up and calls appropriate handler.
3480 *
3481 * @returns VBox status code.
3482 *
3483 * @param pState The device state structure.
3484 * @param uOffset Register offset in memory-mapped frame.
3485 * @param pv Where to store the result.
3486 * @param cb Number of bytes to read.
3487 * @thread EMT
3488 */
3489static int e1kRegRead(E1KSTATE *pState, uint32_t uOffset, void *pv, uint32_t cb)
3490{
3491 uint32_t u32 = 0;
3492 uint32_t mask = 0;
3493 uint32_t shift;
3494 int rc = VINF_SUCCESS;
3495 int index = e1kRegLookup(pState, uOffset);
3496 const char *szInst = INSTANCE(pState);
3497#ifdef DEBUG
3498 char buf[9];
3499#endif
3500
3501 /*
3502 * From the spec:
3503 * For registers that should be accessed as 32-bit double words, partial writes (less than a 32-bit
3504 * double word) is ignored. Partial reads return all 32 bits of data regardless of the byte enables.
3505 */
3506
3507 /*
3508 * To be able to write bytes and short word we convert them
3509 * to properly shifted 32-bit words and masks. The idea is
3510 * to keep register-specific handlers simple. Most accesses
3511 * will be 32-bit anyway.
3512 */
3513 switch (cb)
3514 {
3515 case 1: mask = 0x000000FF; break;
3516 case 2: mask = 0x0000FFFF; break;
3517 case 4: mask = 0xFFFFFFFF; break;
3518 default:
3519 return PDMDeviceDBGFStop(pState->CTX_SUFF(pDevIns), RT_SRC_POS,
3520 "%s e1kRegRead: unsupported op size: offset=%#10x cb=%#10x\n",
3521 szInst, uOffset, cb);
3522 }
3523 if (index != -1)
3524 {
3525 if (s_e1kRegMap[index].readable)
3526 {
3527 /* Make the mask correspond to the bits we are about to read. */
3528 shift = (uOffset - s_e1kRegMap[index].offset) % sizeof(uint32_t) * 8;
3529 mask <<= shift;
3530 if (!mask)
3531 return PDMDeviceDBGFStop(pState->CTX_SUFF(pDevIns), RT_SRC_POS,
3532 "%s e1kRegRead: Zero mask: offset=%#10x cb=%#10x\n",
3533 szInst, uOffset, cb);
3534 /*
3535 * Read it. Pass the mask so the handler knows what has to be read.
3536 * Mask out irrelevant bits.
3537 */
3538#ifdef E1K_GLOBAL_MUTEX
3539 rc = e1kMutexAcquire(pState, VINF_IOM_HC_MMIO_READ, RT_SRC_POS);
3540#else
3541 //rc = e1kCsEnter(pState, VERR_SEM_BUSY, RT_SRC_POS);
3542#endif
3543 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3544 return rc;
3545 //pState->fDelayInts = false;
3546 //pState->iStatIntLost += pState->iStatIntLostOne;
3547 //pState->iStatIntLostOne = 0;
3548 rc = s_e1kRegMap[index].pfnRead(pState, uOffset & 0xFFFFFFFC, index, &u32) & mask;
3549 //e1kCsLeave(pState);
3550 e1kMutexRelease(pState);
3551 E1kLog2(("%s At %08X read %s from %s (%s)\n",
3552 szInst, uOffset, e1kU32toHex(u32, mask, buf), s_e1kRegMap[index].abbrev, s_e1kRegMap[index].name));
3553 /* Shift back the result. */
3554 u32 >>= shift;
3555 }
3556 else
3557 {
3558 E1kLog(("%s At %08X read (%s) attempt from write-only register %s (%s)\n",
3559 szInst, uOffset, e1kU32toHex(u32, mask, buf), s_e1kRegMap[index].abbrev, s_e1kRegMap[index].name));
3560 }
3561 }
3562 else
3563 {
3564 E1kLog(("%s At %08X read (%s) attempt from non-existing register\n",
3565 szInst, uOffset, e1kU32toHex(u32, mask, buf)));
3566 }
3567
3568 memcpy(pv, &u32, cb);
3569 return rc;
3570}
3571
3572/**
3573 * Handle register write operation.
3574 *
3575 * Looks up and calls appropriate handler.
3576 *
3577 * @returns VBox status code.
3578 *
3579 * @param pState The device state structure.
3580 * @param uOffset Register offset in memory-mapped frame.
3581 * @param pv Where to fetch the value.
3582 * @param cb Number of bytes to write.
3583 * @thread EMT
3584 */
3585static int e1kRegWrite(E1KSTATE *pState, uint32_t uOffset, void *pv, unsigned cb)
3586{
3587 int rc = VINF_SUCCESS;
3588 int index = e1kRegLookup(pState, uOffset);
3589 uint32_t u32;
3590
3591 /*
3592 * From the spec:
3593 * For registers that should be accessed as 32-bit double words, partial writes (less than a 32-bit
3594 * double word) is ignored. Partial reads return all 32 bits of data regardless of the byte enables.
3595 */
3596
3597 if (cb != 4)
3598 {
3599 E1kLog(("%s e1kRegWrite: Spec violation: unsupported op size: offset=%#10x cb=%#10x, ignored.\n",
3600 INSTANCE(pState), uOffset, cb));
3601 return VINF_SUCCESS;
3602 }
3603 if (uOffset & 3)
3604 {
3605 E1kLog(("%s e1kRegWrite: Spec violation: misaligned offset: %#10x cb=%#10x, ignored.\n",
3606 INSTANCE(pState), uOffset, cb));
3607 return VINF_SUCCESS;
3608 }
3609 u32 = *(uint32_t*)pv;
3610 if (index != -1)
3611 {
3612 if (s_e1kRegMap[index].writable)
3613 {
3614 /*
3615 * Write it. Pass the mask so the handler knows what has to be written.
3616 * Mask out irrelevant bits.
3617 */
3618 E1kLog2(("%s At %08X write %08X to %s (%s)\n",
3619 INSTANCE(pState), uOffset, u32, s_e1kRegMap[index].abbrev, s_e1kRegMap[index].name));
3620#ifdef E1K_GLOBAL_MUTEX
3621 rc = e1kMutexAcquire(pState, VINF_IOM_HC_MMIO_WRITE, RT_SRC_POS);
3622#else
3623 //rc = e1kCsEnter(pState, VERR_SEM_BUSY, RT_SRC_POS);
3624#endif
3625 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3626 return rc;
3627 //pState->fDelayInts = false;
3628 //pState->iStatIntLost += pState->iStatIntLostOne;
3629 //pState->iStatIntLostOne = 0;
3630 rc = s_e1kRegMap[index].pfnWrite(pState, uOffset, index, u32);
3631 //e1kCsLeave(pState);
3632 e1kMutexRelease(pState);
3633 }
3634 else
3635 {
3636 E1kLog(("%s At %08X write attempt (%08X) to read-only register %s (%s)\n",
3637 INSTANCE(pState), uOffset, u32, s_e1kRegMap[index].abbrev, s_e1kRegMap[index].name));
3638 }
3639 }
3640 else
3641 {
3642 E1kLog(("%s At %08X write attempt (%08X) to non-existing register\n",
3643 INSTANCE(pState), uOffset, u32));
3644 }
3645 return rc;
3646}
3647
3648/**
3649 * I/O handler for memory-mapped read operations.
3650 *
3651 * @returns VBox status code.
3652 *
3653 * @param pDevIns The device instance.
3654 * @param pvUser User argument.
3655 * @param GCPhysAddr Physical address (in GC) where the read starts.
3656 * @param pv Where to store the result.
3657 * @param cb Number of bytes read.
3658 * @thread EMT
3659 */
3660PDMBOTHCBDECL(int) e1kMMIORead(PPDMDEVINS pDevIns, void *pvUser,
3661 RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
3662{
3663 NOREF(pvUser);
3664 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
3665 uint32_t uOffset = GCPhysAddr - pState->addrMMReg;
3666 STAM_PROFILE_ADV_START(&pState->CTXSUFF(StatMMIORead), a);
3667
3668 Assert(uOffset < E1K_MM_SIZE);
3669
3670 int rc = e1kRegRead(pState, uOffset, pv, cb);
3671 STAM_PROFILE_ADV_STOP(&pState->CTXSUFF(StatMMIORead), a);
3672 return rc;
3673}
3674
3675/**
3676 * Memory mapped I/O Handler for write operations.
3677 *
3678 * @returns VBox status code.
3679 *
3680 * @param pDevIns The device instance.
3681 * @param pvUser User argument.
3682 * @param GCPhysAddr Physical address (in GC) where the read starts.
3683 * @param pv Where to fetch the value.
3684 * @param cb Number of bytes to write.
3685 * @thread EMT
3686 */
3687PDMBOTHCBDECL(int) e1kMMIOWrite(PPDMDEVINS pDevIns, void *pvUser,
3688 RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
3689{
3690 NOREF(pvUser);
3691 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
3692 uint32_t uOffset = GCPhysAddr - pState->addrMMReg;
3693 int rc;
3694 STAM_PROFILE_ADV_START(&pState->CTXSUFF(StatMMIOWrite), a);
3695
3696 Assert(uOffset < E1K_MM_SIZE);
3697 if (cb != 4)
3698 {
3699 E1kLog(("%s e1kMMIOWrite: invalid op size: offset=%#10x cb=%#10x", pDevIns, uOffset, cb));
3700 rc = PDMDeviceDBGFStop(pDevIns, RT_SRC_POS, "e1kMMIOWrite: invalid op size: offset=%#10x cb=%#10x\n", uOffset, cb);
3701 }
3702 else
3703 rc = e1kRegWrite(pState, uOffset, pv, cb);
3704
3705 STAM_PROFILE_ADV_STOP(&pState->CTXSUFF(StatMMIOWrite), a);
3706 return rc;
3707}
3708
3709/**
3710 * Port I/O Handler for IN operations.
3711 *
3712 * @returns VBox status code.
3713 *
3714 * @param pDevIns The device instance.
3715 * @param pvUser Pointer to the device state structure.
3716 * @param port Port number used for the IN operation.
3717 * @param pu32 Where to store the result.
3718 * @param cb Number of bytes read.
3719 * @thread EMT
3720 */
3721PDMBOTHCBDECL(int) e1kIOPortIn(PPDMDEVINS pDevIns, void *pvUser,
3722 RTIOPORT port, uint32_t *pu32, unsigned cb)
3723{
3724 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
3725 int rc = VINF_SUCCESS;
3726 const char *szInst = INSTANCE(pState);
3727 STAM_PROFILE_ADV_START(&pState->CTXSUFF(StatIORead), a);
3728
3729 port -= pState->addrIOPort;
3730 if (cb != 4)
3731 {
3732 E1kLog(("%s e1kIOPortIn: invalid op size: port=%RTiop cb=%08x", szInst, port, cb));
3733 rc = PDMDeviceDBGFStop(pDevIns, RT_SRC_POS, "%s e1kIOPortIn: invalid op size: port=%RTiop cb=%08x\n", szInst, port, cb);
3734 }
3735 else
3736 switch (port)
3737 {
3738 case 0x00: /* IOADDR */
3739 *pu32 = pState->uSelectedReg;
3740 E1kLog2(("%s e1kIOPortIn: IOADDR(0), selecting register %#010x, val=%#010x\n", szInst, pState->uSelectedReg, *pu32));
3741 break;
3742 case 0x04: /* IODATA */
3743 rc = e1kRegRead(pState, pState->uSelectedReg, pu32, cb);
3744 E1kLog2(("%s e1kIOPortIn: IODATA(4), reading from selected register %#010x, val=%#010x\n", szInst, pState->uSelectedReg, *pu32));
3745 break;
3746 default:
3747 E1kLog(("%s e1kIOPortIn: invalid port %#010x\n", szInst, port));
3748 //*pRC = VERR_IOM_IOPORT_UNUSED;
3749 }
3750
3751 STAM_PROFILE_ADV_STOP(&pState->CTXSUFF(StatIORead), a);
3752 return rc;
3753}
3754
3755
3756/**
3757 * Port I/O Handler for OUT operations.
3758 *
3759 * @returns VBox status code.
3760 *
3761 * @param pDevIns The device instance.
3762 * @param pvUser User argument.
3763 * @param Port Port number used for the IN operation.
3764 * @param u32 The value to output.
3765 * @param cb The value size in bytes.
3766 * @thread EMT
3767 */
3768PDMBOTHCBDECL(int) e1kIOPortOut(PPDMDEVINS pDevIns, void *pvUser,
3769 RTIOPORT port, uint32_t u32, unsigned cb)
3770{
3771 E1KSTATE *pState = PDMINS_2_DATA(pDevIns, E1KSTATE *);
3772 int rc = VINF_SUCCESS;
3773 const char *szInst = INSTANCE(pState);
3774 STAM_PROFILE_ADV_START(&pState->CTXSUFF(StatIOWrite), a);
3775
3776 E1kLog2(("%s e1kIOPortOut: port=%RTiop value=%08x\n", szInst, port, u32));
3777 if (cb != 4)
3778 {
3779 E1kLog(("%s e1kIOPortOut: invalid op size: port=%RTiop cb=%08x\n", szInst, port, cb));
3780 rc = PDMDeviceDBGFStop(pDevIns, RT_SRC_POS, "%s e1kIOPortOut: invalid op size: port=%RTiop cb=%08x\n", szInst, port, cb);
3781 }
3782 else
3783 {
3784 port -= pState->addrIOPort;
3785 switch (port)
3786 {
3787 case 0x00: /* IOADDR */
3788 pState->uSelectedReg = u32;
3789 E1kLog2(("%s e1kIOPortOut: IOADDR(0), selected register %08x\n", szInst, pState->uSelectedReg));
3790 break;
3791 case 0x04: /* IODATA */
3792 E1kLog2(("%s e1kIOPortOut: IODATA(4), writing to selected register %#010x, value=%#010x\n", szInst, pState->uSelectedReg, u32));
3793 rc = e1kRegWrite(pState, pState->uSelectedReg, &u32, cb);
3794 break;
3795 default:
3796 E1kLog(("%s e1kIOPortOut: invalid port %#010x\n", szInst, port));
3797 /** @todo Do we need to return an error here?
3798 * bird: VINF_SUCCESS is fine for unhandled cases of an OUT handler. (If you're curious
3799 * about the guest code and a bit adventuresome, try rc = PDMDeviceDBGFStop(...);) */
3800 rc = PDMDeviceDBGFStop(pDevIns, RT_SRC_POS, "e1kIOPortOut: invalid port %#010x\n", port);
3801 }
3802 }
3803
3804 STAM_PROFILE_ADV_STOP(&pState->CTXSUFF(StatIOWrite), a);
3805 return rc;
3806}
3807
3808#ifdef IN_RING3
3809/**
3810 * Dump complete device state to log.
3811 *
3812 * @param pState Pointer to device state.
3813 */
3814static void e1kDumpState(E1KSTATE *pState)
3815{
3816 for (int i = 0; i<E1K_NUM_OF_32BIT_REGS; ++i)
3817 {
3818 E1kLog2(("%s %8.8s = %08x\n", INSTANCE(pState),
3819 s_e1kRegMap[i].abbrev, pState->auRegs[i]));
3820 }
3821#ifdef E1K_INT_STATS
3822 LogRel(("%s Interrupt attempts: %d\n", INSTANCE(pState), pState->uStatIntTry));
3823 LogRel(("%s Interrupts raised : %d\n", INSTANCE(pState), pState->uStatInt));
3824 LogRel(("%s Interrupts lowered: %d\n", INSTANCE(pState), pState->uStatIntLower));
3825 LogRel(("%s Interrupts delayed: %d\n", INSTANCE(pState), pState->uStatIntDly));
3826 LogRel(("%s Disabled delayed: %d\n", INSTANCE(pState), pState->uStatDisDly));
3827 LogRel(("%s Interrupts skipped: %d\n", INSTANCE(pState), pState->uStatIntSkip));
3828 LogRel(("%s Masked interrupts : %d\n", INSTANCE(pState), pState->uStatIntMasked));
3829 LogRel(("%s Early interrupts : %d\n", INSTANCE(pState), pState->uStatIntEarly));
3830 LogRel(("%s Late interrupts : %d\n", INSTANCE(pState), pState->uStatIntLate));
3831 LogRel(("%s Lost interrupts : %d\n", INSTANCE(pState), pState->iStatIntLost));
3832 LogRel(("%s Interrupts by RX : %d\n", INSTANCE(pState), pState->uStatIntRx));
3833 LogRel(("%s Interrupts by TX : %d\n", INSTANCE(pState), pState->uStatIntTx));
3834 LogRel(("%s Interrupts by ICS : %d\n", INSTANCE(pState), pState->uStatIntICS));
3835 LogRel(("%s Interrupts by RDTR: %d\n", INSTANCE(pState), pState->uStatIntRDTR));
3836 LogRel(("%s Interrupts by RDMT: %d\n", INSTANCE(pState), pState->uStatIntRXDMT0));
3837 LogRel(("%s Interrupts by TXQE: %d\n", INSTANCE(pState), pState->uStatIntTXQE));
3838 LogRel(("%s TX int delay asked: %d\n", INSTANCE(pState), pState->uStatTxIDE));
3839 LogRel(("%s TX no report asked: %d\n", INSTANCE(pState), pState->uStatTxNoRS));
3840 LogRel(("%s TX abs timer expd : %d\n", INSTANCE(pState), pState->uStatTAD));
3841 LogRel(("%s TX int timer expd : %d\n", INSTANCE(pState), pState->uStatTID));
3842 LogRel(("%s RX abs timer expd : %d\n", INSTANCE(pState), pState->uStatRAD));
3843 LogRel(("%s RX int timer expd : %d\n", INSTANCE(pState), pState->uStatRID));
3844 LogRel(("%s TX CTX descriptors: %d\n", INSTANCE(pState), pState->uStatDescCtx));
3845 LogRel(("%s TX DAT descriptors: %d\n", INSTANCE(pState), pState->uStatDescDat));
3846 LogRel(("%s TX LEG descriptors: %d\n", INSTANCE(pState), pState->uStatDescLeg));
3847 LogRel(("%s Received frames : %d\n", INSTANCE(pState), pState->uStatRxFrm));
3848 LogRel(("%s Transmitted frames: %d\n", INSTANCE(pState), pState->uStatTxFrm));
3849#endif /* E1K_INT_STATS */
3850}
3851
3852/**
3853 * Map PCI I/O region.
3854 *
3855 * @return VBox status code.
3856 * @param pPciDev Pointer to PCI device. Use pPciDev->pDevIns to get the device instance.
3857 * @param iRegion The region number.
3858 * @param GCPhysAddress Physical address of the region. If iType is PCI_ADDRESS_SPACE_IO, this is an
3859 * I/O port, else it's a physical address.
3860 * This address is *NOT* relative to pci_mem_base like earlier!
3861 * @param cb Region size.
3862 * @param enmType One of the PCI_ADDRESS_SPACE_* values.
3863 * @thread EMT
3864 */
3865static DECLCALLBACK(int) e1kMap(PPCIDEVICE pPciDev, int iRegion,
3866 RTGCPHYS GCPhysAddress, uint32_t cb, PCIADDRESSSPACE enmType)
3867{
3868 int rc;
3869 E1KSTATE *pState = PDMINS_2_DATA(pPciDev->pDevIns, E1KSTATE*);
3870
3871 switch (enmType)
3872 {
3873 case PCI_ADDRESS_SPACE_IO:
3874 pState->addrIOPort = (RTIOPORT)GCPhysAddress;
3875 rc = PDMDevHlpIOPortRegister(pPciDev->pDevIns, pState->addrIOPort, cb, 0,
3876 e1kIOPortOut, e1kIOPortIn, NULL, NULL, "E1000");
3877 if (RT_FAILURE(rc))
3878 break;
3879 if (pState->fR0Enabled)
3880 {
3881 rc = PDMDevHlpIOPortRegisterR0(pPciDev->pDevIns, pState->addrIOPort, cb, 0,
3882 "e1kIOPortOut", "e1kIOPortIn", NULL, NULL, "E1000");
3883 if (RT_FAILURE(rc))
3884 break;
3885 }
3886 if (pState->fGCEnabled)
3887 {
3888 rc = PDMDevHlpIOPortRegisterGC(pPciDev->pDevIns, pState->addrIOPort, cb, 0,
3889 "e1kIOPortOut", "e1kIOPortIn", NULL, NULL, "E1000");
3890 }
3891 break;
3892 case PCI_ADDRESS_SPACE_MEM:
3893 pState->addrMMReg = GCPhysAddress;
3894 rc = PDMDevHlpMMIORegister(pPciDev->pDevIns, GCPhysAddress, cb, 0,
3895 e1kMMIOWrite, e1kMMIORead, NULL, "E1000");
3896 if (pState->fR0Enabled)
3897 {
3898 rc = PDMDevHlpMMIORegisterR0(pPciDev->pDevIns, GCPhysAddress, cb, 0,
3899 "e1kMMIOWrite", "e1kMMIORead", NULL);
3900 if (RT_FAILURE(rc))
3901 break;
3902 }
3903 if (pState->fGCEnabled)
3904 {
3905 rc = PDMDevHlpMMIORegisterGC(pPciDev->pDevIns, GCPhysAddress, cb, 0,
3906 "e1kMMIOWrite", "e1kMMIORead", NULL);
3907 }
3908 break;
3909 default:
3910 /* We should never get here */
3911 AssertMsgFailed(("Invalid PCI address space param in map callback"));
3912 rc = VERR_INTERNAL_ERROR;
3913 break;
3914 }
3915 return rc;
3916}
3917
3918/**
3919 * Check if the device can receive data now.
3920 * This must be called before the pfnRecieve() method is called.
3921 *
3922 * @returns Number of bytes the device can receive.
3923 * @param pInterface Pointer to the interface structure containing the called function pointer.
3924 * @thread EMT
3925 */
3926static int e1kCanReceive(E1KSTATE *pState)
3927{
3928 size_t cb;
3929
3930 if (RT_UNLIKELY(e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS) != VINF_SUCCESS))
3931 return VERR_NET_NO_BUFFER_SPACE;
3932 if (RT_UNLIKELY(e1kCsRxEnter(pState, VERR_SEM_BUSY) != VINF_SUCCESS))
3933 return VERR_NET_NO_BUFFER_SPACE;
3934
3935 if (RDH < RDT)
3936 cb = (RDT - RDH) * pState->u16RxBSize;
3937 else if (RDH > RDT)
3938 cb = (RDLEN/sizeof(E1KRXDESC) - RDH + RDT) * pState->u16RxBSize;
3939 else
3940 {
3941 cb = 0;
3942 E1kLogRel(("E1000: OUT of RX descriptors!\n"));
3943 }
3944
3945 e1kCsRxLeave(pState);
3946 e1kMutexRelease(pState);
3947 return cb > 0 ? VINF_SUCCESS : VERR_NET_NO_BUFFER_SPACE;
3948}
3949
3950static DECLCALLBACK(int) e1kWaitReceiveAvail(PPDMINETWORKPORT pInterface, unsigned cMillies)
3951{
3952 E1KSTATE *pState = IFACE_TO_STATE(pInterface, INetworkPort);
3953 int rc = e1kCanReceive(pState);
3954
3955 if (RT_SUCCESS(rc))
3956 return VINF_SUCCESS;
3957 if (RT_UNLIKELY(cMillies == 0))
3958 return VERR_NET_NO_BUFFER_SPACE;
3959
3960 rc = VERR_INTERRUPTED;
3961 ASMAtomicXchgBool(&pState->fMaybeOutOfSpace, true);
3962 STAM_PROFILE_START(&pState->StatRxOverflow, a);
3963 while (RT_LIKELY(PDMDevHlpVMState(pState->CTX_SUFF(pDevIns)) == VMSTATE_RUNNING))
3964 {
3965 int rc2 = e1kCanReceive(pState);
3966 if (RT_SUCCESS(rc2))
3967 {
3968 rc = VINF_SUCCESS;
3969 break;
3970 }
3971 E1kLogRel(("E1000 e1kWaitReceiveAvail: waiting cMillies=%u...\n",
3972 cMillies));
3973 E1kLog(("%s e1kWaitReceiveAvail: waiting cMillies=%u...\n",
3974 INSTANCE(pState), cMillies));
3975 RTSemEventWait(pState->hEventMoreRxDescAvail, cMillies);
3976 }
3977 STAM_PROFILE_STOP(&pState->StatRxOverflow, a);
3978 ASMAtomicXchgBool(&pState->fMaybeOutOfSpace, false);
3979
3980 return rc;
3981}
3982
3983
3984/**
3985 * Matches the packet addresses against Receive Address table. Looks for
3986 * exact matches only.
3987 *
3988 * @returns true if address matches.
3989 * @param pState Pointer to the state structure.
3990 * @param pvBuf The ethernet packet.
3991 * @param cb Number of bytes available in the packet.
3992 * @thread EMT
3993 */
3994static bool e1kPerfectMatch(E1KSTATE *pState, const void *pvBuf)
3995{
3996 for (unsigned i = 0; i < RT_ELEMENTS(pState->aRecAddr.array); i++)
3997 {
3998 E1KRAELEM* ra = pState->aRecAddr.array + i;
3999
4000 /* Valid address? */
4001 if (ra->ctl & RA_CTL_AV)
4002 {
4003 Assert((ra->ctl & RA_CTL_AS) < 2);
4004 //unsigned char *pAddr = (unsigned char*)pvBuf + sizeof(ra->addr)*(ra->ctl & RA_CTL_AS);
4005 //E1kLog3(("%s Matching %02x:%02x:%02x:%02x:%02x:%02x against %02x:%02x:%02x:%02x:%02x:%02x...\n",
4006 // INSTANCE(pState), pAddr[0], pAddr[1], pAddr[2], pAddr[3], pAddr[4], pAddr[5],
4007 // ra->addr[0], ra->addr[1], ra->addr[2], ra->addr[3], ra->addr[4], ra->addr[5]));
4008 /*
4009 * Address Select:
4010 * 00b = Destination address
4011 * 01b = Source address
4012 * 10b = Reserved
4013 * 11b = Reserved
4014 * Since ethernet header is (DA, SA, len) we can use address
4015 * select as index.
4016 */
4017 if (memcmp((char*)pvBuf + sizeof(ra->addr)*(ra->ctl & RA_CTL_AS),
4018 ra->addr, sizeof(ra->addr)) == 0)
4019 return true;
4020 }
4021 }
4022
4023 return false;
4024}
4025
4026/**
4027 * Returns the value of a bit in a bit vector.
4028 *
4029 * @returns true if bit is set.
4030 * @param pBitVector The ethernet packet.
4031 * @param u16Bit Bit number.
4032 * @thread EMT
4033 */
4034DECLINLINE(bool) e1kGetBit(uint32_t* pBitVector, uint16_t u16Bit)
4035{
4036 return !!(pBitVector[u16Bit] & (1 << (u16Bit & 0x1F)));
4037}
4038
4039/**
4040 * Matches the packet addresses against Multicast Table Array.
4041 *
4042 * @remarks This is imperfect match since it matches not exact address but
4043 * a subset of addresses.
4044 *
4045 * @returns true if address matches.
4046 * @param pState Pointer to the state structure.
4047 * @param pvBuf The ethernet packet.
4048 * @param cb Number of bytes available in the packet.
4049 * @thread EMT
4050 */
4051static bool e1kImperfectMatch(E1KSTATE *pState, const void *pvBuf)
4052{
4053 /* Get bits 32..47 of destination address */
4054 uint16_t u16Bit = ((uint16_t*)pvBuf)[2];
4055
4056 unsigned offset = GET_BITS(RCTL, MO);
4057 /*
4058 * offset means:
4059 * 00b = bits 36..47
4060 * 01b = bits 35..46
4061 * 10b = bits 34..45
4062 * 11b = bits 32..43
4063 */
4064 if (offset < 3)
4065 u16Bit = u16Bit >> (4 - offset);
4066 return e1kGetBit(pState->auMTA, u16Bit & 0xFFF);
4067}
4068
4069/**
4070 * Determines if the packet is to be delivered to upper layer. The following
4071 * filters supported:
4072 * - Exact Unicast/Multicast
4073 * - Promiscuous Unicast/Multicast
4074 * - Multicast
4075 * - VLAN
4076 *
4077 * @returns true if packet is intended for this node.
4078 * @param pState Pointer to the state structure.
4079 * @param pvBuf The ethernet packet.
4080 * @param cb Number of bytes available in the packet.
4081 * @param pStatus Bit field to store status bits.
4082 * @thread EMT
4083 */
4084static bool e1kAddressFilter(E1KSTATE *pState, const void *pvBuf, size_t cb, E1KRXDST *pStatus)
4085{
4086 Assert(cb > 14);
4087 /* Assume that we fail to pass exact filter. */
4088 pStatus->fPIF = false;
4089 pStatus->fVP = false;
4090 /* Discard oversized packets */
4091 if (cb > E1K_MAX_RX_PKT_SIZE)
4092 {
4093 E1kLog(("%s ERROR: Incoming packet is too big, cb=%d > max=%d\n",
4094 INSTANCE(pState), cb, E1K_MAX_RX_PKT_SIZE));
4095 E1K_INC_CNT32(ROC);
4096 return false;
4097 }
4098 else if (!(RCTL & RCTL_LPE) && cb > 1522)
4099 {
4100 /* When long packet reception is disabled packets over 1522 are discarded */
4101 E1kLog(("%s Discarding incoming packet (LPE=0), cb=%d\n",
4102 INSTANCE(pState), cb));
4103 E1K_INC_CNT32(ROC);
4104 return false;
4105 }
4106
4107 /* Broadcast filtering */
4108 if (e1kIsBroadcast(pvBuf) && (RCTL & RCTL_BAM))
4109 return true;
4110 E1kLog2(("%s Packet filter: not a broadcast\n", INSTANCE(pState)));
4111 if (e1kIsMulticast(pvBuf))
4112 {
4113 /* Is multicast promiscuous enabled? */
4114 if (RCTL & RCTL_MPE)
4115 return true;
4116 E1kLog2(("%s Packet filter: no promiscuous multicast\n", INSTANCE(pState)));
4117 /* Try perfect matches first */
4118 if (e1kPerfectMatch(pState, pvBuf))
4119 {
4120 pStatus->fPIF = true;
4121 return true;
4122 }
4123 E1kLog2(("%s Packet filter: no perfect match\n", INSTANCE(pState)));
4124 if (e1kImperfectMatch(pState, pvBuf))
4125 return true;
4126 E1kLog2(("%s Packet filter: no imperfect match\n", INSTANCE(pState)));
4127 }
4128 else {
4129 /* Is unicast promiscuous enabled? */
4130 if (RCTL & RCTL_UPE)
4131 return true;
4132 E1kLog2(("%s Packet filter: no promiscuous unicast\n", INSTANCE(pState)));
4133 if (e1kPerfectMatch(pState, pvBuf))
4134 {
4135 pStatus->fPIF = true;
4136 return true;
4137 }
4138 E1kLog2(("%s Packet filter: no perfect match\n", INSTANCE(pState)));
4139 }
4140 /* Is VLAN filtering enabled? */
4141 if (RCTL & RCTL_VFE)
4142 {
4143 uint16_t *u16Ptr = (uint16_t*)pvBuf;
4144 /* Compare TPID with VLAN Ether Type */
4145 if (u16Ptr[6] == VET)
4146 {
4147 pStatus->fVP = true;
4148 /* It is 802.1q packet indeed, let's filter by VID */
4149 if (e1kGetBit(pState->auVFTA, RT_BE2H_U16(u16Ptr[7]) & 0xFFF))
4150 return true;
4151 E1kLog2(("%s Packet filter: no VLAN match\n", INSTANCE(pState)));
4152 }
4153 }
4154 E1kLog2(("%s Packet filter: packet discarded\n", INSTANCE(pState)));
4155 return false;
4156}
4157
4158/**
4159 * Receive data from the network.
4160 *
4161 * @returns VBox status code.
4162 * @param pInterface Pointer to the interface structure containing the called function pointer.
4163 * @param pvBuf The available data.
4164 * @param cb Number of bytes available in the buffer.
4165 * @thread ???
4166 */
4167static DECLCALLBACK(int) e1kReceive(PPDMINETWORKPORT pInterface, const void *pvBuf, size_t cb)
4168{
4169 E1KSTATE *pState = IFACE_TO_STATE(pInterface, INetworkPort);
4170 int rc = VINF_SUCCESS;
4171
4172 /* Discard incoming packets in locked state */
4173 if (!(RCTL & RCTL_EN) || pState->fLocked || !(STATUS & STATUS_LU))
4174 {
4175 E1kLog(("%s Dropping incoming packet as receive operation is disabled.\n", INSTANCE(pState)));
4176 return VINF_SUCCESS;
4177 }
4178
4179 STAM_PROFILE_ADV_START(&pState->StatReceive, a);
4180 rc = e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS);
4181 if (RT_LIKELY(rc == VINF_SUCCESS))
4182 {
4183 //if (!e1kCsEnter(pState, RT_SRC_POS))
4184 // return VERR_PERMISSION_DENIED;
4185
4186 e1kPacketDump(pState, (const uint8_t*)pvBuf, cb, "<-- Incoming");
4187
4188 /* Update stats */
4189 if (RT_LIKELY(e1kCsEnter(pState, VERR_SEM_BUSY) == VINF_SUCCESS))
4190 {
4191 E1K_INC_CNT32(TPR);
4192 E1K_ADD_CNT64(TORL, TORH, cb < 64? 64 : cb);
4193 e1kCsLeave(pState);
4194 }
4195 STAM_PROFILE_ADV_START(&pState->StatReceiveFilter, a);
4196 E1KRXDST status;
4197 memset(&status, 0, sizeof(status));
4198 bool fPassed = e1kAddressFilter(pState, pvBuf, cb, &status);
4199 STAM_PROFILE_ADV_STOP(&pState->StatReceiveFilter, a);
4200 if (fPassed)
4201 {
4202 rc = e1kHandleRxPacket(pState, pvBuf, cb, status);
4203 }
4204 //e1kCsLeave(pState);
4205 e1kMutexRelease(pState);
4206 }
4207 STAM_PROFILE_ADV_STOP(&pState->StatReceive, a);
4208
4209 return rc;
4210}
4211
4212/**
4213 * Gets the pointer to the status LED of a unit.
4214 *
4215 * @returns VBox status code.
4216 * @param pInterface Pointer to the interface structure.
4217 * @param iLUN The unit which status LED we desire.
4218 * @param ppLed Where to store the LED pointer.
4219 * @thread EMT
4220 */
4221static DECLCALLBACK(int) e1kQueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed)
4222{
4223 E1KSTATE *pState = IFACE_TO_STATE(pInterface, ILeds);
4224 int rc = VERR_PDM_LUN_NOT_FOUND;
4225
4226 if (iLUN == 0)
4227 {
4228 *ppLed = &pState->led;
4229 rc = VINF_SUCCESS;
4230 }
4231 return rc;
4232}
4233
4234/**
4235 * Gets the current Media Access Control (MAC) address.
4236 *
4237 * @returns VBox status code.
4238 * @param pInterface Pointer to the interface structure containing the called function pointer.
4239 * @param pMac Where to store the MAC address.
4240 * @thread EMT
4241 */
4242static DECLCALLBACK(int) e1kGetMac(PPDMINETWORKCONFIG pInterface, PRTMAC pMac)
4243{
4244 E1KSTATE *pState = IFACE_TO_STATE(pInterface, INetworkConfig);
4245 pState->eeprom.getMac(pMac);
4246 return VINF_SUCCESS;
4247}
4248
4249
4250/**
4251 * Gets the new link state.
4252 *
4253 * @returns The current link state.
4254 * @param pInterface Pointer to the interface structure containing the called function pointer.
4255 * @thread EMT
4256 */
4257static DECLCALLBACK(PDMNETWORKLINKSTATE) e1kGetLinkState(PPDMINETWORKCONFIG pInterface)
4258{
4259 E1KSTATE *pState = IFACE_TO_STATE(pInterface, INetworkConfig);
4260 if (STATUS & STATUS_LU)
4261 return PDMNETWORKLINKSTATE_UP;
4262 return PDMNETWORKLINKSTATE_DOWN;
4263}
4264
4265
4266/**
4267 * Sets the new link state.
4268 *
4269 * @returns VBox status code.
4270 * @param pInterface Pointer to the interface structure containing the called function pointer.
4271 * @param enmState The new link state
4272 * @thread EMT
4273 */
4274static DECLCALLBACK(int) e1kSetLinkState(PPDMINETWORKCONFIG pInterface, PDMNETWORKLINKSTATE enmState)
4275{
4276 E1KSTATE *pState = IFACE_TO_STATE(pInterface, INetworkConfig);
4277 bool fOldUp = !!(STATUS & STATUS_LU);
4278 bool fNewUp = enmState == PDMNETWORKLINKSTATE_UP;
4279
4280 if (fNewUp != fOldUp)
4281 {
4282 if (fNewUp)
4283 {
4284 E1kLog(("%s Link is up\n", INSTANCE(pState)));
4285 STATUS |= STATUS_LU;
4286 Phy::setLinkStatus(&pState->phy, true);
4287 }
4288 else
4289 {
4290 E1kLog(("%s Link is down\n", INSTANCE(pState)));
4291 STATUS &= ~STATUS_LU;
4292 Phy::setLinkStatus(&pState->phy, false);
4293 }
4294 e1kRaiseInterrupt(pState, VERR_SEM_BUSY, ICR_LSC);
4295 if (pState->pDrv)
4296 pState->pDrv->pfnNotifyLinkChanged(pState->pDrv, enmState);
4297 }
4298 return VINF_SUCCESS;
4299}
4300
4301/**
4302 * Provides interfaces to the driver.
4303 *
4304 * @returns Pointer to interface. NULL if the interface is not supported.
4305 * @param pInterface Pointer to this interface structure.
4306 * @param enmInterface The requested interface identification.
4307 * @thread EMT
4308 */
4309static DECLCALLBACK(void *) e1kQueryInterface(struct PDMIBASE *pInterface, PDMINTERFACE enmInterface)
4310{
4311 E1KSTATE *pState = IFACE_TO_STATE(pInterface, IBase);
4312 Assert(&pState->IBase == pInterface);
4313 switch (enmInterface)
4314 {
4315 case PDMINTERFACE_BASE:
4316 return &pState->IBase;
4317 case PDMINTERFACE_NETWORK_PORT:
4318 return &pState->INetworkPort;
4319 case PDMINTERFACE_NETWORK_CONFIG:
4320 return &pState->INetworkConfig;
4321 case PDMINTERFACE_LED_PORTS:
4322 return &pState->ILeds;
4323 default:
4324 return NULL;
4325 }
4326}
4327
4328/**
4329 * Prepares for state saving.
4330 *
4331 * @returns VBox status code.
4332 * @param pDevIns The device instance.
4333 * @param pSSMHandle The handle to save the state to.
4334 */
4335static DECLCALLBACK(int) e1kSavePrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
4336{
4337 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
4338
4339 int rc = e1kCsEnter(pState, VERR_SEM_BUSY);
4340 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4341 return rc;
4342 e1kCsLeave(pState);
4343 return VINF_SUCCESS;
4344#if 0
4345 int rc = e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS);
4346 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4347 return rc;
4348 /* 1) Prevent all threads from modifying the state and memory */
4349 //pState->fLocked = true;
4350 /* 2) Cancel all timers */
4351#ifdef E1K_USE_TX_TIMERS
4352 e1kCancelTimer(pState, pState->CTX_SUFF(pTIDTimer));
4353#ifndef E1K_NO_TAD
4354 e1kCancelTimer(pState, pState->CTX_SUFF(pTADTimer));
4355#endif /* E1K_NO_TAD */
4356#endif /* E1K_USE_TX_TIMERS */
4357#ifdef E1K_USE_RX_TIMERS
4358 e1kCancelTimer(pState, pState->CTX_SUFF(pRIDTimer));
4359 e1kCancelTimer(pState, pState->CTX_SUFF(pRADTimer));
4360#endif /* E1K_USE_RX_TIMERS */
4361 e1kCancelTimer(pState, pState->CTX_SUFF(pIntTimer));
4362 /* 3) Did I forget anything? */
4363 E1kLog(("%s Locked\n", INSTANCE(pState)));
4364 e1kMutexRelease(pState);
4365 return VINF_SUCCESS;
4366#endif
4367}
4368
4369
4370/**
4371 * Saves the state of device.
4372 *
4373 * @returns VBox status code.
4374 * @param pDevIns The device instance.
4375 * @param pSSMHandle The handle to save the state to.
4376 */
4377static DECLCALLBACK(int) e1kSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
4378{
4379 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
4380
4381 e1kDumpState(pState);
4382 SSMR3PutMem(pSSMHandle, pState->auRegs, sizeof(pState->auRegs));
4383 SSMR3PutBool(pSSMHandle, pState->fIntRaised);
4384 Phy::saveState(pSSMHandle, &pState->phy);
4385 SSMR3PutU32(pSSMHandle, pState->uSelectedReg);
4386 SSMR3PutMem(pSSMHandle, pState->auMTA, sizeof(pState->auMTA));
4387 SSMR3PutMem(pSSMHandle, &pState->aRecAddr, sizeof(pState->aRecAddr));
4388 SSMR3PutMem(pSSMHandle, pState->auVFTA, sizeof(pState->auVFTA));
4389 SSMR3PutU64(pSSMHandle, pState->u64AckedAt);
4390 SSMR3PutU16(pSSMHandle, pState->u16RxBSize);
4391 //SSMR3PutBool(pSSMHandle, pState->fDelayInts);
4392 //SSMR3PutBool(pSSMHandle, pState->fIntMaskUsed);
4393 SSMR3PutU16(pSSMHandle, pState->u16TxPktLen);
4394 SSMR3PutMem(pSSMHandle, pState->aTxPacket, pState->u16TxPktLen);
4395 SSMR3PutBool(pSSMHandle, pState->fIPcsum);
4396 SSMR3PutBool(pSSMHandle, pState->fTCPcsum);
4397 SSMR3PutMem(pSSMHandle, &pState->contextTSE, sizeof(pState->contextTSE));
4398 SSMR3PutMem(pSSMHandle, &pState->contextNormal, sizeof(pState->contextNormal));
4399 E1kLog(("%s State has been saved\n", INSTANCE(pState)));
4400 return VINF_SUCCESS;
4401}
4402
4403#if 0
4404/**
4405 * Cleanup after saving.
4406 *
4407 * @returns VBox status code.
4408 * @param pDevIns The device instance.
4409 * @param pSSMHandle The handle to save the state to.
4410 */
4411static DECLCALLBACK(int) e1kSaveDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
4412{
4413 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
4414
4415 int rc = e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS);
4416 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4417 return rc;
4418 /* If VM is being powered off unlocking will result in assertions in PGM */
4419 if (PDMDevHlpGetVM(pDevIns)->enmVMState == VMSTATE_RUNNING)
4420 pState->fLocked = false;
4421 else
4422 E1kLog(("%s VM is not running -- remain locked\n", INSTANCE(pState)));
4423 E1kLog(("%s Unlocked\n", INSTANCE(pState)));
4424 e1kMutexRelease(pState);
4425 return VINF_SUCCESS;
4426}
4427#endif
4428
4429/**
4430 * Sync with .
4431 *
4432 * @returns VBox status code.
4433 * @param pDevIns The device instance.
4434 * @param pSSMHandle The handle to the saved state.
4435 */
4436static DECLCALLBACK(int) e1kLoadPrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
4437{
4438 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
4439
4440 int rc = e1kCsEnter(pState, VERR_SEM_BUSY);
4441 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4442 return rc;
4443 e1kCsLeave(pState);
4444 return VINF_SUCCESS;
4445}
4446
4447/**
4448 * Restore previously saved state of device.
4449 *
4450 * @returns VBox status code.
4451 * @param pDevIns The device instance.
4452 * @param pSSMHandle The handle to the saved state.
4453 * @param u32Version The data unit version number.
4454 */
4455static DECLCALLBACK(int) e1kLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle, uint32_t u32Version)
4456{
4457 if (u32Version != E1K_SAVEDSTATE_VERSION)
4458 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
4459
4460 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
4461 SSMR3GetMem(pSSMHandle, &pState->auRegs, sizeof(pState->auRegs));
4462 SSMR3GetBool(pSSMHandle, &pState->fIntRaised);
4463 /** @todo: PHY should be made a separate device with its own versioning */
4464 Phy::loadState(pSSMHandle, &pState->phy);
4465 SSMR3GetU32(pSSMHandle, &pState->uSelectedReg);
4466 SSMR3GetMem(pSSMHandle, &pState->auMTA, sizeof(pState->auMTA));
4467 SSMR3GetMem(pSSMHandle, &pState->aRecAddr, sizeof(pState->aRecAddr));
4468 SSMR3GetMem(pSSMHandle, &pState->auVFTA, sizeof(pState->auVFTA));
4469 SSMR3GetU64(pSSMHandle, &pState->u64AckedAt);
4470 SSMR3GetU16(pSSMHandle, &pState->u16RxBSize);
4471 //SSMR3GetBool(pSSMHandle, pState->fDelayInts);
4472 //SSMR3GetBool(pSSMHandle, pState->fIntMaskUsed);
4473 SSMR3GetU16(pSSMHandle, &pState->u16TxPktLen);
4474 SSMR3GetMem(pSSMHandle, &pState->aTxPacket, pState->u16TxPktLen);
4475 SSMR3GetBool(pSSMHandle, &pState->fIPcsum);
4476 SSMR3GetBool(pSSMHandle, &pState->fTCPcsum);
4477 SSMR3GetMem(pSSMHandle, &pState->contextTSE, sizeof(pState->contextTSE));
4478 SSMR3GetMem(pSSMHandle, &pState->contextNormal, sizeof(pState->contextNormal));
4479 E1kLog(("%s State has been restored\n", INSTANCE(pState)));
4480 e1kDumpState(pState);
4481 return VINF_SUCCESS;
4482}
4483
4484/**
4485 * Link status adjustments after loading.
4486 *
4487 * @returns VBox status code.
4488 * @param pDevIns The device instance.
4489 * @param pSSMHandle The handle to the saved state.
4490 */
4491#if 0
4492static DECLCALLBACK(int) e1kLoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
4493{
4494 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
4495
4496 int rc = e1kMutexAcquire(pState, VERR_SEM_BUSY, RT_SRC_POS);
4497 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4498 return rc;
4499 /*
4500 * Force the link down here, since PDMNETWORKLINKSTATE_DOWN_RESUME is never
4501 * passed to us. We go through all this stuff if the link was up only.
4502 */
4503 if (STATUS & STATUS_LU)
4504 {
4505 E1kLog(("%s Link is down temporarely\n", INSTANCE(pState)));
4506 STATUS &= ~STATUS_LU;
4507 Phy::setLinkStatus(&pState->phy, false);
4508 e1kRaiseInterrupt(pState, ICR_LSC);
4509 /* Restore the link back in half a second. */
4510 e1kArmTimer(pState, pState->pLUTimer, 500000);
4511 }
4512 e1kMutexRelease(pState);
4513 return VINF_SUCCESS;
4514}
4515#endif
4516
4517/**
4518 * Sets 8-bit register in PCI configuration space.
4519 * @param refPciDev The PCI device.
4520 * @param uOffset The register offset.
4521 * @param u16Value The value to store in the register.
4522 * @thread EMT
4523 */
4524DECLINLINE(void) e1kPCICfgSetU8(PCIDEVICE& refPciDev, uint32_t uOffset, uint8_t u8Value)
4525{
4526 Assert(uOffset < sizeof(refPciDev.config));
4527 refPciDev.config[uOffset] = u8Value;
4528}
4529
4530/**
4531 * Sets 16-bit register in PCI configuration space.
4532 * @param refPciDev The PCI device.
4533 * @param uOffset The register offset.
4534 * @param u16Value The value to store in the register.
4535 * @thread EMT
4536 */
4537DECLINLINE(void) e1kPCICfgSetU16(PCIDEVICE& refPciDev, uint32_t uOffset, uint16_t u16Value)
4538{
4539 Assert(uOffset+sizeof(u16Value) <= sizeof(refPciDev.config));
4540 *(uint16_t*)&refPciDev.config[uOffset] = u16Value;
4541}
4542
4543/**
4544 * Sets 32-bit register in PCI configuration space.
4545 * @param refPciDev The PCI device.
4546 * @param uOffset The register offset.
4547 * @param u32Value The value to store in the register.
4548 * @thread EMT
4549 */
4550DECLINLINE(void) e1kPCICfgSetU32(PCIDEVICE& refPciDev, uint32_t uOffset, uint32_t u32Value)
4551{
4552 Assert(uOffset+sizeof(u32Value) <= sizeof(refPciDev.config));
4553 *(uint32_t*)&refPciDev.config[uOffset] = u32Value;
4554}
4555
4556/**
4557 * Set PCI configuration space registers.
4558 *
4559 * @param pci Reference to PCI device structure.
4560 * @thread EMT
4561 */
4562static DECLCALLBACK(void) e1kConfigurePCI(PCIDEVICE& pci, E1KCHIP eChip)
4563{
4564 Assert(eChip < RT_ELEMENTS(g_Chips));
4565 /* Configure PCI Device, assume 32-bit mode ******************************/
4566 PCIDevSetVendorId(&pci, g_Chips[eChip].uPCIVendorId);
4567 PCIDevSetDeviceId(&pci, g_Chips[eChip].uPCIDeviceId);
4568 e1kPCICfgSetU16(pci, VBOX_PCI_SUBSYSTEM_VENDOR_ID, g_Chips[eChip].uPCISubsystemVendorId);
4569 e1kPCICfgSetU16(pci, VBOX_PCI_SUBSYSTEM_ID, g_Chips[eChip].uPCISubsystemId);
4570
4571 e1kPCICfgSetU16(pci, VBOX_PCI_COMMAND, 0x0000);
4572 /* DEVSEL Timing (medium device), 66 MHz Capable, New capabilities */
4573 e1kPCICfgSetU16(pci, VBOX_PCI_STATUS, 0x0230);
4574 /* Stepping A2 */
4575 e1kPCICfgSetU8( pci, VBOX_PCI_REVISION_ID, 0x02);
4576 /* Ethernet adapter */
4577 e1kPCICfgSetU8( pci, VBOX_PCI_CLASS_PROG, 0x00);
4578 e1kPCICfgSetU16(pci, VBOX_PCI_CLASS_DEVICE, 0x0200);
4579 /* normal single function Ethernet controller */
4580 e1kPCICfgSetU8( pci, VBOX_PCI_HEADER_TYPE, 0x00);
4581 /* Memory Register Base Address */
4582 e1kPCICfgSetU32(pci, VBOX_PCI_BASE_ADDRESS_0, 0x00000000);
4583 /* Memory Flash Base Address */
4584 e1kPCICfgSetU32(pci, VBOX_PCI_BASE_ADDRESS_1, 0x00000000);
4585 /* IO Register Base Address */
4586 e1kPCICfgSetU32(pci, VBOX_PCI_BASE_ADDRESS_2, 0x00000001);
4587 /* Expansion ROM Base Address */
4588 e1kPCICfgSetU32(pci, VBOX_PCI_ROM_ADDRESS, 0x00000000);
4589 /* Capabilities Pointer */
4590 e1kPCICfgSetU8( pci, VBOX_PCI_CAPABILITY_LIST, 0xDC);
4591 /* Interrupt Pin: INTA# */
4592 e1kPCICfgSetU8( pci, VBOX_PCI_INTERRUPT_PIN, 0x01);
4593 /* Max_Lat/Min_Gnt: very high priority and time slice */
4594 e1kPCICfgSetU8( pci, VBOX_PCI_MIN_GNT, 0xFF);
4595 e1kPCICfgSetU8( pci, VBOX_PCI_MAX_LAT, 0x00);
4596
4597 /* PCI Power Management Registers ****************************************/
4598 /* Capability ID: PCI Power Management Registers */
4599 e1kPCICfgSetU8( pci, 0xDC, 0x01);
4600 /* Next Item Pointer: PCI-X */
4601 e1kPCICfgSetU8( pci, 0xDC + 1, 0xE4);
4602 /* Power Management Capabilities: PM disabled, DSI */
4603 e1kPCICfgSetU16(pci, 0xDC + 2, 0x0022);
4604 /* Power Management Control / Status Register: PM disabled */
4605 e1kPCICfgSetU16(pci, 0xDC + 4, 0x0000);
4606 /* PMCSR_BSE Bridge Support Extensions: Not supported */
4607 e1kPCICfgSetU8( pci, 0xDC + 6, 0x00);
4608 /* Data Register: PM disabled, always 0 */
4609 e1kPCICfgSetU8( pci, 0xDC + 7, 0x00);
4610
4611 /* PCI-X Configuration Registers *****************************************/
4612 /* Capability ID: PCI-X Configuration Registers */
4613 e1kPCICfgSetU8( pci, 0xE4, 0x07);
4614 /* Next Item Pointer: None (Message Signalled Interrupts are disabled) */
4615 e1kPCICfgSetU8( pci, 0xE4 + 1, 0x00);
4616 /* PCI-X Command: Enable Relaxed Ordering */
4617 e1kPCICfgSetU16(pci, 0xE4 + 2, 0x0002);
4618 /* PCI-X Status: 32-bit, 66MHz*/
4619 e1kPCICfgSetU32(pci, 0xE4 + 4, 0x0040FFF8);
4620}
4621
4622/**
4623 * Construct a device instance for a VM.
4624 *
4625 * @returns VBox status.
4626 * @param pDevIns The device instance data.
4627 * If the registration structure is needed, pDevIns->pDevReg points to it.
4628 * @param iInstance Instance number. Use this to figure out which registers and such to use.
4629 * The device number is also found in pDevIns->iInstance, but since it's
4630 * likely to be freqently used PDM passes it as parameter.
4631 * @param pCfgHandle Configuration node handle for the device. Use this to obtain the configuration
4632 * of the device instance. It's also found in pDevIns->pCfgHandle, but like
4633 * iInstance it's expected to be used a bit in this function.
4634 * @thread EMT
4635 */
4636static DECLCALLBACK(int) e1kConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfgHandle)
4637{
4638 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
4639 int rc;
4640
4641 /* Init handles and log related stuff. */
4642 RTStrPrintf(pState->szInstance, sizeof(pState->szInstance), "E1000#%d", iInstance);
4643 E1kLog(("%s Constructing new instance sizeof(E1KRXDESC)=%d\n", INSTANCE(pState), sizeof(E1KRXDESC)));
4644 pState->hTxSem = NIL_RTSEMEVENT;
4645 pState->hEventMoreRxDescAvail = NIL_RTSEMEVENT;
4646
4647 /*
4648 * Validate configuration.
4649 */
4650 if (!CFGMR3AreValuesValid(pCfgHandle, "MAC\0" "CableConnected\0" "AdapterType\0" "LineSpeed\0"))
4651 return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES,
4652 N_("Invalid configuraton for E1000 device"));
4653
4654 /** @todo: LineSpeed unused! */
4655
4656 /* Get config params */
4657 rc = CFGMR3QueryBytes(pCfgHandle, "MAC", pState->macAddress.au8,
4658 sizeof(pState->macAddress.au8));
4659 if (RT_FAILURE(rc))
4660 return PDMDEV_SET_ERROR(pDevIns, rc,
4661 N_("Configuration error: Failed to get MAC address"));
4662 rc = CFGMR3QueryBool(pCfgHandle, "CableConnected", &pState->fCableConnected);
4663 if (RT_FAILURE(rc))
4664 return PDMDEV_SET_ERROR(pDevIns, rc,
4665 N_("Configuration error: Failed to get the value of 'CableConnected'"));
4666 rc = CFGMR3QueryU32(pCfgHandle, "AdapterType", (uint32_t*)&pState->eChip);
4667 if (RT_FAILURE(rc))
4668 return PDMDEV_SET_ERROR(pDevIns, rc,
4669 N_("Configuration error: Failed to get the value of 'AdapterType'"));
4670 Assert(pState->eChip <= E1K_CHIP_82545EM);
4671
4672 E1kLog(("%s Chip=%s\n", INSTANCE(pState), g_Chips[pState->eChip].pcszName));
4673
4674 /* Initialize state structure */
4675 pState->fR0Enabled = true;
4676 pState->fGCEnabled = true;
4677 pState->pDevInsR3 = pDevIns;
4678 pState->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
4679 pState->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
4680 pState->u16TxPktLen = 0;
4681 pState->fIPcsum = false;
4682 pState->fTCPcsum = false;
4683 pState->fIntMaskUsed = false;
4684 pState->fDelayInts = false;
4685 pState->fLocked = false;
4686 pState->u64AckedAt = 0;
4687 pState->led.u32Magic = PDMLED_MAGIC;
4688 pState->u32PktNo = 1;
4689
4690#ifdef E1K_INT_STATS
4691 pState->uStatInt = 0;
4692 pState->uStatIntTry = 0;
4693 pState->uStatIntLower = 0;
4694 pState->uStatIntDly = 0;
4695 pState->uStatDisDly = 0;
4696 pState->iStatIntLost = 0;
4697 pState->iStatIntLostOne = 0;
4698 pState->uStatIntLate = 0;
4699 pState->uStatIntMasked = 0;
4700 pState->uStatIntEarly = 0;
4701 pState->uStatIntRx = 0;
4702 pState->uStatIntTx = 0;
4703 pState->uStatIntICS = 0;
4704 pState->uStatIntRDTR = 0;
4705 pState->uStatIntRXDMT0 = 0;
4706 pState->uStatIntTXQE = 0;
4707 pState->uStatTxNoRS = 0;
4708 pState->uStatTxIDE = 0;
4709 pState->uStatTAD = 0;
4710 pState->uStatTID = 0;
4711 pState->uStatRAD = 0;
4712 pState->uStatRID = 0;
4713 pState->uStatRxFrm = 0;
4714 pState->uStatTxFrm = 0;
4715 pState->uStatDescCtx = 0;
4716 pState->uStatDescDat = 0;
4717 pState->uStatDescLeg = 0;
4718#endif /* E1K_INT_STATS */
4719
4720 /* Interfaces */
4721 pState->IBase.pfnQueryInterface = e1kQueryInterface;
4722 pState->INetworkPort.pfnWaitReceiveAvail = e1kWaitReceiveAvail;
4723 pState->INetworkPort.pfnReceive = e1kReceive;
4724 pState->ILeds.pfnQueryStatusLed = e1kQueryStatusLed;
4725 pState->INetworkConfig.pfnGetMac = e1kGetMac;
4726 pState->INetworkConfig.pfnGetLinkState = e1kGetLinkState;
4727 pState->INetworkConfig.pfnSetLinkState = e1kSetLinkState;
4728
4729 /* Initialize the EEPROM */
4730 pState->eeprom.init(pState->macAddress);
4731
4732 /* Initialize internal PHY */
4733 Phy::init(&pState->phy, iInstance,
4734 pState->eChip == E1K_CHIP_82543GC?
4735 PHY_EPID_M881000 : PHY_EPID_M881011);
4736 Phy::setLinkStatus(&pState->phy, pState->fCableConnected);
4737
4738 rc = PDMDevHlpSSMRegister(pDevIns, pDevIns->pDevReg->szDeviceName, iInstance,
4739 E1K_SAVEDSTATE_VERSION, sizeof(E1KSTATE),
4740 e1kSavePrep, e1kSaveExec, NULL,
4741 e1kLoadPrep, e1kLoadExec, NULL);
4742 if (RT_FAILURE(rc))
4743 return rc;
4744
4745 /* Initialize critical section */
4746 rc = PDMDevHlpCritSectInit(pDevIns, &pState->cs, pState->szInstance);
4747 if (RT_FAILURE(rc))
4748 return rc;
4749#ifndef E1K_GLOBAL_MUTEX
4750 char szTmp[sizeof(pState->szInstance) + 2];
4751 RTStrPrintf(szTmp, sizeof(szTmp), "%sRX", pState->szInstance);
4752 rc = PDMDevHlpCritSectInit(pDevIns, &pState->csRx, szTmp);
4753 if (RT_FAILURE(rc))
4754 return rc;
4755#endif
4756
4757 /* Set PCI config registers */
4758 e1kConfigurePCI(pState->pciDevice, pState->eChip);
4759 /* Register PCI device */
4760 rc = PDMDevHlpPCIRegister(pDevIns, &pState->pciDevice);
4761 if (RT_FAILURE(rc))
4762 return rc;
4763
4764 /* Map our registers to memory space (region 0, see e1kConfigurePCI)*/
4765 rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, E1K_MM_SIZE,
4766 PCI_ADDRESS_SPACE_MEM, e1kMap);
4767 if (RT_FAILURE(rc))
4768 return rc;
4769 /* Map our registers to IO space (region 2, see e1kConfigurePCI) */
4770 rc = PDMDevHlpPCIIORegionRegister(pDevIns, 2, E1K_IOPORT_SIZE,
4771 PCI_ADDRESS_SPACE_IO, e1kMap);
4772 if (RT_FAILURE(rc))
4773 return rc;
4774
4775 /* Create transmit queue */
4776 rc = PDMDevHlpPDMQueueCreate(pDevIns, sizeof(PDMQUEUEITEMCORE), 1, 0,
4777 e1kTxQueueConsumer, true, &pState->pTxQueueR3);
4778 if (RT_FAILURE(rc))
4779 return rc;
4780 pState->pTxQueueR0 = PDMQueueR0Ptr(pState->pTxQueueR3);
4781 pState->pTxQueueRC = PDMQueueRCPtr(pState->pTxQueueR3);
4782
4783 /* Create the RX notifier signaller. */
4784 rc = PDMDevHlpPDMQueueCreate(pDevIns, sizeof(PDMQUEUEITEMCORE), 1, 0,
4785 e1kCanRxQueueConsumer, true, &pState->pCanRxQueueR3);
4786 if (RT_FAILURE(rc))
4787 return rc;
4788 pState->pCanRxQueueR0 = PDMQueueR0Ptr(pState->pCanRxQueueR3);
4789 pState->pCanRxQueueRC = PDMQueueRCPtr(pState->pCanRxQueueR3);
4790
4791#ifdef E1K_USE_TX_TIMERS
4792 /* Create Transmit Interrupt Delay Timer */
4793 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kTxIntDelayTimer,
4794 "E1000 Transmit Interrupt Delay Timer", &pState->pTIDTimerR3);
4795 if (RT_FAILURE(rc))
4796 return rc;
4797 pState->pTIDTimerR0 = TMTimerR0Ptr(pState->pTIDTimerR3);
4798 pState->pTIDTimerRC = TMTimerRCPtr(pState->pTIDTimerR3);
4799
4800# ifndef E1K_NO_TAD
4801 /* Create Transmit Absolute Delay Timer */
4802 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kTxAbsDelayTimer,
4803 "E1000 Transmit Absolute Delay Timer", &pState->pTADTimerR3);
4804 if (RT_FAILURE(rc))
4805 return rc;
4806 pState->pTADTimerR0 = TMTimerR0Ptr(pState->pTADTimerR3);
4807 pState->pTADTimerRC = TMTimerRCPtr(pState->pTADTimerR3);
4808# endif /* E1K_NO_TAD */
4809#endif /* E1K_USE_TX_TIMERS */
4810
4811#ifdef E1K_USE_RX_TIMERS
4812 /* Create Receive Interrupt Delay Timer */
4813 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kRxIntDelayTimer,
4814 "E1000 Receive Interrupt Delay Timer", &pState->pRIDTimerR3);
4815 if (RT_FAILURE(rc))
4816 return rc;
4817 pState->pRIDTimerR0 = TMTimerR0Ptr(pState->pRIDTimerR3);
4818 pState->pRIDTimerRC = TMTimerRCPtr(pState->pRIDTimerR3);
4819
4820 /* Create Receive Absolute Delay Timer */
4821 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kRxAbsDelayTimer,
4822 "E1000 Receive Absolute Delay Timer", &pState->pRADTimerR3);
4823 if (RT_FAILURE(rc))
4824 return rc;
4825 pState->pRADTimerR0 = TMTimerR0Ptr(pState->pRADTimerR3);
4826 pState->pRADTimerRC = TMTimerRCPtr(pState->pRADTimerR3);
4827#endif /* E1K_USE_RX_TIMERS */
4828
4829 /* Create Late Interrupt Timer */
4830 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kLateIntTimer,
4831 "E1000 Late Interrupt Timer", &pState->pIntTimerR3);
4832 if (RT_FAILURE(rc))
4833 return rc;
4834 pState->pIntTimerR0 = TMTimerR0Ptr(pState->pIntTimerR3);
4835 pState->pIntTimerRC = TMTimerRCPtr(pState->pIntTimerR3);
4836
4837 /* Create Link Up Timer */
4838 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kLinkUpTimer,
4839 "E1000 Link Up Timer", &pState->pLUTimer);
4840 if (RT_FAILURE(rc))
4841 return rc;
4842
4843 /* Status driver */
4844 PPDMIBASE pBase;
4845 rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pState->IBase, &pBase, "Status Port");
4846 if (RT_FAILURE(rc))
4847 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach the status LUN"));
4848 pState->pLedsConnector = (PPDMILEDCONNECTORS)pBase->pfnQueryInterface(pBase, PDMINTERFACE_LED_CONNECTORS);
4849
4850 rc = PDMDevHlpDriverAttach(pDevIns, 0, &pState->IBase, &pState->pDrvBase, "Network Port");
4851 if (RT_SUCCESS(rc))
4852 {
4853 if (rc == VINF_NAT_DNS)
4854 {
4855 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "NoDNSforNAT",
4856 N_("A Domain Name Server (DNS) for NAT networking could not be determined. Ensure that your host is correctly connected to an ISP. If you ignore this warning the guest will not be able to perform nameserver lookups and it will probably observe delays if trying so"));
4857 }
4858 pState->pDrv = (PPDMINETWORKCONNECTOR)
4859 pState->pDrvBase->pfnQueryInterface(pState->pDrvBase, PDMINTERFACE_NETWORK_CONNECTOR);
4860 if (!pState->pDrv)
4861 {
4862 AssertMsgFailed(("%s Failed to obtain the PDMINTERFACE_NETWORK_CONNECTOR interface!\n"));
4863 return VERR_PDM_MISSING_INTERFACE_BELOW;
4864 }
4865 }
4866 else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
4867 {
4868 E1kLog(("%s This adapter is not attached to any network!\n", INSTANCE(pState)));
4869 }
4870 else
4871 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach the network LUN"));
4872
4873 rc = RTSemEventCreate(&pState->hTxSem);
4874 if (RT_FAILURE(rc))
4875 return rc;
4876 rc = RTSemEventCreate(&pState->hEventMoreRxDescAvail);
4877 if (RT_FAILURE(rc))
4878 return rc;
4879
4880 e1kHardReset(pState);
4881
4882 rc = PDMDevHlpPDMThreadCreate(pDevIns, &pState->pTxThread, pState, e1kTxThread, e1kTxThreadWakeUp, 0, RTTHREADTYPE_IO, "E1000_TX");
4883 if (RT_FAILURE(rc))
4884 return rc;
4885
4886#if defined(VBOX_WITH_STATISTICS) || defined(E1K_REL_STATS)
4887 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatMMIOReadGC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling MMIO reads in GC", "/Devices/E1k%d/MMIO/ReadGC", iInstance);
4888 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatMMIOReadHC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling MMIO reads in HC", "/Devices/E1k%d/MMIO/ReadHC", iInstance);
4889 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatMMIOWriteGC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling MMIO writes in GC", "/Devices/E1k%d/MMIO/WriteGC", iInstance);
4890 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatMMIOWriteHC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling MMIO writes in HC", "/Devices/E1k%d/MMIO/WriteHC", iInstance);
4891 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatEEPROMRead, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling EEPROM reads", "/Devices/E1k%d/EEPROM/Read", iInstance);
4892 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatEEPROMWrite, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling EEPROM writes", "/Devices/E1k%d/EEPROM/Write", iInstance);
4893 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOReadGC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in GC", "/Devices/E1k%d/IO/ReadGC", iInstance);
4894 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOReadHC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in HC", "/Devices/E1k%d/IO/ReadHC", iInstance);
4895 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOWriteGC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in GC", "/Devices/E1k%d/IO/WriteGC", iInstance);
4896 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOWriteHC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in HC", "/Devices/E1k%d/IO/WriteHC", iInstance);
4897 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatLateIntTimer, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling late int timer", "/Devices/E1k%d/LateInt/Timer", iInstance);
4898 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatLateInts, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of late interrupts", "/Devices/E1k%d/LateInt/Occured", iInstance);
4899 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIntsRaised, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of raised interrupts", "/Devices/E1k%d/Interrupts/Raised", iInstance);
4900 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIntsPrevented, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of prevented interrupts", "/Devices/E1k%d/Interrupts/Prevented", iInstance);
4901 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatReceive, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling receive", "/Devices/E1k%d/Receive/Total", iInstance);
4902 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatReceiveFilter, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling receive filtering", "/Devices/E1k%d/Receive/Filter", iInstance);
4903 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatReceiveStore, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling receive storing", "/Devices/E1k%d/Receive/Store", iInstance);
4904 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatRxOverflow, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_OCCURENCE, "Profiling RX overflows", "/Devices/E1k%d/RxOverflow", iInstance);
4905 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatRxOverflowWakeup, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Nr of RX overflow wakeups", "/Devices/E1k%d/RxOverflowWakeup", iInstance);
4906#endif /* VBOX_WITH_STATISTICS || E1K_REL_STATS */
4907 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatReceiveBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data received", "/Devices/E1k%d/ReceiveBytes", iInstance);
4908#if defined(VBOX_WITH_STATISTICS) || defined(E1K_REL_STATS)
4909 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTransmit, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling transmits in HC", "/Devices/E1k%d/Transmit/Total", iInstance);
4910#endif /* VBOX_WITH_STATISTICS || E1K_REL_STATS */
4911 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTransmitBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data transmitted", "/Devices/E1k%d/TransmitBytes", iInstance);
4912#if defined(VBOX_WITH_STATISTICS) || defined(E1K_REL_STATS)
4913 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTransmitSend, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling send transmit in HC", "/Devices/E1k%d/Transmit/Send", iInstance);
4914
4915 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTxDescLegacy, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TX legacy descriptors", "/Devices/E1k%d/TxDesc/Legacy", iInstance);
4916 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTxDescData, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TX data descriptors", "/Devices/E1k%d/TxDesc/Data", iInstance);
4917 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatTxDescTSEData, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TX TSE data descriptors", "/Devices/E1k%d/TxDesc/TSEData", iInstance);
4918 PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatPHYAccesses, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of PHY accesses", "/Devices/E1k%d/PHYAccesses", iInstance);
4919#endif /* VBOX_WITH_STATISTICS || E1K_REL_STATS */
4920
4921 return VINF_SUCCESS;
4922}
4923
4924/**
4925 * Destruct a device instance.
4926 *
4927 * We need to free non-VM resources only.
4928 *
4929 * @returns VBox status.
4930 * @param pDevIns The device instance data.
4931 * @thread EMT
4932 */
4933static DECLCALLBACK(int) e1kDestruct(PPDMDEVINS pDevIns)
4934{
4935 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
4936
4937 e1kDumpState(pState);
4938 E1kLog(("%s Destroying instance\n", INSTANCE(pState)));
4939 if (PDMCritSectIsInitialized(&pState->cs))
4940 {
4941 if (pState->hEventMoreRxDescAvail != NIL_RTSEMEVENT)
4942 {
4943 RTSemEventSignal(pState->hEventMoreRxDescAvail);
4944 RTSemEventDestroy(pState->hEventMoreRxDescAvail);
4945 pState->hEventMoreRxDescAvail = NIL_RTSEMEVENT;
4946 }
4947 if (pState->hTxSem != NIL_RTSEMEVENT)
4948 {
4949 RTSemEventDestroy(pState->hTxSem);
4950 pState->hTxSem = NIL_RTSEMEVENT;
4951 }
4952#ifndef E1K_GLOBAL_MUTEX
4953 PDMR3CritSectDelete(&pState->csRx);
4954 //PDMR3CritSectDelete(&pState->csTx);
4955#endif
4956 PDMR3CritSectDelete(&pState->cs);
4957 }
4958 return VINF_SUCCESS;
4959}
4960
4961/**
4962 * Device relocation callback.
4963 *
4964 * When this callback is called the device instance data, and if the
4965 * device have a GC component, is being relocated, or/and the selectors
4966 * have been changed. The device must use the chance to perform the
4967 * necessary pointer relocations and data updates.
4968 *
4969 * Before the GC code is executed the first time, this function will be
4970 * called with a 0 delta so GC pointer calculations can be one in one place.
4971 *
4972 * @param pDevIns Pointer to the device instance.
4973 * @param offDelta The relocation delta relative to the old location.
4974 *
4975 * @remark A relocation CANNOT fail.
4976 */
4977static DECLCALLBACK(void) e1kRelocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
4978{
4979 E1KSTATE* pState = PDMINS_2_DATA(pDevIns, E1KSTATE*);
4980 pState->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
4981 pState->pTxQueueRC = PDMQueueRCPtr(pState->pTxQueueR3);
4982 pState->pCanRxQueueRC = PDMQueueRCPtr(pState->pCanRxQueueR3);
4983#ifdef E1K_USE_RX_TIMERS
4984 pState->pRIDTimerRC = TMTimerRCPtr(pState->pRIDTimerR3);
4985 pState->pRADTimerRC = TMTimerRCPtr(pState->pRADTimerR3);
4986#endif /* E1K_USE_RX_TIMERS */
4987#ifdef E1K_USE_TX_TIMERS
4988 pState->pTIDTimerRC = TMTimerRCPtr(pState->pTIDTimerR3);
4989# ifndef E1K_NO_TAD
4990 pState->pTADTimerRC = TMTimerRCPtr(pState->pTADTimerR3);
4991# endif /* E1K_NO_TAD */
4992#endif /* E1K_USE_TX_TIMERS */
4993 pState->pIntTimerRC = TMTimerRCPtr(pState->pIntTimerR3);
4994}
4995
4996/**
4997 * @copydoc FNPDMDEVSUSPEND
4998 */
4999static DECLCALLBACK(void) e1kSuspend(PPDMDEVINS pDevIns)
5000{
5001 /* Poke thread waiting for buffer space. */
5002 e1kWakeupReceive(pDevIns);
5003}
5004
5005/**
5006 * @copydoc FNPDMDEVPOWEROFF
5007 */
5008static DECLCALLBACK(void) e1kPowerOff(PPDMDEVINS pDevIns)
5009{
5010 /* Poke thread waiting for buffer space. */
5011 e1kWakeupReceive(pDevIns);
5012}
5013
5014/**
5015 * The device registration structure.
5016 */
5017const PDMDEVREG g_DeviceE1000 =
5018{
5019 /* Structure version. PDM_DEVREG_VERSION defines the current version. */
5020 PDM_DEVREG_VERSION,
5021 /* Device name. */
5022 "e1000",
5023 /* Name of guest context module (no path).
5024 * Only evalutated if PDM_DEVREG_FLAGS_RC is set. */
5025 "VBoxDDGC.gc",
5026 /* Name of ring-0 module (no path).
5027 * Only evalutated if PDM_DEVREG_FLAGS_RC is set. */
5028 "VBoxDDR0.r0",
5029 /* The description of the device. The UTF-8 string pointed to shall, like this structure,
5030 * remain unchanged from registration till VM destruction. */
5031 "Intel PRO/1000 MT Desktop Ethernet.\n",
5032
5033 /* Flags, combination of the PDM_DEVREG_FLAGS_* \#defines. */
5034 PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0,
5035 /* Device class(es), combination of the PDM_DEVREG_CLASS_* \#defines. */
5036 PDM_DEVREG_CLASS_NETWORK,
5037 /* Maximum number of instances (per VM). */
5038 8,
5039 /* Size of the instance data. */
5040 sizeof(E1KSTATE),
5041
5042 /* Construct instance - required. */
5043 e1kConstruct,
5044 /* Destruct instance - optional. */
5045 e1kDestruct,
5046 /* Relocation command - optional. */
5047 e1kRelocate,
5048 /* I/O Control interface - optional. */
5049 NULL,
5050 /* Power on notification - optional. */
5051 NULL,
5052 /* Reset notification - optional. */
5053 NULL,
5054 /* Suspend notification - optional. */
5055 e1kSuspend,
5056 /* Resume notification - optional. */
5057 NULL,
5058 /* Attach command - optional. */
5059 NULL,
5060 /* Detach notification - optional. */
5061 NULL,
5062 /* Query a LUN base interface - optional. */
5063 NULL,
5064 /* Init complete notification - optional. */
5065 NULL,
5066 /* Power off notification - optional. */
5067 e1kPowerOff,
5068 /* pfnSoftReset */
5069 NULL,
5070 /* u32VersionEnd */
5071 PDM_DEVREG_VERSION
5072};
5073
5074#endif /* IN_RING3 */
5075#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
5076
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette